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1. INTRODUCTION

The real half plane H∞ = P1(C) − P1(R) = C − R is a complex analytic space,
equipped with the natural action by GL2(R)×Gal(C/R). Every point τ ∈ H∞ gives a
lattice Z⊕Zτ in C, hence an elliptic curve Eτ = C/Z⊕Zτ. In this way, H∞/GL2(Z) can
be thought as the moduli of complex elliptic curves. In general, modular curves X0(N)
admit complex uniformization as quotient of H∞ by congruence subgroups of GL2(Z).

There is a p-adic analog of H∞, namely the p-adic Drinfeld half plane. Hp = P1(Cp)−
P1(Qp) = Cp−Qp is (Cp-points of) a p-adic analytic space, equipped with the natural ac-
tion by GL2(Qp)×Gal(Cp/Qp). In fact, Ω = P1

Qp
−P1(Qp) is an analytic open subspace

of P1
Qp

(it’s not algebraic as #P1(Qp) = ∞).
There is also a combinatoric p-adic analog BT = BT(PGL2(Qp)), namely the Bruhat-

Tits tree of PGL2(Qp). Its vertices correspond to {Zp-lattices ⊆ V0 = Q2
p} modulo Q×p -

scaling. Two lattices L1, L2 form an edge iff after scaling L1, L2, the relation pL1 ( L2 ( L1
holds. The natural action of GL2(Qp) on lattices.

These two p-adic analogs are closely related: there is a natural formal model Ω̂ of Ω
over Zp, extending the action of GL2(Qp). Its special fiber is union of projective lines
indexed by vertices of BT. PL1 and PL2 intersects iff L1, L2 form an edge, in which case
they intersect transversally at the Fp-point ptL1L2 = L2/pL1 ∈ PL1(Fp). Moreover, the
"boundary" of BT can also be identified with P1(Qp) by degenerating a chain of lattices
to a line.

Recall τ ∈H∞ is called a special point / CM point if τ lies in some imaginary quadratic
field K ↪→ C, equivalently if Eτ has complex multiplication.

Our main interest in this short note is to understand analogs of special points, and their
intersection numbers on the integral model (local heights). The general principle predicts
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that these local intersection numbers shall be related to periods on the local automorphic
side.

The note is organized as follows. In section 2, we will construct the canonical formal
model Ω̂ over Zp, following ideas in [3].

In section 3, we will analyze the fixed point locus of regular g ∈ GL2(Qp) on Ω̂W for
p > 2, following [1]. The computations are essentially the same. The point of view is
based on fixed point locus, and we will use orders to determine the multiplicity in an
easy way.

In section 4, we compute intersection numbers of Fix(g) with projective lines in special
fiber of Ω̂.

2. CONSTRUCTION

Fix a 2-dimensional Qp-vector space V0
∼= Q2

p, and Ω = P(V0)−P(V0)(Qp) ∼= P1
Qp
−

P1(Qp) with the action of GL(V0) ∼= GL2(Qp). For any lattice L in V0, the generic fiber
of P(L) is canonically identified with P(V0). Choose an basis (e1, e2) of L, then we can

identify P(L) with P1
Zp

, and P(V0)(Cp)
L∼= P1(OCp).

Consider the formal scheme Ω̂L := (P(L)−P1(Fp))∨ over SpfZp, where (−)∨ means
completion along the ideal (p). Its rigid generic fiber ΩL over Qp is an open rigid subva-
riety of Ω, with Cp-points

ΩL(Cp) = Ω̂L(OCp) = lim
n

Ω̂L(OCp /pn) = P1(Cp)− red−1(P1(Fp)) ⊆ Ω(Cp).

Here red is the reduction map P1(Cp)
L∼= P1(OCp) → P1(Fp). So ΩL is a complement

of finitely many open discs in P(V0). More concretely, the basis (e1, e2) provides a pair
of coordinates [X1, X2] on P(V0) i.e two sections of O(1) that generates the line bundle
O(1). Let T = X1/X2 be the rational function on P(V0) and its restriction on D(X2) =
P(V0)− [0, 1] to be z, then we have

Ω̂L
∼= SpfZp[T, (Tp − T)−1]∨,

ΩL(Cp) = {z ∈ Cp||z| = 1} − {z ∈ Cp||z− a| < 1, for some a ∈ Zp}.
It’s easy to see for z ∈ ΩL(Cp), |az + b| = max{|a|, |b|} for any a, b ∈ Qp. So ΩL(Cp)

is GL(L)
e1,e2∼= GL2(Zp)-invariant. In general, we know by construction that gΩL = ΩgL

for any g ∈ GL(V0). Note GL(V0) acts transitively on all lattices, so we fix one lattice
M0 = Zpe01 ⊕Zpe02 ⊆ V0 as the standard lattice, and let [M0M1] be the standard edge
where M1 = Zpe01 ⊕Zp pe02.

Proposition 1. If [L1] 6= [L2] ∈ BT0, then ΩL1 doesn’t intersect with ΩL2 . Moreover,⋃
[L]∈BT0

ΩL(Cp) =
⋃

g∈GL2(Qp) gΩM0(Cp) doesn’t cover Ω(Cp).

Proof. Ω(Cp) can be identified with the collection of C×-homothety classes of injective
Qp-linear maps of V0 into Cp. z ∈ ΩL(Cp) corresponds to the map f : V0 → Cp such that
f (e1) = z, f (e2) = 1. As |az + b| = max{|a|, |b|} for any a, b ∈ Qp, we see f−1(OCp) =
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L. This shows two different ΩL don’t intersect. For g =

(
a b
c d

)
∈ GL2(Qp) and z ∈

ΩM0(Cp), gz = az+b
cz+d , |gz| = |az+b|

|cz+d| =
max{|a|,|b|}
max{|c|,|d|} ∈ Q. So any z ∈ Cp with |z| 6∈ Q is not in⋃

[L]∈BT0
ΩL(Cp). �

What’s missing in the generic fiber can be seen as follows. Under the standard basis
e01, e02,

ΩM0(Cp) = {z ∈ Cp||z| = 1} − ∪a∈Zp{z ∈ Cp||z− a| < 1},
ΩM1(Cp) = {z ∈ Cp||z| = p−1} − ∪a∈pZp{z ∈ Cp||z− a| < p−1}.

So if we define ΩM0 M1(Cp) = {z ∈ Cp|p−1 ≤ |z| ≤ 1}−∪a∈Zp−pZp{z ∈ Cp||z− a| < 1}−
∪a∈pZp{z ∈ Cp||z− a| < p−1}, it will contain ΩM0(Cp) and ΩM1(Cp) and fill the "gap"
between them naturally. The picture below explains their relations:

ΩM0 ΩM0 M1 −ΩM0 −ΩM1 ΩM1

We need a formal model for ΩM0 M1 .

Definition 1. For any edge [L1L2] ∈ BT1, let PL1L2 be the blow up of P(L1) at the Fp-
point ptL1L2 = L2/pL1 ∈ PL1(Fp), which is equal to the blow up o P(L2) at the Fp-point
pL1/pL2. Its generic fiber is canonically identified with P(V), and it special fiber has an
unique singular point (still denoted by ptL1L2).

We define Ω̂L1L2 as the formal scheme (PL1L2 − (PL1L2(Fp) − ptL1L2))
∨, and its rigid

generic fiber over Qp by ΩL1L2 .

Proposition 2. Ω̂M0 M1 = Spf(Zp[T0, T1, (Tp−1
0 − 1)−1, (Tp−1

1 − 1)−1]/(T0T1 − p))∨ where
T0 = X2/X1, T1 = pX1/X2. The embedding Ω̂M0 ↪→ Ω̂M0 M1 sends T0 to T−1, and T1 to
pT0. In particular T1 vanishes on Ω̂M0,s. The embedding Ω̂M1 ↪→ Ω̂M0 M1 sends T0 to pT−1,
and T1 to T. In particular T0 vanishes on Ω̂M1,s.

It’s not hard to show ΩM0 M1(Cp) agrees with the first definition by hand, and all ΩL1L2

cover Ω. Just as {z ∈ C∞||z| > 1, |Re(z)| ≤ 1/2} gives a fundamental domain of H∞ for
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the action of GL2(Z), one can think ΩM0 M1 as a fundamental domain of the p-adic half
plane for GL2(Zp)× diag{Q×p , 1}.

For latter consideration of intersection theory, it’s better to base change and assume the
residue field is algebraically closed. We denote W = W(Fp) to be the ring of Witt vectors
of Fp.

Theorem 1. There is a natural regular 2-dimensional formal model Ω̂ over SpfZp of Ω,
inheriting the action of GL(V0) ∼= GL2(Qp). Moreover,

(1) Its special fiber Ωs is reduced, and is a union of projective lines PL indexed by
vertices of BT. PL1 and PL2 intersects iff L1, L2 form an edge, in which case they
intersect transversally at the Fp-point ptL1L2 = L2/pL1 ∈ PL1(Fp).

(2) Ω → SpfZp is of strictly semi-stable reduction. In particular, for any point x ∈
|ΩW | = |ΩW,s|, if x in the intersection of two PL, the completed local ring Ox
is isomorphic to W[[T0, T1]]/(T0T1 − p); if x is in PL − PL(Fp) for some L, then
Ox ∼= W[[T]]. x is called a superspecial point/ ordinary point respectively.

(3) If x = ptL1L2 is a superspecial point, then Ω̂L1L2 is an affinoid open neighborhood
of x; If x ∈ PL is an ordinary point, then Ω̂L is an affinoid open neighborhood of x.

(4) The action of GL2(Qp) is compatible with the action of GL2(Qp) on BT. In partic-
ular, gPL = PgL.

Proof. Just glue Ω̂L1L2 along Ω̂L, and note the Bruhat-Tits tree is connected so they glue
together to Ω̂. �

3. FIXED POINT LOCUS

Special points over H∞ can also be characterized as fixed points of regular g ∈ GL2(Q)
on H∞, where regularness means g has two distinct eigenvalues. Note non-regular g
must have rational eigenvalues as λ = Tr(g)/2 ∈ Q.

For regular g ∈ GL2(Qp), we can also consider fixed points of g on Hp = P1(Cp) −
P1(Qp), and call them special points on Hp (note

√
p is a special point on Hp but not on

H∞). Under the standard basis, g =

(
a b
c d

)
∈ GL2(Qp) fixes z ∈ Cp −Qp iff az+b

cz+d = z iff

cz2 + (d− a)z− b = 0.
Let char(g) be the characteristic polynomial of g, and Qp[g] ⊆ M2(Qp) be the 2-dimensional

commutative algebra generated by g. By linear algebra, #Fix(g)(Cp) = 0, 2. If char(g) has
roots in Qp i.e Qp[g] ∼= Qp ×Qp as algebras, then #Fix(g)(Cp) = 0. If char(g) has no root
in Qp i.e Qp[g] is a quadratic field extension of Qp, then #Fix(g)(Cp) = 2.

It’s better to consider the fixed point locus as a (formal) scheme. Let K = W(Fp)[1/p],
the maximal unramified complete extension of Qp.

Proposition 3. The fixed point locus (ΩK)
g =


∅ if Qp[g] ∼= Qp ×Qp

SpecK ä SpecK if Qp[g]unramfied field
SpecK[g] if Qp[g]ramified field
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Proof. We just need to compute fixed point locus of g in P1
K assuming it’s non-empty. For

general g, there may not be an invariant open neighborhood of a fixed point z. But if g is
regular, we just consider the complement of P1

K by the another fixed point. �

Now the question is: what is the fixed point locus Fix(g) on the formal model Ω̂W? We
have already computed its rigid generic fiber which is small, the next step is to compute
its special fiber.

Note the center of GL(V0) acts trivially on Ω̂W , so by scaling we can assume val(det(g)) =
0, 1. From now on in this section, we assume p > 2, val(det(g)) = 0, 1, and work over W.
So every Ω̂L and Ω̂L1L2 means its base change to W.

Remark 1. The case val(det(g)) = 1 can be reduced to a special case of val(det g) = 0.
We will prove later Fix(g) = Fix(g + λid) for any λ ∈ Zp such that g + λid ∈ GL2(Qp).

Remark 2. It’s natural to guess the structure of Zp[g] will play a role. But to make Zp[g]
finite over Zp, we need Tr(g) ∈ Zp. We will see shortly if Tr(g) 6∈ Zp, then Fix(g) is only
supported on generic fiber hence described completely as above.

Consider any x ∈ Ω̂W,s fixed by g.
Firstly, we assume x is ordinary, then there is an unique [L] ∈ BT0 such x ∈ Ω̂L. So

Ω̂L ∩ Ω̂gL 6= ∅, which implies [gL] = [L]. As val(det(g)) = 0, 1, in fact gL = L and
val(det(g)) = 0. In particular, char(g) ∈ Zp[T].

Remark 3. This shows if val(det(g)) is odd, then g can’t fix any ordinary points, therefore
the special fiber of Fix(g) can only be a collection of discrete points. The case val(det(g))
is 0 is more interesting.

Secondly, if x is superspecial, then there is an unique [L1L2] ∈ BT1 such that x ∈ Ω̂L1L2−
Ω̂L1 − Ω̂L2 . So Ω̂L1L2 − Ω̂L1 − Ω̂L2 ∩ Ω̂gL1gL2 − Ω̂gL1 − Ω̂gL2 6= ∅, which implies [gL1gL2] =
[L1L2]. As val(det(g)) = 0, 1, we have gL1 = L1, gL2 = L2 if val(det(g)) = 0, and gL1 =
L2, gL2 = pL1 if val(det(g)) = 1 (recall pL1 ⊆ L2 ⊆ L1). In particular, char(g) ∈ Zp[T].
We have proved

Proposition 4. For g ∈ GL2(Qp) such that val(det g) = 0, 1. If Tr(g) 6∈ Zp, then Fix(g) =
Fix(g)|Ω.

Therefore, we assume char(g) ∈ Zp[T] from now on.

Definition 2. For g ∈ GL(V0) such that char(g) ∈ Zp[T], we define its associated trace-
less endomorphism by jg := g − Trg

2 id. Then the finite Zp-algebra Zp[g] = Zp[jg] is
isomorphic to Zp[X]/(X2 − det(jg)).

We return to determine the fixed locus of g.

Proposition 5. Let g ∈ GL2(Qp) such that gL = L, and choose a basis (e1, e2) of L. Under

this basis, g =

(
a b
c d

)
∈ GL2(Zp) acts on Ω̂L

∼= SpfW[T, (Tp − T)−1]∨ (recall T =

X1/X2) by
g∗ : W[T, (Tp − T)−1]∨ →W[T, (Tp − T)−1]∨,
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T 7→ aX1 + bX2

cX1 + dX2
=

aT + b
cT + d

.

Proof. g∗X1 ∈ O(A2) satisfies g∗X1(e1) = X1(ge1) = X1(ae1 + ce2) = a and g∗X1(e2) =
X1(ge2) = X1(be1 + de2) = b, therefore g∗X1 = aX1 + bX2. Similarly g∗X2 = cX1 +

dX2. We get g∗T = aT+b
cT+d . Note cT + d|Tp − T mod p, so cT + d is an unit mod p on

W[T, (Tp − T)−1]. Hence cT + d is an unit after p-adic completion, the ring map g∗ is
well-defined. �

Corollary 1. Let g ∈ GL2(Qp) such that gL = L, then Fix(g)|Ω̂L
= Ω̂g

L is defined by the

equation aT+b
cT+d = T i.e cT2 + (d− a)T− b = 0 on Ω̂L . It’s an divisor on the 2-dimensional

regular formal scheme Ω̂L. Moreover, for λ ∈ Zp such that (g + λid)L = L, we have
Fix(g)|Ω̂L

= Fix(g + λid)|Ω̂L
.

Definition 3. For regular g ∈ GL(V0) such that gL = L, the multiplicity n(g, L) is defined
as max{n|d− a = c = d = 0 mod pn} = max{n|g = λid on L/pnL, for some λ ∈ Zp }.
As g is regular, n(g, L) is finite.

Proposition 6. As cycles on Ω̂L, we have

Fix(g)|Ω̂L
= n(g, L)(P1

L −P1
L(Fp)) + Fix(g)h

L,

where Fix(g)h
L is empty unless Fp[g0] is a field, where g0 := p−n(g,L) jg =

(
a0 b0
c0 d0

)
(a0 =

−d0, b0, c0 ∈ Zp). If Fp[g0] is a field, then Fix(g)h
L
∼= SpfW ä SpfW.

Proof. cT2 + (d− a)T − b = pn(g,L)(c0T2 + (d0 − a0)T − b0), and P1
L −P1

L(Fp) is defined
by p = 0, hence we get the first part with Fix(g)h

L = SpfW[T, (Tp − T)−1]∨/(c0T2 + (d0−
a0)T − b0). As g0 is not divided by p, Fix(g)h

L will have at most 2 points, corresponding
to finitely many non-rational lines invariant under g0 on L/pL. By linear algebra, if it
has a non-rational invariant line, then it has exactly two invariant non-rational lines, in
which case Fp[g0] ∼= Fp2 . By Hensel lemma, we get Fix(g)h

L
∼= SpfW ä SpfW. If it has no

non-rational invariant line i.e Fix(g)h
L =, then it must have a rational invariant line, which

implies Fp[g0] ∼= Fp ×Fp or Fp[x]/x2 �

Note g0 only depends on the number n(g, L). And Zp[g0] = Zp[p−n(g,L) jg] ∼= Zp[X]/(X2−
p−2n(g,L) det(jg)), therefore n(g, L) ≤ val(det(jg))/2. Fp[g0] is a field iff Qp[g] is an un-
ramified field extension (so val(det(jg)) is even), and n(g, L) = val(det(jg))/2. Moreover,
as Fix(g)|Ω has at most 2 points,there is only one possible L such that Fix(g)h

L 6= ∅ even
if Qp[g] is unramified, .

In fact, we can determine n(g, L) by the distance of L to the "core" of g:

Definition 4. For any regular g ∈ GL(V0) with char(g) ∈ Zp[T], let Omax be the integral

closure of Zp[g] in Qp[g]. Then Omax ∼=


Zp ×Zp if Qp[g] ∼= Qp ×Qp

OQp[g] if Qp[g]unramfied field
OQp[g] if Qp[g]ramified field

Let the core of g be Bg ⊆ BT0 be these lattices [L] such that OmaxL = L.
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Proposition 7. If Qp[g] is split, then Bg is an infinite chain given by {Zp pne1 ⊕ Zpe2,
where e1, e2 is any basis of V0 such that ei are eigenvectors of g. If Qp[g] is unramified,
then Bg is a singleton. If Qp[g] is ramified, then Bg consists of two points, which form an
edge.

Proof. We just need to classify OQp[g] submodules in Qp[g] ∼= V0, which is easy as val(det(g)) =
0, 1 is a product of DVRs. If Qp[g] is ramified, then p is not an uniformizer for Qp[g], that’s
why Bg consists of two points: we’re only consider equivalence under Q×p -scaling. �

Theorem 2. For any regular g ∈ GL(V0) such that gL = L, we have

n(g, L) = logp[Omax : Zp[g]]− d(L, Bg).

where d(L, Bg) is the distance of the vertex [L] from Bg on the Bruhat-Tits tree. If gL 6= pkL
for any integer k, then Fix(g) ∩Pord

L = ∅.

Proof. Zp[g] ∼= Zp[x]/(x2 − det(jg)). If [Omax : Zp[g]] = pn, then Zp[g] = Zp + pnOmax.
�

Now we analyze the fixed point locus of g near a superspecial point x. As before, there
is an edge [L1L2] invariant under g. Without loss of generality, we assume [L1L2] is the
standard edge [M0M1], where M0 = Zpe01 ⊕Zpe02 ⊆ V0, M1 = Zpe01 ⊕Zp pe02. Recall
gL1 = L1, gL2 = L2 if val(det(g)) = 0, and gL1 = L2, gL2 = pL1 if val(det(g)) = 1. So un-

der the standard basis, g =

(
a b
c d

)
∈
(

0 1
p 0

)
Γ0(p)ä Γ0(p), where Γ0(p) = {

(
a b
c d

)
∈

GL2(Zp)|p|c} is the Iwahori group. Recall we have shown Ω̂M0 M1 = Spf(Zp[T0, T1, (Tp−1
0 −

1)−1, (Tp−1
1 − 1)−1]/(T0T1 − p))∨ where T0 = X2/X1, T1 = pX1/X2, and g∗X1 = aX1 +

bX2, g∗X2 = cX1 + dX2. We get

Proposition 8. Let g ∈ GL2(Qp) such that g[L1L2] = [L1L2], and choose a basis (e1, e2) of

L1 such that L2 = Zpe1 ⊕Zp pe2. Under this basis, g =

(
a b
c d

)
∈ GL2(Zp) acts on Ω̂L1L2

by

g∗ : T0 7→
dT0 + c
bT0 + a

, T1 7→
aT1 + pb
c
p T1 + d

.

Proof. T0 = X2/X1, T1 = pX1/X2, g∗X1 = aX1 + bX2, g∗X2 = cX1 + dX2. Note X1, X2
globalize to sections of O(1) on Ω̂. �

Corollary 2. Keep assumptions as the previous proposition.
(1) If g ∈ Γ0(p), then Ω̂g

L1L2
is given by

T0(bT0 + (a− d) +
c
p

T1) = 0,

T1(bT0 + (a− d) +
c
p

T1) = 0.

So Ω̂g
L1L2

has an embedding superspecial point. The remaining part of Ω̂g
L1L2

is an
divisor on the 2-dimensional regular formal scheme Ω̂L1L2 , extending Ω̂g

Li
on Ω̂Li .
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(2) If g ∈
(

0 1
p 0

)
Γ0(p), then Ω̂g

L1L2
is given by bT0 + a − d + c

p T1 = 0 which is a

divisor.

Proof. Note we always have p|c. If g ∈ Γ0(p), then bT0 + a and c
p T1 + d are units, we

just expand dT0+c
bT0+a = T0, aT1+pb

c
p T1+d = T1. If g ∈

(
0 1
p 0

)
Γ0(p), then p|a, c, d and b is an unit.

So bT0 + a and c
p T1 + d are not units, but we can use dT0+c

bT0+a =
d+ c

p T1

b+ a
p T1

, aT1+pb
c
p T1+d = a+bT0

c
p+

d
p T0

to

proceed. �

Note if Qp[g] ramified, then horizontal components of Fix(g) can only lie on superspe-
cial points by previous analysis on ordinary locus.

From above discussion, we deduce one main theorem of Kudla-Rapoport [1]:

Theorem 3. For regular g ∈ GL2(Qp), by scaling we can assume val(det(g)) = 0, 1.
If Tr(g) 6∈ Zp, then Fix(g) is supported on the rigid generic fiber. If Tr(g) ∈ Zp and
val(det(g)) = 0, then as cycles on Ω̂, we have

Fix(g) = Fix(g)h + ∑
L

m(g, L)P1
L + (embedding superspecial points),

where

(1) Fix(g)h =


∅ if Qp[g] ∼= Qp ×Qp

SpfW ä SpfW if Qp[g]unramfied field
SpfW[g] if Qp[g]ramified field

If Fix(g)h is non-empty, then it points lie in P1
L for any L ∈ Bg, the core of g.

(2) m(g, L) = max{n(g, L), 0} = max{logp[Omax : Zp[g]]− d(L, Bg), 0}.
(3) ptL1L2 is an embedding point of Fix(g) iff gL1 = L1 and gL2 = L2.

The case Tr(g) ∈ Zp and val(det(g)) = 1 is simpler. In this case, m(g, L) = 0 for all L
and Zp[g] = Omax is split or ramified, see Remark 3. The above formulas still apply, and
Fix(g) = Fix(g)h.

Remark 4. det on Qp[g] can be identified with the norm map Qp[g]→ Qp.

Example 1. g =

(
1 0
0 −1

)
has no fixed points on Ω, but preserves Ln = Zp pne01⊕Zpe02.

Its fixed point locus is union of infinitely many superspecial poiints ptLnLn+1 = PLn ∩
PLn+1 . This is compatible with that Qp[g] is split.

Example 2. g =

(
0 1
p 0

)
switches T0 and T1 on Ω̂M0 M1 , with val(det g) = 1. Its fixed point

locus is isomorphic to SpfW[T]/(T2 − p). This is compatible with that Qp[g] is ramified
and Ωg = {± 1√

p}.
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Example 3. g =

(
0 1
c 0

)
with c ∈ Z×p −Z×2

p acts by T → cT−1 on Ω̂M0 . Its fixed point

locus isomorphic to SpfW[T]/(T2 − c) ∼= SpfW ä SpfW. This is compatible with that
Qp[g] is unramified and Ωg = {± 1√

c}.

Example 4. g =

(
1 + pn 0

0 1

)
has no fixed points on Ω, but Fix(g) contains infinitely

many P1.

Two important observations:

Corollary 3. For any regular g ∈ GL2(Qp), Fix(g) only depends on on the Zp-algebra
Zp[g]. In other words, if Zp[g1] = Zp[g2], then Fix(g1) = Fix(g2).

Corollary 4. Fix(g) − Fix(g)h is locally constant for regular g ∈ GL2(Qp) (even for the
embedding points part). If char(g) ∈ Zp[T], then Fix(g)h agrees with Fix(g0)

h where
g0 ∈ Qp[g] such that Zp[g0] = OQp[g].

Remark 5. If g is not regular and not a scalar matrix, then Qp[g] ∼= Qp[x]/x2, and Fix(g)
has empty generic fiber. It’s an interesting question to study limit behaviors of Fix(g)
when g tends to a non-regular element.

4. INTERSECTION

In this section we assume g ∈ GL2(Qp) is regular, val(det g) = 0 and char(g) ∈ Zp[x].
(−,−) := (−,−)Ω̂ means the intersection pairing on Ω̂. Let α = αg = logp[Omax : Zp[g]],
and Bg be the core of g.

Then BT(g) = {L|n(g, L) ≥ 0} = {L|d(L, Bg) ≤ α} is a ball if Qp[g] is unramified; it is
a ball center at the middle point of the core of g if Qp[g] is ramified; it is a tube around the
line Bg if Qp[g] is split.

Proposition 9. (P1
L′ , P1

L)Ω̂ = 0, 1,−1− p, if d([L], [L′]) ≥ 1,= 1,= 0 respectively.

Then we compute the intersection number (Fix(g), P1
L), the result is [2, Lemma 6.2]:

Proposition 10. For regular g as above and any lattice L, set d = d(L, Bg), α = αg =

logp[Omax : Zp[g]]. (Fix(g), P1
L) = 0 unless gL = L i.e d ≤ α. Now assume gL = L.

(1) If 1 ≤ d ≤ α− 1, then (Fix(g), P1
L) = 1− p.

(2) If α ≥ 1, d = 0, then (Fix(g), P1
L) = 1− p.

(3) If α = 0, d = 0, then (Fix(g), P1
L) = 2, 1, 0, if Qp[g] is unramified, ramified, split

respectively.
(4) If α ≥ 1, d = α, then (Fix(g), P1

L) = 1.

Proof. It’s zero unless Fix(g) ∩ P1
L is non-empty, which implies P1

L ∩ P1
gL is non-empty

hence gL = L.
Assume 1 ≤ d = d(L, Bg) ≤ α− 1, then all neighbors of L have possible multiplicities:

1 neighbor has distance d− 1, p neighbors have distances d + 1. Fix(g)h doesn’t intersect
9



with P1
L. Therefore

(Fix(g), P1
L) = ∑

L′
(m(g, L′)P1

L′ , P1
L) = (α− d)(−1− p)+ (α− d− 1)p+(α− d+ 1) = 1− p.

Assume d = 0, α ≥ 1. Note we includes the horizontal part of Fix(g). In the unramified
case, (Fix(g), P1

L) is 2 + α(−1− p) + (α − 1)(p + 1) = 1− p. In the split case, it’s 0 +
α(−1− p) + 2α + (α− 1)(p− 1) = 1− p. In the ramified case, it’s 1 + α(−1− p) + α +
(α− 1)p = 1− p.

The case α = 0, d = 0 follows from the number of horizontal components. If α ≥ 1, d =
α, then there is only one neighbor of L that is closer to Bg than L, which contributes 1.

�

Remark 6. Let ω be the relative dualizing sheaf of Ω̂. The dualizing sheaf on a nodal
curve C over a field is equal to Ω1

C ⊗O(D) where D are nodes of C. From this we get

deg(ω|P1
L
) = deg(ΩP1) + #P1(Fp) = −2 + p + 1 = p− 1.

.
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