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p-adic modular forms

Classical modular forms with coefficients in a ring R0 (weight k, level n,
meromorphic at infinity) can be thought as R-valued functions on triples
(E,ω, αn), where E is an elliptic curve over a R0 algebra R, ω is a
non-vanishing differential on E, and αn is a level n structure, together
satisfying some transformation laws e.g f(E, λω) = λ−kf(E,ω) for any
λ ∈ R×. Its value at the Tate curve Tate(q) with the canonical differential will
give the classical q-expansion.

Note the weight p− 1 modular form Hasse invariant has q-expansion 1, hence
for any lift A(q) of it to char zero (a weight p− 1 modular form), we know
Ap

n−1 → A−1 (n→ +∞) p-adically. Therefore, A−1 is a p-adic modular form
in the sense of Serre. So to geometrize p-adic modular forms, we shall work on
some "p-adic space" where a lifting of Hasse invariant is invertible (or at least
non-zero), this is why we choose to work over the non-vanishing locus of Hasse
invariant i.e the ordinary locus.
To get p-adic modular forms, Katz uses test objects (E,ω, αn, Y ) with growth
condition r ∈ [0, 1], where Y Ep−1(E,ω) = a. Here the base is a complete DVR
R0 with characteristic (0, p), a ∈ R0 is fixed such that vp(a) = r, vp(p) = 1,
and (n, p) = 1.
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Katz’s approach to p-adic modular forms

Geometrically, p-adic modular forms "=" sections of powers of the Hodge
bundle over the ordinary locus of modular curves.
geometry of modular curves with natural compactification, Tate curve at
the cusp ⇒ q-expansion principle.

overconvergent modular forms are good p-adic modular forms such that
the section can be extended to the overconvergent locus X(r) (a rigid
space as we’re removing disc with small radius r) for some 0 < r ≤ 1.
growth condition , canonical subgroup ⇒ overconvergent modular forms,
Up : M†k(r)→M†k(pr) (0 ≤ r < 1

p+1 ), spectral theory of the compact
operator Up.
differential operator e.g theta operator can also be defined
geometrically for p-adic / mod p modular forms.
people have been trying to generalize these geometric constructions and
constructions of p-adic L-functions to more general setting ...
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Gauss-Manin connection – complex picture

If R is the ring of holomorphic functions of τ on upper half plane, and E → R
be the relative elliptic curve ”C/Z + Zτ”, whose affine model is

y2 = 4x3 − E4

12
x+

E6

216
, Ei ∈ R.

Let’s denote the complex coordinate on E by z, then the embedding
C/Z + Zτ ↪→ P2 is given by x = ℘τ (z), y = ℘′τ (z).

The dual HdR
1 (E/R) is a free R-module with basis γ1, γ2, which can thought

as the paths from 0 to τ and from 0 to 1 respectively.
The Gauss-Manin connection on H1

dR(E/R) is defined as the dual connection
on HdR

1 (E/R) such that∫
γi
∇τ (ξ) = d

dτ

∫
γi
ξ, ∀ξ ∈ H1

dR(E/R), i = 1, 2

here ∇τ = ∇( d
dτ ), and

∫
γi
ξ ∈ R i.e a holomorphic function on upper half

plane so we can take its derivative. Let ω = dx
y , η = xdx

y be the standard basis,
taking the integration along γi we get periods of E as functions of τ (they can
be also regarded as the connection matrix between the basis ω, η and γ∗1 , γ∗2 ).
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Connection matrix

By definition ω = dz, η = ℘τ (z)dz, and we compute these integrals using
power series expansion. Let P = E2 = 1− 24

∑
n≥1(

∑
d≥1,d|n d)qn.

Proposition

ω1 = τ, ω2 = 1, η1 = τP, η2 = −π
2

3 P . We have

∇(θ)

(
ωcan

ηcan

)
=

( −P
12 1

P 2−12θP
144

P
12

)(
ωcan

ηcan

)
where we choose a normalization: ωcan = 2πiw, ωcan = 1

2πiη, θ = 1
2πi

d
dτ = q ddq

(q = e2πiτ ) (the theta operator).

If q 7→ 0, we get a nilpotent matrix
(
− 1

12 1
− 1

144
1
12

)
, so the connection has

non-trivial unipotent monodromy at q = 0.
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Summary

Conclusion: analytically, theta operator occurs naturally via Gauss-Manin
connection on de Rham cohomology of universal elliptic curve.
Today we will see more about this for p-adic modular forms in a geometrical
way using canonical subgroup, hence work over the ordinary locus. The
overconvergent story is similar.
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Canonical subgroups

Let R0 be a complete DVR with characteristic (0, p) e.g W (Fq), r < p
p+1 .

Theorem (Lubin), 3.1 of [Kat73]
There is one and only one way to attach to every (E/R, Y ) (R a p-adically
complete R0-algebra) a finite flat rank p subgroup scheme H ⊆ E, called the
canonical subgroup of E/R such that:

1 The formation of H commutes with arbitrary change of base of p-adically
complete R0-algebras.

2 if p/a = 0 in R, then H is the kernel of Frobenius E → E(p).
3 if E/R is the Tate curve Tate(qn) over R0/p

N ((q)), then H = µp .

Proof: E[p] = {X|[p](X) = 0}, the filtration on roots of [P ] by valuation gives
a subgroup filtration of E[p] (v(X +E Y ) ≥ max{v(X), v(Y )}), Hasse invariant
is essentially p-th coefficient of the power series [p](X), if r < p

p+1 then looking
at Newton polygon we can pick up p roots with larger valuations than others.
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A picture
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Motivation

The starting point for p-adic differential operator, is the unit-root splitting of
the Hodge filtration over the ordinary locus, which is an analogue to the
Hodge decomposition over C (which can be used to define Maass-Shimura
type differential operator in complex setting). Then Katz applies such
differential operators to Eisenstein series to get p-adic Eisenstein series. Sum
of their values at some CM points will give p-adic interpolation for L-values
over CM fields in the end.

From now on, we work universally and p > 3. Let R = M(W (Fq), 1, n, 0) be
the ring of p-adic modular functions (growth a = 1, weight 0) of level n defined
over W (Fq), i.e R represents (the p-adic completion) of the ordinary locus.
Let E → R be the universal elliptic curve with Hasse(E) ∈ (R/p)× (as r = 1),
H ⊆ E the canonical subgroup (unique lifting of the multiplicative type group
scheme ker(Fr : E → E(p)) mod p in our ordinary case).
We have the quotient map π : E → E′ := E/H.
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Motivation for appendix 2 of [Kat73]

Observation: E/H over R still has invertible Hasse, so by universality of E
there is a unique ring map ϕ : R→ R so that the base change of E → R along
ϕ gives E′ = E(ϕ) → R. The base change of ϕ is denoted by ϕE : E′ → E .
In terms of moduli interpretation, the map E 7→ E/Ccan(E) (called
Delinge-Tate map) gives a self map of the ordinary locus.

Proposition
ϕ is a natural lifting of Frob to R; ϕE = π∨; ϕ is finite flat of degree p
(theorem 3.1.10 in [Katz73]).

Proof: Clear from moduli interpretation; check ϕE ◦ πE = [±p] by comparing
degree and note EndR(E) = Z, then ϕE ◦ πE = [p] by considering the
cotangent map. Flatness of Frobenius is essentially due to regularity.
Therefore H1

dR(E′/R) = H1
dR(E(ϕ)/R)

flat base change
= H1

dR(E/R)(ϕ), and π∗ on
H1
dR gives a ϕ-linear endormorphism on H1

dR(E/R), which we denote by F (ϕ).
Question: How to understand this Frobenius action explicitly? How to define
theta operator? Can we extend it to the compactification?
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Hodge filtration

ωE/R = H0(E,Ω1) is the sheaf of invariant 1-differentials, and we have the
Hodge filtration of locally free R-modules

0→ ωE/R → H1
dR(E/R)→ R1f∗OE = ω−1E/R → 0

note 1
6 ∈ R, and we can (non-canonically) split this sequence at least locally

on R:
For (E,ω), we have a unique pair of meromorphic functions with poles only at
∞, of orders 2 and 3 resp., denoted by X,Y so that

ω =
dX

Y
generates ω and E : Y 2 = 4X3 − E4

12
X − E6

216
, Ei ∈ R

H1
dR(E/R) ∼= H0(E,Ω1(2∞)) has a basis ω = dX

Y , η := XdX
Y (differential of

second kind, and η is the Serre dual of ω). If we change by ω 7→ λω, then
X 7→ λ−2X,Y 7→ λ−3Y, η 7→ λ−1η.
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Hodge filtration

The Frobenius F (ϕ) preserves the Hodge filtration by functoriality.

Lemma A2.1 of [Kat73]
On H0(E,Ω1), F (ϕ) = pϕ; and on H1(E,OE), F (ϕ) = ϕ. Here the ring
homomorphism ϕ gives natural endomorphism of OE hence on its cohomology
and cohomology of its Serre dual, for which we still denote by ϕ.

Proof.
Let f = f(E,ω)ω be a section of ω = e∗Ω1

E/R (e the zero section). By
definition, ϕ(f) = f(E/H, π∨,∗(ω))ω. H is of multiplicative type, H∨ is étale.
So π∨ is étale, π∨,∗(ω) = λω(ϕ) for some λ ∈ R×. So
ϕ(f) = f(E(ϕ), λω(ϕ)) = λ−1ϕ(f(E,ω))ω. By definition
F (ϕ)(f) = π∗((f(E,ω)ω)(ϕ)) = ϕ(f(E,ω))π∗(ω(ϕ)) = pϕ(f) (note
π∗(λω(ϕ)) = [p]∗(ω) = pω). The dual case is similar.

So if we work modulo p i.e over R/p, we see F (ϕ) = 0 on ω, this is essentially
due to d(xp) = 0.
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Canonical splitting of Hodge filtration

Therefore, locally under the basis ω, η, F(ϕ)

(
ω
η

)
=

(
p/λ 0

c λ

)(
ω
η

)
for

some λ ∈ R×, c ∈ R.

Proposition
There is a unique f ∈ R s.t F (ϕ)(fω + η) ∈ R(fω + η).

Proof.
F (ϕ)(fω + η) = ϕ(f) pλω + cω + λη, so we want ϕ(f) pλ + c = λf . Namely, we
need to show T : R→ R by T (f) = c

λ + p
λ2ϕ(f) has a unique fixed point. As

T is a contraction and R is p-adically complete, this follows from the
contraction mapping theorem.

This characterization is independent of the local basis ω, η.
Conclusion: Hodge filtration has a ϕ-stable splitting aη → afη over the entire
ordinary locus using Frobenius, and in fact it is the largest open subset for
this to hold, see [Kat77]. In other words, H1

dR(E/F ) := ω ⊕ U ,
U = H1

dR(E/F )Frob is generated by fixed (up to a unit λ) vectors of Frobenius
F (ϕ), so we get a retraction r : H1

dR(E/R)→ ω = H0(E,Ω1).
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Theta operator

Over the ordinary locus Xord, we have Gauss-Manin connection and
Kodaira-Spencer isomorphism KS : ω⊗2 ∼= Ω1

Xord . Here KS is defined by

ω ↪→ H1
dR
∇GM−→ H1

dR ⊗ Ω1 � ω−1 ⊗ Ω1

and it can be thought as the dual of the tangent mapping of the classifying
map from the base scheme of the elliptic curve (here it is the ordinary locus)
to the modular curve Mn, so it shall be an isomorphism (we will see the
computation at infinity later). We define the theta operator over the
ordinary locus by

ω⊗k ↪→ Symk(H1
dR)

∇GM−→ Symk(H1
dR)⊗Ω1 KS−1

−→ Symk(H1
dR)⊗ ω⊗2 proj−→ ω⊗k+2

Note the projection map uses the splitting r : H1
dR(E/R)→ H0(E,Ω1), and

the Gauss-Manin connection on Symk(H1
dR) is defined by

∇(a1 ⊗ ..⊗ ak) =
∑k
i=1 a1 ⊗ ...⊗∇(ai)⊗ ...⊗ ak.
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Extension to the whole modular curve

A calculation (we will see the computation at infinity later) shows that θ has
at most simple poles at the supersingular points, and Hasse invariant has
simple zeros at the supersingular points. In other words, we can extend Aθ (A
is a lifting of Hasse invariant) to the whole modular curve. In literature,
sometimes this is denoted by θ (mapping weight k one to weight k + p+ 1
one), and the original operator is denote by θ0.

Finally, we need to check θ recovers θ = q ddq on q-expansion. Here we only
consider the original operator (as A has q-expansion 1 mod p, the results are
the same at least for mod p modular forms).
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Extension to the compactification

The Hodge bundle ω extends to X and characterised by global sections of its
k-th power being the same as weight k modular forms with coefficient in the
base field. The Hodge filtration also extends to short exact sequence of locally
free sheaves. The Gauss-Manin connection extends to a connection with
logarithmic poles

∇ : H1
dR → H1

dR ⊗ ω1(logD),

and we also have Kodaira-Spencer isomorphism and the action of F (ϕ).

In paritcualr at infinity, we consider the Tate curve Tate(q) over Z[1/N ]((q))
with its canonical invariant differential form ωcan = dq

q and canonical Γ1(N)
level structure αN,can. The Gauss-Manin connection on
H1
dR(Tate(q)/Z[1/N ]((q))) can be defined similarly as in the complex setting.

The canonical subgroup is µp, complex analytically it’s
1
pZ/Z + Zτ ↪→ C/Z + Zτ with quotient Tate(qp). The Frobenius map
ϕ : Z[1/N ]((q))→ Z[1/N ]((q)) sends q to qp.
Denote ucan := ∇

(
q ddq

)
(ωcan). ucan is a horizontal section i.e ∇ucan = 0 as

the periods of ωcan are 1, τ , and they are killed by ( d
dτ )2.
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Tate curves

At infinity, we have

Proposition
1 ucan is fixed by F (ϕ), and spans U as a rank 1 locally free R module.

Hence, U can also be characterized as the rank 1 ϕ-stable sub-module of
horizontal sections.

2 ucan = −P (q)
12 ωcan + ηcan, so 〈ωcan, ucan〉dR = 1, ωcan, ucan form a basis of

H1
dR. Under this basis, F (ϕ) = diag{p, 1}ϕ. Moreover,

KS(ω2
can) := 〈ωcan,∇ωcan〉dR = dq

q .

Sketch of proof: The second part over Z[1/N ] follows from previous
computation over C and analytically by appropriate integral normalization.
For the first part, note F (ϕ) commutes with ∇ by functoriality of
Gauss-Manin connection, but ucan is the unique horizonal section up to scalar
(this is for monodromy reason or by direct computation), hence
F (ϕ)ucan = aucan for some a ∈ Z. The Frobenius action on H2

dR is
multiplication by deg(π) = p twisted by ϕ, and ωcan ∧ ucan is identified with
〈ωcan, ucan〉dR = 1 . As π∗(ω(ϕ)

can) = pωcan, we know a = 1.
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Computation

for any section f of ωk over the ordinary locus,

∇GM
(
f(q) · ω⊗kcan

)
= ∇

(
q

d

dq

)(
f(q) · ω⊗kcan

)
· dq

q

KS(ω2
can)=

dq
q7→ ∇

(
q

d

dq

)(
f(q) · ω⊗kcan

)
· ω⊗2can

= q
d

dq
(f(q)) · ω⊗k+2

can + k · f(q) · ω⊗k+1
can · ∇

(
q

d

dq

)
(ωcan)

.

Because the second term is in U (ucan is fixed by F (ϕ)), hence is zero under
projection, we see θ = q ddq .
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Properties of theta operator

In [Kat77], Katz studies properties of theta operator on mod p modular forms.
Here we fix an algebraically closed field K of characteristic p > 0, an integer
N > 3 prime to p. Consider the graded ring R∗N of (meromorphic at cusps)
level N modular forms over K, then we have

Theorem 1 in [Kat77]
There exists a derivation Aθ : R∗N → R∗+p+1

N and acts by q ddq at each
cusp, where A is the Hasse invariant.
If f ∈ RkN has exact filtration k (i.e not of the form Ag for some
g ∈ Rk−p−1N ) and p - k , then Aθf ∈ RkN has exact filtration k + p+ 1 in
particular non-zero.
If f ∈ RpkN and Aθf = 0, then f = gp for a unique g ∈ RkN .
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E2 as a weight 2 p-adic modular form

P = E2 = 1− 24
∑
n≥1

(
∑
d|n

d)qn

is not a classical modular form in the complex setting but close to be a
modular form. However, it’s in fact q-expansion of a weight two p-adic
modular form.

Definition
For any ordinary elliptic curves (E/R, ω) where p is nilpotent in R. Let
U ⊆ H1

dR(E/R) be the inverse image of the canonical U as above.
H1
dR(E/R) = Rω ⊕ U , so for any base u of U (at least exists if we work

locally), then 〈u, ω〉 ∈ R× because the Poincare duality over R is a perfect
pairing. We define P̃ (E,ω) = 12 〈η,u〉〈ω,u〉 .
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E2 as a weight 2 p-adic modular form

As (ω, η) 7→ (λω, λ−1η), we see P̃ is a p-adic modular form of weight 2 and
level 1. As we can choose u = ∇(θ)(ωcan) = −P (q)

12 ωcan + ηcan at infinity, in
fact P̃ (q) = P (q).

Final remarks:
If F (ϕ)n

(
xdxy

)
= an

dx
y + bn

xdx
y then P (E,ω) ≡ −12anbn

(modpn), this is
useful in practice to compute special value of E2, see the note
computational tools for quadratic Chabauty.
However, E2 is not overconvergent (see Coleman’s paper). This reflects
the feature that theta operator may not preserve overconvergence, which
is used in the proof of some classicality results

Locally under the basis ω, η, F(ϕ)

(
ω
η

)
=

(
p/λ 0

c λ

)(
ω
η

)
for some

λ ∈ R×, c ∈ R. By modulo p, we see p|c, and λ is a local lifting of Hasse
invariant.
One can avoid compactification by regarding Tate(q) as an elliptic curve
over Z((q)) and pull everything back along the classifying map.
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Thank you!
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