Monday | Tuesday | Wednesday | Thursday | Friday |
3 | 4 | 5 NZM Sect. 1.1 Introduction, Diophantine Equations |
6 | 7 NZM Sect. 1.2 Divisibility |
10 NZM Sect. 1.3 Primes I |
11 | 12 HW Ch. 1 Primes II |
13 | 14 NZM 2.1 Congruences I |
17 NZM 2.2 Congruences II |
18 | 19 NZM 2.3 Chinese Remainder Theorem |
20 | 21 NZM 2.6 Hensel's Lemma |
24 Student Holiday - No Class |
25 | 26 NZM 2.7 Solving congruences for prime moduli |
27 | 28 NZM 2.8 Primitive Roots |
Monday | Tuesday | Wednesday | Thursday | Friday |
1 HW Ch. 5 Power Residues |
2 | 3 NZM 2.10,2.11 Group Theory |
4 | 5 NZM 3.1,3.2 Quadratic Reciprocity |
8 Columbus Day -- No Class |
9 | 10 HW Ch. 6 Proof of Quadratic Reciprocity I |
11 | 12 NZM 3.3 Proof of Quadratic Reciprocity II |
15 Quadratic Binary Forms, Midterm Review |
16 | 17
|
18 | 19 Ireland-Rosen, Ch. 7 Finite Fields |
22 Ireland-Rosen 8.1-8.2 Characters and Gauss sums |
23 | 24 Ireland-Rosen 8.3-8.5 Jacobi Sums |
25 | 26 NZM 9.1-9.4 Intro to Algebraic Number Theory |
29 Ireland-Rosen 9.1-9.3 Cubic Reciprocity |
30 | 31 Ireland-Rosen 9.4 Proof of Cubic Reciprocity |
Back to the Math 781 home page.