Ahypergeometric systems, standard pairs and toric CohenMacaulayness
Laura Matusevich
UC Berkeley
April 25,
4:15pm
refreshments at 3:45pm
2338
ABSTRACT

Ahypergeometric systems are linear systems of PDEs that can be thought
of as noncommutative analogs of toric varieties. We study the number of
linearly independent solutions to these systems, as a function of the
parameters, and we reduce a central conjecture in this area to a problem
in combinatorial commutative algebra, namely, to describe CohenMacaulay
toric ideals in terms of the embedded primes of their initial ideals.

Speaker's Contact Info: laura(atsign)math.berkeley.edu
Return to seminar home page
Page loaded on March 24, 2001 at 08:51 PM.

Copyright © 199899, Sara C. Billey.
All rights reserved.

