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This is a learning note on Cadoret’s work on ultraproduct Weil II.

1 Introduction

Let X0 be a smooth projective variety over k0 = Fq of dimension n, k = Falgq , X = X0⊗k0 k.
Question: #X0(Fqm) =?

Example 1.
#Pn(Fqm) = 1 + qm + q2m + . . .+ qmn

#E(Fqm) = 1 + qm − αm − βm (E elliptic curve, αβ = q)

and Weil’s computation for Fermat hypersurface using Jacobi sums in his famous paper.

Theorem 1. (Weil conjecture) There exists algebraic integers αi,j ∈ Z, 0 ≤ i ≤ 2n such that

1. #X0(Fqm) =
∑

(−1)iαmij for all m.

2. {q2n/αi,j} is the same as {α2n−i,j} as multisets.

3. ∀τ : Q ↪→ C, |τ(αij)| = q
i
2 .

Idea: X(Fqm) is the fixed point set of Frobenius map Frmq on X(k). If we have a
cohomology theory for X that looks like singular cohomology, then first part will follow by
Lefschetz trace formula:

#X(Fqm) =
∑
i≥0

(−1)itr((Fr∗)m|H i(X)).

and second part will follow from Poincare duality.
To really count, the coefficient shall be char 0. Other important things include finiteness,

cycle map.. conditions are formularized precisely by Weil. In other words, we need a Weil
cohomology theory.

For any prime number ` 6= p, Grothendieck developed étale cohomology theory H∗(X)
with coefficents in Z/`n (hence by passing to limit) Z` and Q`. It has a Frobenius action by
functoriality.
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Example 2. Cn is contractible so H i
sing = 0 for i > 0, over k we know H i(An,Ql) = 0.

CP1 ∼= S2 is the sphere with H0, H2 ∼= Z and H i = 0 else, over k we know H0(P1,Ql) = Ql,
H2(P1,Ql) = Ql(−1) and H i = 0 else.

Example 3. If X can be lift to C (still smooth and projective), then we have H i
et(X,Q`) =

H i
sing(X(C),Z)⊗Q` (Artin’s comparison theorem).

How about the last part? It’s related to Frobenius purity of cohomology and proved
in Weil I, then Weil II developed the relative theory for general local systems. Another
question is: why αij ∈ Z?

Proof. (assuming purity) The L-function L(X0, s) is in (1+Z[[t]])∩Q`(t) ⊆ Q(t). Z(X0, s) =∏
i Pi(T )(−1)

i
, Pi(T ) =

∏
i(1−αi,jT ) are coprime and we can separate them by absolute values

of roots by purity. Then by uniqueness of decomposition, Pi(T ) ∈ Z[T ], so αij ∈ Z.

Such `-independence result can be explained by the dream of universal cohomology the-

ory: ”H i(X,Z)”
⊗Q`→ H i(X,Q`).

But we don’t have a theory with Q-coefficient in general:

Example 4. (Serre) E supersingular elliptic curve over k, then End(E)→ End(H1(X)). If
H∗ is of Q-coefficient, then tensor with R we get H→M2(R), but such ring morphism does
not exist because H is a division algebra and both side has dimension 4.

So it’s not obvious why it’s reasonable to believe the dream. Today we will talk about
some evidences.

Example 5. The Euler characterestic for all Weil cohomology theories are the same, it’s
the self-intersection number of diagonal in X ×X by Lefschetz trace formula.

Also, integral story is also missing as in the above. How about Hk(−,Z`)? Does it have
any torsion?

Complex picture: X compact Riemann surface of genus g, then H∗sing = Z,Z2g,Z.
For a connected smooth projective curve over k, H0 ∼= Z` hence H2 ∼= Z` by Poincare

duality. H1 is the same as its Jacobian, so H1 ∼= Z2g
` by standard computation on abelian

varieties using group structure.

Proposition 1. Let A be an abelian variety of dimension g over k, then H i(A,Z`) =
∧iH1(A,Z`) and H1(A,Z`) ∼= Z2g

` .

Proof. See Milne’s book on abelian varieties.

But there exists torsion example e.g Enriques surfaces (` = 2, p > 2) has H2
tor
∼= Z2. This

is also true in the complex setting.
If A is a finitely generated abelian group, then A ⊗ Z` is torsion free for ` >> 0. So

by the dream, we expect the torsion phenomenon will disappear when we consider all F`
coefficients and let `→∞.

Theorem 2. (Gabber) If X is a smooth projective variety over k, then for all but finitely
many `, H i(X,Z`) is torsion free. In particular, H i(X,F`) is uniformly bounded with respect
to `.
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Proof. It’s non-trivial but elementary once one know the gcd theorem (the use of Lefschetz
pencils). By universal coefficient theorem,

0→ H i(X,Z`)⊗ F` → H i(X,F`)→ H i+1(X,Z`)[`]→ 0

we only need to show dimH i(X,F`) = dimH i(X,Q`) for ` >> 0. We can do induction on
the dimension using Lefschetz pencil and weak Lefschetz for mod ` cohomology, see [1]. H0

case is trivial, H1 ∼= Hom(π1,Z`) is torsion free by definition.

Remark 1. Mod ` cohomology is still good e.g finiteness, Poincare duality, weak Lefschetz
hold. Recently, Orgogozo proves uniformity bounds for stalks Rf∗Z/` where f : X → S a is
proper morphism between Noetherian schemes when ` varies, see [4].

Gabber’s result is the starting point of ultraproduct étale cohomology.

2 Ultraproduct Étale Cohomology

Ultraproduct coefficients is a systematic way to study the phenomenon that modulo ` coho-
mology behaves asymptotically like `-adic cohomology.

Definition 1. Given an index set I, an ultrafilter on I is a set U consisting of subsets of I
such that:

• ∅ 6∈ U .

• For any A ⊆ B ⊆ I, if A ∈ U then B ∈ U

• if A,B ∈ U then A ∩B ∈ U .

• (ultra) For any A ⊆ I, A ∈ U or X − A ∈ U .

Example 6. Given an element x in I, the collection of all subsets containing x is an ultra-
filter. These are called principal ultrafilters.

Example 7. I ∼= N is countable, U is the collection of all cofinite subsets. This is a non-
principal filter (but not a ultrafilter), and is called Fréchet filter. But we can extend this to
a ultrafilter by Zorn lemma. In fact, any non-principal ultrafilter must contain Fréchet filter.

Definition 2. Given a collection of sets Mi indexed by I and an ultrafilter U on I, the
ultraproduct is defined as the quotient set

∏
i∈IMi by the equivalence relation (xi) ∼ (yi)

iff {i|xi = yi} ∈ U .

Now choose any infinite set I of prime numbers not containing p and a non-principal
ultrafilter U on I, denote F = FU =

∏
`∈I F

alg
` /U .

Proposition 2. FU is an algebraically closed field of characteristic zero.

Proof. For any nonzero x in F , {i|xi = 0} is not in U , {i|xi 6= 0} is in U , so the inverse
make sense i.e F is a field. It’s not of positive characteristic as 1/p ∈ F for any prime p. It’s
algebraically closed because Falg` are.
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Now for we define ultraproduct cohomology as

H∗(X,F ) :=
∏
`

H∗
(
X,Falg`

)
/U

Remark 2. The theory of ultrafilter can be explained using prime spectrum of
∏

`∈I F
alg
` :

mU = {(x`)|{`|x` = 0} ∈ U} is a closed point, and F is just the residue field. Any product
of fields is an absolutely flat ring, in particular the quotient map

∏
`∈I F

alg
` → FU is flat.

This is useful to transform information between individual ones and the ultra one, and it
explains why we don’t derive in the definition.

Theorem 3. The assignment X 7→ H∗(X) := H∗(X,F ) is a Weil cohomology theory with
coefficient in F : Finiteness, Poincare duality, Kunneth formula, cycle map, weak Lefschetz
theorem, hard Lefschetz theorem...

Proof. See SGA 4 XIV, XVII, XVIII, where finiteness, weak Lefschetz (SGA5 VII thm 7.1.),
Kunneth formula, Poincare duality are proved for mod ` cohomology. To prove finiteness
for ultraproduct, notice that Gabber’s result show dimensions of mod ` cohomology are
uniformly bounded. Other results are proved in similar way, noting torsions (in `−adic
cohomology, in kernel and cokernel of integral hard Lefschetz map) are uniformly bounded
so large enough ` will kill these torsions.

Ultra étale cohomology theory reflects some of the integral story, and is useful as the
coefficient field is char zero.

3 Ultra Weil II

Serre’s example will not work if we change Q to Q, therefore we have a guideline: For

smooth projective variety, there shall exist a universal cohomology theory s.t ”H i(X,Q)”
⊗Q`→

H i(X,Q`). And for any ”good” Q`-local system F`, there shall exist ”H i(X,F)”
⊗Q`→

H i(X,F`).
Motivated possibly by the dream, in Weil II Deligne proposes the companion conjecture

(Weil II, 1.2.10)

Theorem 4. F` irreducible Q`-local system on X0 with finite determinant, then

• (Purity) F` is pure of weight 0 : for every x0 ∈ |X0| the eigenvalues of Frobenius ϕ
acting on the stalk F` are algebraic and have absolute value 1 for every embedding to
C.

• (Companion) For every `′ 6= p, there exists a (unique) semisimple Q`′-local system F ′`
on X0 compatible with F` i.e characteristic polynomial of Frobenius at stalks are the
same ∀x0 ∈ |X0|.

It can be used to show every Q`-local system on X is mixed (Weil II, 1.2.9).
The curve case is essential, and there is also a theory of crystalline companion. Cadoret’s

work shows some integral results are true for large enough ` (which provides another evidence
to the dream):
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Theorem 5. (rough version of main theorem) Given a compatible family F` (` 6= p) of pure
Q`-local systems F` on X0, choose any torison-free integral model H`, and let M` be the
reduction. Then for ` >> 0,

1. H i(X,H`) are torsion-free.

2. residual semisimplicity/irreducibility.

3. unicity of integral models.

Idea: introduce a category of étale local systems with ultraproduct coefficients on vari-
eties over finite fields and develop a partial theory of Frobenius weights in this setting (as
ultraproduct coefficient is of char zero), we can mimic the proof in Weil II.

Let Slcc(X0) be the category of sheaves of
∏

` F
alg
` -modules of locally constant con-

structible (lcc for short) sheaves on X0. Its objects are direct products M =
∏

`∈IM`

where M` are local systems of Falg` -modules. Then we define almost U -tame local systems.

Definition 3. Let X0 be a smooth and geometrically connected variety over k0. For every
ultrafilter U , let StU(X0) ⊆ Slcc(X0) denote the full subcategory of almost U-tame sheaves of
locally constant constructible that is of those M =

∏
`∈IM` such that

1. Mx,U :=Mx ⊗ FU has finite FU dimension;

2. There exists a connected étale cover X ′ → X for which the set of primes ` ∈ I such
that M`|X′ that is curve-tame is in U . Here, ”curve-tame” means that for every
smooth curve C over k and morphism C → X ′, M`|C is tamely ramified in the usual
sense (factors through the tame fundamental group which classify covers C1 → C
s.t all points in C − C (a compactification) is tamely ramified in the field extension
k(C1)/k(C)).

And the category of FU -local systems on X0 (which is denoted by C(X0, FU)) is the
quotient of StU(X0) by the full subcategory of all M such that {` ∈ I|M` = 0} ∈ U .

The finite rank condition is for the need to define Frobenius weight (at every stalk): V
a finite dimensional F -vector space with a linear operator ϕ on it, we can define the weight
as usual by choosing an embedding τ : F ↪→ C.

Tameness is to avoid some wild phenomenon, in particular the cohomology groups shall
be uniform bounded.

Theorem 6. H i(X,MU) are finite dimensional.

Proof. We only need to show the mod ` cohomology can be uniformly bounded. H0 is true by
finite rank condition, and H2n is true by duality. If X0 is a curve, we can use Grothendieck-
Ogg-Shafarevich formula (here we use tameness) to show Euler charactersitic is uniformly
bounded. For higher dimension, we can use Lefschetz pencils and some ramification theory
to do induction.

Remark 3. Another consequence of tameness is also frequently used in the paper: When X
is smooth over k, the profinite C-tame fundamental group is topologically finitely generated.
In particular, every finite index subgroup is open (Nikolov-Segal). Then one can really think
almost U -tame local systems as FU -representations of fundamental groups of X0.
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As cohomology groups are finite dimensional, we can again develop Lefschetz trace for-
mula hence a cohomological interpretation of L-function.

Theorem 7. The L-function L(MU , T ) :=
∏

x0∈|X0| det
(
Id− T deg(x0)ϕx0|Mx

)−1
is equal to

χ(MU , T ) :=
∏
i≥0

det
(
1− Tϕ|H i

c(X,M)
)(−1)i+1

.

Then one follows classical Weil II to prove the following key theorem:

Theorem 8. (Analogue of Weil II theorem 2) Let X0 be a smooth curve over k0, M is an
almost U -tame local system on X0. IfMU is pure of weight w, then H i

c(X,MU) has weights
≤ w + i.

Combined with Bertini theorem and Lefschetz pencils, this will imply purity (Ultraprod-
uct Weil II), and geometric semisimplicity, weak Chebotarev...

Remark 4. There is a general version of weak Chebotarev density theorem for semisimple
local system over any algebraic variety on a finite field.

4 Applications to uniform results

And we discuss the main theorem about integral models. Proofs of uniform results via ultra-
product coefficients not only provide more general results but they are also more elementary
than the previous ones.

Previous result is proved via working with mod ` coefficients directly (e.g Gabber’s result),
and one can reinterpret the result in terms of ultraproduct coefficients. But with a good
formulation of arbitrary ultraproduct coefficients Frobenius weights theory, we can work
directly with ultraproduct coefficient and then deduce some uniform results on curves by
formal argument (as we can choose arbitary non-principal filters).

The set up is as before.
Key obeservation: F` is pure, so MU = (

∏
`M`)⊗ FU is also pure because reduction

will not change characteristic polynomial of Frobenius.
Firstly, we know torsion-freeness:

Corollary 1. H i(X,H`) is torsion free.

Proof. The motivic reason is that ultra product and `-adic étale cohomology have same Betti
numbers. To show this, by naturality of reduction, M` has same characteristic polynomial
of Frobenius with F` so there is an equality of L-functions. We have Lefschetz trace formula
for both cohomology groups, and H i are pure, hence by weight reason we can separate each
part, this shows they have same Betti numbers. Then we deduce the uniform version by
formal argument.

Secondly, we know residual semisimplicity and irreducibility:

Corollary 2. For ` >> 0, we have
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1. M`|X is semisimple. If F` is semisimple / irreducible, M` is semisimple / irreducible;

2. For every geometric point x on X0, H
π1(X,x)
`,x ⊗F`,x ∼=Mπ1(X,x)

` ; If F` is semisimple, the
result holds on X.

Proof. Semi-simpleness: let M′
` be the maximal F`-semisimple sub local system of M` on

X0 and denote the quotient by M′′

` , form the ultra version M′
U , M′

U , which are pure as F`
is. Then H1(X,M′

U ⊗M′′∨
U )ϕ=1 = 0 as H1 is pure of weight 1 by ultra Weil II. As U is

arbitary, this shows H1(X,M′
` ⊗M′′∨

` )ϕ=1 = 0 for ` >> 0, i.e the Ext1X(M′′
` ,M′

`)
ϕ=1 = 0.

Hence the sequence splits over X, and M`|X is semisimple for large enough `.
The irreducible result is a little harder.

It remains to show the uniqueness of integral model for ` large enough.

Corollary 3. For ` >> 0, every Z`-model H`, H′` of F` will be isomorphic over X. If F is
semisimple, then they are isomorphic (i.e over X0).

Proof.
Homπ1(X,x)

(
H′`,x,H`,x

)
→ Homπ1(X,x)

(
M′

`,x,M`,x

)
is surjective for ` >> 0 by applying above to F` ⊗ F∨` . But M`,x and M′

`,x are semisimple
with same characteristic polynomial (by the naturality of reduction representations), so they
are isomorphic by Chebotarev density theorem. Then we lift the isomorphism to integral
models by the surjection, it’s again an isomorphism by Nakayama lemma.

Remark 5. If F` is simple, then it can be reduced to a representation theory problem:
G profinite group, G → GLn(Q`) a compatible family of representations, are the invariant
lattices unique up to scaling? This can be deduced from irreduciblity of mod ` reps.

Remark 6. Every higher-dimensional uniform result in the paper requires X being proper
(no mixed version), It seems currently there is no good notion of general almost U -tame
constructible sheaves. But compactly supported version is known for smooth curves.

5 Classical story

Most of the proof of ultra Weil II will generalize Delinge’s approach to Weil II using Fourier
transform. By standard reduction, it suffices to show

Theorem 9. j0 : X0 ↪→ A1 open subscheme, and let M be an almost U-tame local sys-
tem τ -pure of weight 0. If MU |X is unramified at ∞ and non-constant irreducible, then
H1
c (A1, j∗MU) is of τ -weights ≤ 1.

Let’s review some classical ingredients.

naive bounds for #X0(Fqm) ⇒ rough estimates of poles of L-function

rough estimates + trace formula
tensor product trick⇒ semicontinuity of weights
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semicontinuity of weights ⇒ weight-monodromy ⇒ j0∗(M⊕M∨) is τ -real

τ -real
tensor product trick⇒ τ -mixed

monodromy theorem+ Fourier transform ⇒ purity on curves

purity on curves
Lefschetz pencil⇒ purity in general

purity ⇒ semisimple geometric monodromy ⇒ hard Lefschetz ⇒ gcd theorem

gcd theorem is an important corollary of Weil II, recall the statement

Theorem 10. (gcd theorem, Weil II, Thm. 4.5.1) X smooth projective dim n over k0 = Fq,
P i(X, t) = det(1− tFr|H i(XFalg

q
)) ∈ Z[t]. Then for every integer d ≥ 2, and every Lefschetz

pencil Xt{t∈P1} of hypersurface sections of degree d of X, the polynomial P n−1(X/Fq, t)
may be reconstructed as the least common multiple of all complex polynomials f(T ) =∏

(1 − αiT ) such that whenever t ∈ Fqr s.t Xt is smooth we have f (r)(T ) =
∏

(1 − αriT )
divides P n−1(Xt/Fqr , t).

Proof. This is a corollary of hard Lefschetz in Weil II, Thm. 4.3.9. We omit the proof.

It has many applications e.g Katz-Messing’s result that any reasonable Weil cohomology
theory over finite fields will have same Betti number, satisfy purity and hard Lefschetz, see
[3].

6 Langlands correspondence with ultra-coefficients

Deligne’s companion conjecture can also be extend to ultraproduct coefficients.
The original proof given by Drinfeld-Lafforgue using Langlands correspondence over func-

tion field. In a similar way, one hopes to develop a Langlands correspondance for ultraprod-
uct coefficients. This will again have many applications to asymptotic results e.g Deligne’s
finiteness theorem for `-adic local systems with bounded ramification. We omit the details.
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