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1 Complex story

Can we classify abelian varieties over C?

Definition 1. A complex torus is a connected compact complex Lie group T (which must
be commutative). Any complex abelian variety A gives an example A(C), which gives a fully
faithful embedding of categories by GAGA theorem.

For any complex torus T over C, the exponential map LieT → T is surjective with kernel
lattice Λ. T ∼= Cg/Λ, the lattice is naturally determined as Λ ∼= H1(Cg/Λ,Z).

Theorem 1. The functor T 7→ (H1(T,Z),Lie(T )) gives an equivalence between category
of complex tori and the category of pairs (Λ, V ) where V is a finite-dimensional C-linear
subspace, and Λ ⊆ V is a lattice.

Noting (Λ, V ) is determined by (Λ,W := Ker(Λ ⊗ C → V )) and vice versa, the latter
pair precisely means a Z-Hodge structure of weight −1 and type (−1, 0), (0,−1) i.e a finite
free Z-module Λ together with a C-linear subspace W ↪→ Λ⊗C, such that W ⊕W = Λ⊗C.

Remark: For an abelian variety, Λ⊗ C = LieEA, W = (LieA∗)∗.
When does a complex torus come from an abelian variety? Riemann’s theorem tells us

iff the Hodge structure is polarizable. Here a polarization on a Z-Hodge structure (Λ,W )
of weight −1 is an alternating form ψ : Λ ⊗ Λ → 2πiZ such that ψ(x,Cy) is a symmetric
positive definite form on Λ⊗R, where C is Weil’s operator on W ⊕W = Λ⊗C, acting as i
on W , and as −i on W .

Idea: Choose an embedding A ↪→ Pn with n minimal, then the line bundle O(1) defines
a class in H2(A,Z) = Hom(∧2Λ,Z), this is the Riemann form.

Conclusion: a complex abelian variety is determined by its singular homology together
with the Hodge filtration. The category of complex abelian varieties is equivalent to the
category of polarizable Z-Hodge Structures of weight −1 with type (−1, 0), (0,−1) . A
useful application:

Corollary 1. The moduli of principle polarized abelian varieties Ag has a complex uni-
formization (analytically):

Ag(C) ∼= Sp2g(Z)\Hg
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Example 1. Every complex elliptic curve E ∼= C/Λ, choose any basis Λ = Zτ1 ⊕ Zτ2, get
τ1/τ2 ∈ C−R well-defined up to GL2(Z) action, hence a point in GL2(Z)\C−R = SL2(Z)\H.

It’s the classification of complex tori that uses analytical property of C, and we under-
stand algebraic objects e.g abelian varieties using GAGA theorem.

Exercise: classification over R.

2 p-adic story

What analytic objects are analogues of complex tori in p-adic world? In good reduction case,
a good answer may be p-divisible groups over OC viewed as formal schemes.

Definition 2. Let NilO be the category of OC-algebras R on which p is nilpotent. For a
p-divisible group G over OC , regard it as a functor on NilO and extend it to the category of
p-adic complete OC-algebras R by G(R) := lim←−nG(R/pn).

Fact: this recovers G. So from now on we still denote this formal scheme over OC by G.
While µpk(OC) = lim←−n µpk(OC/p

n) in the classical sense, for any local p-adic complete
OC-algebra R

lim←−
n

(µp∞(R/pn)) = lim←−
n

((1 +mR)/pn) = 1 +mR

so we shall think the formal scheme µp∞ as the open unit ball DC = {z ∈ C||z − 1| < 1}.
p-divisible groups are relatively easier to understand than abelian varieties, for instance

we can hope a classification in terms of (semi-)linear algebra objects as above. A good
analogue for singular homology H1 is the Tate module, and we can also define Lie algebra
(only as a OC-module).

Remark 1. For G over OC , we say G is connected iff G[pn] are connected as schemes. By
proper base change for H0, this is equivalent to that the special fiber of G is connected. We
have connected-étale sequence over OC/p

n, and it lifts to a short exact sequence over OC .

Theorem 2. (Scholze-Weinstein) The functor G 7→ (TpG,LieG⊗OC C) gives an equivalence
between category of p-divisible groups over OC and the category of pairs (T,W ), where T is
a finite free Zp-module, and W ⊆ T ⊗ C is a C-linear subspace.

A useful application:

Corollary 2. PEL type Rapoport-Zink space (deformation space of p-divisible groups with
PEL structure) has a perfectoid uniformization: over C at infinite level, they are perfectoid
spaces (in a weak sense).

Example 2. Every 1-dimensional height 2 connected p-divisible groups over OC gives
(T,W ), choose T ∼= Z2

p, get a point [W ] ∈ Ω1 = P1(C)− P1(Qp) well-defined up to GL2(Zp)
action (the only non-connected one is µp∞×Qp/Zp, which can be shown using connected-étale
sequence and rigidity of deformation of étale ones and multiplicative ones), here Drinfeld half
space Ω1 is the analogue of complex half plane in p-adic world.
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To see why the theorem is true, let’s see some examples. By definition HomOC (Qp/Zp, G)
is TpG. Taking duality, HomOC (G, µp∞) is TpG

∨, as TpG
∨ = Hom(TpG,Zp) (check this) we

see
HomOC (Qp/Zp, G) = Hom((Zp, 0), (TpG,LieG⊗OC C))

HomOC (G, µp∞) = Hom((TpG,LieG⊗OC C), (Zp, C))

So fully faithfulness is known in two baby examples, which can be thought of as the
”building blocks” of p-divisible groups over OC .

We haven’t describe the map W = LieG ⊗ C → TpG ⊗ C in the theorem. One has a
tautological map Qp/Zp ⊗Zp TpG

∨ → G∨ between p-divisible groups over OC , taking dual
we get a universal map G → H, where H = Tp(G) ⊗ µp∞ . By definition, the induced map
T (G)→ T (H) is an isomorphism, and on Lie algebra (inverting p) it’s W ↪→ TpG⊗C. This
is the desired map.

Exercise: this is injective (LieA ↪→ H1(A,C) is injective by Hodge decomposition).
Let’s prove the theorem. What can we reconstruct form (T,W )? First of all, we want

to reconstruct the Zp-module G(OC). G(OC)[p∞] is easy to understand.

Proposition 1. G(OC)[p∞] = Qp/Zp ⊗ TpG

Proof. G(OC)[pk] = lim←−nG(OC/p
n)[pk] = lim←−nG[pk](OC/p

n) = G[pk](OC). Then apply the

usual Pontryagin duality as TpG = lim←−nG[pk](OC).

How about G(OC)? In complex story, exponential map is an important tool. In p-adic
world, it’s not good because the convergence locus is too small. Instead, we can define the
logarithm map which is more suitable.

Theorem 3. For any p-adically complete and separated flat Zp-algebra R, and p-divisible
group G over R, there is a natural Zp-linear logarithm map logG : G(R) → LieG⊗ R[1/p].
We have a short exact sequence

0→ G(R) [p∞]→ G(R)→ LieG⊗R[1/p]

Proof. By Grothendieck-Messing theory ([3] Lemma 2.2.5), we have

logG : ker
(
G(R)→ G

(
R/p2

)) ∼=→ p2 LieG

As multiplication by p is topologically nilpotent on G(R), any section x ∈ G(R) will have
[pn](x) in the kernel for some large n, define it’s image as logG([pn](x))/pn. The exactness is
obvious from this construction.

Example 3. (Key) For G = µp∞ , the short exact sequence is 0 → (1 + mC) [p∞] → 1 +

mC

logp−→ C → 0 and the log map DC → C is defined by the usual power series

log(1 + x) =
∞∑
n=1

−(−x)n

n
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3 Proof of main theorem

The fully faithfulness part is known before by Fargues, and we will explain how to construct
G(OC). For the tautological map G→ H ∼= µhp∞ , we get

0 G(OC)[p∞] G(OC) LieG⊗ C

0 H(OC)[p∞] H(OC) LieH ⊗ C

f

The leftmost vertical morphism is an isomorphism (as Tate modules are the same). So
the middle f is an injection.

The right square is cartesian: if x ∈ H(OC) maps to LieG[1/p], as logH is isomorphism on
a small neighborhood of 0 we see pnx ∈ G(OC) for large n, as G(OC) is p-divisible (Lemma
4.3.5. in [4]) we can find y ∈ G(OC) s.t pny = pnx then y − x ∈ H(OC)[pn] = G(OC)[pn] so
x ∈ G(OC).

This recovers G(OC). Doing the procedure for any ”good” (R,R+) over (C,OC), We
reconstruct G. In the language of adic spaces, this means the generic fiber determines the
adic space by

G =
∐

Y⊂Gad
η

Spf H0
(
Y,O+

Y

)
where Y runs through the connected components of Gad

η . This shows the fully faithfulness.

Remark 2. The language of adic generic fiber allows us to really view functors as analytic
spaces over C (the original ring can be thought as ring of functions on it), and remembers
the integral structure at the same time (the original integral ring becoms ring of functions
with norm not bigger than 1 on it). Then doing above things for any complete affinoid
(C,OC)-algebra (R,R+) over (C,OC) really recovers the space.

Definition 3. For any p-divisible group G over OC , the generic fiber of G is (fppf) sheafifi-
cation of the functor on CAffSpa(C,OC) i.e the category of complete affinoid (C,OC)-algebras
given by (

S, S+
)
7→ lim−→

S0⊂S+

G (S0) = lim−→
S0⊂S+

lim←−
n

G (S0/p
n)

where S0 runs over all open and bounded subrings. we denote it by Gad
η (which is repre-

sentable as an adic space).

We define the Tate algebra C 〈T1, . . . , Tn〉 to be the C-algebra of power series in C[[T1, . . . , Tn]]
whose coefficients tend to zero equipped with Gauss norm i.e maximum of absolute val-
ues of coefficients. A complete affinoid (C,OC)-algebra (S, S+) means S is a quotient of
C 〈T1, . . . , Tn〉 and the subring S+ is power bounded.
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The diagram updates to

0 Gad
η [p∞] Gad

η LieG⊗Ga

0 Had
η [p∞] Had

η LieH ⊗Ga

where LieG⊗Ga is the sheaf associated to (S, S+) 7→ LieG⊗R S.

Essential surjectivity: starting from (T,W ), we can just reverse the above procedure,
define H as TpG⊗ µp∞ and Gad

η as

Gad
η LieG⊗Ga

Had
η LieH ⊗Ga

p

Fargues shows it’s a p-divisible rigid-analytic group, and if one can verify the connected
component of Gad

η is isomorphic to the open unit ball, then one can construct a p-divisible G
from Gad

η i.e showing the formal group structure is p-divisible. By basic group scheme theory,
one can show that it is an increasing union of closed balls. If C was spherical complete (Cp

is not), we’re done. Then one bypasses non-spherical completeness using Rapoport-Zink
spaces.

4 Universal cover

For an elliptic curve, the universal cover of it is the vector space in the classification. We
also have a notion of universal covering (which is a vector space) for p-divisible groups.

Definition 4. For a p-divisible group G over a p-adically complete Zp-algebras R, define
the universal cover of G as a sheaf of Qp-vector space on NilpopR

G̃(R) := lim←−
[p]:G→G

G(R)

For instance, Q̃p/Zp = Qp. Note G̃ = Hom(Qp/Zp, G)[p−1] only depends on isogeny class
of G. And we have a short exact sequence (Pontryagin duality)

0→ TpG→ G̃(OC)→ G(OC)→ 0

Take inverse limit along multiplication by [p] of the log exact sequence 0→ G(OC)[p∞]→
G(OC)→ LieG⊗ C → 0, we get
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Proposition 2. There is a short exact sequence of Qp-vector spaces over CAffSpa(C,OC)

0→ V (G)ad
η → G̃ad

η → LieG⊗Ga → 0

in particular

0→ V (G)→ G̃(OC)→ LieG⊗ C → 0

This short exact sequence is very useful e.g one can use it to compute
Conclusion: similar to the complex story, G(OC) is quotient of the universal cover by

a lattice. And one can ask for which Zp-lattice in the universal cover, one can form the
quotient to get a p-divisible group. Let’s look at the universal covering more closely.

Proposition 3. (rigidity of quasi-isogeny) Let S → R be a surjection with nilpotent kernel,
then the categories of p-divisible groups over R and S up to isogeny are equivalent.

In particular, for any p-divisible group G over R, the universal cover G̃ lifts canonically
to G̃S over S with G̃S(S) = G̃(R), so it can be considered as a crystal on the infinitesimal
site of R.

Corollary 3. G̃(OC) = G̃(OC/p) (like lim←−x7→xp OC/p = lim←−x7→xp OC).

This motivates our interest on p-divisible group over OC/p. Such consideration will (in
the end) give the following theorem.

Theorem 4. For any height, there are only finitely many possibilities for the universal cover
of p-divisible group over OC .

This is analogous to that all complex tori with fixed dimension have same universal cover.

Remark 3. By embedding into products of univer cover of the base p-divisible group, one
can show Rapoport-Zink spaces at infinite level is perfectoid.

Remark 4. Tate has already described p-divisible groups over OK using Galois representa-
tion of the Tate module where K is a p-adic local field, see Theorem 4 and Corollary 1 in
[1].

5 Dieudonne theory, classification over OC/p

Now we want to understand the OC/p story, where p = 0. Let’s recall the classical theory
for char p rings.

Let k be a perfect field of char p > 0.

Theorem 5. (Classification, Dieudonne theory)

{p-div gps over k} ∼= {Dieudonné module/W (k)}

dimG = dimM(G)/VM(G), htG = rankM(G)
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Here a Diedonné module over k is a finite free W (k)-module M equipped with a ϕ-linear
isomorphism ϕM : M [1

p
] ∼= M [1

p
] and pM ⊆ ϕM(M) ⊆M .

Example 4. M(Qp/Zp) = (W (k), F = pϕ), M(µp∞) = (W (k), F = ϕ).

Example 5. k = Fp, we have Dieudonné-Manin classification for isocrystals, in particular
we know a simple p-divisible group over k is determined up to isogeny by it’s height and
dimension.

Scholze-Weinstein established Dieudonne theory over OC/p:

Theorem 6. Let R = OC/p (in general R can be quotient of a perfect ring S by a regular
ideal J ⊆ S). The category of p-divisible groups over R (resp. up to isogeny) is equivalent to
the category of finite projective Acrys(R) (resp. B+

crys(R))-modules equipped with Frobenius
and Verschiebung maps. And this equivalence is compatible with base change.

Here we define R[ := lim←−(x 7→xp)
R, and theta map θ : W (R[) → R by

∑∞
i=0 p

i [xi] 7→∑∞
i=0 p

ix#
i with x# = x0 (the projection from R[ to R) whose kernel is generated by a

single element ζ , and Acrys(R) to be the p-adic completion of the PD hull of the surjection

W (R[) → R i.e the p-adic completion of Acrys(R) = W
(
R[
) [

ξm

m!

]
m≥1
⊂ W

(
R[
) [

1
p

]
. And

B+
crys = Acrys[1/p]. Note if R is perfect, then Acrys(R) = W (R).

Example 6. M(Qp/Zp) = (Acrys(R), F = pϕ), M(µp∞) = (Acrys(R), F = ϕ).

Key example: the case Qp/Zp → G. Recall HomR(Qp/Zp, G)[p−1] = G̃(R) which is a
crystal on the infinitesimal site. So the fully faithfulness in this case claims

M(G)ϕ=p = G̃(R)

e.g B+
crys(OC/p)

ϕ=1 = Q̃p/Zp(OC) = Qp, B
+
crys(OC/p)

ϕ=p = µ̃p∞(OC) = lim←−x7→xp 1 +mC .

Remark 5. We see the category of p-divisible group over OC is not an abelian category
(but up to isogeny it is), the natural question is whether we can enlarge it into an abelian
category. This motivates the category of Banach-Colmez spaces (roughly it’s an extension of
a finite dimensional C-vector space by a finite dimensional Qp-vector space). For a p-divisible
group G over OC , the short exact sequence 0 → V (G) → G̃(OC) → LieG ⊗ C → 0 shows
universal covers of p-divisible groups over OC are Banach-Colmez spaces. For G = µp∞ , the
short exact sequence becomes the fundamental one in p-adic Hodge theory:

0→ Qp → (B+
crys)

ϕ=p → C → 0

6 The curve

An interesting question is how the classifications over OC and k interact. That is, we have
a diagram

{p-divisible groups /OC} −→ {(T,W )}
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{p-divisible groups /k} −→ { Dieudonné modules }
What is the functor on the right side corresponding to reduction functor on the left?

This functor can be described using the Fargues-Fontaine curve.

Definition 5. The Fargues-Fontaine curve over C is the regular noetherian 1-dimensional

scheme X = Proj(P ) where P =
⊕

d≥0

(
B+

crys

)ϕ=pd
, B+

crys = B+
crys(OC/p).

The real motivation for the definition is that closed points of X classifies untilts of C[ up
to Frobenius twist.

There is a special point ∞ ∈ X corresponding to the homomorphism θ : Bcrys → C. We
write i∞ : {∞} → X for the inclusion.

The curve shares some common properties with the usual projective line. For example,
the classification of vector bundles on this curve is similar and important (but harder).

Theorem 7. For any isocrystal M over k = Fp, one gets a vector bundle on X asscoiated

to
⊕

d≥0

(
M ⊗B+

crys

)ϕ=pd
. All vector bundles arise in this way. Every vector bundle is direct

sum of some O(λ) (λ ∈ Q).

Another analogue is the geometric interpretation of Hodge structures (twistor theory).
Complex story (Simpson, Ree’s construction): A twistor structure is a (holomorphic)

vector bundle on P1
C. Complex Hodge structure = C×-equivariant twistor structure.

Moreover, we have Simpson’s Meta theorem which expect that Hodge theory can be
reinterpreted in twistor theory.

Real story (Simpson): Real Hodge structures can be regarded as modification of vector

bundles on the twisted real projective line P̃1
R := P1

C/z ∼ −1
z̄
.

p-adic story: the Fargues-Fontaine curve is the p-adic analogue of P̃1
R, p-divisible groups

over OC are examples of p-adic Hodge structures, it’s not hard to believe one can regard
p-divisible group over OC as modification of vector bundles on the Fargues-Fontaine curve.

This along with the classification of vector bundles will (in the end) give us the following
theorem:

Corollary 4. p-divisible groups over OC are isotrivial i.e there exists a p-divisible group H
over OC and a quasi-isogeny

ρ : H ⊗Fp OC/p→ G⊗OC OC/p

So G̃ (OC) ∼= H̃ (OC/p) ∼=
(
M(H)⊗B+

crys

)ϕ=p
, and the rational log exact sequence up-

dates to exact sequence of coherent sheaves on X:

0→ F := TpG⊗Zp OX → E = E(H)→ i∞∗(LieG⊗ C)→ 0

7 Complements

Moreover, there is a Hodge-Tate exact sequence 0→ LieG(1)[1/p]→ TpG⊗Cp → ωG∨ [1/p]→
0, which has no good analogue over complex number.

Questions:
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1. How to reconstruct the lattice LieG from (T,W )?

2. When does a p-divisible group over OC come from an abelian variety?

3. What information of the abelian variety over OC can the p-divisible group recover?

4. How about abelian varieties over C with bad reduction?

5. Given a map G1 → G2, how to determine whether it’s surjective/ injective (as fppf
sheaves) from (Ti,Wi)?

6. Can we tell when G is connected? Is it always isogenous to connected times étale?

7. When does a p-divisible group over OC/p lift to OC/p
n and OC? Classification over

more general rings?

2. Prop 14.8.4 Lecture XIV in Berkeley lecture note. For example, if h = 2, d = 1
it’s always from an elliptic curve. Necessary and sufficient condition to come from a formal
abelian variety: G is of height 2d and dim d, the Newton polygon is symmetric. Idea:
this problem only depends on its isogeny class (if A[p∞] → H is an isogeny then take A′

be A quotient by the kernel), and we know over k they are from abelian varieties (as the
Newton polygon is symmetric). Any G over OC is isotrivial, so G over OC/p is from AV .
By Serre-Tate, A lifts over OC/p

n as p-divisible group lifts, hence a formal one. We want
to algebraize it, this is related to whether the polarization lifts. And one may define a
polarization condition on (T,W ) to see those coming from abelian varieties.

3. For instance, by classification we see an elliptic curve E has ordinary reduction iff
E[p∞] is the unique non-connected p-div group of height 2 and dim 1, this explains why the
preimage of P 1(Qp) under Hodge-Tate period map is the ordinary locus, while the preimage
of Drinfeld upper plane is the supersingular locus. And the Hodge-Tate period map is etale
on supersingular locus hence E[p∞] can determine E (up to finitely many choices) in this
case.

4. The Neron model will still give a p-divisible group over OC . This is used in [5]:
LieA ⊆ TA ⊗ C is a Qp-rational subspace if and only if (the abelian part of the reduction
of) A is ordinary. If the Hodge-Tate filtration is close to a Qp- rational point, then A lies in
a small neighborhood of the ordinary locus (and the converse hold). As under the action of
GSp2g(Qp), any filtration can be mapped to one that is close to any given Qp-rational point.

5-6. Direct application of classification results. It’s connected iff W is in the Drinfeld
half space (choose a basis of T ).

7. Using prismatic formalism and Scholze-Weinstein’s result, recently people have devel-
oped prismatic Dieudonne theory to classify p-divisible groups over quasi-syntomic rings e.g
p-complete locally complete intersection rings and perfectoid rings.
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