Articles

2010-2014

  1. J. Arthur, L-functions and automorphic representations, Proceedings of the ICM 2014.
  2. M. Emerton, Completed cohomology and the p-adic Langlands program, Proceedings of the ICM 2014.
  3. W. T. Gan, Theta correspondence: recent progress and applications, Proceedings of the ICM 2014.
  4. M. Harris, Automorphic Galois representations and the cohomology of Shimura varieties, Proceedings of the ICM 2014.
  5. P. Scholze, Perfectoid spaces and their applications, Proceedings of the ICM 2014.
  6. V. Lafforgue, Introduction to chtoucas for reductive groups and to the global Langlands parameterization, Arxiv 2014.
  7. G. Lusztig, Algebraic and geometric methods in representation theory, Arxiv 2014.
  8. R. Kottwitz, B(G) for all local and global fields, Arxiv 2014.
  9. D. Gaitsgory, A "strange" functional equation for Eisenstein series and miraculous duality on the moduli stack of bundles, Arxiv 2014.
  10. M. Rapoport, E. Viehmann, Towards a theory of local Shimura varieties, Munster J. Math. 7 (2014), 273–326.
  11. M. Rapoport, U. Terstiege, and S. Wilson. The supersingular locus of the shimura variety for GU(1, n−1) over a ramified prime. Mathematische Zeitschrift, 276(3-4):1165–1188, 2014.
  12. S. S. Kudla and M. Rapoport. Special cycles on unitary Shimura varieties II: Global theory. J. Reine Angew. Math., 697:91–157, 2014.
  13. Y. Liu, Relative trace formulae toward Bessel and Fourier-Jacobi periods of unitary groups, Manuscripta Mathematica, 145 (2014), 1-69.
  14. B. Poonen, p-Adic interpolation of iterates. Bull. Lond. Math. Soc. 46 (2014), no. 3, 525–527.
  15. L. Illusie, Grothendieck at Pisa: crystals and Barsotti-Tate groups, Colloquium de Giorgi 2013 and 2014, U. Zannier, ed., Scuola Normale Superiore di Pisa 2015, 79-107.
  16. S. S. Kudla and M. Rapoport, An alternative description of the Drinfeld p-adic half-plane, Annales de l’Institut Fourier 64, no. 3 (2014), 1203–1228.
  17. W. Zhang, Automorphic period and the central value of Rankin-Selberg L-function, J. Amer. Math. Soc. 27 (2014), no. 2, 541–612.
  18. W. Zhang, Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups. Ann. of Math. (2) 180 (2014), no. 3, 971–1049.
  19. J. Thorne, Raising the level for GLn. Forum Math. Sigma 2 (2014), Paper No. e16, 35 pp.
  20. Lapid, E., Mínguez, A.: On a determintal formula of Tadi´c. Am. J. Math. 136(1), 111–142 (2014).
  21. K. Buzzard and T. Gee, The conjectural connections between automorphic representations and Galois representations, Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 414, Cambridge Univ. Press, Cambridge, 2014, pp. 135–187.
  22. S. Lysenko, Geometric Waldspurger periods II, Arxiv 2013.
  23. Spherical Varieties and Automorphic Representations, Oberwolfach Report 24/2013.
  24. S. Sankaran, Unitary cycles on Shimura curves and the Shimura lift I, Doc. Math. 18 (2013), 1403–1464.
  25. M. Rapoport, U. Tersteige, and W. Zhang, on the arithmetic fundamental lemma in the miniscule case. Compos. Math. 149 no. 10, (2013), 1631-1666.
  26. P. Scholze, J. Weinstein, Moduli of p-divisible groups, Cambridge Journal of Mathematics 1 (2013), 145--237.
  27. Andrew J. Blumberg, David Gepner, and Gonçalo Tabuada, A universal characterization of higher algebraic K-theory, Geom. Topol. 17 (2013), no. 2, 733–838. MR 3070515.
  28. X. Yuan, S. Zhang, W. Zhang. The Gross-Zagier formula on Shimura curves. No.184. Princeton University Press, 2013.
  29. W. Zhang, Harmonic analysis for relative trace formula. Automorphic representations and L-functions, 681–696, Tata Inst. Fundam. Res. Stud. Math., 22, Tata Inst. Fund. Res., Mumbai, 2013.
  30. E. Viehmann and T. Wedhorn, Ekedahl-Oort and Newton strata for Shimura varieties of PEL type, Math. Ann. 356 (2013), 1493–1550.
  31. X. He, Normality and Cohen-Macaulayness of local models of Shimura varieties, Duke Math. J. 162 (2013), 2509-2523
  32. M. Harris. L-functions and periods of adjoint motives. Algebra and Number Theory, (7):117–155, 2013.
  33. Pappas G., Zhu X., Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math. 194, 2013, 147–254
  34. D. Ben-Zvi and D. Nadler. Loop spaces and representations. Duke Math. J. 162 (2013), no. 9, 1587–1619.
  35. A. Kret, Stratification de Newton des variétés de Shimura et formule des traces d’Arthur-Selberg, PhD thesis, Université Paris-Sud, 2013.
  36. Y. Liu, Arithmetic inner product formula for unitary groups, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.), Columbia University.
  37. B. H. Gross, Parahorics, 2012.
  38. K-W. Lan and J. Suh, Vanishing theorems for torsion automorphic sheaves on compact PEL-type Shimura varieties. Duke Math. J. 161 (2012), no. 6, 1113-1170.
  39. W. Zhang, On arithmetic fundamental lemmas, Invent. Math. 188(1), 197–252 (2012).
  40. D. Maulik, B. Poonen, Néron–Severi groups under specialization. Duke Math. J. 161 (2012), no. 11, 2167--2206.
  41. B. Howard, Complex multiplication cycles and Kudla–Rapoport divisors, Ann. of Math. (2) 176 (2012), 1097–1171.
  42. D. Kazhdan, Y. Varshavsky, On endoscopic transfer of Deligne Lusztig functions, Duke Math. J. 161 (2012), no. 4, 675-732.
  43. W. T. Gan, B. H. Gross, and D. Prasad, Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1–109.
  44. A. Caraiani, Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J. 161 (2012), no. 12, 2311–2413.
  45. P. Scholze, Perfectoid spaces, Publ. math. de l'IHES 116 (2012), no. 1, 245--313.
  46. Y. Sakellaridis, Spherical varieties and integral representations of L-functions, Algebra Number Theory 6 (2012), no. 4, 611–667.
  47. U. Gortz, M. Hoeve, Ekedahl-Oort strata and Kottwitz-Rapoport strata, J. Algebra 351, pp. 160-174, 2012.
  48. Y. Liu, On quadratic distinction of automorphic sheaves. Int. Math. Res. Not. IMRN 2012.
  49. H. He, J. Hoffman. Picard groups of Siegel modular 3-folds and θ-liftings. J. Lie Theory, 22(3):769–801, 2012.
  50. Z. Yun, Langlands duality and global Springer theory, Compositio. Math. 148 (2012), 835–867.
  51. Ulrich Görtz and Chia-Fu Yu, The supersingular locus in Siegel modular varieties with Iwahori level structure, Math. Ann. 353 (2012), no. 2, 465–498. MR2915544
  52. O. Lorscheid, Algebraic groups over the field with one element, Mathematische Zeitschrift volume 271, pages 117–138.
  53. B. Bhatt, A. J. de Jong, Crystalline cohomology and de rham cohomology, ArXiv Oct 2011.
  54. David Lawrence Roe, The local langlands correspondence for tamely ramified groups, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–Harvard University. MR2898606
  55. P. Scholze, The Langlands-Kottwitz method for the modular curve, Int. Math. Res. Not. 2011, no. 15, 3368--3425.
  56. Z. Yun, The fundamental lemma of Jacquet–Rallis in positive characteristics, Duke Math. J. 156 (2011), no. 2, 167–228.
  57. Ching-Li Chai and Frans Oort, Monodromy and irreducibility of leaves, Ann. of Math. (2) 173 (2011), no. 3, 1359–1396. MR 2800716
  58. S. S. Kudla and M. Rapoport, Special cycles on unitary Shimura varieties I. Unramified local theory. Invent. Math., 184(3):629–682, 2011.
  59. I. Vollaard, T. Wedhorn, The supersingular locus of the Shimura variety of GU(1,n-1) II, Invent. Math. 184 (2011), 591–627.
  60. U. Terstiege. Intersections of arithmetic Hirzebruch-Zagier cycles. Math. Ann., 349(1):161-213, 2011.
  61. C. Yu, Geometry of the Siegel modular threefold with paramodular level structure, Proc. Amer. Math. Soc. 139 (2011), no. 9, 3181–3190.
  62. A. J. Scholl. Hypersurfaces and the Weil conjectures. Int. Math. Res. Not. IMRN, (5):1010–1022, 2011.
  63. A. Minguez, Unramified representations of unitary groups, chapitre du livre “Stabilisation de la formule des traces, variétés de Shimura, et applications arithmétiques”. Int. Press of Boston. (2011).
  64. I. Vollaard, The supersingular locus of the Shimura variety for GU(1, s), Canad. J. Math. 62 (2010), no. 3, 668–720.
  65. P. Boyer, Conjecture de monodromie-poids pour quelques variétés de Shimura unitaires, Compos. Math., 146 (2010), 367–403.
  66. S. Harashita, Ekedahl-Oort strata contained in the supersingular locus and Deligne-Lusztig varieties. J. Algebr. Geom. 19(2010), no. 3, 419–438.
  67. D. Gaitsgory and D. Nadler, Spherical varieties and Langlands duality, Mosc. Math. J. 10 (2010), no. 1, 65–137.
  68. D. Arinkin, R. Bezrukavnikov, Perverse coherent sheaves, Mosc. Math. J. 10 (2010), no. 1, 3–29, 271.
  69. B. Bhatt, Derived direct summands. Thesis (Ph.D.)–Princeton University. 2010. 124 pp. ISBN: 978-1124-05128-4.
  70. M. Hoeve, Stratifications on moduli spaces of abelian varieties and Deligne-Lusztig varieties, Ph.D. thesis, Universiteit van Amsterdam (2010).
  71. U. Gortz, C.-F. Yu, Supersingular Kottwitz–Rapoport strata and Deligne–Lusztig varieties, J. Inst. Math. Jussieu 9 (2) (2010), 357–390.

2000s

  1. W. Zhang, X. Yuan, S. Zhang, The Gross-Kohnen-Zagier theorem over totally real fields, Compositio Math. 145 (2009), no. 5, 1147-1162.
  2. G. Chenevier, L. Clozel, Corps de nombres peu ramifiés et formes automorphes autoduales, J. Amer. Math. Soc. 22 (2009), 467-519.
  3. W. Zhang, Modularity of generating functions of special cycles on Shimura varieties. Thesis (Ph.D.)–Columbia University. 2009. 48 pp.
  4. T. Haines, Base change fundamental lemma for central elements in para- horic Hecke algebras, Duke Math. J. 149 (2009), pp. 569–643.
  5. J. H. Bruinier and T. Yang, Faltings heights of CM cycles and derivatives of L-functions, Invent. Math. 177 (2009), no. 3, 631–681.
  6. U. Gortz On the connectedness of Deligne–Lusztig varieties, Represent. Theory 13 (2009), 1–7.
  7. G. Pappas and M. Rapoport, Local models in the ramified case, III. Unitary groups, J. Inst. Math. Jussieu 8 (2009), 507–564.
  8. G. Pappas and M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), 118–198. With an appendix by T. Haines and M. Rapoport.
  9. T. Haines, M. Rapoport: On parahoric subgroups, Adv. Math. 219, 188-198, 2008.
  10. E. Mantovan, On non-basic Rapoport–Zink spaces, Ann. Sci. ´ Ec. Norm. Sup´er. (4) 41 (2008), no. 5, 671–716.
  11. T. Ikeda, PERIODS OF AUTOMORPHIC FORMS AND $L$-VALUES (Automorphic Representations, Automorphic Forms, L-functions, and Related Topics), 数理解析研究所講究録 (2008), 1617: 138-147
  12. R. Taylor and T. Yoshida, Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20 (2007), no. 2, 467–493.
  13. Burgos Gil, J. I.; Kramer, J.; K ̈uhn, U.: Cohomological arithmetic Chow rings. J. Inst. Math. Jussieu 6 (2007), 1–172.
  14. E. Lau, On degenerations of D-shtukas, Duke Math. J. 140 (2007) 351-389.
  15. J.I. Burgos Gil, J. Kramer, and U. K¨uhn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1–172. MR 2285241
  16. S. S. Kudla, M. Rapoport, and T. Yang, Modular forms and special cycles on Shimura curves, Annals of Mathematics Studies, vol. 161, Princeton University Press, Princeton, NJ, 2006.
  17. R. Bezrukavnikov, Noncommutative Counterparts of the Springer Resolution, ICM 2006 Report.
  18. T. Ito, Hasse invariants for some unitary Shimura varieties, Oberwolfach Report 28/2005 (C. Denniger, P. Schneider, and A. Scholl, eds.), Euro. Math. Soc. Publ. House, 2005, pp. 1565–1568.
  19. T. Ito, Weight-monodromy conjecture for p-adically uniformized varieties, Invent. Math. 159 (2005), no. 3, 607–656.
  20. E. Mantovan, On the cohomology of certain PEL-type Shimura varieties, Duke Math. J. 129 (2005), no. 3, 573–610.
  21. O. Bultel, T. Wedhorn, Congruence relations for Shimura varieties associated to some unitary groups, J. Inst. Math. Jussieu 5 (2006), 229-261.
  22. S. Lysenko, Moduli of metaplectic bundles on curves and theta-sheaves (English, with English and French summaries), Ann. Sci. Ecole Norm. Sup. (4) 39 (2006), no. 3, 415–466.
  23. M. Kisin. “Crystalline representations and F-crystals”. In: Algebraic geometry and number theory. Springer, 2006, pp. 459–496.
  24. J. Haines, Introduction to Shimura varieties with bad reduction of parahoric type. Harmonic analysis, the trace formula, and Shimura varieties, 583–642, Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2005.
  25. G. Pappas, M. Rapoport – “Local models in the ramified case. II: Splitting models.” , Duke Math. J. 127 (2005), no. 2, p. 193–250
  26. Chia-Fu Yu. Basic points in the moduli spaces of PEL-type. MPIM-preprint 2005-113, 2005.
  27. ARGOS Seminar on Intersections of Modular Correspondences, Held at the University of Bonn, Bonn, 2003–2004. Astrisque No. 312 (2007).
  28. J. Lurie, Derived Algebraic Geometry, PHD thesis, MIT, 2004.
  29. E. Lau, On generalised D-shtukas. PHD Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2004.
  30. Y. Varshavsky, Moduli spaces of principal F-bundles, Selecta Math. (N.S.) 10 (2004), no. 1, 131–166.
  31. S. S. Kudla, M. Rapoport, and T. Yang. Derivatives of Eisenstein series and Faltings heights. Compos. Math., 140(4):887–951, 2004.
  32. S. S. Kudla, Special Cycles and Derivatives of Eisenstein Series. In: Heegner Points and Rankin L-Series. Ed. by H. Darmon and S. W. Zhang. Mathematical Sciences Research Institute Publications. Cambridge University Press, 2004, pp. 243–270.
  33. J. Marc Drezet, Luna’s slice theorem and applications. Algebraic group actions and quotients, 39–89, Hindawi Publ. Corp., Cairo, 2004.
  34. T. Saito, Weight spectral sequences and independence of l, J. Inst. Math. Jussieu 2 (2003), no. 4, 583–634.
  35. F. Kato, An overview of the theory of $p$-adic uniformization. Appendix B of Y. Andre, Period Mappings and Differential Equations. From C to Cp, MSJ Memoirs, vol. 12. Mathematical Society of Japan, Tokyo (2003).
  36. T. Konno, A note on the Langlands classification and irreducibility of induced representations of p-adic groups, Kyushu J. Math. 57 (2003), no. 2, 383–409,
  37. N. Krämer, Local models for Ramified unitary groups. Abh.Math.Semin.Univ.Hambg. 73, 67–80 (2003).
  38. G. Faltings, Algebraic loop groups and moduli spaces of bundles. J. Eur. Math. Soc. (JEMS) 5 (2003), no. 1, 41–68.
  39. L. Lafforgue, Chirurgie des grassmanniennes. (French) [Surgery on Grassmannians], CRM Monogr. Ser. 19, Amer. Math. Soc., Providence, 2003.
  40. Tom Goodwillie, Calculus III, Taylor series, Geometry and Topology 7 (2003) 645-711.
  41. J. H. Bruinier and M. Bundschuh. On Borcherds products associated with lattices of prime discriminant. Ramanujan J., 7(1-3):49–61, 2003. Rankin memorial issues.
  42. G. Laumon, The Work of Laurent Lafforgue, ICM 2002, Vol. I, 91–97.
  43. Søren Have Hansen, Picard groups of Deligne-Lusztig varieties—with a view toward higher codimensions, Beitr¨age Algebra Geom. 43 (2002), no. 1, 9–26. MR1913766
  44. Th. Zink, The display of a formal p-divisible group, in: Cohomologies p-adiques et applications arithm ́etiques, I. Ast ́erisque 278 (2002), 127–248.
  45. S. Kudla, Derivatives of Eisenstein series and generating functions for arithmetic cycles, Seminaire Bourbaki, 52 annee, 1999–2000, no. 876. Asterisque 276 (2002), 341–368.
  46. P. Schneider and J. Teitelbaum. Locally analytic distributions and p-adic representation theory, with applications to GL2. Journal of the American Mathematical Society, 15(2):443–468, 2002.
  47. T. Venkataramana, Lefschetz properties of subvarieties of Shimura varieties, in Current trends in number theory, pp. 265-270, Hindustan Book Agency, New Delhi, 2002.
  48. S. DeBacker. Parametrizing nilpotent orbits via Bruhat-Tits theory. Ann. of Math. (2), 156(1):295–332, 2002.
  49. L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), no. 1, 1–241.
  50. E. Frenkel, D. Gaitsgory, and K. Vilonen. On the geometric Langlands conjecture. Journal of the American Mathematical Society, 15(2):367–417, 2002.
  51. T. J. Haines and Ngo Bao Chau, Alcoves associated to special fibers of local models, Amer. J. Math. 124 (2002), no. 6, 1125{1152. MR 1939783
  52. U. Görtz, On the flatness of models of certain Shimura varieties of PEL-type, Math. Ann. 321 (2001), no. 3, 689–727.
  53. U. T. Hartl, Semi-stability and base change, Arch. Math. 77 (2001), 215–221.
  54. M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, with an appendix by V. Berkovich, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001).
  55. D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles. Invent. Math, 144(2):253–280, 2001.
  56. A. Bondal, D. Orlov. Reconstruction of a variety from the derived category and groups of autoequivalences. Compositio Math. 125 (2001), no. 3, 327–344.
  57. H. Darmon, Integration on Hp × H and arithmetic applications, Ann. of Math. 154(3) (2001), 589–639.
  58. L. CLOZEL, H. OH, and E. ULLMO, Hecke operators and equidistribution of Hecke points, Invent. Math. 144 (2001), no. 2, 327–351.
  59. W.-T. Gan, J. Hanke, and J.-K. Yu, On an exact mass formula of Shimura. Duke Math. J. 107 (2001), 103–133.
  60. G. Pappas, On the arithmetic moduli schemes of PEL Shimura varieties, J. Algebraic Geom. 9 (2000), no. 3, 577–605.
  61. S. Kudla and M. Rapoport, Height pairings on Shimura curves and p-adic uniformization. Invent. math., 142 (2000), pp. 153–222.
  62. M. Rapoport, A positivity property of the Satake isomorphism. manuscripta math. 101, 153–166 (2000).
  63. R. E. KOTTWITZ and M. RAPOPORT, Minuscule alcoves for GLn and GSp2n, Manuscripta Math. 102 (2000), no. 4, 403–428.

1990s

  1. Hu, J. (1999). Deformation to the normal bundle in arithmetic geometry (Order No. 9941488). Available from ProQuest Dissertations & Theses Global. (304573072).
  2. J. P. Serre, André Weil. 6 May 1906-6 August 1998, Biographical Memoirs of Fellows of the Royal Society, Nov. 1999, Vol. 45 (Nov., 1999), pp. 520-529.
  3. B. H. Gross, On the Satake isomorphism. In A. Scholl & R. Taylor (Eds.), Galois Representations in Arithmetic Algebraic Geometry (London Mathematical Society Lecture Note Series, pp. 223-238). Cambridge: Cambridge University Press, (1998).
  4. L. Clozel and T. N. Venkataramana, Restriction of the holomorphic cohomology of a Shimura variety to a smaller Shimura variety, Duke Math. J. 95 (1998), 51–106.
  5. M. Bertolini, H. Darmon, Heegner points, p-adic L-functions, and the Cerednik-Drinfeld uniformization, Invent. Math. 131, (1998), no.3, 453–491.
  6. H. Stamm, On the reduction of the Hilbert-Blumenthal moduli scheme with Γ_0(p) level structure, Forum Mathematicum 9 (1997), 405–455.
  7. S. S. Kudla, Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997), 39–78.
  8. S. S. Kudla. Central derivatives of Eisenstein series and height pairings. Ann. of Math. (2), 146(3):545–646, 1997.
  9. B. H. Gross, On the motive of a reductive group, Inventiones Mathematicae 130 (1997), no. 2, 287–313.
  10. B. H. Gross, Reductive groups over Z, Invent. Math. 124 (1996), pp. 263–279.
  11. J. P. Serre, Two letters on quaternions and modular forms (mod p), Israel J. Math. 95 (1996), 281–299.
  12. A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. IHÉS 83 (1996), 51–93.
  13. A. Beilinson, V. Ginzburg, W. Soergel (1996). Koszul Duality Patterns in Representation Theory. Journal of the American Mathematical Society, 9(2), 473–527.
  14. A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math. (1995), no. 82, pp. 5–96.
  15. C. Simpson, The Hodge filtration on nonabelian cohomology, Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 217–281.
  16. M. Rapoport, Non-archimedean period domains, Proceedings of the ICM 1994.
  17. M. J. Hopkins and B. H. Gross. Equivariant vector bundles on the Lubin-Tate moduli space. In Topology and representation theory (Evanston, IL, 1992), volume 158 of Contemp. Math., pages 23–88. Amer. Math. Soc., Providence, RI, 1994.
  18. D. Vogan. The local Langlands conjecture. In: Representation theory of groups and algebras, Contemp. Math., vol. 145, pp. 305–379. American Mathematical Society, Providence, RI (1993).
  19. B. H. Gross, K. Keating. On the intersection of modular correspondences, Inventiones Math. 112 (1993), 225–245.
  20. Arxiv Mathematics (since February 1992)
  21. J. Nekovar. Beilinson’s conjectures. In: Motives (Seattle, WA, 1991). Vol. 55. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1994, pp. 537–570.
  22. J. Nekovář, On p-adic height pairings, séminaire de Théorie des Nombres, Paris 1990-1991, pages 127–202. Birkhäuser Boston, 1993.
  23. P. Colmez, P\'eriodes des vari \'et \'es ab\'eliennes \'a multiplication complexe, Ann. of Math. (2) 138 (1993), no. 3, 625–683.
  24. U. Jannsen, Motives, Numerical Equivalence, and Semi-Simplicity. Inventiones mathematicae, 107(1):447–452, 1992.
  25. R. Kottwitz, Points on Some Shimura Varieties Over Finite Fields, J. Amer. Math. Soc. 5 (1992), 373–444.
  26. R. Kottwitz, On the λ-adic representations associated to some simple Shimura varieties, Invent. Math. 108 (1992), 653–665.
  27. B. Totaro, Milnor K-theory is the Simplest Part of Algebraic K-Theory, K-theory 6, 177-189, 1992.
  28. S. Mildenhall, Cycles in a product of elliptic curves, and a group analogous to the class group, Duke Mathematical Journal 67 (2), 387-406, 1992.
  29. J. F. Boutot and H. Carayol, Uniformisation p-adique des courbes de Shimura: les theoremes de Cerednik et de Drinfeld. Courbes modulaire et courbes de Shimura, Ast\'erisque 196–197 (1991), pp. 45–158.
  30. Tom Goodwillie, Calculus II, Analytic functors, K-Theory 5 (1991/92), no. 4, 295--332.
  31. J. Arthur, A local trace formula, Inst. Hautes Études Sci. Publ. Math. No. 73 (1991), 5–96.
  32. P. Schneider and U. Stuhler. “The cohomology of p-adic symmetric spaces”. In: Invent. Math. 105.1 (1991), pp. 47–122. issn: 0020-9910.
  33. B. H. Gross, Kolyvagin’s work on modular elliptic curves, L-functions and arithmetic (Durham, 1989), London Math. Soc. Lecture Note Ser. 153 (1991), 235–256.
  34. H. Gillet, C. Soule, Arithmetic intersection theory, Inst. Hautes Etudes Sci. Publ. Math. 72 (1990), 93–174.
  35. S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, 333-400, Progr. Math., 86, Birkhauser Boston, Boston, MA, 1990.
  36. H. Carayol, Non-abelian Lubin-Tate theory, in: Automorphic Forms, Shimura Varieties, and L-functions (Academic Press, 1990), 15–39.
  37. G. Lusztig. Intersection cohomology methods in representation theory, ICM 1990 report.
  38. F. SHAHIDI, A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. Math. (2), 132 (1990), 273–330.
  39. Tom Goodwillie, Calculus I, The first derivative of pseudoisotopy theory, K-Theory 4 (1990), no. 1, 1--27.
  40. S. A. Mitchell. The Morava K-theory of algebraic K-theory spectra. K-Theory, 3(6):607–626, 1990.

1970-1980s

  1. R. Pink. Arithmetical compactification of mixed Shimura varieties. PhD thesis, Bonner Mathematische Schriften, 1989.
  2. J. Arthur, Unipotent automorphic representations: conjectures, Asterisque 171–172 (1989), 13–71.
  3. D. Kazhdan and G. Laumon, Gluing of perverse sheaves and discrete series representations, Journ. of Geom. and Physics, 5 (1988), 63-120
  4. I. Piatetski-Shapiro and S. Rallis, A new way to get Euler products, J. Reine Angew. Math. 392 (1988), 110–124. MR 965059.
  5. P. Deligne and D. Husemoller, Survey of Drinfeld’s modules, Contemporary Math, vol. 67, pp. 25-91, 1987.
  6. G. Harder. Eisensteinkohomologie für Gruppen vom Typ GU(2, 1). Math. Ann., 278(1-4):563– 592, 1987.
  7. B. H. Gross, W. Kohnen, D. Zagier, Heegner points and derivatives of L-series. II. Math. Ann. 278 (1987), no. 1-4, 497–562.
  8. N. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over Q, Inventiones Mathematicae, 89 (3) (1987), 561–567.
  9. H. Gillet and C. Soulé, Intersection theory using Adams operations, Invent. Math. 90 (1987), no. 2, 243–277.
  10. G. Laumon, Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J. 54 (1987), no. 2, 309–359.
  11. H. Jacquet, Sur un resultat de Waldspurger, Ann. Sci. Ecole Norm. Sup. (4) 19 (1986), no. 2, 185–229.
  12. G. Harder, R. Langlands, M. Rapoport, Algebraische Zyklen auf Hilbert-Blumenthal-Flchen. J. Reine Angew. Math. 366 (1986), 53-120.
  13. B. H. Gross, On canonical and quasi-canonical liftings. Inventiones mathematicae, 84(2):321–326, 1986.
  14. Haastert, Burkhard, Die Quasiaffinität der Deligne-Lusztig-Varietäten. (German) [The quasiaffinity of the Deligne-Lusztig varieties] J. Algebra 102 (1986), no. 1, 186–193.
  15. W. van der Kallen, Descent for the K-theory of polynomial rings, Mathematische Zeitschrift 191 (1986), 405–415.
  16. R. E. Kottwitz, Isocrystals with additional structure, Compositio Math. 56 (1985), no. 2, 201–220.
  17. S. S. Kudla, Seesaw dual reductive pairs. In Automorphic forms of several variables (Katata, 1983), volume 46 of Progr. Math, pages 244–268. Birkhäuser Boston, Boston, MA, 1984.
  18. P. Deligne, Intégration sur un cycle évanescent, Invent. Math. 76 (1984), no. 1, 129–143.
  19. D. Vogan, G. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), 51–90.
  20. Bloch, S. Height pairings for algebraic cycles. J. Pure Appl. Algebra 34(2–3), 119–145 (1984). Pro- ceedings of the Luminy Conference on Algebraic K-theory, Luminy, 1983.
  21. O. Gabber, Sur la torsion dans la cohomologie l-adique d’une variete, C. R. Acad. Sci., Paris, S ́er. I 297(1) (1983), p. 179-182.
  22. J. S. MILNE, The action of an automorphism of C on a Shimura variety and its special points, pp. 239–265. In Arithmetic and geometry, Vol. I. Birkha ̈user Boston, Boston, MA, 1983.
  23. D. J. Anick, A counterexample to a conjecture of Serre, Ann. of Math. 115 (1982); 1–33.
  24. A. A. Beilinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and topology on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171. Soc. Math. France, Paris, 1982.
  25. S. Ralllis, Langlands' Functoriality and Weil representation, American Journal of Mathematics, Vol 104, No.3 (Jun. 1982), pp. 469-515.
  26. J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. (9), 60(4):375–484, 1981.
  27. J. Arthur, Automorphic Representations and Number Theory, Canadian Mathematical Society, Conf. Proc., Volume 1 (1981)
  28. P. Deligne, La conjecture de Weil: II, Publications Mathématiques de l'IHÉS, Tome 52 (1980) , pp. 137-252.
  29. STEVEN L. KLEIMAN, Relative duality for quasi-coherent sheaves Compositio Mathematica, tome 41, no 1 (1980), p. 39-60.
  30. Kottwitz, R. E. (1980). Orbital Integrals on GL3. American Journal of Mathematics, 102(2), 327–384.
  31. D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality. Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), pp. 185–203, Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980.
  32. D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35–64.
  33. R. Howe, Wave Front Sets of Representations of Lie Groups. In Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979), 117–40. Tata Institute of Fundamental Research Studies in Mathematics 10.
  34. D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Inventiones Mathematicae, 53 (2) (1979), 165–184.
  35. P. Cartier, Representations of a p-adic groups: a survey, in Automorphic forms, representations and L-functions, Proc. Symp. Pure Math. Am. Math. Soc., Corvallis/Oregon 1977, Proc. Symp. Pure Math. 33 (1979), Part 1, 111–155.
  36. J. Tits, Reductive groups over local fields, in Automorphic forms, representations and L-functions, Proc. Symp. Pure Math. Am. Math. Soc., Corvallis/Oregon 1977, Proc. Symp. Pure Math. 33 (1979), Part 1, 29–69.
  37. P. Berthelot and A. Ogus, Notes on Crystalline Cohomology. Princeton University Press, 1978.
  38. Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, in Lie Theories and their Applications (Proc. Ann. Sem. Canad. Math. Congr., Queen's Univ., Kingston, Ont., 1977), Queen’s Papers in Pure Appl. Math. 48, Queen’s Univ., Kingston, Ont., 1978, pp. 281–347.
  39. D. Kazhdan. Some applications of the Weil representation. J. Analyse Mat., 32 :235–248, 1977.
  40. D. Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977), 239–272.
  41. M.-F. Vigneras, Series theta des formes quadratiques indefinies. In: Modular functions of one variable VI, Springer Lecture Notes 627 (1977), 227-239.
  42. G. Lusztig, Coxeter orbits and eigenspaces of Frobenius. Invent. Math., 38(2):101–159, 1976.
  43. A. Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259.
  44. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no.1, 103--161.
  45. V. G. Drinfeld, Coverings of p-adic symmetric domains, Funkcional. Anal. i Priloˇzen. 10 (1976), no. 2, 29–40 (Russian).
  46. D. Zaiger, Nombres de classes et formes modulaires de poids 3/2, C.R. Acad. Sci. Paris (A), 281 (1975), 883-886.
  47. R. Langlands, Some contemporary problems with origins in the Jugendtraum, Mathematical developments arising from Hilbert problems (De Kalb 1974), Proc. Sympos. Pure Math. XXVIII, Amer. Math. Soc., pp. 401-418, 1976.
  48. F. Oort. Subvarieties of moduli spaces. Invent. Math., 24:95–119, 1974.
  49. P. Deligne. Théorie de Hodge, III. Inst. Hautes Etudes Sci. Publ. Math., 44:5–77, 1974.
  50. N. Katz, W. Messing, Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math. 23 (1974), 73–77.
  51. P. Deligne. La conjecture de Weil. I. Inst. Hautes Etudes Sci. Publ. Math., (43):273–307, (1974).
  52. N. M. Katz, p-adic properties of modular schemes and modular forms: pp. 69-190 in Modular Functions of One Variable III, Springer Lecture Notes in Mathematics 350 (1973).
  53. L. Illusie, Complexe Cotangent et Déformation I, II, Lecture Notes in Mathematics 239, 283, Springer-Verlag, 1971, 1972.
  54. P. Deligne, La conjecture de Weil pour les surfaces K3. Invent. Math. 15 (1972), 206–226.
  55. P. Deligne, Théorie de Hodge, II. Publications Mathématiques de L’Institut des Hautes Scientifiques 40, 5–57 (1971).

1950-1970

  1. Walter L. Baily, Jr., An exceptional arithmetic group and its Eisenstein series, Ann. of Math. (2) 91 (1970), 512{549.
  2. P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. No. 36 (1969), 75–109.
  3. P. Deligne, Theoreme de Lefschetz et criteres de degenerescence de suites spectrales. Publications Math ematiques de l’IHES 35.1 (1968): 107-126.
  4. R. Godement, Introduction à la Théorie de Langlands, Séminaire N. Bourbaki, 1968, exp. no 321, p. 115-144.
  5. A. Grothendieck, Crystals and the de Rham cohomology of schemes. In Dix Exposes sur la Cohomologie des Schemas, volume 3 of Advanced Studies in Pure Mathematics, pages 306–358. North-Holland, Amsterdam, 1968.
  6. J. Tate, p-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, pp. 158–183.
  7. J. Tate, Endomorphisms of abelian varieties over finite fields. Inventiones mathematicae, 2(2):134–144, 1966.
  8. P. Deligne, Cohomologie à support propre et construction du foncteur f^!, Appendix to Hartshorne, Residues and duality, Lecture Notes in Math., Vol. 20, Springer, Berlin, 1966.
  9. B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79–108. MR 179168
  10. M. Lazard, Groupes analytiques p-adiques, Publications Mathématiques de l'IHÉS, Tome 26 (1965), pp. 5-219.
  11. J. Lubin, J. Tate, Formal complex multiplication in local fields, Annals of Mathematics (81), (1965), 380-387.
  12. A. Weil, Sur certains groupes d'operateurs unitaires, Acta Math. 111 (1964), 143{211.
  13. G. E. Wall. On the conjugacy classes in the unitary, symplectic and orthogonal groups. J. Aust. Math. Soc., 3:1–62, 1963.
  14. R. Jacobowitz, Hermitian Forms Over Local Fields. American Journal of Mathematics, 84(3), (1962), 441-465.
  15. J. P. Serre, Sur la topologie des variétés algébriques en caractéristique p, Symposion Internacional de topologia algebraica (1958), pp. 24–53.
  16. J. Igusa, Class number of a definite quaternion with prime discriminant. Proc. Nat. Acad. Sci. U.S.A., 44:312–314, 1958.
  17. M. Lazard, Sur les groupes de Lie formels à un paramètre, Bulletin de la Société Mathématique de France, Tome 83 (1955), pp. 251-274.
  18. S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76, 819–827 (1954).

-1950

  1. Carl Ludwig Siegel. Über die analytische Theorie der quadratischen Formen. Ann. of Math. (2), 36(3):527–606, 1935.

Classical books

  1. M. Harris, R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001.
  2. R. Kiehl and R. Weissauer, Weil Conjectures, Perverse Sheaves and l-adic Fourier Transform, (2001).
  3. K. Kato, N. Kurokawa and T. Saito, Number Theory 1: Fermat’s Dream, AMS, (2000).
  4. T. Springer, Linear algebraic groups, Second edition (1998), Birkhauser.
  5. J. Kollar, S. Mori, Birational Geometry of Algebraic Varieties, (1998).
  6. D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55. Cambridge University Press, Cambridge, 1997. xiv+574 pp.
  7. N. Chriss, V. Ginzburg, Representation theory and complex geometry, 1997.
  8. M. Rapoport, T. Zink: Period Spaces for p-divisible Groups, Ann. Math. Stud. 141, Princeton University Press, Princeton 1996.
  9. G. Laumon, Cohomology of Drinfeld modular varieties, (1996).
  10. L. C. Washington, Introduction to Cyclotomic Fields, 1996-12-5.
  11. Casselman's note on p-adic groups, 1995.
  12. V. Platonov, A. Rapinchuk, Algebraic groups and number theory, (1994).
  13. S. Mac Lane, I. Moerdijk, Sheaves in Geometry and Logic – A first introduction to topos theory, Springer Verlag, 1992.
  14. Motives, Part II (Seattle, WA, 1991). Vol. 55.1 Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1994, pp. 537–570.
  15. Motives, Part I (Seattle, WA, 1991). Vol. 55.2 Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1994, pp. 537–570.
  16. S. Bosch, W. Lutkebohmert, M. Raynaud, Neron Models, (1990).
  17. D. A. Cox, Primes of the form x^2+ny^2, (1989).
  18. N. Katz, B. Mazur, Arithmetic moduli of elliptic curves (1985).
  19. T. Zink, Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte zur Mathematik, volume 68, Teubner Publishing Company, Leipzig, 1984.
  20. W. Fulton, Intersection theory, 1984.
  21. Serge Lang, Fundamentals of diophantine geometry, Springer, New York [u.a.], 1983. Literaturverz. S. 359 - 365.
  22. R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, (1983)
  23. P. Deligne, J. S. Milne, A. Ogus, K. Shih, Hodge cycles, motives, and Shimura varieties, LNM 900, (1982).
  24. T. A. Springer, Linear Algebraic Groups, (1981).
  25. A. Borel, W. Casselman (Editors), Automorphic Forms, Representations and. L-Functions, Parts 1 and 2, Corvallis proceedings (1979).
  26. R. Hartshorne, Algebraic Geometry, (1977).
  27. P. Deligne, SGA 4 1/2, cohomologie etale, (1977).
  28. N. Koblitz, P-adic Numbers, P-adic Analysis, and Zeta-Functions, (1977).
  29. S. G. Langton, Valuative Criteria for Families of Vector bundles on Algebraic varieties, Annals of Mathematics Vol.101. No.1(1975). pp.88-110.
  30. J. Milnor, Characteristic classes, (1974).
  31. J. P. Serre, A course in arithmetic, (1973).
  32. P. Deligne, N. Katz, SGA 7 vol. 1 & 2, Groupes de monodromie en géométrie algébrique, (1973).
  33. A. Bousfield, D. Kan, Homotopy Limits, Completions and Localizations, (1972).
  34. H. Jacquet and R. Langlands, Automorphic Forms on GL(2), (1970).
  35. M. Raynaud, Anneaux locaux henséliens, (1970).
  36. J. P. Serre, Linear Representations of Finite Groups, (1970).
  37. M. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, (1969).
  38. D. Quillen, homology of commutative rings, unpublished, MIT 1968.
  39. Tate's thesis, (1950).
  40. Flatland: A Romance of Many Dimensions, (1884).