Publications

  • All
  • Various
  • Algebraic Topology
  • Elliptic operators and applications
  • Complex representations of finite Chevalley groups
  • Modular representations
  • Quantum groups/Canonical bases
  • Algebraic groups/Character sheaves
  • Symmetric spaces
  • Coxeter groups
  • P-adic groups/loop groups
  • Total positivity
  • G. Lusztig, Model de geometrie afina plana peste un corp finit, Studii Cerc. Mat. 17 (1965), 1337-1340.
  • G.Lusztig, Constructia fibrarilor universale peste poliedre arbitrare, Studii Cerc. Mat. 18 (1965), 1215-1219.
  • G.Lusztig and H.Moscovici, Demonstration du théoreme sur la suite spectrale d'un fibré au sens de Kan, Proc. Camb. Phil. Soc. 64 (1968), 293-297.
  • G.Lusztig, Sur les complexes elliptiques fibrés, C.R. Acad. Sci. Paris(A). 266 (1968), 914-917.
  • G.Lusztig, Sur les actions libres des groupes finis, Bull. Acad. Polon. Sci. 16 (1968), 461-463.
  • G.Lusztig, Coomologia complexelor eliptice, Studii Cerc. Mat. 21 (1969), 38-83.
  • G.Lusztig, A property of certain non-degenerate holomorphic vector fields, An. Univ. Timisoara. 7 (1969), 73-76.
  • G.Lusztig, J.Milnor and F.P.Peterson, Semicharacteristics and cobordism, Topology. 8 (1969), 357-359.
  • G.Lusztig, Remarks on the holomorphic Lefschetz formula, Analyse globale, Presses de l'Univ.de Montréal, 1971, pp. 193-204.
  • G.Lusztig and J.Dupont, On manifolds satisfying $w_1^2 =0$, Topology. 10 (1971), 81-92.
  • G.Lusztig, Novikov's higher signature and families of elliptic operators, J. Diff. Geom. 7 (1972), 229-256.
  • G.Lusztig, On the discrete series representations of the general linear groups over a finite field, Bull. Amer. Math. Soc. 79 (1973), 550-554.
  • G.Lusztig, , The discrete series of $GL_n$ over a finite field, Ann. Math. Studies 81, Princeton U.Press, 1974.
  • G.Lusztig, Introduction to elliptic operators, Global Analysis and applications, Internat.Atomic Energy Agency, Vienna, 1974, pp. 187-193.
  • G.Lusztig and R.W.Carter, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193-242.
  • G.Lusztig and R.W.Carter, Modular representations of the general linear and symmetric groups, Proc.2nd Int.Conf. Th.Groups 1973, LNM 372, Springer Verlag, 1974, pp. 218-220.
  • G.Lusztig, On the discrete series representations of the classical groups over a finite field, Proc.Int.Congr.Math.,Vancouver 1974, pp. 465-470.
  • G.Lusztig, Sur la conjecture de Macdonald, C.R. Acad. Sci. Paris(A). 280 (1975), 371-320.
  • G.Lusztig, A note on counting nilpotent matrices of fixed rank, Bull. Lond. Math. Soc. 8 (1976), 77-80.
  • G.Lusztig, Divisibility of projective modules of finite Chevalley groups by the Steinberg module, Bull. Lond. Math. Soc. 8 (1976), 130-134.
  • G.Lusztig and R.W.Carter, Modular representations of finite groups of Lie type, Proc. Lond. Math. Soc. 32 (1976), 347-384.
  • P.Deligne and G.Lusztig, Representations of reductive groups over finite fields, Ann. Math. 103 (1976), 103-161.
  • G.Lusztig, On the Green polynomials of classical groups, Proc. Lond. Math. Soc. 33 (1976), 443-475.
  • G.Lusztig, Coxeter orbits and eigenspaces of Frobenius, Inv. Math. 28 (1976), 101-159.
  • G.Lusztig, On the finiteness of the number of unipotent classes, Inv. Math. 34 (1976), 201-213.
  • G.Lusztig, J.A.Green and G.I.Lehrer, On the degrees of certain group characters, Quart. J. Math. 27 (1976), 1-4.
  • G.Lusztig and B.Srinivasan, The characters of the finite unitary groups, J. Alg. 49 (1977), 167-171.
  • G.Lusztig, Classification des représentations irréductibles des groupes classiques finis, C.R. Acad. Sci. Paris(A). 284 (1977), 473-476.
  • G.Lusztig, Irreducible representations of finite classical groups, Inv. Math. 43 (1977), 125-175.
  • G.Lusztig, , Representations of finite Chevalley groups, Regional Conf. Series in Math. 39, Amer. Math. Soc., 1978.
  • W.M.Beynon and G.Lusztig, Some numerical results on the characters of exceptional Weyl groups, Math. Proc. Camb. Phil. Soc. 84 (1978), 417-426.
  • G.Lusztig, Some remarks on the supercuspidal representations of p-adic semisimple groups, Proc. Symp. Pure Math.33(1), Amer. Math. Soc., 1979, pp. 171-175.
  • G.Lusztig, On the reflection representation of a finite Chevalley group,, Representation theory of Lie groups, LMS Lect.Notes Ser.34, Cambridge U.Press, 1979, pp. 325-337.
  • G.Lusztig, Unipotent representations of a finite Chevalley group of type $E_8$, Quart. J. Math. 30 (1979), 315-338.
  • G.Lusztig and N.Spaltenstein, Induced unipotent classes, J. Lond. Math. Soc. 19 (1979), 41-52.
  • G.Lusztig, A class of irreducible representations of a Weyl group, Proc. Kon. Nederl. Akad.(A). 82 (1979), 323-335.
  • D.Kazhdan and G.Lusztig, Representations of Coxeter groups and Hecke algebras, Inv. Math. 53 (1979), 165-184.
  • D.Kazhdan and G.Lusztig, A topological approach to Springer's representations, Adv. Math. 38 (1980), 222-228.
  • D.Kazhdan and G.Lusztig, Schubert varieties and Poincaré duality, Proc. Symp. Pure Math.36, Amer. Math. Soc., 1980, pp. 185-203.
  • G.Lusztig, Some problems in the representation theory of finite Chevalley groups, Proc. Symp. Pure Math.37, Amer. Math. Soc., 1980, pp. 313-317.
  • G.Lusztig, Hecke algebras and Jantzen's generic decomposition patterns, Adv.Math. 37 (1980), 121-164.
  • G.Lusztig, On the unipotent characters of the exceptional groups over finite fields, Inv. Math. 60 (1980), 173-192.
  • G.Lusztig, On a theorem of Benson and Curtis, J. Alg. 71 (1981), 490-498.
  • G.Lusztig, Green polynomials and singularities of unipotent classes, Adv. Math. 42 (1981), 169-178.
  • G.Lusztig, Unipotent characters of the symplectic and odd orthogonal groups over a finite field, Inv. Math. 64 (1981), 263-296.
  • G.Lusztig, Unipotent characters of the even orthogonal groups over a finite field, Trans. Amer. Math. Soc. 272 (1982), 733-751.
  • P.Deligne and G.Lusztig, Duality for representations of a reductive group over a finite field, J. Alg. 74 (1982), 284-291.
  • D.Alvis and G.Lusztig, On Springer's correspondence for simple groups of type $E_n(n=6,7,8)$, Math. Proc. Camb. Phil. Soc. 92 (1982), 65-72.
  • D.Alvis and G.Lusztig, The representations and generic degrees of the Hecke algebras of type $H_4$, J. reine und angew. math. 336 (1982), 201-212; Erratum 449 (1994), 217-281.
  • G.Lusztig, A class of irreducible representations of a Weyl group II, Proc. Kon. Nederl. Akad.(A). 85 (1982), 219-226.
  • G.Lusztig and D.Vogan, Singularities of closures of K-orbits on a flag manifold, Inv. Math. 71 (1983), 365-379.
  • P.Deligne and G.Lusztig, Duality for representations of a reductive group over a finite field II, J. Alg. 81 (1983), 540-549.
  • G.Lusztig, Singularities, character formulas and a $q$-analog of weight multiplicities, Astérisque. 101-102 (1983), 208-229.
  • G.Lusztig, Some examples of square integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc. 227 (1983), 623-653.
  • G.Lusztig, Left cells in Weyl groups, Lie groups representations, LNM 1024, Springer Verlag, 1983, pp. 99-111.
  • G.Lusztig, Open problems in algebraic groups, Proc.12th Int.Symp., Taniguchi Foundation, Katata, 1983, pp. 14-14.
  • G.Lusztig, , Characters of reductive groups over a finite field, Ann.Math.Studies 107, Princeton U.Press, 1984.
  • G.Lusztig, Characters of reductive groups over finite fields, Proc.Int.Congr.Math. Warsaw 1983, North Holland, 1984, pp. 877-880.
  • G.Lusztig, Intersection cohomology complexes on a reductive group, Inv. Math. 75 (1984), 205-272.
  • G.Lusztig, Cells in affine Weyl groups, Algebraic groups and related topics, Adv. Stud. Pure Math. 6, North-Holland and Kinokuniya, 1985, pp. 255-287.
  • G.Lusztig and N.Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics, Adv. Stud. Pure Math. 6, North-Holland and Kinokuniya, 1985, pp. 289-316.
  • G.Lusztig, The two sided cells of the affine Weyl group of type A, Infinite dimensional groups with applications, MSRI Publ.4, Springer Verlag, 1985, pp. 275-283.
  • G.Lusztig, Character sheaves I, Adv. Math. 56 (1985), 193-237.
  • G.Lusztig, Character sheaves II, Adv.Math. 57 (1985), 226-265.
  • G.Lusztig, Character sheaves III, Adv.Math. 57 (1985), 266-315.
  • G.Lusztig, Equivariant K-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94 (1985), 337-342.
  • D.Kazhdan and G.Lusztig, Equivariant K-theory and representations of Hecke algebras II, Inv. Math. 80 (1985), 209-231.
  • G.Lusztig, Character sheaves IV, Adv. Math. 59 (1986), 1-63.
  • G.Lusztig, Character sheaves V, Adv. Math. 61 (1986), 103-155.
  • G.Lusztig, Sur les cellules gauches des groupes de Weyl, C.R. Acad. Sci. Paris(A). 302 (1986), 5-8.
  • G.Lusztig, On the character values of finite Chevalley groups at unipotent elements, J. Alg. 104 (1986), 146-194.
  • D.Kazhdan and G.Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Inv. Math. 87 (1987), 153-215.
  • G.Lusztig, Cells in affine Weyl groups II, J. Alg. 109 (1987), 536-548.
  • G.Lusztig, Fourier transforms on a semisimple Lie algebra over $F_q$,, Algebraic Groups Utrecht 1986, LNM 1271, Springer Verlag, 1987, pp. 177-188.
  • G.Lusztig, Cells in affine Weyl groups III, J. Fac. Sci. Tokyo U.(IA). 34 (1987), 223-243.
  • G.Lusztig, Introduction to character sheaves, Proc. Symp. Pure Math. 47(1), Amer. Math. Soc., 1987, pp. 165-180.
  • G.Lusztig, Leading coefficients of character values of Hecke algebras, Proc. Symp. Pure Math. 47(2), Amer. Math. Soc., 1987, pp. 235-262.
  • C.De Concini, G.Lusztig and C.Procesi, Homology of the zero set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), 15-34.
  • G.Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv.Math. 70 (1988), 237-249.
  • D.Kazhdan and G.Lusztig, Fixed point varieties on affine flag manifolds, Isr. J. Math. 62 (1988), 129-168.
  • G.Lusztig, Cuspidal local systems and graded Hecke algebras I, Publ. Math. I.H.E.S. 67 (1988), 145-202.
  • G.Lusztig and N.Xi, Canonical left cells in affine Weyl groups, Adv.Math. 72 (1988), 284-288.
  • G.Lusztig, On representations of reductive groups with disconnected center, Astérisque. 168 (1988), 157-166.
  • G.Lusztig, Modular representations and quantum groups, Contemp. Math. 82 (1989), 59-77.
  • G.Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599-635.
  • G.Lusztig, Cells in affine Weyl groups IV, J. Fac. Sci. Tokyo U.(IA). 36 (1989), 297-328.
  • G.Lusztig, Representations of affine Hecke algebras, Astérisque. 171-172 (1989), 73-84.
  • G.Lusztig, On quantum groups, J. Alg. 131 (1990), 466-475.
  • G.Lusztig, Green functions and character sheaves, Ann. Math. 131 (1990), 355-408.
  • G.Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990), 257-296.
  • G.Lusztig, Quantum groups at roots of 1, Geom.Ded. 35 (1990), 89-114.
  • G.Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
  • A.A.Beilinson, G.Lusztig and R.MacPherson, A geometric setting for the quantum deformation of $GL_n$, Duke Math. J. 61 (1990), 655-677.
  • G.Lusztig, Symmetric spaces over a finite field, The Grothendieck Festschrift III, Progr. in Math. 88, Birkhäuser Boston, 1990, pp. 57-81.
  • G.Lusztig, Canonical bases arising from quantized enveloping algebras II, Progr.of Theor. Phys. Suppl. 102 (1990), 175-201.
  • D.Kazhdan and G.Lusztig, Affine Lie algebras and quantum groups, Int. Math. Res. Notices. (1991), 21-29.
  • G.Lusztig, Quivers, perverse sheaves and enveloping algebras, J. Amer. Math. Soc. 4 (1991), 365-421.
  • G.Lusztig and J.M.Smelt, Fixed point varieties in the space of lattices, Bull. Lond. Math. Soc. 23 (1991), 213-218.
  • G.Lusztig, Intersection cohomology methods in representation theory, Proc. Int. Congr. Math. Kyoto 1990, Springer Verlag, 1991, pp. 155-174.
  • G.Lusztig, A unipotent support for irreducible representations, Adv. Math. 94 (1992), 139-179.
  • G.Lusztig, Canonical bases in tensor products, Proc. Nat. Acad. Sci. 89 (1992), 8177-8179.
  • G.Lusztig, Remarks on computing irreducible characters, J. Amer. Math. Soc. 5 (1992), 971-986.
  • G.Lusztig, Introduction to quantized enveloping algebras, New developments in Lie theory and their applications, ed.J.Tirao, Progr.in Math.105, Birkhäuser Boston, 1992, pp. 49-65.
  • G.Lusztig, Affine quivers and canonical bases, Publ. Math. I.H.E.S. 76 (1992), 111-163.
  • G.Lusztig and J.Tits, The inverse of a Cartan matrix, An.Univ.Timisoara. 30 (1992), 17-23.
  • I.Grojnowski and G.Lusztig, On bases of irreducible representations of quantum $GL_n$, Kazhdan-Lusztig theory and related topics, Contemp.Math.139, 1992, pp. 167-174.
  • G.Lusztig, , Introduction to quantum groups, Progr.in Math.110, Birkhäuser Boston, 1993.
  • D.Kazhdan and G.Lusztig, Tensor structures arising from affine Lie algebras I, J. Amer. Math. Soc. 6 (1993), 905-947.
  • D.Kazhdan and G.Lusztig, Tensor structures arising from affine Lie algebras II, J. Amer. Math. Soc. 6 (1993), 949-1011.
  • G.Lusztig, Coxeter groups and unipotent representations, Astérisque. 212 (1993), 191-203.
  • I.Grojnowski and G.Lusztig, A comparison of bases of quantized enveloping algebras, Linear algebraic groups and their representations, Contemp.Math.153, 1993, pp. 11-19.
  • G.Lusztig, Tight monomials in quantized enveloping algebras, Quantum deformations of algebras and their representations, ed. A.Joseph et al., Isr. Math. Conf. Proc. 7, Amer. Math. Soc., 1993, pp. 117-132.
  • G.Lusztig, Exotic Fourier transform, Duke Math.J. 73 (1994), 227-241.
  • G.Lusztig, Vanishing properties of cuspidal local systems, Proc. Nat. Acad. Sci. 91 (1994), 1438-1439.
  • D.Kazhdan and G.Lusztig, Tensor structures arising from affine Lie algebras III, J. Amer. Math. Soc. 7 (1994), 335-381.
  • D.Kazhdan and G.Lusztig, Tensor structures arising from affine Lie algebras IV, J. Amer. Math. Soc. 7 (1994), 383-453.
  • G.Lusztig, Monodromic systems on affine flag manifolds, Proc. Roy. Soc. Lond.(A). 445 (1994), 231-246; Erratum 450 (1995), 731-732.
  • G.Lusztig, Problems on canonical bases, Algebraic groups and their generalizations: quantum and infinite dimensionalmethods, Proc. Symp. Pure Math. 56(2), Amer. Math. Soc., 1994, pp. 169-176.
  • G.Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr.in Math. 123, Birkhäuser Boston, 1994, pp. 531-568.
  • G.Lusztig, Study of perverse sheaves arising from graded Lie algebras, Adv.Math. 112 (1995), 147-217.
  • G.Lusztig, Cuspidal local systems and graded Hecke algebras II, Representations of groups, ed. B.Allison et al., Canad. Math. Soc. Conf. Proc.16, Amer. Math. Soc., 1995, pp. 217-275.
  • G.Lusztig, Quantum groups at $v=\infty$, Functional analysis on the eve of the 21st century, vol.I, Progr.in Math. 131, Birkhäuser Boston, 1995, pp. 199-221.
  • G.Lusztig, Classification of unipotent representations of simple $p$-adic groups, Int. Math. Res. Notices. (1995), 517-589.
  • G.Lusztig, An algebraic-geometric parametrization of the canonical basis, Adv. Math. 120 (1996), 173-190.
  • G.Lusztig, Affine Weyl groups and conjugacy classes in Weyl groups, Transform. Groups. (1996), 83-97.
  • G.Lusztig, Braid group actions and canonical bases, Adv. Math. 122 (1996), 237-261.
  • G.Lusztig, Non local finiteness of a $W$-graph, Represent.Th. 1 (1997), 25-30.
  • G.Lusztig, Cohomology of classifying spaces and hermitian representations, Represent.Th. 1 (1997), 31-36.
  • C.K.Fan and G.Lusztig, Factorization of certain exponentials in Lie groups, Algebraic groups and Lie groups, ed. G.I.Lehrer, Cambridge U.Press, 1997, pp. 215-218.
  • G.Lusztig, Total positivity and canonical bases, Algebraic groups and Lie groups, ed. G.I.Lehrer, Cambridge U.Press, 1997, pp. 281-295.
  • G.Lusztig, Notes on unipotent classes, Asian J.Math. 1 (1997), 194-207.
  • G.Lusztig, Cells in affine Weyl groups and tensor categories, Adv. Math. 129 (1997), 85-98.
  • G.Lusztig, Periodic $W$-graphs, Represent.Th. 1 (1997), 207-279.
  • G.Lusztig, A comparison of two graphs, Int. Math. Res. Notices. (1997), 639-640.
  • G.Lusztig, Constructible functions on the Steinberg variety, Adv. Math. 130 (1997), 287-310.
  • G.Lusztig, Total positivity in partial flag manifolds, Represent.Th. 2 (1998), 70-78.
  • G.Lusztig, Introduction to total positivity, Positivity in Lie theory: open problems, ed. J.Hilgert et al., de Gruyter, 1998, pp. 133-145.
  • G.Lusztig, On quiver varieties, Adv.Math. 136 (1998), 141-182.
  • G.Lusztig, Canonical bases and Hall algebras, Representation Theories and Algebraic Geometry, ed. A.Broer et al., Kluwer Acad.Publ., 1998, pp. 365-399.
  • G.Lusztig, Bases in equivariant $K$-theory, Represent.Th. 2 (1998), 298-369.
  • G.Lusztig, Homology bases arising from reductive groups over a finite field, Algebraic groups and their representations, ed. R.W.Carter et al., Kluwer Acad. Publ., 1998, pp. 53-72.
  • G.Lusztig, Aperiodicity in quantum affine $\mathfrak{g}\mathfrak{l}_n$, Asian J. Math. 3 (1999), 147-178.
  • G.Lusztig, Bases in equivariant $K$-theory II, Represent. Th. 3 (1999), 281-353.
  • G.Lusztig, A survey of group representations, Nieuw Archief voor Wiskunde. 17 (1999), 483-489.
  • G.Lusztig, Subregular nilpotent elements and bases in $K$-theory, Canad. J. Math. 51 (1999), 1194-1225.
  • G.Lusztig, Recollections about my teacher, Michael Atiyah, Asian J. Math. 3 (1999), iv-v.
  • G.Lusztig, Semicanonical bases arising from enveloping algebras, Adv. Math. 151 (2000), 129-139.
  • G.Lusztig, Fermionic form and Betti numbers, arxiv:math/0005010, arxiv:QA/0005010.
  • G.Lusztig, Quiver varieties and Weyl group actions, Ann. Inst. Fourier. 50 (2000), 461-489.
  • G.Lusztig, $G(F_q)$-invariants in irreducible $G(F_{q^2})$-modules, Represent. Th. 4 (2000), 446-465.
  • G.Lusztig, Remarks on quiver varieties, Duke Math. J. 105 (2000), 239-265.
  • G.Lusztig, Transfer maps for quantum affine $\mathfrak{s}\mathfrak{l}_n$, Representations and quantizations, ed. J.Wang et al., China Higher Ed.Press and Springer Verlag, 2000.
  • G.Lusztig, Representation theory in characteristic $p$, Taniguchi Conf. on Math. Nara'98, Adv. Stud. Pure Math. 31, Math. Soc. Japan, 2001, pp. 167-178.
  • G.Lusztig, Cuspidal local systems and graded Hecke algebras III, arxiv:math/0108173, Represent.Th. 6 (2002), 202-242.
  • G.Lusztig, Classification of unipotent representations of simple $p$-adic groups II, arxiv:math/0111248, Represent.Th. 6 (2002), 243-289.
  • G.Lusztig, Constructible functions on varieties attached to quivers, Studies in memory of I. Schur, Progr. in Math. 210, Birkhäuser Boston, 2002, pp. 177-223.
  • G.Lusztig, Rationality properties of unipotent representations, arxiv:math/0103232, J. Alg. 258 (2002), 1-22.
  • G.Lusztig, Notes on affine Hecke algebras, Iwahori-Hecke algebras and their representation theory, ed. M.W.Baldoni et al., LNM 1804, Springer Verlag, 2002, pp. 71-103.
  • G.Lusztig, , Hecke algebras with unequal parameters, CRM Monograph Ser.18, Amer. Math. Soc., 2030, additional material in version 2 (2014).
  • G.Lusztig, Homomorphisms of the alternating group $A_5$ into reductive groups, arxiv:math/0202111, J. Alg. 260 (2003), 298-322.
  • G.Lusztig, Character sheaves on disconnected groups I, arxiv:math/0305206, Represent. Th. 7 (2003), 374-403; Erratum 8 (2004), 179-179.
  • G.Lusztig, Representations of reductive groups over finite rings, arxiv:math/0208037, Represent. Th. 8 (2004), 1-14.
  • G.Lusztig, Character sheaves on disconnected groups II, arxiv:math/0307268, Represent. Th. 8 (2004), 72-124.
  • G.Lusztig, Character sheaves on disconnected groups III, arxiv:math/0308126, Represent. Th. 8 (2004), 125-144.
  • G.Lusztig, Character sheaves on disconnected groups IV, arxiv:math/0312338, Represent. Th. 8 (2004), 145-178.
  • G.Lusztig, Parabolic character sheaves I, arxiv:math/0302151, Moscow Math.J. 4 (2004), 153-179.
  • G.Lusztig, An induction theorem for Springer's representations, Adv.Stud.Pure Math.40, Math. Soc. Japan, Kinokuniya, 2004, pp. 253-259.
  • G.Lusztig, Character sheaves on disconnected groups V, arxiv:math/0403048, Represent. Th. 8 (2004), 346-376.
  • G.Lusztig, Character sheaves on disconnected groups VI, arxiv:math/0406115, Represent.Th. 8 (2004), 377-413.
  • G.Lusztig, Parabolic character sheaves II, arxiv:math/0302317, Moscow Math.J. 4 (2004), 869-896.
  • G.Lusztig, Convolution of almost characters, arxiv:math/0311143, Asian J. Math. 8 (2004), 769-772.
  • G.Lusztig, Character sheaves on disconnected groups VII, arxiv:math/0412168, Represent. Th. 9 (2005), 209-266.
  • G.Lusztig, Unipotent elements in small characteristic, arxiv:math/0503739, Transform. Groups. 10 (2005), 449-487.
  • G.Lusztig, Character sheaves and generalizations, arxiv:math/0309134, The Unity of Mathematics, ed. P.Etingof et al., Progress in Math.244, Birkhäuser Boston, 2006, pp. 443-455.
  • G.Lusztig, A $q$-analogue of an identity of N.Wallach, arxiv:math/0311158, Studies in Lie theory, ed. J.Bernstein et al., Progress in Math. 243, Birkhäuser Boston, 2006, pp. 405-410.
  • G.Lusztig, Character sheaves on disconnected groups VIII, arxiv:math/0509356, Represent. Th. 10 (2006), 314-352.
  • G.Lusztig, Character sheaves on disconnected groups IX, arxiv:math/0601504, Represent. Th. 10 (2006), 353-379.
  • G.Lusztig, A class of perverse sheaves on a partial flag manifold, arxiv:math/0610406, Represent. Th. 11 (2007), 122-171.
  • X.He and G.Lusztig, Singular supports for character sheaves on a group compactification, arxiv:math/0511050, Geom. and Funct.Analysis. 17 (2007), 1915-1923.
  • G.Lusztig, Irreducible representations of finite spin groups, arxiv:math/0702619, Represent. Th. 12 (2008), 1-36.
  • G.Lusztig, A survey of total positivity, arxiv:0705.3842, Milan J. Math. 76 (2007), 1-10.
  • G.Lusztig, Generic character sheaves on disconnected groups and character values, arxiv:0704.0999, Represent. Th. 12 (2008), 225-235.
  • G.Lusztig, Unipotent elements in small characteristic II, arxiv:math/0612320, Transform. Groups. 13 (2008), 773-797.
  • G.Lusztig, Study of a $Z$-form of the coordinate ring of a reductive group, arxiv:0709.1286, J. Amer. Math. Soc. 22 (2009), 739-769.
  • S.Kumar, G.Lusztig and D.Prasad, Characters of simplylaced nonconnected groups versus characters of nonsimplylaced connected groups, arxiv:math/0701615, Representation theory, ed. Z.Lin, Contemp. Math. 478, 2009, pp. 99-101.
  • G.Lusztig, Twelve bridges from a reductive group to its Langlands dual, arxiv:0708.3430, Representation theory, ed. Z.Lin, Contemp. Math.478, 2009, pp. 125-143.
  • G.Lusztig, Character sheaves on disconnected groups X, arxiv:0807.2618, Represent. Th. 13 (2009), 82-140.
  • G.Lusztig, Unipotent classes and special Weyl group representations, arxiv:0711.4287, J. Alg. 321 (2009), 3418-3449.
  • G.Lusztig, Remarks on Springer's representations, arxiv:0811.0370, Represent. Th. 13 (2009), 391-400.
  • G.Lusztig, Notes on character sheaves, arxiv:0805.0787, Moscow Math.J. 9 (2009), 91-109.
  • G.Lusztig, Graded Lie algebras and intersection cohomology, arxiv:math/0604535, Representation theory of algebraic groups and quantum groups, ed. A.Gyoja et al., Progress in Math.284, Birkhäuser, 2010, pp. 191-224.
  • G.Lusztig, Unipotent elements in small characteristic IV, arxiv:0909.2441, Transform. Groups. 14 (2010),.
  • G.Lusztig, Parabolic character sheaves III, arxiv:0911.4318, Moscow Math.J. 10 (2010), 603-609.
  • G.Lusztig, Unipotent elements in small characteristic III, arxiv:0812.0756, J. Alg. 329 (2011), 163-189.
  • G.Lusztig, Piecewise linear parametrization of canonical bases, arxiv:0807.2824, Pure Appl. Math. Quart. 7 (2011), 783-796.
  • G.Lusztig, On some partitions of a flag manifold, arxiv:0906.1505, Asian J. Math. 15 (2011), 1-8.
  • G.Lusztig, From conjugacy classes in the Weyl group to unipotent classes, arxiv:1003.0412, Represent.Th. 15 (2011), 494-530.
  • G.Lusztig, From groups to symmetric spaces, arxiv:0908.4414, Contemp. Math. 557 (2011), 245-258.
  • G.Lusztig, Study of antiorbital complexes, arxiv:0910.4147, Contemp. Math. 557 (2011), 259-287.
  • G.Lusztig, On C-small conjugacy classes in a reductive group, arxiv:1005.4313, Transfor. Groups. 16 (2011), 807-825.
  • G.Lusztig, Bruhat decomposition and applications, arxiv:1006.5004.
  • G.Lusztig, On certain varieties attached to a Weyl group element, arxiv:1012.2074, Bull. Inst. Math. Acad. Sinica (N.S.). 6 (2011), 377-414.
  • X.He and G.Lusztig, A generalization of Steinberg's cross-section, arxiv:1103.1769, J. Amer. Math. Soc. 25 (2012), 739-757.
  • G.Lusztig, Elliptic elements in a Weyl group: a homogeneity property, arxiv:1007.5040, Represent. Th. 16 (2012), 127-151.
  • G.Lusztig, From conjugacy classes in the Weyl group to unipotent classes II, arxiv:1104.0196, Represent. Th. 16 (2012), 189-211.
  • G.Lusztig, On the cleanness of cuspidal character sheaves, arxiv:1101.0752, Moscow Math.J. 12 (2012), 621-631.
  • G.Lusztig and T.Xue, Elliptic Weyl group elements and unipotent isometries with $p=2$, arxiv:1103.5172, Represent. Th. 16 (2012), 270-275.
  • G.Lusztig and D.Vogan, Hecke algebras and involutions in Weyl groups, arxiv:1109.4606, Bull. Inst. Math. Acad. Sinica(N.S.). 7 (2012), 323-354.
  • G.Lusztig, A bar operator for involutions in a Coxeter group, arxiv:1112.0969, Bull. Inst. Math. Acad. Sin.(N.S.). 7 (2012), 355-404.
  • G.Lusztig, From conjugacy classes in the Weyl group to unipotent classes III, arxiv:1104.3112, Represent. Th. 16 (2012), 450-488.
  • G.Lusztig, On the representations of disconnected reductive groups over $F_q$, arxiv:1108.5468, "Recent developments in Lie Algebras, Groups and Representation theory, ed. K.Misra, Proc. Symp. Pure Math., vol. 86, Amer. Math. Soc., 2012.
  • G.Lusztig and Z.Yun, A (-q)-analogue of weight multiplicities, arxiv:1203.0521, Jour. Ramanujan Math. Soc. 29A (2013), 311-340.
  • J.-L.Kim and G.Lusztig, On the characters of unipotent representations of a semisimple p-adic group, arxiv:1208.0320, Represent. Th. 17 (2013), 426-441.
  • G.Lusztig, Asymptotic Hecke algebras and involutions, arxiv:1204.0276, Perspectives in Representation Theory, ed. P.Etingof et.al., Contemp.Math.610, 2014, pp. 267-278.
  • G.Lusztig, Families and Springer's correspondence, arxiv:1201.5593, Pacific J.Math. 267 (2014), 431-450.
  • G.Lusztig, Restriction of a character sheaf to conjugacy classes, arxiv:1204.3521, Bulletin Mathém. Soc. Math. Roumanie. 58 (2015), 297-309.
  • J.-L.Kim and G.Lusztig, On the Steinberg character of a semisimple p-adic group, arxiv:1204.4712, Pacific J.Math. 265 (2013), 499-509.
  • G.Lusztig and D.Vogan, Quasisplit Hecke algebras and symmetric spaces, arxiv:1206.0634, Duke Math. J. 163 (2014), 983-1070.
  • G.Lusztig, Unipotent almost characters of simple $p$-adic groups, arxiv:1212.6540, Astérisque. 369-370 (2015), 243-267.
  • G.Lusztig, Unipotent almost characters of simple $p$-adic groups, II, arxiv:1303.5026, Transfor. Gr. 19 (2014), 527-547.
  • G.Lusztig, Distinguished conjugacy classes and elliptic Weyl group elements, arxiv:1304.4463, Represent.Th. 18 (2014), 223-277.
  • G.Lusztig, On conjugacy classes in a reductive group, arxiv:1305.7168, Representations of Reductive Groups, Progr.in Math. 312, Birkhäuser, 2015, pp. 333-363.
  • G.Lusztig, Truncated convolution of character sheaves, arxiv:1308.1082, Bull. Inst. Math. Acad. Sin.(N.S.). 10 (2015), 1-72.
  • G.Lusztig, On conjugacy classes in the Lie group $E_8$,, arxiv:1309.1382, Bull.Math.Soc.Math.Roumanie. 63 (2020), 91-94.
  • G.Lusztig and D.Vogan, Hecke algebras and involutions in Coxeter groups, arxiv:1312.3237, Representations of Reductive Groups, Progr.in Math. 312, Birkhäuser, 2015, pp. 365-398.
  • G.Lusztig, Unipotent representations as a categorical centre, arxiv:1401.2889, Represent.Th. 19 (2015), 211-235.
  • G.Lusztig, Exceptional representations of Weyl groups, arxiv:1405.6686, J. Alg. 475 (2017), 14-20.
  • G.Lusztig, Action of longest element on a Hecke algebra cell module, arxiv:1406.0452, Pacific.J.Math. 279 (2015), 383-396.
  • G.Lusztig, On the character of certain irreducible modular representations, arxiv:1407.5346, Represent. Th. 19 (2015), 3-8.
  • G.Lusztig, Algebraic and geometric methods in representation theory, arxiv:1409.8003.
  • G.Lusztig, Some power series involving involutions in Coxeter groups, arxiv:1411.3233, Repres.Th. 19 (2015), 281-289.
  • G.Lusztig, Nonsplit Hecke algebras and perverse sheaves, arxiv:1501.07588, Selecta Math. 22 (2016), 1953-1986.
  • G.Lusztig and G.Williamson, On the character of certain tilting modules, arxiv:1502.04904, Sci. China Math. 61 (2018), 296-298.
  • G.Lusztig, Non-unipotent character sheaves as a categorical centre, arxiv:1506.04598, Bull. Inst. Math. Acad. Sinica (N.S.). 11 (2016), 603-731.
  • G.Lusztig, An involution based left ideal in the Hecke algebra, arxiv:1507.02263, Represent .Th. 20 (2016), 172-186.
  • G.Lusztig, Generic character sheaves on groups over $\mathbf{k}[\in]/(\in^r)$, arxiv:1508.05015, Contemp. Math. 683 (2017), 227-246.
  • G.Lusztig, Generalized Springer theory and weight functions, arxiv:1510.02174, Ann. Univ. Ferrara Sez.VII Sci. Mat. 63 (2017), 159-167.
  • G.Lusztig, On the definition of almost characters, arxiv:1512.07318, Lie Groups, Geometry and Representation Theory, ed. V.Kac, V.Popov, Progr.in Math.326, Birkhauser, 2018.
  • G.Lusztig, Special representation of Weyl groups: a positivity property, arxiv:1602.02106, Adv.in Math. 327 (2018), 161-172.
  • G.Lusztig and Z.Yun, $\mathbf{Z}/m$-graded Lie algebras and perverse sheaves I, arxiv:1602.05244, Represent.Th. 21 (2017), 277-321.
  • G.Lusztig, The canonical basis of the quantum adjoint representation, arxiv:1602.07276, J. Comb. Alg. 1 (2017), 45-57.
  • G.Lusztig and Z.Yun, $\mathbf{Z}/m$-graded Lie algebras and perverse sheaves II, arxiv:1604.00659, Represent.Th. 21 (2017), 322-353.
  • G.Lusztig and Z.Yun, $\mathbf{Z}/m$-graded Lie algebras and perverse sheaves III: graded double affine Hecke algebra, arxiv:1607.07916, Represent.Th. 22 (2018), 87-118.
  • G.Lusztig, On the generalized Springer correspondence, arxiv:1608.02223, Representations of reductive groups, Proc.Symp.Pure Math., vol. 101, Amer.Math.Soc., 2019, pp. 219-253.
  • G.Lusztig, Non-unipotent representations and categorical centers, arxiv:1611.08296, Bull. Inst. Math. Acad. Sinica (N.S.). 12 (2017), 205-296.
  • G.Lusztig and G.Williamson, Billiards and tilting characters of $SL_3$, arxiv:1703.05898, SIGMA Symmetry, Integrability, Geometric Methods Appl. 14 (2018), 015.
  • G.Lusztig, Conjugacy classes in reductive groups and two-sided cells, arxiv:1706.02389, Bull. Inst. Math. Acad. Sinica (N.S.). 14 (2019), 265-293.
  • G.Lusztig, Comments on my papers, arxiv:1707.09368.
  • G.Lusztig, Lifting involutions in a Weyl group to the torus normalizer, arxiv:1709.08589, Represent.Th. 22 (2018), 27-44.
  • G.Lusztig, Hecke modules based on involutions in extended Weyl groups, arxiv:1710.03670, Represent.Th. 22 (2018), 246-277.
  • G.Lusztig, Discretization of Springer fibres, arxiv:1712.07530, Bull.Math.Soc.Math.Roum. 114 (2023), 255-263.
  • G.Lusztig, A new basis for the representation ring of a Weyl group, arxiv:1805.03770, Represent.Th. 23 (2019), 439-461.
  • G.Lusztig, Positive conjugacy classes in Weyl groups, arxiv:1805.03772, Bull.Inst.Math.Acad.Sin. 15 (2020), 277-285.
  • G.Lusztig and Z.Yun, $\mathbf{Z}/m$-graded Lie algebras and perverse sheaves, IV, arxiv:1805.10550, Represent.Th. 24 (2020), 360-396.
  • G.Lusztig, Reducing mod $p$ complex representations of finite reductive groups, arxiv:1810.10492, Repres.Th. 25 (2021), 166-172.
  • G.Lusztig, Positive structures in Lie theory, arxiv:1812.09313, Notices Int.Cong.Chin.Math. 8 (2020), 50-54.
  • G.Lusztig, Remarks on affine Springer fibres, arxiv:1902.01006, Bull. Inst. Math. Acad. Sin. (N.S.). (2020),.
  • G.Lusztig and Z.Yun, Endoscopy for Hecke categories, character sheaves and representations, arxiv:1904.01176, Forum of Mathematics, Pi. 8 (2020),.
  • G.Lusztig, Total positivity in reductive groups, II, arxiv:1904.07198, Bull. Inst. Math. Acad. Sinica (N.S.). 14 (2019), 403-460.
  • G.Lusztig, On the totally positive grassmannian, arxiv:1905.09254, Bull.Math.Soc.Math.Roum. 66 (2023), 455-458.
  • G.Lusztig, The Grothendieck group of unipotent representations: A new basis, arxiv:1907.01401, Represent.Th. 24 (2020), 178-209.
  • G.Lusztig, Total positivity in Springer fibres, arxiv:1909.00896, Quart.J.Math. 72 (2021), 31-49.
  • G.Lusztig, Michael Atiyah and representation theory, Notices Amer.Math.Soc. (2019),.
  • G.Lusztig and Z.Yun, From conjugacy classes in the Weyl group to representations, arxiv:1912.01754, Categorical, combinatorial and geometric representation theory and related topics, Proc.Symp.Pure Appl.Math., vol. 108, Amer.Math.Soc., 2024, pp. 453-464.
  • G.Lusztig, The flag manifold over the semifield $\mathbf{Z}$, arxiv:1912.13329, Bull. Inst. Math. Acad. Sinica (N.S.). 15 (2020), 63-92.
  • G.Lusztig, Fourier transform as a triangular matrix, arxiv:2001.11414, Represent.Th. 24 (2020), 470-482.
  • G.Lusztig, Partial flag manifolds over a semifield, arxiv:2002.00935, Represent.Th. 24 (2020), 397-402.
  • G.Lusztig, On induction of class functions, arxiv:2003.02715, Represent.Th. 25 (2021), 412-421.
  • G.Lusztig, Strata of a disconnected reductive group, arxiv:2006.07336, Indag.Math. 32 (2021), 968-986.
  • G.Lusztig, Open problems on Iwahori-Hecke algebras, arxiv:2006.08535, Europ. Math. Soc. Newsletter. (2020),.
  • G.Lusztig, From families in Weyl groups to Springer representations, arxiv:2006.16159, Bull.Inst.Math.Acad.Sin. 18 (2023), 1-14.
  • G.Lusztig, Springer's work on unipotent classes and Weyl group representations, arxiv:2007.11996, Indag. Math. 32 (2021), 939-943.
  • G.Lusztig, Unipotent blocks and weighted affine Weyl groups, arxiv:2010.02095, Categorical,combinatorial and geometric representation theory, Proc.Symp.Pure Math, vol. 108, . Amer.Math.Soc., 2024, pp. 435-452.
  • G.Lusztig, On the definition of unipotent representations, arxiv:2011.01824.
  • G.Lusztig, On the Satakeisomorphism, arxiv:2012.00569, Transfor.Groups. 28 (2023), 1191-1204.
  • S.Fomin and G.Lusztig, Coordinate rings and birational charts, arxiv:2102.03608, Represent.Th. 26 (2022), 1-16.
  • G.Lusztig, Two partitions of a flag manifold, arxiv:2103.01174.
  • G.Lusztig, Adjacency for special representations of a Weyl group, arxiv:2104.10821, Bull. Math. Inst. Acad. Sin. 17 (2022), 125-141.
  • G.Lusztig, Traces on Iwahori-Hecke algebras and counting rational points, arxiv:2105.04061.
  • G.Lusztig, Distinguished strata in a reductive group, arxiv:2107.01666, Repres.Th. 26 (2022), 698-713.
  • G.Lusztig and D.Vogan, Involutions in Weyl groups and nil-Hecke algebras, arxiv:2107.10754, Bull. Inst. Math. Acad. Sin. (2022),.
  • G.Lusztig, Total positivity in symmetric spaces, arxiv:2107.13447, Represent.Th. 26 (2022), 1025-1046.
  • G.Lusztig, A parametrization of unipotent representations, arxiv:2111.03861, Bull. Math. Inst. Acad. Sinica. 17 (2022), 249-307.
  • G.Lusztig, From Weyl groups to semisimple groups, arxiv:2112.03861, Repres.Th. 27 (2023), 51-61.
  • X.He and G.Lusztig, Total positivity and conjugacy classes, arxiv:2201.12479.
  • G.Lusztig, Remarks on totally positive flag manifolds, arxiv:2208.03838.
  • G.Lusztig, On bases of certain Grothendieck groups, arxiv:2209.02014, Bull.Inst.Math.Acad.Sin. 18 (2023), 105-131.
  • G.Lusztig, The quantum group $\dot U$ and flag manifolds over the semifield $Z$, arxiv:2209.02433, Bull.Inst.Math.Acad.Sin. 18 (2023), 235-267.
  • G.Lusztig, Unipotent character sheaves and strata of a reductive group, arxiv:2210.14422, Repres.Th. 27 (2023), 1126-1141.
  • G.Lusztig Unipotent character sheaves and strata of a reductive group,II, , arxiv:2212.10412.
  • G.Lusztig, Half circles on flag manifolds over a semifield, arxiv:2212.09959, Bull.Inst.Math.Acad.Sin. 19 (2024), 1-13.
  • G.Lusztig, Precuspidal families and indexing of Weyl group representations, arxiv:2304.05130, Bull.Inst.Math.Acad.Sin. 19 (2024), 77-99.
  • G.Lusztig, Rigid strata in a reductive group, arxiv:2304.05562.
  • G.Lusztig, On bases of certain Grothendieck groups, II, arxiv:2307.01950.
  • M.Dyer and G.Lusztig, A study of intersections of Schubert varieties, arxiv:2307.04646.
  • G.Lusztig, Families of isotropic subspaces in a symplectic $Z/2$-vector space, arxiv:2307.09453, Bull.Math.Soc.Math.Roum. 27 (2024), 287-303.
  • G.Lusztig, Sharpness versus bluntness in affine Weyl groups, arxiv:2309.09966, Repres.Th. 28 (2024), 514-532.
  • G.Lusztig and E.Sommers, Constructible representations and Catalan numbers, arxiv:2403.02550.
  • G.Lusztig, On the new bases attached to families of Weyl groups, arxiv:2403.17746.
  • G.Lusztig, Almost special representations of Weyl groups, arxiv:2405.04410.
  • G.Lusztig, Strata and almost special representations, arxiv:2407.20960.
  • G.Lusztig, A monotonicity property for the new basis of $\mathbf{C}[(\mathbf{Z}/2)^D]$, arxiv:2407.20953.
  • G.Lusztig, From classes in the Weyl group to strata, arxiv:2408.09584.
  • G.Lusztig, Total positivity in the space of maximal tori, arxiv:2411.05767.
  • G.Lusztig, On the trace of Coxeter elements, arxiv:2411.18495.
  • G.Lusztig, Parabolic character sheaves and Hecke algebras, arxiv:2504.02584.