Stratifications indexed by partitions and combinatorial models for homology

Dmitry Kozlov

Royal Institute of Technology, Stockholm, Sweden

March 2,
4:15pm
refreshments at 3:45pm
2-338

ABSTRACT 

We shall consider several topological spaces equipped with stratifications indexed by integer partitions. In each case we consider the problem of studying homology groups of strata. We shall first describe how to construct various models for computing these groups and then present the following applications:

  1. Determining the homology of resonance-free orbit arrangements (with the help of general lexicographic shellability), thereby settling a conjecture of Bjorner for this special case;
  2. A combinatorial reproof of Arnol'd theorem regarding the rational homology of the space of monic complex polynomials with at least q roots of multiplicity k;
  3. A counterexample to a conjecture by Sundaram and Welker;
  4. A computation of the homology groups of the space of hyperbolic polynomials with at least q roots of multiplicity k.


Speaker's Contact Info: kozlov(at-sign)math.kth.se


Return to seminar home page

Combinatorics Seminar, Mathematics Department, MIT, sara(at-sign)math.mit.edu

Page loaded on February 09, 2001 at 11:05 AM. Copyright © 1998-99, Sara C. Billey. All rights reserved.