Analysis & PDEs

Calculus and the theory of real and complex continuous functions are among the crowning achievements of science. The field of mathematical analysis continues the development of that theory today to give even greater power and generality. Our faculty have made large strides in advancing our techniques to analyze partial differential equations of various types to understand the nature of their solutions.

Our group in analysis investigates free boundary problems, dispersive equations, microlocal analysis with applications to differential geometry and mathematical physics (index theory).

Department Members in This Field

Faculty

Instructors & Postdocs

  • Lior Alon Mathematical physics, spectral geometry, analysis on graphs, quantum graphs.
  • Shi Chen Machine Learning, Gradient Flows and Optimization, Inverse Problems
  • Tsz Kiu Aaron Chow Differential Geometry and Partial Differential Equations
  • Marjorie Drake Analysis, Whitney-type Extension Problems, Convexity
  • Wenkui Du geometric flows, minimal surfaces, Allen-Cahn equations
  • Giada Franz Geometric Analysis
  • Felipe Hernández Mathematical physics, partial differential equations, probability
  • Zhengjiang Lin
  • Max Lipton Minimal Surfaces, Physical Knot Theory, Dynamical Systems
  • Jia Shi fluid dynamics and partial differential equations
  • Jingze Zhu Differential Geometry and Partial Differential Equations

Graduate Students*

*Only a partial list of graduate students