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Abstract
We define and study cocycles on a Coxeter group in each degree generalizing the 
sign function. When the Coxeter group is a Weyl group, we explain how the degree 
three cocycle arises naturally from geometric representation theory.
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1  Introduction

Throughout these notes, we fix a Coxeter group (W,  S) with length function 
| ⋅ | ∶ W → ℤ≥0 . The group homomorphism � ∶ W → {±1} given by w ↦ (−1)|w| is 
called the sign for W. The sign of W can be viewed as a 1-cocycle of W valued in the 
group {±1} ≅ �2 . In these notes, for every positive integer n, we define and study a 
canonical n-cocycle of W valued in ℤ or �2 depending on the parity of n.

The main result is the following:

1.1 Theorem  Let (W, S) be a Coxeter group. For any even (resp. odd) integer n ≥ 1 , 
there is a unique n-cocycle �W

n
∈ Zn(W,ℤ) (resp. �W

n
∈ Zn(W, �2) ) satisfying two 

conditions

(1)	 If n ≥ 2 and (x1, x2,… , xn) ∈ Wn satisfy |xixi+1| = |xi| + |xi+1| for some 
1 ≤ i ≤ n − 1 , then �W

n
(x1,… , xn) = 0.

(2)	 For any s ∈ S , �W
n
(s, s,… , s) = 1.
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We will construct a cocycle universal among those satisfying the first condition 
above (called collapsing) (see §2.9). We will give formulas for computing these 
cocycles in §3.

We will study �W
3

 in more detail and explain how �W
3

 shows up naturally in geo-
metric representation theory when W is a finite Weyl group (see §4). It is natural to 
ask the following:

1.2 Question  Do the higher cocycles �W
n

 ( n ≥ 4 ) show up in geometric representa-
tion theory (e.g., Hecke categories)?

1.3 Notation  For a set X, ℤ[X] denotes the free abelian group with basis {[x] | x ∈ X}.
For an integer n, we denote

When W is a Weyl group, we adopt the following notation: Let G be a semisimple 
group over an algebraically closed field k with a Borel subgroup B and a maximal 
torus T ⊂ B such that the corresponding Weyl group is W with simple reflections S 
given by B.

2 � Universal Collapsing Cocycle

2.1 Definition  Let A be a ℤ[W]-module and n ≥ 2 be an integer. A cocy-
cle � ∈ Zn(W,A) is called collapsing if, for any x1,… , xn ∈ W , whenever 
|xixi+1| = |xi| + |xi+1| for some 1 ≤ i ≤ n − 1 , we have �(x1,… , xn) = 0.

2.2 Example  (Tits section) Suppose (W,  S) is a Weyl group (see §1.3 for nota-
tion). Tits defines a section to � ∶ NG(T) → W as follows: For any s ∈ S , let 
�s ∶ SL2 → G be the unique homomorphism that restricts to �∨ ∶ �m → T  on 
the diagonal torus �m of SL2 . Let �(s) = �s

((
0 1
−1 0

))
 . For w ∈ W with reduced 

expression w = s1 ⋯ sm , Tits proved that �(w) ∶= �(s1)⋯ �(sm) is independent of 
the reduced expression. The map � ∶ w ↦ �(w) defines a section to � . The map 
Δ ∶ W2 ∋ (x, y) ↦ �(x)�(y)�(xy)−1 ∈ T[2] defines a collapsing 2-cocycle on W val-
ued in the two-torsion points T[2] of T.

The goal of this section is to describe the universal object among pairs (A, �) 
where A is a ℤ[W]-module and � is a collapsing n-cocycle of W valued in A.

2.3 Walls, Chambers, etc.  We recall the geometric realization of a Coxeter group 
(W, S) following [2, Ch. V, §4].

Let E = ℝS equipped with basis {es}s∈S and let E∗ be its dual. There is a faithful 
representation of W on E∗ such that s ∈ S acts by a reflection. Let Hs ⊂ E∗ be the 

�(n) =

{
+, if n is even;

−, if n is odd.
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hyperplane fixed by s (equivalently Hs is the kernel of es ). A wall is a hyperplane in 
E∗ of the form w ⋅ Hs for some w ∈ W, s ∈ S . Let H be the set of walls; it is in bijec-
tion with reflections in W (the W-conjugates of S).

For H ∈ H , E∗ − H has two connected components called reflecting half-spaces. 
Let D be the set of reflecting half-spaces. Let C0 ⊂ E∗ be an open cone defined by 
C0 = {x ∈ E∗ � ⟨x, es⟩ > 0,∀s ∈ S} . The W-translates of C0 are called chambers. Let 
C be the set of chambers.

There is an involution � ∶ D → D sending D to E∗ − D . For each H ∈ H , let 
{D+

H
,D−

H
} be the two connected components of E∗ − H , where D+

H
 contains C0 . For 

H = Hs , we denote D±
Hs

 by D±
s
.

2.4  For each D ∈ D and C ∈ C , let

The free abelian group ℤ[D] carries an action of the involution � . Let ℤ[D]+ (resp. 
ℤ[D]− ) be the subgroup of ℤ[D] consisting of those elements such that �(a) = a 
(resp. �(a) = −a ). Then ℤ[D]± is the free abelian group with basis [D+

H
] ± [D−

H
] for 

H ∈ H . Both ℤ[D]± are ℤ[W]-modules.

2.5 Definition  Let n ∈ ℤ≥1 . Let ZW
n

 be the function

Here Ci = x1 ⋯ xiC0 for 1 ≤ i ≤ n.

From the definition, we see that [D] appears in ZW
n
(x) if and only if the sequence 

of chambers (C0,… ,Cn) is H-alternating in the sense that Ci and Ci+1 lie on different 
sides of H, for all 0 ≤ i ≤ n − 1 . The following alternative formula for ZW

n
 is imme-

diate from the definition:

2.6 Lemma  For (x1,… , xn) ∈ Wn , let Ci = x1 ⋯ xiC0 . Then

2.7 Proposition  The function ZW
n

 is an n-cocycle valued in ℤ[D]�(n) , i.e., ZW

n
∈

Z
n(W,ℤ[D]�(n)).

vD(C) =

{
1, if C ⊂ D;

0, if C ⊂ 𝜎(D).

(2.1)

ZW
n

∶ Wn
→ℤ[D]

x = (x1,… , xn) ↦
∑

D∈D

(
n−1∏

i=0

(vD(Ci) − vD(Ci+1))

)
[D].

(2.2)

ZW
n
(x1,… , xn) =

∑

H∈H;(C0,…,Cn) is H-alternating

(−1)[n∕2][D+
H
] + (−1)[(n+1)∕2]

[
D−

H

]
.
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Proof  By (2.2), Zn(x1,… , xn) is a linear combination of [D+
H
] + [D−

H
] if n is even (so 

that [n∕2] = [(n + 1)∕2] ) and otherwise a linear combination of [D+
H
] − [D−

H
] . This 

shows that ZW
n

 takes values in ℤ[D]�(n).
Now we show ZW

n
 is a cocycle. Write ZW

n
 simply as Zn . Let x1,… , xn, xn+1 ∈ W . 

Then

Fix D ∈ D , let hj = vD(Cj) . For 1 ≤ j ≤ n , the coefficient of [D] in Z
n
(x

1

,

… , x
j
x
j+1,… , x

n+1) is (h0 − h1)⋯ (hj−1 − hj+1)⋯ (hn − hn+1) . The coefficient  
of [D] in the last term Zn(x1,… , xn) is by definition (h0 − h1)⋯ (hn−1 − hn) . 
The coefficient of [D] in x1Zn(x2,… , xn+1) is the same as the coefficient of  
[x−1

1
D] =∶ [D�] in Zn(x2,… , xn+1) , which is the product of v

D� (C
0

) − v
D� (x

2

C
0

),

v
D� (x

2

C
0

) − v
D� (x

2

x
3

C
0

),… , v
D� (x

2

⋯ x
n
C
0

) − v
D� (x

2

⋯ x
n+1C0

) . Since v
D� (x

2

⋯

x
i
C
0

) = v
D
(x

1

⋯ x
i
C
0

) = v
D
(C

i
) = h

i
 , we see that the coefficient of [D] in 

x1Zn(x2,… , xn+1) is (h1 − h2)⋯ (hn − hn+1) . Therefore, the coefficient of [D] in 
�Zn(x1,… , xn+1) is

Write dj = hj − hj+1 , then hj−1 − hj+1 = dj−1 + dj . Expanding the RHS into the dj’s, 
we get each monomial d0d1 ⋯ d̂j ⋯ dn appearing twice with opposite signs, for all 
0 ≤ j ≤ n . Therefore, (2.3) is zero, hence �Zn = 0 . 	�  ◻

2.8 Lemma  The cocycle ZW
n

 satisfies the following two properties:

(1)	 If n ≥ 2 then ZW
n

 is collapsing.
(2)	 For any s ∈ S , ZW

n
(s, s,… , s) = (−1)[n∕2][D+

s
] + (−1)[(n+1)∕2][D−

s
].

Proof 

(1)	 If |xixi+1| = |xi| + |xi+1| ,  then for any H ∈ H ,  the three chambers 
Ci−1 = x1 ⋯ xi−1C0 , Ci and Ci+1 either lie on the same side of H, or H separates 
Ci−1 with Ci and Ci+1 , or H separates Ci−1,Ci with Ci+1 . In any case H is not 
(Ci−1,Ci,Ci+1)-alternating. Therefore ZW

n
(x1,… , xn) = 0 in this case.

(2)	 For s ∈ S , Hs is the only wall separating C0 and sC0 , so only [D±
s
] appear in 

ZW
n
(s, s,… , s) . The coefficients follow from (2.2).	�  ◻

�Zn(x1,… , xn+1) = x1Zn(x2,… , xn+1)

+

n∑

j=1

(−1)jZn(x1,… , xjxj+1,… , xn+1)

+ (−1)n+1Zn(x1,… , xn).

(2.3)

(h1 − h2)⋯ (hn − hn+1) +

n∑

j=1

(−1)j(h0 − h1)⋯ (hj−1 − hj+1)⋯ (hn − hn+1)

+ (−1)n+1(h0 − h1)⋯ (hn−1 − hn).
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The main result of this section is that ZW
n

 is the universal collapsing n-cocycle 
on W.

2.9 Theorem  Let n ≥ 2 be an integer. Let A be a ℤ[W]-module and � ∈ Zn(W,A) 
be a collapsing cocycle. Then there exists a unique W-equivariant homomorphism 
a ∶ ℤ[D]�(n) → A such that � = a(ZW

n
).

To prove the theorem, we need two lemmas:

2.10 Lemma  Suppose n ≥ 2 and � ∈ Zn(W,A) is collapsing. For s ∈ S let 
as ∶= �(s, s,… , s) ∈ A . Let s, s� ∈ S and let w ∈ W be such that wsw−1 = s� , then

Proof  We have ws = s�w . Consider the case wD+
s
= D+

s�
 ; then wC0 and C0 lie on the 

same side of Hs′ , which implies |ws| = |s�w| > |w|.
Since |ws| = |w| + |s| , the cocycle condition (��)(w, s,… , s) = 0 together with 

the collapsing of � implies that in the expansion of (��)(w, s,… , s) , the only nonzero 
terms are w�(s,… , s) = was and −�(ws, s,… , s) (here we use n ≥ 2 ). There-
fore, was = �(ws, s,… , s) = �(s�w, s,… , s) . Then we apply the cocycle condition 
(��)(s�,w, s,… , s) = 0 to get �(s�w, s,… , s) = �(s�,ws, s,… , s) = �(s�, s�w, s,… , s) . 
Then we apply (��)(s�, s�,w, s,… , s) = 0 , etc. In this way we get

Finally, we apply the cocycle condition (��)(s�,… , s�,w) = 0 to conclude 
�(s�,… , s�w) = �(s�,… , s�) = as� . Combined with the above equality we get 
was = as�.

When wD+
s
= D−

s�
 , we write w = w�s ; then w�sw�−1 = s� and w�D+

s
= wD−

s
= D+

s�
 . 

From the case already proven, we get w�as = as� . It remains to show that sas = (−1)nas 
for then was = w�sas = (−1)nw�as = (−1)nas� . For this we apply (��)(s, s,… , s) = 0 
and using collapsing we see (��)(s, s,… , s) = s�(s,… , s) + (−1)n+1�(s,… , s) = 0 ; 
hence sas = (−1)nas holds. 	�  ◻

2.11 Lemma  Let � ∈ Zn(W,A) be a collapsing n-cocycle if n ≥ 2 or satisfying 
�(1) = 0 if n = 1 . If �(s,… , s) = 0 for all s ∈ S , then � = 0.

Proof  We prove �(x) is identically zero by induction on the total length 
L(x) ∶=

∑n

i=1
�xi�.

If L(x) < n , then some xi = 1 and hence �(x) = 0 since it is collapsing. If L(x) = n , 
then either some |xi| ≥ 2 , or all xi are simple reflections. In the latter case, if all 
xi are the same simple reflection, then �(x) = 0 by assumption; otherwise �(x) = 0 
since it is collapsing.

Now assume L(x) ≥ n + 1 , and assume �(x�) = 0 whenever L(x�) < L(x) . Let 
�(x) = min{1 ≤ i ≤ n;|xi| ≥ 2} . We prove �(x) = 0 by downward induction on �(x).

was =

{
as� , if wD+

s
= D+

s�
;

(−1)nas� , if wD+
s
= D−

s�
.

was = �(s�w, s,… , s) = �(s�, s�w, s,… , s) = … = �(s�,… , s�w).
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If �(x) = n , then x1,… , xn−1 ∈ S ∪ {1} . Since � is collapsing, �(x) = 0 unless all 
xi are equal to the same s ∈ S for 1 ≤ i ≤ n − 1 . In the case x1 = ⋯ = xn−1 = s , if 
|sxn| > |xn| , we still have �(x) = 0 by collapsing. If |sxn| < |xn| , we write xn = sx�

n
 , 

then the cocycle condition (��)(s, s,… , s, s, x�
n
) = 0 together with the collapsing con-

dition implies �(x) = �(s,… , s) = 0 by assumption.
Now assume �(x�) = 0 for those x′ such that either L(x�) < L(x) or L(x�) = L(x) 

and 𝜇(x�) > 𝜇(x) . Let � = �(x) . By the same argument as in the previous paragraph, 
�(x) = 0 unless x1 = ⋯ = x�−1 = s ∈ S , and x� = sx�

�
 where |x𝜇| > |x′

𝜇
| . Now apply 

the cocycle condition (��)(s, s,… , s, x�
�
, x�+1,… , xn) = 0 (the first � entries are s). 

Expanding, we get the terms

Now (2.4) has total length less than L(x) and hence vanishes by inductive hypothe-
sis; (2.5) is zero by collapsing, (2.7), (2.8) and (2.9) have total length ≤ L(x) and the 
�-invariant strictly larger than �(x) , hence they also vanish by inductive hypothesis. 
Since the sum of all terms is zero, the only remaining term �(x) must also be zero. 
This finishes the induction step. 	�  ◻

2.12 Proof of Theorem in §2.9  For s ∈ S let as ∶= �(s, s,… , s) ∈ A . Define a linear 
map a ∶ ℤ[D]�(n) → A by sending �H ∶= (−1)[n∕2][D+

H
] + (−1)[(n+1)∕2][D−

H
] to was 

if w ∈ W and s ∈ S are such that wD+
s
= D+

H
 (such (w, s) always exists). To show 

a is well defined we need to show that if (w�, s�) also satisfies w�D+
s�
= D+

H
 , then 

was = w�as� . Now v = (w�)−1w satisfies vD+
s
= D+

s�
 . By Lemma in §2.10, vas = as� ; 

hence was = w�as� . Therefore, a is well defined.
To see a is W-equivariant, we need to show that for any H ∈ H and w ∈ W , 

a(w�H) = wa(�H) . Let (w�, s) ∈ W × S be such that w�D+
s
= D+

H
 . Then a(�H) = w�as 

by definition. Now wD+
H

 is either D+
wH

 or D−
wH

 . If wD+
H
= D+

wH
 , then w�H = �wH ; 

hence a(w�H) = a(�wH) . Since D+
wH

= ww�D+
s
 , we have a(�wH) = ww�as by defi-

nition. Therefore, a(w�H) = a(�wH) = ww�as = wa(�H) holds. If wD+
H
= D−

wH
 , then 

w�H = (−1)n�wH ; hence a(w�H) = (−1)na(�wH) . Since D−
wH

= wD+
H
= ww�D+

s
 , 

we have D+
wH

= ww�sD+
s
 ; hence a(�wH) = ww�sas by definition. By Lemma in 

(2.4)s�(s, s,… , s, x�
�
, x�+1,… , x

n
) (first � − 1 entries are s);

(2.5)�(s,… , 1,… , s, x�
�
, x�+1,… , xn) (there are � − 1 such terms);

(2.6)�(s,… , s, sx�
�
,… , xn) = �(x);

(2.7)�(s,… , s, x�
�
x�+1, x�+2,… , xn) (first � entries are s);

(2.8)𝜉(s,… , s, x�
𝜇
,… , xixi+1,… , xn) (first 𝜇 entries are s, 𝜇 < i < n),

(2.9)�(s,… , s, x�
�
, x�+1,… , xn−1).
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§2.10, sas = (−1)nas ; hence a(�wH) = (−1)nww�as . Combining these facts we get 
a(w�H) = (−1)na(�wH) = ww�as = wa(�H) . This verifies that a is W-equivariant.

Now let � = � − a◦ZW
n

∈ Zn(W,A) , which is again collapsing. From the construc-
tion of a and Lemma in §2.8, we have

By Lemma in §2.11, � is identically zero; hence � = a◦ZW
n

.
Finally, we prove the uniqueness of a. Suppose another W-equivariant map 

a� ∶ ℤ[D]�(n) → A satisfies � = a�◦ZW
n

 ; then b = a − a� satisfies b◦ZW
n

= 0 . Now 
b◦ZW

n
(s, s,… , s) = b(�s) = 0 for all s ∈ S . By W-equivariance, b(�H) = 0 for all 

H ∈ H ; hence b = 0 . The proof is complete.

2.13 Remark  The analogue of the collapsing condition for a 1-cocycle � ∈ Z1(W,A) 
is the normalization �(1) = 0 . However, ZW

1
 is not in general the universal normal-

ized 1-cocycle for W.

2.14 Example  When n = 2 , the universal collapsing 2-cocycle ZW
2

 defines an 
extension

Here W# = ℤ[H] ×W as a set, with multiplication (a, x)(b, y) = (a + xb+ 
Z
W

2

(x, y), xy) , where a, b ∈ ℤ[H] = ℤ[D]+ , x, y ∈ W.
When W is a Weyl group, let PW ⊂ BW be the pure braid group and the braid group 

associated with W. Let � = 𝕏∗(T)ℂ and �rs ⊂ � be the complement of the root hyper-
planes. Then PW ≅ �1(�

rs, ∗) . Each root � gives a map �rs → ℂ× ; hence a homo-
morphism v� ∶ PW → �1(ℂ

×) = ℤ . The homomorphism v� only depends on the root 
hyperplane H� ; hence they together define a homomorphism v ∶ PW → ℤ[H] . It is 
easy to see using the characterization of ZW

2
 that the extension (2.11) is the pushout 

of the extension 1 → PW → BW → W → 1 via the homomorphism v.

2.15 Cup Product  Equip ℤ[D] with the (not necessarily unital) ring struc-
ture such that [D] ⋅ [D] = [D] for all D ∈ D and [D] ⋅ [D�] = 0 if D ≠ D′ (i.e., 
the basis elements [D] are orthogonal idempotents). Then ℤ[D]+ ⊕ ℤ[D]− is a 
ℤ∕2ℤ-graded subalgebra of ℤ[D] . In particular, we have the multiplication map 
𝜇n ∶ (ℤ[D]−)⊗n

→ ℤ[D]𝜖(n).
From the definition of ZW

n
 , the following proposition is easily verified:

2.16 Proposition  The cocycle ZW
n

 is the image of the n-th cup power of ZW
1

 under �n:

Here ∪ means the cup product on the level of cochains, see [1, §7].

(2.10)�(s, s… , s) = as − a(�s) = 0, ∀s ∈ S.

(2.11)1 → ℤ[H] → W#
→ W → 1.

Z1(W,ℤ[D]−)⊗n
∪
������→ Zn(W, (ℤ[D]−)⊗n)

𝜇n

���������→ Zn(W,ℤ[D]𝜖(n)).
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Proof  Let Z�
n
= �n((Z

W
1
)∪n) . Then we have Z�

n
(x

1

,… , x
n
) = Z

W

1

(x
1

) ⋅ x
1

Z
W

1

(x
2

)⋯

x
1

⋯ x
n−1Z

W

1

(x
n
) (where ⋅ is the multiplication in ℤ[D] ). For H ∈ H , [D±

H
] appear in  

�n(Z
W
1
)∪n if and only if [D±

H
] appear in each term x1 ⋯ xi−1Z

W
1
(xi) , 1 ≤ i ≤ n , which 

happens if and only if (C0,C1,… ,Cn) is H-alternating. Moreover, [D+
H
] appears in 

x1 ⋯ xi−1Z
W
1
(xi) with coefficient (−1)i−1 ; therefore it appears in Z′

n
 with coefficient 

(−1)[n∕2] . Comparing with (2.2) we conclude that Z�
n
= ZW

n
 . 	�  ◻

2.17  We have short exact sequences of ℤ[W]-modules

where i± are the natural inclusions, and p±([D]) = [D] ± [�(D)] for all D ∈ D.

2.18 Proposition  For n ≥ 1 , the cohomology class [−ZW
n+1

] ∈ Hn+1(W,ℤ[D]�(n+1)) is 
the image of [ZW

n
] under the connecting homomorphism

attached to (2.12) when n is odd and to (2.13) when n is even.

Proof  Let Z̃n be the lifting of ZW
n

 to a function Wn
→ ℤ[D] defined by 

Z̃n(x1,… , xn) =
∑

H(−1)
[n∕2][D+

H
] where H runs over those walls such that 

(C0,C1,… ,Cn) is H-alternating (as usual Ci = x1 ⋯ xiC0 ). To prove the proposition, 
it suffices to check that

Expanding �Z̃n(x1,⋯ , xn+1) as we did for �ZW
n

 in the proof of Proposition in §2.7. 
Note that all the terms except for the first one x1Z̃n(x2,… , xn+1) only involve [D+

H
] for 

various H ∈ H . Let hi = vD+
H
(Ci) . The coefficient of [D+

H
] in 

�ZW
n
(x1,… , xn+1) − x1Z̃n(x2,… , xn+1) is the sum of all but the first term in (2.3). 

Since the sum in (2.3) is zero, the coefficient of [D+
H
] in 

�ZW
n
(x1,… , xn+1) − x1Z̃n(x2,… , xn+1) is −(h1 − h2)⋯ (hn − hn+1) , which is nonzero 

if and only if (C1,… ,Cn+1) is H-alternating, in which case the coefficient is ±1 . 
Since we know �Zn = 0 , �Z̃n must take values in ℤ[D]�(n+1) ; therefore, if 
(C1,… ,Cn+1) is H-alternating, and that [D±

H
] both appear with nonzero coefficients 

in �Z̃n(x1,… , xn+1) , [D−
H
] must appear with nonzero coefficient in x1Z̃n(x2,… , xn+1) . 

This means x−1
1
D−

H
= D+

H� for some H� = x−1
1
H ; hence C0 ⊂ x−1

1
D−

H
 , or C1 ⊂ D−

H
 , i.e., 

(C0,C1,… ,Cn+1) is H-alternating. In this case, the coefficient of [D+
H
] in 

�Z̃n(x1,… , xn+1) is −(h1 − h2)⋯ (hn − hn+1) = −
∏n

i=0
(hi − hi+1) , which is the nega-

tive of the coefficient of [D+
H
] in ZW

n+1
 . This completes the proof. 	�  ◻

(2.12)0 → ℤ[D]+
i+

��������→ ℤ[D]
p−

���������→ ℤ[D]− → 0

(2.13)0 → ℤ[D]−
i−

��������→ ℤ[D]
p+

���������→ ℤ[D]+ → 0

Hn(W,ℤ[D]�(n)) → Hn+1(W,ℤ[D]�(n+1))

�Z̃n = −ZW
n+1

.
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3 � Higher Signs

3.1 Definition 

(1)	 For n ≥ 2 even, let �n ∶ ℤ[D]+ = ℤ[H] → ℤ be the linear map sending each 
basis element [D+

H
] + [D−

H
] to (−1)n∕2 (where H ∈ H ).

(2)	 For n ≥ 1 odd, let �n ∶ ℤ[D]− → 𝔽2 be the linear map sending each [D+
H
] − [D−

H
] 

to 1 ∈ �2 . (Of course all the �n are the same for n odd.)
(3)	 For n ≥ 1 , define �W

n
∈ Zn(W,ℤ) for n even and �W

n
∈ Zn(W, �2) for n odd to be 

the image of ZW
n

 under the W-invariant map �n.

Concretely, when n is even and x = (x1,… , xn) ∈ Wn , �n(x) is the number 
of walls H ∈ H such that (C0,C1,… ,Cn) is alternating with respect to H. Here 
Ci = x1 ⋯ xiC0 for 1 ≤ i ≤ n . When n is odd, �n(x) ∈ �2 is the parity of the number of 
such walls.

3.2 Proof of Theorem in §1.1  Since �W
n

 is the homomorphic image of a collapsing 
cocycle, it is also collapsing. By Lemma (2) in §2.8 and the definition of �n , we have 
�W
n
(s,… , s) = 1 . By Lemma in §2.11, these two properties (collapsing and values at 

(s,… , s) ) also characterize �W
n

 as ℤ-valued or �2-valued cocycles.

3.3 Remark  (Lusztig) One can define �W
n

 without using the notion of chambers 
and walls. Indeed, for w ∈ W there is a well-defined set of reflections �w in W as 
in [2, Ch. IV, §1.4, Lemmas 1 and 2] (and #�w = |w| ). For (x1,… , xn) ∈ Wn , let 
�(x1,… , xn) be the intersection

where the i = 1 term is �x1
 . Then

To see this, we only need to observe that two chambers xC0 and xyC0 lie on different 
sides of the wall Hr given by some reflection r ∈ W if and only if r ∈ x�y.

3.4 Remark  One can refine the cocycles �W
n

 slightly as follows: Let S be the set of 
W-orbits on H ; the map S → S sending s to the W-orbit of Hs is surjective. For n 
even, we have the W-invariant map �̃n ∶ ℤ[D]+ → ℤ[S] sending [D+

H
] + [D−

H
] to 

(−1)n∕2[H] , where H is the W-orbit of H ∈ H . For n odd, we also have the W-invar-
iant map �̃n ∶ ℤ[D]− → 𝔽2[S] sending [D+

H
] − [D−

H
] to [H] . The image of ZW

n
 under 

�̃n defines an n-cocycle �̃W
n

∈ Zn(W,ℤ[S]) if n is even and �̃W
n

∈ Zn(W, �2[S]) if n is 
odd.

�(x1,… , xn) ∶=

n⋂

i=1

x1 ⋯ xi−1 ⋅ �xi
,

�W
n
(x1,… , xn) =

{
#�(x1,… , xn), if n is even;

#�(x1,… , xn) mod 2, if n is odd.
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3.5 Proposition  If n ≥ 1 is odd, then the cohomology class [−�W
n+1

] ∈ Hn+1(W,ℤ) is 
the image of [�W

n
] under the Bockstein homomorphism

Proof  Let �n+1 ∶ ℤ[D] → ℤ be the linear map sending all [D] to (−1)(n+1)∕2 . We 
have a commutative diagram of ℤ[W]-modules where the rows are exact sequences

This gives a commutative diagram of connecting homomorphisms

The equality [−�W
n+1

] = �[ZW
n
] then follows from Proposition in §2.18. 	�  ◻

The cocycles �W
1

 and �W
2

 are easy to compute.

3.6 Proposition 

(1)	 The cocycle �W
1

 is the sign homomorphism W ∋ x ↦ |x| mod 2.
(2)	 For x, y ∈ W  , �W

2
(x, y) =

1

2
(|x| + |y| − |xy|) ∈ ℤ.

The following properties of �W
n

 follow directly from the uniqueness in Theorem 
in §1.1:

3.7 Lemma 

(1)	 �W
n

 is invariant under any automorphism of (W, S).
(2)	 For any x1,… , xn ∈ W , we have �W

n
(x1,… , xn) = �W

n
(x−1

n
,… , x−1

1
).

(3)	 Suppose (W �, S�) ⊂ (W, S) is a standard parabolic subgroup, then �W
n
|W � = �W

�

n
.

(4)	 Let (W1, S1) and (W2, S2) be Coxeter groups and (W, S) = (W1 ×W2, S1
∐

S2). 

Let pi ∶ W → Wi be the projection for i = 1, 2. Then �W
n

= p∗
1
�
W1

n + p∗
2
�
W2

n .

3.8 Lemma 

(1)	 Suppose W = ℤ∕2ℤ, then the cohomology class [�W
n
] is the nonzero element in 

Hn(W,ℤ) = 𝔽2 if n is even or in Hn(W, �2) = �2 if n is odd.
(2)	 If w ∈ W  is conjugate to a product of m commuting simple reflections (so w 

is itself an involution), then the class [�W
n
�⟨w⟩] = m mod 2 as an element in 

Hn(⟨w⟩,ℤ) = 𝔽2 if n is even or Hn(W, �2) = �2 if n is odd.

� ∶ Hn(W, 𝔽2) → Hn+1(W,ℤ).
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3.9 Remark  The maps �n are not compatible with the ring structure on ℤ[D] in gen-
eral (besides the case W = ℤ∕2ℤ ). Therefore, in general there is no reason to expect 
that �W

n
 be related to cup powers of the sign �W

1
 in any obvious way.

In the rest of the section we collect some useful formulas for computing �W
n

 and 
more generally collapsing cocycles.

3.10 Lemma  Let x1,… , xn ∈ W and let � ≥ 1 be odd. Suppose there is a partial 
product of � consecutive entries xj ⋯ xj+𝓁−1 = 1, then �(x1,… , xn) = 0 for any col-
lapsing n-cocycle � ∈ Zn(W,A).

Proof  By Theorem in §2.9 it suffices to treat the case � = ZW
n

 . If xj ⋯ xj+𝓁−1 = 1 , 
consider the sequence of � + 1 chambers (Cj−1,Cj,… ,Cj+�−1) . The condition 
xj ⋯ xj+𝓁−1 = 1 implies Cj+�−1 = Cj−1 . For any H ∈ H , this even number of cham-
bers cannot be H-alternating if the first one is the same as the last one. Therefore 
ZW
n
(x1,… , xn) = 0 by (2.2). 	�  ◻

3.11 Lemma  Let x1,… , xn ∈ W and let � ≥ 2 be even. If x1 ⋯ x𝓁 = 1, then

Similarly, if xn−𝓁+1 ⋯ xn = 1, then

Proof  We prove (3.1). Since x1 ⋯ x𝓁 = 1 , the corresponding chain of chambers 
(C0,C1,… ,Cn) satisfies C� = C0 . For any H ∈ H , (C0,C1,… ,Cn) is H-alternating 
if and only if (C1,… ,Cn) is H-alternating, if and only if (C0, x2C0,⋯ , x2 ⋯ xnC0) is 
x2H-alternating. This implies (3.1). The proof of (3.2) is similar. 	�  ◻

3.12 Lemma  Let x1,… , xn ∈ W and 1 ≤ i ≤ n. Let xi = s1 ⋯ sm be a reduced expres-
sion. Then for any collapsing n-cocycle � ∈ Zn(W,A), we have

Here, if i = 1, the first term should be sj; if i = n, the last term should be sj.

Proof  We prove this by induction on m. For m = 0 the statement is vacuous. 
Now assume the statement is proved for m − 1 . Applying the cocycle condition 
(��)(x1,… , xi−1, s1, s2 ⋯ sm, xi+1,… , xn) = 0 we get a sum of terms most of which 
contain two consecutive entries s1 and s2 ⋯ sm , which vanishes since � is collapsing. 
The remaining terms are

(3.1)�W
n
(x1, x2, x3,… , xn) ≡ �W

n−1
(x2, x3,… , xn) mod 2.

(3.2)�W
n
(x1, x2,… , xn−1, xn) ≡ �W

n−1
(x1, x2,… , xn−1) mod 2.

�(x1,… , xn) =

m∑

j=1

�(x1,… , xi−1s1 ⋯ sj−1, sj, sj+1 ⋯ smxi+1,… , xn).
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The sum of the three terms above is zero. We then apply inductive hypothesis to the 
first term above to conclude. 	�  ◻

4 � Geometric Origin of �W

3

When W is a Weyl group, the cocycle �W
3

 naturally shows up in the study of convolu-
tions in certain Hecke categories. In fact this was our motivation to study collapsing 
cocycles for general Coxeter groups. Below we recall the geometric context.

4.1 Monodromic Hecke Category  In [3] we studied monodromic Hecke categories 
for reductive groups. Let G be a connected reductive group over an algebraically 
closed field k, B a Borel subgroup of G with unipotent radical U and T ⊂ B a maxi-
mal torus. Let L and L′ be two rank one character sheaves on T. In [3] we studied the 
derived category L′DL of complexes on U�G∕U equivariant under the left and right 
translation by T with respect to L and L′ , respectively. These categories appear natu-
rally in the study of representations of finite groups of Lie type.

Now fix a W-orbit � of rank one character sheaves on T. The direct sum 
D

�
∶=

⨁
L,L�∈�(L�DL) carries a monoidal structure under convolution

In [3, §4], we gave a decomposition of D
�
 into blocks. For L,L� ∈ � , let 

L
�WL = {w ∈ W |wL = L

�} . Let W◦

L
 be the subgroup of W generated by reflections 

with respect to the roots � such that �∨,∗L is the trivial local system on �m . Then 
the blocks in L′DL are indexed by the set L�W

L
= L

�WL∕W
◦

L
= W◦

L
��L�WL (see [3, 

§4.1]). Moreover, each coset � ∈ L
�W

L
 contains a unique element w� ∈ L

�W
L
 of 

minimal length ([3, Lemma 4.2]).
In [3, §4.4] we introduced a groupoid Ξ whose objects set is � and its morphism 

set HomΞ(L,L
�) is L′W

L
 , the set of blocks in L′DL . The multiplication on the 

groupoid Ξ is compatible with convolution on D
�
 . In [3, §5.8] we have defined a 

3-cocycle � on the groupoid Ξ that captures certain signs that appear in the associa-
tivity constraint of the convolution, which we now recall.

Let L,L�,L�� ∈ � , and let � ∈ L
�W

L
 and � ∈ L

��W
L
� be blocks. Let ẇ𝛽 , ẇ𝛾 be lift-

ings of w� ,w� to NG(T) . Let Δ(ẇ𝛽)L be the standard perverse sheaf obtained from a 
shifted local system on Bẇ𝛽B by extension by zero (equipped with a trivialization 
of its stalk at ẇ𝛽 , see [3, §2.11]). By [3, §5.5], there is a canonical isomorphism in 
L
′′DL

�(x1,… , xi−1s1, s2 ⋯ sm, xi+1,… , xn) (if i = 1, the first entry is s2 ⋯ sm);

�(x1,… , xi−1, xi, xi+1,… , xn);

�(x1,… , xi−1, s1, s2 ⋯ smxi+1, xi+2,… , xn) (if i = n, the last entry is s1).

(4.1)⋆ ∶ L
��DL

� × L
�DL → L

��DL.
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For another L��� ∈ � , and block � ∈ L
���W

L
�� consider the following diagram of 

isomorphisms:

However, this diagram is not necessarily commutative. Let 𝜎(ẇ𝛿 , ẇ𝛾 , ẇ𝛽)L ∈ ℚ
×

�
 be 

the ratio of the upper composition over the lower. It is easy to see that 𝜎(ẇ𝛿 , ẇ𝛾 , ẇ𝛽)L 
is independent of the choices of liftings of w� ,w� and w� ; therefore, we may denote 
it by �(�, � , �)L . From the pentagon axiom for the associativity of the convolution 
functor, we get that � is a 3-cocycle on the groupoid Ξ , i.e., � ∈ Z3(Ξ,ℚ

×

�
).

4.2  Our next goal is to relate the cocycle � ∈ Z3(Ξ,ℚ
×

�
) to the cocycle 

�W
3

∈ Z3(W, �2) . By definition, there is a map of groupoids

sending a morphism � ∈ HomΞ(L,L
�) = L

�W
L
 to w� ∈ W.

We generalize the notion of a collapsing cocycle to the groupoid Ξ . Let 
n ≥ 2 and A be an abelian group. A cocycle � ∈ Zn(Ξ,A) is collapsing if, when-
ever �1,… , �n are composable morphisms in Ξ (so that �1 ⋯ �n is defined), and 
|w�iw�i+1 | = |w�i | + |w�i+1 | for some 1 ≤ i ≤ n − 1 , we have �(�1,… , �n) = 0 . We 
have the following generalization of Lemma in §2.11:

4.3 Lemma  Let n ≥ 2 and � ∈ Zn(Ξ,A) be a collapsing cocycle. Sup-
pose for any morphism � in Ξ containing a simple reflection s ∈ S, we have 
�(�(−1)

n−1

,… , �−1, �) = 0. Then � = 0.

Proof Sketch  The proof is almost identical as that of Lemma in §2.11. For composa-
ble morphisms � = (�1,… , �n) in Ξ , we prove the vanishing of �(�1,… , �n) by 
induction on L(�) ∶=

∑n

i=1
�w�i � . The only nontrivial point is to make sense of 

reduced word decomposition of a morphism in Ξ . Let � ∈ HomΞ(L,L
�) , and 

w� = siN siN−1 ⋯ si1 a reduced expression in W. Let Lj = sij ⋯ si1L . Then for any 
1 ≤ j < j′ ≤ N , the partial product sij′ ⋯ sij is the minimal length element in its coset 
�[j,j�] ∈ Lj�

W
Lj

 , i.e., w�[j,j�] = sij� ⋯ sij . This follows from [3, Lemma 4.6 (3)(4)]. In 
particular, we may write � = �[N,N]◦�[1,N−1] and w� = siNw

�[1,N−1] so that 
|w�N | = N = 1 + |w�[1,N−1] | . This decomposition is used in the induction step. 	�  ◻

canẇ𝛾 ,ẇ𝛽 ∶ Δ(ẇ𝛾 )L� ⋆ Δ(ẇ𝛽)L ≅ Δ(ẇ𝛾 ẇ𝛽)L.

(4.2)

(4.3)� ∶ Ξ → [pt∕W]
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4.4 Theorem  The cocycle � takes values in {±1}. If we identify {±1} with �2, we have 
� = �∗�W

3
.

Proof  We first check that � is collapsing. For this we look more closely into the 
geometry behind the cocycle � . Let X be the flag variety of G, and �(w) ⊂ X × X be 
the G-orbit containing (B, Ad(w)B) . For any sequence of elements wn,… ,w1 ∈ W , 
let X(wn,… ,w1) ⊂ Xn be the variety classifying sequences of Borel subgroups 
(B1,… ,Bn) such that (B,B1) ∈ �(w1) , and (Bi,Bi+1) ∈ �(wi+1) for 1 ≤ i ≤ n − 1 . 
For composable morphisms �, � and � in Ξ , let X(w𝛿#w𝛾 ,w𝛽) ⊂ X(w𝛿 ,w𝛾 ,w𝛽) be the 
closed subvariety where (B1,B3) ∈ �(w�w� ) ; let X(w𝛿 ,w𝛾#w𝛽) ⊂ X(w𝛿 ,w𝛾 ,w𝛽) be 
the closed subvariety where (B,B2) ∈ �(w�w�) . We have a diagram

The maps are the obvious inclusion and forgetful maps. We take the fiber of all 
spaces in the above diagram over the point B3 = Ad(w�w�w�)B ∈ X , and name them 
Y(?) instead of X(?). Then the stalk of Δ(ẇ𝛿)L�� ⋆ Δ(ẇ𝛾 )L� ⋆ Δ(ẇ𝛽)L at ẇ𝛿ẇ𝛾 ẇ𝛽 is 
H∗

c
(Y(w� ,w� ,w�),F[|w�| + |w� | + |w�|]) for some rank one local system F  con-

structed from L′′,L′ and L . The restriction of F  to Y(w�#w� ,w�) and Y(w� ,w�#w�) 
are canonically isomorphic to ℚ� . By [3, §5.3], the maps q1p1 and q2p2 are affine 
space bundles of dimension d =

1

2
(|w�| + |w� | + |w�| − |w�w�w�|) when restricted 

to the point Ad(w�w�w�)B . Therefore, Y(w�#w� ,w�) and Y(w� ,w�#w�) are isomor-
phic to �d . The fact that canẇ𝛿 ,ẇ𝛾 and canẇ𝛾 ,ẇ𝛽 are isomorphisms implies that the 
restriction maps

are isomorphisms. The number �(�, � , �) is the ratio of these two isomorphisms.
Suppose |w�| + |w� | = |w�w� | ; then Y(w�#w� ,w�) = Y(w� ,w� ,w�) ; therefore 

Y(w� ,w�#w�) = Y(w� ,w� ,w�) as well for dimension reasons. In this case, both i∗
1
 

and i∗
2
 are the identity maps; hence �(�, � , �) = 1 . The case |w� | + |w�| = |w�w�| is 

proved similarly. This proves that � is collapsing.
In [3, Example 5.7], we have shown for G = SL2 , and a block � containing the 

nontrivial element in the Weyl group W = S2 , we have �(�, �−1, �) = −1 . This 
implies for general G, and any block � containing a simple reflection s ∈ S , we have 
�(�, �−1, �) = −1 since the calculation in this case reduces to the SL2 example by 
the homomorphism SL2 → G corresponding to s. Now we identify {±1} with �2 . We 

i∗
1
∶ H−|w�w�w� |

c
(Y(w� ,w� ,w�),F[|w�| + |w� | + |w�|]) → H2d

c
(Y(w�#w� ,w�),ℚ�) ≅ ℚ� ,

i∗
2
∶ H−|w�w�w� |

c
(Y(w� ,w� ,w�),F[|w�| + |w� | + |w�|]) → H2d

c
(Y(w� ,w�#w�),ℚ�) ≅ ℚ�
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have seen that � = � − �∗�W
3

 is collapsing in Z3(Ξ, �2) and satisfies �(�, �−1, �) = 0 
for any morphism � in Ξ containing a simple reflection. By Lemma in §4.3, � van-
ishes identically; hence � = �∗�W

3
 . 	�  ◻

4.5 Remark  A similar sign is observed by Bezrukavnikov and Riche1 in the usual 
Hecke category. Let Δ(s) and ∇(s) be the ! and ∗ extensions of ℚ�[1] from the 
Schubert cell X(s) ⊂ X = G∕B . Let � be the skyscraper sheaf at the point stratum 
X(1) = {B} . There are canonical isomorphisms Δ(s) ⋆ ∇(s) ≅ 𝛿 ≅ ∇(s) ⋆ Δ(s) . 
However, the resulting two isomorphisms

differ by a sign. Indeed, the stalk of Δ(s) ⋆ ∇(s) ⋆ Δ(s) along X(s) can be identified 
with

where j ∶ �2 − C ↪ �2 , and C = {(x, y) ∈ �2 | xy = 1} . The two isomorphisms 
(4.4) and (4.5) correspond to the two restrictions which are isomorphisms

Here �1
x
 and �1

y
 are the coordinate lines y = 0 and x = 0 . The involution 

� ∶ (x, y) ↦ (y, x) then interchanges resx and resy . To see the sign, it suffices to show 
that �∗ acts on H2

c
(𝔸2, j∗ℚ�) by −1 . Using the triangle ℚ� → j∗ℚ� → i∗ℚ�[−1](−1) , 

where i ∶ C ↪ �2 , we get H2
c
(𝔸2, j∗ℚ�) ≅ H1

c
(C,ℚ�)(−1) . Now C ≅ �m and � 

restricts to the inversion map on C, which acts by −1 on H1(C) and H1
c
(C) . This is 

the source of the sign.

5 � Restriction of �W

3
 to Ä

In this section, for W an irreducible Weyl group, we calculate the restriction of �W
3

 to 
certain abelian subgroups. Such restriction naturally shows up in [3] as the twisting 
data for the monoidal structure of monodromic Hecke categories, and our calcula-
tion here shows that the twisting is often nontrivial.

Below we write �W
3

 simply as �3 . We first collect some useful properties of �3.

(4.4)(Δ(s) ⋆ ∇(s)) ⋆ Δ(s) ≅ 𝛿 ⋆ Δ(s) = Δ(s),

(4.5)Δ(s) ⋆ (∇(s) ⋆ Δ(s)) ≅ Δ(s) ⋆ 𝛿 = Δ(s)

H∗
c
(𝔸2, j∗ℚ�[3]),

res
x
∶ H

∗
c
(𝔸2, j∗ℚ�[3])

∼
−→H

∗
c
(𝔸1

x
,ℚ�[3]) ≅ ℚ�[1](−1),

res
y
∶ H

∗
c
(𝔸2, j∗ℚ�[3])

∼
−→H

∗
c
(𝔸1

y
,ℚ�[3]) ≅ ℚ�[1](−1).

1  Private communication.
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5.1 Proposition  Let (W, S) be any Coxeter group and x, y, z ∈ W . 

(1)	 If y = s ∈ S , then 

(2)	 Let y = s1 ⋯ sm be a reduced expression; then 

(3)	 We have �3(x, y, z) = 0 if xyz = 1.
(4)	 We have �3(y−1, y, z) =

1

2
(|y| + |z| − |yz|) mod 2 and �

3

(x, y, y−1) =
1

2

(|x|+
|y| − |xy|) mod 2.

(5)	 We have �3(x, x−1, x) = |x| mod 2.
(6)	 We have �3(x, y, z) = �3(y, z, (xyz)

−1) = �3(z, (xyz)
−1, x) = �3((xyz)

−1, x, y).

Proof  (1) follows from definition. (2) is a special case of Lemma in §3.12.
(3) follows from Lemma in §3.10. (4) follows from Lemma in §3.11 and (5) is a 

special case of (4).
(6) Apply the cocycle condition (��3)(x, y, z, (xyz)−1) = 0 , and using (3) to get the 

first equality; the others are obtained by iterating the first one.	�  ◻

5.2 The Group Ω  For the rest of the notes, let W be a Weyl group. Let G, T, B be as 
in §1.3, with the extra assumption that G is simple of adjoint type. Let W̃ = Λ⋊W 
be the extended affine Weyl group attached to G, where Λ = �∗(T) . Let A be the 
corresponding fundamental alcove in 𝕏∗(T)ℝ , and let Ω ⊂ �W be the stabilizer of A. 
The map i ∶ Ω ⊂ �W → W is injective, and the conjugacy class of i is independent of 
the choice of B (it will depend on G and not just W, as we shall see by comparing 
type B and type C).

The finite abelian group ΩL = WL∕W
◦

L
 in [3, §2.4] is a subgroup of Ω . We would 

like to compute the cohomology classes of the pullback of �3 to Ω as well as to sub-
groups of Ω , which play a role in the statement of [3, Theorem 10.12]. This question 
is non-vacuous only when #Ω is even, which happens for types An (n odd), Bn , Cn , 
Dn and E7.

5.3 Method  To compute [�3|Ω] we need to compute i. Let D be the Dynkin dia-
gram of G, and D̃ be the extended Dynkin diagram of G. It is well-known that 
Ω ≅ Aut(D̃)∕Aut(D) . Also Aut(D) = Aut(D̃, �0) . We shall compute the pro-
jection ĩ ∶ Aut(D̃) → W . Let � ∈ Aut(D̃) ; then it is a permutation of aff-
ine simple roots. It is then easy to write down the matrix for the action of � on 
V = 𝕏∗(T)ℚ = Spanℚ{�s | s ∈ S} . If �(�s) = �0 , then its action on V should read 
�(�s) = −� = −

∑
s ns�s.

𝜖3(x, s, z) =

{
1, if |xs| < |x| and |sz| < |z|;
0, otherwise.

�3(x, y, z) =

m∑

i=1

�3(xs1 ⋯ si−1, si, si+1 ⋯ smz).
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Another general principle: if X ⊂ W , let Φ(X) = {𝛼 ∈ Φ(G,T) | 𝛼⊥VX} , and let 
W(X) ⊂ W be the subgroup generated by reflections attached to � ∈ Φ(X) . Then 
X ⊂ W(X) and W(X) is a parabolic subgroup of W. This allows us to reduce the cal-
culation to smaller Coxeter groups.

In the next subsections we compute [�3|Ω] case by case.

5.4 Type A
n−1

, n Even  We have Ω ≅ ℤ∕nℤ ⊂ Sn generated by the cyclic permuta-
tion C = s1s2 ⋯ sn−1 . We claim that [�3|Ω] is the nontrivial class in H3(Ω, �2) = �2 . 
Let n = 2m.

Suppose in the contrary that �3|Ω is a cobounbary, i.e., �3 = �� for some 
function � ∶ Ω × Ω → �2 ; then the fact that �3 is normalized shows that 
�(x, 1) = �(1, 1) = �(1, x) for all x ∈ Ω . We may assume �(1, 1) = 0 ; for otherwise 
we can change � to � + 1 and its coboundary is still �3 . Therefore, we assume � is 
also normalized, i.e., �(1, x) = �(x, 1) = 0 for all x ∈ Ω.

We have �3(Cm,Cm,C) = �3(C,C
m,Cm) by Proposition (4) in §5.1. Since �3 = �� , 

we get

The equality of the LHS of the above two equations implies

However, the above is equal to �3(Cm,C,Cm) , which we now show is nonzero.
The element C is the cyclic permutation: 1 ↦ 2 ↦ ⋯ ↦ n ↦ 1 . The involu-

tion Cm interchanges i and i + m for 1 ≤ i ≤ m , and hence |Cm| = m2 . The permu-
tation Cms1 ⋯ sm−1 is j ↦ m + j + 1 for 1 ≤ j ≤ m − 1 , m ↦ m + 1 , m + j ↦ j for 
0 < j ≤ m . We see that |Cms1 ⋯ sm−1| = m2 + m − 1 = |Cm| + m − 1 . Similarly, 
|sm+1 ⋯ sn−1C

m| = m − 1 + |Cm| . By Proposition (1)(2) in §5.1, we see

The automorphism of (W,  S) sending si to sn−i sends the triple (Cm
s
1

⋯ s
j−1,

s
j
, s

j+1 ⋯ s
n−1C

m) to (Cms1 ⋯ sn−j−1, sn−j, sn−j+1 ⋯ sn−1C
m) , which have the same value  

under �3 by Lemma (1) in §3.7. Therefore, the RHS of (5.2) reduces to one term  
�3(C

ms1 ⋯ sm−1, sm, sm+1 ⋯ sn−1C
m) . Now |Cm

s
1

⋯ s
m
| = m

2 + m − 2 = |Cm
s
1

⋯

s
m−1| − 1 , and similarly |sm ⋯ sn−1C

m| = |sm+1 ⋯ sn−1C
m| − 1 . By Proposition (1) in 

§5.1, �3(Cms1 ⋯ sm−1, sm, sm+1 ⋯ sn−1C
m) = 1 ; therefore, �3(Cm,C,Cm) ≠ 0 , which 

contradicts (5.1). Therefore, [�3|Ω] is the nontrivial element in H3(Ω, �2).
For any subgroup Ω� ⊂ Ω , the restriction [�3|Ω�] ∈ H3(Ω�, �2) is nontrivial if and 

only if [Ω ∶ Ω�] is odd.

�3(C
m,Cm,C) = �(Cm,C) + �(Cm,Cm+1) + �(Cm,Cm),

�3(C,C
m,Cm) = �(C,Cm) + �(Cm+1,Cm) + �(Cm,Cm).

(5.1)�(Cm,C) + �(C,Cm) + �(Cm,Cm+1) + �(Cm+1,Cm) = 0.

(5.2)�3(C
m,C,Cm) =

n−1∑

j=1

�3(C
ms1 ⋯ sj−1, sj, sj+1 ⋯ sn−1C

m).
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5.5 Type B
n
  In this case, Ω = ℤ∕2ℤ , with nontrivial element conjugate to the simple 

reflection sn ∶ (x1, x2,… , xn) ↦ (x1, x2,… ,−xn) . Therefore, [�3|Ω] ∈ H3(Ω, �2) = �2 
is always the nontrivial element.

5.6 Type C
n
  In this case, Ω = ℤ∕2ℤ , the nontrivial element is the involution 

� ∶ (x1,… , xn) ↦ (−xn,… ,−x1) . We have Φ(�) = {�1 + �n, �2 + �n−1,…} (if n is 
odd, 2�(n+1)∕2 ∈ Φ(�) ) consisting of orthogonal roots. Therefore, W(�) is of type 

A
[(n+1)∕2]

1
 , and � is the product of nontrivial elements from each factor. By Lemma 

(2) in §3.8, [�3|Ω] = [
n+1

2
] mod 2 ∈ H3(Ω, �2) = �2 . Therefore,

5.7 Type D
n
, n Odd  In this case Ω ≅ ℤ∕4ℤ . The three nontrivial elements in 

i(Ω) ⊂ W are �,�2,�3:

Write n = 2m + 1 . We see that W(Ω) is of type D3 × Am−1
1

≅ A3 × Am−1
1

 , and � is 
(C, s,… , s) where C ∈ S4 is a Coxeter element, and s ∈ S2 is the nontrivial element. 
Let p ∶ Ω → ℤ∕2ℤ be the projection; then by Lemma in §3.7,

Note that p∗ induces zero on cohomology in degrees > 1 , therefore,

which we know is nontrivial by §5.4.

The unique nontrivial subgroup of Ω is ⟨�2⟩ . Since the restriction map 
H3(ℤ∕4ℤ, 𝔽2) → H3(ℤ∕2ℤ, 𝔽2) is trivial, �3�⟨�2⟩ is cohomologically trivial.

5.8 Type D
n
, n Even  In this case Ω ≅ ℤ∕2ℤ × ℤ∕2ℤ . The three nontrivial elements 

in i(Ω) ⊂ W are as follows:

We identify Ω with ℤ∕2ℤ × ℤ∕2ℤ by �1 ↦ (1, 0),�2 ↦ (1, 1) and �3 ↦ (0, 1) . 
Let p1, p2 ∶ Ω → ℤ∕2ℤ be the projection to the first and second factors and let 
p3 = p1 + p2 ∶ Ω → ℤ∕2ℤ.

[
�3|Ω

]
{

= 0, n ≡ 0, 3 mod 4;

≠ 0, n ≡ 1, 2 mod 4.

�(x1,… , xn) = (xn,−xn−1,… ,−x2,−x1),

�2(x1,… , xn) = (−x1, x2,… , xn−1,−xn),

�3(x1,… , xn) = (−xn,−xn−1,… ,−x2, x1).

�3|Ω ∼ (m − 1)p∗�
S2
3
+ �

S4
3
|Ω.

�3|Ω ∼ �
S4
3
|Ω

�1(x1,… , xn) = (xn,−xn−1,… ,−x2, x1),

�2(x1,… , xn) = (−x1, x2,… , xn−1,−xn)

�3(x1,… , xn) = (−xn,−xn−1,… ,−x2,−x1).
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Write n = 2m . We see that W(Ω) is of type D2 × Am−1
1

≅ Am+1
1

 . We write D2 for 
the first two factors of A1 . Then

where s denotes the nontrivial element in each A1-factor of W(Ω) . Each factor of 
A1 corresponds to a projection �i ∶ Ω → S2 = ℤ∕2ℤ , i = 1,… ,m + 1 ; then �3|Ω is 
cohomologous to 

∑m+1

i=1
�∗
i
�
S2
3

 . Since �1 = p1 , �2 = p2 , �3 = ⋯ = �m+1 = p3 , we thus 
get

Let � ∈ H1(ℤ∕2ℤ, 𝔽2) be the nontrivial element; then {𝜂a ⊗ 𝜂3−a | 0 ≤ a ≤ 3} gives 
a basis for H3(Ω, �2) . Then (5.3) implies

In particular, [�3|Ω] is always nontrivial.
We have three nontrivial subgroups in Ω , generated by �i , i = 1, 2, 3 . We see that

5.9 Type E
7
  In this case, Ω = ℤ∕2ℤ , and the nontrivial element � ∈ Ω has 

dimV� = 4 . Therefore, W(�) is a rank 3 parabolic subgroup of W and � is the long-
est element in W(�) that acts by −1 on the 3-dimensional reflection representation 
of W(�) . Now W(�) is simply-laced since W is, therefore W(�) is of type A3

1
 . This 

implies that � is conjugate to a product of three commuting simple reflections in W. 
By Lemma (2) in §3.8, [�3|Ω] ∈ H3(Ω, �2) = �2 is the nontrivial element.
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�1 = (s, 1, s,…); �2 = (s, s, 1,…); �3 = (1, s, s,…),

(5.3)�3|Ω ∼ p∗
1
(�

S2
3
) + p∗

2
(�

S2
3
) + (m − 1)p∗

3
(�

S2
3
).

[
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