18.721 - Introduction to Algebraic Geometry


SCHEDULE

# Date Topic (references) Sections
18 SepPlane curves1.1-1.3
210 SepTangent lines1.4
313 SepTranscendence degree and dual curve1.5-1.6
415 SepResultants1.7
517 SepNodes and cusps and Hensel's lemma1.8-1.9
620 SepBezout's theorem and Plücker formulas1.10-1.11
722 SepZariski topology2.1-2.3
824 SepNullstellensatz2.4-2.5
927 SepMorphisms of affine varieties2.6
1029 SepFinite group actions2.7
111 OctProjective varieties, product varieties3.1-3.3
124 OctMorphisms of projective varieties3.4
136 OctAffine communication lemma3.5-3.6
148 OctThe Nakyama Lemma4.1
11 OctIndigenous Peoples Day (holiday)
1513 OctIntegral morphisms4.2
1615 OctNormalization4.3-4.4
1718 OctKrull's dimension4.5
1820 OctChevalley’s finiteness theorem4.6
1922 OctValuations and smooth curves5.1-5.2
2025 OctConstructible sets, closed sets5.3-5.4
2127 OctProper morphisms, semicontinuous functions5.5-5.6
2229 OctO-modules6.1-6.3
231 NovThe sheaf property6.4-6.5
243 NovDirect images6.6-6.7
255 NovTwisting6.8-6.9
268 NovComplexes and cohomology7.1-7.2
2710 NovCharacteristic properties of cohomology7.3-7.4
2812 NovCohomology of twisting modules7.5
2915 NovFiniteness of cohomology7.6-7.7
3017 NovBézout's theorem7.8
3119 NovDivisors8.1
3222 NovRiemann-Roch, version 18.2
3324 NovBirkhoff-Grothendieck theorem8.3
26 NovThanksgiving holiday
3429 NovDifferentials and trace8.4, 8.6
351 DecRiemann-Roch, version 28.7
363 DecUsing Riemann-Roch8.8
376 DecFinal project presentations
388 DecFinal project presentations