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Z/mZ-GRADED LIE ALGEBRAS AND PERVERSE SHEAVES, III:
GRADED DOUBLE AFFINE HECKE ALGEBRA
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ABSTRACT. In this paper we construct representations of certain graded dou-
ble affine Hecke algebras (DAHA) with possibly unequal parameters from ge-
ometry. More precisely, starting with a simple Lie algebra g together with a
Z/mZ-grading @ieZ/mZ g; and a block of D¢, (gi) as introduced in [J. Repre-
sent. Theory 21 (2017), pp. 277-321], we attach a graded DAHA and construct
its action on the direct sum of spiral inductions in that block. This generalizes
results of Vasserot [Duke Math J. 126 (2005), pp. 251-323] and Oblomkov-
Yun [Adv. Math 292 (2016), pp. 601-706] which correspond to the case of the
principal block.
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1. INTRODUCTION
1.1. Background.

1.1.1. Let G be a simply-connected almost simple group over an algebraically closed
field k with char(k) = 0. Let g = Lie G. Let m > 1 be an integer and let

9:@91‘

1€EL/MZ

be a Z/mZ-grading on g. For an integer n € Z, let n be its image in Z/mZ.
For the rest of the paper, we fix n € Z — {0}. Let Gy C G be the connected
reductive subgroup with Lie algebra gg. Let g;”l be the cone of nilpotent elements

in In the series of papers starting with [9] and [10], we are interested in the
In pap g )
= nil

structure of the equivariant derived category Dg, (g77

). This paper mainly relies
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on [9, §1-4] and [I0, §10]. We will use notation from [9], part of which will be
reviewed in L5

1.1.2. Block decomposition and admissible systems. The main result of [9] is a direct
sum decomposition of Dg, (gZ”) into blocks in the style of the generalized Springer

correspondence:

(1.1) Dy (8;") = €D Dy (a7")e-
=4

The blocks are in bijection with the set T, of Gyp-conjugacy classes of admissible
systems. Roughly speaking, an admissible system is a tuple f = (M, My, m,m,, L),
where M is a reductive subgroup of G which is the fixed point subgroup of a finite-
order automorphism of G' (a pseudo-Levi subgroup, see §2.2)), m = P, ., m, is a
Z-grading on the Lie algebra m of M such that m, C g,, Mo is the connected
reductive subgroup of M with Lie algebra mg, and £ is an irreducible cuspidal
My-equivariant local system (with Q,-coefficients) on the open Mg-orbit m,, of m,,.
For the precise definition of an admissible system, see [0, §3.1] or §34.8

There is a unique Go-conjugacy class of admissible systems (M, My, m, m,, £) in
which M is a torus. In this case, M is a maximal torus in Gy, the Z-grading on m is
concentrated in degree 0, and the local system L is the skyscraper sheaf supported
onm, = {0}. Let § € £, be the Gy-conjugacy class of such admissible systems. We
call Dg, (g;’”l )¢, the principal block. This block contains the intersection cohomology

sheaves IC(O) of all Gy-orbits O C gZ” with constant local systems.

1.1.3. Spiral induction. Let € = n/|n| € {1,—1} be the sign of n. In [9, §2] we
defined the notion of e-spirals for the Z/mZ-graded g. The definitions of spirals
and its splittings will be recalled in §3.31

Fix a Gg-conjugacy class ¢ of admissible systems, and let (M, My, m,m,, L) € &.
Let B¢ be the set of e-spirals p, of the Z/mZ-graded g such that some (equivalently
any) splitting of it is Go-conjugate to (M, My, m, m,). For each p, € ¢ with split-
ting (L, Ly, [, [,) which is Go-conjugate to (M, My, m, m,), there is a canonical Lg-
equivariant cuspidal local system on i,, (the open Lg-orbit on [,)) which corresponds
to £ under any element g € Gy that conjugates (L, Lo, m, m,.) to (M, My, m, m,.) (see
§4.13]). We denote this local system on i,, still by £. We have the (unnormalized)
spiral induction (see §4.1.3))

*

€ 9n ni
I, = ‘Indy; (£F) € Dg, (g,")-

By definition, the full triangulated subcategory DGg(gZ“)E C Dgg(ggil) that
appears in the decomposition (1) is generated by those simple perverse sheaves
that appear as direct summands (up to shifts) of I,,, for various p. € B*.

The graded dimensions of Ext* (I, ,I,.) are computed in [9, Prop. 6.4]. In this
paper, we will exhibit a large symmetry on the direct sum of all spiral inductions

I,, belonging to the fixed block Dg, (gp™)e.
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1.2. Main results.

1.2.1. We fix a Go-conjugacy class of admissible systems § € &, and let £ =
(M, My, m,m,, L) be an admissible system in £. Attached to £ we will introduce
an affine Coxeter group Wfff with simple reflections I¢ and a reflection representa-
tion on a Q-vector space IEE> We will also introduce a graded double affine Hecke
algebra (DAHA) HC(Wfﬂ) with parameters {c¢;};c7¢. The underlying vector space
of H,(Ws) is

a;

He(Wes) = Qlu] ® Sym(ES") ® QWS-

Finally, for v € Q, let HC,V(Wfﬂ») be the specialization of H,(WS5) by sending
u+— —v and E%* > 0+ 1. For more details see §2.5

The affine Dynkin graphs of Wfff are exactly those appearing as the “b — f-
diagrams” in the tables of [6 §7] and [8] §11]. The parameters ¢ that appear in the
graded DAHA are also specified in loc. cit. as the first label of each node of the
b — #-diagrams. From these tables one can list exactly which graded DAHASs appear
as our HC(Wfﬁ).

1.2.2. Let @5 = Go\PE. It can be shown that I, depends only on the Gy-conjugacy
class of the e-spiral p, (see §LITA). Let [p.] € @5; then I, ; is well-defined. The
set ‘}35 admits a combinatorial description in terms of alcoves in an affine space E
modulo a finite group action (see Corollary BZI0). In the notation of [I0, §10],
‘135 is in bijection with the W-orbits of alcoves in E (alcoves are defined using the
hyperplanes {Han,n} introduced in loc. cit.; for precise statements, see §3.4.11]

and Lemma B4.12).

The main theorem of this paper is the following.

1.2.3. Theorem. Let § € X,. Consider the infinite direct sum of perverse sheaves
m DGg(gZzl)g
H£ = @ pHI[p*].
[p.]EPBE
The notation PH(—) means the direct sum of perverse cohomology sheaves; see

qL50l Then there is a 7/27Z-graded action of Hc’n/m(Wgﬁc) on Ie.

a

A 7Z/27-graded action of H, , /m(Wfﬂ) on the infinite direct sum I means the
following. For every element h € Hc,n/m(Wfﬂ) and [p.], [pL] € %57 there is a map
of perverse sheaves hy, 1 : PHIp ) — pHI[p;] preserving the Z/2Z-gradings such
that

(1) For fixed [p.], we have hyy j[pr) = 0 for all but finitely many [p’].
(2) The assignment Hcm/m(WfH) —Hom("HI}, 1, "HIp, ) given by A= hyy 101

is Q-linear.

(3) Let 1 € Hcm/m(Wfff) be the identity element; then 1(,  p/) is the identity
if [p«] = [p.] and zero otherwise.

(4) For h, B € Hep/m (W) and [p.], 0], [p}] € B*, we have hiy,) oo hpp. ) o]
= (W) jp.1, -
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1.2.4. By the decomposition theorem, we know that each "HI},  is a semisimple
perverse sheaf. For any simple perverse sheaf S in Dg, (g1™)¢, let [PHIj, ) : 8] =
Hom(S,”HI[, ;) be the multiplicity space of S in PHIy, ;. “A priori [PHI},,; ¢ S] is
7./27Z-graded; however, by [10, Theorem 14.10(d)], [PHIf, ; : S] is concentrated in
degrees of the same parity as dim Supp(S).

1.2.5. Corollary (of Theorem [[L23). For any simple perverse sheaf S in the block
Dgg(gzil)g, there is an action of Hcm/m(Wfff) on the vector space

(1.2) Ie:S]:== @ [PHI,) S
[p.]€PB*

In the decomposition (L2), each direct summand [PHI}, ; : §] is in fact a gener-
alized eigenspace for the polynomial part of H. , /m(WfH), and the eigenvalue can
be described explicitly as a point in E¢; see Proposition f3.4l

We make some conjectures about the H,,, /m(Wfﬂ)-modules we construct.

1.2.6. Conjecture. In the notation of Corollary [L2.0), the multiplicity space [I¢ : S]
s a simple Hcm/m(Wfﬁ) ®q Qg-module.

This conjecture is true when & = &y (corresponding to the principal block), by
the result of Vasserot [13].

1.2.7. Fix a homomorphism o : p. < Out(G), a positive integer m, and a tuple
£ = (M, My, m,m,, L) where (M, My, m,m,) is a graded pseudo-Levi subgroup of
(G, 0) (see Definition 2.2.1]), and £ is an My-equivariant cuspidal local system on
m,,. Then the graded DAHA H , /m(Wfﬁ) is defined independent of the choice of
the Z/mZ-grading on g. An Hcm/m(Wfﬁ») ® Q,-module V is called integrable if the
polynomial part Sym(Eg’*) ® Q, acts on V locally finitely.

For a Z/mZ-grading 0 on g whose outer class is o (in the sense of §3.1.T]), the
tuple 5 may or may not be an admissible system for (G, 6). If it is, I is defined. To
emphasize its dependence on 6, we denote it by I¢ 9. We expect that all integrable
simple H, , /m(Wfﬂ) ® Q-modules are of the form [I¢y : S| for various Z/mZ-
gradings 6 on g such that § is admissible with respect to # and various simple
perverse sheaves S in DGg(gZ“)E.

1.2.8. Mimicking the construction of standard modules for the graded affine Hecke
algebra in [5], one can define standard modules for the graded DAHA H. ,, /m(Wfﬁ)
by taking stalks of I.. Now if Conjecture holds, we would get a formula for
the multiplicities of the simple modules in the standard modules in terms of the

stalks of the simple perverse sheaves in the block Dg, ( gg“) ¢, which are computable

algorithmically as shown in [I0].

1.3. Organization of the paper. In §2 the discussion is independent of the
Z/mZ-grading on g. We introduce the notion of a pseudo-Levi subgroup M of
(G,0) (where 0 : g = Out(G)) and describe its relation with building theory. For
such an M that admits a cuspidal local system, with the extra choice of a facet in
the building, we will introduce an affine Coxeter group and a graded DAHA with
possibly unequal parameters. In particular, the graded DAHA attached to M is
independent of the Z/mZ-grading on g.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



Z/mZ-GRADED LIE ALGEBRAS AND PERVERSE SHEAVES, III 91

In §3 the Z/mZ-grading on g starts to play a role. We review the notion of
spirals and describe them again in terms of building theory. In particular, we get a
combinatorial description of %5 in Corollary B.4Z.T0L This section is closely related
to [10, §10].

In §d we prove Theorem [[L2.3] In §4.3]we first construct the action of the polyno-
mial part of H, /m(Wfff) on each I, using Chern classes coming from equivariant

parameters. Then, in §45 for each finite subgroup W, C Wfﬂ generated by a
proper subset J of simple reflections, we construct actions of the corresponding
subalgebra He. /., (W) on I¢ (in fact on a finite direct sum of the HIj, ;). This
construction is essentially the construction in [5], which we review in §4.41 Equi-
variant localization with respect to a torus action is used in the passage from the
results in [3] to our setting. Finally the action of H, ,, /m(Wfff) is obtained by gluing

the actions of H, /., (W) for various J (the W;’s generate Wfff).
1.4. Variant and related work.

1.4.1. The Z-graded case. The construction in this paper can be applied to the
situation of a Z-graded Lie algebra g. In this case, for each Gy-conjugacy class
¢ = (M, My, m,m,, L) of admissible systems, we have a finite Coxeter group W¢
and a graded affine Hecke algebra H.(W?¢) as introduced in [5] for the cuspidal
pair (M, L) for G (independent of the Z-grading on g). There exists an action of
H.(W¢)/(u — 1) on the direct sum of parabolic inductions from (M, My, m, m,, L).
This is essentially done in §45] and it follows directly from the results in [5] by
equivariant localization.

1.4.2. Relation with loop algebras. A natural way to study the Z/mZ-graded Lie
algebra g is to turn the Z/mZ-grading into a Z-grading on its loop algebra Lg =
9((2)) (or its twisted form if o is non-trivial). Under such a translation, spirals
can be interpreted using parahoric subalgebras of Lg, and spiral induction can be
understood using parahoric induction. We discuss this relationship in §8.413] but
otherwise we avoid mentioning loop algebras or parahoric induction in this paper in
order to make our approach as elementary as possible. However, we are implicitly
taking the loop algebra point of view: for example we make a choice of a lifting of
the element T € X, (T%) ® Z/mZ giving rise to the Z/mZ-grading to an element
r € X, (T?d) giving rise to a Z-grading on Lg.

1.4.3. Relation with [13] and [I1]. In [I3], when the grading on g is inner, a similar
action of H(Wag) for the principal block D, (gp")¢, was constructed from the
point of view of the loop algebra. Moreover, [13] gives a complete classification of
integrable simple H., ,, /m, (Wag)-modules: they are in bijection with simple perverse
sheaves in the principal block Dg, (gp™)e, -

In [T1], an action of H.(W,.g) on the cohomology of homogeneous affine Springer
fibers was constructed. Spirals did not explicitly appear in these works but the

A

relevant varieties X4 = Go X p;;‘ (Hessenberg varieties) showed up as torus fixed
points on homogeneous affine Springer fibers in the affine flag variety (see [11], §5.4]).
The action of H.(Wag) on the cohomology of homogeneous affine Springer fibers
constructed in [I1] is related to the one constructed in this paper via a Fourier
transform (between Dg, (g,) and Dg,(g—,)) and equivariant localization.
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1.5. Notation.

1.5.1. Throughout the paper, k is an algebraically closed field of characteristic zero.
All schemes are schemes of finite type over k in this paper unless otherwise claimed.

1.5.2. Let G be an almost simple, simply-connected algebraic group over k. Let
g = Lie G.

1.5.3. Let ¢ be a prime different from char(k). When we talk about complexes of
sheaves on a scheme X, we always mean Q,-complexes on X for the étale topol-
ogy. Let D(X) be the bounded derived category of Q,-complexes on X. If an
algebraic group H acts on X, let Dy (X) be the derived category of H-equivariant
Q,-complexes on X as developed in [I]. We will use the notion of complexes of
sheaves on algebraic stacks X but only for quotient stacks of the form X = [X/H],

in which case D(X) = Dy (X) by definition. All sheaf-theoretic functors are derived.

1.5.4. Let X be a scheme. For a local system £ on some locally closed, equidimen-
sional smooth subscheme j : Y < X, we let £F = j.(L[dim Y])[- dim Y] € D(X).
Note that Lfy = L.

1.5.5. For a scheme X of finite type over k with an action of an algebraic group H,
and any object K € Dy (X), we define the perverse sheaves

PHYVK := @ PHC;  PHOYK = @ PH"KC;
n even n odd
PHK := PH"K & PHYK = @Y H"K.
nez
We consider PHK as a Z/27Z-graded perverse sheaf.

1.5.6. For a subalgebra h C g, we denote by e” the (smooth) connected subgroup
of G with Lie algebra b, whenever it exists.

1.5.7. For an algebraic group H and a subgroup H’ of it which acts on a scheme

H/
X, we denote by H x X the (stack) quotient of H x X under the H’-action given
by b/ - (h,z) = (hh/~Y,W'z) for B € H',h € H and * € X. In the examples we

’

consider, the quotient H x X is always representable by a scheme.

1.5.8. For a Z-graded Lie algebra h = @, ./, bn, we often abbreviate the collection
of the graded pieces {h,|n € Z} by b..

1.5.9. For a positive integer n, u, denotes the diagonalizable group over k of nth
roots of unity.

2. RELATIVE AFFINE WEYL GROUP AND GRADED DAHA

In this section, for a pseudo-Levi subgroup M of (G, o) which admits a cuspidal
local system supported on a nilpotent orbit, we will introduce an affine Coxeter
group and a graded DAHA with possibly unequal parameters. The results in this
section are essentially contained in [6] and [5].
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2.1. Affine root system.

2.1.1. We fix a pinning E = (By, Ty, --) of G, where By is a Borel subgroup and
Ty a maximal torus of G contained in By. We identify Out(G) with the pinned
automorphism group of G. Fix an injective homomorphism

(2.1) o pe = Out(G).

Then e € {1,2,3}. Let u act on G via pinned automorphisms through o. Let G°
be the fixed point subgroup of o(g.).

2.1.2. Let T = T{ be the fixed points of o(u.); then T is a maximal torus of G7,
and Ty = Cg(T). Let t = Lie T. Let ®(G,T) C X.(T') be the root system of G with
respect to T. Note that ®(G,T) is not necessarily reduced, and it is non-reduced
precisely when G = SLy, 11 and e = 2.

2.1.3. Let Wg be the Weyl group of G with respect to Ty. Let W be the Weyl
group of the root system ®(G,T). Then W is also the Weyl group of G° with
respect to T. We have W = WZ, the fixed point subgroup of o(fe).

2.1.4. The pinned action of o(u.) gives a decomposition g = EBiEZ/eZ g’. For each

a € ®(G,T) and i € Z/eZ, the root space g'(a) is either zero or one dimensional.
Let

(G, T) = {(a,i) € B(G,T) x Z/eZ|g'(a) # 0}.

2.1.5. Let a = X,(T) ®z Q. The Killing form on g gives ag = a ® R a Euclidean

structure. Let ®.¢ be the set of affine functions @ = a + % on a, for (a,n) €

®(G,T) x Z such that (o,n mod e) € ®(G, T). This is the set of real affine roots
attached to the pair (G,o). The vanishing locus of each element & € @, gives
an affine hyperplane Hyz C a. Let $) be the collection of such affine hyperplanes.
These hyperplanes give a stratification of a into facets. Let § be the set of facets
in a.

2.1.6. Definition. A relevant affine subspace E of a is the affine subspace spanned
by some facet F'. Let & be the set of relevant affine subspaces of a.

2.1.7. The affine Weyl group W, g attached to (G, o) is the group of affine isometries
of a generated by the orthogonal reflections across affine hyperplanes H € §). For
any facet F' C a, let Wr C W,g be the stabilizer of the facet F under W,g. Then
Wr fixes F' pointwise, and it is a finite Weyl group generated by the reflections
across those hyperplanes H € $) that contain F'. Note that Wy only depends on
the affine subspace spanned by F. Therefore, if E € € we may define Wg to be
W for any facet F' that spans E.

2.1.8. Let as, = a @ Qd with dual space a®* = Q3 @ a*, such that (6,d) = 1. We
think of § as the generator of the imaginary roots in ®,g. The affine action of Wag
on a extends canonically to a linear action of Wug on ag: ¥ (v + 2d) = w(zv) + 2d,
where v € g,z € Q,w € W, and w(—) denotes the action of w on a.
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2.1.9. Let T84 = T/Zg, where Z% = Zg N G is also the center of G7. The
embedding X, (7%1) C a gives a lattice in a. We have

X (T2 = {\ € a[{a, \) € Z,Va € ®(G,T)}.

The extended affine Weyl group W is the group of affine isometries of a that stabilize
the stratification set §) of affine hyperplanes. The translation part of W is X, (729)
and W /X, (Tad) = W.

2.2. Pseudo-Levi subgroups. Let Aut,(G) C Aut(G) be the preimage of o(j)
under the projection moyt, : Aut(G) — Out(G). Let pi C pe be the primitive eth
roots of unity (so pj = u1 = {1}). Let Aut}(G) be the preimage of o(u) under
TOut-

2.2.1. Definition. A pseudo-Levi subgroup of (G, o) is the fixed point subgroup of
G of the form M = G7 for some semisimple automorphism 7 € Aut’ (G).

In the case e = 3, we may restrict 7 to be in a fixed non-neutral component
of Aut’(G) (among the two choices), and they give the same notion of pseudo-
Levi subgroups, because inversion on Aut(G) interchanges the two choices. By
Steinberg’s theorem, a pseudo-Levi subgroup M is a connected reductive group.

2.2.2. Lemma.
(1) Any semisimple element T € Aut(G) = G x o(u}) may be conjugated to
T2 x o (u}) under G.
(2) If M = G for some T € T® x o(u?), then T is a maximal torus of M.

Proof. (1) Recall the fixed pinning E = (B, Ty, -+) of Gand T =T§. By [12, 7.5,
7.6], there exists a Borel subgroup B; of G and a maximal torus 77 of G with 71 C
Bj such that 7 normalizes By and Tj. Let g € G*! be such that Ad(g)(B1,T1) =
(Bo,Tp); then grg~! normalizes (By,Tp). Replacing 7 by grg~!, we may assume
that 7 normalizes (Bo,Tp). Then there is an element s € T34 such that s~!7 fixed
the pinning E, i.e., s = 0((), where ¢ € u} such that (¢) is the image of 7 in

Out(G). We then have 7 = so(() for some s € Tgd. Let TS%(() be the coinvariants

of the o({)-action on T@4; then the natural map 724 = ng,o(c) — Td — Toa(}y(()

is surjective. Let s’ € T2 have the same image as s in Toaf;( o) then there exists
51 € Tgd such that s's™ = s, - 757! (we denote the action of o(¢) on G* by
g+ 7©g). Then we have s;757" = s150(C)s7! = 51 -7Ds;t - s0(¢) = s'0(¢) €
T2 x g (ur), as desired.

(2) We have Cy(T) = Ca(T)NM =Ty N M = Tj. Since 7 = so(() for some
s € T* and ¢ € 7, we have T] = T = Tg = T, therefore Cpy(T) = T and T
is a maximal torus in M. (]

2.2.3. Let 9 be the set of pseudo-Levi subgroups of (G, o). Let 9 = G\ be the
G-conjugacy classes of pseudo-Levi subgroups. Let 27 be the set of pseudo-Levi
subgroups of (G, o) of the form G™ for some 7 € T2 x o (uZ). Then My — M is
surjective by Lemma [Z2Z2(1). The Weyl group W acts on M by conjugation.

2.2.4. Root system of a pseudo-Levi. When M € 91, we have the root system
®(M,T). For each a € ®(M,T), the one-dimensional root space m(a) lies in
some g’ for a unique i € Z/eZ (for if M is the centralizer of (t,0((.)) € T x
o(e), then m(a) # 0 if and only if a(t)o((.) acts on g with eigenvalue 1, in
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which case there is a unique i € Z/eZ such that a(t) € (7 and g'(a) = m(a) #
0). Therefore each o € ®(M,T) determines some ¢ € Z/eZ. In other words
the inclusion ®(M,T) C ®(G,T) can be canonically lifted to an injective map
®(M,T) — ®(G,T) C ®(G,T) x Z/eZ, and we denote its image by ®(M,T) C
(G, T).

2.2.5. Relevant affine subspaces and pseudo-Levi subgroups. Let E € € be a relevant
affine subspace of a. Let Rg C ®(G,T) be the set of pairs (a,4) such that (a,y) +
ife € Z for all y € E. If (a,i) € Rg, then o determined ¢ € Z/eZ, hence the
projection Ry — ®(G,T) is injective. In particular, Rg is a reduced root system.
There is a unique reductive subgroup Gg C G containing T as a maximal torus
with Lie algebra
m=te( @ g').
(a,i)ERE

In other words ®(Gg,T) = Rg.

We claim that Gg € Mp. In fact, we pick any y € E that does not lie in any
facet with dimension strictly smaller than that of E, and write y = A/n for some
A € X,(T) and n € eZsg. Then Rg = {(a,i) € ®(G,T)[{e,y) +i/e € Z}. Let
T=XAn) o :f/e) €T x o(p?) for some primitive nth root of unity ¢,. Then one
can check by examining root spaces that Gy = G”, and therefore Gg € M. This
way we have defined a map

(2.2) I':¢—Mr

given by E — Gg. Since all elements 7 € T X o(u}) can be obtained from an
element y = A\/n € a as above, T' is surjective. It is also easy to see that T' is
X, (T2d)-invariant with respect to its translation action on €.

2.2.6. Suppose y € a; then y lies in a unique facet ' which spans a relevant affine
subspace E. We define G, and G to be Gg. We denote the Lie algebra of G, and
GF by g, and gp. Consider the composition

[L:3— ¢ M —»M

sending a facet F' to Gg where E = Span(F'). For [M] € 9 (the G-conjugacy class
of a pseudo-Levi M), let M| C § denote the preimage of [M] under the map L.

2.2.7. Let E be a relevant affine subspace of a, and let M = Gf be the corresponding
pseudo-Levi subgroup. Let Zy; be the center of M, and let Z9, be the neutral
component of Zys. Let a = X, (Z9,) ®2 Q C a. Then E is a torsor under a™.
Let ayr = Xo(T/Zn) ®2Q = a/aM. Let mpr : a — aps be the natural projection.
The subgroup Wy of Wyg fixes E pointwise and induces an affine action on aps
fixing the point m;(E). Shifting by —mp(E), we may identify Wy with the Weyl
group of M with respect to T', which acts linearly on ay,.

2.2.8. The Killing form on a restricts to a Euclidean structure on Eg = E® R. For
each H € $), the intersection H NE is either empty, or the whole [, or a hyperplane
in E. Let H(E) be the set of hyperplanes in E of the form H NE, where H € §.
These hyperplanes give a stratification of E into E-facets. This stratification is
simply the restriction to E of the stratification of a by facets, and an E-facet is
simply a facet of a that is contained in E. Let F(E) denote the set of E-facets.
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We call the open E-facets E-alcoves. These are in natural bijection with connected
components of B = Er — Upeq ) Hr- The set of E-alcoves is denoted Alc(E).

2.3. Action of GI°t.

2.3.1. Let GI°* be a one-dimensional torus. For each relevant affine subspace E C a,
we define an action of G'' on the corresponding pseudo-Levi subgroup Gp as
follows. It acts trivially on T. For each (a,i) € Rg, we let GI°* act on the root
space g'(a) of gg with weight —e(a,y) for any y € E (note here that —e{a,y) € Z
is independent of the choice of y € E).

If H is a subgroup of G stable under the action of GI2', we denote H¢ =
H x G,

2.3.2. We denote the canonical generator of X, (G") by ed; dually the canonical
generator of X*(GI°") is d/e. We then identify a¢; = a @& Qd (see §ZI.8) with
X, (TQ)Q, where T<> =T x fo;t.

2.3.3. For a relevant affine subspace E C a, let E(, be the Q-linear span of the affine
subspace E +d C ag. Let M = Gg. Then ¢ € aj restricts to a linear function
0:Es — Q, and we have

E=611); oM =5"%0).
The center Zyz, of My = M x G}o* fits into an exact sequence
].—)ZM—)ZMO—)G?Lt—)]..

The neutral component ZR% is a subtorus of Ty, = T X GI°'. Therefore X*(Z&Q)Q
is a linear subspace of X, (T )g = a¢. The following lemma is a direct calculation.

2.3.4. Lemma. We have X*(ngo)@ =E¢ as subspaces of ag.
2.4. Relative affine Weyl group.

2.4.1. We fix a G-conjugacy class [M] of pseudo-Levi subgroups of (G,0), i.e.,
[M] € 9. We assume that m = Lie M carries an M-equivariant cuspidal local
system L supported on some nilpotent orbit O. This means that the perverse sheaf
LF[dim O] is cuspidal for the semisimple Lie algebra md* = [m, m] in the sense of
[4 2(a)]. By the classification of cuspidal local systems in [3], such a nilpotent orbit
O, if it exists, is unique (i.e., independent of the cuspidal local system L£).

The possible conjugacy classes of pseudo-Levi subgroups M supporting cuspidal
local systems on a nilpotent orbit are classified in [0l §7] in the case e = 1 and in
[8) §11] in the case e = 2 or 3. If we choose a standard alcove Ap in a, one can find
a standard facet F C Ay such that F € M (which may not be unique). Then F
corresponds to a subdiagram of the (twisted) extended Dynkin diagram of (G, o).
In loc. cit., all such subdiagrams arising from M supporting cuspidal local systems
are shown in the boxes inside the ambient affine Dynkin diagrams.

2.4.2. Let A € §M and E = Span(A). Recall this means that Gg is in the G-
conjugacy class [M]. For notational convenience we may assume Gg = M.

For each H € $(E), there is a unique orthogonal reflection ry across H. Let
Wag(E) be the group of affine isometries of E generated by the reflections rg for all
H € $H(E). Let I(A) be the set of hyperplanes H € $(E) spanned by codimension
one facets on the boundary of A.
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2.4.3. Proposition ([0]).

(1) The group Wog(E) acts simply transitively on Alc(E).

(2) IfdimE > 0, then Wog(E) is an affine Cozeter group with simple reflections

{ru }HEI(A) .

Proof. Let I be any system of simple generators of W, containing I(A). By [0l §5.6]
(which uses the classification of cuspidal local systems given in [5]), in the case e = 1,
I(A) is an excellent subset of I in the sense of [6, §2.4]. In the case e =2 or 3, I(A)
is again an excellent subset of I. This follows by examining the tables in [8 §11]
case by case. Then the desired statements follow from [0, §2.9, §2.11(a)]. O

2.4.4. For A € M which spans E, let
Wi = (Warr(E), 1(A))
be the resulting Coxeter group.

For each H € I(A), we have its stabilizer Wy under Wog. For a pair H # H' €
I(A), the intersection HNH' is also a relevant affine subspace, hence Wynpg: C Wag
is also defined. For any of the finite Weyl groups Wg, Wg, and Wgng/, under any
system of Coxeter generators, the length of the longest element is well-defined, and
we denote it by ¢(Wg),{(Wg) and {(Wgnpg).

By [0 §2.28(a)], for H, H' € I(A), the order mpy g+ of rgry in Wog(E) is given
by

_ 2((Wrnn) — ((WE))
my H = .
E(Wy) +L(Whr) — 26(Wr)

Let Nw,,(Wg) be the normalizer of Wg in Wag. Since Wy is the pointwise
stabilizer of E and E is the fixed point locus of Wg, Nw,,(Wg) is also the stabilizer
of E under W,g. The quotient Ny, (Wg)/Wg acts on E by affine isometries.

2.4.5. Proposition ([0, Lemma 2.29(a)]). The natural homomorphism
NWaff(W]E)/W]E — Aut(IE)

is injective, and its image is Wag(E). In particular, we have a canonical isomor-
phism
Nw,(We)/We = Wag(E).

2.4.6. The linear action of Wog on ae (see §2.I1.8) restricts to a linear action of
Wag(E) = Nw,,(Wg)/Wg on Ei,. We denote the action of w € Wog(E) on E¢ and
its dual space E3 by § — €.

2.4.7. For each hyperplane H € $(E), we shall introduce a root ay € a™* and a

coroot ay; € aM. Since H itself is a relevant affine subspace, we have a pseudo-Levi
subgroup L := Gy C G containing M. The connected component of Egx — Hy
containing A gives a parabolic subgroup ) C L containing M as a Levi subgroup.
This gives a triangular decomposition of [ = Lie L,
(2.3) [=ntdomen,
where nt is the nilradical of Lie Q. Then m acts on n* by the adjoint action.
The Z9,-weights on n* are multiples of each other (because their vanishing loci
are parallel to H). Let ay € X*(ZY,) be the shortest weight that appears in n.
This defines an assignment $(E) — X*(ZY,) given by H — ay. The vanishing
locus of ag (as a hyperplane in a?) is parallel to H. There is a unique affine
function ay on E whose linear part is ay and whose vanishing locus is H.
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Recall we have the reflection 7y across H. We define af; € a to be the unique
element such that

ru(z) =z —ay(r)a); VreE.

2.4.8. For each H € H(E), we introduce a positive integer cy following [5, 2.10].
We use the same notation as §2.4.71 Recall that @ C m is the nilpotent orbit that
supports a cuspidal local system. Pick any e € O, and denote its adjoint action
on nt (see (Z3)) by ad(e). We define cy to be the largest integer ¢ such that
ad(e)¢~? # 0 as an endomorphism of n*. In other words, cy — 1 is the largest size
of a Jordan block of nt under ad(e). Clearly cy is independent of the choice of
e € O. The assignment H — cp defines a function

c:9N(E) = Zso.

It is also clear that the function ¢ is invariant under the permutation action of
W.g(E) on H(E).

2.4.9. Canonicity of (E, Wag(E), I(A)). So far we have used the choice of A € FMI
to define the affine Coxeter group Wk = (Wag(E), I(A)). If A; € FM is another
facet with E; = Span(A;), then the affine Coxeter group Wﬁfl(Wag(El),I(Al)) is
also defined and it acts on E;. Suppose A; and A are in the same Wg-orbit; we
claim that there is a canonical affine isometry E = E; and a canonical isomorphism
of Coxeter groups Wi = W;?Cfl under which the action of W,g(E) on E and the
action of Wog(E1) on E; are intertwined.

In fact, let w € Wag be such that Ay = wA. Then w is well-defined in the
coset Wag/Wa = Wag/Wg. The element w defines an affine isometry e,, : E = E;.
Conjugation by w gives an isomorphism Ad(w) : Wag(E) = Ny, (Wg)/We =
Ny, (Wg,) /W, = Wg(E1), sending I(A) bijectively to I(A;). The isomorphisms
ew and Ad(w) clearly intertwine the action of Wag(E) on E and the action of
Wag(E1) on E;. Changing w into ww; for some w; € W, we have e, = €, 0
ew, and Ad(ww;) = Ad(w)Ad(w;). Since wy € Wg fixes E pointwise, both ey,
and Ad(w;) are the identity isomorphisms. Therefore both e, and Ad(w) are
independent of the choice of w € Wyog sending A to A;.

Under the canonical isomorphism (E, Wag(E), I(A)) = (Ey, Wag(E1), I(A1)) de-
scribed above, the set of hyperplanes $(E) maps bijectively to $(E;), and the
assignments H — apy,a); and ¢y are compatible with such bijections. Moreover,
the isomorphism E 22 E; extends uniquely to a linear isomorphism E¢ =2 E; ¢ pre-
serving the linear function §, under which the linear actions of W,g(E) and Wog(E;)
are intertwined.

2.5. The graded DAHA attached to W/;. We retain the setup as in the be-
ginning of §2.41

2.5.1. Fix A € M| and let E = Span(A), M = Gg. For each i € I(A) (which is
a subset of $(E)) indexing a simple reflection s; € W,g(E), we have defined the
simple root a; € a®*, simple coroot f € aM, and a positive integer ¢; in §Z47

and §2.4.8
We define a graded Q-algebra HC(Wa‘%) as follows. As a Q-vector space it is a

tensor product

(2.4) He (W) = Q[u] ® Sym(E}) ® Q[War(E)].
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The grading on HC(W‘%) is determined by assigning u and EF degree 2, and as-

al
signing W (E) degree 0. The algebra structure on H,.(W7) is determined by:
e Each of the tensor factors in (2Z4) is a subalgebra.
e u is central in H.(W2).
e For each simple reflection s; € Wog(E) (i € I(A)), we have

(2.5) (191®s;)-(1Qvel)—(1R%ve1)-(101®s;) = ¢;(v, o )u®1®l Yo e Ej.

Here the pairing (v, o)) makes sense because a’ is a subspace of Eq.

2.5.2. Specialization. The element § € E}, is invariant under the action of W,g(E),
therefore it is central in H.(WZ;) by the relation Z5). For v € Q, we define a
quotient of H.(WZ;) given by

H., (W) = Ho (W) /(u+v,6 —1).

Now H.., (W) is no longer graded but only filtered: if we let F<; = F<;H,. , (W)
be the image of degree < i elements in H,. (W) for i € Zsg, then F<;- F<; C F<;y;
for all 4,7 € Z>o.

2.5.3. By the discussion in §2.4.0] if A, A; € M are in the same W,g-orbit, then

there is a canonical isomorphism of Q[u, §]-algebras H.(W4) = H.(WZ), and a
canonical isomorphism of algebras H, , (W) = HC,V(WQ) for any v € Q.

3. FACETS AND SPIRALS

In this section we describe how to obtain spirals for the Z/mZ-graded Lie algebra
g from facets in a. The results in this section are closely related to, and sometimes
reformulations of results in [10, §10] (see §3.4.TT] for comparison with the notation

in [10)).
3.1. Z/mZ-gradings on g.

3.1.1. Let G, g and the Z/mZ-grading on g be given as in the Introduction. Such
a Z/mZ-grading on g is the same datum as a homomorphism 6 : p,, — Aut(G).
Given such a 6, the graded piece g; is the subspace of g where 6(¢) acts by ¢?, for
all ¢ € -

Consider the composition Oous : fim LN Aut(G) — Out(G). Since elements
in Out(G) have order 1, 2, or 3, there is a unique e € {1,2,3} and an injective
homomorphism o : g < Out(G) such that 0oy factors as

. [m/e] o
GOut M 7 e —7 OU-t(G)u
where [m/e] is the map ¢ — ¢™/¢. We call o the outer class of the Z/mZ-grading

f. The discussions in §2] are then applicable to the pair (G,o). In particular, we
fix a maximal torus 7' C G° as in §2.1.21
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3.1.2. By Lemma [222(1), for a primitive element { € pu,,, the element 6({) is
G-conjugate to an element in T2 x ¢(¢™/¢). Therefore, § is G-conjugate to a
homomorphism

(3.1) Oz = (T,[m/e]) : pm — T X pe,

where the first factor is given by an element 7 € X,(7%) ® Z/mZ. Therefore,
without loss of generality, we may assume that 6 takes the form ([@BI) for some
element T € X, (T%) ® Z/mZ.

3.1.3. For the rest of the section, we fix an element x € X, (7%!) with image 7 €
X.(T2) ® Z/mZ. In other words, = is a cocharacter G,, — T4 whose restriction
to wm, gives the first factor of 6z.

3.1.4. Lemma. The point z/m € X.(T?d)q = a defines a pseudo-Levi subgroup
Gyym as in §2.2.6] and §2.2.5. We have Gy = G4/, and T is a mazimal torus of
Go.

Proof. Let ¢ be a primitive mth root of unity. By definition Gg = G” for 7 =
z(¢)o(¢™/¢). The calculation in §Z2Z5 shows that G™ = Gy/m- By Lemma[2.2.2(2),
T is a maximal torus of G™ = Gj. O

The proof above shows that

no @(a,i)EZI;(G,T);(a@)/m-ﬂ'/eén/m-ﬁ-lg (a).

The Weyl group Wg, of Go can be identified with W, ,,, the stabilizer of z/m
under the affine Weyl group Wg.

3.2. Graded pseudo-Levi subgroups.

3.2.1. Let m C g be a subalgebra. A Z-grading m, on m is said to be compatible
with the given Z/mZ-grading on g if for any i € Z/mZ we have

giﬂm: @ my.

n=i(m)

3.2.2. Let MMZ# be the set of quadruples (M, My, m, m,) where M is a pseudo-
Levi subgroup of (G,o) with Lie algebra m, m = P, ., m, is a Z-grading on m
compatible with the Z/mZ-grading on g, and My = e™°. The adjoint representation
of G on g induces an action of Gy on IMZ~#", and we denote the quotient G\ INZ =8
by %78, Let E)'ﬁ?—gr C INZ=e" be the subset of quadruples (M, My, m, m,) such
that M € My and T C M,.

If (M, My, m,m,) € X)ﬁ?_gr, then T' C My, hence the Z-grading on m is given by
a unique element j € X, (T/Zpr). Hence we get a bijection

M8 = (M, 9)|M € My, 5 € Xu(T/Znr)}.
The Weyl group Wg, of G acts on M er
3.2.3. Lemma. The natural map zm?*gr — ME7E induces an injective map

W, \IN7 & s amPer,
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Proof. Suppose (M, My, m,m,) and (M’, Mj, m’;m)) are both in zm?*gr, and g €
Gy is such that Ad(g)(M, Mo, m,m,) = (M’, M{,m’,m/). Since Ad(g)Mo = My,
Ad(g)T and T are both maximal tori of M|, there exists m’ € M} such that
Ad(m’)Ad(g)T = T. Replacing g by m'g, we have Ad(g)T = T, hence g € Ng,(T).
Since T acts trivially on zm?*gr, letting w € Wg, be the image of g, then w -
(M, My, m,m,) = (M', M}, m',m). This shows that the fibers of E)'ﬁ?_gr — gmZer
are Wg,-orbits. O

3.3. Spirals and splittings.

3.3.1. We recall from [9] some basic definitions about spirals. Recall ¢ € {+1} is
the sign of . An element A € Yg, o (see [9, §0.11], it means A is a formal expression
X/N where X' : G, = G and N € Z+) induces a Q-grading g = @TGQ@E) on g
such that each g; is the direct sum of }g; = g N g; for various r € Q. Using \ we
define

(33) Ep?)’\L = gengﬁ = @ (7)"\9&) vn € Z.

reQ,r>en

Recall from [0, §2.5] that an e-spiral for the Z/mZ-graded g is a collection of
subspaces p, = {pn|n € Z} of the form “p} for some A € Yg, q.
We also recall
“Pi=2 g,
Since € is fixed throughout, we shall omit the left superscript € from the notation

such as °p)\ and °I).
The direct sum [* = D,z [} is a reductive subalgebra of g, and we let L* = ',

Ly = e'd. Note that in [9], 1} was denoted [, L was denoted A*, etc.; in this
paper we omit the tildes.

Recall from [9, §2.6] that a splitting of the spiral p, is a system of the form
(LA, Ly, 1, 1) for some \ € YG,.,q such that p, = p). The following statement is
proved in [9, 2.6(c)].

[)\

3.3.2. Lemma. For A\ € Yg, @, the group L is a pseudo-Levi subgroup of (G, o).

3.3.3. Let ‘B be the set of Go-conjugacy classes of e-spirals for the Z/mZ-graded
g. By Lemma B32] assigning to an e-spiral p, any of its splittings (which are
conjugate under Py = eP° by [9] §2.7(a)]), we get a map

A:p— mPE

3.4. Spirals and facets. In this subsection we discuss the relationship between
spirals and facets in a. The key ingredients are summarized in the diagram (B.6]).
Some results here are reformulations of results in [10, §10]. We also point out the
relationship between spirals and parahoric subalgebras in the loop Lie algebra in

§3.413

3.4.1. Let Pr be the set of e-spirals p, of the form p for some A € a (note that
a = Y7 is naturally a subset of Y5, ). The Weyl group W, acts on Pr by
conjugation.

3.4.2. Lemma. The natural map *Br — ‘B induces a bijection

WGg\mT :> %
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Proof. First, the map ‘Br — P is surjective because every A € Yg,q is Go-
conjugate to one in a.

Now suppose for A, N € a, p} and pi/ are G-conjugate to each other. Let

g € Gp be such that Ad(g)p) = p2, ie., pRA@N o\ Let Py = ", Lo = %

and P} = epé/7 L = 6[3/. Then Py is a parabolic subgroup of Gy with Levi
subgroup Lo; P} is a parabolic subgroup of Gy with Levi subgroup L{,. We have
Ad(g)P} = Py, hence both Ad(g)L{ and Ly are Levi subgroups of P. Therefore,
there exists p € Py such that Ad(p)Ad(g)L{, = Lo. Replacing g by pg, we have
Ad(g)(P}, L) = (Po, Lo). Since l[hp = Ad(g)ly = gd(g)xgg contains t, then for any
integer N such that N\ defines a homomorphism NX : G,, — Gy, the image of
Ad(g)(NX) commutes with T'. Therefore Ad(g)(INX') has image in T because T is
a maximal torus in Gy, hence Ad(g)\ € a. Since A" and Ad(g))\ are both in a and
are conjugate under Gy, they are in the same Weg, -orbit. Therefore there exists

w € We, such that Ad(g)\' = w, hence p} = pid@¥
spirals p} and pi‘/ are in the same Wg,-orbit. ]

/ ro.
= p¥N = wp), ie., the

3.4.3. By (B.2), we have

A i
r= @(a,i)ei(G,T);(a,mfe)\>/m+i/e€Zg (a).

Comparing with the root system of G;_cx)/m (see §L2.5)), we see that

(34) [)\ = B(z—eX)/m} L)\ = G(xfe)\)/m~
For y € a, we let
Ay = e(z —my);

then we have L v = Gy.

3.4.4. Lemma. Let y,3' € a; then piy = pi\y/ if and only if y and y' are in the
same facet of a.

Proof. We argue for the case ¢ = 1 and the case e = —1 is similar. From (B2)
and [B3) we see that p;\ﬂ is the sum of g?(c) where (a,i) € ®(G,T) such that
((a,z) — n)/m + i/e € Z and that ((a,z) —n)/m > (a,y). In other words the
condition for g¢(a) to appear in p,){y is that for some ¢ € Z with residue class i mod
e, we have ({a, ) —n)/m+£/e = 0> (a,y) +{/e. Le., g'(a) appears in p;\l'y if and
only if there exists an affine root & = a+£/e with image (a,i) € ®(G, T) such that

(3.5) a(x/m) —n/m=0>a(y).
Suppose y and y’ are in the same facet; then for any affine real root &, a(y)

and a(y’) are either both positive or both negative or both zero. Therefore the

condition (B3] holds for y if and only if it holds for y’. Hence pi‘“ = pi\y'.
Conversely, suppose y and 3’ do not lie in the same facet; then there exists a real

affine root & € ®,g such that a(y) < 0 but a(y’) > 0. Let («,7) € ®(G,T) be the

image of a. Let n = ma(z/m) € Z; then by (B.5]) we see that g’(«) is contained in

. )\ ’ . A . .
piy but not in p,,¥ . Therefore pi‘“ is not equal to p.” in this case. ([l
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3.4.5. Let F € §. We define the e-spiral pI” as piy for any y € F. This is well-
defined by Lemma [3.4.4l The map F + pf” then gives a bijection

Aw : 3 :> mT-
The notation A, suggests that it depends on x and not just on Z.
We define a splitting (LY, LE, 1F' IF) of pI' as (L v, Lg'y, P, [i‘y) for any y € F.
Then the assignment F — (LY LE ¥ II') € M7 gives a map

At _
Ap i Pp =2 F — MG
Alternatively, for p, € Pr, the element Ar(p,) may be characterized as the unique
splitting (L, Lo, I, l,) of p, such that T' C Ly, but we shall not need this statement.

3.4.6. Lemma. For any E € &, denoting Gg by M, we define 3, € ap by
Jo = m(ma(z/m) — m (E)),

where we recall mpr : a — apr = a/aM is the projection. Then 3, € Xu(T/Zn) C
ays, and therefore j, defines a Z-grading m, on m = Lie M.

Proof. For F € Alc(E), we denote (LT, LI ¥ 1Y) by (M, Mg, m,m,) € SJI?_gr.
Let y € F, and Ay = e(x — my). Then by §345 and (34)), we have M = G,. By
definition, the Z-grading on m = " is the restriction of the Q-grading e\, = x —my
of g. Therefore, the Z-grading on m is given by the image mas(\) = my(x —my) =
m(mar(x/m) — war(E)) = 7. This shows that j, has integral weights on m and
hence 3, € X, (T/Znr). O

3.4.7. By Lemma [B.4.0] the assignment E — (M = Gy, j,) defines a map
Z—gr
L, : ¢ — My =
We claim that this map is injective. In fact, if both E and E’ € & give the same
(M, My, m,m,) € zm?‘gr, then E is parallel to E’ because they are both paral-

lel to a. Moreover, the gradings on m induced by m(my(z/m) — 7y (E)) and
m(mar(x/m) — wpr(E')) are the same, hence 7 (E) = 7ps(E'). Therefore E = E'.

3.4.8. Recall that an admissible system is (M, My, m,m,, L), where (M, My, m, m,.)
€ MZ=8" which lies in the image of A : P — ME78" (see [9, §3.1(c)]), and L is
an My-equivariant cuspidal local system on the open Mg-orbit m, of m, in the
sense of [7, §4.4]. Our notation is slightly different from that in [9, §3.1], where
(M, My, m,m,, £F) is called an admissible system. Let %, be the set of admissible
systems, and let X, = Go\T,. Forgetting the local system L gives a map T, —

IMNZ=e and passes to the Go-quotients T, = mZer,

3.4.9. The constructions of the maps A,,I'; and Ar gives a commutative diagram

(3.6) W /m\§ —22s W \Pr ———— P

[T
Wy \ G5 W \ONZ 8y e
Here we have used the isomorphism W, ,, = Wg,, the injectivity of I, shown in

§3.4.7 Lemma[3.2.3] and the isomorphism proved in Lemma[3.4.2l The composition
of the first row is given by [F] — [pf].

*
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For { € &, , let € € M- be its image. Let sm?gr’f,qs;,gé, and &¢ be the
subsets of 9% P, F, and € which is the preimage of € (these subsets only

depend on &, but we use the superscripts ¢ for simplicity of notation). The diagram
B8 restricts to a diagram

(3.7) W /o \§E — s Wi, \ P ——

e )

Fm —gr s
W/ \ €6 —5 W, \ON7 88— [}

3.4.10. Corollary. Let { € X,.

(1) All elements in F¢ are in the same Wag-orbit.
(2) Let E € €. Then the inclusion Alc(E) C ¢ induces a bijection

W/ (EN\AL(E) =5 W \§€ = B,
where W/, (B) is the image of Wy /m N Ny, (Wg) in
Wagt(E) = Nw,(We)/We.

Proof. By the diagram (3.7]), V[/'gc/m\@5 is a singleton, i.e., the action of W, ,,, on
€% is transitive. Let E € ¢* and F € §°. Then Span(F) is in the Wy ym-orbit of
E, therefore, the facet F' is in the W, ,,-orbit of an alcove of E. In other words,
the map Alc(E) — W,/ \§® is surjective. Since Ny, (Wg) is the stabilizer of E
under Weg (see the discussion before Proposition [2Z4.5]), two facets in Alc(E) are in
the same W, ,,-orbit if and only if they are in the same W, /,, N Ny, (Wg)-orbit,
which implies (2).

If A,A; € 3%, then E = Span(A) and E; = Span(A;) are both in . Hence
there exists w € W/, such that wE = E;. Now both A; and wA are E;-alcoves.
By Proposition ZZ43(1), there exists w; € Wog(E1) such that wiwA = A;. Hence
A; is in the same W,g-orbit as A, which proves (1). O

3.4.11. Comparison with [10, §10]. We explain the relation between the notation
used here and that in [I0, §10]. Let E € &¢ and I',(E) = (M, Mp,m,m,). In
[10, §10.1], the vector space a’ was denoted by E, and we introduced a set of
affine hyperplanes (denoted by $4.,, n) in it. To each w € E we attached an e-
spiral denoted by p~ in [10, §10.2]. We claim that there is an affine isomorphism
7 : E = E, sending the set of hyperplanes {4, n} bijectively to H(E), such that
if w € E corresponds to y € E; then p¥” = pi‘y.

First note that in the notation of [10], the grading on m is induced by n¢/2 €
X.(T)q, which lies in X, (T N M9)g because ¢ comes from a homomorphism ¢ :
SLy — M. Therefore mps(ne/2) = 3. In particular, mpr(z — ne/2)/m = (mp(z) —
7)/m therefore (x —n/2)/m € E. Therefore the map w — y = (z — Z(¢ + @))/m
gives an affine isomorphism 7 : E = a™ 5 E. If @ + y under this map, then
Ny =F(+w) = ‘Qﬂ(b + @) = w, therefore p= = p)v.

Under the isomorphism 7, the open subset E’ introduced in [I0, §10.1] (which
is the complement of the hyperplanes $,., n) is characterized by the following
property: for w € E, i = m, if and only if w € E’ (see [10, 10.2(b)]). On the
other hand, the argument of Lemma [34.4] shows that for y € E, Qv = m, if and
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only if G, = M, i.e., y € E'. Therefore 7(E') = E' :=E — Uresnm) H, hence the
set of hyperplanes {4, v} in E' corresponds to $(E) under 7.
The following statement will not be used in the rest of the paper.

3.4.12. Lemma. Let E € & and (M, My, m,m,) = T',(E). Let W be the finite
Weyl group introduced in [10, §10.11] which acts faithfully on E. Then under the
isomorphism 7 : E =2 E in §34.T1] W corresponds to the group Wy, (E) introduced
in Corollary BZATI0l

Proof. Recall the group H’ introduced in [I0, §10.9]: it is the normalizer of
(M, My, m,m,) in Go. By [10, §10.9(e)], the group My is the identity compo-
nent of H', and H'/My = W. Since T is a maximal torus of My, we have
Ny (T)/NMO (T) = H//MO = W. Since Wa:/m(E’) = (Wx/mmNWaff(W]E))/(Wm/mm
We), the desired isomorphism W = W, ,,,,(E) follows from two canonical isomor-
phisms

(38) Ny (T)/T = Wz/m n NWaff(W[E);

Since H', M, are subgroups of Gy containing 7', both Ng/(T)/T and Ny, (T)/T
are subgroups of Wg, , which is identified with W, /,,,. The above isomorphisms will
in fact be equalities of subgroups of W, /.

We show ([B3). Since M is the subgroup of M that fixes the grading element
Jz € apr, Nag, (T)/T is the subgroup of Ny (T')/T = Wg that fixes 5, in aps. Now
suppose w € Wg. By the definition of 7, in Lemma[3.Z.6] it is fixed by w if and only
if w(z/m) and x/m have the same image under 7. Since w fixes E pointwise,
the points w(x/m) and z/m have the same orthogonal projection to E as well.
Therefore w € Ny, (T)/T € Wy if and only if w(z/m) = z/m.

We show [B.). Let w € Ny/(T)/T C Wy/p,. Now we view 2/m as the origin of
a, so that w acts linearly on a. Let E’ be the affine subspace parallel to a that
passes through x/m. Since w normalizes M, it normalizes Z35;, hence stabilizes E'.
Since w normalizes each graded piece of m, it fixes the grading element 5, € ajs, and
therefore fixes (x/m)g (the projection of /m to E). These imply that w stabilizes
E (which is characterized as the affine subspace parallel to E’ and passing through
(r/m)g). Therefore Ng/(T)/T C Wy pm N Nw,(WE).

Conversely, if w € W, /,, also lies in Ny, (WE), then w stabilizes E. Again let
E’ be the affine subspace parallel to a® that passes through x/m; then w stabilizes
E’, hence induces an action w on the quotient ay; = a/E’. Let M’ = Cx(2%,);
then M’ is the smallest Levi subgroup of G containing M. Now w fixes both
7w (E') = mpr(x/m) and 7pr (E) in apr. Note that aps has a set of affine hyperplanes
$H(apr) given by mar(H) for those H € $ (whenver my(H) is an affine hyperplane
in aps). The root system ®(M,T) up to £1 can be identified with the linear parts
of those H € $(aps) passing through 7 (E). Since w preserves $(ays) and fixes
7w (E), it stabilizes ®(M,T), hence any lift of w to Ng,(T) stabilizes M. Since w
fixes the grading element 7, € ays (because it fixes 7y (x/m)) for m, it normalizes
(M, My, m,m,). This finishes the proof of ([B.g)). O

The combination of Corollary B.4Z10, §3.4.11] and Lemma implies that
B¢ is in natural bijection with W\Alc(E) (where Alc(E) as the set of alcoves in E
defined by the hyperplanes {Han.n} in [I0, §10]). This is essentially a restatement
of [10} §10.11(a)].
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3.4.13. Spirals and parahoric subalgebras. We clarify the relationship between spi-
rals and parahoric subalgebras in the loop algebra of g. This discussion is indepen-
dent of the rest of the paper. From (g, o), we may form the o-twisted loop algebra
g asin [2 §8.2: g = L(g,0,¢€) is the fixed point subalgebra of g ®; k(t'/¢) under
the diagonal action e 3 ¢ : X @ t"/¢ — ¢({)¢™"X @ t™/¢. We can then talk about
affine roots of g as in [2], which includes the real affine roots @,g as in §2.1.5 and
imaginary roots {nd|n € Z — {0}}. Then g is the Lie algebra of a quasi-split form
G of G over F' = k(t)), and a is the apartment attached to the maximal split torus
Tr of G. By Bruhat-Tits theory, each point y € a defines a parahoric subalgebra
gy,>0 of g which is the ¢-adic completion of the span of the affine root spaces g(a)
such that a(y) > 0 (including imaginary roots). For any r € Q we define g, , to be
the direct sum of those affine root spaces g(&) such that a(y) = r.

With the choice of z € X, (T?) lifting T, the equality (3.2) gives a canonical
isomorphism

(3.10) On = 0z/mmn/m forn € Z.

We may reinterpret (—1)-spirals ~'p) for the Z/mZ-graded Lie algebra g using
parahoric subalgebras of g as follows. Under the isomorphism (BI0), we have for
any y € a

—1,.my—=x =~ ~
ny - gx/m,n/mmgy,ZOa

lyx—my _ —1lymy—=zx
[n - [n

= Oa/mn/mN@yo fornel.
4. THE GRADED DAHA ACTION ON SPIRAL INDUCTIONS
In this section we give the proof of Theorem
4.1. Some preparation.

4.1.1. We keep the setup of §3.I1 In particular, we fix a maximal torus T' C Gy; the
Z/mZ-grading on g is given by 0z as in (BI)) for an element T € X, (T%%) ® Z/mZ.
We also fix a lifting 2 € X, (T4) of 7.

4.1.2. Canonical graded DAHA. For any A € §°, we have defined an affine Coxeter
group Wi and a graded DAHA H,. (W) in §24 and 25 By Corollary B.Z10,
all facets A € F¢ are in the same Wg-orbit. By the discussion in §2.4.9] and
§2.5.3, we may canonically identify the various W, E = Span(A) and H. (W) for
A € F&. We denote the resulting affine Coxeter group by Wfﬁ with simple reflections
indexed by I¢ and reflection representation on a canonical Q-vector space ]Ef> We
have a canonical linear function ¢ : IEgQ — Q and define E¢ = 6-%(1) C Ei The
corresponding graded DAHA is denoted by Hc(Wfﬁ»). We define the specialization
H,, (W) = H.(W5)/(u+ 1,6 — 1).

a

4.1.3. Spiral induction. Let A € . We have two maps from the twisted product
PA
XA =Gy % p (see YL5T)

ad Py g4
(4.1) gﬂ<—XA:GQ X p§4>[[§/L64] .

Here a(g,v) = Ad(g)v for g € Go,v € p;; B*(g,v) is the image of v under
pit = = [/ L.
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By definition, there exists g€ Gg such that Ad(g)(LA, L, 4, 12) = (M, My, m, m,.).
Then Ad(g) induces an isomorphism of stacks Ad(g) : [[?/L(j‘] = [m,,/Mp], and the
L{*-equivariant local system Ad(g)*L on the open L{'-orbit [;4; is defined. We claim
that the isomorphism class of Ad(g)*L is independent of the choice of g. In fact,
for a different choice of ¢’ € Gg such that Ad(g')(LA, L, 14, 12) = (M, My, m, m,.),
g'g~! € Gy normalizes (M, Mo, m,m,), i.e., h = g’¢g-' € H' in the notation in-
troduced in [10, §10.9]. By [10, §10.10(a)], Ad(h)*L = L, therefore Ad(¢')*L =
Ad(g)*L.

The above discussion shows that there is a canonical cuspidal local system £4 on
the open [;;‘ of [;;‘ that corresponds to £ under any isomorphism (L4, L3, (4, 14) =
(M, My, m,m,) induced by an element in Gg. The spiral induction from pd and £
is

IA = Ip;“ = Oé!AﬁA’*;CA’ﬁ S ’DGQ(gzil)g.

4.1.4. If p,,p. € P¢ are conjugate by an element g € Gp, then g induces an
isomorphism I,, = I,/ . This isomorphism is independent of the choice of g because
when p, = p’,, g must lie in Py = e”® which then induces the identity automorphisms
on I, . Therefore, for a Gy-orbit [p.] € Ef, we have a canonical object Ip, ) €

Since W,;/m\SE = %5, we see that I4 = I,4 only depends on the W, /,-orbit of
A€ F. For [A] € W,/ \§¢, we define I}4) to be I4 for any A € [A].
4.1.5. Action of the torus GIe*. For any F € §, we define an action of G on the

m - m
e-spiral pf” in the following way. For any root space g'(a) C pL’, let G act on it
by weight e(n — (o, z))/m. Under this definition, the G!°-action on [ is consistent
with the definition in §2.3

We also define the action of GI2* on go (resp., gﬂ) in a similar way: it acts on
a root space g'(a) by weight —e(a,x/m) (resp., e(n — (a,z))/m). Note that the
Glct-action on gy depends on 7, and not just 7.

4.1.6. Action of the torus G° . Consider the homomorphism
5:Gpm — T X G x G
t o (z(t), e .
We denote its image by Gﬁn.

For each facet F € §, the group 724 x Gt x G acts on P, LY, and L{ with
the trivial action of G&!; it also acts on the vector spaces pf and £ where G4i!

m

acts by scaling. Therefore G';n acts on P¥ LY pf and [£. Note that the adjoint
action of L on [ is still G’ -equivariant. Similarly, the group 724 x GX°* x Gdi!
acts on G and g, (with the action of G'®* defined in §I.I.5), hence G, also acts
on Gp and g,.

A direct calculation shows the following.

4.1.7. Lemma.
(1) The torus G°, acts trivially on Gy, 9, P, and LY.
(2) For any n € Z, the torus G°, acts on pr and [£ by weight n — .
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4.1.8. Enhanced spiral induction. Let A € F5. The diagram (&I) defining the
spiral induction consists of G x Gdil-equivariant maps. Therefore we have an
enhancement of the spiral induction I4 into a Gp¢ x Gl = (Gy x GIoY) x Gdil-
equivariant object

Ta = af BA LAY € D, can(ay).

4.2. Localization to G,,-fixed points.

4.2.1. Let X be a k-scheme of finite type with an action of G,,. Let Y be another
k-scheme of finite type and let f : X — Y be a G,,-invariant morphism. Let
f:[X/G,,] = Y be the induced map. Let i : X®» — X be the closed embedding
of the fixed points, and let fy : X®» — Y be the restriction of f to the fixed point
locus XGm.

Let K € Dg, (X) be a constructible G,,-equivariant Q,-complex on X, also

m

viewed as a complex on [X/G,,]. The direct image complex f,K is bounded from
below on Y. Let Ky = i*K.

4.2.2. The equivariant parameter v € Hém (pt) induces a map v : f,K — f.K[2].
Passing to perverse cohomology sheaves we get a map v : PH" f K — PH" "2 f K.
Restricting to fixed points gives a map

i f.K = fouKo®@H: (pt) = €D fo.Ko[—200".

ZEZZO

Passing to perverse cohomology sheaves we get a map

PHY (%) s PHYTK — @) PHM 2 fy Kot
ZGZZO

. o . —X
Specializing v to a non-zero value vg € Q, , we get

PH(i* )y, - PHFLK — @ PH ™ fo,.Ko C

{mmmmmnM¢
LEL>o

PH® fo.. /Ko,  n even.

4.2.3. Lemma. Suppose f is proper. Let vy € @Z If n € Z is sufficiently large
(depending on f and K), the map v : PH"f K — PH""2f K is an isomorphism,
and the map PH" (i*)y=o, gives an isomorphism

mqﬂg{mmmmmnw¢
PH® fo,+Ko,  n even.
Proof. Let U = X — X®» and let g : [U/G,,] — Y be the restriction of f. Let
Ku be the restriction of K to [U/Gy,]. Since G,, has no fixed point on U, it acts
on U with finite stabilizers, hence g§,/Ciy is a constructible complex on Y bounded
both in cohomological degrees and perverse cohomological degrees. In particular,
there exists Ny € Z such that PH"g,Ky = 0 for n > N;. The exact triangle
9Ky — f.K — 70’*IC0 — (using that f is proper) gives a long exact sequence
on the level perverse cohomology sheaves, which implies that for n > Nj, the
restriction map PH"(¢*) is an isomorphism.

On the other hand, the complex fy Ko also has bounded perverse cohomological
degrees. Let Ny € Z be such that PH" fy .[Co = 0 for n > N;. Then for n >
N, the perverse sheaf EBZEZ>0 pH"72Zfo7*/C0UK is equal to either pHOddfo,*lCo or
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PH® fy..Ko according to the parity of n. In conclusion, when n > max{Ny, Na},
the map PH"™(i*) gives the desired isomorphism between PH" f, K and PH f, K,
or PH? fy . Ko according to the parity of n.

Multiplication by v gives a commutative diagram

n= PH™(i*) n—
PH" K @zezzo "H 2ZJEO,»JCO’UE

l’u J’U

_ PHNF2(;%)
n+2 n+2—-24 V4
PH f*IC _— GBEGZZO PH fo,*Ko’U .

For n > N,, the right vertical map is obviously an isomorphism. Therefore for
n > max{ Ny, N2}, the left vertical map is also an isomorphism. (]

4.3. Action of the polynomial part. In this subsection we construct an action
of the polynomial part

S}/ = Qlu] ® Sym(Eg")/(u+n/m, 5 — 1)

of Hcm/m(WfH) on PHI4 for each A € F¢.
In the rest of the subsection, we fix A € F¢ and let E = Span(A). We identify
Ef, with B, hence S} = Q[u] ® Sym(E})/(u +n/m,5 —1).

4.3.1. We first construct an action of Q[u] ® Sym(E}) on the enhanced spiral in-
duction J 4 defined in §£T.8

Let C* be the cuspidal L“-equivariant local system on the nilpotent orbit Oa
of [ containing [? whose restriction to [f,‘ gives LA (this is well-defined by [7, Prop
4.2(c)]). Clearly C* is L§ x Gill-equivariant. We view the middle extension C4-#
as an object in DLnggl([A), therefore it carries an action of Hzng;{;l (pt).

Let LA2b = [A/[Ader Tet Lé’ab = Lé/LA’der; then we have an exact sequence

1 — LAb Lg’ab — G — 1. Lemma 234 implies a canonical isomorphism
X (Ly™)g = «(Z14)0 =Eo.
Hence, C4* carries an action of
HZg,abxG%I (pt) = Qufu] ® Sym(E% ® Q).

Here we denote by u the canonical generator of X*(G!!), which gives a basis for
Hé?'iLl (pt) .
Consider the Gt x Glil-equivariant map

7y
e Go xopy = [/ L] — [/ L4,

We have J4 = of* B4 LA =2 ofint CAF € Dg, o xcain(8y). Therefore, J4 also
carries an action of Qu] ® Sym(]E*Q).' By construction, u acts on J4 by cupping
with the equivariant parameter of Gl and §/e € E% acts on J4 by cupping with
the equivariant parameter of Got.
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4.3.2. Now we construct an action of Sf]/m on PHI 4.

Choose r > 1 such that ra € X,(T). We denote by ((N}En the one-dimensional
torus equipped with the map

(4.2) 5:G, - TxG xGd
t o= ((ra)(E),emre ),

i.e., 3 is the composition of the embedding s of G, (see §41.6) with the 7th power
map. We have a homomorphism

GQ X Gl;n — GQ,Q X Grd,;l

which is the natural embedding Gy — Gy ¢, on Gy and the homomorphism (@En 5
T x Gt x GE € G ¢ x G This map is well-defined because the images of G
and G?, in G ¢ x G commute with each other by Lemma EIT7(1).
We have the forgetful functor for equivariant derived categories
DGQ,Q xGdil (gg) - Dggx@n (gg)'
Let J € Dgyxs (94) be the image of J4. Let

Sy = (Q[u] ® Sym(E%))/(u + nd/m).
We denote the image of —u and nd/m in S, by v. Since Q[u] ® Sym(E) acts on
J 4, it follows that S,, acts on J’ with v acting as a non-zero element in Hé% (pt).
Consider the morphism

w : [g,/(Go x G,)] = [8,/Gol x [pt/G7,] = 94/ Gl-

The first isomorphism follows from the fact that @5” acts trivially on g, (Lemma
[LI17(1)). We then have the direct image functor

Wy Dng@n (gﬂ) — DGg(gﬂ)
Pt
and its left adjoint w*. By LemmaM.I7 the torus G’ acts trivially on 9, Go X pﬁ
and [} /Lg'], therefore J% = w*I4. Hence

w2 w,w Iy 21y @ HZ, (pt) =14 ® Qq[v).

Therefore, the algebra S, acts on I4 ® Q,[v] in a Q[v]-linear way. The degree 2
element v = —u = nd/m € S, induces a map

PH" (v) : P"H" (14 © Qg[v]) — PH""*(Ls © Q[v]).
For n even and sufficiently large, the map defined by specializing v to n/m
PH™(Ly © Qo)) = @PH" Ly - vf 200 (PHT 2T, € PHVL,
i>0 i>0
is an isomorphism. Therefore PH"(v) defines an endomorphism of PH®¥1,4, under
which v = —u = nd/m acts as n/m. Similarly, for n odd and sufficiently large,

PH"(v) defines an endomorphism of PHI, under which v = —u = nd/m acts
as n/m. We have thus constructed an action of S, /(v — n/m) = Sf]/ on PHI4

m

preserving its Z/2Z-grading.
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The above construction uses an auxiliary number r (to define a lifting of z to
a cocharacter of T'), but the resulting action is clearly independent of this choice.
Moreover, if A; is in the same W, ,,-orbit of A, the action of Si/m on I4, and
on I4 are the same, under the canonical isomorphism I4, = I4. Therefore, for
[A] € W,/ \F¢, we have a well-defined action of Sf]/m on Ijy).

4.3.3. Spectra of the polynomial ring action. Recall A € §& and E = Span(A). The
orthogonal projection of 2/m onto E gives a point (zz/m)g € E. Under the canonical
isomorphism 14 : E = E¢ (depending on A), we denote the image of (x/m)g by
(z/m)a. Note that (x/m)4 € E® depends only on the W, ,-orbit of A, therefore
we may denote it by (x/m)4].

3
n/m

C Al x ]EE> is defined by the equations u = —n/m and § = 1. Therefore the

‘We have constructed an action of Si Jm O PHI[4;. Then the subscheme Spec S

projection Spec Sf} Jm Ei gives an isomorphism of affine spaces over Q
$ ~ wé
Spec Sn Jm Es.

4.3.4. Proposition. The action of Sf]/m on PHI 4] has a single eigenvalue given by

(z/m)(a) € E¢ = Spec Sg/m.

A

Proof. We use the notation from §£3.21 We write X4 = Gy P>2 pﬁ as X, and
let X = [Go\X]. Let p : Lé’ab x GIl — Grot x G be the projection, let p :
G = GY — Gt x G be given by ¢ — (t"™/¢,t=™), and let H — Lg’ab x Gdil
be the base change of p along . Then we have an exact sequence 1 — L42P —
H — GY — 1. The map p : G, 5T x Gret x Gl — Lg’ab x Gl (for 5 see
([@2) has image in H and gives a section to the projection H — G. Therefore we
may identify H with L42P x @?n The projection H — L‘é’ab is an isogeny, which
induces an isomorphism X, (H)g = E.

Let 7 : X — X be the LA*-torsor corresponding to the map n : X — [[4/L4] —
[pt/LA2P]. Then the Go-action lifts to X canonically, and we form the stack X' =
[Go\X]. Also H acts on X extending the L4 -action, hence G’ also acts on
X via p : @En — H. A direct calculation shows that the @,bn—action via p on X

T v

coincides with the action A given by @En — 1" — Gg and the action of Gy on X.

In particular, the action of p(G’,) on X is trivial.
Let x : LA?" — G,, be a character, and we extend it to H by requiring it to

A,ab
be trivial on @En Let X, = X x” G, be the G,,-torsor over X using x;. Let
X, = X I>1<( Gy be the G,,-torsor over [X/H] = [X/p(G?,)] given by x. Then we
have X, = [XX/p(@En)] The action of p(G’) on X, is the same as the action A
given as the restriction of the left G-action.

Let X, = [Go\X,] and X, = [Go\X ] be the G,,-torsors over X and X/p(G),
respectively. By the above discussion, the p-actions of @;n on X, and & are trivial
because they are the same as the A-actions (hence part of the Gg-actions on X,
and X)) which we quotient out. Therefore X', = [X, / G| X, x [pt/ G ).
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The G,,-torsor X, — X defines a Chern class ¢1(x) € Hég(X, BAFLAE) =

— — b
H?(X, g4+ LAF), Similarly the G,-torsor X, — X defines a Chern class cf”” (x) €
HZQX@EH (X, BA*LAH) = H%E”(X, pA*LAR), By the above discussion, we have
e’

(4.3) am(x)=alknel
under the factorization Hé%(X,BA’*EAvﬁ) ~ H* (X, BA*LAH) @ Qg[v] (where v €
H‘%ﬁn (pt) is an equivariant parameter).

By construction, the action of x € S, on PHI, is induced from the map I, ®
— — b
Q¢fv] = 14[2] ® Qy[v] given by Ucf"’" (x). By @3), this map is |Je1(x) on I4 and
the identity on Q,[v]. Since |Jec1(x) is a nilpotent operator on 1,4, the action of
x on PHI4 is nilpotent. This being true for all y € X*(L42P), it implies that the
eigenvalues of the S, /,,-action on PHI 4 are in the image of the map ¢ : X, (G’ )g Ly
X.(H)g = E¢. However, the image of ¢ intersects E in the unique point (z/m)g,
therefore the eigenvalue of the S, /,,-action on PHI 4 is given by (z/m)g if we identify
Sy/m with O(E). In other words, under the canonical isomorphism E 22 E¢, the
eigenvalue of the S, /,,-action on PHI 4 is given by (x/m)4. a

4.4. Recollections from [5].

4.4.1. Let J C I¢ be a proper subset of simple reflections. Let W; C Wfﬂ» be
the finite subgroup generated by J. For any A € ¢, we may identify Wfﬁ with
Wi = (Wag(E), I(A)) for E = Span(A) (see §ZZ4.); then J gives a unique facet
Fj1 C 0A so that W is the stabilizer of Fj‘ under W,g(E). Let SEJ C § be the
facets of the form F j‘ for various A € F¢. By definition we have a surjective map

I :§ =35
sending A to the facet F j‘ C 0A. This map is equivariant under W, p,, and it

induces a maps
I Waym\8° = Wam\S5

4.4.2. We define a subalgebra H.(Wj) of HC(Wfﬂ) by taking the subspace
He(W,) = Qlu] © Sym(EY") ® QW]

and the same relations, except that the commutation relation (23] is only required
to hold for ¢ € J. For v € Q, let

HC’V(WJ) = HC(WJ)/(U + u,é — 1)

4.43. Fix F € Sg Let p. = pf', Py = € and (L, Lo, |, I.) = (L¥, LT 1F1F). We
may identify W = Staby,,(F) with the Weyl group Wy, of L.

Let Zr C § be the set of facets A in the same Wog-orbit as those in §° such that
F C 0A. Then Zp carries a transitive action of Wr = Wy. Any A € = gives a
parabolic subgroup Q4 C L whose Lie algebra is ¢4 = D,z g2 where q} = p2 Nl
Then L4 is a Levi subgroup of Q4. For different A € Zf, the parabolics Q4 of L are
in the same L-conjugacy class, therefore the quotient stacks [[4/L4] are canonically
identified for various A € Zp. We denote these identical stacks by [m/M].

The Weyl group W; can be identified with the relative Weyl group Wzé =
N (Wa)/Wa.
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. Q4 .
4.4.4. Choose A € Zp and define [ = L X g4. Note that [ is the partial
Grothendieck alteration for [ of type Q#, and therefore is independent of the choice
of A € Zp. We have a diagram (which is independent of the choice of A € E)

(% [ —" [m/M],

where a is the partial Grothendieck alteration and b is the composition of natural
maps [ — [q4/Q4] — [I*/LA] = [m/M]. Let £y be the cuspidal M-equivariant
local system on the nilpotent orbit O of m whose restriction to m,, is L.

The one-dimensional torus G3! acts on I, q and m by dilation, making the maps
a and b Gdil-equivariant. Recall the action of G on L, Q, and L* introduced in
§2.3] and the notation Lo = L x GI° etc. By viewing L‘é as Levi subgroups of
Ly, we see that the canonical isomorphisms between [[4/L4] for A € Zp induce
canonical isomorphisms between [[4/ Lé], and we denote these identical stacks by
[m/M]. The maps a and b induce maps of stacks

[/ (Lo x GIN] " [I/(Lo x GEN] — [m/(M, x GA)] .
We then have the parabolic induction
indy, (£%,) == ad* LY, € Dy, wgan(l).

Here we write ind,[n instead of ind; 4 to indicate that it is independent of the choice
of Ae EF . )

Let [ be the preimage of O under the projection | — [m/M]. Let a : lop — [
and b : [0 — [O/M] be the restrictions of a and b. Since the local system Lj; is
clean and a is proper, we have
(4.4) indg, (£%) = ab* Las = a.0"Las € D ygan (1)

We recall the following theorem from [5].

4.4.5. Theorem ([5]). There is a natural action of H.(Wy) on
indy, (£4,) € Dry wgan (1).

Proof. Let .[.o = i@ X1 io with two projections pry,pry : .[.o — i@. Let £y =
prib* Ly @ prid* L3, (L3, is the dual local system of L), a local system on (.
Let N = dim [». By (@4) and proper base change, we have a graded isomorphism

(4.5) Ext}  gan (indy (£5,), indy, (£5,)) 2 Ext} | gan (@nb* Las, a.b" Lar)
= ExtLode,l(b EM,prg*prlb L) = Héﬁxf’ (o, Lr).

Under ([{3), H;ﬁxf ([@7 L M) carries a graded ring structure induced from the ring
structure of Exty, . gan (ind}, (ﬁLt ), ind} (ng)) We have a diagonal embedding
A : lp < lp and a canonical copy of the trivial local system inside A*Ly; =
b*Lar @ b*L3;. Then the unit element 1 in the ring structure of HQAO,X;G"‘ (Io, Lar)
is given by the image of the fundamental class of [» under the map

HESC (10, Q) = HEG (o, A" £rr) 25 HEG " (o, £0y).

This is consistent with the definition of 1 in [5 §6.1].
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For A € Zp, the group Lé is a Levi subgroup of L carrying a cuspidal local
system C4 which corresponds to L£j;. Moreover, W; = W;,i‘ is the Weyl group
of L, relative to Lé. A graded affine Hecke algebra H = H.(WW;) was intro-
duced in [5, §0.1] for the triple (L, L3, La). It takes the form H.(W,) =
Qlu] ® Sym(X*(Zgé)Q) ® Q[Wy]. By Lemma 234 we have a canonical W;-

equivariant isomorphism X*(Zg Ao = E%* Moreover, our definitions of the co-
S

roots a; and the numbers ¢; for j € J are the same as their counterparts in [5]:
we simply copied the definitions in loc. cit. We conclude that there is a canonical
isomorphism H.(W;) = H.(Wj).
dil .. .

In [5 Corollary 6.4], a graded action of H.(Wj) on H;ﬁ,ff”" (lo, Lar) was con-

structed (we use the action that was denoted by A in [5]) and it was proved there
dil .. .

that Hg;f,ff’m (lo, Lar) is a free H.(Wy)-module of rank one with basis given by 1.
Therefore we have a graded isomorphism

HL(W,) = 30" (o, £1)
sending 1 to 1. It is also easy to check that the above isomorphism is indeed a ring
isomorphism. Since Héﬁ,ifil (Io, Lr) acts on ind,[n(ﬁgw) by the isomorphism (@.3]),
so does H.(W;). O

4.4.6. Under the action of H.(W;) on ind,[n(ﬁgi\/[)7 the action of the polynomial
part Q[u] ® Sym(Eg*) has a similar description as in §4311 This follows from the

dil

construction in [B, §4]. In particular, u acts via the equivariant parameter of G&!

and d/e acts via the equivariant parameter of GIo'.

4.4.7. We also need a compatibility of the construction in Theorem with re-
striction from W to parabolic subgroups. Let J' C J be a subset. Choose A € Zp,
and let F' = I1;/(A). Then F C OF’, hence F’ gives a parabolic subgroup Q¥ of
L containing @4, and L' = L' is a Levi subgroup of QF/. Let Q?}, be the image
Q4 c QF' — L/; then Q4 is a parabolic subgroup of L’ with Levi L# = M. We
have the transitivity of the induction

ind}, (£%,) = ind}, o ind}y, (£4,) € Dy, wgan ().

Theorem 20 gives an action of H.(W;/) on ind,‘;(ﬁgw), which induces an action of
H.(Wj;) on indfn(ﬁgw) by the above isomorphism. The following statement follows
from the construction in [5].

4.4.8. Proposition. The action of H.(W,/) on indl, (£%,) induced from its action

on ind,[;(ﬁgw) coincides with the restriction of the action of H.(Wy) on ind (£%,)
constructed from Theorem [A.4.5]

4.5. Action of parabolic subalgebras. The goal of this subsection is to prove
the following result.

4.5.1. Proposition. Let J C I¢ be a proper subset and [F)] € Wm/m\gg. Then
there is a canonical action of He /(W) on the perverse sheaf

H[F] = @ pHI[A].
(AlelL; " [F]

The proof occupies the rest of this subsection. We use the notation in §4.4.3
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P
4.5.2. We have a morphism d : Gy X Py = g/ Po) = [I;/Lo] — [I/L]. We define
X by the following Cartesian diagram:

X ——[i/L]

[

Py d
Go X py —— [I/L]

In other words, if we choose A € Ef and let Uy = ker(Py — Lg), then X = /'?/LO,
where X' consists of triples (v, gUp, hQ4) € g, % Go/Ug x L/Q* such that Ad(g~!)v
lies in the preimage of [, N Ad(h)q* C I, under the projection py, - Iy, and £ € L
acts on X' diagonally by right translation by ¢~ on Gy/Uy and left translation by
¢on L/Q4. There is a Gp-action on X by diagonally acting on g,, and Go/Uy, and
this action descends to one on X.

P
There is an action of G, on X induced from the trivial action on Go X p, and
the G? -action on [[/L] = [q4/Q"].

4.5.3. Lemma. The G°

m

T )
0 pﬂ I_l X

[AleEWL,\EF [AlEWL,\EF

-fized point locus of X has a decomposition

Proof. Fix A € Zp which defines a parabolic subgroup Q = Q“ of L whose Levi
subgroup L4 = M. Then the set Zp = Wr/Wa = Wi /W4. Therefore we reduce
to showing that

(4.6) X6 = | | XwA,
[w]EWLO \WL/WA

The action of G°, on X’ lifts to X. Suppose (v, gUy, hQ) € X maps to a point in
X fixed by G’ ; then for t € G, there is an £y € Lg such that ¢ - (v, gUp, hQ) =
(v, géaon, £oh@). This implies that gﬁalUO = gUp hence ¢y = 1, i.e., (v, gUp, hQ) €
XC% . Therefore XCm = XCm /Lo.

If (v, gUo, hQ) € )?th, then hQ € L/Q is fixed under G’ , i.e., there is a unique
double coset [w] € Wr, \Wr/Wa4 such that hQ € Low@/Q = Lo/(Lo N Qo).
If we fix a representative w of [w] in W, then we may write h@Q = fyw@ for a
well-defined ¢y € Lo/(Lo N ™"Qp). The condition for (v, gUy, Low@) to be in X
is that Ad(g~')v lies in the preimage of [, N “¥q = Ad(¢y)(l,, N “q) under the
projection p, — [,,. Note that for the e-spiral puA, p};’A is exactly the preimage of
[, N *q under the projection p,, — [,. Therefore the condition for (v, gUy, low@)
to be in XC» becomes Ad(g~ 1w € Ad(@o)pg“‘, or that v € Ad(géo)p};’A. Since
g is well-defined up to right translation by Uy, and £y is well-defined up to right
translation by Lo N “Qo, the element gfy gives a well-defined coset in Go/P®4,
because P4 = Uy(Lo N Q). Therefore for fixed [w], the corresponding part of
XC0 consists of pairs (v, gPg"?) € gy x Go/Pg"* such that v € Ad(g)py, hence
the description (4.0]). - O
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To summarize we have a diagram in which the rhombus in the middle is Cartesian

b
(4.7) U[A]EWLO\EF YA G,

fo

9n

4.5.4. Lemma. There is a canonical isomorphism in Dg, , xcai (9n)
forip*(Li) = P T
[AJell; " [F]
In particular, we have an isomorphism of perverse sheaves

PHfo,i*p* (L) = Iip)-

Proof. The map II; : §& — 3 5 is W, /m-equwarlant therefore we have a bijection
O '([F]) & Wy ym,p\II; ' (F) = W \II;'(F). For A € = we have the maps

a? ’YA
9y x4 [(4/L4) = [m/M]
where 74 is the restriction of p o in diagram ([7) to X“. From the diagram
(@) we see that the contribution of [A] € W \Er to the complex fyi*p* (ng) is

af‘WA’*Eg\/I. Therefore we reduce to showing the following two statements:

(1) If A € F¥NZ=p = 11! (F), then there is a canonical isomorphism alAvA*E%w
2]y
(2) If A ¢ 35, then af*+4* L%, =0

The morphism 7 is the composition
x4 L [[A/LA] [(4/L4] = [m/M].

When A € F¢, we have L*E%w =~ £4% and statement (1) follows from the definition
of spiral induction I4.

Now suppose A € = but A ¢ F¢. Let 7 € X, (T/Zp4) be the element giving the
Z-grading [2 of [4. Let O4 C 4 be the nilpotent orbit corresponding to © under
the canonical isomorphism [[4/L4] = [m/M]. For any isomorphism LA = M, the
grading m, induces a Z-grading on [4. Since the grading m, is induced by nhg/2
for an sly-triple (eq, ho, fo) in m with ey € O, the induced grading on 4 is induced
by nh/2 for an sly-triple (e, h, f) in [* with e € O4. Since A ¢ F¢, the gradings
nh/2 and j are not conjugate under L4.

We claim that [;74 N OA = @, hence the vanishing of L*Ei}w by the cleanness of
L, and statement (2) follows. We show the claim by contradiction. Suppose
e e [;;‘ N 04, we may complete it into an slo-triple (¢, h’, f') where b’ € [5' and
fle [én' Then the adjoint action of h’/2 gives another Z-grading [* = @nez(g; (4,
compatible with the original Z-grading [2 (i.e., [4 is the direct sum of [ N ’21;1, (A
for n,n’ € Z) because b’ € I§'. We then have a third Z-grading [* = @,,., (n)
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given by the difference j—nh'/2: 14(n) := ®n’EZ([#n’+n N2 14). Then e lies in the
Levi subalgebra, [4(0) of [4. Since O4 is a distinguished nilpotent class of L# (as
it supports a cuspidal local system), we must have [4(0) = [4, hence 7 and nh'/2
induce the same grading on [4. However, this contradicts the assumption that j is
not conjugate to any such grading. This completes the proof of statement (2) and
hence of the corollary. |

4.5.5. Finish of the proof of Proposition 51l By the diagram (#1) and proper
base change, we have

ad'indy, (£4,) = ad*ab*(£h,) = fip*(LY,) € Da, , xea (gy)-

By Theorem .40 the complex ind,[n(ﬁgw) carries an action of H.(Wj) under which
the actions of v and §/e are given by the equivariant parameters of Gi! and G™°*, re-
spectively (see §4.4.0). Therefore, fip* (513\/1)7 as an object in D, , xgan (9y), carries
an action of H.(Wy).

Let f : [X/G’,] — g, be the induced map from f. Then fp* (E'jw) € Da,(gy)
carries an action of H.(W). By the definition of G?, and direct calculation, the map
p: X — [I1/LA] = [m/M] is equivariant under the G, action on X and its action
on [I*/LA] through the embedding G?, — Gt x G given by t — (t™/¢,t~7).
Therefore, both —u/n and §/m act as the equivariant parameter for Gﬁn, i.e., the
H.(Wj)-action on Tlp*(ﬁgw) € Dg, (9y,) factors through the quotient

H, :=H.(Wj;)/(u+nd/m).

We denote the image of —u and né/m in H, by v. In particular, the algebra H,
acts on the Z-graded Go-equivariant perverse sheaf @, ” H" f,p* (ﬁgw) on g, with
v acting as multiplication by 7 times the equivariant parameter of Gﬁn.

Let K = p*(ﬁg\/f) € Dgyxge, (X). Let Ko = i*K. Applying Lemma EL23] to the
G?n—equivariant morphism f : X — g,, using the specialization at v = n/m, we get
the following isomorphism for n even and sufficiently large

(48) PH (%) PHUFIK 5 PH fo1 K.

We define an action of H, on PH® f;, 1Ky as follows. For ags € H, homogeneous of
degree 2s > 0, choose large even n such that (L8] holds. Then as, gives an action
map

PR (g

TG o=/ —>Z*)v:"/m PH fo,1Ko.

aggs pHCVfOV]ICQ I pH”?ﬂC Ezs—) pHn+237!IC
It is easy to check that this map is independent of the choice of n and it defines an
action of H, on PH®" f5 1Ky. Under this action v acts by n/m, therefore it descends
to an action of H,/(v —n/m) = H,,/m, (W) on PHY fo,Ko. A similar argument
gives an action of H, /(v — n/m) = H, /(W) on pHOddfO,gICO.

By Lemma [£5.4] PHfy1/Co = PH f,1Ko @pHOddfOJICO = [g), therefore we have
constructed an action of H ,/m, (W) on Ijp. The action of the polynomial part
of He ;,/m (W) is the same as the one defined in §4.3.21 This finishes the proof of
Proposition 511
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4.6. Finish of the proof of Theorem [1.2.3l
4.6.1. Changing J. Suppose J' C J; then we have a map
Iy 35 — 35
sending F’ € S?}, to the unique facet F € S?, on its boundary. We have II; =
7 oIl Let F' € 33/ and F =11 (F') € 8’5 Then I is a direct summand of

I since I 5, ([A]) = [F'] implies II;([A]) = [F]. On the other hand, H,, (W)
is a subalgebra of He ,/m (W)

4.6.2. Proof of Theorem [[23l For J' C J C I¢, Proposition 4.8 implies that the
inclusion Ijp < Ijpy is a map of He,/m (Wyr)-modules (with the H , /(W )-
action on Iz} coming from its H.,/m,(W)-action by restriction). Since Wfﬁ is
generated by the subgroups W for various proper subsets J C I¢, Theorem [[2.3]
now follows from Propositions [£.5.11
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