18.305 - Advanced Analytic Methods (Fall, 2022)

Problem Sets

Problem Set 1 ( due Sep 12, Mon)

  1. Chapter 1, Prob 1a, 1c;

  2. Chapter 1, Find the general solution of

    (D-1)(D-2)(D-3)y=$\exp(-x^{2})+x.$

  3. Chapter 1, Prob 2a, 2c.

Problem Set 2 ( due Sep 19, Mon)

  1. Consider the linear differential equation

    $y^{\prime\prime\prime}+a(x)y^{^{\prime\prime}}+b(x)y^{\prime}+c(x)y(x)=f(x).$

    Let the complementary solutions be $Y_{1}(x),$ $Y_{2}(x)$ and $Y_{3.}(x).$ The Wronskian $W(X)$ for this equation is the determinant

    $\begin{array} [ Y_{1}(x) & Y_{1}^{\prime}(x) & Y_{1}"(x)\\ Y_{2}(x) & Y_{2}^{\prime}(x) & Y_{2}"(x)\\ Y_{3}(x) & Y_{3}^{\prime}(x) & Y_{3}"(x) \end{array}$.

    Show that

    $W(x)=c\exp[-\int_{0}^{x}a(x^{\prime})dx^{\prime}],$

    where $c$ is a constant.

  2. Prob 1 in Chapter 2 (p.111).

  3. Prob 2 in Chapter 2 (p.111).

Problem Set 3 (due Sep 28, Wed)

  1. Prob 1. Evaluate the following integrals:

    1. $\int_{-\infty}^{\infty}\dfrac{dx}{(x^{2}+9)(x-3i)(x-5i)}.$

    2. $\int_{0}^{2\pi}\dfrac{d\theta}{(2+\sin\theta)^{2}}.$

  2. Prob 2. Evaluate the integrals in Problem 4c and 4d on p. 112.

Problem Set 4 (due Oct 12, Wed)

  1. Prob 1. Evaluate the integral

    $I=\int_{-\infty}^{\infty}\dfrac{1+\cos\pi x}{1-x^{2}}dx$

    in two ways:

    1. Deforming the contour of integration away from the points $z=\pm1.$

    2. Expressing the integral as the real part of

    $J=P\int_{-\infty}^{\infty}\dfrac{1+e^{i\pi x}}{1-x^{2}}dx,$

    where $P\ $ denotes the principal value of the following integral.

Problem Set 5 (due Oct 21, Fri)

  1. The Klein-Gordon equation with a source term $\rho(\overrightarrow {x},t)$ is

    $(\dfrac{\partial^{2}}{\partial t^{2}}-\bigtriangledown^{2}+m^{2})\phi(\overset{\rightarrow}{x},t)=\rho(\overrightarrow{x},t)$ , $\left\vert \overset{\rightarrow}{x}\right\vert <\infty,$ $t>0,$ $m$ a constant.

    Find the solution of this equation which satisfies the initial conditions

    $\phi(x,0)=f(x),$ $\phi_{t}(x,0)=g(x),$

    and vanishes at the spatial infinities. Identify from this solution the Green functions for the equation.

  2. Find the Green's function of the Klein-Gordon equation $G(\overset{\rightarrow}{x}-\overset{\rightarrow}{x^{\prime}},t-t^{\prime})$ by solving

    $(\dfrac{\partial^{2}}{\partial t^{2}}-\bigtriangledown^{2}+m^{2})G(\overset{\rightarrow}{x}-\overset{\rightarrow}{x^{\prime}},t-t^{\prime})=\rho(\overset{\rightarrow}{x}-\overset{\rightarrow}{x^{\prime}},t-t^{\prime})$

    with appropriate initial conditions. Show directly how to solve the problem in Prob 1 with the Green finction.

Problem Set 6 (due Nov 7, Mon)

  1. Let $y$ satisfy the equation

    $y"+x^{2}y=0$

    and the initial conditions $y(x_{0})=1,$ $y^{\prime}(x_{0})=0$ where $x_{0}>0.$

    1. Find the WKB approximation of $y(x)$ for $x$ > $x_{0}$. For what values of $x$ do you expect it be a good approximation?

    2. Use the computor to obtain the numerical values of $y(x)$ as a function of $x$ for $x_{0}=1,5,10.$ Compute also the numerical values of the WKB approximation of $y(x)$. Compare the computor result with the approximate result.

  2. Problem 4, Chapter 7.

Problem Set 7 (due Nov 21, Mon)

    1. Plot the integral

      $I(\lambda)\equiv\int_{-\infty}^{\infty}$exp($-\lambda\sinh^{2}x$) $dx$

      for $\lambda>0.$

    2. Plot$\sqrt{\pi/\lambda},$the aproximatate value of this integral obtained via the Laplace method and compare with the result you get in (a).

  1. Find the leading term for the following integrals for $\lambda>>1$:

    1. $\int_{0}^{\pi/2}e^{-\lambda\cos t}dt,$

    2. $\int_{-1}^{1}e^{\lambda t^{2}}dt,$

    3. $\int_{-\infty}^{\infty}e^{\lambda(x^{2}-x^{4})}dx.$

  2. The Laplace transform of the function $f(x),$ $0$ < $x$ < $\infty,$ is defined as

    $L(s)=\int_{0}^{\infty}dx$ $e^{-sx}f(x).$

    Find the asymptotic form of $L(s)$ when $s>>1.$ Verify your result with the examples of $f(x)=\sin x$ and $f(x)=\cos x.$

Problem Set 8 (due Nov 30, Wed)

  1. Find the asymptotic form for

    $I(k)=\int_{-\infty}^{\infty}e^{-ikx}e^{-x^{4}}dx,$ $k>>1,$

    (The integral above is the Fourier transform of $e^{-x^{4}}).$