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1 Introduction

1.1 Cyclically graded Lie algebras

Let g be a Lie algebra of a connected simple algebraic group G over a field k. A cyclic grading on g is a

decomposition

g =
⊕

i∈Z/mZ

gi,

where m ∈ N and [gi, gj ] ⊂ gi+j for all i, j ∈ Z/mZ. The summand g0 is a Lie subalgebra; let G0 denote

the corresponding connected subgroup of G. When m is prime to char(k) and k contains all m-th roots

of unity, such a cyclic grading corresponds to an automorphism θ of g of order divisible by m, under

which gi is the eigenspace of θ with eigenvalue ζi (where ζ is a fixed primitive m-th root of unity).

The invariant theory of the action of G0 on gi has been much studied by Vinberg and his school. The

G0 action on gi share many nice properties of the adjoint action of G on g. In [2], Reeder et al. singled

out stable gradings (when gi has stable vectors under G0) and connect them with regular elliptic elements

in the Weyl group of G. When g is a classical Lie algebra, the subgroup G0 as well as its action on gi
can be described in terms of cyclic quivers with involution (see [4, Sections 6–8]).
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From the Lie-theoretic perspective it is natural to consider cyclic gradings on Kac-Moody algebras,

starting from the loop Lie algebras. In the case of a loop Lie algebra g⊗k((t)), it is interesting to consider

not only those cyclic gradings coming from k((t))-linear automorphisms of g, but also those coming from

k((t))-semilinear automorphisms. For example, let ζ be a root of unity in k, we may consider a finite

order automorphism θ of g⊗ k((t)) such that θ(X ⊗ a(t)) = θ(X)⊗ a(ζt) for all a(t) ∈ k((t)) and X ∈ g.

In this paper we generalize the quiver description in [4] for cyclic gradings on classical Lie algebras to a

setting that includes finite-order semilinear automorphisms of loop Lie algebras of classical type.

1.2 Convention

For a field k and n ∈ N, µn(k) denotes the group of n-th roots of unity in k×.

Let A be an associative ring, and M,M ′ two left A-modules. Let ζ be an automorphism of A. A map

f : M → M ′ is called (A, ζ)-semilinear if

f(av) = ζ(a)f(v), ∀ a ∈ A, v ∈ M.

For a left A-module M , let EndA(M) denote the set of A-linear endomorphisms of M and AutA(M)

denote the group of A-linear automorphisms of M .

If A contains a field k, and M is a left A-module M of finite dimensions over k, let GLA/k(M)

be the algebraic group over k whose R-points (for any commutative k-algebra R) are R ⊗k A-linear

automorphisms of R ⊗k M . When A = k we write GLk(M) for GLk/k(M), which is the usual general

linear group. If A is commutative, then GLA/k(M) = RA/kGLA(M) is the Weil restriction of the general

linear group GLA(M) from A to k.

If, moreover, the A-module M carries a k-bilinear pairing ⟨·, ·⟩ : M ×M → B valued in some k-vector

space B, we denote by AutA/k(M, ⟨·, ·⟩) the algebraic subgroup of GLA/k(M) preserving the pairing.

1.3 The setup and the main result

Throughout the paper, let k be a field. Let F be a finite separable k-algebra together with an automor-

phism ζ ∈ Aut(F ) of order n ∈ N such that k = F ζ . We allow F to be a product of fields.

Let V be a finite type F -module. Let θ be an (F, ζ)-semilinear automorphism of V . Let m be a

multiple of n such that m/n is invertible in k. Assume

θm = β · idV , for some β ∈ k×.

Then θ acts on the Weil restriction GLF/k(V ) and on the Lie algebra EndF (V ) by conjugation. As

a warm-up, in Section 2 we describe the fixed point subgroup of θ on GLF/k(V ) and the θ-eigenspaces

on EndF (V ) in terms of cyclic quivers decorated by division algebras. The more complicated case where

GLF/k(V ) is replaced with a classical groupG defined using V and a symmetric bilinear form, a symplectic

form or a Hermitian form on it is considered in Section 3.

Our main result is Theorem 3.12, which gives a complete description of the fixed subgroup H of θ on

G and eigenspaces g(ξ) of θ on g = Lie G in terms of cyclic quivers with involution decorated by division

algebras and pairings. The strategy of the proof is to realize V as a module over a certain semisimple

(non-commutative) algebra Aβ , and to extract linear-algebraic data from the multiplicity spaces of simple

Aβ-modules in V .

In Section 4 we specialize to the case of classical loop Lie algebras, and make the description in

Theorem 3.12 more precise. The result in this case can be summarized in the following rough form: when

G comes from a polarization on V and NmF/k(ξ) is a primitive (m/n)-th root of unity, we can associate

to the situation a cyclic quiver Qξ with m/n or m/2n vertices (i.e., there is a vector space Mi on each

vertex i of Qξ over k or a quadratic extension of k). The quiver Qξ is equipped with an involution (−)♢,

and the vector spaces on i and i♢ are dual to each other. For i = i♢, Mi is equipped with a symmetric

bilinear, skew-symmetric bilinear or Hermitian form. Then H = GAd(θ) is the automorphism group of

the (Mi)i∈I preserving the pairings and forms; g(ξ) is the space of representations of the quiver Qξ in

the vector spaces (Mi) satisfying a certain self-adjointness conditions with respect to the pairings.
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1.4 Examples of the setup

(1) n = 1 so k = F . In this case, V is a finite-dimensional k-vector space with a k-linear operator θ

such that θm is a scalar.

(2) m = n. In this case θ gives a descent datum of V to a k-vector space V ′, i.e., V = V ′ ⊗k F .

(3) k = R, F = C and n = 2. In this case V is a complex vector space with a complex anti-linear

automorphism θ of finite order.

(4) k is a discrete valuation field and F is a tamely ramified Galois extension of k of degree n. This

includes the case k = C((tn)) and F = C((t)) with the action ζ(a(t)) = a(ζnt) for some primitive n-th root

of unity ζn, which arises from the loop Lie algebra setting discussed in the beginning.

(5) Let k be a field containing a finite field Fq, and F = k⊗Fq Fqn with the action of ζ by q-Frobenius

on the Fqn-factor. An F -vector space V with an (F, ζ)-semilinear automorphism θ appears in the study

of the generic fiber of Shtukas by Drinfeld [1, Section 2] (which Drinfeld calls “F-spaces”).

2 Linear case

2.1 The problem

We are in the setup of Subsection 1.3. Let G = GLF (V ), the general linear group over F . Let g =

EndF (V ) be the Lie algebra of G. Let Ad(θ) (respectively, ad(θ)) denote the conjugation action of θ

on G (respectively, g): Ad(θ)(g) = θgθ−1 for g ∈ G (respectively, ad(θ)(φ) = θφθ−1 for φ ∈ g). Then

Ad(θ) is an automorphism of the Weil restriction RF/kG = GLF/k(V ), and ad(θ) is an (F, ζ)-semilinear

automorphism of g. Our goal is to understand the following in terms of quivers:

(1) The fixed point group H := (RF/kG)Ad(θ) as an algebraic group over k. Note that

H(k) = {g ∈ AutF (V ) | gθ = θg}.

(2) For ξ ∈ F×, the H-module

g(ξ) := {φ ∈ EndF (V ) | θφθ−1 = ξφ}.

with the action of h ∈ H by h : φ 7→ hφh−1.

Since ad(θ) is not F -linear, g(ξ) is not an eigenspace of ad(θ) in the traditional sense. In particular,

for different ξ, the subspaces g(ξ) are not necessarily linearly independent.

Definition 2.1. (1) Let F ⟨θ⟩ be the non-commutative polynomial ring over F in one variable θ with

the relation θa = ζ(a)θ for all a ∈ F .

(2) Let Aβ be the quotient of F ⟨θ⟩ by the ideal generated by the central element θm − β.

By construction, Aβ is an associative F -algebra. An Aβ-module is an F -vector space U together with

an (F, ζ)-semilinear automorphism

T : U → U

satisfying

Tm = β · idU .

In particular, V is an Aβ-module with θ acting by θ.

2.2 Twisting by ξ

Let

Ξm/n = {ξ ∈ F× | NmF/k(ξ) ∈ µm/n(k)}.

For ξ ∈ Ξm/n, let µξ be the F -linear automorphism of Aβ sending θ to ξθ. This defines an action of

Ξm/n on Aβ . For an Aβ-module V , let V ξ be the same F -vector space V with the action of Aβ twisted

by µξ, i.e., the new action of θ on v ∈ V ξ is θ · v = ξθ(v).
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2.3 Reformulation of the problem

We may rewrite H and g(ξ) in terms of the Aβ-module structure on V :

(1) H = GLAβ/k(V ) as an algebraic group over k (see Subsection 1.2 for convention).

(2) For ξ ∈ Ξm/n, we have g(ξ) = HomAβ
(V ξ, V ). Note that if ξ /∈ Ξm/n, then g(ξ) = 0.

2.4 Classification of Aβ-modules

Let Lβ = k[θn] ⊂ Aβ ; this is the center of Aβ . Let b = θn ∈ Lβ . Then Lβ
∼= k[b]/(bm/n − β) (the image

of b in Lβ is b) is a separable k-algebra (since m/n is prime to char(k) by assumption). Let

Lβ =
∏
i∈I

Li

be the decomposition of Lβ into a product of fields, with the index set I in natural bijection with the

underlying set of Spec Lβ . Let bi ∈ Li be the image of b. Then

Aβ =
∏
i∈I

Ai, with Ai = (Li ⊗k F ⟨θ⟩)/(θn − bi).

Lemma 2.2. The algebra Ai is a central simple algebra over Li.

Proof. The presentation of Ai is the standard one for a cyclic algebra of degree n2 over Li. In particular,

Ai is a central simple algebra over Li.

By the above lemma, for each i ∈ I, there is up to isomorphism a unique simple Ai-module. We fix a

simple Ai-module Si for each i ∈ I. Let Di = EndAi
(Si)

opp. Then Di is a central division algebra over

Li. Let ni = dimDopp
i

(Si), then

Ai = EndDopp
i

(Si) ∼= Mni(Di), and dimLi(Di) = (n/ni)
2.

We view Si as a right Di-module with the right Di-action given by the left Dopp
i = EndAi(Si)-action on

Si.

Corollary 2.3. The algebra Aβ is a semisimple k-algebra with the set of simple modules up to isomor-

phism given by {Si}i∈I . Any Aβ-module V is canonically isomorphic to a direct sum

V ∼=
⊕
i∈I

Si ⊗Di Mi, (2.1)

where Mi = HomAi(Si, V ) viewed as a left Di-module using the right Di-action on Si.

2.5 The group H

Now we are ready to describe the group H using the canonical decomposition (2.1) for the Aβ-module

V . We have an isomorphism of algebraic groups over k,

H = GLAβ/k(V ) ∼=
∏
i∈I

GLDi/k(Mi). (2.2)

Under the above isomorphism, if g ∈ H corresponds to (gi)i∈I on the right-hand side, then

g(u⊗ x) = u⊗ gi(x), ∀ i ∈ I, u ∈ Si, x ∈ Mi. (2.3)
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2.6 The quiver Qξ

The action of ξ ∈ Ξm/n on Aβ induces an action on its center Lβ by

µξ : b 7→ NmF/k(ξ) · b,

hence a permutation on I = Spec Lβ . We denote this permutation by i 7→ ξ(i). Let Qξ be the directed

graph with vertex set I and an arrow i → ξ(i) for each i ∈ I. Let E be the set of arrows of Qξ. Each

vertex i ∈ I is decorated by the division algebra Di.

In general, Qξ is a disjoint union of cycles of not necessarily the same size. In the special case where

k contains all (m/n)-th roots of unity, Lβ is Galois over k, and Qξ is a disjoint union of cycles of equal

size.

2.7 The H-module g(ξ)

Let e : i → ξ(i) be an arrow in Qξ. The automorphism µξ of Aβ restricts to an isomorphism Ai
∼→ Aξ(i),

hence a non-canonical isomorphism ηe : (Si)
ξ ∼= Sξ(i). Once we fix a choice of ηe, we get an isomorphism

η♭e : Di
∼= Dξ(i) by applying EndAβ

(−)opp to the source and target of ηe. Note that even when e is a

self loop at i = ξ(i), the automorphism η♭e of Di and even its restriction to the center Li may not be the

identity.

We have a decomposition of V ξ as an A-module using the maps ηe,

V ξ =
⊕
i∈I

(Si)
ξ ⊗Di Mi

∼=
⊕
i∈I

Sξ(i) ⊗Di Mi.

Here the action of Di on Sξ(i) is via the isomorphism η♭e for the arrow e : i → ξ(i). Hence

g(ξ) = HomAβ
(V ξ, V ) =

⊕
e:i→ξ(i)

HomDi(Mi,Mξ(i)), (2.4)

where the sum runs over all arrows e of Qξ. Here Mξ(i) is viewed as a Di-module via the isomorphism

η♭e.

Under the isomorphism (2.4), if φ ∈ HomAβ
(V ξ, V ) corresponds to (φe)e∈E on the right-hand side,

then

φ(u⊗ x) = ηe(u)⊗ φe(x), ∀ e : i → ξ(i), u ∈ Si, x ∈ Mi. (2.5)

To summarize, g(ξ) is the space of representations of the quiver Qξ (decorated by division algebras Di)

with a fixed dimension vector dimDi(Mi) at vertex i.

Example 2.4. Consider the case F = C((t)) and ζ acts on F by change of variables t 7→ ζnt for some

primitive n-th root of unity. Then k = C((τ)) where τ = tn. Without loss of generality, we may assume

β = tnr = τ r for some r ∈ Z. Then L = C((b))/(bm/n − τ r). Let ℓ = gcd(m/n, r). Then I can be

identified with µℓ, with Lϵ
∼= k[b]/(b

m
nℓ − ϵτ

r
ℓ ) for ϵ ∈ µℓ. We have Dϵ = Lϵ since there are no nontrivial

division algebras over Lϵ.

Let ξ be a primitive m-th root of unity in C. So we have ξ ∈ Ξm/n. The action of ξ on I = µℓ is via

multiplication by ξm/ℓ ∈ µℓ. In particular, Qξ is a single cycle of length ℓ, with the vertices decorated by

Lϵ
∼= C((τ nr

m )). In this case, we may rename the Mi (i ∈ I = µℓ) by M0,M1, . . . ,Mℓ−1 so that g(ξ) is the

space of representation of the following cyclic quiver over C((τ nr
m )):

M1
// · · ·

!!D
DD

DD
DD

DD

M0

<<xxxxxxxx
· · · .

}}{{
{{
{{
{{
{

Mℓ−1

bbFFFFFFFF
· · ·oo
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3 Polarized case

In this section we extend the results of the previous section from G = GLF (V ) to other classical groups.

We remark that even in the case G = GLF (V ), we have not covered all finite order automorphisms of G

in the previous section; only inner ones are considered. The outer ones will be covered as a special case

of the polarized setting in this section (see Example 3.1).

We continue with the setup in Subsection 1.3. For the rest of the paper we assume char(k) ̸= 2.

3.1 Involution

Let σ : F → F be an involution that commutes with ζ (σ maybe trivial). In particular, σ restricts to an

involution on k. For example, when n is even, we may take σ = ζn/2, in which case σ|k is trivial.

3.2 Polarization

Let ϵ ∈ {±1}. Let
⟨·, ·⟩ : V × V → F

be a non-degenerate pairing such that

(1) ⟨·, ·⟩ is F -linear in the first variable.

(2) ⟨x, y⟩ = ϵσ(⟨y, x⟩). (This implies that ⟨·, ·⟩ is (F, σ)-semilinear in the second variable.)

(3) ⟨θx, θy⟩ = cζ(⟨x, y⟩), for some c ∈ (F×)σ such that

NmF/k(c)
m/n = βσ(β). (3.1)

Let G = AutF/Fσ (V, ⟨·, ·⟩) ⊂ GLF/Fσ (V ); this is an algebraic group over Fσ. Let g = Lie G be

the Lie algebra over Fσ. When σ is trivial and ϵ = 1 (respectively, ϵ = −1), G is the full orthogonal

group (respectively, symplectic group) attached to (V, ⟨·, ·⟩). When σ is nontrivial, we may rescale ⟨·, ·⟩ to
reduce to the case ϵ = 1, in which case G is the unitary group attached to the Hermitian space (V, ⟨·, ·⟩).
By the property (3) of the pairing Ad(θ) preserves the subgroup G of GLF/Fσ (V ). Similarly, ad(θ) acts

on the Lie algebra g.

Example 3.1. Take F = k × k, and let ζ = σ be the swapping of two factors. In this case, we write

V = V0 ⊕ V1 for some k-vector spaces V0 and V1 using the idempotents in F . The pairing ⟨·, ·⟩ identifies
V1 as the k-linear dual V ∗

0 of V0. The automorphism θ of V sends V0 to V1 = V ∗
0 and V1 = V ∗

0 to V0. We

have G = GLk(V0), and Ad(θ) is an outer automorphism of G.

3.3 The problem

In the situation above, we try to understand the following in terms of quivers “with polarizations”:

(1) H := (RFσ/kσG)Ad(θ) as an algebraic group over kσ. Note that H(kσ) = {g ∈ AutF (V )|⟨gx, gy⟩ =
⟨x, y⟩, ∀x, y ∈ V ; gθ = θg}.

(2) Let ξ ∈ Ξm/n ∩ Fσ. Consider the kσ-vector space with H-action

g(ξ) := {φ ∈ EndF (V ) | θφθ−1 = ξφ, ⟨φx, y⟩+ ⟨x, φy⟩ = 0, ∀x, y ∈ V }.

If ξ /∈ Ξm/n ∩ Fσ, then the similarly defined g(ξ) is zero.

As in Subsection 2.3 we may describe H and g(ξ) using the Aβ-module structure on V :

(1) H = AutAβ/kσ (V, ⟨·, ·⟩).
(2) For ξ ∈ Ξm/n ∩ F σ,

g(ξ) = {φ ∈ HomAβ
(V ξ, V ) | ⟨φx, y⟩+ ⟨x, φy⟩ = 0, ∀x, y ∈ V }.

Let n′ = [F σ : kσ]. Note that n′ is either n or n/2 (the latter happens if and only if σ = ζn/2). When

n′ = n, θn is an F -linear automorphism of V satisfying

⟨θnx, θny⟩ = NmF/k(c)⟨x, y⟩, ∀x, y ∈ V.
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If n′ = n/2, then θn
′
is an (F, σ)-semilinear automorphism of V satisfying

⟨θn
′
x, θn

′
y⟩ = NmFσ/k(c)σ⟨x, y⟩, ∀x, y ∈ V.

In any case, Ad(θn
′
) gives an automorphism of G (over Fσ), and ad(θn

′
) gives an automorphism of g.

The following proposition describes the pair (H, g(ξ)) after base change to Fσ in terms of the Fσ-linear

action of θn
′
on G and g.

Proposition 3.2. We have canonical isomorphisms

HFσ ∼= GAd(θn′
),

g(ξ)⊗kσ Fσ ∼= {φ ∈ g | ad(θn
′
)φ = ξφ}

compatible with the natural actions of the first row on the second row.

Proof. We have an isomorphism Fσ⊗kσV ∼= V⊕V⊕· · ·⊕V (n′ factors) sending x⊗v to (ζi(x)v)06i6n′−1.

Under this isomorphism, idFσ ⊗ θ acts cyclically on the n′ factors, so that idFσ ⊗ θn
′
acts on each. The

pairing ⟨·, ·⟩ defines a pairing on the first factor of V , and determines the pairings on the rest by property

(3) of the pairing. An element g ∈ HFσ (respectively, φ ∈ g(ξ) ⊗kσ Fσ) is uniquely determined by its

action on the first factor of V , on which it has to commute with θn
′
.

3.4 Duality for Aβ-modules

Let U be an Aβ-module which is finite-dimensional over F . Let U∗ = HomF (U,F ) be the F -linear dual

of U . Let U♢ be U∗ with the action of F twisted by σ, i.e., for a ∈ F , u∗ ∈ U♢ = U∗ and u ∈ U ,

(a · u∗, u) = σ(a)(u∗, u), where (u∗, u) denotes the canonical pairing between U∗ and U . We define an

Aβ-module structure on U♢ by requiring the action of θ to be (F, ζ)-semilinear and satisfy

(θu∗, u) = cζ(u∗,θ−1u), ∀u ∈ U, u∗ ∈ U♢.

One readily checks that θmu∗ = NmF/k(c)
m/nβ−1u∗ = σ(β)u∗ under the (old) F -action on U∗, and

hence θmu∗ = β · u∗ under the (new) F -action on U♢.

The assignment U 7→ U♢ gives a contravariant auto-equivalence on the category of finite-dimensional

Aβ-modules. On morphisms, it sends f : U → W to the transpose f∨ : W♢ = W ∗ → U∗ = U♢.

We have a canonical isomorphism of Aβ-modules U ∼= (U♢)♢ given by sending u ∈ U to the (F, σ)-

semilinear function u∗ 7→ σ(u∗, u) on u∗ ∈ U∗ (which is the same as an F -linear function on U♢).

For ξ ∈ Ξm/n (so that the twisting functor (−)ξ on Aβ-modules is defined as in Subsection 2.2), we

have a canonical isomorphism

(Uξ)♢ ∼= (U♢)σ(ξ)
−1

, (3.2)

which is the identity on the underlying F -vector spaces.

3.5 Involution on the quiver

We continue to use the notation Lβ , I, Qξ, ξ introduced in Subsections 2.4 and 2.6.

Let σc : Lβ → Lβ be the involution that is σ on k and σc(b) = NmF/k(c)b
−1. The relation (3.1) implies

that σc is a well-defined ring automorphism. It induces an involution on the set I = Spec Lβ which we

denote by i 7→ i♢. In other words σc restricts to an isomorphism Li
∼= Li♢ . For ξ ∈ Ξm/n ∩ Fσ, direct

calculation shows that σc ◦ µξ ◦ σc = µξ−1 as automorphisms of Lβ . Therefore the involution (−)♢ on I

reverses the arrows of the quiver Qξ.

3.6 Pairing between simple Aβ-modules

The involution U 7→ U♢ on Aβ-modules induces an involution on the set of isomorphism classes of simple

Aβ-modules. In particular, for each i ∈ I, S♢
i is a simple Aβ-module isomorphic to Si♢ by comparing
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the actions of Lβ . For each i, an isomorphism of Aβ-modules αi : S
♢
i

∼= Si♢ is the same data as a perfect

pairing

⟨·, ·⟩i : Si × Si♢ → F (3.3)

satisfying

(1) ⟨·, ·⟩i is F -linear in the first variable and (F, σ)-semilinear in the second variable.

(2) ⟨θu,θv⟩i = cζ(⟨u, v⟩i).
Indeed, αi determines the pairing ⟨·, ·⟩i characterized by ⟨u, αi(u

∗)⟩i = (u∗, u), for u ∈ Si, u
∗ ∈ S♢

i = S∗
i .

Conversely, any pairing ⟨·, ·⟩i as above induces a map Si♢ → S∗
i = S♢

i which is F -linear by first property

and intertwines the θ-action by the second. In particular, any nonzero pairing ⟨·, ·⟩i satisfying (1) and

(2) above must be a perfect pairing. We call a pairing as in (3.3) satisfying (1) and (2) above admissible.

Let ⟨·, ·⟩i be a perfect admissible pairing Si×Si♢ → F . For each d ∈ Di, there is a unique δi(d) ∈ Di♢

such that

⟨ud, v⟩i = ⟨u, vδi(d)⟩, ∀u ∈ Si, v ∈ Si♢ . (3.4)

Here we write the action of Di = EndAβ
(Si)

opp on Si as right multiplication. The assignment d 7→ δi(d)

defines a (k, σ)-semilinear isomorphism of algebras

δi : Di → Dopp
i♢

,

which restricts to σc : Li
∼= Li♢ on the centers. Note that δi depends on the choice of the admissible

pairing ⟨·, ·⟩i.
When i = i♢, an admissible pairing ⟨·, ·⟩i : Si × Si → F is called Hermitian if it satisfies ⟨v, u⟩i =

σ(⟨u, v⟩i) for all u, v ∈ Si. It is called skew-Hermitian if it satisfies ⟨v, u⟩i = −σ(⟨u, v⟩i) for all u, v ∈ Si.

Lemma 3.3. Suppose i = i♢. Then one of the following happens:

(1) There exists a perfect Hermitian admissible pairing on Si.

(2) All admissible pairings on Si are skew-Hermitian. This can only happen when Di = Li, σc|Li = id

and σ ̸= idF (in particular, σ = ζn/2 and b2i = NmF/k(c)).

Proof. Start with any nonzero admissible pairing (u, v) 7→ ⟨⟨u, v⟩⟩ on Si. Then (u, v) 7→ σ⟨⟨v, u⟩⟩ is

another admissible pairing. Therefore, if ⟨⟨u, v⟩⟩ + σ⟨⟨v, u⟩⟩ is not identically zero, it gives a perfect

Hermitian admissible pairing.

Now suppose a perfect Hermitian admissible pairing on Si does not exist. This means ⟨⟨u, v⟩⟩ +
σ⟨⟨v, u⟩⟩ = 0 for any u, v ∈ Si and any admissible pairing ⟨⟨·, ·⟩⟩ on Si. In other words, all admissible

pairings on Si are skew-Hermitian. Pick any perfect skew-Hermitian admissible pairing ⟨·, ·⟩i on Si. Let

δi : Di
∼→ Dopp

i be the corresponding isomorphism characterized by (3.4). For d ∈ Di, the pairing

⟨u, v⟩d := ⟨ud, v⟩i is also admissible, hence also skew-Hermitian. Then we have σ⟨ud, v⟩i = σ⟨u, v⟩d =

−⟨v, u⟩d = −⟨vd, u⟩i = −⟨v, uδi(d)⟩i = σ⟨uδi(d), v⟩i for all u, v ∈ Si, hence δi(d) = d for all d ∈ Di. In

this case, Di must be commutative since δi is an anti-automorphism of Di. Hence Di = Li. Since δi
restricts to σc on Li, we must have σc|Li = id.

It remains to show that σ ̸= idF when the above situation happens. Suppose in contrary that σ = idF ,

then ⟨·, ·⟩i is skew-symmetric, hence ⟨u, u⟩i = 0 for any u ∈ Si. Moreover, ⟨(a⊗ ℓ)u, u⟩i = aℓ⟨u, u⟩ = 0

for any a ∈ F, ℓ ∈ Li. Since Di = Li, we have Ai
∼= Mn(Li) and F ⊗kLi is maximal abelian subalgebra in

Ai. Hence Si is a rank one free F ⊗k Li-module. If we choose u ∈ Si generating Si as an F ⊗kLi-module,

then ⟨Si, u⟩i = 0, contradicting the fact that ⟨·, ·⟩i is a perfect pairing. This finishes the argument.

3.7 Choice of admissible pairings

For the rest of the section, for each i = i♢ we fix a perfect Hermitian admissible pairing ⟨·, ·⟩i on Si if

there exists one; otherwise we fix a perfect skew-Hermitian admissible pairing ⟨·, ·⟩i on Si. Moreover, for

i ̸= i♢, we choose perfect admissible pairings ⟨·, ·⟩i and ⟨·, ·⟩i♢ such that

⟨v, u⟩i♢ = σ(⟨u, v⟩i), ∀u ∈ Si, v ∈ Si♢ . (3.5)
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By our choice, for each i ∈ I, there is a sign ϵi ∈ {±1} such that

⟨v, u⟩i♢ = ϵiσ(⟨u, v⟩i), ∀u ∈ Si, v ∈ Si♢ . (3.6)

Moreover, the case ϵi = −1 can happen only in the situation (2) of Lemma 3.3.

Define δi : Di
∼→ Dopp

i♢
using the chosen ⟨·, ·⟩i as in Subsection 3.6. The property (3.6) implies

δi♢ ◦ δi = idDi .

In particular, for i = i♢, δi is an anti-involution on Di.

Lemma 3.4. There is a unique pairing

{·, ·}′i : Mi ×Mi♢ → Di

characterized by the following property:

⟨u⊗ x, v ⊗ y⟩ = ⟨u{x, y}′i, v⟩i, ∀u ∈ Si, v ∈ Si♢ , x ∈ Mi, y ∈ Mi♢ . (3.7)

Moreover, the pairing {·, ·}′i satisfies the following identities for all x ∈ Mi, y ∈ Mi♢ and d ∈ Di:

{dx, y}′i = d{x, y}′i, (3.8)

{x, δi(d)y}′i = {x, y}′id, (3.9)

{y, x}′i♢ = ϵϵiδi({x, y}′i) (3.10)

(indeed (3.9) follows from (3.8) and (3.10)).

Proof. For fixed u ∈ Si, x ∈ Mi and y ∈ Mi♢ , the assignment v 7→ ⟨u⊗ x, v ⊗ y⟩ is an (F, σ)-semilinear

function Si♢ → F , and therefore can be written as v 7→ ⟨u′, v⟩i for a unique u′ ∈ Si. The assignment

u 7→ u′ gives an F -linear endomorphism of Si. We claim that u 7→ u′ is moreover Aβ-linear. Indeed, it

is enough to check ⟨θu⊗ x, v ⊗ y⟩ = ⟨θu′, v⟩i, which follows by comparing the property (3) of ⟨·, ·⟩ and

the property (2) of ⟨·, ·⟩i. Since u 7→ u′ is Aβ-linear, there is a unique d ∈ Di such that u′ = ud for all

u ∈ Si. We then define {x, y}′i = d ∈ Di. The properties (3.8) and (3.9) are easy to verify by using (3.4).

The property (3.10) is verified by using the property (2) of the pairing ⟨·, ·⟩ on V and the property (3.6)

of the pairings ⟨·, ·⟩i.

Definition 3.5. Let {·, ·}i be the Li-valued pairing

{·, ·}i : Mi ×Mi♢ → Li

(x, y) 7→ TrdDi/Li
{x, y}′i,

where TrdDi/Li
: Di → Li is the reduced trace.

Remark 3.6. The Di-valued pairing {·, ·}′i satisfying (3.8) can be recovered from the Li-valued pairing

{·, ·}i. Indeed, {x, y}′i is the unique element z ∈ Di such that TrdDi/Li
(dz) = {dx, y}i for all d ∈ Di.

Corollary 3.7 (The corollary of Lemma 3.4). The pairing {·, ·}i is Li-linear in the first variable and

(Li, σc)-semilinear in the second variable, and

{y, x}i♢ = ϵϵiσc({x, y}i), ∀x ∈ Mi, y ∈ Mi♢ .

Lemma 3.8. Let g ∈ AutAβ
(V ) correspond to a family of automorphisms gi ∈ AutDi(Mi) under (2.2).

Then g preserves the form ⟨·, ·⟩ on V if and only if for all i ∈ I,

{x, y}i = {gi(x), gi♢(y)}i, ∀x ∈ Mi, y ∈ Mi♢ . (3.11)

Proof. By (2.3), for u ∈ Si, v ∈ Si♢ , x ∈ Mi and y ∈ Mi♢ , we have

⟨g(u⊗ x), g(v ⊗ y)⟩ = ⟨u⊗ gi(x), v ⊗ gi♢(y)⟩ = ⟨u{gi(x), gi♢(y)}′i, v⟩i.

Comparing with (3.7) we get {x, y}′i = {gi(x), gi♢(y)}′i. By Remark 3.6, this is equivalent to (3.11).
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After fixing the admissible pairings between the simple Aβ-modules, we are going to choose a family

of Aβ-module isomorphisms ηe : S
ξ
i → Sξ(i) for each arrow e : i → ξ(i) of Qξ.

Let e : i → ξ(i) be an arrow in Qξ such that e = e♢, i.e., ξ(i) = i♢ (the case i = i♢ is allowed). Note

that in this case σcξ−1 : b 7→ NmF/k(cξ
−1)b−1 is an automorphism of Li.

An isomorphism of Aβ-modules ηe : Sξ
i

∼→ Sξ(i) = Si♢ is called self-adjoint if ⟨u, ηe(v)⟩i = σ⟨v, ηe(u)⟩i
for all u, v ∈ Si = Sξ

i ; ηe is called skew-self-adjoint if ⟨u, ηe(v)⟩i = −σ⟨v, ηe(u)⟩i for all u, v ∈ Si = Sξ
i .

Lemma 3.9. Let e : i → ξ(i) be an arrow in Qξ such that e = e♢. Then one of the following happens:

(1) There exists a self-adjoint Aβ-linear isomorphism ηe : S
ξ
i

∼→ Sξ(i) = Si♢ .

(2) All elements in HomAβ
(Sξ

i , Si♢) are skew-self-adjoint. This can only happen when Di = Li,

σcξ−1 |Li = id and σ ̸= idF (in particular, σ = ζn/2 and b2i = NmF/k(cξ
−1)).

Proof. The argument is similar to that of Lemma 3.3. For any Aβ-linear map η : Sξ
i → Sξ(i), define

η∗ : Sξ
i → Sξ(i) by requiring ⟨u, η(v)⟩i = σ⟨v, η∗(u)⟩i for all u, v ∈ Si. Then η∗ is also Aβ-linear, and

η∗∗ = η. If η + η∗ is nonzero, it gives a self-adjoint isomorphism.

Now suppose a self-adjoint η does not exist. This implies η + η∗ = 0 for all η ∈ HomAβ
(Sξ

i , Si♢),

i.e., all η are skew-self-adjoint. Fix a skew-self-adjoint isomorphism ηe : Sξ
i

∼→ Si♢ . For any d ∈ Di,

u 7→ ηe(ud) again belongs to HomAβ
(Sξ

i , Si♢), hence it is also skew-self-adjoint. Therefore, for u, v ∈ Si,

⟨u, ηe(v)η♭e(d)⟩i = ⟨u, ηe(vd)⟩i = −σ⟨v, ηe(ud)⟩i = ⟨ud, ηe(v)⟩i = ⟨u, ηe(v)δi(d)⟩i. Hence η♭e = δi as maps

Di → Di♢ . Since η♭e is an algebra isomorphism while δi is an anti-isomorphism, we conclude that Di

is commutative hence Di = Li. Moreover, µξ|Li = η♭e|Li = δi|Li = σc|Li , which implies σcξ−1 |Li = id.

Finally, to rule out the case σ = idF , we use the same argument as in Lemma 3.3. By skew-self-adjointness

we have ⟨auℓ, ηe(u)⟩i = 0 for all a ∈ F, ℓ ∈ Li and u ∈ Si; choosing u to be a generator of the rank one

F ⊗k Li-module Si we get ⟨Si, ηe(u)⟩i = 0 which is a contradiction.

3.8 Choice of the isomorphisms ηe

Next, for each arrow e : i → i♢ in Qξ, we fix an isomorphisms of Aβ-modules

ηe : S
ξ
i

∼→ Sξ(i)

as follows. If e ̸= e♢ (say e : i → ξ(i), e♢ : ξ(i)♢ → i♢), then we choose ηe and ηe♢ so that

σ⟨v, ηe(u)⟩ξ(i)♢ = ⟨u, ηe♢(v)⟩i, ∀u ∈ Si, v ∈ Sξ(i)♢ .

If e = e♢, we choose ηe to be self-adjoint if there exists one; otherwise we choose ηe to be skew-self-adjoint.

By our choice, for each arrow e there is a sign ϵe ∈ {±1} such that

σ⟨v, ηe(u)⟩ξ(i)♢ = ϵe⟨u, ηe♢(v)⟩i, ∀u ∈ Si, v ∈ Sξ(i)♢ . (3.12)

Moreover, ϵe = −1 can only happen in the situation (2) of Lemma 3.9.

Lemma 3.10. Let φ ∈ HomAβ
(V ξ, V ) correspond to a family of maps φe ∈ HomDi

(Mi,Mξ(i)) for

each arrow e : i → ξ(i) in Qξ (see (2.4)). Then φ ∈ g(ξ) if and only if for each arrow e : i → ξ(i),

{y, φe(x)}ξ(i)♢ + ϵϵeσcξ−1({x, φe♢(y)}i) = 0, ∀x ∈ Mi, y ∈ Mξ(i)♢ . (3.13)

Proof. The map φ lies in g(ξ) if and only if

⟨φ(u⊗ x), v ⊗ y⟩+ ⟨u⊗ x, φ(v ⊗ y)⟩ = 0, ∀ i ∈ I, u ∈ Si, x ∈ Mi, v ∈ Sξ(i)♢ , y ∈ Mξ(i)♢ . (3.14)

Let e : i → ξ(i) so that e♢ : ξ(i)♢ → i♢. We have by (2.5) and (3.7),

⟨φ(u⊗ x), v ⊗ y⟩ = ⟨ηe(u)⊗ φe(x), v ⊗ y⟩ξ(i) = ⟨ηe(u){φe(x), y}′ξ(i), v⟩ξ(i). (3.15)
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By (3.6) the above is equal to ϵξ(i)⟨v, ηe(u){φe(x), y}′ξ(i)⟩ξ(i)♢ . Hence

⟨φ(u⊗ x), v ⊗ y⟩ = ϵξ(i)⟨v, ηe(u){φe(x), y}′ξ(i)⟩ξ(i)♢ . (3.16)

On the other hand, by (2.5), and (3.7),

⟨u⊗ x, φ(v ⊗ y)⟩ = ⟨u⊗ x, ηe♢(v)⊗ φe♢(y)⟩i = ⟨u{x, φe♢(y)}′i, ηe♢(v)⟩i.

By (3.12) and the definition of η♭e, we have

⟨u{x, φe♢(y)}′i, ηe♢(v)⟩i = ϵeσ⟨v, ηe(u{x, φe♢(y)}′i)⟩ξ(i)♢ = ϵeσ⟨v, ηe(u)η♭e({x, φe♢(y)}′i)⟩ξ(i)♢ .

Therefore

⟨u⊗ x, φ(v ⊗ y)⟩ = ϵe⟨v, ηe(u)η♭e({x, φe♢(y)}′i)⟩ξ(i)♢ . (3.17)

Plugging (3.16) and (3.17) into (3.14), we get

ϵξ(i)⟨v, ηe(u){φe(x), y}′ξ(i)⟩ξ(i)♢ + ϵe⟨v, ηe(u)η♭e({x, φe♢(y)}′i)⟩ξ(i)♢ = 0

for all u ∈ Si, v ∈ Sξ(i)♢ , which is equivalent to

ϵξ(i){φe(x), y}′ξ(i) + ϵeη
♭
e({x, φe♢(y)}′i) = 0, ∀x ∈ Mi, y ∈ Mξ(i)♢ . (3.18)

By (3.10) we have

ϵξ(i){φe(x), y}′ξ(i) = ϵδξ(i)({y, φe(x)}′ξ(i)♢), (3.19)

hence (3.18) is equivalent to

ϵδξ(i)({y, φe(x)}′ξ(i)♢) + ϵeη
♭
e({x, φe♢(y)}′i) = 0. (3.20)

Taking reduced trace and using σc ◦ µξ = σcξ−1 : Li
∼→ Lξ(i)♢ we get (3.13), which is equivalent to (3.20)

by Remark 3.6.

The above lemma motivates the following definition.

Definition 3.11. For an arrow e : i → i♢ fixed by (−)♢, and a sign ϵ′ ∈ {±1}, we define hϵ′(Mi,Mi♢)

to be the set of maps φi : Mi → Mi♢ such that

φ(dx) = η♭e(d)φ(x), {y, φ(x)}i = ϵ′σcξ−1({x, φ(y)}i), ∀ d ∈ Di, x ∈ Mi, y ∈ Mi♢ .

3.9 Shape of Qξ with involution

Each connected component of Qξ is a directed cycle. Let Π be the set of connected components of Qξ.

The involution (−)♢ induces an involution on Π. Let Π be the set of orbits of Π under (−)♢. For

α ∈ Π, let Qα
ξ be the union of the components contained in α. Note that #α equals 1 or 2. We have a

decomposition

Qξ =
⨿
α∈J

Qα
ξ .

Corresponding to this decomposition, we have

H =
∏
α∈Π

Hα; g(ξ) =
⊕
α∈Π

g(ξ)α

such that Hα acts on g(ξ)α.

The directed graph Qα
ξ (α ∈ J) with involution (−)♢ takes one of the follow shapes:
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(CC-ℓ) Qα
ξ is a disjoint union of two direct cycles with (−)♢ mapping one to the other. We label the

vertices by 1, . . . , ℓ, 1♢, . . . , ℓ♢ as follows (ℓ > 1):

1 // 2 // · · ·

��

ℓ♢ // (ℓ− 1)♢ // · · ·

��
ℓ

OO

(ℓ− 1)oo · · ·oo 1♢

OO

2♢oo · · · .oo

(VV-ℓ) Qα
ξ is a directed cycle with two distinct vertices and no arrow fixed by (−)♢. We label the

vertices as follows so that 0 and ℓ are fixed by (−)♢ (ℓ = 0 is allowed):

1 // · · · // (ℓ− 1)

%%KK
KKK

KKK
K

0 = 0♢

;;xxxxxxxxx
ℓ = ℓ♢.

yysss
sss

sss
s

1♢

ccFFFFFFFFF
· · ·oo (ℓ− 1)♢oo

(VE-ℓ) Qα
ξ is a directed cycle with exactly one vertex and one arrow fixed by (−)♢. We label the

vertices as follows so that 0 = 0♢ and e : ℓ → ℓ♢ is fixed by (−)♢ (ℓ = 0 is allowed):

1 // · · · // ℓ

e

��

0 = 0♢

;;wwwwwwwww

1♢

ccGGGGGGGGG
· · ·oo ℓ♢.oo

(EE-ℓ) Qα
ξ is a directed cycle with no vertex and exactly two arrows fixed by (−)♢. We label the

vertices as follows so that e : 1♢ → 1 and e′ : ℓ → ℓ♢ are fixed by (−)♢ (ℓ = 1 is allowed):

1 // · · · // ℓ

e′

��
1♢

e

OO

· · ·oo ℓ♢.oo

Our convention is such that in the cases (CC-ℓ), (VV-ℓ), and (EE-ℓ) the graph Qα
ξ has 2ℓ vertices, while

in the case (VE-ℓ) it has 2ℓ+ 1 vertices.

3.10 The contragredient action

For i ∈ I and g ∈ AutDi(Mi), we define g∗ ∈ AutD
i♢
(Mi♢) so that

{gx, y}i = {x, g∗y}i, ∀x ∈ Mi, y ∈ Mi♢ .

The assignment g 7→ g∗,−1 defines an isomorphism of algebraic groups

GLDi/kσ (Mi) ∼= GLD
i♢/kσ (Mi♢).

For each α ∈ Π, Lemmas 3.8 and 3.10 give a description of Hα and g(ξ)α in each case classified in

Subsection 3.9. We summarize our results so far in the following theorem.
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Theorem 3.12. The isomorphism type of the directed graph Qξ together with the involution (−)♢ on

it depends only on (k, σ|k, β,NmF/k(c),NmF/k(ξ)).

For each α ∈ Π, the pair (Hα, g(ξ)α) is described as follows according to the shape of Qα
ξ :

(1) If Qα
ξ is of shape (CC-ℓ), then

Hα ∼=
ℓ∏

i=1

GLDi/kσ (Mi),

g(ξ)α ∼=
ℓ⊕

i=1

HomDi(Mi,Mi+1).

Here Mℓ+1 = M1, and Mi+1 is viewed as a Di-module by η♭e : Di
∼= Di+1 (where e is the arrow i → i+1).

The factors GLDi/kσ (Mi) and GLDi+1/kσ (Mi+1) act on HomDi(Mi,Mi+1) by (gi, gi+1)·φ = gi+1◦φ◦g−1
i .

(2) If Qα
ξ is of shape (VV-ℓ), then

Hα ∼= AutD0/kσ (M0, {·, ·}0)×
ℓ−1∏
i=1

GLDi/kσ (Mi)×AutDℓ/kσ (Mℓ, {·, ·}ℓ),

g(ξ)α ∼=
ℓ−1⊕
i=0

HomDi(Mi,Mi+1).

The action of Hα on g(ξ)α is as explained in the case (CC-ℓ), by viewing Hα as a subgroup of∏ℓ
i=0 GLDi/kσ (Mi).

(3) If Qα
ξ is of shape (VE-ℓ), then

Hα ∼= AutD0/kσ (M0, {·, ·}0)×
ℓ∏

i=1

GLDi/kσ (Mi),

g(ξ)α ∼=
( ℓ−1⊕

i=0

HomDi(Mi,Mi+1)

)
⊕ h−ϵϵe(Mℓ,Mℓ♢).

The action of Hα on HomDi(Mi,Mi+1) is as explained in the case (CC-ℓ), viewing AutD0/kσ (M0, {·, ·}0)
as a subgroup of GLD0/kσ (M0). The action of GLDℓ/kσ (Mℓ) on h−ϵϵe(Mℓ,Mℓ♢) is induced from its

natural action on Mℓ and the contragredient action on Mℓ♢ given by g 7→ g∗,−1 (see Subsection 3.10).

(4) If Qα
ξ is of shape (EE-ℓ), then

Hα ∼=
ℓ∏

i=1

GLDi/kσ (Mi),

g(ξ)α ∼= h−ϵϵe(M1♢ ,M1)⊕
( ℓ−1⊕

i=1

HomDi(Mi,Mi+1)

)
⊕ h−ϵϵe′ (Mℓ,Mℓ♢).

The action of Hα on HomDi(Mi,Mi+1) is as explained in the case (CC-ℓ). The action of GLDℓ/kσ (M1)

on h−ϵϵe(M1♢ ,M1) and the action of GLDℓ/kσ (Mℓ) on h−ϵϵe′ (Mℓ,Mℓ♢) are as explained in the (VE-ℓ)

case.

Here is a more precise description of the factors AutDi/kσ (Mi, {·, ·}i) that appear in H in the above

theorem. The statement follows immediately from Corollary 3.7.

Proposition 3.13. Let i = i♢ be a vertex in Qξ. Then

(1) If σ = idF and σc|Li = id, then AutDi/kσ (Mi, {·, ·}i) is an orthogonal group (respectively, sym-

plectic group) when ϵ = 1 (respectively, ϵ = −1).

(2) If σ ̸= idF and σc|Li = id (in particular, σ|k = id, hence σ = ζn/2), then AutDi/kσ (Mi, {·, ·}i) is

either an orthogonal or a symplectic group.

(3) If σc|Li ̸= id, then AutDi/kσ (Mi, {·, ·}i) is a unitary group.
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Proof. The map g 7→ g∗ defined in Subsection 3.10 is an anti-involution on EndDi(Mi). When σc|Li =

id, it is an involution of the first kind; when σc|Li ̸= id, it is an involution of the second kind. Therefore

in the former case the corresponding isometry group is an orthogonal or symplectic group, while in the

latter case it is a unitary group. This proves (2) and (3).

It remains to show in the case (1), the type ofAutDi/kσ (Mi, {·, ·}i) is the same as that of G. We already

know that AutDi/kσ (Mi, {·, ·}i) is either an orthogonal or a symplectic group. By Proposition 3.2, HF

is the fixed point subgroup of G (orthogonal or symplectic) under Ad(θn). Hence the simple factors of

HF = GAd(θn) are either of type A or of the same type as G. Therefore AutDi/kσ (Mi, {·, ·}i) has the

same type as G.

4 Loop Lie algebras of classical type

In this section we continue with the setup in Section 3. We specialize to the case k = C((τ)). Then F

is a finite separable k-algebra with Autk(F ) ∼= Z/nZ but we do not require F to be a field. We write

γ = NmF/k(c) ∈ k×. Let valτ : k× → Z be the valuation such that valτ (τ) = 1.

The isomorphism type of (Qξ, (−)♢) depends only on (k, σ|k, β, γ,NmF/k(ξ)) according to Theo-

rem 3.12. In the following we assume NmF/k(ξ) ∈ µm/n(C) to be primitive. We describe in more

details the shape of (Qξ, (−)♢) as well as the factors in H and g(ξ). The situation simplifies because

there are no nontrivial division algebras over Li in this case, therefore Di = Li for all i ∈ I.

4.1 The case σ|k = id

In this case γm/n = β2. We distinguish two cases according to the parity of m/n.

4.1.1 m/n is odd

In this case, valτ (β) is divisible by m/n hence bm/n = β has m/n distinct solutions in k, i.e., L splits

into m/n-factors of k (all Li = k). The graph Qξ is a single cycle of length m/n. Since m/n is odd, it

must be of type (VE).

The unique vertex i = i♢ corresponds to the unique bi ∈ k such that b2i = γ and b
m/n
i = β. In

particular, σc|Li = id. The factor Autk(Mi, {·, ·}i) in H is either an orthogonal group or a symplectic

group over k. When σ|F = id, we have ϵi = 1 by Lemma 3.3, hence Autk(Mi, {·, ·}i) is an orthogonal

group if ϵ = 1 and a symplectic group if ϵ = −1.

The unique arrow e : j → j♢ fixed by (−)♢ corresponds to the unique bj ∈ k such that b2j =

γNmF/k(ξ
−1) and b

m/n
j = β. The factor h−ϵϵe(Mj ,Mj♢) in g(ξ) is isomorphic to either ∧2(Mj♢) or

Sym2(Mj♢). When σ|F = id, we have ϵe = 1 by Lemma 3.9, hence h−ϵϵe(Mj ,Mj♢) is ∧2(Mj♢) if ϵ = 1

and Sym2(Mj♢) if ϵ = −1.

4.1.2 m/n is even

In this case we have β = ±γm/2n. Whether or not bm/n = β has a solution in k depends on the parity of

valτ (γ).

• When valτ (γ) is even, L splits into m/n factors of Li = k. The graph Qξ is a single cycle of length

m/n. We have two subcases:

(1) When β = γm/2n, then Qξ is of type (VV). Let i, i′ ∈ I be the two vertices fixed by (−)♢. Since

σc|Li = id and σc|Li′ = id, the factor of H corresponding to i or i′ is either an orthogonal group or a

symplectic groups (when σ = idF it is the former if ϵ = 1 and the latter if ϵ = −1).

(2) When β = −γm/2n, then Qξ is of type (EE). The factor in g(ξ) corresponding to any arrow

e : i → i♢ fixed by (−)♢ is isomorphic to either ∧2(Mi♢) or Sym
2(Mi♢) (when σ = idF it is the former

if ϵ = 1 and the latter if ϵ = −1).
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• When valτ (γ) is odd. In this case L splits into a product of fields Li where each Li is isomorphic

to the unique quadratic extension of k. The graph Qξ is a single cycle of length m/2n. We have four

subcases:

(1) When m/2n is odd and β = γm/2n, then Qξ is of type (VE). The vertex i = i♢ corresponds to

b2i = γ, and σc|Li = id. The factor AutLi/k(Mi, {·, ·}i) is the Weil restriction of an orthogonal group or

symplectic group over Li (when σ = idF it is the former if ϵ = 1 and the latter if ϵ = −1). The edge

e : j → j♢ fixed by (−)♢ corresponds to b2j = −γNmF/k(ξ
−1), hence σcξ−1 |Lj

̸= id. The corresponding

factor h−ϵϵe(Mj ,Mj♢) is isomorphic to the space of Lj/k-Hermitian forms on Mj .

(2) When m/2n is odd and β = −γm/2n, then Qξ is of type (VE). The vertex i = i♢ corresponds

to b2i = −γ, and σc|Li ̸= id. The factor AutLi/k(Mi, {·, ·}i) is a unitary group over k. The edge

e : j → j♢ fixed by (−)♢ corresponds to b2j = γNmF/k(ξ
−1), hence σcξ−1 |Lj = id. The corresponding

factor h−ϵϵe(Mj ,Mj♢) is isomorphic to either ∧2
L

j♢
(Mj♢) or Sym

2
L

j♢
(Mj♢) (when σ = idF it is the former

if ϵ = 1 and the latter if ϵ = −1).

(3) When m/2n is even and β = γm/2n, then Qξ is of type (VV). One vertex i = i♢ corresponds to

b2i = γ, and σc|Li = id. The factor AutLi/k(Mi, {·, ·}i) is the Weil restriction of an orthogonal group

or symplectic group over Li (when σ = idF it is the former if ϵ = 1 and the latter if ϵ = −1). Another

vertex i′ = i′♢ corresponds to b2i′ = −γ, and σc|Li′ ̸= id. The factor AutLi′/k
(Mi′ , {·, ·}i′) is a unitary

group over k.

(4) When m/2n is even and β = −γm/2n, then Qξ is of type (EE). One arrow e = e♢ : i → i♢ corre-

sponds to b2i = γNmF/k(ξ
−1), and σcξ−1 |Li

= id. The factor h−ϵϵe(Mi,Mi♢) is isomorphic to ∧2
L

i♢
(Mi♢)

or Sym2
L

i♢
(Mi♢) (when σ = idF it is the former if ϵ = 1 and the latter if ϵ = −1). Another arrow

e′ = e′♢ : i′ → i′♢ corresponds to b2i = −γNmF/k(ξ
−1), and σcξ−1 |Li ̸= id. The factor h−ϵϵe(Mi′ ,Mi′♢) is

isomorphic to the space of Li/k-Hermitian forms on Mi′ .

4.2 The case σ|k ̸= id

We have kσ = C((τ2)). Since c ∈ Fσ hence γ ∈ kσ, valτ (γ) is always even. We have γm/n = βσ(β), which

implies that valτ (β) is divisible by m/n. Hence L splits into m/n factors of k. The graph Qξ is a single

cycle of length m/n. We distinguish two cases according to the parity of m/n.

4.2.1 m/n is odd

In this case Qξ is of type (VE).

The unique vertex i = i♢ corresponds to the unique bi ∈ k such that b2i = γ and b
m/n
i = β. Since

σc|Li ̸= id, the factor Autk(Mi, {·, ·}i) in H is either an orthogonal group or a symplectic group over k.

The unique arrow e : j → j♢ fixed by (−)♢ corresponds to the unique bj ∈ k such that b2j =

γNmF/k(ξ
−1) and b

m/n
j = β. Since σcξ−1 |Lj ̸= id, the factor h−ϵϵe(Mj ,Mj♢) in g(ξ) is isomorphic to the

space of k/kσ-Hermitian forms on Mj .

4.2.2 m/n is even

In this case Qξ is of types (VV) or (EE) according to whether the equations

bσ(b) = γ, bm/n = β (4.1)

have a common solution in k×.

• If the equations (4.1) have a common solution in k×, then Qξ is of type (VV). In this case, the two

vertices i, i′ fixed by (−)♢ correspond to two solutions bi, bi′ = −bi to (4.1). The corresponding factors

in H are unitary groups over kσ.

• If the equations (4.1) do not have a common solution in k×, then Qξ is of type (EE). In this case,

the two arrows e : i → i♢, e′ : i′ → i′♢ fixed by (−)♢ correspond to two solutions bi, bi′ = −bi to the

system of equations

bσ(b) = γNmF/k(ξ
−1), bm/n = β.
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The corresponding factors in g(ξ) are isomorphic to the space of k/kσ-Hermitian forms on Mi and Mi′ .
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