Today, I will focus on the remaining part of Chapter 2 of [1].

We begin by recall our moduli problem

1 Statement of Moduli Problem

Theorem 1.1. Let X be a decent p-divisible group over a perfect field L, $W = W(L)$, consider the moduli functor $M : \text{Nilp}_W \to \text{Sets}$, where

\[M(S) = \{(X, \rho) : X \times_L \bar{S} \to X \times_S \bar{S} \}/\cong \]

Where $(X_1, \rho_1) \cong (X_2, \rho_2)$ if and only if $\rho_1 \circ \rho_2^{-1}$ lifts to an isomorphism $X_2 \to X_1$.

Then M is representable by a formal scheme over $\text{Spf} W$, which is formally of locally of finite type, and each irreducible component of M_{red} is projective over L.

Remark.
- Let $J(\mathbb{Q}_p)$ be the group of quasi-isogeny on X, acts on the right on M, by $(X, \rho) \cdot \gamma = (X, \rho \circ \gamma)$. Hence acts on geometric spaces and their cohomology groups constructed from M.
- Drinfeld rigidity lemma implies $\text{Aut}(X, \rho) = \{\text{id}\}$
- The moduli functor $M = M_X$ only depends on isogeny class of X.

In order to understand the “discrete part” of M, we introduce

Definition 1.2. (1) If $f : X \to Y$ is an isogeny of p-divisible groups over S. Then the order of $\ker f$ is p^h, for some $Z_{\geq 0}$ valued, locally constant function h. If h is constant, we call it the **height** of f.

(2) $f : X \to Y$ be a quasi-isogeny. Assume $p^n f$ is an isogeny, we define the **height** of f by

\[\text{ht}(f) = \text{ht}(p^n f) - \text{ht}(p^n) \]

For example, the height of multiplication by p is the height of X.

Remark. For isogenies, one has $\text{ht}(f_1 \circ f_2) = \text{ht}(f_1) + \text{ht}(f_2)$. Thus the height of a quasi-isogeny is well-defined, and the above relation also holds for quasi-isogenies.
Height is a discrete invariant of a quasi isogeny. Define $\mathcal{M}(h)(S) = \{(X, \rho) | \text{ht}(\rho) = h\}$. Then $\mathcal{M}(h)$ is an open and closed functor of $\mathcal{M}(h)$ is an open and closed subfunctor of \mathcal{M}. And $\mathcal{M} = \bigsqcup_{h \in \mathbb{Z}} \mathcal{M}(h)$. Thus, it suffices to show each $\mathcal{M}(h)$ is representable. Or one can define $\widetilde{\mathcal{M}} = \bigsqcup_{h = 0}^{h \leq X - 1} \mathcal{M}(h)$, and it suffices to show $\widetilde{\mathcal{M}}$ is representable.

2 Some examples

We focus on $L = \bar{L}$ and X is a height 2, dim 1 p-divisible group. We study the corresponding functor.

Up to isogeny, they are classified by associated isocrystal, by Dieudonné-Manin classification, they are classified by Newton polygons from $(0, 0)$ to $(2, 1)$.

Remark. We have the following facts: for a p-divisible group G over a perfect field k of characteristic p

- G is étale $\iff D(G)_q$ is isoclinic of slope 0
- G is formal (defined later) $\iff D(G)_q$ has no zero slope.

Now we consider associated \mathcal{M} for these X.

Example 2.1. When $X = E[p^\infty]$, where E supersingular elliptic curve over L. We will show that as a formal scheme

$$\mathcal{M} = \bigsqcup_{h \in \mathbb{Z}} \text{Spf}(W[[x]])$$

Remark. $\mathcal{M}_{\text{red}} = \mathcal{M}(L)$ is disjoint union of points

We will show a more general result:

Proposition 2.2. If X comes from a formal group of dim 1, height n over $L = \bar{L}$, then

$$\mathcal{M}_X = \bigsqcup_{h \in \mathbb{Z}} \text{Spf}(W(L)[[x_1, \cdots, x_n]])$$

Some background:

Definition 2.3. An n-dimensional commutative formal group law over ring A is a power series $F \in A[[X_1, \cdots, X_n, Y_1, \cdots, Y_n]]$ which satisfies some formal group axioms.

For example, we have $\overline{G}_a = X + Y, \overline{G}_m = X + Y + XY$, or completion of abelian scheme over A along zero section, or Lubin-Tate formal group appeared in local class field theory.

Definition 2.4. We say F is p-divisible if $[p] : A[[X]] \to A[[X]]$ is finite locally free. The rank of $[p]$ is p^h for some h. h is called height.

One has the following result of Tate and Messing

Theorem 2.5 (Tate-Messing). The category of p-divisible formal group fully faithfully embeds in to category of p-divisible groups, which preserve height and dimension.
The essential image above is called formal p-divisible groups.

We will mainly focus on 1-dim formal group law. When F is a 1-dim formal group law over a field of characteristic p, the notions above can be characterized in an easier way:

Proposition 2.6. For 1-dim formal group law F over a field of characteristic p, then F is p-divisible if and only if $[p] \neq 0$. In this case, $[p] = g(X^{p^h})$ for some g with $g'(0) \neq 0$. Such h is the height of F.

We $[p] = 0$, we also say F has height ∞.

Theorem 2.7. If $L = \bar{L}$, then for each height $h \in \{1, 2, \cdots, \infty\}$, there exists a unique (up to isomorphism) 1-dim formal group F_0 of height h over L.

Fact: $\text{End}(F) = \mathbb{Z}_p[\Pi], \Pi^h = p, \Pi a = \sigma(a)\Pi$.

We can consider the following Lubin-Tate deformation functor: Fix F above. Define \mathcal{C}_L, the category of local Artin rings with a fixed surjection $A \to L$

Consider the following deformation functor:

$$\mathcal{D} : \mathcal{C}_L \to \text{Sets}$$

which sends $A \to L$ to isomorphism classes of $\{F, \iota\}$, where F is a formal group law over A and ι is an isomorphism $F \otimes_A L \cong F_0$.

One has the following theorem of Lubin and Tate

Theorem 2.8. \mathcal{D} is representable by $\text{Spf}(W(k)[[x_1, \cdots, x_{n-1}]]$.

Now we find its relationship with R-Z moduli problem

Lemma 2.9. For 1-dim p divisible formal group, quasi-isogeny of height 0 is equivalent to an isomorphism

Proof. Self quasi-isogeny is D^x, and both morphisms above corresponds to O_D^x. \qed

Now if R is artinian local ring, $\text{Spec} R \in \text{Nil}_W$.

Proposition 2.10. $\mathcal{D}(R) \cong \mathcal{M}(0)(R)$ canonically.

Proof. $\mathcal{M}(0)(R)$ consists of quasi-isogeny of height 0 on R/p, which is equivalent to quasi-isogeny of height 0 on L, by Drinfeld rigidity, thus by the lemma, which is equivalent to an isomorphism. And by a result of Tate, X is p-divisible over $R \in \mathcal{C}_L$, then X is connected if and only if X is formal. Thus, $\mathcal{M}(0)(R)$ is equivalent to $\mathcal{D}(R)$ \qed

Remark.

- We didn’t prove $\mathcal{M}(0)$ is representable by $\sqcup \text{Spf} W(k)[[x_1, \cdots, x_{n-1}]]$ above. (Since we need to compare to other $S \in \text{Nil}_W \setminus \mathcal{C}_L$. But once we know \mathcal{M} representable and is formally of locally of finite type, and \mathcal{M} is a point, then we can conclude $\mathcal{M}(0) = \mathcal{D}$.

- Since Π is an isogeny of height 1, thus for each height, we have isogeny of height 1, thus \mathcal{M} is disjoint union of $\text{Spf} W(k)[[x_1, \cdots, x_{n-1}]]$, parametrized by height.

Example 2.11. Let’s briefly talk about another example, where $X = E[p^\infty]$, for an ordinary elliptic curve E. In this case, $\mathcal{M} = \bigsqcup_{m \geq 0} \mathcal{O}_m$, which is a restatement of theory of Serre-Tate coordinates.
3 Proof strategy

Recall that, in the previous week, we have reduced to the case where L is a finite field, and X lifts to \overline{X} on $\text{Spf} \ W(L)$.

The proof strategy is

1. Approximate \mathcal{M} by “controllable” subfunctors \mathcal{M}_n of \mathcal{M}

2. Show that each \mathcal{M}_n is representable by a formal scheme, and underlying reduced schemes are eventually the same.

3. Take \mathcal{M} as same space + “limit of sheaves”, then show it is a formal scheme, which really represents \mathcal{M}.

Here are some definitions related to “controllable” ones,

Definition 3.1.

1. Define $\mathcal{M}^n(S) = \{(X, \rho) \in \mathcal{M}(S) | p^n \rho \text{ is an isogeny}\}$.

2. For quasi-isogeny $\alpha : X \rightarrow Y$, define $q(\alpha) = \text{ht}(p^n \alpha)$, where n is smallest integer such that $p^n \alpha$ is an isogeny,

3. Define $d(\alpha) = q(\alpha) + q(\alpha^{-1})$.

4. Define $\mathcal{M}_c(S) = \{(X, \rho) \in \mathcal{M}(S) | d(\rho_s) \leq c \text{ for any } s \in S\}$.

d is like kind of a metric:

Lemma 3.2. $d(\alpha) + d(\beta) \geq d(\alpha + \beta)$

Proof. Easy, reduced to additivity of height function.

Now we can state our strategy more clearly:

1. Each \mathcal{M}_n is representable.

2. \mathcal{M}_c^n is representable.

3. Underlying reduced scheme of \mathcal{M}_c^n are eventually the same

4. \mathcal{M}_c is representable.

5. \mathcal{M} is representable.

4 Some details of the proof

Proposition 4.1. \mathcal{M}^n is representable

Proof. Define $\mathcal{M}^{n,m} = \{(X, \rho) | \text{isogeny of height } m\}$, which is an open and closed subfunctor of \mathcal{M}. Suffices to show each $\mathcal{M}^{n,m}$ is representable.

But give such ρ is equivalent to give an isogeny of height m, which corresponds to locally free subgroup of $\overline{X}[m]$ of order p^m. Thus it is representable by a closed subscheme of Grassmanian (consists of Hopf ideals, which is defined by a polynomial relation). And, we can also take p-adic completion of this scheme, since p is locally nilpotent, thus after taking completion, it represents the same functor.
Proposition 4.2. \mathcal{M}_c^n is representable.

Lemma 4.3. For $\alpha : X \to Y$ an isogeny, $\{s \in S | d(\alpha_s) \leq c\}$ is closed.

Proof. Not hard, it follows from the subsets of S where a given quasi-isogeny is an isogeny, which is a proposition proved last time.

Proof of 4.2 Consider the universal p-divisible group on \mathcal{M}_c^n, since the sets of points where $d(\alpha_s) \leq c$ is closed, taking completion of it suffices.

The last three steps are more complicated, which is based on the key lemma Prop 2.17 in [1].

References