HW=Hardy-Wright (and HW reading is always optional)

Monday | Tuesday | Wednesday | Thursday | Friday |

3 |
4 |
5NZM Sect. 1.1 Introduction, Diophantine Equations |
6 |
7NZM Sect. 1.2 Divisibility |

10NZM Sect. 1.3 Primes I |
11 |
12HW Ch. 1 Primes II |
13 |
14NZM 2.1 Congruences I |

17NZM 2.2 Congruences II |
18 |
19NZM 2.3 Chinese Remainder Theorem |
20 |
21NZM 2.6 Hensel's Lemma |

24Student Holiday - No Class |
25 |
26NZM 2.7 Solving congruences for prime moduli |
27 |
28NZM 2.8 Primitive Roots |

Monday | Tuesday | Wednesday | Thursday | Friday |

1HW Ch. 5 Power Residues |
2 |
3NZM 2.10,2.11 Group Theory |
4 |
5NZM 3.1,3.2 Quadratic Reciprocity |

8Columbus Day -- No Class |
9 |
10HW Ch. 6 Proof of Quadratic Reciprocity I |
11 |
12NZM 3.3 Proof of Quadratic Reciprocity II |

15Quadratic Binary Forms, Midterm Review |
16 |
17## MIDTERM IIn-Class |
18 |
19Ireland-Rosen, Ch. 7 Finite Fields |

22Ireland-Rosen 8.1-8.2 Characters and Gauss sums |
23 |
24Ireland-Rosen 8.3-8.5 Jacobi Sums |
25 |
26NZM 9.1-9.4 Intro to Algebraic Number Theory |

29Ireland-Rosen 9.1-9.3 Cubic Reciprocity |
30 |
31Ireland-Rosen 9.4 Proof of Cubic Reciprocity |

Back to the Math 781 home page.