It is well known that the extremal rays in the cone of effective curve classes on a K3 surface are generated by rational curves \(C \) for which \((C, C) = -2\); a natural question to ask is whether there is a similar characterization for a higher-dimensional holomorphic symplectic variety \(X \). The intersection form is no longer a quadratic form on curve classes, but the Beauville-Bogomolov form on \(X \) induces a canonical nondegenerate form \((\cdot, \cdot)\) on \(H_2(X; \mathbb{R}) \) which coincides with the intersection form if \(X \) is a K3 surface. We therefore might hope that extremal rays of effective curves in \(X \) are generated by rational curves \(C \) with \((C, C) = -c\) for some positive rational number \(c \). In particular, if \(X \) contains a Lagrangian hyperplane \(\mathbb{P}^n \subset X \), the class of the line \(\ell \subset \mathbb{P}^n \) is extremal. For \(X \) deformation equivalent to the Hilbert scheme of \(n \) points on a K3 surface, Hassett and Tschinkel conjecture that \((\ell, \ell) = -\frac{n+3}{2}\); this has been verified for \(n < 4 \). In joint work with Andrei Jorza, we prove the conjecture for \(n = 4 \), and discuss some general properties of the ring of Hodge classes on \(X \).