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Shtukas and the Taylor expansion
of L-functions

By Zhiwei Yun and Wei Zhang

Abstract

We define the Heegner–Drinfeld cycle on the moduli stack of Drinfeld

Shtukas of rank two with r-modifications for an even integer r. We prove an

identity between (1) the r-th central derivative of the quadratic base change

L-function associated to an everywhere unramified cuspidal automorphic

representation π of PGL2, and (2) the self-intersection number of the π-

isotypic component of the Heegner–Drinfeld cycle. This identity can be

viewed as a function-field analog of the Waldspurger and Gross–Zagier

formula for higher derivatives of L-functions.
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1. Introduction

In this paper we prove a formula for the arbitrary order central derivative

of a certain class of L-functions over a function field F = k(X) for a curve

X over a finite field k of characteristic p > 2. The L-function under consid-

eration is associated to a cuspidal automorphic representation of PGL2,F , or

rather, its base change to a quadratic field extension of F . The r-th central

derivative of our L-function is expressed in terms of the intersection number

of the “Heegner–Drinfeld cycle” on a moduli stack denoted by ShtrG in the

introduction, where G = PGL2. The moduli stack ShtrG is closely related to

the moduli stack of Drinfeld Shtukas of rank two with r-modifications. One

important feature of this stack is that it admits a natural fibration over the

r-fold self-product Xr of the curve X over Spec k

ShtrG // Xr.

The very existence of such moduli stacks presents a striking difference between

a function field and a number field. In the number field case, the analogous

spaces only exist (at least for the time being) when r ≤ 1. When r = 0, the

moduli stack Sht0
G is the constant groupoid over k

(1.1) BunG(k) ' G(F )\(G(A)/K),

where A is the ring of adèles and K is a maximal compact open subgroup of

G(A). The double coset in the right-hand side of (1.1) remains meaningful for

a number field F (except that one cannot demand the archimedean component

of K to be open). When r = 1 the analogous space in the case F = Q is the

moduli stack of elliptic curves, which lives over SpecZ. From such perspectives,

our formula can be viewed as a simultaneous generalization (for function fields)

of the Waldspurger formula [26] (in the case of r = 0) and the Gross–Zagier

formula [11] (in the case of r = 1).

Another noteworthy feature of our work is that we need not restrict our-

selves to the leading coefficient in the Taylor expansion of the L-functions:

our formula is about the r-th Taylor coefficient of the L-function regardless

whether r is the central vanishing order or not. This leads us to speculate

that, contrary to the usual belief, central derivatives of arbitrary order of mo-

tivic L-functions (for instance, those associated to elliptic curves) should bear

some geometric meaning in the number field case. However, due to the lack
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of the analog of ShtrG for arbitrary r in the number field case, we could not

formulate a precise conjecture.

Finally we note that, in the current paper, we restrict ourselves to every-

where unramified cuspidal automorphic representations. One consequence is

that we only need to consider the even r case. Ramifications, particularly the

odd r case, will be considered in subsequent work.

Now we give more details of our main theorems.

1.1. Some notation. Throughout the paper, let k = Fq be a finite field of

characteristic p > 2. Let X be a geometrically connected smooth proper curve

over k. Let ν : X ′ → X be a finite étale cover of degree 2 such that X ′ is also

geometrically connected. Let σ ∈ Gal(X ′/X) be the nontrivial involution. Let

F = k(X) and F ′ = k(X ′) be their function fields. Let g and g′ be the genera

of X and X ′, then g′ = 2g − 1.

We denote the set of closed points (places) of X by |X|. For x ∈ |X|, let

Ox be the completed local ring of X at x and let Fx be its fraction field. Let

A =
∏′
x∈|X| Fx be the ring of adèles, and let O =

∏
x∈|X|Ox be the ring of

integers inside A. Similar notation applies to X ′. Let

ηF ′/F : F×\A×/O× // {±1}

be the character corresponding to the étale double cover X ′ via class field

theory.

Let G = PGL2. Let K =
∏
x∈|X|Kx where Kx = G(Ox). The (spherical)

Hecke algebra H is the Q-algebra of bi-K-invariant functions C∞c (G(A)//K,Q)

with the product given by convolution.

1.2. L-functions. Let A = C∞c (G(F )\G(A)/K,Q) be the space of ev-

erywhere unramified Q-valued automorphic functions for G. Then A is an

H -module. By an everywhere unramified cuspidal automorphic representa-

tion π of G(AF ) we mean an H -submodule Aπ ⊂ A that is irreducible over Q.

For every such π, EndH (Aπ) is a number field Eπ, which we call the co-

efficient field of π. Then by the commutativity of H , Aπ is a one-dimensional

Eπ-vector space. If we extend scalars to C, Aπ splits into one-dimensional

HC-modules Aπ ⊗Eπ ,ι C, one for each embedding ι : Eπ ↪→ C, and each

Aπ⊗Eπ ,ιC ⊂ AC is the unramified vectors of an everywhere unramified cuspidal

automorphic representation in the usual sense.

The standard (complete) L-function L(π, s) is a polynomial of degree

4(g−1) in q−s−1/2 with coefficients in the ring of integers OEπ . Let πF ′ be the

base change to F ′, and let L(πF ′ , s) be the standard L-function of πF ′ . This

L-function is a product of two L-functions associated to cuspidal automorphic

representations of G over F :

L(πF ′ , s) = L(π, s)L(π ⊗ ηF ′/F , s).
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Therefore, L(πF ′ , s) is a polynomial of degree 8(g − 1) in q−s−1/2 with coeffi-

cients in Eπ. It satisfies a functional equation

L(πF ′ , s) = ε(πF ′ , s)L(πF ′ , 1− s),

where the epsilon factor takes a simple form

ε(πF ′ , s) = q−8(g−1)(s−1/2).

Let L(π,Ad, s) be the adjoint L-function of π. Denote

(1.2) L (πF ′ , s) = ε(πF ′ , s)
−1/2 L(πF ′ , s)

L(π,Ad, 1)
,

where the the square root is understood as

ε(πF ′ , s)
−1/2 := q4(g−1)(s−1/2).

Then we have a functional equation:

L (πF ′ , s) = L (πF ′ , 1− s).

Note that the constant factor L(π,Ad, 1) in L (πF ′ , s) does not affect the func-

tional equation, and it shows up only through the calculation of the Petersson

inner product of a spherical vector in π; see the proof of Theorem 4.5.

Consider the Taylor expansion at the central point s = 1/2:

L (πF ′ , s) =
∑
r≥0

L (r)(πF ′ , 1/2)
(s− 1/2)r

r!
,

i.e.,

L (r)(πF ′ , 1/2) =
dr

dsr

∣∣∣∣
s=0

Ç
ε(πF ′ , s)

−1/2 L(πF ′ , s)

L(π,Ad, 1)

å
.

If r is odd, by the functional equation we have

L (r)(πF ′ , 1/2) = 0.

Since L(π,Ad, 1) ∈ Eπ, we have L (πF ′ , s) ∈ Eπ[q−s−1/2, qs−1/2]. It follows

that

L (r)(πF ′ , 1/2) ∈ Eπ · (log q)r.

The main result of this paper is to relate each even degree Taylor coefficient to

the self-intersection numbers of a certain algebraic cycle on the moduli stack

of Shtukas. We give two formulations of our main results, one using certain

subquotient of the rational Chow group, and the other using `-adic cohomology.
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1.3. The Heegner–Drinfeld cycles. From now on, we let r be an even in-

teger. In Section 5.2, we will introduce moduli stack ShtrG of Drinfeld Shtukas

with r-modifications for the group G = PGL2. The stack ShtrG is a Deligne–

Mumford stack over Xr, and the natural morphism

πG : ShtrG // Xr

is smooth of relative dimension r, and locally of finite type.

Let T = (ResF ′/F Gm)/Gm be the nonsplit torus associated to the double

cover X ′ of X. In Section 5.4, we will introduce the moduli stack ShtµT of

T -Shtukas, depending on the choice of an r-tuple of signs µ ∈ {±}r satisfying

certain balance conditions in Section 5.1.2. Then we have a similar map

πµT : ShtµT
// X ′r,

which is a torsor under the finite Picard stack PicX′(k)/PicX(k). In particular,

ShtµT is a proper smooth Deligne–Mumford stack over Spec k.

There is a natural finite morphism of stacks over Xr

ShtµT
// ShtrG .

It induces a finite morphism

θµ : ShtµT
// Sht′rG := ShtrG ×Xr X ′r.

This defines a class in the Chow group

θµ∗ [ShtµT ] ∈ Chc,r(Sht′rG)Q.

Here Chc,r(−)Q means the Chow group of proper cycles of dimension r, ten-

sored over Q. See Section A.1 for details. In analogy to the classical Heegner

cycles [11], we will call θµ∗ [ShtµT ] the Heegner–Drinfeld cycle in our setting.

1.4. Main results : cycle-theoretic version. The Hecke algebra H acts on

the Chow group Chc,r(Sht′rG)Q as correspondences. Let W̃ ⊂ Chc,r(Sht′rG)Q be

the sub H -module generated by the Heegner–Drinfeld cycle θµ∗ [ShtµT ]. There

is a bilinear and symmetric intersection pairing1

(1.3) 〈·, ·〉Sht′rG
: W̃ × W̃ // Q.

Let W̃0 be the kernel of the pairing, i.e.,

W̃0 =
{
z ∈ W̃

∣∣∣ (z, z′) = 0, for all z′ ∈ W̃
}
.

1In this paper, the intersection pairing on the Chow groups will be denoted by 〈·, ·〉, and

other pairings (those on the quotient of the Chow groups, and the cup product pairing on

cohomology) will be denoted by (·, ·).
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The pairing 〈·, ·〉Sht′rG
then induces a nondegenerate pairing on the quotient

W := W̃/W̃0

(·, ·) : W ×W // Q .(1.4)

The Hecke algebra H acts on W . For any ideal I ⊂H , let

W [I] =
{
w ∈W

∣∣∣ I · w = 0
}
.

Let π be an everywhere unramified cuspidal automorphic representation of G

with coefficient field Eπ, and let λπ : H → Eπ be the associated character,

whose kernel mπ is a maximal ideal of H . Let

Wπ = W [mπ] ⊂W

be the λπ-eigenspace of W . This is an Eπ-vector space. Let IEis ⊂ H be the

Eisenstein ideal as defined in Definition 4.1, and define

WEis = W [IEis].

Theorem 1.1. We have an orthogonal decomposition of H -modules

(1.5) W = WEis ⊕
Ç⊕

π

Wπ

å
,

where π runs over the finite set of everywhere unramified cuspidal automorphic

representation of G and Wπ is an Eπ-vector space of dimension at most one.

The proof will be given in Section 9.3.1. In fact one can also show thatWEis

is a free rank one module over Q[PicX(k)]ιPic (for notation see Section 4.1.2),

but we shall omit the proof of this fact.

The Q-bilinear pairing (·, ·) on Wπ can be lifted to an Eπ-bilinear sym-

metric pairing

(1.6) (·, ·)π : Wπ ×Wπ
// Eπ,

where for w,w′ ∈Wπ, (w,w′)π is the unique element in Eπ such that TrEπ/Q(e·
(w,w′)π) = (ew,w′).

We now present the cycle-theoretic version of our main result.

Theorem 1.2. Let π be an everywhere unramified cuspidal automorphic

representation of G with coefficient field Eπ . Let [ShtµT ]π ∈Wπ be the projection

of the image of θµ∗ [ShtµT ] ∈ W̃ in W to the direct summand Wπ under the

decomposition (1.5). Then we have an equality in Eπ

1

2(log q)r
|ωX |L (r) (πF ′ , 1/2) =

(
[ShtµT ]π, [ShtµT ]π

)
π
,

where ωX is the canonical divisor of X , and |ωX | = q− degωX .

The proof will be completed in Section 9.3.2.
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Remark 1.3. Assume that r = 0. Then our formula is equivalent to the

Waldspurger formula [26] for an everywhere unramified cuspidal automorphic

representation π. More precisely, for any nonzero φ ∈ πK , the Waldspurger

formula is the identity

1

2
|ωX |L (πF ′ , 1/2) =

∣∣∣∫T (F )\T (A) φ(t) dt
∣∣∣2

〈φ, φ〉Pet
,

where 〈φ, φ〉Pet is the Petersson inner product (4.10), and the measure on G(A)

(resp. T (A)) is chosen such that vol(K) = 1 (resp. vol(T (O)) = 1).

Remark 1.4. Our Eπ-valued intersection paring is similar to the Néron–

Tate height pairing with coefficients in [27, §1.2.4].

1.5. Main results : cohomological version. Let ` be a prime number differ-

ent from p. Consider the middle degree cohomology with compact support

V ′Q` = H2r
c ((Sht′rG)⊗k k,Q`)(r).

In the main body of the paper, we simply denote this by V ′. This vector space

is endowed with the cup product

(·, ·) : V ′Q` × V
′
Q`

// Q`.

Then for any maximal ideal m ⊂HQ` , we define the generalized eigenspace of

V ′Q` with respect to m by

V ′Q`,m = ∪i>0V
′
Q` [m

i].

We also define the Eisenstein part of V ′Q` by

V ′Q`,Eis = ∪i>0V
′
Q` [I

i
Eis].

We remark that in the cycle-theoretic version (cf. Section 1.4), the gener-

alized eigenspace coincides with the eigenspace because the space W is a cyclic

module over the Hecke algebra.

Theorem 1.5 (see Theorem 7.16 for a more precise statement). We have

an orthogonal decomposition of HQ`-modules

(1.7) V ′Q` = V ′Q`,Eis ⊕
Ç⊕

m

V ′Q`,m

å
,

where m runs over a finite set of maximal ideals of HQ` whose residue fields

Em := HQ`/m are finite extensions of Q`, and each V ′Q`,m is an HQ`-module

of finite dimension over Q` supported at the maximal ideal m.

The action of HQ` on V ′Q`,m factors through the completion ”HQ`,m with

residue field Em. Since Em is finite étale over Q`, and ”HQ`,m is a complete local

(hence henselian) Q`-algebra with residue field Em, Hensel’s lemma implies
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that there is a unique section Em → ”HQ`,m. (The minimal polynomial of every

element h ∈ Em over Q` has a unique root h ∈ ”HQ`,m whose reduction is h.)

Hence each V ′Q`,m is also an Em-vector space in a canonical way. As in the case

of Wπ, using the Em-action on V ′Q`,m, the Q`-bilinear pairing on V ′Q`,m may be

lifted to an Em-bilinear symmetric pairing

(·, ·)m : V ′Q`,m × V
′
Q`,m

// Em.

Note that, unlike (1.5), in the decomposition (1.7) we cannot be sure

whether all m are automorphic; i.e., the homomorphism H → Em is the

character by which H acts on the unramified line of an irreducible automorphic

representation. However, for an everywhere unramified cuspidal automorphic

representation π of G with coefficient field Eπ, we may extend λπ : H → Eπ
to Q` to get

λπ ⊗Q` : HQ`
// Eπ ⊗Q`

∼=
∏
λ|`Eπ,λ

where λ runs over places of Eπ above `. Let mπ,λ be the maximal ideal of HQ`
obtained as the kernel of the λ-component of the above map HQ` → Eπ,λ.

To alleviate notation, we denote V ′Q`,mπ,λ simply by V ′π,λ and denote the

Eπ,λ-bilinear pairing (·, ·)mπ,λ on V ′π,λ by

(·, ·)π,λ : V ′π,λ × V ′π,λ // Eπ,λ.

We now present the cohomological version of our main result.

Theorem 1.6. Let π be an everywhere unramified cuspidal automorphic

representation of G with coefficient field Eπ . Let λ be a place of Eπ above `.

Let [ShtµT ]π,λ ∈ V ′π,λ be the projection of the cycle class cl(θµ∗ [ShtµT ]) ∈ V ′Q`
to the direct summand V ′π,λ under the decomposition (1.7). Then we have an

equality in Eπ,λ

1

2(log q)r
|ωX |L (r) (πF ′ , 1/2) =

(
[ShtµT ]π,λ, [ShtµT ]π,λ

)
π,λ
.

In particular, the right-hand side also lies in Eπ .

The proof will be completed in Section 9.2.

1.6. Two other results. We have the following positivity result. This may

be seen as an evidence of the Hodge standard conjecture (on the positivity of

intersection pairing) for a subquotient of the Chow group of middle-dimensional

cycles on Sht′rG.

Theorem 1.7. Let Wcusp be the orthogonal complement of WEis in W

(cf. (1.5)). Then the restriction to Wcusp of the intersection pairing (·, ·) in

(1.4) is positive definite.
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Proof. The assertion is equivalent to the positivity for the restriction to

Wπ of the intersection pairing for all π in (1.5). Fix such a π. Then the coeffi-

cient field Eπ is a totally real number field because the Hecke operators H act

on the positive definite inner product space A⊗QR (under the Petersson inner

product) by self-adjoint operators. For an embedding ι : Eπ → R, we define

Wπ,ι := Wπ ⊗Eπ ,ι R.
Extending scalars from Eπ to R via ι, the pairing (1.6) induces an R-bilinear

symmetric pairing
(·, ·)π,ι : Wπ,ι ×Wπ,ι

// R.
It suffices to show that, for every embedding ι : Eπ → R, the pairing (·, ·)π,ι is

positive definite. The R-vector space Wπ,ι is at most one dimensional, with a

generator given by [ShtµT ]π,ι = [ShtµT ]π⊗1. The embedding ι gives an irreducible

cuspidal automorphic representation πι with R-coefficient. Then Theorem 1.2

implies that
1

2(log q)r
|ωX |L (r) (πι,F ′ , 1/2) =

(
[ShtµT ]π,ι, [ShtµT ]π,ι

)
π,ι
∈ R.

It is easy to see that L(πι,Ad, 1) > 0. By Theorem B.2, we have

L (r) (πι,F ′ , 1/2) ≥ 0.

It follows that (
[ShtµT ]π,ι, [ShtµT ]π,ι

)
π,ι
≥ 0.

This completes the proof. �

Another result is a “Kronecker limit formula” for function fields. Let

L(η, s) be the (complete) L-function associated to the Hecke character η.

Theorem 1.8. When r > 0 is even, we have

〈θµ∗ [ShtµT ], θµ∗ [ShtµT ]〉Sht′rG
=

2r+2

(log q)r
L(r)(η, 0).

The proof will be given in Section 9.1.1. For the case r = 0, see Re-

mark 9.3.

Remark 1.9. To obtain a similar formula for the odd order derivatives

L(r)(η, 0), we need moduli spaces analogous to ShtµT and Sht′rG for odd r. We

will return to this in future work.

1.7. Outline of the proof of the main theorems.

1.7.1. Basic strategy. The basic strategy is to compare two relative trace

formulae. A relative trace formula (abbreviated as RTF) is an equality between

a spectral expansion and an orbital integral expansion. We have two RTFs, an

“analytic” one for the L-functions, and a “geometric” one for the intersection

numbers, corresponding to the two sides of the desired equality in Theorem 1.6.
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We may summarize the strategy of the proof into the following diagram:

(1.8)

Analytic:
∑
u∈P1(F )−{1} Jr(u, f)

§2

∼Th 8.1 ⇒

Jr(f)
§4

Th 9.2 ⇒

∑
π Jr(π, f)

⇒Th 1.6

Geometric:
∑
u∈P1(F )−{1} Ir(u, f)

§6
Ir(f)

§7 ∑
m Ir(m, f)

The vertical lines mean equalities after dividing the first row by (log q)r.

1.7.2. The analytic side. We start with the analytic RTF. To an f ∈ H
(or more generally, C∞c (G(A))), one first associates an automorphic kernel

function Kf on G(A)×G(A) and then a regularized integral:

J(f, s) =

∫ reg

[A]×[A]
Kf (h1, h2)|h1h2|sη(h2) dh1 dh2.

Here A is the diagonal torus ofG and [A] = A(F )\A(A). We refer to Section 2.2

for the definition of the weighted factors and the regularization. Informally, we

may view this integral as a weighted (naive) intersection number on the con-

stant groupoid BunG(k) (the moduli stack of Shtukas with r = 0 modifications)

between BunA(k) and its Hecke translation under f of BunA(k).

The resulting J(f, s) belongs to Q[q−s, qs]. For an f in the Eisenstein ideal

IEis (cf. Section 4.1), the spectral decomposition of J(f, s) takes a simple form:

it is the sum of

Jπ(f, s) =
1

2
|ωX |L (πF ′ , s+ 1/2)λπ(f),

where π runs over all everywhere unramified cuspidal automorphic represen-

tations π of G with Q`-coefficients (cf. Proposition 4.5). We define Jr(f) to be

the r-th derivative

Jr(f) :=

Å
d

ds

ãr ∣∣∣∣
s=0

J(f, s).

We point out that in the case of r = 0, the relative trace formula in

question was first introduced by Jacquet [12], in his reproof of Waldspurger’s

formula. In the case of r = 1, a variant was first considered in [30] (for number

fields).

1.7.3. The geometric side. Next we consider the geometric RTF. We con-

sider the Heegner–Drinfeld cycle θµ∗ [ShtµT ] and its translation by the Hecke

correspondence given by f ∈H , both being cycles on the ambient stack Sht′rG.

We define Ir(f) to be their intersection number

Ir(f) := 〈θµ∗ [ShtµT ], f ∗ θµ∗ [ShtµT ]〉Sht′rG
∈ Q, f ∈H .
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To decompose this spectrally according to the Hecke action, we have two per-

spectives, one viewing the Heegner–Drinfeld cycle as an element in the Chow

group modulo numerical equivalence, the other considering the cycle class of

the Heegner–Drinfeld cycle in the `-adic cohomology. In either case, when f

is in a certain power of IEis, the spectral decomposition (Section 7 or Theo-

rem 1.5) of WQ`
or V ′Q`

as an HQ`
-module expresses Ir(f) as a sum of

Ir(m, f) =
(
[ShtµT ]m, f ∗ [ShtµT ]m

)
,

where m runs over a finite set of maximal ideals of HQ`
whose corresponding

generalized eigenspaces appear discretely in WQ`
or V ′Q`

. We remark that

the method of the proof of the spectral decomposition in Theorem 1.5 can

potentially be applied to moduli of Shtukas for more general groups G, which

should lead to a better understanding of the cohomology of these moduli spaces.

We point out here that we use the same method as in [30] to set up the

geometric RTF, although in [30] only the case of r = 1 was considered. In the

case r = 0, Jacquet used an integration of kernel function to set up an RTF

for the T -period integral, which is equivalent to our geometric RTF because in

this case ShtµT and ShtrG become discrete stacks BunT (k) and BunG(k). Our

geometric formulation treats all values of r uniformly.

1.7.4. The key identity. In view of the spectral decompositions of both

Ir(f) and Jr(f), to prove the main Theorem 1.6 for all π simultaneously, it

suffices to establish the following key identity (cf. Theorem 9.2):

(1.9) Ir(f) = (log q)−rJr(f) ∈ Q for all f ∈H .

This key identity also allows us to deduce Theorem 1.1 on the spectral de-

composition of the space W of cycles from the spectral decomposition of Jr.
Theorem 1.2 then follows easily from Theorem 1.6.

Since half of the paper is devoted to the proof of the key identity (1.9),

we comment on its proof in more detail. The spectral decompositions allow us

to reduce to proving (1.9) for sufficiently many functions f ∈ H , indexed by

effective divisors on X with large degree compared to the genus of X (cf. The-

orem 8.1). Most of the algebro-geometric part of this paper is devoted to the

proof of the key identity (1.9) for those Hecke functions.

In Section 3, we interpret the orbital integral expansion of Jr(f) (the upper

left sum in (1.8)) as a certain weighted counting of effective divisors on the

curve X. The geometric ideas used in the part are close to those in the proof

of various fundamental lemmas by Ngô [20] and by the first-named author [29],

although the situation is much simpler in the current paper. In Section 6, we

interpret the intersection number Ir(f) as the trace of a correspondence acting

on the cohomology of a certain variety. This section involves new geometric
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ideas that did not appear in the treatment of the fundamental lemma type

problems. This is also the most technical part of the paper, making use of the

general machinery on intersection theory reviewed or developed in Appendix A.

After the preparations in Sections 3 and 6, our situation can be summa-

rized as follows. For an integer d ≥ 0, we have fibrations

fN : Nd =
⊔
d

Nd −→ Ad, fM :Md −→ Ad,

where d runs over all quadruples (d11, d12, d21, d22) ∈ Z4
≥0 such that d11 +d22 =

d = d12 + d21. We need to show that the direct image complexes RfM,∗Q`

and RfN ,∗Ld are isomorphic to each other, where Ld is a local system of

rank one coming from the double cover X ′/X. When d is sufficiently large,

we show that both complexes are shifted perverse sheaves, and are obtained

by middle extension from a dense open subset of Ad over which both can be

explicitly calculated (cf. Propositions 8.2 and 8.5). The isomorphism between

the two complexes over the entire base Ad then follows by the functoriality

of the middle extension. The strategy used here is the perverse continuation

principle coined by Ngô, which has already played a key role in all known

geometric proofs of fundamental lemmas; see [20] and [29].

Remark 1.10. One feature of our proof of the key identity (1.9) is that it

is entirely global, in the sense that we do not reduce to the comparison of local

orbital integral identities, as opposed to what one usually does when comparing

two trace formulae. Therefore, our proof is different from Jacquet’s in the case

r = 0 in that his proof is essentially local. (This is inevitable because he also

considers the number field case.)

Another remark is that our proof of (1.9) in fact gives a term-by-term

identity of the orbital expansion of both Jr(f) and Ir(f), as indicated in the

left column of (1.8), although this is not logically needed for our main results.

However, such more refined identities (for more general G) will be needed in

the proof of the arithmetic fundamental lemma for function fields, a project to

be completed in the near future [28].

1.8. A guide for readers. Since this paper uses a mixture of tools from

automorphic representation theory, algebraic geometry and sheaf theory, we

think it might help orient the readers by providing a brief summary of the

contents and the background knowledge required for each section. We give the

“Leitfaden” in Table 1.

Section 2 sets up the relative trace formula following Jacquet’s approach

[12] to the Waldspurger formula. This section is purely representation-theo-

retic.

Section 3 gives a geometric interpretation of the orbital integrals involved

in the relative trace formula introduced in Section 2. We express these orbital
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Section 2

zz ��

Section 5

�� $$

Section 4

$$

Section 3

$$

Section 6

zz

Section 7

zz

Section 8

��

Section 9

Table 1.

integrals as the trace of Frobenius on the cohomology of certain varieties, in

the similar spirit of the proof of various fundamental lemmas ([20], [29]). This

section involves both orbital integrals and some algebraic geometry but not

yet perverse sheaves.

Section 4 relates the spectral side of the relative trace formula in Sec-

tion 2 to automorphic L-functions. Again this section is purely representation-

theoretic.

Section 5 introduces the geometric players in our main theorem: moduli

stacks ShtrG of Drinfeld Shtukas, and Heegner–Drinfeld cycles on them. We

give self-contained definitions of these moduli stacks, so no prior knowledge

of Shtukas is assumed, although some experience with the moduli stack of

bundles will help.

Section 6 is the technical heart of the paper, aiming to prove Theorem 6.5.

The proof involves studying several auxiliary moduli stacks and uses heavily the

intersection-theoretic tools reviewed and developed in Appendix A. The first-

time readers may skip the proof and only read the statement of Theorem 6.5.

Section 7 gives a decomposition of the cohomology of ShtrG under the

action of the Hecke algebra, generalizing the classical spectral decomposition

for the space automorphic forms. The idea is to remove the analytic ingredi-

ents from the classical treatment of spectral decomposition and to use solely

commutative algebra. (In particular, we crucially use the Eisenstein ideal in-

troduced in Section 4.) For first-time readers, we suggest read Section 7.1,

then jump directly to Definition 7.12 and continue from there. What he/she

will miss in doing this is the study of the geometry of ShtrG near infinity (horo-

cycles), which requires some familiarity with the moduli stack of bundles, and

the formalism of `-adic sheaves.
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Section 8 combines the geometric formula for orbital integrals established

in Section 3 and the trace formula for the intersection numbers established in

Section 6 to prove the key identity (1.9) for most Hecke functions. The proofs

in this section involve perverse sheaves.

Section 9 finishes the proofs of our main results. Assuming results from

the previous sections, most arguments in this section only involve commutative

algebra.

Both appendices can be read independently of the rest of the paper. Ap-

pendix A reviews the intersection theory on algebraic stacks following Kresch

[14], with two new results that are used in Section 6 for the calculation of the

intersection number of Heegner–Drinfeld cycles. The first result, called the

Octahedron Lemma (Theorem A.10), is an elaborated version of the following

simple principle: in calculating the intersection product of several cycles, one

can combine terms and change the orders arbitrarily. The second result is a

Lefschetz trace formula for the intersection of a correspondence with the graph

of the Frobenius map, building on results of Varshavsky [24].

Appendix B proves a positivity result for central derivatives of automor-

phic L-functions, assuming the generalized Riemann hypothesis in the case

of number fields. The main body of the paper only considers L-functions for

function fields, for which the positivity result can be proved in an elementary

way (see Remark B.4).

1.9. Further notation.

1.9.1. Function field notation. For x ∈ |X|, let $x be a uniformizer of Ox,

kx be the residue field of x, dx = [kx : k], and qx = #kx = qdx . The valuation

map is a homomorphism

val : A× // Z

such that val($x) = dx. The normalized absolute value on A× is defined as

| · | : A× // Q×>0 ⊂ R×

a � // q−val(a).

Denote the kernel of the absolute value by

A1 = Ker(| · |).

We have the global and local zeta function

ζF (s) =
∏
x∈|X|

ζx(s), ζx(s) =
1

1− q−sx
.

Denote by Div(X) ∼= A×/O× the group of divisors on X.
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1.9.2. Group-theoretic notation. Let G be an algebraic group over k. We

will view it as an algebraic group over F by extension of scalars. We will

abbreviate [G] = G(F )\G(A). Unless otherwise stated, the Haar measure on

the group G(A) will be chosen such that the natural maximal compact open

subgroup G(O) has volume equal to one. For example, the measure on A×,

resp. G(A) is such that vol (O×) = 1, resp. vol(K) = 1.

1.9.3. Algebro-geometric notation. In the main body of the paper, all geo-

metric objects are algebraic stacks over the finite field k = Fq. For such a

stack S, let FrS : S → S be the absolute q-Frobenius endomorphism that

raises functions to their q-th powers.

For an algebraic stack S over k, we write H∗(S ⊗k k) (resp. H∗c(S ⊗k k))

for the étale cohomology (resp. étale cohomology with compact support) of

the base change S ⊗k k with Q`-coefficients. The `-adic homology H∗(S ⊗k k)

and Borel-Moore homology HBM
∗ (S ⊗k k) are defined as the graded duals of

H∗(S ⊗k k) and H∗c(S ⊗k k) respectively. We use Db
c(S) to denote the derived

category of Q`-complexes for the étale topology of S, as defined in [17]. We

use DS to denote the dualizing complex of S with Q`-coefficients.
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Part 1. The analytic side

2. The relative trace formula

In this section we set up the relative trace formula following Jacquet’s

approach [12] to the Waldspurger formula.

2.1. Orbits. In this subsection F is allowed to be an arbitrary field. Let

F ′ be a semisimple quadratic F -algebra; i.e., it is either the split algebra F ⊕F
or a quadratic field extension of F . Denote by Nm : F ′ → F the norm map.

Denote G = PGL2,F and A the subgroup of diagonal matrices in G. We

consider the action of A×A on G where (h1, h2) ∈ A×A acts by (h1, h2)g =
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h−1
1 gh2. We define an A×A-invariant morphism:

inv : G // P1
F − {1}

γ � // bc
ad ,

(2.1)

where
[
a b
c d

]
∈ GL2 is a lifting of γ. We say that γ ∈ G is A × A-regular

semisimple if

inv(γ) ∈ P1
F − {0, 1,∞},

or equivalently all a, b, c, d are invertible in terms of the lifting of γ. Let Grs

be the open subscheme of A × A-regular semisimple locus. A section of the

restriction of the morphism inv to Grs is given by

γ : P1
F − {0, 1,∞} // G

u � // γ(u) =

ñ
1 u

1 1

ô
.

(2.2)

We consider the induced map on the F -points inv : G(F )→ P1(F )− {1}
and the action of A(F )×A(F ) on G(F ). Denote by

Ors(G) = A(F )\Grs(F )/A(F )

the set of orbits in Grs(F ) under the action of A(F )×A(F ). They will be called

the regular semisimple orbits. It is easy to see that the map inv : Grs(F ) →
P1(F )− {0, 1,∞} induces a bijection

inv : Ors(G) −→ P1(F )− {0, 1,∞}.

A convenient set of representative of Ors(G) is given by

Ors(G) '
®
γ(u) =

ñ
1 u

1 1

ô ∣∣∣∣∣ u ∈ P1(F )− {0, 1,∞}
´
.

There are six nonregular-semisimple orbits in G(F ), represented respectively

by

1 =

ñ
1

1

ô
, n+ =

ñ
1 1

1

ô
, n− =

ñ
1

1 1

ô
,

w =

ñ
1

1

ô
, wn+ =

ñ
1

1 1

ô
, wn− =

ñ
1 1

1

ô
,

where the first three (the last three, resp.) have inv = 0 (∞, resp.)
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2.2. Jacquet’s RTF. Now we return to the setting of the introduction. In

particular, we have η = ηF ′/F . In [12] Jacquet constructs an RTF to study the

central value of L-functions of the same type as ours (mainly in the number

field case). Here we modify his RTF to study higher derivatives.

For f ∈ C∞c (G(A)), we consider the automorphic kernel function

Kf (g1, g2) =
∑

γ∈G(F )

f(g−1
1 γg2), g1, g2 ∈ G(A).(2.3)

We will define a distribution, given by a regularized integral

J(f, s) =

∫ reg

[A]×[A]
Kf (h1, h2)|h1h2|sη(h2) dh1 dh2.

Here we recall that [A] = A(F )\A(A), and for h = [ a d ] ∈ A(A), for simplicity

we write ∣∣∣h∣∣∣ =
∣∣∣a/d∣∣∣, η(h) = η(a/d).

The integral is not always convergent but can be regularized in a way analogous

to [12]. For an integer n, consider the “annulus”

A×n :=

®
x ∈ A×

∣∣∣∣∣ val(x) = n

´
.

This is a torsor under the group A1 = A×0 . Let A(A)n be the subset of A(A)

defined by

A(A)n =

®ñ
a

d

ô
∈ A(A)

∣∣∣∣∣ a/d ∈ A×n

´
.

Then we define, for (n1, n2) ∈ Z2,

Jn1,n2(f, s) =

∫
[A]n1×[A]n2

Kf (h1, h2)|h1h2|sη(h2) dh1 dh2.(2.4)

The integral (2.4) is clearly absolutely convergent and equal to a Laurent poly-

nomial in qs.

Proposition 2.1. The integral Jn1,n2(f, s) vanishes when |n1| + |n2| is

sufficiently large.

Granting this proposition, we then define

J(f, s) :=
∑

(n1,n2)∈Z2

Jn1,n2(f, s).(2.5)

This is a Laurent polynomial in qs.

The proof of Proposition 2.1 will occupy Sections 2.3–2.5.
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2.3. A finiteness lemma. For an (A×A)(F )-orbit of γ, we define

Kf,γ(h1, h2) =
∑

δ∈A(F )γA(F )

f(h−1
1 δh2), h1, h2 ∈ A(A).(2.6)

Then we have

Kf (h1, h2) =
∑

γ∈A(F )\G(F )/A(F )

Kf,γ(h1, h2).(2.7)

Lemma 2.2. The sum in (2.7) has only finitely many nonzero terms.

Proof. Denote by G(F )u the fiber of u under the (surjective) map (2.1)

inv : G(F ) −→ P1(F )− {1}.

We then have a decomposition of G(F ) as a disjoint union

G(F ) =
∐

u∈P1(F )−{1}
G(F )u.

There is exactly one (three, resp.) (A × A)(F )-orbit in G(F )a when u ∈
P1(F ) − {0, 1,∞} (when u ∈ {0,∞}, resp.). It suffices to show that for all

but finitely many u ∈ P1(F ) − {0, 1,∞}, the kernel function Kf,γ(u)(h1, h2)

vanishes identically on A(A)×A(A).

Consider the map

τ :=
inv

1− inv
: G(A) −→ A.

The map τ is continuous and takes constant values on A(A) × A(A)-orbits.

For Kf,γ(u)(h1, h2) to be nonzero, the invariant τ(γ(u)) = u
1−u must be in the

image of supp(f), the support of the function f . Since supp(f) is compact, so

is its image under τ . On the other hand, the invariant τ(γ(u)) = u
1−u belongs

to F . Since the intersection of a compact set supp(f) with a discrete set F

in A must have finite cardinality, the kernel function Kf,γ(u)(h1, h2) is nonzero

for only finitely many u. �

For γ ∈ A(F )\G(F )/A(F ), we define

Jn1,n2(γ, f, s) =

∫
[A]n1×[A]n2

Kf,γ(h1, h2)|h1h2|sη(h2) dh1 dh2.(2.8)

Then we have

Jn1,n2(f, s) =
∑

γ∈A(F )\G(F )/A(F )

Jn1,n2(γ, f, s).

By the previous lemma, the above sum has only finitely many nonzero

terms. Therefore, to show Proposition 2.1, it suffices to show

Proposition 2.3. For any γ ∈ G(F ), the integral Jn1,n2(γ, f, s) vanishes

when |n1|+ |n2| is sufficiently large.
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Granting this proposition, we may define the (weighted) orbital integral

J(γ, f, s) :=
∑

(n1,n2)∈Z2

Jn1,n2(γ, f, s).(2.9)

To show Proposition 2.3, we distinguish two cases according to whether γ is

regular semisimple.

2.4. Proof of Proposition 2.3: regular semisimple orbits. For u ∈ P1(F )−
{0, 1,∞}, the fiber G(F )u = inv−1(u) is a single A(F ) × A(F )-orbit of γ(u),

and the stabilizer of γ(u) is trivial. We may rewrite (2.8) as

Jn1,n2(γ(u), f, s) =

∫
A(A)n1×A(A)n2

f(h−1
1 γ(u)h2)|h1h2|sη(h2) dh1 dh2.(2.10)

For the regular semisimple γ = γ(u), the map

ιγ : (A×A)(A) −→ G(A)

(h1, h2) 7−→ h−1
1 γh2

is a closed embedding. It follows that the function f ◦ ιγ has compact support,

hence belongs to C∞c ((A×A)(A)). Therefore, the integrand in (2.10) vanishes

when |n1|+ |n2| � 0 (depending on f and γ(u)).

2.5. Proof of Proposition 2.3: nonregular-semisimple orbits. Let u∈{0,∞}.
We only consider the case u = 0 since the other case is completely analogous.

There are three orbit representatives {1, n+, n−}.
It is easy to see that for γ = 1, we have for all (n1, n2) ∈ Z2,

Jn1,n2(γ, f, s) = 0,

because η|A1 is a nontrivial character.

Now we consider the case γ = n+; the remaining case γ = n− is similar.

Define a function

φ(x, y) = f

Çñ
x y

1

ôå
, (x, y) ∈ A× × A.(2.11)

Then we have φ ∈ C∞c (A× × A). The integral Jn1,n2(n+, f, s) is given by∫
A×n1×A

×
n2

φ
Ä
x−1y, x−1

ä
η(y)|xy|s d×x d×y,(2.12)

where we use the multiplicative measure d×x on A×. We substitute y by xy,

and then x by x−1:∫
Z(n1,n2)

φ (y, x) η(xy)|x|−2s|y|s d×x d×y,

where

Z(n1, n2) =
¶

(x, y) | x ∈ A(A)−n1 , x
−1y ∈ A(A)n2

©
.
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Since C∞c (A× × A) ' C∞c (A×) ⊗ C∞c (A), we may reduce to the case

φ(x, y) = φ1(x)φ2(y) where φ1 ∈ C∞c (A×), φ2 ∈ C∞c (A). Moreover, by writing

φ1 as a finite linear combination, each supported on a single A×n , we may even

assume that supp(φ1) is contained in A×n for some n ∈ Z. The last integral is

equal toÇ∫
A×n

φ1 (y) η(y)|y|s d×y
å(∫

A×−n1∩A
×
−n2+n

φ2 (x) η(x)|x|−2s d×x

)
.

Finally we recall that, from Tate’s thesis, for any ϕ ∈ C∞c (A), the integral

on an annulus ∫
A×n

ϕ (x) η(x)|x|2s d×x

vanishes when |n| � 0. We briefly recall how this is proved. It is clear if

n� 0. Now assume that n� 0. We rewrite the integral as∫
F×\A×n

∑
α∈F×

ϕ (αx) η(x)|x|2s d×x.

The Fourier transform of ϕ, denoted by ϕ̂, still lies in C∞c (A). By the Poisson

summation formula, we have∑
α∈F×

ϕ(αx) = −ϕ(0) + |x|−1ϕ̂(0) + |x|−1
∑
α∈F×

ϕ̂(α/x).(2.13)

By the boundedness of the support of ϕ̂, the sum over F× on the right-hand

side vanishes when val(x) = n � 0. Finally we note that the the integral of

the remaining two terms on the right-hand side of (2.13) vanishes because η is

nontrivial on F×\A1.

This completes the proof of Propositions 2.3 and 2.1. �

2.6. The distribution J. Now J(f, s) is a Laurent polynomial in qs. Con-

sider the r-th derivative

Jr(f) :=

Å
d

ds

ãr ∣∣∣∣
s=0

J(f, s).

For γ ∈ A(F )\G(F )/A(F ), we define

Jr(γ, f) :=

Å
d

ds

ãr ∣∣∣∣
s=0

J(γ, f, s).

We then have expansions (cf. (2.5))

J(f, s) =
∑

γ∈A(F )\G(F )/A(F )

J(γ, f, s),

and (cf. (2.9))

Jr(f) =
∑

γ∈A(F )\G(F )/A(F )

Jr(γ, f).(2.14)
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We define

J(u, f, s) =
∑

γ∈A(F )\G(F )u/A(F )

J(γ, f, s), u ∈ P1(F )− {1}(2.15)

and

Jr(u, f) =
∑

γ∈A(F )\G(F )u/A(F )

Jr(γ, f), u ∈ P1(F )− {1}.(2.16)

Then we have a slightly coarser decomposition than (2.14):

Jr(f) =
∑

u∈P1(F )−{1}
Jr(u, f).(2.17)

2.7. A special test function f = 1K .

Proposition 2.4. For the test function

f = 1K ,

we have

J(u,1K , s) =


L(η, 2s) + L(η,−2s) if u ∈ {0,∞},
1 if u ∈ k − {0, 1},
0 otherwise.

(2.18)

Proof. We first consider the case u ∈ P1(F ) − {0, 1,∞}. In this case, we

have

J(u,1K , s) =

∫
A××A×

1K

Çñ
x−1 0

0 1

ô ñ
1 u

1 1

ô ñ
y 0

0 1

ôå
|xy|sη(y) d×x d×y

=
∑

x,y∈A×/O×
1K

Çñ
x−1y x−1u

y 1

ôå
|xy|sη(y).

The integrand is nonzero if and only if g =
î
x−1y x−1u
y 1

ó
∈ K. This is equivalent

to the condition that g2
ij/ det(g) ∈ O, where {gij}1≤i,j≤2 are the entries of g.

We have det(g) = x−1y(1− u), therefore, g ∈ K is equivalent to

(2.19)
x−1y(1− u)−1 ∈ O, x−1y−1u2(1− u)−1 ∈ O,

xy(1− u)−1 ∈ O, and xy−1(1− u)−1 ∈ O.

Multiplying the first and last conditions we get (1 − u)−1 ∈ O. Therefore,

1− u ∈ F× must be a constant function, i.e., u ∈ k − {0, 1}. This shows that

J(u,1K , s) = 0 when u ∈ F − k.

When u ∈ k − {0, 1}, the conditions (2.19) become

x−1y ∈ O, x−1y−1 ∈ O, xy ∈ O, and xy−1 ∈ O.
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These together imply that x, y ∈ O×. Therefore, the integrand is nonzero only

when both x and y are in the unit coset of A×/O×, and the integrand is equal

to 1 when this happens. This proves J(u,1K , s) = 1 when u ∈ k − {0, 1}.
Next we consider the case u = 0. For f = 1K and γ = n+, in (2.11) we

have φ = φ1 ⊗ φ2, where

φ1 = 1O× , φ2 = 1O.

Therefore, we have

J(n+,1K , s) =

∫
A×

φ2(x)η(x)|x|−2s d×x = L(η,−2s).

Similarly, we have

J(n−,1K , s) = L(η, 2s).

This proves the equality (2.18) for u = 0. The case for u =∞ is analogous. �

Corollary 2.5. We have

Jr(1K) =


4L(η, 0) + q − 2 = 4

# JacX′ (k)
# JacX(k) + q − 2 r = 0,

2r+2
Ä
d
ds

är ∣∣∣∣
s=0

L(η, s) r > 0 even,

0 r > 0 odd.

3. Geometric interpretation of orbital integrals

In this section, we will give a geometric interpretation of the orbital inte-

grals J(γ, f, s) (cf. (2.9)) as a certain weighted counting of effective divisors on

the curve X, when f is in the unramified Hecke algebra.

3.1. A basis for the Hecke algebra. Let x ∈ |X|. In the caseG = PGL2, the

local unramified Hecke algebra Hx is the polynomial algebra Q[hx], where hx is

the characteristic function of the G(Ox)-double coset of
[
$x 0
0 1

]
, and $x ∈ Ox

is a uniformizer. For each integer n ≥ 0, consider the set Mat2(Ox)vx(det)=n

of matrices A ∈ Mat2(Ox) such that vx(det(A)) = n. Let Mx,n be the image

of Mat2(Ox)vx(det)=n in G(Fx). Then Mx,n is a union of G(Ox)-double cosets.

We define hnx to be the characteristic function

(3.1) hnx = 1Mx,n .

Then {hnx}n≥0 is a Q-basis for Hx.

Now consider the global unramified Hecke algebra H = ⊗x∈|X|Hx, which

is a polynomial ring over Q with infinitely generators hx. For each effective

divisor D =
∑
x∈|X| nx · x, we can define an element hD ∈H using

(3.2) hD = ⊗x∈|X|hnxx,

where hnxx is defined in (3.1). It is easy to see that the set {hD|D effective

divisor on X} is a Q-basis for H .
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The goal of the next few subsections is to give a geometric interpretation

of the orbital integral J(γ, hD, s). We begin by defining certain moduli spaces.

3.2. Global moduli space for orbital integrals.

3.2.1. For d ∈ Z, we consider the Picard stack PicdX of lines bundles over

X of degree d. Note that PicdX is a Gm-gerbe over its coarse moduli space.

Let “Xd → PicdX be the universal family of sections of line bundles; i.e., an

S-point of “Xd is a pair (L, s), where L is a line bundle over X × S such that

degL|X×{t} = d for all geometric points t of S, and s ∈ H0(X × S,L).

When d < 0, “Xd
∼= PicdX since all global sections of all line bundles

L ∈ PicdX vanish. When d ≥ 0, let Xd = Xd//Sd be the d-th symmetric power

of X. Then there is an open embedding Xd ↪→ “Xd as the open locus of nonzero

sections, with complement isomorphic to PicdX .

For d1, d2 ∈ Z, we have a morphism‘addd1,d2 : “Xd1 × “Xd2 −→ “Xd1+d2

sending ((L1, s1), (L2, s2)) to (L1 ⊗ L2, s1 ⊗ s2). The restriction of ‘addd1,d2 to

the open subset Xd1 × Xd2 becomes the addition map for divisors addd1,d2 :

Xd1 ×Xd2 → Xd1+d2 .

3.2.2. The moduli space Nd. Let d ≥ 0 be an integer. Let Σd be the set

of quadruple of nonnegative integers d = (dij)i,j∈{1,2} satisfying d11 + d22 =

d12 + d21 = d.

For d∈Σd, we consider the moduli functor Ñd classifying (K1,K2,K′1,K′2,ϕ)

where

• Ki,K′i ∈ PicX with degK′i − degKj = dij .

• ϕ : K1 ⊕K2 → K′1 ⊕K′2 is an OX -linear map. We express it as a matrix

ϕ =

ñ
ϕ11 ϕ12

ϕ21 ϕ22

ô
,

where ϕij : Kj → K′i.
• If d11 < d22, then ϕ11 6= 0 otherwise ϕ22 6= 0. If d12 < d21, then ϕ12 6= 0

otherwise ϕ21 6= 0. Moreover, at most one of the four maps ϕij , i, j ∈ {1, 2}
can be zero.

The Picard stack PicX acts on Ñd by tensoring each Ki and K′j with the same

line bundle. Let Nd be the quotient stack Ñd/PicX , which will turn out to be

representable by a scheme over k. We remark that the artificial-looking last

condition in the definition of Nd is to guarantee that Nd is separated.

3.2.3. The base Ad. Let Ad be the moduli stack of triples (∆, a, b), where

∆ ∈ PicdX and a and b are sections of ∆ with the open condition that a and b
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are not simultaneously zero. Then we have an isomorphism

(3.3) Ad ∼= “Xd ×PicdX
“Xd − Zd,

where Zd ∼= PicdX is the image of the diagonal zero sections (0, 0) : PicdX ↪→“Xd ×PicdX
“Xd.

We claim that Ad is a scheme. In fact, A is covered by two opens V =“Xd ×PicdX
Xd and V ′ = Xd ×PicdX

“Xd. Both V and V ′ are schemes because the

map “Xd → PicdX is schematic.

We have a map

δ : Ad −→ “Xd

given by (∆, a, b) 7→ (∆, a− b).

3.2.4. The open part A♥d . Later we will consider the open subscheme

A♥d ⊂ Ad defined by the condition a 6= b, i.e., the preimage of Xd under

the map δ : Ad → “Xd.

3.2.5. To a point (K1,K2,K′1,K′2, ϕ) ∈ Ñd we attach the following maps:

• a := ϕ11 ⊗ ϕ22 : K1 ⊗K2 → K′1 ⊗K′2;

• b := ϕ12 ⊗ ϕ21 : K1 ⊗K2 → K′2 ⊗K′1 ∼= K′1 ⊗K′2.

Both a and b can be viewed as sections of the line bundle ∆ = K′1 ⊗ K′2 ⊗
K−1

1 ⊗ K
−1
2 ∈ PicdX . Clearly this assignment (K1,K2,K′1,K′2, ϕ) 7→ (∆, a, b) is

invariant under the action of PicX on Ñd. Therefore, we get a map

fNd : Nd −→ Ad.

The composition δ ◦ fNd : Nd → “Xd takes (K1,K2,K′1,K′2, ϕ) to det(ϕ) as a

section of ∆ = K′1 ⊗K′2 ⊗K−1
1 ⊗K

−1
2 .

3.2.6. Geometry of Nd. Fix d = (dij) ∈ Σd. For i, j ∈ {1, 2}, we have

a morphism ij : Nd → “Xdij sending (K1, . . . ,K′2, ϕ) to the section ϕij of

the line bundle Lij := K′i ⊗ K
−1
j ∈ Pic

dij
X . We have canonical isomorphisms

L11⊗L22
∼= L12⊗L21

∼= ∆ = K′1⊗K′2⊗K−1
1 ⊗K

−1
2 . Thus we get a morphism

d = (ij)i,j : Nd−→ (“Xd11 × “Xd22)×PicdX
(“Xd12 × “Xd21).(3.4)

Here the fiber product on the right side is formed using the maps “Xd11× “Xd22 →
Picd11X ×Picd22X

⊗−→ PicdX and “Xd12 × “Xd21 → Picd12X ×Picd21X
⊗−→ PicdX .

Proposition 3.1. Let d ∈ Σd.

(1) The morphism d is an open embedding, and Nd is a geometrically con-

nected scheme over k.

(2) If d ≥ 2g′− 1 = 4g− 3, then Nd is smooth over k of dimension 2d− g+ 1.
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(3) We have a commutative diagram

Nd �
� d

//

fNd

��

(“Xd11 × “Xd22)×PicdX
(“Xd12 × “Xd21)”addd11,d22×”addd12,d21

��

Ad �
�

// “Xd ×PicdX
“Xd.

(3.5)

Moreover, the map fNd is proper.

Proof. (1) We abbreviate PicdX by P d. Let Zd ⊂ (“Xd11 × “Xd22) ×PicdX

(“Xd12 × “Xd21) be the closed substack consisting of ((Lij , sij) ∈ “Xdij )1≤i,j≤2

such that

• either two of {sij}1≤i,j≤2 are zero,

• or s11 = 0 if d11 < d22,

• or s22 = 0 if d11 ≥ d22,

• or s12 = 0 if d12 < d21,

• or s21 = 0 if d12 ≥ d21.

By the definition of Nd, we have a Cartesian diagram

Nd
d
//

λ
��

(“Xd11 × “Xd22)×P d (“Xd12 × “Xd21)− Zd

��

P d11−d12 × P d11 × P d21
ρ

// (P d11 × P d22)×P d (P d12 × P d21).

Here λ sends (K1, . . . ,K′2, ϕ) to (X2 = K2 ⊗ K−1
1 ,X ′1 = K′1 ⊗ K−1

1 ,X ′2 =

K′2 ⊗ K−1
1 ), and ρ sends (X2,X ′1,X ′2) to (X ′1,X ′2 ⊗ X−1

2 ,X ′1 ⊗ X−1
2 ,X ′2). Note

that ρ is an isomorphism. Therefore, d is an isomorphism. Since the geo-

metric fibers of λ are connected, and P d11−d12 × P d11 × P d21 is geometrically

connected, so is Nd.
The stack Nd is covered by four open substacks Uij , i, j ∈ {1, 2}, where Uij

is the locus where only ϕij is allow to be zero. Each Uij is a scheme over k. In

fact, for example, U11 is an open substack of (“Xd11 ×Xd22)×P d (Xd12 ×Xd21),

and the latter is a scheme since the morphism “Xd11 → P d11 is schematic.

(2) We first show that Nd is smooth when d ≥ 2g′ − 1 = 4g − 3. For this

we only need to show that Uij is smooth. (See the proof of part (1) for the

definition of Uij .) By the definition of Nd, ϕij is allowed to be zero only when

dij ≥ d/2, which implies that dij ≥ 2g− 1. Therefore, we need Uij to cover Nd
only when dij ≥ 2g−1; otherwise ϕij is never zero and the rest of the Ui′,j′ still

cover Nd. Therefore, we only need to prove the smoothness of Uij under the

assumption that dij ≥ d/2. Without loss of generality, we argue for i = j = 1.

Then d11 ≥ 2g − 1 implies that the Abel-Jacobi map AJd11 : “Xd11 → P d11 is
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smooth of relative dimension d11 − g + 1. We have a Cartesian diagram

U11
//

��

“Xd11

AJd11
��

Xd22 ×Xd12 ×Xd21
// P d11 ,

where the bottom horizontal map is given by (L22, s22,L12, s12,L21, s21) 7→
L12 ⊗ L21 ⊗ L−1

22 . Therefore, U11 is smooth over Xd22 × Xd12 × Xd21 with

relative dimension d11 − g + 1, and U11 is itself smooth over k of dimension

2d− g + 1.

(3) The commutativity of the diagram (3.5) is clear from the definition

of d. Finally we show that fNd : Nd → Ad is proper. Note that Ad is covered

by open subschemes V = “Xd ×P d Xd and V ′ = Xd ×P d “Xd whose preimages

under fNd are U11 ∪ U22 and U12 ∪ U21 respectively. Therefore, it suffices to

show that fV : U11 ∪ U22 → V and fV ′ : U12 ∪ U21 → V ′ are both proper.

We argue for the properness of fV . There are two cases: either d11 ≥ d22

or d11 < d22.

When d11 ≥ d22, by the last condition in the definition of Nd, ϕ22 is never

zero, hence U11 ∪ U22 = U11. By part (2), the map fV becomes

(“Xd11 ×Xd22)×P d (Xd12 ×Xd21) −→ “Xd ×P d Xd.

Therefore, it suffices to show that the restriction of the addition map

α = ‘addd11,d22 |X̂d11×Xd22
: “Xd11 ×Xd22 −→ “Xd

is proper. We may factor α as the composition of the closed embedding“Xd11 × Xd22 → “Xd × Xd22 sending (L11, s11, D22) to (L11(D22), s11, D22) and

the projection “Xd ×Xd22 → “Xd, and the properness of α follows.

The case d11 < d22 is argued in the same way. The properness of fV ′ is also

proved in the similar way. This finishes the proof of the properness of fNd . �

3.3. Relation with orbital integrals. In this subsection we relate the deriv-

ative orbital integral J(γ, hD, s) to the cohomology of fibers of fNd .

3.3.1. The local system Ld. Recall that ν : X ′ → X is a geometrically

connected étale double cover with the nontrivial involution σ ∈ Gal(X ′/X).

Let L = (ν∗Q`)
σ=−1. This is a rank one local system on X with L⊗2 ∼= Q`.

Since we have a canonical isomorphism H1(X,Z/2Z) ∼= H1(PicnX ,Z/2Z), each

PicnX carries a rank one local system Ln corresponding to L. By abuse of

notation, we also denote the pullback of Ln to “Xn by Ln. Note that the

pullback of Ln to Xn via the Abel-Jacobi map Xn → PicnX is the descent of

L�n along the natural map Xn → Xn.
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Using the map d (3.4), we define the following local system Ld on Nd:

Ld := ∗d(Ld11 �Q` � Ld12 �Q`).

3.3.2. Fix D ∈ Xd(k). Let AD ⊂ Ad be the fiber of Ad over D under

the map δ : Ad → “Xd. Then AD classifies triples (OX(D), a, b) in Ad with the

condition that a− b is the tautological section 1 ∈ Γ(X,OX(D)). Such a triple

is determined uniquely by the section a ∈ Γ(X,OX(D)). Therefore, we get

canonical isomorphisms (viewing the right-hand side as an affine spaces over k)

AD ∼= Γ(X,OX(D)).(3.6)

On the level of k-points, we have an injective map

invD : AD(k) ∼= Γ(X,OX(D)) ↪→ P1(F )− {1}
(OX(D), a, a− 1)↔ a 7−→ (a− 1)/a = 1− a−1.

Proposition 3.2. Let D ∈ Xd(k), and consider the test function hD
defined in (3.2). Let u ∈ P1(F )− {1}.
(1) If u is not in the image of invD, then we have J(γ, hD, s) = 0 for any

γ ∈ A(F )\G(F )/A(F ) with inv(γ) = u;

(2) If u = invD(a) for some a ∈ AD(k) = Γ(X,OX(D)), and u /∈ {0, 1,∞}
(i.e., a /∈ {0, 1}), then

J(γ(u), hD, s) =
∑
d∈Σd

q(2d12−d)s Tr
Ä
Froba,

Ä
RfNd,∗Ld

ä
a

ä
.

(3) Assume d ≥ 2g′ − 1 = 4g − 3. If u = 0, then it corresponds to a = 1 ∈
AD(k); if u = ∞ then it corresponds to a = 0 ∈ AD(k). In both cases we

have

(3.7)
∑

inv(γ)=u

J(γ, hD, s) =
∑
d∈Σd

q(2d12−d)s Tr
Ä
Froba,

Ä
RfNd,∗Ld

ä
a

ä
.

Here the sum on the left-hand side is over the three irregular double cosets

γ ∈ {1, n+, n−} if u = 0 and over γ ∈ {w,wn+, wn−} if u =∞.

Proof. We first make some general constructions. Let ‹A ⊂ GL2 be the

diagonal torus, and let γ̃ ∈ GL2(F )− (‹A(F ) ∪ w‹A(F )) with image γ ∈ G(F ).

Let α : ‹A → Gm be the simple root [ a d ] 7→ a/d. Let Z ∼= Gm ⊂ ‹A be the

center of GL2. We may rewrite J(γ, hD, s) as an orbital integral on ‹A(A)-double

cosets on GL2(A) (cf. (2.10), (2.11), (2.12)):

(3.8) J(γ, hD, s) =

∫
∆(Z(A))\(Ã×Ã)(A)

h̃D(t′−1γ̃t)|α(t)α(t′)|sη(α(t)) dt dt′.

Here for D =
∑
x nxx, h̃D = ⊗xh̃nxx is an element in the global unramified

Hecke algebra for GL2, where h̃nxx is the characteristic function of the compact

open subset Mat2(Ox)vx(det)=nx ; cf. Section 3.1.
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Using the isomorphism ‹A(A)/
∏
x∈|X| ‹A(Ox) ∼= (A×/O×)2 ∼= Div(X)2

given by taking the divisors of the two diagonal entries, we may further write

the right-hand side of (3.8) as a sum over divisors E1, E2, E
′
1, E

′
2 ∈ Div(X),

up to simultaneous translation by Div(X). Suppose t ∈ ‹A(A) gives the pair

(E1, E2) and t′ ∈ ‹A(A) gives the pair (E′1, E
′
2). Then the integrand h̃D(t′−1γ̃t)

takes value 1 if and only if the rational map γ̃ : O2
X 99K O2

X given by the

matrix γ̃ fits into a commutative diagram

O2
X

γ̃
// O2

X .

OX(−E1)⊕OX(−E2)
ϕ
γ̃
//

?�

OO

OX(−E′1)⊕OX(−E′2)
?�

OO

(3.9)

Here the vertical maps are the natural inclusions, and ϕγ̃ is an injective map

of OX -modules such that det(ϕγ̃) has divisor D. The integrand h̃D(t′−1γ̃t) is

zero otherwise.

Let ‹ND,γ̃ ⊂ Div(X)4 be the set of quadruples of divisors (E1, E2, E
′
1, E

′
2)

such that γ̃ fits into a diagram (3.9) and det(ϕγ̃) has divisor D. Let ND,̃γ =‹ND,γ̃/Div(X), where Div(X) acts by simultaneous translation on the divisors

E1, E2, E
′
1 and E′2.

We have |α(t)α(t′)|s = q−deg(E1−E2+E′1−E
′
2)s. Viewing η as a character

on the idèle class group F×\A×F /
∏
x∈|X|O×x ∼= PicX(k), we have η(α(t)) =

η(E1)η(E2) = η(E1 − E′1)η(E2 − E′1). Therefore,

(3.10)

J(γ, hD, s) =
∑

(E1,E2,E′1,E
′
2)∈N

D,̃γ

q−deg(E1−E2+E′1−E
′
2)sη(E1 − E′1)η(E2 − E′1).

(1) Since u = 0 and ∞ are in the image of invD, we may assume that

u /∈ {0, 1,∞}. For γ ∈ G(F ) with invariant u, any lifting γ̃ of γ in GL2(F ) does

not lie in ‹A or w‹A. Therefore, the previous discussion applies to γ̃. Suppose

J(γ, hD, s) 6= 0, then ND,̃γ 6= ∅. Take a point (E1, E2, E
′
1, E

′
2) ∈ ND,̃γ . The

map det(ϕγ̃) gives an isomorphism OX(−E′1 − E′2) ∼= OX(−E1 − E2 + D).

Taking a = ϕγ̃,11ϕγ̃,22 : OX(−E1 − E2) → OX(−E′1 − E′2), then a can be

viewed as a section of OX(D) satisfying 1 − a−1 = inv(γ). Therefore, u =

inv(γ) = invD(a) is in the image of invD.

(2) When u /∈ {0, 1,∞}, recall γ(u) is the image of γ̃(u) = [ 1 u
1 1 ]. Let Nd,a

be the fiber of Nd over a ∈ AD(k). Let Na =
∐
d∈Σd Nd,a. We have a map

νu : ND,γ̃(u)−→Na(k)

(E1, E2, E
′
1, E

′
2) 7−→ (OX(−E1),OX(−E2),OX(−E′1),OX(−E′2), ϕγ̃(u)).
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We show that this map is bijective by constructing an inverse. We may assume

K1 = OX for (K1,K2,K′1,K′2, ϕij) ∈ Nd,a(k) (since we mod out by the action

of PicX in the end). Let S = |div(a)|∪ |div(a−1)|∪ |D| be a finite collection of

places ofX. Then each ϕij is an isomorphism over U = X−S. In particular, we

get isomorphisms ϕ11 : OU ∼= K′1|U , ϕ21 : OU ∼= K′2|U and ϕ−1
22 ϕ21 : OU ∼= K2|U .

Let E′1, E
′
2 and E2 be the negative of the divisors of the isomorphisms ϕ11, ϕ21

and ϕ−1
22 ϕ21, viewed as rational maps between line bundles on X. Set E1 = 0.

Then we have Ki = OX(−Ei) and K′i = OX(−E′i) for i = 1, 2. The map ϕ

guarantees that we have the quadruple (E1 = 0, E2, E
′
1, E

′
2) ∈ ND,̃γ(u). This

gives a map Na(k)→ ND,̃γ(u), which is easily seen to be inverse to νu.

By the Lefschetz trace formula, we have∑
d∈Σd

q(2d12−d)s Tr
Ä
Froba,

Ä
RfNd,∗Ld)a

ää
=

∑
(K1,K2,K′1,K

′
2,ϕ)∈Na(k)

q(2d12−d)sη(D11)η(D12),

where Dij is the divisor of ϕij . Moreover, under the isomorphism νu, the

term q− deg(E1−E2+E′1−E
′
2)s corresponds to q(2d12−d)s where d12 = deg(D12).

Therefore, Part (2) follows from the bijectivity of νu and (3.10).

(3) We treat the case u = 0 (i.e., a = 1), and the case u = ∞ is similar.

Let N′D,n+
be the set of triples of effective divisors (D11, D12, D22) such that

D11 +D22 = D. Then we have a bijection

ND,n+

∼−→N′D,n+

(E1, E2, E
′
1, E

′
2) 7−→ (E1 − E′1, E2 − E′1, E2 − E′2).

Using this bijection, we may rewrite (3.10) as

J(n+, hD, s) =
∑

(D11,D12,D22)∈N′D,n+

q(2 deg(D12)−d)sη(D11)η(D12)

= q−ds
∑

D12≥0

q2sdeg(D12)η(D12) ·
∑

D11+D22=D
D11,D22≥0

η(D11)

= q−dsL(−2s, η)
∑

0≤D11≤D
η(D11)

(3.11)

Similarly, let N′D,n− be the set of triples of effective divisors (D11, D21, D22)

such that D11 + D22 = D. Then we have a bijection ND,n− ↔ N′D,n− and an

identity

J(n−, hD, s) =
∑

(D11,D21,D22)∈N′D,n−

q(d−2 deg(D21))sη(D21)η(D22)

= qdsL(2s, η)
∑

0≤D22≤D
η(D22).

(3.12)
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We now introduce a subset N♥D,n+
⊂ N′D,n+

consisting of (D11, D12, D22)

such that deg(D12) < d/2; similarly, we introduce N♥D,n− ⊂ N′D,n− consisting

of those (D11, D21, D22) such that deg(D21) ≤ d/2. Then the same argument

as Part (2) gives a bijection

νn± : N♥D,n+

∐
N♥D,n−

∼−→ Na(k) :=
∐
d∈Σd

Nd,a(k).

Here the degree constraints deg(D12) < d/2 or deg(D21) ≤ d/2 come from the

last condition in the definition of Nd in Section 3.2.2.

Using the Lefschetz trace formula, we get∑
d∈Σd

q(2d12−d)s Tr
Ä
Froba,H

∗
c(Nd,a ⊗k k, Ld)

ä
=

∑
(D11,D12,D22)∈N♥D,n+

q(2 deg(D12)−d)sη(D11)η(D12)

+
∑

(D11,D21,D22)∈N♥D,n−

q(d−2 deg(D21))sη(D21)η(D22)

= q−ds
∑

D12≥0,deg(D12)<d/2

q2 deg(D12)sη(D12)
∑

0≤D11≤D
η(D11)(3.13)

+qds
∑

D21≥0,deg(D21)≤d/2
q−2 deg(D21)sη(D21)

∑
0≤D22≤D

η(D22).(3.14)

The only difference between the term in (3.13) and the right-hand side of (3.11)

is that we have restricted the range of the summation to effective divisors D12

satisfying deg(D12) < d/2. However, since η is a nontrivial idèle class character,

the Dirichlet L-function L(s, η) =
∑
E≥0 q

− deg(E)sη(E) is a polynomial in q−s

of degree 2g − 2 < d/2. Therefore, (3.13) is the same as (3.11). Similarly,

(3.14) is the same as (3.12). We conclude that∑
d∈Σd

q(2d12−d)s Tr
Ä
Froba,H

∗
c(Nd,a ⊗k k, Ld)

ä
= J(n+, hD, s) + J(n−, hD, s).

(3.15)

Finally, observe that

(3.16) J(1, hD, s) = 0

because η restricts nontrivially to the centralizer of γ = 1. Putting together

(3.15) and the vanishing (3.16), we get (3.7). �
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Corollary 3.3. For D ∈ Xd(k) and u ∈ P1(F )− {1}, we have

Jr(u, hD)

=

{
(log q)r

∑
d∈Σd

(2d12 − d)r Tr
Ä
Froba,

Ä
RfNd,∗Ld

ä
a

ä
if u = invD(a), a ∈ AD(k),

0 otherwise.

4. Analytic spectral decomposition

In this section we express the spectral side of the relative trace formula in

Section 2 in terms of automorphic L-functions.

4.1. The Eisenstein ideal. Consider the Hecke algebra H = ⊗x∈|X|Hx.

We also consider the Hecke algebra HA for the diagonal torus A = Gm of G.

Then HA = ⊗x∈|X|HA,x with HA,x = Q[F×x /O×x ] = Q[tx, t
−1
x ], and tx stands

for the characteristic function of $−1
x O×x , where $x is a uniformizer of Fx.

Recall we have a basis {hD} for H indexed by effective divisors D on X.

For fixed x ∈ |X|, we have hx ∈Hx, and Hx
∼= Q[hx] is a polynomial algebra

with generator hx.

4.1.1. The Satake transform. To avoid introducing
√
q, we normalize the

Satake transform in the following way:

Satx : Hx−→HA,x

hx 7−→ tx + qxt
−1
x ,

where qx = #kx. Consider the involution ιx on HA,x sending tx to qxt
−1
x . Then

Satx identifies Hx with the subring of ιx-invariants of HA,x. This normalization

of the Satake transform is designed to make it compatible with constant term

operators; see Lemma 7.8. Let

Sat : H −→HA

be the tensor product of all Satx.

4.1.2. We have natural homomorphisms between abelian groups:

A×/O×

��

'
// Div(X)

��

F×\A×/O× '
// PicX(k).

In particular, the top row above gives a canonical isomorphism

HA = Q[A×/O×] ∼= Q[Div(X)],

the group algebra of Div(X).

Define an involution ιPic on Q[PicX(k)] by

ιPic(1L) = qdegL1L−1 .
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Here 1L ∈ Q[PicX(k)] is the characteristic function of the point L ∈ PicX(k).

Since the action of ⊗xιx on HA
∼= Q[Div(X)] is compatible with the involution

ιPic on Q[PicX(k)] under the projection Q[Div(X)]→ Q[PicX(k)], we see that

the image of the composition

H
Sat−−→HA

∼= Q[Div(X)]� Q[PicX(k)]

lies in the ιPic-invariants. Therefore, the above composition gives a ring ho-

momorphism

(4.1) aEis : H −→ Q[PicX(k)]ιPic =: HEis.

Definition 4.1. We define the Eisenstein ideal IEis ⊂ H to be the kernel

of the ring homomorphism aEis in (4.1).

The ideal IEis is the analog of the Eisenstein ideal of Mazur in the function

field setting. Taking the spectra we get a morphism of affine schemes

Spec(aEis) : ZEis := SpecQ[PicX(k)]ιPic −→ Spec H .

Lemma 4.2.

(1) For any x ∈ |X|, under the ring homomorphism aEis, Q[PicX(k)]ιPic is

finitely generated as an Hx-module.

(2) The map aEis is surjective, hence Spec(aEis) is a closed embedding.2

Proof. (1) We have an exact sequence 0→ JacX(k)→ PicX(k)→ Z→ 0

with JacX(k) finite. Let x ∈ |X|. Then the map Z → PicX(k) sending

n 7→ OX(nx) has finite cokernel since JacX(k) is finite. Therefore, Q[PicX(k)]

is finitely generated as a HA,x
∼= Q[tx, t

−1
x ]-module. On the other hand, via

Satx, HA,x is a finitely generated Hx-module (in fact a free module of rank

two over Hx). Therefore, Q[PicX(k)] is a finitely generated module over the

noetherian ring Hx, and hence so is its submodule Q[PicX(k)]ιPic .

(2) For proving surjectivity, we may base change the situation to Q`. Let

ZEis = SpecQ`[PicX(k)]ιPic . We still use Spec(aEis) to denote ZEis → Spec HQ`
.

We first check that Spec(aEis) is injective on Q`-points. Identifying PicX(k)

with the abelianized Weil group W (X)ab via class field theory, the set ZEis(Q`)

is in natural bijection with Galois characters χ : W (X) → Q×` up to the

equivalence relation χ ∼ χ−1(−1) (where (−1) means Tate twist). Sup-

pose χ1 and χ2 are two such characters that pullback to the same homo-

morphism H → Q`[PicX(k)]
χi−→ Q`. Then χ1(aEis(hx)) = χ1(Frobx) +

qxχ1(Frob−1
x ) = χ2(Frobx) + qxχ2(Frob−1

x ) = χ2(aEis(hx)) for all x. Con-

sider the two-dimensional representation ρi = χi ⊕ χ−1
i (−1) of W (X). Then

Tr(ρ1(Frobx)) = Tr(ρ2(Frobx)) for all x. By Chebotarev density, this implies

2This result is not used in an essential way in the rest of paper.



TAYLOR EXPANSION 799

that ρ1 and ρ2 are isomorphic to each other (since they are already semisim-

ple). Therefore, either χ1 = χ2 or χ1 = χ−1
2 (−1). In any case, χ1 and χ2

define the same Q`-point of ZEis. We are done.

Next, we show that Spec(aEis) is injective on tangent spaces at Q`-points.

Let Z̃Eis = SpecQ`[PicX(k)]. Then Z̃Eis is a disjoint union of components

indexed by characters χ0 : JacX(k) → Q×` , and each component is a torsor

under Gm. The scheme ZEis is the quotient Z̃Eis // 〈ιPic〉. For a character χ :

PicX(k)→ Q×` with restriction χ0 to JacX(k), we may identify its component

Z̃χ0 with Gm in such a way that s ∈ Gm corresponds to the character χ · sdeg :

PicX(k) → Q×` ,L 7→ χ(L)sdegL. The map Spec(aEis) pulled back to Z̃χ0 then

gives a morphism

b : Gm
∼= Z̃χ0 −→ ZEis −→ Spec HQ`

∼= A|X|

given by the formula

(4.2) Gm 3 s 7−→
Ä
χ(tx)sdx + qxχ(t−1

x )s−dx
ä
x∈|X| ,

where dx = [kx : k]. The derivative db
ds at s = 1 is then the vector (dx(χ(tx)−

qxχ(t−1
x )))x∈|X|. This is identically zero only when χ(tx) = ±q1/2

x for all x and

hence if and only if χ2 = qdeg = Q`(−1). Therefore, when χ2 6= Q`(−1), we

have proved that the tangent map of b at s = 1 is nonzero, hence a fortiori the

tangent map of Spec(aEis) at the image of χ is nonzero. If χ2 = Q`(−1), then χ

is a fixed point under ιPic. The component Z̃χ0 is then stable under ιPic, which

acts by s 7→ s−1, and its image Zχ0 ⊂ ZEis is a component isomorphic to A1

with affine coordinate z = s+ s−1. Therefore, we may factor b into two steps:

b : Z̃χ0
∼= Gm

s 7−→z=s+s−1

−−−−−−−−→ A1 ∼= Zχ0

c−→ Spec HQ`
∼= A|X|,

where c is the restriction of Spec(aEis) to Zχ0 . By chain rule we have dc
dz
dz
ds = db

ds .

Using this we see that the derivative dc
dz at z = s+ s−1 is the vectorÇ

dxχ(tx)
sdx − s−dx
s− s−1

å
x∈|X|

(using that χ(tx) = qxχ(t−1
x )). Evaluating at s = 1 we get the nonzero vector

(χ(tx)d2
x)x∈|X|. We have checked that the tangent map of Spec(aEis) is also

injective at the image of those points χ ∈ Z̃Eis(Q`) such that χ2 = Q`(−1).

Therefore, the tangent map of Spec(aEis) is injective at all Q`-points. Combin-

ing the two injectivity results we conclude that Spec(aEis) is a closed immersion

and hence aEis is surjective. �
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4.2. Spectral decomposition of the kernel function. Recall that we have

defined the automorphic kernel function by (2.3). For a cuspidal automorphic

representation π (in the usual sense, i.e., an irreducible sub-representation of

the C-values automorphic functions), we define the π-component of the kernel

function as (cf. [12, §7.1(1)])

Kf,π(x, y) =
∑
φ

π(f)φ(x)φ(y),(4.3)

where the sum runs over an orthonormal basis {φ} of π. The cuspidal kernel

function is defined as

Kf,cusp =
∑
π

Kf,π,(4.4)

where the sum runs over all cuspidal automorphic representations π of G. Note

that this is a finite sum.

Similarly, we define the special (residual) kernel function (cf. [12, §7.4])

Kf,sp(x, y) :=
∑
χ

π(f)χ(x)χ(y),

where the sum runs over all one-dimensional automorphic representations

π = χ, indeed solely characters of order two:

χ : G(A) // F×\A×/(A×)2 // {±1}.

Theorem 4.3. Let f ∈ IEis be in the Eisenstein ideal IEis ⊂ H . Then

we have

Kf = Kf,cusp + Kf,sp.

Proof. To show this, we need to recall the Eisenstein series (cf. [12, §8.4]).

We fix an α ∈ A× with valuation one, and we then have a direct product

A× = A1 × αZ.

For a character χ : F×\A1 → C×, we extend it as a character of F×\A×, by

demanding χ(α) = 1. Moreover, we define a character for any u ∈ C:

χu : A× // C×

a � // χ(a)|a|u.

We also define

δB : B(A) // A×ñ
a b

d

ô
� // a/d

and
χ : B(A) // C×

b � // χ(a/d).
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For u ∈ C, the (induced) representation ρχ,u of G(A) = PGL2(A) is

defined to be the right translation on the space Vχ,u of smooth functions

φ : G(A) −→ C

such that

φ (bg) = χ (b) |δB(b)|u+ 1
2φ(g), b ∈ B(A), g ∈ G(A).

Note that we have ρχ,u = ρχ,u+ 2πi
log q

. By restriction to K, the space Vχ,u is

canonically identified with the space of smooth functions

Vχ : =

®
φ : K −→ C, smooth

∣∣∣∣∣ φ (bk) = χ (b)φ(k), b ∈ K ∩B(A)

´
.

This space is endowed with a natural inner product

(φ, φ′) =

∫
K
φ(k)φ′(k)dk.(4.5)

Let φ ∈ Vχ. We denote by φ(g, u, χ) the corresponding function in Vχ,u, i.e.,

φ(g, u, χ) = χ (b)

∣∣∣∣δB(b)

∣∣∣∣u+ 1
2

φ(k)

if we write g = bk, where b ∈ B(A), k ∈ K.

For φ ∈ Vχ, the Eisenstein series is defined as (the analytic continuation of)

E(g, φ, u, χ) =
∑

γ∈B(F )\G(F )

φ(γg, u, χ).

Let {φi}i be an orthonormal basis of the Hermitian space Vχ. We define

Kf,Eis,χ(x, y) :=
log q

2πi

∑
i,j

∫ 2πi
log q

0
(ρχ,u(f)φi, φj)E(x, φi, u, χ)E(y, φj , u, χ) du,

(4.6)

where the inner product is given by (4.5) via the identification Vχ,u ' Vχ. We

set (cf., [12, §8.4])

Kf,Eis :=
∑
χ

Kf,Eis,χ,(4.7)

where the sum runs over all characters χ of F×\A1. Since our test function f is

in the spherical Hecke algebra H , for Kf,Eis,χ to be nonzero, the character χ is

necessarily unramified everywhere. Therefore, the sum over χ is in fact finite.

By [12, §7.1(4)], we have a spectral decomposition of the automorphic

kernel function Kf defined by (2.3)

Kf = Kf,cusp + Kf,sp + Kf,Eis.(4.8)

Therefore, it remains to show that Kf,Eis vanishes if f lies in the Eisenstein

ideal IEis.
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We may assume that χ is unramified. Then we have

Kf,Eis,χ(x, y) =
log q

2πi

∫ 2πi
log q

0
(ρχ,u(f)φ, φ)E(x, φ, u, χ)E(y, φ, u, χ) du,(4.9)

where φ = 1K ∈ Vχ. (We are taking the Haar measure on G(A) such that

vol(K) = 1.)

Recall that the Satake transform Sat has the property that for all unram-

ified characters χ, and all u ∈ C, we have

tr ρχ,u(f) = χu+1/2(Sat(f)),

where we extend χu+1/2 to a homomorphism HA,C ' C[Div(X)] → C. Since

χu : A(A)/(A(A) ∩K) ' Div(X)→ C× factors through PicX(k), we have

tr ρχ,u(f) = χu+1/2(aEis(f)).

Then we may rewrite (4.9) as

Kf,Eis,χ(x, y) =
log q

2πi

∫ 2πi
log q

0
χu+1/2(aEis(f))E(x, φ, u, χ)E(y, φ, u, χ) du.

In particular, if f lies in the Eisenstein ideal, then aEis(f) = 0, and hence the

integrand vanishes. This completes the proof. �

4.3. The cuspidal kernel. Let π be a cuspidal automorphic representation

of G(A), endowed with the natural Hermitian form given by the Petersson

inner product:

〈φ, φ′〉Pet :=

∫
[G]
φ(g)φ′(g)dg, φ, φ′ ∈ π.(4.10)

We abbreviate the notation to 〈φ, φ′〉. For a character χ : F×\A× → C×, the

(A,χ)-period integral for φ ∈ π is defined as

Pχ(φ, s) :=

∫
[A]
φ(h)χ(h)

∣∣∣h∣∣∣s dh.(4.11)

We simply write P(φ, s) if χ = 1 is trivial. This is absolutely convergent for

all s ∈ C.

The spherical character (relative to (A × A, 1 × η)) associated to π is a

distribution on G(A) defined by

Jπ(f, s) =
∑
φ

P(π(f)φ, s)Pη(φ, s)

〈φ, φ〉
, f ∈ C∞c (G(A)),(4.12)

where the sum runs over an orthogonal basis {φ} of π. This is a finite sum,

and the result is independent of the choice of the basis.
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Lemma 4.4. Let f be a function in the Eisenstein ideal IEis ⊂H . Then

we have

J(f, s) =
∑
π

Jπ(f, s),

where the sum runs over all (everywhere unramified) cuspidal automorphic

representations π of G(A).

Proof. For ∗ = cusp, sp or π, we define J∗(f, s) by replacing Kf by Kf,∗
in both (2.4) and (2.5). To make sense of this, we need to show the analogous

statements to Proposition 2.1. When ∗ = sp, we note that for any character

χ : A× → C×, one of χ and χη must be nontrivial on A1. It follows that for

any (n1, n2) ∈ Z2, we have∫
[A]n1×[A]n2

χ(h1)χ−1(h2)|h1h2|sη(h2) dh1 dh2 = 0.

Consequently, we have

Jsp(f, s) = 0.

When ∗ = π, we need to show that, for any φ ∈ π, the following integral

vanishes if |n| � 0: ∫
[A]n

φ(h)χ(h)
∣∣∣h∣∣∣s dh.

But this follows from the fact that φ is cuspidal, particularly φ(h) = 0 if

h ∈ [A]n and |n| � 0. This also shows that this definition of Jπ(f, s) coincides

with (4.12). The case ∗ = cusp follows from the case for ∗ = π and the finite

sum decomposition (4.4). We then have

Jcusp(f, s) =
∑
π

Jπ(f, s).

The proof is complete, noting that by Theorem 4.3, we have

J(f, s) = Jcusp(f, s) + Jsp(f, s). �

Proposition 4.5. Let π be a cuspidal automorphic representation of

G(A), unramified everywhere. Let λπ : H → C be the homomorphism as-

sociated to π. Then we have

Jπ(f, s) =
1

2
|ωX |L (πF ′ , s+ 1/2)λπ(f).

Proof. Write π = ⊗x∈|X|πx, and let φ be a nonzero vector in the one-

dimensional space πK . Since f ∈ H is bi-K-invariant, the sum in (4.12) is

reduced to one term,

Jπ(f, s) =
P(φ, s)Pη(φ, s)

〈φ, φ〉Pet
λπ(f) vol(K),(4.13)
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where we may choose any measure onG(A), and then define the Petersson inner

product using the same measure. We will choose the Tamagawa measure on

G(A) in this proof. To decompose the Tamagawa measure into local measures,

we fix a nontrivial additive character associated to a nonzero meromorphic

differential form c on X:

ψ : A // C×.

We note that the character ψ is defined by

ψ(a) = ψFp

Ñ∑
x∈|X|

Trkx/Fp (Resx(ca))

é
,

where ψFp is a fixed nontrivial character Fp → C×.
We decompose ψ =

∏
x∈|X| ψx, where ψx is a character of Fx. This gives

us a self-dual measure dt = dtψx on Fx, a measure d×t = ζx(1) dt|t| on F×x ,

and the product measure on A×. We then choose the Haar measure dgx =

ζx(1)|det(gx)|−2∏
1≤i,j≤2 dgij on GL2(Fx), where gx = (gij) ∈ GL2(Fx). The

measure on G(Fx) is then the quotient measure, and the Tamagawa measure on

G(A) decomposes dg =
∏
x∈|X| dgx. Note that under such a choice of measures,

we have

vol(O×) = vol(O) = |ωX |1/2,(4.14)

vol(K) = ζF (2)−1 vol(O)3 = ζF (2)−1|ωX |3/2.(4.15)

To compute the period integrals, we use the Whittaker models with respect

to the character ψ. Denote the Whittaker model of πx by Wψx . Write the

ψ-Whittaker coefficient Wφ as a product ⊗x∈|X|Wx, where Wx ∈Wψx .

Let L(πx × π̃x, s), resp. L(π× π̃, s) denote the local, resp. global Rankin–

Selberg L-functions. By [31, Prop. 3.1] there are invariant inner products θ\x
on the Whittaker models Wψx ,

θ\x(Wx,W
′
x) :=

1

L(πx × π̃x, 1)

∫
F×x

Wx

Çñ
a

1

ôå
W ′x

Çñ
a

1

ôå
d×a,

such that

〈φ, φ〉Pet = 2
Ress=1 L(π × π̃, s)

vol(F×\A1)

∏
x∈|X|

θ\x(Wx,Wx).

Note that

Ress=1 L(π × π̃, s) = L(π,Ad, 1) Ress=1 ζF (s) = L(π,Ad, 1) vol(F×\A1).

Hence we have

〈φ, φ〉Pet = 2L(π,Ad, 1)
∏
x∈|X|

θ\x(Wx,Wx).
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Moreover, when ψx is unramified, we have θ\x(Wx,Wx) = vol(Kx) = ζx(2)−1

(cf. loc. cit.).

In Proposition 3.3 of [31], there are linear functionals λ\x on the Whittaker

models Wψx ,

λ\x(Wx, χx, s) :=
1

L(πx ⊗ χx, s+ 1/2)

∫
F×x

Wx

Çñ
a

1

ôå
χx(a)|a|s d×a,

such that

Pχ(φ, s) = L(π ⊗ χ, s+ 1/2)
∏
x∈|X|

λ\x(Wx, χx, s).

While in loc. cit. we only treated the case s = 0, the same argument goes

through. Moreover, when ψx and χx are unramified, we have λ\x = 1.

We now have

P(φ, s)Pη(φ, s)

〈φ, φ〉Pet
= |ωX |−1 L(πF ′ , s+ 1/2)

2L(π,Ad, 1)

∏
x∈|X|

ξx,ψx(Wx, ηx, s),(4.16)

where the constant |ωX |−1 is caused by the choice of measures (cf. (4.14)), and

the local term at a place x is

ξx,ψx(Wx, ηx, s) :=
λ\x(Wx,1x, s)λ

\
x(W x, ηx, s)

θ\x(Wx,Wx)
.(4.17)

Note that the local term ξx,ψx is now independent of the choice of the nonzero

vector Wx in the one-dimensional space WKx
ψx

. We thus simply write it as

ξx,ψx(ηx, s) := ξx,ψx(Wx, ηx, s).

When ψx is unramified, we have

ξx,ψx(ηx, s) = ζx(2).

We want to know how ξx,ψx depends on ψx. Let cx ∈ F×x , and denote by

ψx,cx the twist ψx,cx(t) = ψx(cxt).

Lemma 4.6. For any unramified character χx of F×x , we have

ξx,ψx,cx (χx, s) = χ−1(cx)|cx|−2s+1/2ξx,ψx(χx, s).

Proof. The self-dual measure on Fx changes according to the following

rule:

dtψx,cx = |cx|1/2 dtψx .
Then the multiplicative measure on F×x changes by the same multiple. Now we

compare ξx,ψx and ξx,ψx,cx using the same measure on F×x to define the integrals.

There is a natural isomorphism between the Whittaker models Wψx '
Wψx,cx , preserving the natural inner product θ\x. We write λ\ψx to indicate the
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dependence on ψx. Then for any character χx : F×x → C×, we have

λ\ψx,cx (Wx, χx, s) = χ−1(cx)|cx|−sλ\ψx(Wx, χx, s).

This completes the proof of Lemma 4.6. �

Let ψx have conductor c−1
x Ox. Then the idèle class of (cx)x∈|X| in PicX(k)

is the class of div(c) and hence the class of ωX . Hence we have∏
x∈|X|

|cx| = |ωX | = q− degωX = q−(2g−2).

This shows that the product in (4.16) is equal to∏
x∈|X|

ξx,ψx(ηx, s) = η(ωX)
∏
x∈|X|

ζx(2)|cx|−2s+1/2

= η(ωX)|ωX |1/2 ζF (2) q4(g−1)s.

We claim that

η(ωX) = 1.

In fact, this follows from

η(ωX) =
∏
x∈|X|

ε(ηx, 1/2, ψx) = ε(η, 1/2) = 1,

where ε(η, s) is in the functional equation (of the complete L-function) L(η, s) =

ε(η, s)L(η, 1− s).
We thus have

P(φ, s)Pη(φ, s)

〈φ, φ〉Pet
=

1

2
|ωX |−1/2 ζF (2) L (πF ′ , s+ 1/2).

Together with (4.13) and (4.15), the proof of Proposition 4.5 is complete. �

4.4. Change of coefficients. Let E be algebraic closed field containing Q.

We consider the space of E-valued automorphic functions

AE = C∞c (G(F )\G(A)/K,E),

and its subspace AE,0 of cuspidal automorphic functions. For an irreducible

HE-module π in AE,0, let λπ : H → E be the associated homomorphism. The

L-function L (πF ′ , s+ 1/2) is a well-defined element in E[q−s, qs]. Recall that

f ∈H , the distribution J(f, s) defines an element in Q[q−s, qs] (cf. Section 2).

Theorem 4.7. Let f be a function in the Eisenstein ideal IEis ⊂ H .

Then we have an equality in E[q−s, qs],

J(f, s) =
1

2
|ωX |

∑
π

L (πF ′ , s+ 1/2)λπ(f),

where the sum runs over all irreducible HE-module π in the E-vector space

AE,0.
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Proof. It suffices to show this when E = Q, and we fix an embedding

Q ↪→ C. For f ∈ IEis, then Theorem 4.3 on the kernel functions remains valid

if we understand the sum in (4.4) over π as HE-submodule. In fact, to prove

Theorem 4.3, we are allowed to extend E = Q to C.

Since a cuspidal φ has compact support, the integral Pχ(φ, s) defined by

(4.11) for χ ∈ {1, η} reduces to a finite sum. In particular, it defines an element

in E[q−s, qs]. Therefore, the equalities in Lemma 4.4 and Proposition 4.5 hold,

when both sides are viewed as elements in E[q−s, qs], and λπ as an E = Q-

valued homomorphism. This completes the proof. �

Part 2. The geometric side

5. Moduli spaces of Shtukas

The notion of rank n Shtukas (or F -sheaves) with one upper and one

lower modification was introduced by Drinfeld [5]. It was generalized to an

arbitrary reductive group G and arbitrary number and type of modifications

by Varshavsky [23]. In this section, we will review the definition of rank n

Shtukas and then specialize to the case of G = PGL2 and the case of T a

nonsplit torus. Then we define Heegner–Drinfeld cycles to set up notation for

the geometric side of the main theorem.

5.1. The moduli of rank n Shtukas.

5.1.1. We fix the following data:

• r ≥ 0 is an integer;

• µ = (µ1, . . . , µr) is an ordered sequence of dominant coweights for GLn,

where each µi is either equal to µ+ = (1, 0, . . . , 0) or equal to µ− =

(0, . . . , 0,−1).

To such a tuple µ we assign an r-tuple of signs

sgn(µ) = (sgn(µ1), . . . , sgn(µr)) ∈ {±1}r,

where sgn(µ±) = ±1.

5.1.2. Parity condition. At certain places we will impose the following

conditions on the data (r, µ) above:

• r is even;

• exactly half of µi are µ+, and the other half are µ−; equivalently, we have∑r
i=1 sgn(µi) = 0.

5.1.3. The Hecke stack. We denote by Bunn the moduli stack of rank n

vector bundles on X. By definition, for any k-scheme S, Bunn(S) is the

groupoid of vector bundles over X × S of rank n. It is well known that Bunn
is a smooth algebraic stack over k of dimension n2(g − 1).
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Definition 5.1. Let µ be as in Section 5.1.1. The Hecke stack Hkµn is the

stack whose S-points Hkµn(S) is the groupoid of the following data:

(1) a sequence of vector bundles (E0, E1, . . . , Er) of rank n on X × S;

(2) morphisms xi : S → X for i = 1, . . . , r, with graphs Γxi ⊂ X × S;

(3) isomorphisms of vector bundles

fi : Ei−1|X×S−Γxi

∼−→ Ei|X×S−Γxi
, i = 1, 2, . . . , r,

such that

• if µi = µ+, then fi extends to an injective map Ei−1 → Ei whose

cokernel is an invertible sheaf on the graph Γxi ;

• if µi = µ−, then f−1
i extends to an injective map Ei → Ei−1 whose

cokernel is an invertible sheaf on the graph Γxi .

For each i = 0, . . . , r, we have a map

pi : Hkµn −→ Bunn

sending (E0, . . . , Er, x1, . . . , xr, f1, . . . , fr) to Ei. We also have a map

pX : Hkµn −→ Xr

recording the points (x1, . . . , xr) ∈ Xr.

Remark 5.2. The morphism (p0, pX) : Hkµn → Bunn×Xr is representable,

proper and smooth of relative dimension r(n− 1). Its fibers are iterated Pn−1-

bundles. In particular, Hkµn is a smooth algebraic stack over k because Bunn is.

5.1.4. The moduli stack of rank n Shtukas.

Definition 5.3. Let µ satisfy the conditions in Section 5.1.2. The moduli

stack Shtµn of GLn-Shtukas of type µ is the fiber product

Shtµn //

��

Hkµn

(p0,pr)

��

Bunn
(id,Fr)

// Bunn × Bunn.

(5.1)

By definition, we have a morphism

πµn : Shtµn −→ Hkµn
pX−−→ Xr.

5.1.5. Let S be a scheme over k. For a vector bundle E on X × S, we

denote
τE := (idX × FrS)∗E .

An object in the groupoid Shtµn(S) is called a Shtuka of type µ over S. Con-

cretely, a Shtuka of type µ over S is the following data:

(1) (E0, E1, . . . , Er;x1, . . . , xr; f1, . . . , fr) as in Definition 5.1;

(2) an isomorphism ι : Er ' τE0.
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The basic geometric properties of Shtµn are summarized in the following

theorem.

Theorem 5.4 (Drinfeld [5] for r = 2 ; Varshavsky [24, Prop 2.16, Th. 2.20]

in general).

(1) The stack Shtµn is a Deligne–Mumford stack locally of finite type.

(2) The morphism πµn : Shtµn → Xr is separated and smooth of relative dimen-

sion r(n− 1).

We briefly comment on the proof of the separatedness of πµn. Pick a place

x ∈ |X|, and consider the restriction of πµn to (X−{x})r. By [24, Prop 2.16(a)],

Shtµn|(X−{x})r is an increasing union of open substacks X1 ⊂ X2 ⊂ · · · where

each Xi ∼= [Vi/Gi] is the quotient of a quasi-projective scheme Vi over k by

a finite discrete group Gi. These Vi are obtained as moduli of Shtukas with

level structures at x and then truncated using stability conditions. Therefore,

each map Xi → (X − {x})r is separated, hence so is πµn|(X−{x})r . Since Xr is

covered by open subschemes of the form (X −{x})r, the map πµn is separated.

5.1.6. The Picard stack PicX of line bundles on X acts on Bunn and on

Hkµn by tensoring on the vector bundles.

Similarly, the groupoid PicX(k) of line bundles over X acts on Shtµn. For

a line bundle L over X and (Ei;xi; fi; ι) ∈ Shtµn(S), we define L · (Ei;xi; fi; ι)
to be (Ei ⊗OX L;xi; fi ⊗ idL; ι′), where ι′ is the isomorphism

Er⊗OXL
ι⊗idL−−−→ ((idX×FrS)∗E0)⊗OXL∼=(idX×FrS)∗(E0⊗OXL)= τ (E0 ⊗OX L).

5.2. Moduli of Shtukas for G = PGL2. Now we move on to G-Shtukas

where G = PGL2. Let BunG be the moduli stack of G-torsors over X.

5.2.1. Quotient by a Picard stack. Here and later we will consider quo-

tients of the form [Y/Q], where Y is an algebraic stack and Q is a Picard

stack such as PicX or PicX(k). Making such a quotient involves considering

2-categories a priori. However, according to [19, Lemme 4.7], whenever the

automorphism group of the identity object in Q injects to the automorphism

groups of objects in Y, the quotient [Y/Q] makes sense as a stack. This injec-

tivity condition will be satisfied in all situations we encounter in this paper.

We have BunG ∼= Bun2/PicX , where PicX acts on Bun2 by tensoring.

For each µ as in Section 5.1.1, we define

HkµG := Hkµ2/PicX .

For µ satisfying Section 5.1.2, we define

ShtµG := Shtµ2/PicX(k).
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The actions of PicX and PicX(k) are those introduced in Section 5.1.6. The

maps pi : Hkµ2 → Bun2 are PicX -equivariant, and they induce maps

(5.2) pi : HkµG −→ BunG, 0 ≤ i ≤ r.

Lemma 5.5. For different choices µ and µ′ as in Section 5.1.1, there

are canonical isomorphisms Hkµ2
∼= Hkµ

′

2 and HkµG
∼= Hkµ

′

G . Moreover, these

isomorphisms respect the maps pi in (5.2).

Proof. For µr+ := (µ+, . . . , µ+), we denote the corresponding Hecke stack

by Hkr2. The S-points of Hkr2 classify a sequence of rank two vector bundles

on X × S together with embeddings

E0
f1−→ E1

f2−→ · · · fr−→ Er

such that the cokernel of fi is an invertible sheaf supported on the graph of a

morphism xi : S → X.

We construct a morphism

φµ : Hkµ2 −→ Hkr2.

Consider a point (Ei;xi; fi) ∈ Hkµ2 (S). For i = 1, . . . , r, we define a divisor on

X × S
Di :=

∑
1≤j≤i,µj=µ−

Γxj .

Then we define

E ′i = Ei(Di).

If µi = µ+, then Di−1 = Di, and the map fi induces an embedding f ′i : E ′i−1 =

Ei−1(Di−1)→ Ei(Di−1) = E ′i. If µi = µ−, then Di = Di−1 + Γxi , and the map

fi : Ei → Ei−1 induces an embedding Ei−1 → Ei(Γxi), and hence an embedding

f ′i : E ′i−1 = Ei−1(Di−1)→ Ei(Di−1 + Γxi) = E ′i. The map φµ sends (Ei;xi; fi) to

(E ′i;xi; f ′i).
We also have a morphism

ψµ : Hkr2−→Hkµ2

(E ′i;xi; f ′i) 7−→ (E ′i(−Di);xi; fi).

It is easy to check that φµ and ψµ are inverse to each other. This way we get a

canonical isomorphism Hkµ2
∼= Hkr2, which is clearly PicX -equivariant. There-

fore, all HkµG are also canonically isomorphic to each other. In the construction

of φµ, the vector bundles Ei only change by tensoring with line bundles, there-

fore, the image of Ei in BunG remain unchanged. This shows that the canonical

isomorphisms between the HkµG respect the maps pi in (5.2). �
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Lemma 5.6. There is a canonical Cartesian diagram

ShtµG

��

// HkµG

(p0,pr)

��

BunG
(id,Fr)

// BunG × BunG.

(5.3)

In particular, for different choices of µ satisfying the conditions in Sec-

tion 5.1.2, the stacks ShtµG are canonically isomorphic to each other.

Proof. This follows from the Cartesian diagram (5.1) divided termwisely

by the Cartesian diagram

PicX(k) //

��

PicX

∆
��

PicX
(id,Fr)

// PicX ×PicX . �

By the above lemmas, we may unambiguously use the notation

(5.4) ShtrG; HkrG

for ShtµG and HkµG with any choice of µ. If r is fixed from the context, we

may also drop r from the notation and simply write ShtG. The morphism πµ2 :

Shtµ2 → Xr is invariant under the action of PicX(k) and induces a morphism

πG : ShtrG −→ Xr.

Theorem 5.4 has the following immediate consequence.

Corollary 5.7.

(1) The stack ShtrG is a Deligne–Mumford stack locally of finite type.

(2) The morphism πG : ShtrG → Xr is separated and smooth of relative dimen-

sion r.

5.3. Hecke correspondences. We define the rational Chow group of proper

cycles Chc,i(ShtrG)Q as in Section A.1. As in Section A.1.6, we also have a

Q-algebra cCh2r(ShtrG × ShtrG)Q that acts on Chc,i(ShtrG)Q. The goal of this

subsection is to define a ring homomorphism from the unramified Hecke algebra

H = Cc(K\G(A)/K,Q) to cCh2r(ShtrG × ShtrG)Q.

5.3.1. The stack ShtrG(hD). Recall from Section 3.1 that we have a basis

hD of H indexed by effective divisors D on X. For each effective divisor D =
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x∈|X| nxx, we shall define a self-correspondence ShtrG(hD) of ShtrG over Xr:

ShtrG(hD)
←−p

yy

−→p

%%

ShtrG

%%

ShtrG

yy

Xr.

For this, we first fix a µ as in Section 5.1.2. We introduce a self-correspondence

Shtµ2 (hD) of Shtµ2 whose S-points is the groupoid classifying the following data:

(1) two objects (Ei;xi; fi; ι) and (E ′i;xi; f ′i ; ι′) of Shtµ2 (S) with the same collec-

tion of points x1, . . . , xr in X(S);

(2) for each i = 0, . . . , r, an embedding of coherent sheaves φi : Ei ↪→ E ′i such

that det(φi) : det Ei ↪→ det E ′i has divisor D × S ⊂ X × S;

(3) the following diagram is commutative:

E0
f1
//

φ0
��

E1
f2
//

φ1
��

· · ·
fr
// Er

φr
��

ι
// τE0

τφ0
��

E ′0
f ′1
// E ′1

f ′2
// · · ·

f ′r
// E ′r

ι′
// τE ′0.

(5.5)

There is a natural action of PicX(k) on Shtµ2 (hD) by tensoring on each Ei
and E ′i. We define

ShtrG(hD) := Shtµ2 (hD)/PicX(k).

Using Lemma 5.5, it is easy to check that ShtrG(hD) is canonically independent

of the choice of µ. The two maps ←−p ,−→p : ShtrG(hD) → ShtrG send the data

above to the image of (Ei;xi; fi; ι) and (E ′i;xi; f ′i ; ι′) in ShtrG respectively.

Lemma 5.8. The maps ←−p ,−→p as well as (←−p ,−→p ) : ShtrG(hD) → ShtrG ×
ShtrG are representable and proper.

Proof. Once the bottom row of the diagram (5.5) is fixed, the choices of

the vertical maps φi for i = 1, . . . , r form a closed subscheme of the product of

Quot schemes
∏r
i=1 Quotd(E ′i), where d = degD, which is proper. Therefore,

−→p is representable and proper. The same argument applied to the dual of the

diagram (5.5) proves that ←−p is proper.

The representability of (←−p ,−→p ) is obvious from the definition, since its

fibers are closed subschemes of
∏r
i=1 Hom(Ei, E ′i). Since ShtrG is separated by

Corollary 5.7 and ←−p is proper, (←−p ,−→p ) is also proper. �

Lemma 5.9. The geometric fibers of the map ShtrG(hD) → Xr have di-

mension r.
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The proof of this lemma will be postponed to Section 6.4.4, because the

argument will involve some auxiliary moduli spaces that we will introduce in

Section 6.3.

Granting Lemma 5.9, we have dim ShtrG(hD) = 2r. By Lemma 5.8, it

makes sense to push forward the fundamental cycle of ShtrG(hD) along the

proper map (←−p ,−→p ). Therefore, (←−p ,−→p )∗[ShtrG(hD)] defines an element in

cCh2r(ShtrG × ShtrG)Q (because ←−p is also proper). We define the Q-linear map

H : H −→ cCh2r(ShtrG × ShtrG)Q,(5.6)

hD 7−→ (←−p ×−→p )∗[ShtrG(hD)] for all effective divisors D.(5.7)

Proposition 5.10. The linear map H in (5.6) is a ring homomorphism.

Proof. Since hD form a Q-basis of H , it suffices to show that

(5.8) H(hDhD′) = H(hD) ∗H(hD′) ∈ cCh2r(ShtrG × ShtrG)Q

for any two effective divisors D and D′.

Let U = X − |D| − |D′|. Since hDhD′ is a linear combination of hE for

effective divisors E ≤ D+D′ such thatD+D′−E has even coefficients, the cycle

H(hDhD′) is supported on ∪E≤D+D′,D+D′−E evenShtrG(hE) = ShtrG(hD+D′).

The cycle H(hD) ∗H(hD′) is supported on the image of the projection

pr13 : ShtrG(hD)×−→p ,ShtrG,
←−p ShtrG(hD′) −→ ShtrG × ShtrG,

which is easily seen to be contained in ShtrG(hD+D′). We see that both sides

of (5.8) are supported on Z := ShtrG(hD+D′).

By Lemma 5.9 applied to Z = ShtrG(hD+D′), the dimension of Z − Z|Ur
is strictly less than 2r. Therefore, the restriction map induces an isomorphism

(5.9) Ch2r(Z)Q
∼−→ Ch2r(Z|Ur)Q.

Restricting the definition of H to U r, we get a linear map HU : H →
cCh2r(ShtrG|Ur×ShtrG|Ur)Q. For any effective divisor E supported on |D|∪|D′|,
the two projections ←−p ,−→p : ShtrG(hE)|Ur → ShtrG|Ur are finite étale. The

equality

(5.10) HU (hDhD′) = HU (hD) ∗HU (hD′) ∈ Ch2r(Z|Ur)Q
is well known. By (5.9), this implies the equality (5.8) where both sides are

interpreted as elements in Ch2r(Z)Q, and a fortiori as elements in cCh2r(ShtrG×
ShtrG)Q. �

Remark 5.11. Let g = (gx) ∈ G(A), and let f = 1KgK ∈ H be the

characteristic function of the double coset KgK in G(A). Traditionally, one

defines a self-correspondence Γ(g) of ShtrG|(X−S)r over (X − S)r, where S is

the finite set of places where gx /∈ Kx (see [15, Construction 2.20]). The two

projections ←−p ,−→p : Γ(g) → ShtrG|(X−S)r are finite étale. The disadvantage of
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this definition is that we need to remove the bad points S that depend on f , so

one is forced to work only with the generic fiber of ShtrG over Xr if one wants

to consider the actions of all Hecke functions. Our definition of H(f) for any

f ∈H gives a correspondence for the whole ShtrG. It is easy to check that for

f = 1KgK , our cycle H(f)|(X−S)r , which is a linear combination of the cycles

ShtrG(hD)|(X−S)r for divisors D supported on S, is the same cycle as Γ(g).

Thus, our definition of the Hecke algebra action extends the traditional one.

5.3.2. A variant. Later we will consider the stack Sht′rG := ShtrG ×Xr X ′r

defined using the double cover X ′ → X. Let Sht′rG(hD) = ShtrG(hD) ×Xr X ′r.

Then we have natural maps

←−p ′,−→p ′ : Sht′rG(hD) −→ Sht′rG.

The analogs of Lemmas 5.8 and 5.9 for Sht′rG(hD) follow from the original

statements. The map hD 7→ (←−p ′ × −→p ′)∗[Sht′rG(hD)] ∈ cCh2r(Sht′rG × Sht′rG)Q
then gives a ring homomorphism H ′:

H ′ : H −→ cCh2r(Sht′rG × Sht′rG)Q.

5.3.3. Notation. By Section A.1.6, the Q-algebra cCh2r(Sht′rG × Sht′rG)Q
acts on Chc,∗(Sht′rG)Q. Hence the Hecke algebra H also acts on Chc,∗(Sht′rG)Q
via the homomorphism H ′. For f ∈H , we denote its action on Chc,∗(Sht′rG)Q
by

f ∗ (−) : Chc,∗(Sht′rG)Q −→ Chc,∗(Sht′rG)Q.

Recall that the Chow group Chc,∗(ShtrG)Q (or Chc,∗(Sht′rG)Q) is equipped

with an intersection pairing between complementary degrees; see Section A.1.4.

Lemma 5.12. The action of any f ∈H on Chc,∗(ShtrG)Q or Chc,∗(Sht′rG)Q
is self-adjoint with respect to the intersection pairing.

Proof. It suffices to prove self-adjointness for hD for all effective divisorsD.

We give the argument for ShtrG, and the case of Sht′rG can be proved in the

same way. For ζ1 ∈ Chc,i(ShtrG)Q and ζ2 ∈ Chc,2r−i(ShtrG)Q, the intersection

number 〈hD ∗ ζ1, ζ2〉ShtrG
is the same as the following intersection number in

ShtrG × ShtrG:

〈ζ1 × ζ2, (
←−p ,−→p )∗[ShtrG(hD)]〉ShtrG×ShtrG

.

We will construct an involution τ on ShtrG(hD) such that the following diagram

is commutative:

ShtrG(hD)

(←−p ,−→p )

��

τ
// ShtrG(hD)

(←−p ,−→p )

��

ShtrG × ShtrG
σ12

// ShtrG × ShtrG.

(5.11)
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Here σ12 in the bottom row means flipping two factors. Once we have such a

diagram, we can apply τ to ShtrG(hD) and σ12 to ShtrG × ShtrG and get

〈ζ1 × ζ2, (
←−p ,−→p )∗[ShtrG(hD)]〉ShtrG×ShtrG

= 〈ζ2 × ζ1, (
←−p ,−→p )∗[ShtrG(hD)]〉ShtrG×ShtrG

,

which is the same as the self-adjointness for h ∗ (−):

〈hD ∗ ζ1, ζ2〉ShtrG
= 〈hD ∗ ζ2, ζ1〉ShtrG

= 〈ζ1, hD ∗ ζ2〉ShtrG
.

We pick any µ as in Section 5.1.2, and we identify ShtrG with ShtµG =

Shtµ2/PicX(k). We use −µ to denote the negated tuple if we think of µ ∈ {±1}r
using the sgn map. We consider the composition

δ : ShtµG
δ′−→ Sht−µG

∼= ShtµG,

where δ′(Ei;xi; fi; ι) = (E∨i ;xi; (f∨i )−1; (ι∨)−1), and the second map is the

canonical isomorphism Sht−µG
∼= ShtµG given by Lemma 5.6.

Similarly, we define τ as the composition

(5.12) τ : ShtµG(hD)
τ ′−→ Sht−µG (hD) ∼= ShtµG(hD),

where τ ′ sends the diagram (5.5) to the diagram

E ′∨0
f ′∨−1
1
//

φ∨0
��

E ′∨1
f ′∨−1
2
//

φ∨1
��

· · ·
f ′∨−1
r
// E ′∨r

φ∨r
��

ι′∨−1
// τE ′∨0

τφ∨0
��

E∨0
f∨−1
1
// E∨1

f∨−1
2
// · · ·

f∨−1
r
// E∨r

ι∨−1
// τE∨0

(5.13)

and the second map in (5.12) is the canonical isomorphism Sht−µG (hD) ∼=
ShtµG(hD) given by the analog of Lemma 5.6. It is clear from the definition

that if we replace the bottom arrow of (5.11) with σ12 ◦ (δ × δ) (i.e., the map

(a, b) 7→ (δ(b), δ(a))), then the diagram is commutative.

We claim that δ is the identity map for ShtµG. In fact, δ turns (Ei;xi; fi; ι) ∈
ShtµG into (E∨i (Di);xi; (f∨i )−1; (ι∨)−1), where Di =

∑
1≤j≤i sgn(µj)Γxj . Note

that we have a canonical isomorphism E∨i ∼= Ei ⊗ (det Ei)−1 and isomorphisms

det Ei ∼= (det E0)(Di) induced by the fi. Therefore, we get a canonical isomor-

phism E∨i (Di) ∼= Ei ⊗ (det Ei)−1 ⊗ O(Di) ∼= Ei ⊗ (det E0)−1 compatibly with

the maps (f∨i )−1 and fi, and also compatible with (ι∨)−1 and ι. Therefore,

δ(Ei;xi; fi; ι) is canonically isomorphic to (Ei;xi; fi; ι) up to tensoring with

det(E0). This shows that δ is the identity map of ShtµG.

Since δ = id, the diagram (5.11) is also commutative. This finishes the

proof. �



816 ZHIWEI YUN and WEI ZHANG

5.4. Moduli of Shtukas for the torus T .

5.4.1. Recall that ν : X ′ → X is an étale double covering with X ′ also

geometrically connected. Let σ ∈ Gal(X ′/X) be the nontrivial involution.

Let ‹T be the two-dimensional torus over X defined as‹T := ResX′/X Gm.

We have a natural homomorphism Gm → ‹T . We define a one-dimensional

torus over X:

T := ‹T/Gm = (ResX′/X Gm)/Gm.

Let BunT be the moduli stack of T -torsors over X. Then we have a

canonical isomorphism of stacks

BunT ∼= PicX′ /PicX .

In particular, BunT is a Deligne–Mumford stack whose coarse moduli space is

a group scheme with two components, and its neutral component is an abelian

variety over k.

5.4.2. Specializing Definition 5.1 to the case n = 1 and replacing the

curve X with its double cover X ′, we get the Hecke stack Hkµ1,X′ . This makes

sense for any tuple µ as in Section 5.1.1.

Now assume that µ satisfies the conditions in Section 5.1.2. We may view

each µi as a coweight for GL1 = Gm in an obvious way: µ+ means 1 and

µ− means −1. Specializing Definition 5.3 to the case n = 1 and replacing X

with X ′, we get the moduli stack Shtµ1,X′ of rank one Shtukas over X ′ of type µ.

We define

Shtµ
T̃

:= Shtµ1,X′ .

We have a Cartesian diagram

Shtµ
T̃

��

// Hkµ1,X′

(p0,pr)

��

PicX′
(id,Fr)

// PicX′ ×PicX′ .

We also have a morphism

πµ
T̃

: Shtµ
T̃
−→ Hkµ1,X′

pX′−−→ X ′r.

5.4.3. Fix µ as in Section 5.1.2. Concretely, for any k-scheme S, Shtµ
T̃

(S)

classifies the following data:

(1) a line bundle L over X ′ × S;

(2) morphisms x′i : S → X ′ for i = 1, . . . , r, with graphs Γx′i ⊂ X
′ × S;
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(3) an isomorphism

ι : L
(

r∑
i=1

sgn(µi)Γx′i

)
∼−→ τL := (id× FrS)∗L;

here the signs sgn(µ±) = ±1 are defined in Section 5.1.1.

This description of points appears to be simpler than its counterpart in Sec-

tion 5.1.5: the other line bundles Li are canonically determined by L0 and x′i
using the formula

(5.14) Li = L0

Ñ ∑
1≤j≤i

sgn(µj)Γx′j

é
.

5.4.4. The Picard stack PicX′ , and hence PicX , acts on Hkµ1,X′ . We

consider the quotient

(5.15) HkµT := Hkµ1,X′/PicX .

In fact we have a canonical isomorphism HkµT
∼= BunT ×X ′r sending (Li;x′i; fi)

to (L0;x′i). In particular, HkµT is a smooth and proper Deligne–Mumford stack

of pure dimension r + g − 1 over k.

5.4.5. The groupoid PicX′(k) acts on Shtµ
T̃

by tensoring on the line bun-

dle L. We consider the restriction of this action to PicX(k) via the pullback

map ν∗ : PicX(k)→ PicX′(k). We define

ShtµT := Shtµ
T̃
/PicX(k).

The analog of Lemma 5.6 gives a Cartesian diagram

ShtµT

��

// HkµT

(p0,pr)

��

BunT
(id,Fr)

// BunT × BunT .

(5.16)

Since the morphism πµ
T̃

is invariant under PicX(k), we get a morphism

πµT : ShtµT −→ X ′r.

Lemma 5.13. The morphism πµT is a torsor under the finite groupoid

PicX′(k)/PicX(k). In particular, πµT is finite étale, and the stack ShtµT is a

smooth proper Deligne–Mumford stack over k of pure dimension r.

Proof. This description given in Section 5.4.3 gives a Cartesian diagram

Shtµ
T̃

πµ
T̃
��

// PicX′

id−Fr
��

X ′r
φ

// Pic0
X′ ,

(5.17)



818 ZHIWEI YUN and WEI ZHANG

where φ(x′1, . . . , x
′
r) = OX′(

∑r
i=1 sgn(µi)x

′
i). Dividing the top row of the dia-

gram (5.17) by PicX(k) we get a Cartesian diagram

ShtµT

πµT
��

// PicX′ /(PicX(k))

id−Fr
��

X ′r
φ

// Pic0
X′ .

Since the right vertical map id − Fr : PicX′ /(PicX(k)) → Pic0
X′ is a torsor

under PicX′(k)/PicX(k), so is πµT . �

5.4.6. Changing µ. For a different choice µ′ as in 5.1.1, we have a canonical

isomorphism

(5.18) Hkµ
T̃

∼−→ Hkµ
′

T̃

sending (Li;x′i; fi) to (Ki; y′i; gi) where

(5.19) y′i =

x′i if µi = µ′i,

σ(x′i) if µi 6= µ′i,

and

(5.20) Ki = L0

Ñ ∑
1≤j≤i

sgn(µ′j)Γy′j

é
.

The rational maps gi : Ki−1 99K Ki is the one corresponding to the identity

map on L0 via the description (5.20). Note that we have

Ki = Li ⊗OX×S OX×S

Ñ ∑
1≤j≤i

sgn(µ′j)− sgn(µj)

2
Γxj

é
,

where xi : S → X is the image of x′i. Therefore, Ki has the same image as Li
in BunT . The isomorphism (5.18) induces an isomorphism

(5.21) HkµT
∼−→ Hkµ

′

T .

From the construction and the above discussion, this isomorphism preserves

the maps pi to BunT but does not preserve the projections to X ′r. (It only

preserves the further projection to Xr.)

Since the isomorphism (5.21) preserves the maps p0 and pr, the diagram

(5.16) implies a canonical isomorphism

(5.22) ιµ,µ′ : ShtµT
∼−→ Shtµ

′

T .

Just as the map (5.21), ιµ,µ′ does not respect the maps πµT and πµ
′

T from ShtµT
and Shtµ

′

T to X ′r: it only respects their further projections to Xr.
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5.5. The Heegner–Drinfeld cycles.

5.5.1. We have a morphism

Π : BunT −→BunG

(L mod PicX) 7−→ (ν∗L mod PicX).

5.5.2. For any µ as in Section 5.1.2, we define a morphism

θ̃µ : Shtµ
T̃
−→ Shtµ2

as follows. Let (L;x′i; ι) ∈ Shtµ
T̃

(S) as in the description in Section 5.4.3. Let

L0 = L. We may define the line bundles Li using (5.14). Then there are

natural maps gi : Li−1 ↪→ Li if µi = µ+ or gi : Li ↪→ Li−1 if µi = µ−. Let

νS = ν × idS : X ′ × S → X × S be the base change of ν. We define

Ei = νS∗Li,

with the maps fi : Ei−1 → Ei or Ei → Ei−1 induced from gi. The isomorphism ι

then induces an isomorphism

 : Er = νS∗Lr
νS∗ι−−→ νS∗(idX′ × FrS)∗L0

∼= (idX × FrS)∗νS∗L0 = τE0.

Let xi = ν ◦ x′i. The morphism θ̃µ then sends (L;x′i; ι) to (Ei;xi; fi; ). Clearly

θ̃µ is equivariant with respect to the PicX(k)-actions. Passing to the quotients,

we get a morphism

θ
µ

: ShtµT −→ ShtµG.

For a different µ′, the canonical isomorphism ιµ,µ′ in (5.22) intertwines the

maps θ
µ

and θ
µ′

; i.e., we have a commutative diagram

ShtµT

ιµ,µ′
��

θ
µ

// ShtµG

��

Shtµ
′

T
θ
µ′

// Shtµ
′

G ,

where the right vertical map is the canonical isomorphism in Lemma 5.6. By

our identification of ShtµG for different µ (cf. (5.4)), we get a morphism, still

denoted by θ
µ
,

θ
µ

: ShtµT −→ ShtrG.

5.5.3. By construction we have a commutative diagram

ShtµT

πµT
��

θ
µ

// ShtrG

πG
��

X ′r
νr

// Xr.
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Recall that

Sht′rG := ShtrG ×Xr X ′r.

Then the map θ
µ

factors through a morphism

θµ : ShtµT −→ Sht′rG

over X ′r. Since ShtµT is proper of dimension r, θµ∗ [ShtµT ] is a proper cycle class

in Sht′rG of dimension r.

Definition 5.14. The Heegner–Drinfeld cycle of type µ is the direct image

of [ShtµT ] under θµ:

θµ∗ [ShtµT ] ∈ Chc,r(Sht′rG)Q.

Recall from Proposition 5.10 and Section 5.3.3 that we have an action of

H on Chc,r(Sht′rG)Q. Since

dim ShtµT = r =
1

2
dim Sht′rG,

both θµ∗ [ShtµT ] and f ∗ θµ∗ [ShtµT ] for any function f ∈ H are proper cycle

classes in ShtrG of complementary dimension, and they define elements in

Chc,r(Sht′rG)Q. The following definition then makes sense.

Definition 5.15. Let f ∈ H be an unramified Hecke function. We define

the following intersection number:

Ir(f) := 〈θµ∗ [ShtµT ], f ∗ θµ∗ [ShtµT ]〉Sht′rG
∈ Q.

5.5.4. Changing µ. For different µ and µ′ as in Section 5.1.2, the Heegner–

Drinfeld cycles θµ∗ [ShtµT ] and θµ
′
∗ [Shtµ

′

T ] are different. Therefore, a priori the

intersection number Ir(f) depends on µ. However, we have

Lemma 5.16. The intersection number Ir(f) for any f ∈ H is indepen-

dent of the choice of µ.

Proof. Let Zµ denote the cycle θµ∗ [ShtµT ]. Using the isomorphism ιµ,µ′

in (5.22), we see that Zµ and Zµ
′

are transformed to each other under the

involution σ(µ, µ′) : Sht′rG = ShtrG ×Xr X ′r → ShtrG ×Xr X ′r = Sht′rG, which

is the identity on ShtrG and on X ′r sends (x′1, . . . , x
′
r) to (y′1, . . . , y

′
r) using the

formula (5.19). Since σ(µ, µ′) is the identity on ShtrG, it commutes with the

Hecke action on Chc,r(Sht′rG)Q. Therefore, we have

〈Zµ, f ∗ Zµ〉Sht′rG
= 〈σ(µ, µ′)∗Z

µ, σ(µ, µ′)∗(f ∗ Zµ)〉Sht′rG

= 〈σ(µ, µ′)∗Z
µ, f ∗ (σ(µ, µ′)∗Z

µ)〉Sht′rG
= 〈Zµ′ , f ∗ Zµ′〉Sht′rG

. �
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6. Intersection number as a trace

The goal of this section is to turn the intersection number Ir(hD) into the

trace of an operator acting on the cohomology of a certain variety. This will

be accomplished in Theorem 6.5. To state the theorem, we need to introduce

certain moduli spaces similar to Nd defined in Section 3.2.2.

6.1. Geometry of Md.

6.1.1. Recall that ν : X ′ → X is a geometrically connected étale double

cover. We will use the notation “X ′d and X ′d as in Section 3.2.1. We have

the norm map ν̂d : “X ′d → “Xd sending (L, α ∈ Γ(X ′,L)) to (Nm(L),Nm(α) ∈
Γ(X,Nm(L))).

Let d ≥ 0 be an integer. Let ›Md be the moduli functor whose S-points is

the groupoid of (L,L′, α, β), where

• L,L′ ∈ Pic(X ′ × S) such that deg(L′s) − deg(Ls) = d for all geometric

points s ∈ S;

• α : L → L′ is an OX′-linear map;

• β : L → σ∗L′ is an OX′-linear map;

• for each geometric point s ∈ S, the restrictions α|X′×s and β|X′×s are not

both zero.

There is a natural action of PicX on ›Md by tensoring: K ∈ PicX sends

(L,L′, α, β) to (L ⊗ ν∗K,L′ ⊗ ν∗K, α⊗ idK, β ⊗ idK). We define

Md := ›Md/PicX .

6.1.2. To (L,L′, α, β) ∈ ›Md, we may attach

• a := Nm(α) : Nm(L)→ Nm(L′);
• b := Nm(β) : Nm(L)→ Nm(σ∗L′) = Nm(L′).

Both a and b are sections of the same line bundle ∆ = Nm(L′)⊗ Nm(L)−1 ∈
PicdX , and they are not simultaneously zero. The assignment (L,L′, α, β) 7→
(∆, a, b) is invariant under the the action of PicX on ›Md, and it induces a

morphism

fM :Md −→ Ad.

Here Ad is defined in Section 3.2.3.

6.1.3. Given (L,L′, α, β) ∈ ›Md, there is a canonical way to attach an

OX -linear map ψ : ν∗L → ν∗L′ and vice versa. In fact, by adjunction, a map

ψ : ν∗L → ν∗L′ is the same as a map ν∗ν∗L → L′. Since ν∗ν∗L ∼= L ⊕ σ∗L
canonically, the datum of ψ is the same as a map of OX′-modules L⊕σ∗L → L′,
and we name the two components of this map by α and σ∗β. Note that we

have a canonical isomorphism

Nm(L) ∼= det(ν∗L)⊗ det(ν∗O)∨,
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and likewise for L′. Therefore, det(ψ) : det(ν∗L)→ det(ν∗L′) can be identified

with a map Nm(L)→ Nm(L′), which is given by

(6.1) det(ψ) = Nm(α)−Nm(β) = a− b : Nm(L) −→ Nm(L′).

The composition δ ◦ fM : Md → Ad → “Xd takes (L,L′, α, β) to the pair

(∆ = Nm(L′)⊗Nm(L)−1, det(ψ)).

6.1.4. We give another description of Md. We have a map ια :Md→ “X ′d
sending (L,L′, α, β) to the line bundle L′ ⊗ L−1 and its section given by α.

Similarly, we have a map ιβ : Md → “X ′d sending (L,L′, α, β) to the line

bundle σ∗L′ ⊗ L−1 and its section given by β. Note that the line bundles

underlying ια(L,L′, α, β) and ιβ(L,L′, α, β) have the same norm ∆ = Nm(L′)⊗
Nm(L)−1 ∈ PicdX . Since α and β are not both zero, we get a map

ι = (ια, ιβ) :Md −→ “X ′d ×PicdX
“X ′d − Z ′d,

where the fiber product on the right-hand side is taken with respect to the

map “X ′d → PicdX′
Nm−−→ PicdX , and Z ′d := PicdX′ ×PicdX

PicdX′ is embedded into“X ′d ×PicdX
“X ′d by viewing PicdX′ as the zero section of “X ′d in both factors.

Proposition 6.1.

(1) The morphism ι is an isomorphism of functors, and Md is a proper

Deligne–Mumford stack over k.3

(2) For d ≥ 2g′ − 1, Md is a smooth Deligne–Mumford stack over k of pure

dimension 2d− g + 1.

(3) The morphism ν̂d : “X ′d → “Xd is proper.

(4) We have a Cartesian diagram

Md
� � ι

//

fM

��

“X ′d ×PicdX
“X ′d

ν̂d×ν̂d
��

Ad �
�

// “Xd ×PicdX
“Xd.

(6.2)

Moreover, the map fM is proper.

Proof. (1) Let (PicX′ ×PicX′)d be the disjoint union of PiciX′ ×Pici+dX′ over

all i ∈ Z. Consider the morphism

θ : (PicX′ ×PicX′)d/PicX −→ PicdX′ ×PicdX
PicdX′

(the fiber product is taken with respect to the norm map) that sends (L,L′) to

(L′ ⊗ L−1, σ∗L′ ⊗ L−1, τ), where τ is the tautological isomorphism between

3The properness of Md will not be used elsewhere in this paper.
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Nm(L′ ⊗ L−1) ∼= Nm(L′) ⊗ Nm(L)−1 and Nm(σ∗L′ ⊗ L−1) ∼= Nm(L′) ⊗
Nm(L)−1. By definition, we have a Cartesian diagram

Md
ι
//

ω

��

“X ′d ×PicdX
“X ′d − Z ′d
��

(PicX′ ×PicX′)d/PicX
θ
// PicdX′ ×PicdX

PicdX′ ,

(6.3)

where the map ω sends (L,L′, α, β) to (L,L′). Therefore, it suffices to check

that θ is an isomorphism. For this we will construct an inverse to θ.

From the exact sequence of étale sheaves

1 −→ O×X
ν∗−→ ν∗O×X′

id−σ−−−→ ν∗O×X′
Nm−−→ O×X −→ 1,

we get an exact sequence of Picard stacks

1 −→ PicX′ /PicX
id−σ−−−→ Pic0

X′
Nm−−→ Pic0

X −→ 1.

Given (K1,K2, τ) ∈ PicdX′ ×PicdX
PicdX′ (where τ : Nm(K1) ∼= Nm(K2)), there

is a unique object L′ ∈ PicX′ /PicX such that L′ ⊗ σ∗L′−1 ∼= K1 ⊗ K−1
2

compatible with the trivializations of the norms to X of both sides. We

then define ψ(K1,K2, τ) = (L′ ⊗ K−1
1 ,L′), which is a well-defined object in

(PicX′ ×PicX′)d/PicX . It is easy to check that ψ is an inverse to θ. This

proves that θ is an isomorphism, and so is ι.

We show thatMd is a proper Deligne–Mumford stack over k. By extend-

ing k we may assume that X ′ contains a k-point, and we fix a point y ∈ X ′(k).

We consider the moduli stack ”Md classifying (K1, γ1,K, ρ, α, β), where K1 ∈
PicdX′ , γ1 is a trivialization of the stalk K1,y, K ∈ Pic0

X′ , ρ is an isomorphism

Nm(K) ∼= OX , α is a section of K1, and β is a section of K1 ⊗ K such that α

and β are not both zero. There is a canonical map p : ”Md → “X ′d×PicdX
“X ′d−Z ′d

sending (K1, γ1,K, ρ, α, β) to (K1,K2 := K1 ⊗ K, τ, α, β). (The isomorphism

τ : Nm(K1) ∼= Nm(K2) is induced from the trivialization ρ.) Clearly p is the

quotient map for the Gm-action on ”Md that scales γ1. There is another Gm-

action on ”Md that scales α and β simultaneously. Using automorphisms of K1,

we have a canonical identification of the two Gm-actions on ”Md; however, to

distinguish them, we call the first torus Gm(y) and the second Gm(α, β). By

the above discussion, ι−1 ◦ p gives an isomorphism ”Md/Gm(y) ∼= Md, hence

also an isomorphism ”Md/Gm(α, β) ∼=Md.

Let PrymX′/X := ker(Nm : Pic0
X′ → Pic0

X), which classifies a line bundle

K on X ′ together with a trivialization of Nm(L). This is a Deligne–Mumford

stack isomorphic to the usual Prym variety divided by the trivial action of µ2.

Let JdX′ be the degree d-component of the Picard scheme of X ′, which clas-

sifies a line bundle K1 on X ′ of degree d together with a trivialization of
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the stalk K1,y. We have a natural map h : ”Md → JdX′ × PrymX′/X sending

(K1, γ1,K, ρ, α, β) to (K1, γ1) ∈ JdX′ and (K, ρ) ∈ PrymX′/X . The map h is

invariant under the Gm(α, β)-action and hence induces a map

(6.4) h : ”Md/Gm(α, β) ∼=Md −→ JdX′ × PrymX′/X .

The fiber of h over a point ((K1, γ1), (K, ρ)) ∈ JdX′×PrymX′/X is the projective

space P(Γ(X ′,K1) ⊕ Γ(X ′,K1 ⊗ K)). In particular, the map h is proper and

schematic. Since JdX′ × PrymX′/X is a proper Deligne–Mumford stack over k,

so is Md.

(2) SinceMd is covered by open substacks X ′d×PicdX
“X ′d and “X ′d×PicdX

X ′d,

it suffices to show that both of them are smooth over k. For d ≥ 2g′ − 1, the

Abel-Jacobi map AJd : X ′d → PicdX′ is smooth of relative dimension d− g′+ 1,

hence X ′d is smooth over PicdX of relative dimension d − g + 1. Therefore,

both X ′d ×PicdX
“X ′d and “X ′d ×PicdX

X ′d are smooth over X ′d of relative dimension

d − g + 1. We conclude that Md is a smooth Deligne–Mumford stack of

dimension 2d− g + 1 over k.

(3) We introduce a compactification X
′
d of “X ′d as follows. Consider the

product “X ′d×A1 with the natural Gm-action scaling both the section of the line

bundle and the scalar in A1. Let z0 : PicdX′ ↪→ “X ′d × A1 sending L to (L, 0, 0).

Let X
′
d := (“X ′d × A1 − z0(PicdX′))/Gm. Then the fiber of X

′
d over L ∈ PicdX′

is the projective space P(Γ(X ′,L ⊕ OX′)). In particular, X
′
d is proper and

schematic over PicdX′ . The stack X
′
d contains “X ′d as an open substack where

the A1-coordinate is invertible, whose complement is isomorphic to the pro-

jective space bundle X ′d/Gm over PicdX′ . Similarly, we a have compactification

Xd of “Xd.

Consider the quadratic map “X ′d × A1 → “Xd × A1 sending (L, s, λ) to

(Nm(L),Nm(s), λ2). This quadratic map passes to the projectivizations be-

cause (Nm(s), λ2) = (0, 0) implies (s, λ) = (0, 0) on the level of field-valued

points. The resulting map νd : X
′
d → Xd extends ν̂d. We may factorize νd as

the composition

νd : X
′
d −→ Xd ×PicdX

PicdX′ −→ Xd.

Here the first map is proper because both the source and the target are proper

over PicdX′ ; the second map is proper by the properness of the norm map

Nm : PicdX′ → PicdX . We conclude that νd is proper. Since ν̂d is the restriction

of νd to “Xd ↪→ Xd, it is also proper.

(4) The commutativity of the diagram (6.2) is clear from the construc-

tion of ι. Note that Z ′d is the preimage of Zd under ν̂d × ν̂d, and Md and Ad
are complements of Z ′d and Zd respectively. Therefore, (6.2) is also Cartesian.

Now the properness of fM follows from the properness of ν̂d proved in part (3)

together with the Cartesian diagram (6.2). �
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6.2. A formula for Ir(hD).

6.2.1. The correspondence HkµM,d. Fix any tuple µ = (µ1, . . . , µr) as in

Section 5.1.1. We define ›Hk
µ

M,d to be the moduli functor whose S-points

classify the following data:

(1) for i = 1, . . . , r, a map x′i : S → X ′ with graph Γx′i ;

(2) for each i = 0, 1, . . . , r, an S-point (Li,L′i, αi, βi) of ›Md:

αi : Li −→ L′i, βi : Li −→ σ∗L′i;
(3) a commutative diagram of OX′-linear maps between line bundles on X ′

L0

α0

��

f1
// L1

α1

��

f2
// · · ·

fr
// Lr

αr
��

L′0
f ′1
// L′1

f ′2
// · · ·

f ′r
// L′r,

(6.5)

where the top and bottom rows are S-points of HkµT over the same point

(x′1, . . . , x
′
r) ∈ X ′r(S), such that the following diagram is also commutative:

L0

β0
��

f1
// L1

β1
��

f2
// · · ·

fr
// Lr

βr
��

σ∗L′0
σ∗f ′1

// σ∗L′1
σ∗f ′2

// · · ·
σ∗f ′r
// σ∗L′r.

(6.6)

There is an action of PicX on ›Hk
µ

M,d by tensoring on the line bundles Li and L′i.
We define

HkµM,d := ›Hk
µ

M,d/PicX .

The same argument as Section 5.4.6 (applying the isomorphism (5.21) to both

rows of (6.6)) shows that for different choices of µ, the stacks HkµM,d are canon-

ically isomorphic to each other. However, as in the case for HkµT , the morphism

HkµM,d → X ′r does depend on µ.

6.2.2. Let γi : HkµM,d →Md be the projections given by taking the dia-

gram (6.5) to its i-th column. It is clear that this map is schematic, therefore,

HkµM,d itself is a Deligne–Mumford stack.

In the diagram (6.5), the line bundles ∆i = Nm(L′i) ⊗ Nm(Li)−1 are

all canonically isomorphic to each other for i = 0, . . . , r. Also the sections

ai = Nm(αi) (resp. bi = Nm(βi)) of ∆i can be identified with each other for

all i under the isomorphisms between the ∆i’s. Therefore, composing γi with

the map fM : Md → Ad all give the same map. We may view HkµM,d as a

self-correspondence of Md over Ad via the maps (γ0, γr).

There is a stronger statement. Let us define ‹Ad ⊂ “X ′d ×PicdX
“Xd to be

the preimage of Ad under Nm×id : “X ′d ×PicdX
“Xd → “Xd ×PicdX

“Xd. Then ‹Ad



826 ZHIWEI YUN and WEI ZHANG

classifies triples (K, α, b), where K ∈ PicX′ , α is a section of K, and b is a

section of Nm(K) such that α and b are not simultaneously zero. Then fM
factors through the map

f̃M :Md −→ ‹Ad
sending (L,L′, α, β) to (L′ ⊗ L−1, α,Nm(β)).

Consider a point of HkµM,d giving, among others, the diagram (6.5). Since

the maps fi and f ′i are simple modifications at the same point x′i, the line

bundles L′i ⊗ L
−1
i are all isomorphic to each other for all i = 0, 1, . . . , r. Un-

der these isomorphisms, their sections given by αi correspond to each other.

Therefore, the maps f̃M ◦ γi : HkµM,d → ‹Ad are the same for all i.

6.2.3. The particular case r = 1 and µ = (µ+) gives a moduli space

H := Hk1
M,d classifying commutative diagrams up to simultaneous tensoring

by PicX :

L0
f
//

α0

��

L1

α1

��

L0
f

//

β0
��

L1

β1
��

L′0
f ′
// L′1, σ∗L′0

σ∗f ′
// σ∗L′1.

(6.7)

such that the cokernel of f and f ′ are invertible sheaves supported at the same

point x′ ∈ X ′, and the data (L0,L′0, α0, β0) and (L1,L′1, α1, β1) are objects

of Md.

We have two maps (γ0, γ1) : H → Md, and we view H as a self-corre-

spondence of Md over Ad. We also have a map p : H → X ′ recording the

point x′ (support of L1/L0 and L′1/L′0).

The following lemma follows directly from the definition of HkµM,d.

Lemma 6.2. As a self-correspondence of Md, HkµM,d is canonically iso-

morphic to the r-fold composition of H:

HkµM,d
∼= H×γ1,Md,γ0 ×H×γ1,Md,γ0 × · · · ×γ1,Md,γ0 H.

6.2.4. Let A♦d ⊂ Ad be the open subset consisting of (∆, a, b) where

b 6= 0; i.e., A♦d = “Xd×PicdX
Xd under the isomorphism (3.3). LetM♦d , HkµM♦,d

and H♦ be the preimages of A♦d in Md, HkµM,d and H.

Lemma 6.3. Let I ′d ⊂ X ′d × X ′ be the incidence scheme; i.e., I ′d → X ′d
is the universal family of degree d effective divisors on X ′. There is a natural
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map H♦ → I ′d such that the diagram

H♦
p

))
//

γ1
��

I ′d

q

��

pI′
// X ′

M♦d “X ′d ×PicdX
X ′d

pr2
// X ′d

(6.8)

is commutative and the square is Cartesian. Here the q : I ′d → X ′d sends

(D, y) ∈ X ′d ×X ′ to D − y + σ(y), and pI′ : I ′d → X ′ sends (D, y) to y.

Proof. A point in H♦ is a diagram as in (6.7) with βi nonzero (hence

injections). Such a diagram is uniquely determined by (L0,L′0, α0, β0) ∈ M♦d
and y = div(f) ∈ X ′, for then L1 = L0(y), L′1 = L′0(y) are determined, and

f, f ′ are the obvious inclusions and α1 the unique map making the first dia-

gram in (6.7) commutative; the commutativity of the second diagram uniquely

determines β1, but there is a condition on y to make it possible:

div(β0) + σ(y) = div(β1) + y ∈ X ′d+1.

Since σ acts on X ′ without fixed points, y must appear in div(β0). The as-

signment H♦ 3 (y,L0, . . . , β0,L1, . . . , β1) 7→ (div(β0), y) then gives a point

in I ′d. The above argument shows that the square in (6.8) is Cartesian and the

triangle therein is commutative. �

Lemma 6.4. We have

(1) the map γ0 : HkµM♦,d →M
♦
d is finite and surjective; in particular, we have

dim HkµM♦,d = dimM♦d = 2d− g + 1;

(2) the dimension of the image of HkµM,d − HkµM♦,d in Md ×Md is at most

d+ 2g − 2.

Proof. (1) In the case r = 1, this follows from the Cartesian square in

(6.8), because the map q : I ′d → X ′d is finite. For general r, the statement

follows by induction from Lemma 6.2.

(2) The closed subscheme Y = HkµM,d − HkµM♦,d classifies diagrams (6.5)

only because all the βi are zero. Its image Z ⊂ Md × Md under (γ0, γr)

consists of pairs of points (L0,L′0, α0, 0) and (Lr,L′r, αr, 0) in Md such that

there exists a diagram of the form (6.5) connecting them. In particular, the

divisors of α0 and αr are the same. Therefore, such a point in Z is completely

determined by two points L0,Lr ∈ BunT and a divisor D ∈ X ′d (as the divisor

of α0 and αr). We see that dimZ ≤ 2 dim BunT + dimX ′d = d+ 2g − 2. �
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6.2.5. Recall that H = Hk1
M,d is a self-correspondence of Md over Ad;

see the discussion in Section 6.2.2. Let

[H♦] ∈ Ch2d−g+1(H)Q

denote the class of the closure of H♦. The image of [H♦] in the Borel-Moore

homology group HBM
2(2d−g+1)(H⊗k k)(−2d+ g−1) defines a cohomological self-

correspondence of the constant sheaf Q` on Md. According the discussion in

Section A.4.1, it induces an endomorphism

fM,![H♦] : RfM,!Q` −→ RfM,!Q`.

For a point a ∈ Ad(k), we denote the action of fM,![H♦] on the geometric stalk

(RfM,!Q`)a = H∗c(f
−1
M (a)⊗k k) by (fM,![H♦])a.

Recall from Section 3.3.2 that AD = δ−1(D) ⊂ A♥d is the fiber of D under

δ : Ad → “Xd. The main result of this section is the following.

Theorem 6.5. Suppose D is an effective divisor on X of degree d ≥
max{2g′ − 1, 2g}. Then we have

(6.9) Ir(hD) =
∑

a∈AD(k)

Tr
Ä
(fM,![H♦])ra ◦ Froba, (RfM,!Q`)a

ä
.

6.2.6. Orbital decomposition of Ir(hD). According Theorem 6.5, we may

write

(6.10) Ir(hD) =
∑

u∈P1(F )−{1}
Ir(u, hD),

where

Ir(u, hD) =


Tr
Ä
(fM,![H♦])ra ◦ Froba, (RfM,!Q`)a

ä if u = invD(a)

for some a ∈ AD(k),

0 otherwise.

(6.11)

The rest of the section is devoted to the proof of this theorem. In the rest

of this subsection we assume d ≥ max{2g′ − 1, 2g}.

6.2.7. We apply the discussion in Section A.4.4 to M =Md
fM−−→ S = Ad

and the self-correspondence C = HkµM,d of Md. We define ShtµM,d by the

Cartesian diagram

ShtµM,d
//

��

HkµM,d

(γ0,γr)

��

Md

(id,FrMd
)
//Md ×Md.

(6.12)
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This fits into the situation of Section A.4.4 because fM ◦ γ0 = fM ◦ γr by the

discussion in Section 6.2.2, hence HkµM,d is a self-correspondence of Md over

Ad while (id,FrMd
) covers the map (id,FrAd) : Ad → Ad ×Ad. In particular,

we have a decomposition

(6.13) ShtµM,d =
∐

a∈Ad(k)

ShtµM,d(a).

For D ∈ Xd(k), we let

(6.14) ShtµM,D :=
∐

a∈AD(k)

ShtµM,d(a) ⊂ ShtµM,d.

Using the decompositions (6.13) and (6.14), we get a decomposition

Ch0(ShtµM,d)Q =

Ñ ⊕
D∈Xd(k)

Ch0(ShtµM,D)Q

é
⊕

Ö ⊕
a∈Ad(k)−A♥

d
(k)

Ch0(ShtµM,d(a))Q

è
.

(6.15)

Let ζ ∈ Ch2d−g+1(HkµM,d)Q. Since Md is a smooth Deligne–Mumford

stack by Proposition 6.1(2), (id,FrMd
) is a regular local immersion, and the

refined Gysin map (which is the same as intersecting with the Frobenius graph

Γ(FrMd
) of Md) is defined

(id,FrMd
)! : Ch2d−g+1(HkµM,d)Q −→ Ch0(ShtµM,d)Q.

Under the decomposition (6.15), we denote the component of (id,FrMd
)!ζ in

the direct summand Ch0(ShtµM,D)Q byÄ
(id,FrMd

)!ζ
ä
D
∈ Ch0(ShtµM,D)Q.

Composing with the degree map (which exists because ShtµM,D is proper over k

— see the discussion after (A.26)), we define

〈ζ,Γ(FrMd
)〉D := deg

Ä
(id,FrMd

)!ζ
ä
D
∈ Q.

As the first step towards the proof of Theorem 6.5, we have the following

result.

Theorem 6.6. Suppose D is an effective divisor on X of degree d ≥
max{2g′ − 1, 2g}. Then there exists a class ζ ∈ Ch2d−g+1(HkµM,d)Q whose

restriction to HkµM,d|A♥
d
∩A♦

d
is the fundamental cycle, such that

(6.16) Ir(hD) = 〈ζ,Γ(FrMd
)〉D.

This theorem will be proved in Section 6.3.6, after introducing some aux-

iliary moduli stacks in the next subsection.
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6.2.8. Proof of Theorem 6.5. Granting Theorem 6.6, we now prove Theo-

rem 6.5. Let ζ ∈ Ch2d−g+1(HkµM,d)Q be the class as in Theorem 6.6. By (6.14),

we have a decomposition

(6.17) Ch0(ShtµM,D)Q =
⊕

a∈AD(k)

Ch0(ShtµM,d(a))Q.

We write
〈ζ,Γ(FrMd

)〉D =
∑

a∈AD(k)

〈ζ,Γ(FrMd
)〉a

under the decomposition (6.17), where 〈ζ,Γ(FrMd
)〉a is the degree ofÄ

(id,FrMd
)!ζ
ä
a
∈ Ch0(ShtµM,d(a))Q.

Combining this with Theorem 6.6 we get

(6.18) Ir(hD) =
∑

a∈AD(k)

〈ζ,Γ(FrMd
)〉a.

On the other hand, by Proposition A.12, for any a ∈ AD(k), we have

(6.19) 〈ζ,Γ(FrMd
)〉a = Tr((fM,!cl(ζ))a ◦ Froba, (RfM,!Q`)a).

Here we are viewing the cycle class cl(ζ) ∈ HBM
2(2d−g+1)(HkµM,d)(−2d + g − 1)

as a cohomological self-correspondence of the constant sheaf Q` onMd, which

induces an endomorphism

(6.20) fM,!cl(ζ) : RfM,!Q` −→ RfM,!Q`,

andan endomorphism(fM,!cl(ζ))a on the geometric stalk (RfM,!Q`)a. Since

we only care about the action of fM,!cl(ζ) on stalks in A♥d , only the restriction

ζ♥ := ζ|A♥
d
∈ Z2d−g+1(HkµM,d|A♥

d
)Q matters. Combining (6.19) with (6.18),

we see that in order to prove (6.9), it suffices to show that fM,!cl(ζ♥) and

(fM,![H♦])r give the same endomorphism of the complex RfM,!Q`|A♥
d

. This

is the following lemma, which is applicable because d ≥ 3g − 2 is implied by

d ≥ 2g′ − 1 = 4g − 3 (since g ≥ 1).

Lemma 6.7. Suppose d ≥ 3g−2 and ζ♥ ∈ Z2d−g+1(HkµM,d|A♥
d

)Q. Suppose

the restriction of ζ♥ to HkµM,d|A♥
d
∩A♦

d
is the fundamental cycle. Then the

endomorphism fM,!cl(ζ♥) of RfM,!Q`|A♥
d

is equal to the r-th power of the

endomorphism fM,![H♦].

Proof. Let [H♦]r denote the r-th self-convolution of [H♦], which is a cycle

on the r-th self composition of H, and hence on HkµM,d by Lemma (6.2). We

have two cycle ζ♥ and (the restriction of) [H♦]r in Z2d−g+1(HkµM,d|A♥
d

)Q. We

temporarily denoteMd|A♥
d

byM♥d (although the same notation will be defined

in an a priori different way in Section 6.3). We need to show that they are in
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the same cycle class when projected toM♥d ×M
♥
d under (γ0, γr) : HkµM,d|A♥

d
→

M♥d ×M
♥
d .

By assumption, when restricted to HkµM,d|A♥
d
∩A♦

d
, both ζ♥ and [H♦]r are

the fundamental cycle. Therefore, the difference

(γ0, γr)∗(ζ
♥ − [H♦]r) ∈ Z2d−g+1(M♥d ×M

♥
d )Q

is supported on the image of HkµM,d|A♥
d
−A♦

d
in M♥d ×M

♥
d , which is contained

in the image of HkµM,d − HkµM♦,d in Md ×Md. By Lemma 6.4(2), the latter

has dimension ≤ d+ 2g− 2. Since d > 3g− 3, we have d+ 2g− 2 < 2d− g+ 1,

therefore, (γ0, γr)∗(ζ
♥ − [H♦]r) = 0 ∈ Z2d−g+1(M♥d ×M

♥
d )Q, and the lemma

follows. �

6.3. Auxiliary moduli stacks. The goal of this subsection is to prove The-

orem 6.6. Below we fix an integer d ≥ max{2g′ − 1, 2g}. In this subsection,

we will introduce moduli stacks Hk′rG,d and Hd that will fit into the following

commutative diagram:

(6.21)

HkµT ×HkµT

(γ0,γr)
��

(γ0,γr)
��

Πµ×Πµ
// Hk′rG ×Hk′rG

(γ′0,γ
′
r)

��

(γ′0,γ
′
r)

��

Hk′rG,d

(γ′0,γ
′
r)

��

(←−ρ ′,−→ρ ′)
oo

(BunT )2 × (BunT )2 Π×Π×Π×Π
// (BunG)2 × (BunG)2 Hd ×Hd.

←→p 13×←→p 24
oo

BunT × BunT

(id,Fr)

OO

(id,Fr)

OO

Π×Π
// BunG × BunG

(id,Fr)

OO

(id,Fr)

OO

Hd

←→p =(←−p ,−→p )
oo

(id,Fr)

OO

The maps in this diagram will be introduced later. The fiber products of the

three columns are

(6.22) ShtµT × ShtµT
θµ×θµ−−−−→ Sht′rG × Sht′rG

(←−p ′,−→p ′)←−−−−− Sht′rG,d,

where Sht′rG,d is defined as the fiber product of the third column.

The fiber products of the three rows will be denoted

HkµM♥,d

(γ0,γr)
��

M♥d ×M
♥
d .

M♥d

(id,Fr)

OO
(6.23)

These stacks will turn out to be the restrictions of Md and HkµM,d to A♥d , as

we will see in Lemmas 6.8(2) and 6.9.
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6.3.1. In Section A.3 we discuss an abstract situation as in the above dia-

grams, which can be pictured using a subdivided octahedron. By Lemma A.9,

the fiber products of the two diagrams (6.22) and (6.23) are canonically iso-

morphic. We denote this stack by

ShtµM♥,d.

Below we will introduce Hd and Hk′rG,d.

6.3.2. We define ‹Hd to be the moduli stack whose S-points is the groupoid

of maps

φ : E ↪→ E ′,
where E , E ′ are vector bundles over X×S of rank two, φ is an injective map of

OX×S-modules (so its cokernel has support finite over S), and prS∗ coker(φ) is

a locally free OS-module of rank d (where prS : X × S → S is the projection).

We have an action of PicX on ‹Hd by tensoring, and we form the quotient

Hd := ‹Hd/PicX .

Taking the map φ to its source and target gives two maps←−p ,−→p : Hd → BunG.

The map ←→p 13 ×←→p 24 that appears in (6.21) is the map

←→p 13 ×←→p 24 : Hd ×Hd−→BunG × BunG × BunG × BunG

(h, h′) 7−→ (←−p (h),←−p (h′),−→p (h),−→p (h′)).

On the other hand, we have the morphism Π : BunT → BunG sending L
to ν∗L; see Section 5.5.1. We form the following Cartesian diagram, and take

it as the definition of M♥d :

M♥d //

��

Hd

(←−p ,−→p )

��

BunT × BunT
Π×Π

// BunG × BunG.

(6.24)

Lemma 6.8.

(1) The morphisms ←−p ,−→p : Hd → BunG are representable and smooth of pure

relative dimension 2d. In particular, Hd is a smooth algebraic stack over

k of pure dimension 2d+ 3g − 3.

(2) There is a canonical open embeddingM♥d ↪→Md whose image is f−1
M (A♥d ).

(For the definition of A♥d , see Section 3.2.4.) In particular, M♥d is a

smooth Deligne–Mumford stack over k of pure dimension 2d− g + 1.

Proof. (1) Let Cohd0 be the stack classifying torsion coherent sheaves on

X of length d. By [18, (3.1)], Cohd0 is smooth of dimension 0. Consider

the map q : Hd → Cohd0 sending φ : E ↪→ E ′ to coker(φ). Then the map
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(←−p , q) : Hd → BunG × Cohd0 is a vector bundle of rank 2d whose fiber over

(E ,Q) is Ext1(Q, E). Therefore, ←−p is smooth of relative dimension 2d.

There is an involution δH on Hd sending φ : E → E ′ to φ∨ : E ′∨ → E∨. We

have ←−p ◦ δH = −→p because E ′∨ = E ′ canonically as G-bundles. Therefore, −→p is

also smooth of relative dimension 2d.

(2) By the diagram (6.24), M♥d classifies (L,L′, ψ) up to the action of

PicX , where L and L′ are as in the definition of ›Md, and ψ is an injective

OX -linear map ν∗L → ν∗L′.
The discussion in Section 6.1.3 turns a point (L,L′, ψ : ν∗L → ν∗L′) ∈M♥d

into a point (L,L′, α : L → L′, β : L → σ∗L′) ∈ Md. The condition that ψ

be injective is precisely the condition that det(ψ) 6= 0, which is equivalent to

saying that fM(L,L′, ψ) ∈ A♥d , according to (6.1).

Proposition 6.1(2) shows that Md is a smooth Deligne–Mumford stack

over k of pure dimension 2d − g + 1, hence the same is true for its open

substack M♥d . �

6.3.3. Recall the Hecke stacks HkrG and HkµT defined in (5.4) and (5.15).

Let Hkµ2,d be the moduli stack of commutative diagrams

E0
//

φ0
��

E1
//

φ1
��

· · · // Er
φr
��

E ′0 // E ′1 // · · · // E ′r,

(6.25)

where both rows are points in Hkµ2 with the same image in Xr, and the vertical

maps φj are points in Hd (i.e., injective maps with colength d). Let

HkrG,d = Hkµ2,d/PicX ,

where PicX simultaneously acts on all Ei and E ′i by tensor product. The same

argument of Lemma 5.5 shows that HkrG,d is independent of µ.

There are natural maps HkrG → Xr and HkrG,d → Xr. We define

Hk′rG = HkrG ×Xr X ′r; Hk′rG,d := HkrG,d ×Xr X ′r.

The map HkµT → HkrG given by Ei = ν∗Li induces a map

Πµ : HkµT −→ Hk′rG.

We have two maps

←−ρ ,−→ρ : HkrG,d −→ HkrG

sending the diagram (6.25) to its top and bottom row. We denote their base

change to X ′r by
←−ρ ′,−→ρ ′ : Hk′rG,d −→ Hk′rG.
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We define HkµM♥,d by the following Cartesian diagram:

HkµM♥,d
//

��

Hk′rG,d

(←−ρ ′,−→ρ ′)
��

HkµT ×HkµT
Πµ×Πµ

// Hk′rG ×Hk′rG.

(6.26)

The same argument of Lemma 6.8(2) shows the following result. Recall

that the stack HkµM,d is defined in Section 6.2.1.

Lemma 6.9. There is a canonical isomorphism between HkµM♥,d and the

preimage of A♥d under the natural map fM ◦ γ0 : HkµM,d → Ad.

6.3.4. We have a map

s : HkrG,d −→ Xd ×Xr

that sends a diagram (6.25) to (D;x1, . . . , xr), where D is the divisor of det(φi)

for all i. Let (Xd×Xr)◦ ⊂ Xd×Xr be the open subscheme consisting of those

(D;x1, . . . , xr) where xi is disjoint from the support of D for all i. Let

Hkr,◦G,d = s−1((Xd ×Xr)◦)

be an open substack of HkrG,d. Let Hk′r,◦G,d ⊂ Hk′rG,d and Hkµ,◦M♥,d ⊂ HkµM♥,d be

the preimages of Hkr,◦G,d.

Lemma 6.10.

(1) The stacks Hkr,◦G,d and Hk′r,◦G,d are smooth of pure dimension 2d+2r+3g−3.

(2) The dimensions of all geometric fibers of s are d+r+3g−3. In particular,

dim HkrG,d = dim Hk′rG,d = 2d+ 2r + 3g − 3.

(3) Recall that HkµM♦,d is the restriction HkµM,d|A♦
d

, where A♦d ⊂ Ad is de-

fined in Section 6.2.4. Suppose d ≥ max{2g′ − 1, 2g}. Let Hkµ,◦M♦,d be the

intersection of HkµM♦,d with Hkµ,◦M♥,d inside HkµM,d. Then

dim(HkµM♦,d −Hkµ,◦M♦,d) < 2d− g + 1 = dim HkµM♦,d.

The proof of this lemma will be postponed to Sections 6.4.1–6.4.3.

Lemma 6.11. Suppose d ≥ max{2g′ − 1, 2g}.
(1) The diagram (6.26) satisfies the conditions in Section A.2.8. In particular,

the refined Gysin map

(Πµ ×Πµ)! : Ch∗(Hk′rG,d)Q −→ Ch∗−2(2g−2+r)(HkµM♥,d)Q

is defined.
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(2) Let

(6.27) ζ♥ = (Πµ ×Πµ)![Hk′rG,d] ∈ Ch2d−g+1(HkµM♥,d)Q.

Then the restriction of ζ♥ to HkµM♥,d|A♦d ∩A♥d is the fundamental cycle.

Proof. (1) We first check that HkµM♥,d admits a finite flat presentation.

The map γ0 : HkµM♥,d → M
♥
d is schematic, so it suffices to check that M♥d

or Md admits a finite flat presentation. In the proof of Proposition 6.1(1) we

constructed a proper and schematic map h :Md → JdX′×PrymX′/X ; see (6.4).

Since JdX′ is a scheme and PrymX′/X is the quotient of the usual Prym variety

by the trivial action of µ2, JdX′ × PrymX′/X admits a finite flat presentation,

hence so do Md and HkµM♥,d.

Next we verify condition (2) of Section A.2.8. Extending k if necessary,

we may choose a point y ∈ X(k) that is split into y′, y′′ ∈ X ′(k). Let BunG(y)

be the moduli stack of G-torsors over X with a Borel reduction at y. Let

Hk′rG(y) = Hk′rG ×BunG BunG(y) where the map Hk′rG → BunG sends (Ei;xi; fi)
to E0. We may lift the morphism Πµ to a morphism

Πµ(y) : HkµT −→ Hk′rG(y),

where the Borel reduction of E0 = ν∗L0 at y (i.e., a line in the stalk E0,y) is

given by the stalk of L0 at y′. The projection p : Hk′rG(y) → Hk′rG is smooth,

and Πµ = p ◦ Πµ(y). So to check condition (2) of Section A.2.8, it suffices to

show that Πµ(y) is a regular local immersion.

We will show by tangential calculations that Hk′rG(y) is a Deligne–Mumford

stack in a neighborhood of the image of Πµ(y), and the tangent map of Πµ(y)

is injective. For this it suffices to make tangential calculations at geometric

points of HkµT and its image in Hk′rG(y). We identify HkµT with BunT ×X ′r as

in Section 5.4.4. Fix a geometric point (L;x′) ∈ PicX′(K)×X ′(K)r. For nota-

tional simplicity, we base change the situation from k to K without changing

notation. So X means X ⊗k K, etc.

The relative tangent space of HkµT → X ′r at (L;x′) is H1(X,OX′/OX).

The relative tangent complex of Hk′rG(y)→ X ′r at

Πµ(y)(L;x′) = (ν∗L −→ ν∗L(x′1) −→ · · · ;Ly′)

is

H∗(X,Adx
′,y(ν∗L))[1],

where Adx
′,y(ν∗L) = Endx

′,y(ν∗L)/OX · id and Endx
′,y(ν∗L) is the endomor-

phism sheaf of the chain of vector bundles ν∗L → ν∗L(x′1) → · · · preserving
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the line Ly′ of the stalk (ν∗L)y. Note that

Endx
′,y(ν∗L) ⊂ Endy(ν∗L) = ν∗Hom(L ⊕ (σ∗L)(y′′),L)

= ν∗OX′ ⊕ ν∗(L ⊗ σ∗L−1(−y′′)).
(6.28)

We also have a natural inclusion

γ : ν∗OX′ ↪→ Endx
′,y(ν∗L)

identifying the left-hand side as those endomorphisms of ν∗L that are OX′-
linear. Now γ(ν∗OX′) maps isomorphically to ν∗OX′ on the right-hand side

of (6.28). Combining these we get a canonical decomposition Endx
′,y(ν∗L) =

ν∗OX′ ⊕ K for some line bundle K on X with deg(K) < 0. Consequently, we

have a canonical decomposition

(6.29) Adx
′,y(ν∗L) = OX′/OX ⊕K.

In particular, H0(X,Adx
′,y(ν∗L)) = H0(X,OX′/OX) = 0. This shows that

Hk′rG(y) is a Deligne–Mumford stack in a neighborhood of Πµ(y)(L;x′).

The tangent map of Πµ(y) is the map

H1(X,OX′/OX) −→ H1(X,Adx
′,y(ν∗L))

induced by γ, hence it corresponds to the inclusion of the first factor in the

decomposition (6.29). In particular, the tangent map of Πµ(y) is injective. This

finishes the verification of all conditions in Section A.2.8 for the diagram (6.26).

(2) Let Hkµ,◦M♥,d be the preimage of Hk′r,◦G,d. By Lemma 6.10(1), Hk′r,◦G,d is

smooth of dimension 2d+2r+3g−3. On the other hand, by Lemma 6.4, HkµM♦,d
has dimension 2d−g+1. Combining these facts, we see that Hkµ,◦M♥,d∩HkµM♦,d
has the expected dimension in the Cartesian diagram (6.26). This implies that

ζ♥|Hkµ,◦
M♥,d

∩Hkµ
M♦,d

is the fundamental cycle. By Lemma 6.10(3), HkµM♦,d −

Hkµ,◦M♥,d has lower dimension than HkµM♦,d, therefore, ζ♥|Hkµ
M♦,d

must be the

fundamental cycle. �

6.3.5. There are r + 1 maps γi (0 ≤ i ≤ r) from the diagram (6.26) to

(6.24): it sends the diagram (6.25) to its i-th column, etc. In particular, we

have maps γi : HkrG,d → Hd and γ′i : Hk′rG,d → Hd. The maps γ′0 and γ′r appear

in the diagram (6.21).

We define the stack ShtrG,d by the following Cartesian diagram:

ShtrG,d

��

// HkrG,d

(γ0,γr)

��

Hd

(id,Fr)
// Hd ×Hd.

(6.30)
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Similarly, we define Sht′rG,d as the fiber product of the third column of (6.21):

Sht′rG,d

��

// Hk′rG,d

(γ′0,γ
′
r)

��

Hd

(id,Fr)
// Hd ×Hd.

(6.31)

We have Sht′rG,d
∼= ShtrG,d ×Xr X ′r.

Lemma 6.12. There are canonical isomorphisms of stacks

ShtrG,d
∼=

∐
D∈Xd(k)

ShtrG(hD),

Sht′rG,d
∼=

∐
D∈Xd(k)

Sht′rG(hD).

For the definitions of ShtrG(hD) and Sht′rG(hD), see Sections 5.3.1 and 5.3.2.

Proof. From the definitions, (γ0, γr) factors through the map HkrG,d →
Hd ×Xd Hd. On the other hand, (id,Fr) : Hd → Hd × Hd covers the similar

map (id,Fr) : Xd → Xd ×Xd. By the discussion in Section A.4.5, we have a

decomposition

ShtrG,d =
∐

D∈Xd(k)

ShtrG,D.

Let HD and HkrG,D be the fibers of Hd and HkrG,d over D. Then the D-com-

ponent ShtrG,D of ShtrG,d fits into a Cartesian diagram

ShtrG,D //

��

HkrG,D

(γ0,γr)

��

HD
(id,Fr)
// HD ×HD.

(6.32)

Comparing this with the definition in Section 5.3.1, we see that ShtrG,D
∼=

ShtrG(hD). The statement for Sht′rG,d follows from the statement for ShtrG,d by

base change to X ′r. �

Corollary 6.13. Let D ∈ Xd(k) (i.e., an effective divisor on X of de-

gree d). Recall the stack ShtµM,d defined in (6.12) and ShtµM♥,d defined in

Section 6.3.1. Then ShtµM♥,d is canonically isomorphic to the restriction of

ShtµM,d to A♥d (k) ⊂ Ad(k).

Moreover, there is a canonical decomposition

ShtµM♥,d =
∐

D∈Xd(k)

ShtµM,D,
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where ShtµM,D is defined in (6.14). In particular, we have a Cartesian diagram

(6.33) ShtµM,D

��

// Sht′rG(hD)

(←−p ′,−→p ′)
��

ShtµT × ShtµT
θµ×θµ

// Sht′rG × Sht′rG.

Proof. Note that ShtµM♥,d is defined as a fiber product in two ways: one as

the fiber product of (6.22) and the other as the fiber product of (6.23). Using

the first point of view and the decomposition of Sht′rG,d given by Lemma 6.12,

we get a decomposition of ShtµM♥,d =
∐
D∈Xd(k) ShtµM♥,D, where ShtµM♥,D is

by definition the stack to put in the upper left corner of (6.33) to make the

diagram Cartesian.

On the other hand, using the second point of view of ShtµM♥,d as the

fiber product of (6.23), and using the fact that HkµM♥,d is the restriction

of HkµM,d over A♥d by Lemma 6.9, we see that ShtµM♥,d is the restriction of

ShtµM,d over A♥d by comparing (6.23) and (6.12). By (6.13) and (6.14), and

the fact that A♥d (k) =
∐
D∈Xd(k)AD(k), we get a decomposition ShtµM♥,d =∐

D∈Xd(k) ShtµM,D. Therefore, both ShtµM♥,D and ShtµM,D are the fiber of the

map ShtµM,d → Ad → “Xd over D, and they are canonically isomorphic. Hence

we may replace the upper left corner of (6.33) by ShtµM♥,D, and the new dia-

gram is Cartesian by definition. �

Lemma 6.14.

(1) The diagram (6.31) satisfies the conditions in Section A.2.10. In particu-

lar, the refined Gysin map

(id,FrHd)
! : Ch∗(Hk′rG,d)Q −→ Ch∗−dimHd(Sht′rG,d)Q

is defined.

(2) We have

[Sht′rG,d] = (id,FrHd)
![Hk′rG,d] ∈ Ch2r(Sht′rG,d).

Proof. (1) Since ←−p : ShtrG(hD) → ShtrG is representable by Lemma 5.8,

ShtrG(hD) is also a Deligne–Mumford stack. Since ShtrG,d is the disjoint union of

ShtrG(hD) by Lemma 6.12, ShtrG,d is Deligne–Mumford, hence so is Sht′rG,d. The

map γ′0 : Hk′rG,d → Hd is representable because its fibers are closed subschemes

of iterated Quot schemes (fixing E0 ↪→ E ′0, building Ei and E ′i step by step and

imposing commutativity of the maps). Therefore, (γ′0, γ
′
r) is also representable.

This verifies condition (1) in Section A.2.10.

Since Hd is smooth by Lemma 6.8, the normal cone stack of the map

(id,FrHd) : Hd → Hd ×Hd is the vector bundle stack Fr∗ THd, the Frobenius
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pullback of the tangent bundle stack of Hd. Therefore, (id,FrHd) satisfies

condition (2) in Section A.2.10. It also satisfies condition (3) of Section A.2.10

by the discussion in Remark A.7.

Finally the dimension condition (4) in Section A.2.10 for Hk′rG,d and Sht′rG,d
=
∐
D Sht′rG(hD) follows from Lemma 6.10(2) and Lemma 5.9. We have verified

all conditions in Section A.2.10.

(2) Take the open substack Hk′r,◦G,d ⊂ Hk′rG,d as in Lemma 6.10. Then Hk′r,◦G,d
is smooth of pure dimension 2d+ 2r + 3g − 3. According to Lemma 6.12, the

corresponding open part Sht′r,◦G,d is the disjoint union of Sht′r,◦G (hD), where

Sht′r,◦G (hD) = Sht′rG(hD)|(X′−ν−1(D))r .

It is easy to see that both projections Sht′r,◦G (hD) → Sht′rG are étale, hence

Sht′r,◦G (hD) is smooth of dimension 2r = dim Hk′r,◦G,d − codim(id,FrHd), the ex-

pected dimension. This implies that if we replace Hk′rG,d with Hk′r,◦G,d, and

replace Sht′rG,d with Sht′r,◦G,d in the diagram (6.31), it becomes a complete inter-

section diagram. Therefore, (id,FrHd)
![Hk′rG,d] is the fundamental cycle when

restricted to Sht′r,◦G,d. Since Sht′rG,d − Sht′r,◦G,d has lower dimension than 2r by

Lemma 5.9, we see that (id,FrHd)
![Hk′rG,d] must be equal to the fundamental

cycle over the whole Sht′rG,d. �

6.3.6. Proof of Theorem 6.6. Consider the diagram (6.33). Since ShtµT
is a proper Deligne–Mumford stack over k and the map (←−p ′,−→p ′) is proper

and representable, ShtµM,D is also a proper Deligne–Mumford stack over k. A

simple manipulation using the functoriality of Gysin maps gives

Ir(hD) = 〈θµ∗ [ShtµT ], hD ∗ θµ∗ [ShtµT ]〉Sht′rG
= deg

Ä
(θµ × θµ)![Sht′rG(hD)]

ä
.

Here (θµ× θµ)! : Ch2r(Sht′rG(hD))Q → Ch0(ShtµM,D)Q is the refined Gysin map

attached to the map θµ × θµ. By Corollary 6.13, (θµ × θµ)![Sht′rG(hD)] is the

D-component of the 0-cycle

(θµ × θµ)![Sht′rG,d] ∈ Ch0(ShtµM♥,d)Q =
⊕

D∈Xd(k)

Ch0(ShtµM,D)Q.

Therefore, to prove (6.16) simultaneously for all D of degree d, it suffices to

find a cycle class ζ♥ ∈ Ch2d−g+1(HkµM♥,d)Q whose restriction to HkµM♥,d ∩
HkµM♦,d = HkµM,d|A♥

d
∩A♦

d
is the fundamental class, and that

(6.34) (θµ × θµ)![Sht′rG,d] = (id,FrM♥
d

)!ζ♥ ∈ Ch0(ShtµM♥,d)Q.

The statement of Theorem 6.6 asks for a cycle ζ on HkµM,d, but we may extend

the above ζ♥ arbitrarily to a (2d− g + 1)-cycle in HkµM,d.

To prove (6.34), we would like to apply Theorem A.10 to the situation of

(6.21). We check the following assumptions:
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(1) The smoothness of BunT and BunG is well known. The smoothness of Hk′rG
and HkµT follow from Remark 5.2 and Section 5.4.4. Finally, by Lemma 6.8,

Hd is smooth of pure dimension 2d+ 3g − 3. This checks the smoothness

of all members in (6.21) except B = Hk′rG,d.

(2) By Corollary 5.7, ShtrG, and hence Sht′rG is smooth of pure dimension 2r;

by Lemma 5.13, ShtµT is smooth of pure dimension r. By Lemma 6.8,M♥d
is smooth of pure dimension 2d − g + 1. All of them have the dimension

expected from the Cartesian diagrams defining them.

(3) The diagram (6.31) satisfies the conditions in Section A.2.10 by Lemma

6.14. The diagram (6.26) satisfies the conditions in Section A.2.8 by

Lemma 6.11.

(4) We check that the Cartesian diagram formed by (6.23), or rather (6.12),

satisfies the conditions in Section A.2.8. The map ShtµM,d →Md is repre-

sentable because HkµM,d → Md ×Md is. In the proof of Lemma 6.11(1)

we have proved that Md admits a finite flat presentation, hence so does

ShtµM,d. This verifies the first condition in Section A.2.8. Since Md is

a smooth Deligne–Mumford stack by Lemma 6.1(2), (id,FrMd
) : Md →

Md × Md is a regular local immersion, which verifies condition (2) of

Section A.2.8.

Finally we consider the Cartesian diagram formed by (6.22) (or equiv-

alently, the disjoint union of the diagrams (6.33) for all D ∈ Xd(k)). We

have already showed above that ShtµM,d admits a finite flat presentation.

All members in these diagrams are Deligne–Mumford stacks, and ShtµT
and Sht′rG are smooth Deligne–Mumford stacks by Lemma 5.13 and Corol-

lary 5.7. Hence the map θµ× θµ satisfies condition (2) of Section A.2.8 by

Remark A.4.

Now we can apply Theorem A.10 to the situation (6.21). Let

ζ♥ = (Πµ ×Πµ)![Hk′rG,d] ∈ Ch2d−g+1(HkµM♥,d)Q

as defined in (6.27). Then the restriction of ζ♥ to HkµM,d|A♦
d
∩A♥

d
is the funda-

mental cycle by Lemma 6.11(2). Finally,

(id,FrM♥
d

)!ζ♥ = (id,FrM♥
d

)!(Πµ ×Πµ)![Hk′rG,d]

= (θµ × θµ)!(id,FrHd)
![Hk′rG,d] (Theorem A.10)

= (θµ × θµ)![Sht′rG,d] (Lemma 6.14(2)),

which is (6.34). This finishes the proof of (6.16).

6.4. Some dimension calculation. In this subsection, we give the proofs of

several lemmas that we stated previously concerning the dimensions of certain

moduli stacks.
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6.4.1. Proof of Lemma 6.10(1). In the diagram (6.25), when the divisors

of the φi are disjoint from the divisors of the horizontal maps — namely, the

xi’s — the diagram is uniquely determined by its left column φ0 : E0 → E ′0 and

top row. Therefore, we have

Hkr,◦G,d = (Hd ×BunG HkrG)|(Xd×Xr)◦ .

Since Hd is smooth of pure dimension 2d+ 3g− 3 by Lemma 6.8, and the map

p0 : HkrG → BunG is smooth of relative dimension 2r, we see that Hd×BunGHkrG
is smooth of pure dimension 2d+ 2r + 3g − 3.

6.4.2. Proof of Lemma 6.10(2). Over (Xd × Xr)◦, we have dim Hkr,◦G,d =

2d+2r+3g−3, therefore, the generic fiber of s has dimension d+r+3g−3. By

the semicontinuity of fiber dimensions, it suffices to show that the geometric

fibers of s have dimension ≤ d + r + 3g − 3. We will actually show that the

geometric fibers of the map (s, p0) : HkrG,d → Xd × Xr × BunG sending the

diagram (6.25) to (D;xi; E ′r) have dimension ≤ d+ r.

We present HkrG,d as the quotient of Hkµ2,d/PicX with µ = µr+. Therefore,

a point in HkrG,d is a diagram of the form (6.25) with all arrows fi, f
′
i pointing

to the right.

Let (D;x = (xi)) ∈ Xd × Xr and E ′r ∈ BunG be geometric points. For

notational simplicity, we base change the whole situation to the field of defini-

tion of this point without changing notation. Let HD,x,E ′r be the fiber of (s, p0)

over (D;xi; E ′r). We consider the scheme H ′ = H ′D,x,E ′r classifying commutative

diagrams

E0
f1
//

φ0
��

E1
f2
// · · ·

fr
// Er

φr
��

E ′0
f ′1
// E ′1

f ′2
// · · ·

f ′r
// E ′r,

(6.35)

where div(detφ0) = D = div(detφr) and div(det fi) = xi = div(det f ′i). The

only difference between H ′ and HD,x,E ′r is that we do not require the maps φi
for 1 ≤ i ≤ r − 1 to exist. (They are unique if they exist.) There is a natural

embedding HD,x,E ′r ↪→ H ′, and it suffices to show that dim(H ′) ≤ d + r. We

isolate this part of the argument into a separate lemma below, because it will

be used in another proof. This finishes the proof of Lemma 6.10(2).

Lemma 6.15. Consider the scheme H ′ = H ′D,x,E ′r introduced in the proof

of Lemma 6.10(2). We have dimH ′ = d+ r.

Proof. We only give the argument for the essential case where all xi are

equal to the same point x and D = dx. The general case can be reduced to this

case by factorizing H ′ into a product indexed by points that appear in |D| ∪
{x1, . . . , xr}. Let Gr1r,d be the iterated version of the affine Schubert variety
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classifying chains of lattices Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λr ⊂ Λ′r = O2
x in F 2

x where

all inclusions have colength 1 except for the last one, which has colength d.

Similarly, let Grd,1r be the iterated affine Schubert variety classifying chains

of lattices Λ0 ⊂ Λ′0 ⊂ Λ′1 ⊂ · · · ⊂ Λ′r = O2
x in F 2

x where the first inclusion has

colength d and all other inclusions have colength 1. Let Grd+r ⊂ GrG,x be the

affine Schubert variety classifying Ox-lattices Λ ⊂ O2
x with colength d+ r. We

have natural maps π : Gr1r,d → Grd+r and π′ : Grd,1r → Grd+r sending the

lattice chains to Λ0. By the definition of H ′, after choosing a trivialization of

E ′r in the formal neighborhood of x, we have an isomorphism

(6.36) H ′ ∼= Gr1r,d ×Grd+r Grd,1r .

Since π and π′ are surjective, therefore, dimH ′ ≥ dim Grd+r = d+ r.

Now we show dimH ′ ≤ d + r. Since the natural projections Gr1d+r →
Gr1r,d and Gr1d+r → Grd,1r are surjective, it suffices to show that

dim(Gr1d+r ×Grd+r Gr1d+r) ≤ d+ r.

In other words, letting m = d+ r, we have to show that πm : Gr1m → Grm is a

semismall map. This is a very special case of the semismallness of convolution

maps in the geometric Satake equivalence, and we shall give a direct argument.

The scheme Grm is stratified into Y i
m (0 ≤ i ≤ [m/2]), where Y i

m classifies those

Λ ⊂ O2
x such that O2

x/Λ
∼= Ox/$i

x ⊕Ox/$m−i
x . We may identify Y i

m with the

open subscheme Y 0
m−2i ⊂ Grm−2i by sending Λ ∈ Y i

m to $−ix Λ ⊂ O2
x, hence

dimY i
m = m − 2i and codimGrmY

i
m = i. We need to show that for Λ ∈ Yi,

dimπ−1
m (Λ) ≤ i. We do this by induction on m. By definition, π−1

m (Λ) classifies

chains Λ = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λm = O2
x, each step of which has colength one.

For i = 0, such a chain is unique. For i > 0, the choices of Λ1 are parametrized

by P1, and the map ρ : π−1
m (Λ)→ P1 recording Λ1 has fibers π−1

m−1(Λ1). Either

O2
x/Λ1

∼= Ox/$i−1
x ⊕Ox/$m−i

x , in which case dim ρ−1(Λ1) = dimπ−1
m−1(Λ1) ≤

i−1 by inductive hypothesis, orO2
x/Λ1

∼= Ox/$i
x⊕Ox/$m−i−1

x (which happens

for exactly one Λ1), in which case dim ρ−1(Λ1) = dimπ−1
m−1(Λ1) ≤ i. These

imply that dimπ−1
m (Λ) ≤ i. The lemma is proved. �

6.4.3. Proof of Lemma 6.10(3). We denote HkµM♦,d−Hkµ,◦M♦,d by ∂HkµM♦,d.

By Lemmas 6.2 and 6.3, HkµM♦,d
∼= “X ′d×PicdX

Br,d, where Br,d classifies (r+1)-

triples of divisors (D0, D1, . . . , Dr) of degree d on X ′, such that for each

1 ≤ i ≤ r, Di is obtained from Di−1 by changing some point x′i ∈ Di−1 to

σ(x′i). In particular, all Di have the same image Db := π(Di) ∈ Xd. We

denote a point in HkµM♦,d by z = (L, α,D0, . . . , Dr) ∈ “X ′d ×PicdX
Br,d, where

(L, α) ∈ “X ′d denotes a line bundle L on X ′ and a section α of it, together

with an isomorphism Nm(L) ∼= OX(Db). Therefore, both Nm(α) and 1 give

sections of OX(Db). The image of z under HkµM♦,d → Ad
δ−→ “Xd is the pair

(OX(Db),Nm(α)− 1). Therefore, z ∈ ∂HkµM♦,d if and only if div(Nm(α)− 1)
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contains π(x′i) for some 1 ≤ i ≤ r; Nm(α) = 1 is allowed. Since x′i ∈ Di−1,

we have π(x′i) ∈ π(Di−1) = Db, therefore, π(x′i) also appears in the divisor of

Nm(α). So we have two cases: either α = 0 or div(Nm(α)) shares a common

point with Db.

In the former case, z is contained in PicdX′ ×PicdX
Br,d that has dimension

g − 1 + d < 2d− g + 1 since d ≥ 2g.

In the latter case, the image of z in Ad lies in the subscheme Cd ⊂ Xd

×PicdX
Xd consisting of triples (D1, D2, γ : O(D1) ∼= O(D2)) such that the divi-

sors D1 and D2 have a common point. There is a surjection X× (Xd−1×Picd−1
X

Xd−1) → Cd, which implies that dim Cd ≤ 1 + 2(d − 1) − g + 1 = 2d − g.

Here we are using the fact that d − 1 ≥ 2g − 1 to compute the dimension

of Xd−1 ×Picd−1
X

Xd−1. The conclusion is that in the latter case, z lies in

the preimage of Cd in HkµM♦,d, which has dimension equal to dim Cd (be-

cause HkµM,d → Ad is finite when restricted to Cd ⊂ Xd ×PicdX
Xd), which

is ≤ 2d− g < 2d− g + 1.

Combining the two cases we conclude that dim ∂HkµM♦,d < 2d − g + 1 =

dim HkµM♦,d.

6.4.4. Proof of Lemma 5.9. Let x = (x1, . . . , xr) ∈ Xr be a geometric

point. Let ShtrG(hD)x be the fiber of ShtrG(hD) over x. When x is disjoint

from |D|, then ←−p : ShtrG(hD)x → ShtrG,x is étale, and hence in this case

dim ShtrG(hD)x = r. By semicontinuity of fiber dimensions, it remains to show

that dim ShtrG(hD)x ≤ r for all geometric points x over closed points of Xr.

To simplify notation we assume xi ∈ X(k). The general case can be argued

similarly.

We use the same notation as in Section 6.4.2. In particular, we will use

HkrG,d and think of it as Hkµ2,d/PicX with µ = µr+. Let HD be the fiber over

D of Hd → Xd sending (φ : E ↪→ E ′) to the divisor of det(φ). Let HkrD,x be the

fiber of s : HkrG,d → Xd ×Xr over (D;x).

Taking the fiber of the diagram (6.32) over x we get a Cartesian diagram

ShtrG(hD)x

��

// HkrD,x

(p0,pr)

��

HD
(id,Fr)

// HD ×HD.

(6.37)

For each divisor D′ ≤ D such that D − D′ has even coefficients, we have a

closed embedding HD′ ↪→ HD sending (φ : E → E ′) ∈ HD′ to E φ−→ E ′ ↪→
E ′(1

2(D−D′)). Let HD,≤D′ be the image of this embedding. Also let HD,D′ =

HD,≤D′ − ∪D′′<D′HD,≤D′′ . Then {HD,D′} give a stratification of HD indexed

by divisors D′ ≤ D such that D − D′ is even. We may restrict the diagram



844 ZHIWEI YUN and WEI ZHANG

(6.37) to HD,D′ ×HD,D′ ↪→ HD ×HD and get a Cartesian diagram

ShtrG(hD)D′,x

��

// HkrD,D′,x

(p0,pr)

��

HD,D′
(id,Fr)

// HD,D′ ×HD,D′ .

(6.38)

We will show that dim ShtrG(hD)D′,x ≤ r for each D′ ≤ D and D −D′ even.

The embedding HD′ ↪→ HD above restricts to an isomorphism HD′,D′
∼=

HD,D′ . Similarly, we have an isomorphism HkrD′,D′,x
∼= HkrD,D′,x sending a

diagram of the form (6.25) to the diagram of the same shape with each E ′i
changed to E ′(1

2(D −D′)). Therefore, we have ShtG(hD′)D′,x ∼= ShtG(hD)D′,x,

and it suffices to show that the open stratum ShtG(hD)D,x has dimension at

most r. This way we reduce to treating the case D′ = D.

Let ‹D = D+x = D+x1 +· · ·+xr ∈ Xd+r be the effective divisor of degree

d+r. Let Bun
G,D̃

be the moduli stack of G bundles with a trivialization over ‹D.

A point of Bun
G,D̃

is a pair (E ′, τ : E ′
D̃
∼= O2

D̃
) (where E ′ is a vector bundle of

rank two over X) up to the action of PicX(‹D) (line bundles with a trivialization

over ‹D). There is a map h : Bun
G,D̃
→ HD,D sending (E ′, τ) to (φ : E ↪→ E ′),

where E is the preimage of the first copy of OD under the surjective map

E ′ � E ′D
τ−→ O2

D̃
� O2

D. Let BD ⊂ ResODk G = PGL2(OD) be the subgroup

stabilizing the first copy of O2
D, and let ‹BD ⊂ Res

O
D̃

k G = PGL2(O
D̃

) be the

preimage of BD. Then h is a ‹BD-torsor. In particular, HD,D is smooth, and

the map h is also smooth. Since smooth maps have sections étale locally, we

may choose an étale surjective map ω : Y → HD,D and a map s : Y → Bun
G,D̃

such that hs = ω.

Let W = HkrD,D,x ×HD,D Y (using the projection γr : HkrD,D,x → HD,D).

We claim that the projection W → Y is in fact a trivial fibration. In fact,

let T be the moduli space of diagrams of the form (6.25) with Er = O2
X ,

Er = OX(−D) ⊕ OX , and φr being the obvious embedding Er ↪→ E ′r. In

such a diagram all Ei and E ′i contain E ′r(−‹D). Therefore, it contains the same

amount of information as the diagram formed by the torsion sheaves Ei/E ′r(−‹D)

and E ′i/E ′r(−‹D). For a point y ∈ Y with image (φr : Er ↪→ E ′r) ∈ HD,D,

s(y) ∈ Bun
G,D̃

gives a trivialization of E ′r|D̃. Therefore, completing φr into

a diagram of the form (6.25) is the same as completing the standard point

(Er = OX(−D) ⊕ OX ↪→ O2
X) ∈ HD,D into such a diagram. This shows that
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W ∼= Y × T . We have a diagram

U

u

��

// W

w

��

∼
// Y × T ω×id

// HD,D × T

ShtrG(hD)D,x //

��

HkrD,D,x

(γ0,γr)

��

HD,D
(id,Fr)

// HD,D ×HD,D,

where U is defined so that the top square is Cartesian. The outer Cartesian

diagram fits into the situation of [15, Lemme 2.13], and we have used the same

notation as in loc. cit, except that we take Z = HD,D. Applying loc. cit.,

we conclude that the map U → T is étale. Since w : W → HkrD,D,x is étale

surjective, so is u : U → ShtrG(hD)D,x. Therefore, ShtrG(hD)D,x is étale locally

isomorphic to T and, in particular, they have the same dimension.

It remains to show that dimT ≤ r. Recall the moduli space H ′ = H ′D,x,E ′r
introduced in the proof of Lemma 6.10(2) classifying diagrams of the form

(6.35). Here we fix E ′r = O2
X . Let T ′ be subscheme of H ′ consisting of diagrams

of the form (6.35) where (φr : Er ↪→ E ′r) is fixed to be (Er = OX(−D) ⊕ OX
↪→ O2

X). Then we have a natural embedding T ↪→ T ′, and it suffices to show

that dimT ′ ≤ r. Again we treat only the case where D and x are both sup-

ported at a single point x ∈ X. The general case easily reduces to this by

factorizing T ′ into a product indexed by points in |D| ∪ {x1, . . . , xr}.
Let Grd⊂GrG,x be the affine Schubert variety classifying lattices Λ⊂O2

x

of colength d. Let Gr♥d ⊂ Grd be the open Schubert stratum consisting of

lattices Λ ⊂ O2
x such that O2

x/Λ
∼= Ox/$d

x. (Here $x is a uniformizer at x.)

We have a natural projection ρ : H ′ → Grd sending the diagram (6.35) to

Λ := Er|SpecOx ↪→ E ′r|SpecOx = O2
x. Then T ′ is the fiber of ρ at the point

Λ = $d
xOx ⊕ Ox. Let H♥ = ρ−1(Gr♥d ). There is a natural action of the

positive loop group L+
xG on both H ′ and Grd making ρ equivariant under

these actions. Since the action of L+
xG on Gr♥d is transitive, all fibers of ρ over

points of Gr♥d have the same dimension, i.e.,

(6.39) dimT ′ = dimH♥ − dim Gr♥d = dimH♥ − d.

By Lemma 6.15, dimH ′ = d + r. Therefore, dimH♥ = d + r and dimT ′ ≤ r

by (6.39). We are done.

7. Cohomological spectral decomposition

In this section, we give a decomposition of the cohomology of ShtrG under

the action of the Hecke algebra H , generalizing the classical spectral decom-

position for the space of automorphic forms. The main result is Theorem 7.14,
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which shows that H2r
c (Shtr

G,k
,Q`) is an orthogonal direct sum of an Eisenstein

part and finitely many (generalized) Hecke eigenspaces. We then use a variant

of such a decomposition for Sht′rG to make a decomposition for the Heegner-

Drinfeld cycle.

7.1. Cohomology of the moduli stack of Shtukas.

7.1.1. Truncation of BunG by index of instability. For a rank two vector

bundle E over X, we define its index of instability to be

inst(E) := max{2 degL − deg E},

where L runs over the line subbundle of E . When inst(E) > 0, E is called

unstable, in which case there is a unique line subbundle L ⊂ E such that

degL > 1
2 deg E . We call this line subbundle the maximal line subbundle of E .

Note that there is a constant c(g) depending only on the genus g of X such

that inst(E) ≥ c(g) for all rank two vector bundles E on X.

The function inst : Bun2 → Z is upper semi-continuous and descends to a

function inst : BunG → Z. For an integer a, inst−1((−∞, a]) =: Bun≤aG is an

open substack of BunG of finite type over k.

7.1.2. Truncation of ShtrG by index of instability. For ShtrG we define a

similar stratification by the index of instability of the various Ei. We choose µ

as in Section 5.1.2 and present ShtrG as Shtµ2/PicX(k).

Consider the set D of functions d : Z/rZ→ Z such that d(i)−d(i−1) = ±1

for all i. There is a partial order on D by pointwise comparison.

For any d ∈ D, let Shtµ,≤d2 be the open substack of Shtµ2 consisting of those

(Ei;xi; fi) such that inst(Ei) ≤ d(i). Then each Shtµ,≤d2 is preserved by the

PicX(k)-action, and we define Shtµ,≤dG := Shtµ,≤d2 /PicX(k), an open substack

of ShtrG of finite type. If we change µ to µ′, the canonical isomorphism ShtµG
∼=

Shtµ
′

G in Lemma 5.6 preserves theG-torsors Ei, and therefore the open substacks

Shtµ,≤dG and Shtµ
′,≤d
G correspond to each other under the isomorphism. This

shows that Shtµ,≤dG is canonically independent of the choice of µ, and we will

simply denote it by Sht≤dG .

In the sequel, the superscript on ShtG will be reserved for the truncation

parameters d ∈ D, and we will omit r from the superscripts. In the rest of the

section, ShtG means ShtrG.

Define ShtdG := Sht≤dG − ∪d′<dSht≤d
′

G . This is a locally closed substack of

ShtG of finite type classifying Shtukas (Ei;xi; fi) with inst(Ei) = d(i) for all i.

A priori we could define ShtdG for any function d : Z/rZ → Z; however, only

for those d ∈ D is ShtdG nonempty, because for (Ei;xi; fi) ∈ Shtµ2 , inst(Ei) =

inst(Ei−1)± 1. The locally closed substacks {ShtdG}d∈D give a stratification of

ShtG.



TAYLOR EXPANSION 847

7.1.3. Cohomology of ShtG. Let π≤dG : Sht≤dG → Xr be the restriction

of πG, and similarly define π<dG and πdG. For d ≤ d′ ∈ D, we have a map

induced by the open inclusion Sht≤dG ↪→ Sht≤d
′

G :

ιd,d′ : Rπ≤dG,!Q` −→ Rπ≤d
′

G,! Q`.

The total cohomology H∗c(ShtG ⊗k k) is defined as the inductive limit

H∗c(ShtG ⊗k k) := lim−→
d∈D

H∗c(Sht≤dG ⊗k k) = lim−→
d∈D

H∗(Xr ⊗k k,Rπ≤dG,!Q`).

7.1.4. The action of Hecke algebra on the cohomology of ShtG. For each

effective divisor D of X, we have defined in Section 5.3.1 a self-correspondence

ShtG(hD) of ShtG over Xr.

For any d ∈ D, let ≤dShtG(hD) ⊂ ShtG(hD) be the preimage of Sht≤dG
under ←−p . For a point (Ei ↪→ E ′i) of ≤dShtG(hD), we have inst(Ei) ≤ d(i),

hence inst(E ′i) ≤ d(i) + degD. Therefore, the image of ≤dShtG(hD) under
−→p lies in Sht≤d+degD

G . For any d′ ≥ d + degD, we may view ≤dShtG(hD)

as a correspondence between Sht≤dG and Sht≤d
′

G over Xr. By Lemma 5.9,

dim ShtG(hD) = dim ShtG = 2r, the fundamental cycle of ≤dShtG(hD) gives

a cohomological correspondence between the constant sheaf on Sht≤dG and the

constant sheaf on Sht≤d
′

G (see Section A.4.1), and induces a map

(7.1) C(hD)d,d′ : Rπ≤dG,!Q` −→ Rπ≤d
′

G,! Q`.

Here we are using the fact that
≤d←−p : ≤dShtG(hD) → Sht≤dG is proper (which

is necessary for the construction (A.24)), which follows from the properness of
←−p : ShtG(hD)→ ShtG by Lemma 5.8.

For any e ≥ d and e′ ≥ e + degD and e′ ≥ d′, we have a commutative

diagram

Rπ≤dG,!Q`

C(hD)d,d′
//

ιd,e

��

Rπ≤d
′

G,! Q`

ιd′,e′

��

Rπ≤eG,!Q`

C(hD)e,e′
// Rπ≤e

′

G,! Q`,

which follows from the definition of cohomological correspondences. Taking

H∗(Xr ⊗k k,−) and taking inductive limit over d and e, we get an endomor-

phism of H∗c(ShtG ⊗k k):

C(hD) : H∗c(ShtG ⊗k k) = lim−→
d∈D

H∗(Xr ⊗k k,Rπ≤dG,!Q`)

lim−→C(hD)d,d′−−−−−−−−→ lim−→
d′∈D

H∗(Xr ⊗k k,Rπ≤d
′

G,! Q`) = H∗c(ShtG ⊗k k).

The following result is a cohomological analog of Proposition 5.10.
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Proposition 7.1. The assignment hD 7→ C(hD) gives a ring homomor-

phism for each i ∈ Z:

C : H −→ End(Hi
c(ShtG ⊗k k)).

Proof. The argument is similar to that of Proposition 5.10; for this reason

we only give a sketch here. For two effective divisorsD andD′, we need to check

that the action of C(hDhD′) is the same as the composition C(hD) ◦ C(hD′).

Let d, d† and d′ ∈ D satisfy d† ≥ d + degD′ and d′ ≥ d† + degD. Then

the map

C(hD)d†,d′ ◦ C(hD′)d,d† : Rπ≤dG,!Q` −→ Rπ≤d
†

G,! Q` −→ Rπ≤d
′

G,! Q`

is induced from a cohomological correspondence ζ between the constant sheaves

on Sht≤dG and on Sht≤d
′

G supported on

≤dShtG(hD) ∗ ≤d†ShtG(hD′) := ≤dShtG(hD)×−→p ,ShtG,
←−p
≤d†ShtG(hD′);

i.e., ζ ∈ HBM
4r (≤dShtG(hD) ∗ ≤d†ShtG(hD′)⊗k k).

On the other hand, the Hecke function hDhD′ is a linear combination

of hE where E ≤ D + D′ and D + D′ − E is even. Since d ∈ D and d′ ≥
d+ degD + degD′, the map

C(hDhD′)d,d′ : Rπ≤dG,!Q` −→ Rπ≤d
′

G,! Q`

is induced from a cohomological correspondence ξ between the constant sheaves

on Sht≤dG and on Sht≤d
′

G supported on the union of ≤dShtG(hE) for E ≤ D+D′

and D + D′ − E even, i.e., supported on ≤dShtG(hD+D′). In other words,

ξ ∈ HBM
4r (≤dShtG(hD+D′)⊗k k).

There is a proper map of correspondences θ : ≤dShtG(hD) ∗ ≤d†ShtG(hD′)

→ ≤dShtG(hD+D′), and the action of C(hD)d†,d′ ◦ C(hD′)d,d† is also induced

from the class θ∗ζ ∈ HBM
4r (≤dShtG(hD+D′)⊗k k), viewed as a cohomological

correspondence supported on ≤dShtG(hD+D′). Let U = X − |D| − |D′|. It

is easy to check that ξ|Ur = θ∗ζ|Ur using that, over U r, the correspondences

Sht(hD), Sht(hD′) and Sht(hD+D′) are finite étale over ShtG. By Lemma 5.9,
≤dShtG(hD+D′) − ≤dShtG(hD+D′)|Ur has dimension < 2r, therefore, ξ = θ∗ζ

holds as elements in HBM
4r (≤dShtG(hD+D′)⊗k k), and hence C(hDhD′)d,d′ =

C(hD)d†,d′ ◦ C(hD′)d,d† . Applying H∗(Xr ⊗k k,−) and taking inductive limit

over d and d′, we see that C(hDhD′) = C(hD) ◦ C(hD′) as endomorphisms of

H∗c(ShtG ⊗k k). �

7.1.5. Notation. For α ∈ H∗c(ShtG ⊗k k) and f ∈H , we denote the action

of C(f) on α simply by f ∗ α ∈ H∗c(ShtG ⊗k k).
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7.1.6. The cup product gives a symmetric bilinear pairing onH∗c(ShtG⊗k k):

(−,−) : Hi
c(ShtG ⊗k k)×H4r−i

c (ShtG ⊗k k) −→ H4r
c (ShtG ⊗k k) ∼= Q`(−2r).

We have a cohomological analog of Lemma 5.12.

Lemma 7.2. The action of any f ∈ H on H∗c(ShtG ⊗k k) is self-adjoint

with respect to the cup product pairing.

Proof. Since {hD} span H , it suffices to show that the action of hD is self-

adjoint. From the construction of the endomorphism C(hD) of Hi
c(ShtG ⊗k k),

we see that for α ∈ Hi
c(ShtG ⊗k k) and β ∈ H4r−i

c (ShtG ⊗k k), the pairing

(hD ∗α, β) is the same as the pairing ([ShtG(hD)],←−p ∗α∪−→p ∗β) (i.e, the pairing

of←−p ∗α∪−→p ∗β ∈ H4r
c (ShtG(hD)⊗k k) with the fundamental class of ShtG(hD)).

Similarly, (α, hD ∗ β) is the pairing ([ShtG(hD)],←−p ∗β ∪ −→p ∗α). Applying the

involution τ on ShtG(hD) constructed in the proof of Lemma 5.12 that switches

the two projections ←−p and −→p , we get(
[ShtG(hD)],←−p ∗α ∪ −→p ∗β

)
=
(
[ShtG(hD)],←−p ∗β ∪ −→p ∗α

)
,

which is equivalent to the self-adjointness of hD: (hD ∗α, β) = (α, hD ∗β). �

7.1.7. The cycle class map gives a Q-linear map (see Section A.1.5)

cl : Chc,i(ShtG)Q −→ H4r−2i
c (ShtG ⊗k k)(2r − i).

Lemma 7.3. The map cl is H -equivariant for any i.

Proof. Since {hD} span H , it suffices to show that cl intertwines the

actions of hD on Chc,i(ShtG) and on H4r−2i
c (ShtG ⊗k k)(2r − i). Let ζ ∈

Chc,i(ShtG). By the definition of the hD-action on Chc,i(ShtG), hD ∗ ζ ∈
Chc,i(ShtG) is pr2∗((pr∗1ζ)·ShtG×ShtG (←−p ,−→p )∗[ShtG(hD)]). Taking its cycle class

we get that cl(hD ∗ ζ) ∈ H4r−2i
c (ShtG ⊗k k)(2r − i) can be identified with the

class
−→p ∗(←−p ∗cl(ζ) ∩ [ShtG(hD)]) ∈ H2i(ShtG ⊗k k)(−i)

under the Poincaré duality isomorphism

H4r−2i
c (ShtG ⊗k k) ∼= H2i(ShtG ⊗k k)(−2r).

On the other hand, by (A.24), the action of hD on H4r−2i
c (ShtG ⊗k k) is

the composition

H4r−2i
c (ShtG ⊗k k)

←−p ∗−−→ H4r−2i
c (ShtG(hD)⊗k k)

∩[ShtG(hD)]−−−−−−−−→

H2i(ShtG(hD)⊗k k)(−2r)
−→p ∗−−→ H2i(ShtG ⊗k k)(−2r) ∼= H4r−2i

c (ShtG ⊗k k).

Therefore, we have cl(hD ∗ ζ) = hD ∗ cl(ζ). �
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7.1.8. We are most interested in the middle-dimensional cohomology

VQ` := H2r
c (ShtG ⊗k k,Q`)(r).

This is a Q`-vector space with an action of H . In the sequel, we simply write

V for VQ` .

For the purpose of proving our main theorems, it is the cohomology of

Sht′G rather than ShtG that matters. However, for most of this section, we

will study V . The main result in this section (Theorem 7.14) provides a de-

composition of V into a direct sum of two H -modules, an infinite-dimensional

one called the Eisenstein part and a finite-dimensional complement. The same

result holds when ShtG is replaced by Sht′G with the same proof. We will only

state the corresponding result for Sht′G in the final subsection Section 7.5 and

use it to decompose the Heegner-Drinfeld cycle.

7.2. Study of horocycles. Let B ⊂ G be a Borel subgroup with quotient

torus H ∼= Gm. We think of H as the universal Cartan of G, which is to be

distinguished with the subgroup A of G. We shall define horocycles in ShtG
corresponding to B-Shtukas.

7.2.1. BunB . Let ‹B ⊂ GL2 be the preimage of B. Then Bun
B̃

classifies

pairs (L ↪→ E), where E is a rank two vector bundle over X and L is a line sub-

bundle of it. We have BunB = Bun
B̃
/PicX , where PicX acts by simultaneous

tensoring on E and on L. We have a decomposition

BunB =
∐
n∈Z

BunnB,

where BunnB = Bunn
B̃
/PicX , and Bunn

B̃
is the open and closed substack of

Bun
B̃

classifying those (L ↪→ E) such that 2 degL − deg E = n.

7.2.2. Hecke stack for ‹B. Fix d ∈ D. Choose any µ as in Section 5.1.2.

Consider the moduli stack Hkµ,d
B̃

whose S-points classify the data (Li ↪→
Ei;xi; fi), where

(1) a point (Ei;xi; fi) ∈ Hkµ2 (S);

(2) for each i = 0, . . . , r, (Li ↪→ Ei) ∈ Bun
d(i)

B̃
such that the isomorphism fi :

Ei−1|X×S−Γxi
∼= Ei|X×S−Γxi

restricts to an isomorphism α′i : Li−1|X×S−Γxi∼= Li|X×S−Γxi
.

We have (r + 1) maps pi : Hkµ,d
B̃
→ Bun

d(i)

B̃
by sending the above data to

(Li ↪→ Ei), i = 0, 1, . . . , r. We define Shtµ,d
B̃

by the Cartesian diagram

Shtµ,d
B̃

//

��

Hkµ,d
B̃

(p0,pr)
��

Bun
d(0)

B̃

(id,Fr)
// Bun

d(0)

B̃
× Bun

d(0)

B̃
.

(7.2)
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In other words, Shtµ,d
B̃

classifies (Li ↪→ Ei;xi; fi; ι), where (Li ↪→ Ei;xi; fi) is

a point in Hkµ,d
B̃

and ι is an isomorphism Er ∼= τE0 sending Lr isomorphically

to τL0.

We may summarize the data classified by Shtµ,d
B̃

as a commutative dia-

gram:

0 // L0

α′1
��

// E0

f1

��

//M0

α′′1
��

// 0

· · ·
α′r
��

· · ·
fr
��

· · ·
α′′r
��

0 // Lr
oι′

��

// Er
ι o
��

//Mr

oι′′

��

// 0

0 // τL0
// τE0

// τM0
// 0.

(7.3)

Here we denote the quotient line bundle Ei/Li by Mi.

7.2.3. B-Shtukas. There is an action of PicX(k) on Shtµ,d
B̃

by tensoring

each member in (7.3) by a line bundle defined over k. We define

ShtdB := Shtµ,d
B̃
/PicX(k).

Equivalently, we may first define Hkµ,dB := Hkµ,d
B̃
/PicX and define ShtdB by a

diagram similar to (7.2), using HkdB and Bun
d(0)
B instead of Hkµ,d

B̃
and Bun

d(0)

B̃
.

The same argument as Lemma 5.5 shows that Hkµ,dB is canonically independent

of the choice of µ and these isomorphisms preserve the maps pi, hence ShtdB is

also independent of the choice of µ.

7.2.4. Indexing by degrees. In the definition of Shtukas in Section 5.1.4,

we may decompose Shtµn according to the degrees of Ei. More precisely, for

d ∈ D, we let µ(d) ∈ {±1}r be defined as

(7.4) µi(d) = d(i)− d(i− 1).

Let Shtdn ⊂ Shtµ(d)
n be the open and closed substack classifying rank n Shtukas

(Ei; · · · ) with deg Ei = d(i).

Consider the action of Z on D by adding a constant integer to a function

d ∈ D. The assignment d 7→ µ(d) descends to a function D/Z→ {±1}r. For a

Z-orbit δ ∈ D/Z, we write µ(d) as µ(δ) for any d ∈ δ. Then for any δ ∈ D/Z,

we have a decomposition

(7.5) Shtµ(δ)
n =

∐
d∈δ

Shtdn.
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In particular, after identifying H with Gm, we define ShtdH to be Shtd1 for any

d ∈ D.

7.2.5. The horocycle correspondence. From the definition of ShtdB, we have

a forgetful map

pd : ShtdB −→ ShtG

sending the data in (7.3) to the middle column.

On the other hand, mapping the diagram (7.3) to (Li ⊗ M−1
i ;xi;α

′
i ⊗

α′′i ; ι
′ ⊗ ι′′) we get a morphism

qd : ShtdB −→ ShtdH .

Via the maps pd and qd, we may view ShtdB as a correspondence between

ShtG and ShtdH over Xr:

ShtdB
pd

||

qd

""

πdB

��

ShtG

πG
##

ShtdH

πdH{{

Xr.

(7.6)

Lemma 7.4. Let D+ ⊂ D be the subset consisting of functions d such that

d(i) > 0 for all i. Suppose d ∈ D+. Then the map pd : ShtdB → ShtG has image

ShtdG and induces an isomorphism ShtdB
∼= ShtdG.

Proof. We first show that pd(ShtdB) ⊂ ShtdG. If (Li ↪→ Ei;xi; fi; ι) ∈ ShtdB
(up to tensoring with a line bundle), then degLi ≥ 1

2(deg Ei + d(i)) > 1
2 deg Ei,

hence Li is the maximal line subbundle of Ei. Therefore, inst(Ei) = d(i) and

(Ei;xi; fi) ∈ ShtdG.

Conversely, we will define a map ShtdG → ShtdB. Let (Ei;xi; fi; ι) ∈
ShtdG(S). Then the maximal line bundle Li ↪→ Ei is well defined since each

Ei is unstable.

We claim that for each geometric point s ∈ S, the generic fibers of Li|X×{s}
map isomorphically to each other under the rational maps fi between the Ei’s.
For this we may assume S = Spec(K) for some field K, and we base change

the situation to K without changing notation. Let L′i+1 ⊂ Ei+1 be the line

bundle obtained by saturating Li under the rational map fi+1 : Ei 99K Ei+1.

Then d′(i + 1) := 2L′i+1 − deg Ei+1 = d(i) ± 1. If d′(i + 1) > 0, then L′i+1 is

also the maximal line subbundle of Ei+1, hence L′i+1 = Li+1. If d′(i + 1) ≤ 0,

then we must have d(i) = 1 and d′(i + 1) = 0. Since d ∈ D+, we must have

d(i + 1) = 2. In this case the map L′i+1 ⊕ Li+1 → Ei+1 cannot be injective
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because the source has degree at least

1

2
(deg Ei+1 + d′(i+ 1)) +

1

2
(deg Ei+1 + d(i+ 1)) = deg Ei+1 + 1 > deg Ei+1.

Therefore, L′i+1 and Li+1 have the same generic fiber, which is impossible since

they are both line subbundles of Ei+1 but have different degrees. This proves

the claim.

Moreover, the isomorphism ι : Er ∼= τE0 must send Lr isomorphically onto
τL0 by the uniqueness of the maximal line subbundle. This together with

the claim above implies that (Li;xi; fi|Li ; ι|Lr) is a rank one sub-Shtuka of

(Ei;xi; fi; ι), and therefore, (Li ↪→ Ei;xi; fi; ι) gives a point in ShtdB. This way

we have defined a map ShtdG → ShtdB. It is easy to check that this map is

inverse to pd : ShtdB → ShtdG. �

Lemma 7.5. Let d ∈ D be such that d(i) > 2g − 2 for all i. Then the

morphism qd : ShtdB → ShtdH is smooth of relative dimension r/2, and its

geometric fibers are isomorphic to [Gr/2
a /Z] for some finite étale group scheme

Z acting on Gr/2
a via a homomorphism Z → Gr/2

a .

Proof. We pick µ as in Section 5.1.2 to realize ShtG as the quotient

Shtµ2/PicX(k), and ShtdB as the quotient Shtµ,d
B̃
/PicX(k).

In the definition of Shtukas in Section 5.1.4, we may allow some coordi-

nates µi of the modification type µ to be 0, which means that the correspond-

ing fi is an isomorphism. Therefore, we may define Shtµn for more general

µ ∈ {0,±1}r such that
∑
µi = 0.

We define the sequence µ′(d) = (µ′1(d), . . . , µ′r(d)) ∈ {0,±1}r by

µ′i(d) :=
1

2
(sgn(µi) + d(i)− d(i− 1)).

We also define µ′′(d) = (µ′′1(d), . . . , µ′′r(d)) ∈ {0,±1}r by

µ′′i (d) :=
1

2
(sgn(µi)− d(i) + d(i− 1)) = sgn(µi)− µ′i(d).

We write µ′(d) and µ′′(d) simply as µ′ and µ′′. Mapping the diagram (7.3)

to the rank one Shtuka (Li;xi;α′i; ι′) defines a map Shtµ,d
B̃
→ Shtµ

′

1 ; similarly,

sending the diagram (7.3) to the rank one Shtuka (Mi;xi;α
′′
i ; ι
′′) defines a map

Shtµ,d
B̃
→ Shtµ

′′

1 . Combining the two maps we get

q̃d : Shtµ,d
B̃
−→ Shtµ

′

1 ×Xr Shtµ
′′

1 .

Fix a pair L• := (Li;xi;α′i; ι′) ∈ Shtµ
′

1 (S) and M• := (Mi;xi;α
′′
i ; ι
′′) ∈

Shtµ
′′

1 (S). Then the fiber of qd over (Li⊗M−1
i ;xi; · · · ) ∈ ShtdH(S) is isomorphic

to the fiber of q̃d over (L•,M•), the latter being the moduli stack ESht(M•,L•)
(over S) of extensions of M• by L• as Shtukas.
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Since deg(Li)− deg(Mi) = d(i) > 2g− 2, we have Ext1(Mi,Li) = 0. For

each i, let E(Mi,Li) be the stack classifying extensions of Mi by Li. Then

E(Mi,Li) is canonically isomorphic to the classifying space of the additive

group Hi := Hom(Mi,Li) over S. For each i = 1, . . . , r, we have another

moduli stack Ci classifying commutative diagrams of extensions

0 // Li−1
//

α′i
��

Ei−1
//

fi
��

Mi−1
//

α′′i
��

0

0 // Li // Ei //Mi
// 0.

Here the left and right columns are fixed. We have four cases:

(1) When (µ′i, µ
′′
i ) = (1, 0), then α′i : Li−1 ↪→ Li with colength one and α′′i is an

isomorphism. In this case, the bottom row is the pushout of the top row

along α′i, hence determined by the top row. Therefore, Ci = E(Mi−1,Li−1)

in this case.

(2) When (µ′i, µ
′′
i ) = (−1, 0), then α′−1

i : Li ↪→ Li−1 with colength one and

α′′i is an isomorphism. In this case, the top row is the pushout of the

bottom row along α′−1
i , hence determined by the bottom row. Therefore,

Ci = E(Mi,Li) in this case.

(3) When (µ′i, µ
′′
i ) = (0, 1), then α′i is an isomorphism and α′′i : Mi−1 ↪→ Mi

with colength one. In this case, the top row is the pullback of the bottom

row along α′′i , hence determined by the bottom row. Therefore, Ci =

E(Mi,Li) in this case.

(4) When (µ′i, µ
′′
i ) = (0,−1), then α′i is an isomorphism and α′′−1

i : Mi ↪→
Mi−1 with colength one. In this case, the bottom row is the pullback

of the top row along α′′−1
i , hence determined by the top row. Therefore,

Ci = E(Mi−1,Li−1) in this case.

From the combinatorics of µ′ and µ′′ we see that the cases (1), (4) and (2), (3)

each appear r/2 times. In all cases, we view Ci as a correspondence

E(Mi−1,Li−1)← Ci → E(Mi,Li).

Then Ci is the graph of a natural map E(Mi−1,Li−1) → E(Mi,Li) in cases

(1) and (4) and the graph of a natural map E(Mi,Li) → E(Mi−1,Li−1) in

cases (2) and (3). We see that Ci is canonically the classifying space of an

additive group scheme Ωi over S, which is either Hi−1 in cases (1) and (4) or

Hi in cases (2) and (3).

Consider the composition of these correspondences:

C(M•,L•) := C1 ×E(M1,L1) C2 ×E(M2,L2) · · · ×E(Mr−1,Lr−1) Cr.

This is viewed as a correspondence

E(M0,L0)← C(M•,L•)→ E(Mr,Lr) ∼= E(τM0,
τL0).
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To compute C(M•,L•) more explicitly, we consider the following situa-

tion. Let G be a group scheme over S with two subgroup schemes G1 and G2.

Then we have a canonical isomorphism of stacks over S

B(G1)×B(G) B(G2) ∼= G1\G/G2.

Using this fact repeatedly, and using that E(Mi,Li) = B(Hi) and Ci = B(Ωi),

we see that

(7.7) C(M•,L•) ∼= Ω1\H1

Ω2
× H2

Ω3
× · · ·

Ωr−1

× Hr−1/Ωr,

where Hi−1

Ωi
× Hi means dividing by the diagonal action of Ωi on both Hi−1

and Hi by translations. Let

A(M•,L•) := H0

Ω1
× H1

Ω2
× · · ·

Ωr−1

× Hr−1

Ωr
× Hr.

Since Ωi is always the smaller of Hi−1 and Hi, A(M•,L•) is an additive group

scheme over S. Then we have

(7.8) C(M•,L•) ∼= H0\A(M•,L•)/Hr.

Note that Hr
∼= τH0 is the pullback of H0 via FrS . We have a relative

Frobenius map over S:

Fr/S : E(M0,L0) = B(H0)
FrH0/S−−−−→ B(Hr) = E(Mr,Lr).

By the moduli meaning of ESht(M•,L•), we have a Cartesian diagram of stacks

ESht(M•,L•) //

��

C(M•,L•)

��

E(M0,L0)
(id,Fr/S)

// E(M0,L0)× E(Mr,Lr).

Using the isomorphism (7.8), the above diagram becomes

ESht(M•,L•) //

��

H0\A(M•,L•)/Hr

��

B(H0)
(id,FrH0/S

)
// B(H)× B(Hr).

(7.9)

This implies that

(7.10) ESht(M•,L•) ∼= [A(M•,L•)/(id,FrH0/S
)H0],

where H0 acts on A(M•,L•) via the embedding (id,FrH0/S) : H0 → H0 ×Hr

and the natural action of H0 × Hr on A(M•,L•). Since A is an additive

group scheme over S, hence smooth over S, the isomorphism (7.10) shows that

ESht(M•,L•) is smooth over S.
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To compute the dimension of A(M•,L•), we compare dim Ωi with dimHi.

We have dimHi − dim Ωi = 1 in cases (1) and (4) and dimHi − dim Ωi = 0 in

cases (2) and (3). Since (1), (4) and (2), (3) each appear r/2 times, we have

dimA(M•,L•) = dimH0 +
r∑
i=1

(dimHi − dim Ωi) = dimH0 + r/2.

This implies ESht(M•,L•) is smooth of dimension r/2.

When S is a geometric point Spec(K), H0 and Hr can be viewed as

subspaces of the K-vector space A := A(M•,L•), and φ = FrH0/K : H0 →
Hr is a morphism of group schemes over K. Choose a K-subspace L ⊂ A

complement to H0, then L ∼= Gr/2
a as a group scheme over K. Consider the

homomorphism

α : H0 × L −→ A

given by (x, y) 7→ x + y + φ(x). By computing the tangent map of α at the

origin, we see that α is étale, therefore, Z = ker(α) is a finite étale group

scheme over K. We conclude that in this case the fiber of qd over S = Spec(K)

is

ESht(M•,L•) ∼= [A/(id,φ)H0] ∼= [L/Z] ∼= [Gr/2
a /Z]. �

Corollary 7.6. Suppose d ∈ D satisfies d(i) > 2g − 2 for all i. Then

the cone of the map Rπ<dG,!Q` → Rπ≤dG,!Q` is isomorphic to πdH,!Q`[−r](−r/2),

which is a local system concentrated in degree r.

Proof. The cone of Rπ<dG,!Q` → Rπ≤dG,!Q` is isomorphic to RπdG,!Q`, where

πdG : ShtdG → Xr. By Lemma 7.4, for d ∈ D+, we have RπdG,!Q`
∼= RπdB,!Q`.

By Lemma 7.5, qd is smooth of relative dimension r/2, and the relative funda-

mental cycles give Rqd,!Q` → Rrqd,!Q`[−r] → Q`[−r](−r/2), which is an iso-

morphism by checking the stalks (using the description of the geometric fibers

of qd given in Lemma 7.5). Therefore, RπdB,!Q`
∼= RπdH,!Q`[−r](−r/2). Finally,

πdH : ShtdH → Xr is a Pic0
X(k)-torsor by an argument similar to Lemma 5.13.

Therefore, RπdH,!Q` is a local system on Xr, and RπdG,!Q`
∼= πdH,!Q`[−r](−r/2)

is a local system shifted to degree r. �

7.3. Horocycles in the generic fiber. Fix a geometric generic point η of Xr.

For a stack X over Xr, we denote its fiber over η by Xη. Next we study the

cycles in ShtG,η given by images of ShtdB,η.

Lemma 7.7 (Drinfeld [5, Prop 4.2] for r = 2; Varshavsky [23, Prop 5.7]

in general). For each d ∈ D, the map pd,η : ShtdB,η → ShtG,η is finite and

unramified.

7.3.1. The cohomological constant term. Taking the geometric generic fiber

of the diagram (7.6), we view ShtdB,η as a correspondence between ShtG,η and
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ShtdH,η. The fundamental cycle of ShtdB,η (of dimension r/2) gives a cohomo-

logical correspondence between the constant sheaf on ShtG,η and the shifted

constant sheaf Q`[−r](−r/2) on ShtdH,η. Therefore, [ShtdB,η] induces a map

γd : Hr
c(ShtG,η)(r/2)

p∗
d,η−−→ Hr

c(ShtdB,η)(r/2)

[Shtd
B,η

]
−−−−−→ H0(ShtdB,η)

qd,η,!−−−→ H0(ShtdH,η).

(7.11)

Here we are implicitly using Lemma 7.7 to conclude that pd,η is proper, hence

p∗d,η induces a map between compactly supported cohomology groups.

Taking the product of γd for all d in a fixed Z-orbit δ ∈ D/Z, using the

decomposition (7.5), we get a map

(7.12) γδ : Hr
c(ShtG,η)(r/2) −→

∏
d∈δ

H0(ShtdH,η)
∼= H0(Sht

µ(δ)
1,η ).

When r = 0, (7.12) is exactly the constant term map for automorphic forms.

Therefore, we may call γδ the cohomological constant term map.

The right-hand side of (7.12) carries an action of the Hecke algebra HH =

⊗x∈|X|Q[tx, t
−1
x ]. In fact, Sht

µ(δ)
1,η is a PicX(k)-torsor over Spec k(η). The action

of HH on Sht
µ(δ)
H,η is via the natural map HH

∼= Q[Div(X)]→ Q[PicX(k)].

Lemma 7.8. The map γδ in (7.12) intertwines the H -action on the left-

hand side and the HH-action on the right-hand side via the Satake transform

Sat : H ↪→HH .

Proof. Since H is generated by {hx}x∈|X| as a Q-algebra, it suffices to

show that for any x ∈ |X|, the following diagram is commutative:

Hr
c(ShtG,η)

C(hx)

��

γδ
//
∏
d∈δ H0(ShtdH,η)

tx+qxt
−1
x

��

Hr
c(ShtG,η)

γδ
//
∏
d∈δ H0(ShtdH,η).

(7.13)

Let U = X − {x}. For a stack X over Xr, we use XUr to denote its

restriction to U r. Similar notation applies to morphisms over Xr.

Recall that ShtG,Ur(S) classifies (Ei;xi; fi; ι) such that xi are disjoint

from x. Hence the composition ι ◦ fr · · · f1 : E0 99K τE0 is an isomorphism

near x. In particular, the fiber E0,x = E0|S×{x} carries a Frobenius struc-

ture E0,x
∼= τE0,x, hence E0,x descends to a two-dimensional vector space over

Spec kx (kx is the residue field of X at x) up to tensoring with a line. In other

words, there is a morphism ωx : ShtG,Ur → B(G(kx)) sending (xi; Ei; fi; ι) to

the descent of E0,x to Spec kx. In the following we shall understand that E0,x

is a two-dimensional vector space over kx, up to tensoring with a line over kx.
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The correspondence ShtG(hx)Ur classifies diagrams of the form (5.5), where

the vertical maps have divisor x. Therefore, if the first row in (5.5) is fixed,

the bottom row is determined by E ′0, which in turn is determined by the line

ex = ker(E0,x → E ′0,x) over kx. Recall that ←−p and −→p : ShtG(hx) → ShtG are

the projections sending (5.5) to the top and bottom row respectively. Then we

have a Cartesian diagram

ShtG(hx)Ur //

←−p Ur

��

B(B(kx))

��

ShtG,Ur
ωx
// B(G(kx)),

where B ⊂ G is a Borel subgroup. We have a similar Cartesian diagram where
←−p Ur is replaced with −→p Ur . In particular, ←−p Ur and −→p Ur are finite étale of

degree qx + 1.

Let ShtdB(hx) be the base change of ←−p along ShtdB → ShtG. Let ←−p B :

ShtdB(hx)Ur → ShtdB,Ur be the base-changed map restricted to U r. A point

(Li ↪→ Ei;xi; fi; ι) ∈ ShtdB gives another line `x := L0,x ⊂ E0,x. Therefore, for

a point (Li ↪→ Ei → E ′i; · · · ) ∈ ShtdB(hx)|Ur , we get two lines `x and ex inside

E0,x. In other words, we have a morphism

ω : ShtdB(hx)Ur −→ B(B(kx))×B(G(kx)) B(B(kx)) = B(kx)\G(kx)/B(kx).

This allows us to decompose ShtdB(hx)Ur into the disjoint union of two parts

ShtdB(hx)Ur = C1

∐
C2,

where C1 is the preimage of the unit coset B(kx)\B(kx)/B(kx) and C2 is the

preimage of the complement.

For a point (Li ↪→ Ei ↪→ E ′i; · · · ) ∈ C1, E ′i is determined by ex = `x = L0,x.

Therefore, the map ←−−pB,1 :=←−p B|C1 : C1 → ShtdB,Ur is an isomorphism. In this

case, E ′i is obtained via the pushout of Li → Ei along Li ↪→ Li(x). This way

we get an exact sequence 0 → Li(x) → Ei(x) →Mi → 0, where Mi = Ei/Li.
We define a map −−→pB,1 : C1 → Shtd+dx

B,Ur sending (Li ↪→ Ei ↪→ E ′i; · · · ) ∈ C1 to

(Li(x) ↪→ E ′i; · · · ). Since←−−pB,1 is an isomorphism, C1 viewed as a correspondence

between ShtdB,Ur and Shtd+dx
B,Ur can be identified with the graph of the map

ϕx := −−→pB,1 ◦ ←−−pB,1−1 : ShtdB,Ur → Shtd+dx
B,Ur . Note that ϕx is a finite étale map of
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degree qx. We have a commutative diagram

ShtdH,Ur Γ(tx)
id

oo
tx

// Shtd+dx
H,Ur

ShtdB,Ur

pd

��

qd

OO

C1 = Γ(ϕx)

OO

��

←−−pB,1

∼
oo

−−→pB,1
// Shtd+dx

B,Ur

pd+dx

��

qd+dx

OO

ShtG,Ur ShtG(hx)Ur
←−p

oo

−→p
// ShtG,Ur .

Here Γ(tx) is the graph of the isomorphism ShtdH,Ur → Shtd+dx
H,Ur given by tensor-

ing the line bundles with O(x). Therefore, the action of [C1] on the compactly

supported cohomology of the generic fiber of ShtdB fits into a commutative

diagram

Hr
c(ShtdB,η)(r/2)

[C1]
��

[Shtd
B,η

]
// H0(ShtdB,η)

ϕx,∗
��

// H0(ShtdH,η)

tx
��

Hr
c(Shtd+dx

B,η )(r/2)
[Shtd+dx

B,η
]
// H0(Shtd+dx

B,η ) // H0(Shtd+dx
H,η ).

(7.14)

Similarly, for C2, we define a morphism −−→pB,2 : C2 → Shtd−dxB,Ur sending

(Li ↪→ Ei ↪→ E ′i; · · · ) ∈ C2 to (Li ↪→ E ′i; · · · ). Then −−→pB,2 is an isomorphism

while ←−p B,2 = ←−p B|C2 is finite étale of degree qx. Therefore, C2 viewed as a

correspondence between ShtdB,Ur and Shtd−dxB,Ur can be identified with the trans-

pose of the graph of the map ϕx : Shtd−dxB,Ur → ShtdB,Ur defined previously. We

also have a commutative diagram

ShtdH,Ur Γ(t−1
x )

id
oo

t−1
x

// Shtd−dxH,Ur

ShtdB,Ur

pd

��

qd

OO

C2 = tΓ(ϕx)

OO

��

←−−pB,2
oo

−−→pB,2
∼

// Shtd−dxB,Ur

pd−dx

��

qd−dx

OO

ShtG,Ur ShtG(hx)Ur
←−p

oo

−→p
// ShtG,Ur .
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The action of [C2] on the compactly supported cohomology of the generic fibers

of ShtdB fits into a commutative diagram

Hr
c(ShtdB,η)(r/2)

[C2]=ϕ∗x
��

[Shtd
B,η

]
// H0(ShtdB,η) // H0(ShtdH,η).

Hr
c(Shtd−dxB,η )(r/2)

[Shtd−dx
B,η

]
// H0(Shtd−dxB,η ) //

q−1
x ϕx,∗

OO

H0(Shtd−dxH,η )

q−1
x tx

OO

(7.15)

The appearance of qx in the above diagram is because the degree of ϕx is qx.

Combining (7.14) and (7.15) we get a commutative diagram∏
d∈δ Hr

c(ShtdB,η)(r/2) //

[C1]+[C2]
��

∏
d∈δ H0(ShtdH,η)

tx+qxt
−1
x

��∏
d∈δ Hr

c(ShtdB,η)(r/2) //
∏
d∈δ H0(ShtdH,η).

(7.16)

Finally, let −→pB : ShtdB(hx)Ur → ShtdB,Ur be −−→pB,1 on C1 and −−→pB,2 on C2.

Consider the commutative diagram

∐
d∈δ ShtdB(hx)Ur

(pd)d∈δ
��

−→pB
//
∐
d∈δ ShtdB,Ur

(pd)d∈δ
��

ShtG(hx)Ur
−→p

// ShtG,Ur .

Since −→pB and −→p are both finite étale of degree qx + 1, by examining geometric

fibers we conclude that the above diagram is Cartesian. The similar diagram

with −→pB and −→p replaced with←−pB and←−p is Cartesian by definition. From these

facts we get a commutative diagram

Hr
c(ShtG,η)

C(hx)

��

(p∗d)d∈δ
//
∏
d∈δ Hr

c(ShtdB,η)

[C1]+[C2]
��

Hr
c(ShtG,η)

(p∗d)d∈δ
//
∏
d∈δ Hr

c(ShtdB,η).

Combining this with (7.16) we obtain (7.13), as desired. �

7.4. Finiteness. For fixed d ∈ D, the Leray spectral sequence associ-

ated with the map π≤dG gives an increasing filtration L≤iH
2r
c (Sht≤dG ⊗k k) on

H2r
c (Sht≤dG ⊗k k), with L≤iH

2r
c (Sht≤dG ⊗k k) being the image of

H2r(Xr ⊗k k, τ≤iRπ≤dG,!Q`) −→ H2r(Xr ⊗k k,Rπ≤dG,!Q`) ∼= H2r
c (Sht≤dG ⊗k k).

Here τ≤i means the truncation in the usual t-structure ofDb
c(X

r,Q`). Let L≤iV

be the inductive limit lim−→d∈D L≤iH
2r
c (Sht≤dG ⊗k k)(r), which is a subspace of V .
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This way we get a filtration on V :

0 ⊂ L≤0V ⊂ L≤1V ⊂ · · · ⊂ L≤2rV = V.

Lemma 7.9. Each L≤iV is stable under the action of H .

Proof. The map C(hD)d,d′ in (7.1) induces τ≤iC(hD)d,d′ : τ≤iRπ
≤d
G,!Q` →

τ≤iRπ
≤d′
G,! Q`. By the construction of C(hD) we have a commutative diagram

lim−→d
H2r(Xr ⊗k k, τ≤iRπ≤dG,!Q`)

lim−→ τ≤iC(hD)d,d′
//

��

lim−→d′
H2r(Xr ⊗k k, τ≤iRπ≤d

′

G,! Q`)

��

H2r
c (ShtG ⊗k k)

C(hD)
// H2r

c (ShtG ⊗k k).

The image of the vertical maps are both L≤iV up to a Tate twist; therefore,

L≤iV is stable under C(hD). When D runs over all effective divisors on X,

C(hD) span H , hence L≤iV is stable under H . �

Lemma 7.10. For i 6= r, GrLi V := L≤iV/L≤i−1V is finite dimensional

over Q`.

Proof. We say d ∈ D is large if d(i) > 2g − 2 for all i. In the following

argument it is convenient to choose a total order on D that extends its partial

order. Under the total order, Sht<dG =
∐
d′<d Shtd

′
G and Sht≤dG =

∐
d′≤d ShtdG are

different from their original meanings, and we will use the new notion during

the proof.

By Corollary 7.6, the inductive system τ≤r−1Rπ
≤d
G,!Q` stabilizes for d large.

Hence so does L≤r−1H2r
c (Sht≤dG ⊗k k). Therefore, L≤r−1V is finite dimensional.

It remains to show that V/L≤rV is finite dimensional. Again by Corol-

lary 7.6, for d large, the map Rr+1π<dG,!Q` → Rr+1π≤dG,!Q` is surjective because

the next term in the long exact sequence is Rr+1πdG,!Q` = 0. This implies

that the inductive system Rr+1π≤dG,!Q` is eventually stable because any chain

of surjections F1 � F2 � · · · of constructible sheaves on Xr has to stabilize;

i.e., constructible Q`-sheaves satisfy the ascending chain condition. Also by

Corollary 7.6, the inductive system τ>r+1Rπ
≤d
G,!Q` is stable. Combined with

the stability of Rr+1π≤dG,!Q`, we see that the system τ>rRπ
≤d
G,!Q` is stable. In

other words, there exists a large d0 ∈ D such that for any d ≥ d0, the natural

map τ>rRπ
<d
G,!Q` → τ>rRπ

≤d
G,!Q` is an isomorphism.

We abbreviate H2r
c (Sht<dG ⊗k k) by H<d and H2r

c (Sht≤dG ⊗k k) by H≤d. For

d ≥ d0, the distinguished triangle of functors τ≤r → id → τ>r → applied to
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Rπ<dG,!Q` and Rπ≤dG,!Q` gives a morphism of exact sequences

L≤rH<d
//

��

H<d
//

��

H2r(Xr ⊗k k, τ>rRπ<dG,!Q`) //

o
��

· · ·

L≤rH≤d // H≤d // H2r(Xr ⊗k k, τ>rRπ≤dG,!Q`) // · · · .

Therefore, the inductive system H≤d/L≤rH≤d is a subsystem of

H2r(Xr ⊗k k, τ>rRπ≤dG,!Q`),

which is stable with finite-dimensional inductive limit. Hence the inductive sys-

tem H≤d/L≤rH≤d is itself stable with finite-dimensional inductive limit. Tak-

ing inductive limit, using that V = lim−→d
H≤d(r) and L≤iV = lim−→d

L≤iH≤d(r),

we see that V/L≤rV ∼= lim−→d
H≤d(r)/L≤rH≤d(r) is finite dimensional. �

Lemma 7.11. The space IEis · (L≤rV ) is finite dimensional over Q`.

Proof. Let U ⊂ ShtG be the union of those Sht≤dG for d ∈ D such that

mini∈Z/rZ{d(i)} ≤ 2g − 2. Since inst(E) has an absolute lower bound, there

are only finitely many such d with ShtdG 6= ∅, hence U is an open substack of

finite type. Let πUG : U → Xr be the restriction of πG. For f ∈ H , and any

d ∈ D, its action defines a map C(f)d,d′ : Riπ≤dG,!Q` → Riπ≤d
′

G,! Q` for sufficiently

large d′. We may assume d′ > 2g − 2 , which means d′(j) > 2g − 2 for all j.

We shall show that when f ∈ IEis and i ≤ r, the image of C(f)d,d′ is contained

in the image of the map ιU,d′ : RiπUG,!Q` → Riπ≤d
′

G,! Q` induced by the inclusion

U ⊂ Sht≤d
′

G , which implies the proposition. In other words, we need to show

that the composition ϕ : Riπ≤dG,!Q`

C(f)d,d′−−−−−→ Riπ≤d
′

G,! Q` → coker(ιU,d′) is zero.

By Corollary 7.6, either ιU,d′ is an isomorphism (if i < r) or when i = r,

coker(ιU,d′) is a subsheaf of a local system on Xr. Therefore, to show that ϕ

is zero, it suffices to show that ϕ vanishes at the generic point of Xr.

Let η be a geometric generic point of Xr. We use a subscript η to denote

the fibers over η, as in Section 7.3. Let ιU : Hr
c(Uη) → Hr

c(ShtG,η) be the

map induced by the inclusion of U . It suffices to show that for f ∈ IEis, the

composition Hr
c(ShtG,η)

f∗−→ Hr
c(ShtG,η)� Hr

c(ShtG,η)/ιU (Hr
c(Uη)) is zero.

Recall from (7.11) the cohomological constant term map γd : Hr
c(ShtG,η)→

H0(ShtdH,η). By the definition of γd, for d > 2g−2, γd factors through the quo-

tient Hr
c(ShtG,η)/ιU (Hr

c(Uη)) and induces a map

γ+ :=
∏

d>2g−2

γd : Hr
c(ShtG,η)/ιU (Hr

c(Uη)) −→
∏

d>2g−2

H0(ShtdH,η).

Both sides of the above map admit filtrations indexed by the poset {d ∈ D; d >

2g − 2}: on the left-hand side this is given by the image of Hr
c(Sht≤dG,η), and
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on the right-hand side this is given by
∏

2g−2<d′≤d H0(Shtd
′
H,η). The map γ+

respects these filtrations, and by Corollary 7.6, the associated graded map of

γ+ under these filtrations is injective. Therefore, γ+ is injective.
By Lemma 7.8, we have a commutative diagram

Hr
c(ShtG,η)(r/2)

f∗
//∏

γd
��

Hr
c(ShtG,η)(r/2) //∏

γd
��

Hr
c(ShtG,η)(r/2)/ιU (Hr

c(Uη))(r/2)

γ+

��∏
d∈D H0(ShtdH,η)

Sat(f)∗
//
∏
d∈D H0(ShtdH,η) //

∏
d>2g−2 H0(ShtdH,η).

Since the action of HH on
∏
d∈D H0(ShtdH,η) factors through Q`[PicX(k)],

Sat(f) acts by zero in the bottom arrow above. Since γ+ is injective, the

composition of the top row is also zero, as desired. �

Definition 7.12. We define the Q`-algebra H` to be the image of the map

H ⊗Q` −→ EndQ`(V )×Q`[PicX(k)]ιPic ,

the product of the action map on V and aEis ⊗Q`.

Lemma 7.13.

(1) For any x ∈ |X|, V is a finitely generated Hx ⊗Q`-module.

(2) The Q`-algebra H` is finitely generated over Q` and is a ring with Krull

dimension one.

Proof. (1) Let D≤n ⊂ D be the subset of those d such that mini{d(i)} ≤
2g− 2 +ndx. Let Dn = D≤n−D≤n−1. For each n ≥ 0, let Un = ∪d∈D≤nSht≤dG .

Then U0 ⊂ U1 ⊂ · · · are finite type open substacks of ShtG that exhaust ShtG.

Let πn : Un → Xr be the restriction of πG, and let Kn = Rπn,!Q`. The

inclusion Un ↪→ Un+1 induces maps ιn : Kn → Kn+1. Let Cn+1 be the cone of

ιn. Then by Corollary 7.6, when n ≥ 0, Cn+1 is a successive extension of shifted

local systems πdH,!Q`[−r](−r/2) for those d ∈ Dn+1. In particular, for n ≥ 0,

Cn+1 is a shifted local system in degree r and pure of weight 0 as a complex.

By construction, the action of hx ∈Hx on H∗c(ShtG ⊗k k) is induced from

the correspondence ShtG(hx), which restricts to a correspondence ≤nShtG(hx)

=←−p −1(Un) between Un and Un+1. Similar to the construction of C(hx)d,d′ in

(7.1), the fundamental class of ≤nShtG(hx) gives a map C(hx)n : Kn → Kn+1.

Since C(hx)n◦ιn−1 = ιn◦C(hx)n−1, we have the induced map τn : Cn → Cn+1.

We claim that τn is an isomorphism for n > 0. In fact, since Cn and Cn+1 are

local systems in degree r, it suffices to check that τn induces an isomorphism

between the geometric generic stalks Cn,η and Cn+1,η. By Corollary 7.6, we

have an isomorphism induced from the maps γd for d ∈ Dn (cf. (7.11)):

Cn,η ∼=
⊕
d∈Dn

H0(ShtdH,η).
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By Lemma 7.8, τn,η : Cn,η → Cn+1,η is the same as the direct sum of the isomor-

phisms tx : H0(ShtdH,η)→ H0(Shtd+dx
H,η ). (The other term qxt

−1
x : H0(ShtdH,η)→

H0(Shtd−dxH,η ) does not appear because d−dx ∈ D≤n−1, hence the corresponding

contribution becomes zero in Cn+1,η.) Therefore, τn,η is an isomorphism, hence

so is τn.

We claim that there exists n0 ≥ 0 such that for any n ≥ n0, the map

W≤2rH
2r+1(Xr ⊗k k,Kn) −→W≤2rH

2r+1(Xr ⊗k k,Kn+1)

is an isomorphism. Here W≤2r is the weight filtration using Frobenius weights.

In fact, the next term in the long exact sequence is W≤2rH
2r+1(Xr ⊗k k,Cn+1),

which is zero because Cn+1 is pure of weight 0. Therefore, the natural map

W≤2rH
2r+1(Xr ⊗k k,Kn) → W≤2rH

2r+1(Xr ⊗k k,Kn+1) is always surjective

for n ≥ 0, hence it has to be an isomorphism for sufficiently large n.

The triangle Kn → Kn+1 → Cn+1 → Kn[1] gives a long exact sequence

H2r(Xr ⊗k k,Kn) −→ H2r(Xr ⊗k k,Kn+1) −→ H2r(Xr ⊗k k,Cn+1)(7.17)

−→W≤2rH
2r+1(Xr ⊗k k,Kn) −→W≤2rH

2r+1(Xr ⊗k k,Kn+1).

Here we are using the fact that H2r(Xr ⊗k k,Cn+1) is pure of weight 2r (since

Cn+1 is pure of weight 0). For n ≥ n0, the last map above is an isomorphism;

therefore, the first row of (7.17) is exact on the right.

Let F≤nV be the image of

H2r(Xr ⊗k k,Kn)(r) −→ lim−→
n

H2r(Xr ⊗k k,Kn)(r) = V.

Then for n ≥ n0, the exactness of (7.17) implies H2r(Xr ⊗k k,Cn+1)(r) �
GrFn+1V for n ≥ n0. The Hecke operator C(hx) sends F≤nV to F≤n+1V and

induces a map GrFnC(hx) : GrFnV → GrFn+1V . We have a commutative diagram

for n ≥ n0:

H2r(Xr ⊗k k,Cn)(r)

��

H2r(Xr⊗kk,τn)
// H2r(Xr ⊗k k,Cn+1)(r)

����

GrFnV
GrFnC(hx)

// GrFn+1V.

The fact that τn : Cn → Cn+1 is an isomorphism implies that GrFnC(hx) is

surjective for n ≥ n0. Therefore, the action map

Hx ⊗Q F≤n0V = Q[hx]⊗Q F≤n0V −→ V

is surjective by checking the surjectivity on the associated graded. Since F≤n0V

is finite dimensional over Q`, V is finitely generated as an Hx ⊗Q`-module.

(2) We have H` ⊂ EndHx⊗Q`(V ⊕ Q`[PicX(k)]ιPic). Since both V and

Q`[PicX(k)]ιPic are finitely generated Hx⊗Q`-modules by Part (1) and Lemma
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4.2, EndHx⊗Q`(V ⊕ Q`[PicX(k)]ιPic) is also finitely generated as an Hx ⊗ Q`-

module. Since Hx ⊗ Q` is a polynomial ring in one variable over Q`, H`

is a finitely generated algebra over Q` of Krull dimension at most one. Since

H` → Q`[PicX(k)]ιPic is surjective by Lemma 4.2 and Q`[PicX(k)]ιPic has Krull

dimension one, H` also has Krull dimension one. �

The map aEis : H` → Q`[PicX(k)]ιPic is surjective by Lemma 4.2(2). It

induces a closed embedding Spec(aEis) : ZEis,Q` = SpecQ`[PicX(k)]ιPic ↪→
Spec H`.

Theorem 7.14 (Cohomological spectral decomposition).

(1) There is a decomposition of the reduced scheme of Spec H` into a disjoint

union

(7.18) Spec
Ä
H`

äred
= ZEis,Q`

∐
Zr0,`,

where Zr0,` consists of a finite set of closed points. There is a unique de-

composition
V = VEis ⊕ V0

into H ⊗Q`-submodules, such that Supp(VEis) ⊂ ZEis,Q` and Supp(V0) =

Zr0,`.
4

(2) The subspace V0 is finite dimensional over Q`.

Proof. (1) Let V ′ = L≤rV . Let IEis ⊂ H` be the ideal generated by

the image of IEis. By Lemma 7.13, V ′ is a submodule of a finitely generated

module V over the noetherian ring H`; therefore, V ′ is also finitely generated.

By Lemma 7.11, IEisV
′ is a finite-dimensional H`-submodule of V ′. Let Z ′ ⊂

Spec(H`)
red be the finite set of closed points corresponding to the action of H`

on IEisV
′. We claim that Supp(V ′) is contained in the union ZEis,Q` ∪ Z ′. In

fact, suppose f ∈H` lies in the defining radical ideal J of ZEis,Q` ∪ Z ′. Then

after replacing f by a power of it, we have f ∈ IEis (since J is contained in

the radical of IEis), and f acts on IEisV
′ by zero. Therefore, f2 acts on V ′ by

zero, hence f lies in the radical ideal defining Supp(V ′).

By Lemma 7.10, V/V ′ is finite dimensional. Let Z ′′ ⊂ Spec(H`)
red be the

support of V/V ′ as a H`-module, which is a finite set. Then Spec(H`)
red =

Supp(V ) ∪ ZEis,Q` = ZEis,Q` ∪ Z ′ ∪ Z ′′. Let Zr0,` = (Z ′ ∪ Z ′′) − ZEis,Q` ; we get

the desired decomposition (7.18).

According to (7.18), the finitely generated H`-module V , viewed as a

coherent sheaf on Spec H`, can be uniquely decomposed into

V = VEis ⊕ V0

with Supp(VEis) ⊂ ZEis,Q` and Supp(V0) = Zr0,`.

4When we talk about the support of a coherent module M over a Noetherian ring R, we

always mean a closed subset of SpecR with the reduced scheme structure.
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(2) We know that V0 is a coherent sheaf on the scheme Spec H` that is of

finite type over Q`, and we know that Supp(V0) = Zr0,` is finite. Therefore, V0

is finite dimensional over Q`. �

7.4.1. The case r = 0. Let us reformulate the result in Theorem 7.14 in

the case r = 0 in terms of automorphic forms. Let A = Cc(G(F )\G(AF )/K,Q)

be the space of compactly supported Q-valued unramified automorphic forms,

where K =
∏
xG(Ox). This is a Q-form of the Q`-vector space V for r = 0.

Let Haut be the image of the action map H → EndQ(A)×Q[PicX(k)]ιPic . The

Q`-algebra Haut,Q` := Haut ⊗ Q` is the algebra H` defined in Definition 7.12

for r = 0.

Theorem 7.14 for r = 0 reads

(7.19) Spec H red
aut,Q` = ZEis,Q`

∐
Z0

0,`,

where Z0
0,` is a finite set of closed points. Below we will strengthen this de-

composition to work over Q and link Z0
0,` to the set of cuspidal automorphic

representations.

7.4.2. Positivity and reducedness. The first thing to observe is that Haut

is already reduced. In fact, we may extend the Petersson inner product on A
to a positive definitive quadratic form on AR. By the r = 0 case of Lemma 7.2,

Haut acts on AR as self-adjoint operators. Its image in End(A) is therefore

reduced. Since Q[PicX(k)]ιPic is reduced as well, we conclude that Haut is

reduced.

Let Acusp ⊂ A be the finite-dimensional Q-vector space of cusp forms.

Let Hcusp be the image of Haut in EndQ(Acusp). Then Hcusp is a reduced

artinian Q-algebra, hence a product of fields. Let Zcusp = Spec Hcusp. Then a

point in Zcusp is the same as an everywhere unramified cuspidal automorphic

representation π ofG in the sense of Section 1.2. Therefore, we have a canonical

isomorphism

Hcusp =
∏

π∈Zcusp

Eπ,

where Eπ is the coefficient field of π.

Lemma 7.15.

(1) There is a canonical isomorphism of Q-algebras

Haut
∼= Q[PicX(k)]ιPic ×Hcusp.

Equivalently, we have a decomposition into disjoint reduced closed sub-

schemes

(7.20) Spec Haut = ZEis

∐
Zcusp.

(2) We have Z0
0,` = Zcusp,Q` , the base change of Zcusp from Q to Q`.
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Proof. (1) The Q version of Lemma 7.13 says that Haut is a finitely gen-

erated Q-algebra and that A is a finitely generated Haut-module. By the same

argument of Theorem 7.14, we get a decomposition

(7.21) Spec H red
aut = Spec Haut = ZEis

∐
Z0,

where Z0 is a finite collection of closed points. Correspondingly we have a

decomposition

A = AEis ⊕A0

with Supp(AEis) ⊂ ZEis and Supp(A0) = Z0. Since A0 is finitely generated

over Haut with finite support, it is finite dimensional over Q. Since A0 is finite

dimensional and stable under H , we necessarily have A0 ⊂ Acusp. (See [15,

Lemme 8.13]; in fact in our case it can be easily deduced from the r = 0 case

of Lemma 7.8.)

We claim that A0 = Acusp. To show the inclusion in the other direction, it

suffices to show that any cuspidal Hecke eigenform ϕ ∈ Acusp⊗Q lies in A0⊗Q.

Suppose this is not the case for ϕ, letting λ : H → Q be the character by which

H acts on ϕ; then λ /∈ Z0(Q). By (7.21), λ ∈ ZEis(Q), which means that the

action of H on ϕ factors through Q[PicX(k)] via aEis, which is impossible.

Now A0 = Acusp implies that Z0 = Supp(A0) = Supp(Acusp) = Zcusp.

Combining with (7.21), we get (7.20).

Part (2) follows from comparing (7.19) to the base change of (7.20) to Q`.

�

7.5. Decomposition of the Heegner–Drinfeld cycle class. In previous sub-

sections, we have been working with the middle-dimensional cohomology (with

compact support) of ShtG = ShtrG, and we established a decomposition of it

as an HQ`
-module. Exactly the same argument works if we replace ShtG with

Sht′G = Sht′rG. Instead of repeating the argument we simply state the corre-

sponding result for Sht′G in what follows.

Let

V ′ = H2r
c (Sht′G ⊗k k,Q`)(r).

Then V ′ is equipped with a Q`-valued cup product pairing

(7.22) (·, ·) : V ′ ⊗Q` V
′ −→ Q`

and an action of H by self-adjoint operators.

Similar to Definition 7.12, we define the Q`-algebra H`
′

to be the image

of the map

H ⊗Q` −→ EndQ`(V
′)×Q`[PicX(k)]ιPic .

Theorem 7.16 (Variant of Lemma 7.13 and Theorem 7.14).

(1) For any x ∈ |X|, V ′ is a finitely generated Hx ⊗Q`-module.
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(2) The Q`-algebra H`
′

is finitely generated over Q` and is one dimensional

as a ring.

(3) There is a decomposition of the reduced scheme of Spec H`
′

into a disjoint

union

(7.23) Spec
Ä
H`
′äred

= ZEis,Q`
∐

Z ′r0,`,

where Z ′r0,` consists of a finite set of closed points. There is a unique de-

composition

V ′ = V ′Eis ⊕ V ′0
into H ⊗Q`-submodules, such that Supp(V ′Eis) ⊂ ZEis,Q` and Supp(V ′0) =

Z ′r0,`.

(4) The subspace V ′0 is finite dimensional over Q`.

We may further decompose V ′Q`
:= V ′ ⊗Q` Q` according to points in

Z ′r0,`(Q`). A point in Z ′r0,`(Q`) is a maximal ideal m ⊂ HQ`
, or equivalently

a ring homomorphism H → Q` whose kernel is m. We have a decomposition

(7.24) V ′Q`
= V ′

Eis,Q`
⊕
( ⊕
m∈Z′r

0,`
(Q`)

V ′m

)
.

Then V ′m is characterized as the largest Q`-subspace of V ′Q`
on which the action

of m is locally nilpotent. By Theorem 7.16, V ′m turns out to be the localization

of V ′ at the maximal ideal m, hence our notation V ′m is consistent with the

standard notation used in commutative algebra.

We may decompose the cycle class cl(θµ∗ [ShtµT ]) ∈ V ′Q`
according to the

decomposition (7.24),

(7.25) cl(θµ∗ [ShtµT ]) = [ShtT ]Eis +
∑

m∈Zr
0,`

(Q`)

[ShtT ]m,

where [ShtT ]Eis ∈ V ′Eis and [ShtT ]m ∈ V ′m.

Corollary 7.17.

(1) The decomposition (7.24) is an orthogonal decomposition under the cup

product pairing (7.22) on V ′.

(2) For any f ∈H , we have

(7.26) Ir(f) = ([ShtT ]Eis, f ∗ [ShtT ]Eis) +
∑

m∈Z′r
0,`

(Q`)

Ir(m, f),

where

Ir(m, f) := ([ShtT ]m, f ∗ [ShtT ]m) .
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Proof. The orthogonality of the decomposition (7.24) follows from the

self-adjointness of H with respect to the cup product pairing, i.e., variant of

Lemma 7.2 for Sht′G. The formula (7.26) then follows from the orthogonality

of the terms in the decomposition (7.25). �

Part 3. The comparison

8. Comparison for most Hecke functions

The goal of this section is to prove the key identity (1.9) for most Hecke

functions. More precisely, we will prove the following theorem.

Theorem 8.1. Let D be an effective divisor on X of degree d ≥ max{2g′−
1, 2g}. Then for any u ∈ P1(F )− {1}, we have

(8.1) (log q)−rJr(u, hD) = Ir(u, hD).

In particular, we have

(8.2) (log q)−rJr(hD) = Ir(hD).

For the definition of Jr(u, hD) and Ir(u, hD), see (2.16) and (6.11) respec-

tively.

8.1. Direct image of fM.

8.1.1. The local system L(ρi). Let j : X◦d ⊂ Xd ⊂ “Xd be the locus of

multiplicity-free divisors. Taking the preimage of X◦d under the branched cover

X ′d → Xd → Xd, we get an étale Galois cover

u : X ′d,◦ −→ Xd,◦ −→ X◦d

with Galois group Γd := {±1}d o Sd. For 0 ≤ i ≤ d, let χi be the character

{±1}d → {±1} that is nontrivial on the first i factors and trivial on the

rest. Let Si,d−i ∼= Si × Sd−i be the subgroup of Sd stabilizing {1, 2, . . . , i} ⊂
{1, . . . , d}. Then χi extends to the subgroup Γd(i) = {±1}doSi,d−i of Γd with

the trivial representation on the Si,d−i-factor. The induced representation

(8.3) ρi = IndΓd
Γd(i)(χi � 1)

is an irreducible representation of Γd. This representation gives rise to an irre-

ducible local system L(ρi) on X◦d . Let Ki := j!∗(L(ρi)[d])[−d] be the middle ex-

tension of L(ρi); see [3, 2.1.7]. Then Ki is a shifted simple perverse sheaf on “Xd.

Proposition 8.2. Suppose d ≥ 2g′ − 1. Then we have a canonical iso-

morphism of shifted perverse sheaves

(8.4) RfM,∗Q`
∼=

d⊕
i,j=0

(Ki �Kj)|Ad .

Here Ki�Kj lives on “Xd×PicdX
“Xd, which contains Ad as an open subscheme.
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Proof. By Proposition 6.1(4), fM is the restriction of ν̂d × ν̂d : “X ′d ×PicdX“X ′d → “Xd ×PicdX
“Xd, where ν̂d : “X ′d → “Xd is the norm map. By Proposi-

tion 6.1(3), ν̂d is also proper. Therefore, by the Künneth formula, it suffices

to show that

(8.5) Rν̂d,∗Q`
∼=

d⊕
i=0

Ki.

We claim that ν̂d is a small map (see [10, 6.2]). In fact the only positive

dimension fibers are over the zero section PicdX ↪→ “Xd, which has codimension

d − g + 1. On the other hand, the restriction of ν̂d to the zero section is

the norm map PicdX′ → PicdX , which has fiber dimension g − 1. The condition

d ≥ 2g′−1 ≥ 3g−2 implies d−g+1 ≥ 2(g−1)+1; therefore, ν̂d is a small map.

Now ν̂d is proper, small with smooth and geometrically irreducible source,

and Rν̂d,∗Q` is the middle extension of its restriction to any dense open subset

of “Xd (see [10, Th. at the end of 6.2]). In particular, Rν̂d,∗Q` is the middle

extension of its restriction to X◦d . It remains to show

(8.6) Rν̂d,∗Q`|X◦
d

∼=
d⊕
i=0

L(ρi).

Let ν◦d : X ′◦d = ν−1
d (X◦d) → X◦d be the restriction of νd : X ′d → Xd

over X◦d . Then Rν◦d,∗Q` is the local system on X◦d associated with the rep-

resentation IndΓd
Sd
Q` = Q`[Γd/Sd] of Γd. A basis {1ε} of Q`[Γd/Sd] is given

by the indicator functions of the Sd-coset of ε ∈ {±1}d. For any character

χ : {±1}d → {±1}, let 1χ :=
∑
ε χ(ε)1ε ∈ Q`[Γd/Sd]. For the character χi

considered in Section 8.1.1, 1χi is invariant under Si,d−i, and therefore, we have

a Γd-equivariant embedding ρi = IndΓd
Γd(i)(χi�1) ↪→ Q`[Γd/Sd]. Checking total

dimensions we conclude that

Q`[Γd/Sd] ∼=
d⊕
i=0

ρi.

This gives a canonical isomorphism of local systems Rν◦d,∗Q`
∼= ⊕di=0L(ρi),

which is (8.6). �

In Section 6.2.3, we have defined a self-correspondence H = Hk1
M,d ofMd

overAd. Recall thatA♦d ⊂ Ad is the open subscheme “Xd×PicdX
Xd, andM♦d and

H♦ are the restrictions ofMd and H to A♦d . Recall that [H♦] ∈ Ch2d−g+1(H)Q
is the fundamental cycle of the closure of H♦.

Proposition 8.3. Suppose d ≥ 2g′ − 1. Then the action fM,![H♦] on

RfM∗Q` preserves each direct summand Ki � Kj under the decomposition

(8.4) and acts on Ki �Kj by the scalar (d− 2j).
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Proof. By Proposition 8.2, RfM∗Q` is a shifted perverse sheaf all of whose

simple constituents have full support. Therefore, it suffices to prove the same

statement after restricting to any dense open subset U ⊂ Ad. We work with

U = A♦d .

RecallH is indeed a self-correspondence ofMd over ‹Ad (see Section 6.2.2):

H
γ0

||

γ1

""

Md

f̃M !!

Md

f̃M}}‹Ad.
(8.7)

By Lemma 6.3, the diagram (8.7) restricted to ‹A♦d (the preimage of A♦d in‹Ad) is obtained from the following correspondence via base change along the

second projection pr2 : ‹A♦d ∼= “X ′d ×PicdX
Xd → Xd, which is smooth:

I ′d
pr

~~

q

  

X ′d

νd
!!

X ′d

νd
}}

Xd.

Here for (D, y) in the universal divisor I ′d ⊂ X ′d × X ′, pr(D, y) = D and

q(D, y) = D − y + σ(y).

Let Td := νd,![I
′
d] : Rνd,∗Q` → Rνd,∗Q` be the operator on Rνd,∗Q` in-

duced from the cohomological correspondence between the constant sheaf Q`

on X ′d and itself given by the fundamental class of I ′d. Under the isomorphism

Rf̃M,!Q`|A♦
d

∼= pr∗2Rνd,∗Q`, the action of f̃M,![H♦] is the pullback along the

smooth map pr2 of the action of Td = νd,![I
′
d]. Therefore, it suffices to show

that Td preserves the decomposition (8.5) (restricted to Xd) and acts on each

Kj by the scalar (d− 2j).

Since Rνd,∗Q` is the middle extension of the local system L = ⊕dj=0L(ρj)

on X◦d , it suffices to calculate the action of Td on L, or rather calculate its

action over a geometric generic point η ∈ Xd. Write η = x1 + x2 + · · · + xd,

and name the two points in X ′ over xi by x+
i and x−i (in one of the two ways).

The fiber ν−1
d (η) consists of points ξε where ε ∈ {±}r, and ξε =

∑d
i=1 x

εi
i . As

in the proof of Proposition 8.2, we may identify the stalk Lη with Q`[Γd/Sd] =

Span{1ε; ε ∈ {±}r}. (We identify {±} with {±1}.) Now we denote 1ε formally
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by the monomial xε11 · · ·x
εd
d . The stalk L(ρj)η has a basis given by {Pδ}, where

Pδ :=
d∏
i=1

(x+
i + δix

−
i ),

and δ runs over those elements δ = (δ1, . . . , δd) ∈ {±}d with exactly i minuses.

The action of Td on Lη turns each monomial basis element xε11 · · ·x
εd
d into∑d

t=1 x
ε1
1 · · ·x

−εt
t · · ·xεdd . Therefore, Td is a derivation in the following sense:

for any linear form `i in x+
i and x−i , we have

Td

d∏
i=1

`i = (Td`1) · `2 · · · `d + `1(Td`2)`3 · · · `d + · · ·+ `1 · · · `d−1(Td`d).

Also Td(x
+
i + x−i ) = x+

i + x−i and Td(x
+
i − x

−
i ) = −(x+

i − x
−
i ). From these we

easily calculate that TdPδ = (d − 2|δ|)Pδ, where |δ| is the number of minuses

in δ. Since L(ρj)η is the span of Pδ with |δ| = j, it is exactly the eigenspace of

Td with eigenvalue (d− 2j). This finishes the proof. �

Combining Theorem 6.5 and (6.11) with Proposition 8.3, we get

Corollary 8.4. Suppose d ≥ max{2g′ − 1, 2g}. Let D ∈ Xd(k). Then

Ir(u, hD) =


∑d
i,j=0(d− 2j)r Tr(Froba, (Ki)a ⊗ (Kj)a)

u = invD(a),
a ∈ AD(k),

0 otherwise.

8.2. Direct image of fNd . Recall the moduli space Nd defined in Sec-

tion 3.2.2 for d ∈ Σd. It carries a local system Ld; see Section 3.3.1.

Proposition 8.5. Let d ≥ 2g′− 1 and d ∈ Σd. Then there is a canonical

isomorphism

(8.8) RfNd,∗Ld
∼= (Kd11 �Kd12)|Ad .

Proof. The condition d ≥ 2g′−1 does not imply that fNd is small. Never-

theless we shall show that the complex Kd := RfNd,∗Ld is the middle extension

from its restriction to B := Xd ×PicdX
Xd ⊂ Ad. By Proposition 3.1(2), Nd is

smooth, hence Ld[dimNd] is Verdier self-dual up to a Tate twist. By Propo-

sition 3.1(3), fNd is proper, hence the complex Kd[dimNd] is also Verdier

self-dual up to a Tate twist. The morphism fNd is finite over the open stra-

tum B; therefore, Kd|B is concentrated in degree 0. The complement Ad − B
is the disjoint union of C = {0} × Xd and C′ = Xd × {0}. We compute the

restriction Kd|C .
When d11 < d22, by the last condition in the definition of Nd, ϕ22 is al-

lowed to be zero but ϕ11 is not. The fiber of fNd over a point (0, D) ∈ C
is of the form Xd11 × add−1

d12,d21
(D), where addj,d−j : Xj × Xd−j → Xd is
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the addition map. We have (Kd)(0,D) = H∗(Xd11 ⊗k k, Ld11) ⊗ M , where

M = H0(add−1
d12,d21

(D)⊗k k, Ld12) is a finite-dimensional vector space. We have

H∗(Xd11 ⊗k k, Ld11) ∼=
∧d11(H1(X ⊗k k, LX′/X))[−d11], which is concentrated

in degree d11, and is zero for d11 > 2g−2. Therefore, (Kd)(0,D) is concentrated

in some degree ≤ 2g − 2, which is smaller than codimAdC = d− g + 1.

When d11 ≥ d22, ϕ11 may be zero but ϕ22 is nonzero. The fiber of fNd over

a point (0, D) ∈ C is of the form Xd22 × add−1
d12,d21

(D). For (D22, D12, D21) ∈
Xd22×add−1

d12,d21
(D), its image in Picd11X is OX(D−D22); therefore, the restric-

tion of Ld11 to f−1
Nd (0, D) is isomorphic to L−1

d22
on the Xd22 factor. Therefore,

(Kd)(0,D) = H∗(Xd22 ⊗k k, L
−1
d22

)⊗H0(add−1
d12,d21

(D)⊗k k, Ld12), which is again

concentrated in some degree ≤ 2g − 2 < codimAdC = d− g + 1.

The same argument shows that the stalks of Kd over C′ are concentrated

in some degree ≤ 2g−2 < codimAdC′ = d−g+1. Using Verdier self-duality of

Kd[dimNd], we conclude that Kd is the middle extension from its restriction

to B.

By Proposition 3.1(3) and the Kunneth formula, we have

Kd|B ∼= addd11,d22,∗(Ld11 �Q`)� addd12,d21,∗(Ld12 �Q`).

To prove the proposition, it suffices to give a canonical isomorphism

(8.9) addj,d−j,∗(Lj �Q`) ∼= Kj |Xd

for every 0 ≤ j ≤ d. Both sides of (8.9) are middle extensions from X◦d ; we

only need to give an isomorphism between their restrictions to X◦d . Over X◦j ,

the local system Lj is given by the representation π1(X◦j ) → π1(X)j o Sj �
Gal(X ′/X)j o Sj ∼= {±1}j o Sj → {±1}, which is nontrivial on each fac-

tor Gal(X ′/X) and trivial on the Sj-factor. The finite étale cover add◦j,d−j :

(Xj ×Xd−j)
◦ → X◦d (restriction of addj,d−j to X◦d) is the quotient Xd,◦/Sj,d−j

where Sj,d−j ⊂ Sd is the subgroup defined in Section 8.1.1. Therefore, the

local system add◦j,d−j,∗(Lj � Q`) corresponds to the representation ρj of Γd,

and add◦j,d−j,∗(Lj �Q`) ∼= L(ρj) as local systems over X◦d . This completes the

proof of (8.9), and the proposition is proved. �

Combining Propositions 8.2 and 8.5, we get

Corollary 8.6. Assume d ≥ 2g′− 1. Then there is a canonical isomor-

phism

RfM,∗Q`
∼=
⊕
d∈Σd

RfNd,∗Ld

such that the (i, j)-grading of the left-hand side appearing in (8.4) corresponds

to the (d11, d12)-grading on the right-hand side.
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8.3. Proof of Theorem 8.1. By Corollary 3.3 and (2.16), both Jr(u, hD)

and Ir(u, hD) vanish when u is not of the form invD(a) for a ∈ AD(k). We

only need to prove (8.1) when u = invD(a) for a ∈ AD(k). In this case we have

(log q)−rJr(u, hD)

=
∑
d∈Σd

(2d12 − d)r Tr
Ä
Froba,

Ä
RfNd,∗Ld

ä
a

ä
(Corollary 3.3)

=
d∑

d11,d12=0

(2d12 − d)r Tr (Froba, (Kd11)a ⊗ (Kd12)a) (Prop. 8.5)

=
d∑

i,j=0

(d− 2j)r Tr (Froba, (Ki)a ⊗ (Kj)a) (r is even)

= Ir(u, hD) (Corollary 8.4).

Therefore, (8.1) is proved. By (2.14) and (6.10), (8.1) implies (8.2).

9. Proof of the main theorems

In this section we complete the proofs of our main results stated in the

introduction.

9.1. The identity (log q)−rJr(f) = Ir(f) for all Hecke functions. By The-

orem 8.1, we have (log q)−rJr(f) = Ir(f) for all f = hD, where D is an effective

divisor with deg(D) ≥ max{2g′−1, 2g}. Our goal in this subsection is to show

by some algebraic manipulations that this identity holds for all f ∈H .

We first fix a place x ∈ |X|. Recall the Satake transform identifies Hx =

Q[hx] with the subalgebra of Q[t±1
x ] generated by hx = tx + qxt

−1
x . For n ≥ 0,

we have Satx(hnx) = tnx + qxt
n−2
x + · · ·+ qn−1

x t−n+2
x + qnx t

−n
x .

Lemma 9.1. Let E be any field containing Q. Let I be a nonzero ideal of

Hx,E := Hx ⊗Q E, and let m be a positive integer. Then

I + SpanE{hmx, h(m+1)x, . . .} = Hx,E .

Proof. Let t = q
−1/2
x tx. Then hnx = q

n/2
x Tn where Tn = tn + tn−2 + · · ·+

t2−n + t−n for any n ≥ 0. It suffices to show that I + SpanE{Tm, Tm+1, . . .} =

Hx,E .

Let π : Hx,E → Hx,E/I be the quotient map. Let Hm,E ⊂ Hx,E be the

E-span of tn + t−n for n ≥ m. Note that Tn − Tn−2 = tn + t−n; therefore, it

suffices to show that π(Hm,E) = Hx,E/I for all m. To show this, it suffices to

show the same statement after base change from E to an algebraic closure E.

From now on we use the notation Hx, I and Hm to denote their base changes

to E.
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To show that π(Hm) = Hx/I, we take any nonzero linear function ` :

Hx/I → E. We only need to show that `(π(tn + t−n)) 6= 0 for some n ≥ m.

We prove this by contradiction: suppose `(π(tn + t−n)) = 0 for all n ≥ m.

Let ν : Gm → A1 = Spec Hx be the morphism given by t 7→ T = t+ t−1.

This is the quotient by the involution σ(t) = t−1. Consider the finite subscheme

Z = Spec(Hx/I) and its preimage ‹Z = ν−1(Z) in Gm. We have OZ =

Hx/I = Oσ
Z̃
⊂ O

Z̃
. One can uniquely extend ` to a σ-invariant linear function˜̀ : O

Z̃
→ E. Note that O

Z̃
is a product of the form E[t]/(t− z)dz for a finite

set of points z ∈ E×, and that z ∈ ‹Z if and only if σ(z) = z−1 ∈ ‹Z. Any linear

function ˜̀ on O
Z̃

, when pulled back to OGm = E[t, t−1], takes the form

E[t, t−1] 3 f 7−→
∑
z∈Z̃

(Dzf)(z)

with Dz =
∑
j≥0 cj(z)(t

d
dt)

j (finitely many terms) a differential operator on

Gm with constant coefficients cj(z) depending on z. The σ-invariance of ˜̀ is

equivalent to

(9.1) cj(z) = (−1)jcj(z
−1) for all z ∈ ‹Z and j.

Evaluating at f = tn + t−n, we get that

`(π(tn + t−n)) =
∑
z∈Z̃

Pz(n)zn + Pz(−n)z−n,

where Pz(T ) =
∑
j cj(z)T

j ∈ E[T ] is a polynomial depending on z. The

symmetry (9.1) implies Pz(T ) = Pz−1(−T ). Using this symmetry, we may

collect the terms corresponding to z and z−1 and re-organize the sum above

as

`(π(tn + t−n)) = 2
∑
z∈Z̃

Pz(n)zn = 0 for all n ≥ m.

By linear independence of φa,z : n 7→ nazn as functions on {m,m+1,m+2, . . .},
we see that all polynomials Pz(T ) are identically zero. Hence ˜̀= 0 and ` = 0,

which is a contradiction! �

Theorem 9.2. For any f ∈H , we have the identity

(log q)−rJr(f) = Ir(f).

Proof. Let H̃` be the image of H ⊗Q` in EndQ`(V
′)×EndQ`(A⊗Q`)×

Q`[PicX(k)]ιPic . Denote the quotient map H ⊗Q` � H̃` by a. Then for any

x ∈ |X|, H̃` ⊂ EndHx⊗Q`(V
′ ⊕ A ⊗ Q` ⊕ Q`[PicX(k)]ιPic). The latter being

finitely generated over Hx ⊗ Q` by Lemma 7.13 (or rather, the analogous

assertion for V ′), H̃` is also a finitely generated Hx ⊗Q`-module and hence a

finitely generated Q`-algebra. Clearly for f ∈H , Ir(f) and Jr(f) only depend
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on the image of f in H̃`. Let H † ⊂H be the linear span of the functions hD
for effective divisors D such that degD ≥ max{2g′ − 1, 2g}. By Theorem 8.1,

we have (log q)−rJr(f) = Ir(f) for all f ∈ H †. Therefore, it suffices to show

that the composition H † ⊗Q` →H ⊗Q`
a−→ H̃` is surjective.

Since H̃` is finitely generated as an algebra, there exists a finite set S ⊂ |X|
such that {a(hx)}x∈S generate H̃`. We may enlarge S and assume that S

contains all places with degree ≤ max{2g′ − 1, 2g}. Let y ∈ |X| − S. Then

for any f ∈ HS = ⊗x∈SHx, we have fhy ∈ H †. Therefore, a(H † ⊗ Q`) ⊃
a(HS ⊗ Q`)a(hy) = H̃`a(hy). In other words, a(H † ⊗ Q`) contains the ideal

I generated by the a(hy) for y /∈ S.

We claim that the quotient H̃`/I is finite dimensional over Q`. Since

H̃` is finitely generated over Q`, it suffices to show that Spec(H̃`/I) is finite.

Combining Theorem 7.16 and (7.19), Spec H̃` = Spec H`
′ ∪ Spec Haut,Q` =

ZEis,Q` ∪ Z ′r0,` ∪ Z0
0,`. Let σ : H̃`/I → Q` be a Q`-point of Spec(H̃`/I). If

σ lies in ZEis,Q` , then the composition H → H̃`/I
σ−→ Q` factors as H

Sat−−→
Q[PicX(k)]

χ−→ Q` for some character χ : PicX(k) → Q×` . Since hy vanishes in

H̃`/I for any y /∈ S, we have χ(Sat(hy)) = χ(ty) + qyχ(t−1
y ) = 0 for all y /∈ S,

which implies that χ(ty) = ±(−qy)1/2 for all y /∈ S. Let χ′ : PicX(k) → Q×`
be the character χ′ = χ · q− deg /2. Then χ′ is a character with finite image

satisfying χ′(ty) = ±
√
−1 for all but finitely y. This contradicts Chebotarev

density since there should be a positive density of y such that χ′(ty) = 1.

Therefore, Spec(H̃`/I) is disjoint from ZEis,Q` , hence Spec(H̃`/I)red ⊂ Z ′r0,` ∪
Z0

0,`, hence finite.

Let a : H ⊗ Q`
a−→ H̃` → H̃`/I be the quotient map. For each x ∈ |X|,

consider the surjective ring homomorphism Hx⊗Q` → a(Hx⊗Q`). Note that

H † ∩Hx is spanned by elements of the form hnx for n deg(x) ≥ max{2g′ −
1, 2g}. Since a(Hx ⊗ Q`) ⊂ H̃`/I is finite dimensional over Q`, Lemma 9.1

implies that (H †∩Hx)⊗Q` → a(Hx⊗Q`) is surjective. Therefore, a(H †⊗Q`)

contains a(Hx ⊗ Q`) for all x ∈ |X|. Since a is surjective, a(Hx ⊗ Q`) (all

x ∈ |X|) generate the image H̃`/I as an algebra, hence a(H † ⊗Q`) = H̃`/I.

Since a(H †⊗Q`) already contains I, we conclude that a(H †⊗Q`) = H̃`. �

9.1.1. Proof of Theorem 1.8. Apply Theorem 9.2 to the unit function h =

1K . We get

(θµ∗ [ShtµT ], θµ∗ [ShtµT ])Sht′rG
= (log q)−rJr(1K).

We then apply Corollary 2.5 to write the right-hand side using the r-th deriv-

ative of L(η, s), as desired.

Remark 9.3. Let r = 0. Note that ShtµT , resp. Sht′rG, is the constant

groupoid BunT (k), resp. BunG(k). We write θ∗[BunT (k)] for θµ∗ [ShtµT ], as an
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element in C∞c (BunG(k),Q). The analogous statement of Theorem 1.8 should

be

(9.2) 〈θ∗[BunT (k)], θ∗[BunT (k)]〉BunG(k) = 4L(η, 0) + q − 2.

Here the left side 〈−,−〉BunG(k) is the inner product on C∞c (BunG(k),Q) de-

fined such that the characteristic functions {1[E]}E∈BunG(k) are orthogonal to

each other and that

〈1[E],1[E]〉BunG(k) =
1

# Aut(E)
.

The equality (9.2) can be proved directly. We leave the detail to the reader.

9.2. Proof of Theorem 1.6. The theorem was formulated as an equality

in Eπ,λ, but for the proof we shall extend scalars from Q` to Q` and use the

decomposition (7.24) instead. For any embedding ι : Eπ ↪→ Q`, we have

the point m(π, ι) ∈ Zcusp(Q`) corresponding to the homomorphism H
λπ−→

Eπ
ι−→ Q`. To prove the theorem, it suffices to show that for all embeddings

ι : Eπ ↪→ Q`, we have an identity in Q`,

|ωX |
2(log q)r

ι(L (r)(πF ′ , 1/2)) =
(
[ShtµT ]m(π,ι), [ShtµT ]m(π,ι)

)
Q`
,

where (·, ·)Q` is the Q`-bilinear extension of the cup product pairing (7.22)

on V ′. In other words, for any everywhere unramified cuspidal automorphic

Q`-representation π of G(AF ) that corresponds to the homomorphism λπ :

HQ`
→ Q`, we need to show

(9.3)
|ωX |

2(log q)r
L (r)(πF ′ , 1/2) =

(
[ShtµT ]mπ , [ShtµT ]mπ

)
Q`
,

where mπ = ker(λπ) is the maximal ideal of HQ`
, and [ShtµT ]mπ is understood

to be zero if mπ /∈ Z ′r0,`(Q`).

As in the proof of Theorem 9.2, let H̃` be the image of HQ` in EndQ`(V
′)×

EndQ`(A⊗Q`)×Q`[PicX(k)]ιPic . By Theorem 7.16 and (7.19), we may write

Spec H̃` as a disjoint union of closed subsets

(9.4) Spec H̃`
red

= ZEis,Q`
∐ ‹Z0,`,

where ‹Z0,` = Z ′r0,` ∪ Z0
0,` is a finite collection of closed points. This gives a

product decomposition of the ring H̃`

(9.5) H̃` = ›H`,Eis × ›H`,0

with Spec ›H red
`,Eis = ZEis,Q` and Spec ›H red

`,0 = ‹Z0,`. For any element h ∈ ›H`,0,

we view it as the element (0, h) ∈ H̃`. By Corollary 7.17, for any h ∈ ›H`,0 we
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have

Ir(h) =
∑

m∈Z′r
0,`

(Q`)

(
[ShtT ]m, h ∗ [ShtT ]m

)
.(9.6)

Extending by linearity, the above formula also holds for all h ∈ ›H`,0 ⊗Q` Q`.

Note that the linear function h 7→ ([ShtT ]m, h ∗ [ShtT ]m) on ›H`,0 ⊗ Q` factors

through the localization ›H`,0 ⊗ Q` → ( ›H`,0 ⊗ Q`)m (viewing m as a maximal

ideal of ›H`,0 ⊗Q`).

On the other hand, let ĨEis be the ideal of H̃` generated by the image of

IEis. We have (0, h) ∈ ĨEis. By Theorem 4.7, for any h ∈ ›H`,0 ⊗Q` we have

Jr(h) =
∑

π∈Zcusp(Q`)

dr

dsr

∣∣∣∣
s=0

Jπ((0, h))(9.7)

=
∑

π∈Zcusp(Q`)

|ωX |
2

λπ(h)L (r)(πF ′ , 1/2).

By Lemma 7.15(3), Zcusp(Q`) = Z0
0,`(Q`), which hence can be viewed as a

subset of ‹Z0,`. Comparing the right-hand side of (9.6) and (9.7), and using

Theorem 9.2, for any h ∈ ›H`,0 ⊗Q` we get

(9.8) ∑
m∈Zr

0,`
(Q`)

(
[ShtT ]m, h ∗ ShtT ]m

)
=

∑
π∈Zcusp(Q`)

|ωX |
2(log q)r

λπ(h)L (r)(πF ′ , 1/2).

Since ›H`,0⊗Q` is an artinian algebra, we have a canonical decomposition

into local artinian algebras:

(9.9) ›H`,0 ⊗Q`
∼=

∏
m∈Z̃0,`(Q`)

( ›H`,0 ⊗Q`)m.

As linear functions on ›H`,0⊗Q`, the m-summand of the left side of (9.8) factors

through ( ›H`,0 ⊗ Q`)m while the π-summand of the right side of (9.8) factors

through ( ›H`,0 ⊗Q`)mπ . By the decomposition (9.9), we conclude that

• If m ∈ Z ′r0,`(Q`)− Zcusp(Q`), then for any h ∈ ›H`,0 ⊗Q`,

([ShtT ]m, h ∗ [ShtT ]m)Q`
= 0.

• If m ∈ Z ′r0,`(Q`)∩Zcusp(Q`), i.e., there is a (necessarily unique) π ∈ Zcusp(Q`)

such that m = mπ, then for any h ∈ ›H`,0 ⊗Q`, we have

λπ(h)
|ωX |

2(log q)r
L (r)(πF ′ , 1/2) = ([ShtT ]mπ , h ∗ [ShtT ]mπ)Q`

.
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In particular, taking h = 1 we get

|ωX |
2(log q)r

L (r)(πF ′ , 1/2) = ([ShtT ]mπ , [ShtT ]mπ)Q`
.

• If π ∈ Zcusp(Q`)− Z ′r0,`(Q`), then

L (r)(πF ′ , 1/2) = 0.

These together imply (9.3), which finishes the proof of Theorem 1.6.

9.3. The Chow group version of the main theorem. In Section 1.4 we de-

fined an H -module W equipped with a perfect symmetric bilinear pairing (·, ·).
Recall that W̃ is the H -submodule of Chc,r(Sht′rG)Q generated by θµ∗ [ShtµT ],

and W is by definition the quotient of W̃ by the kernel W̃0 of the intersection

pairing.

Corollary 9.4 (of Theorem 9.2). The action of H on W factors through

Haut. In particular, W is a cyclic Haut-module and hence finitely generated

module over Hx for any x ∈ |X|.

Proof. Suppose f ∈ H is in the kernel of H → Haut. Then Jr(f) = 0,

hence Ir(f) = 0 by Theorem 9.2. In particular, for any h ∈ H , we have

Jr(hf) = 0. Therefore, 〈h ∗ θµ∗ [ShtµT ], f ∗ θµ∗ [ShtµT ]〉 = Ir(hf) = 0. This implies

that f ∗ θµ∗ [ShtµT ] ∈ W̃0, hence f ∗ θµ∗ [ShtµT ] is zero in W , i.e., f acts as zero

on W . �

9.3.1. Proof of Theorem 1.1. By the decomposition (7.20), we have an

orthogonal decomposition

W = WEis ⊕Wcusp

with Supp(WEis) ⊂ ZEis and Supp(Wcusp) ⊂ Zcusp. Since Wcusp is a finitely

generated Haut-module with finite support, it is finite dimensional over Q. By

Lemma 7.15, Zcusp is the set of unramified cuspidal automorphic representa-

tions in A, which implies the finer decomposition (1.5). Since W is a cyclic

Haut-module, we have dimEπ Wπ ≤ dimEπ Haut,π = 1 by the decomposition in

Lemma 7.15(1).

9.3.2. Proof of Theorem 1.2. Pick any place λ of Eπ over `. Then by the

compatibility of the intersection pairing and the cup product pairing under the

cycle class map, we have

([ShtµT ]π, [ShtµT ]π)π = ([ShtµT ]π,λ, [ShtµT ]π,λ)π,λ,

both as elements in the local field Eπ,λ. Therefore, Theorem 1.2 follows from

Theorem 1.6.
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Appendix A. Results from intersection theory

In this appendix, we use Roman letters X,Y, V,W, etc to denote algebraic

stacks over a field k. In particular, X does not mean an algebraic curve. All

algebraic stacks we consider are locally of finite type over k.

A.1. Rational Chow groups for Deligne–Mumford stacks.

A.1.1. Generalities about intersection theory on stacks. We refer to [14]

for the definition of the Chow group Ch∗(X) of an algebraic stack X over k.

For a Deligne–Mumford stack of finite type over k, the rational Chow

group Ch∗(X)Q can be defined in a more naive way using Q-coefficient cycles

modulo rational equivalence; see [25].

A.1.2. Chow group of proper cycles. Let X be a Deligne–Mumford stack

locally of finite type over k. Let Zc,i(X)Q denote the Q-vector space spanned

by irreducible i-dimensional closed substacks Z ⊂ X that are proper over k.

Let Chc,i(X)Q be the quotient of Zc,i(X)Q modulo rational equivalence that

comes from rational functions on cycles that are proper over k. Equivalently,

Chc,i(X)Q = lim−→Y⊂X Chi(Y )Q where Y runs over closed substacks of X that

are proper over k, partially ordered by inclusion.

From the definition, we see that if X is exhausted by open substacks

X1 ⊂ X2 ⊂ · · · , then we have

Chc,i(X)Q ∼= lim−→
n

Chc,i(Xn)Q.

A.1.3. The degree map. When X is a Deligne–Mumford stack, we have a

degree map

deg : Chc,0(X)Q −→ Q.

Suppose x ∈ X is a closed point with residue field kx and automorphism group

Aut(x) (a finite group scheme over kx). Let |Aut(x)|kx be the order of Aut(x)

as a finite group scheme over kx. Let [x] ∈ Chc,0(X)Q be the cycle class of the

closed point x. Then

deg([x]) = [kx : k]/|Aut(x)|kx .

A.1.4. Intersection pairing. For the rest of Section A.1, we assume that

X is a smooth separated Deligne–Mumford stack, locally of finite type over k

with pure dimension n. There is an intersection product

(−) ·X (−) : Chc,i(X)Q × Chc,j(X)Q −→ Chc,i+j−n(X)Q

defined as follows. For closed substacks Y1 and Y2 of X that are proper over k,

the refined Gysin map attached to the regular local immersion ∆ : X → X×X
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gives an intersection product

Chi(Y1)Q × Chj(Y2)Q−→Chi+j−n(Y1 ∩ Y2)Q −→ Chc,i+j−n(X)Q

(ζ1, ζ2) 7−→∆!(ζ1 × ζ2).

Note that Y1∩Y2 = Y1×XY2 → Y1 is proper, hence Y1∩Y2 is proper over k. Tak-

ing direct limits for Y1 and Y2, we get the intersection product on Chc,∗(X)Q.

Composing with the degree map, we get an intersection pairing

(A.1) 〈·, ·〉X : Chc,j(X)Q × Chc,n−j(X)Q −→ Q

defined as

〈ζ1, ζ2〉X = deg(ζ1 ·X ζ2), ζ1 ∈ Chc,j(X)Q, ζ2 ∈ Chc,n−j(X)Q.

A.1.5. The cycle class map. For any closed substack Y ⊂ X that is proper

over k, we have the usual cycle class map into the `-adic (Borel-Moore) ho-

mology of Y

clY : Chj(Y )Q −→ HBM
2j (Y ⊗k k,Q`)(−j) ∼= H2j(Y ⊗k k,Q`)(−j).

Composing with the proper map i : Y ↪→ X, we get

clY,X : Chj(Y )Q
clY−−→ H2j(Y ⊗k k,Q`)(−j)

(A.2)

i∗−→ H2j(X ⊗k k,Q`)(−j) ∼= H2n−2j
c (X ⊗k k,Q`)(n− j),

where the last isomorphism is the Poincaré duality for X. Taking inductive

limit over all such proper Y , we get a cycle class map for proper cycles on X

clX : Chc,j(X)Q = lim−→
Y

Chj(Y )Q
lim−→ clY,X
−−−−−→ H2n−2j

c (X ⊗k k,Q`)(n− j).

This map intertwines the intersection pairing (A.1) with the cup product pair-

ing

H2j
c (X ⊗k k,Q`)(j)×H2n−2j

c (X ⊗k k,Q`)(n− j)
∪−→ H2n

c (X ⊗k k,Q`)(n)
∩[X]−−−→ Q`.

A.1.6. A ring of correspondences. Let

cChn(X ×X)Q = lim−→
Z⊂X×X,pr1:Z−→X is proper

Chn(Z)Q.

For closed substacks Z1, Z2 ⊂ X ×X that are proper over X via the first

projections, we have a bilinear map

Chn(Z1)Q × Chn(Z2)Q−→Chn((Z1 ×X) ∩ (X × Z2))Q
pr13∗−−−→ cChn(X ×X)Q

(ρ1, ρ2) 7−→ ρ1 ∗ ρ2 := pr13∗
Ä
(ρ1 × [X]) ·X3 ([X]× ρ2)

ä
.
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Note that (Z1 ×X) ∩ (X × Z2) = Z1 ×pr2,X,pr1 Z2 is proper over Z1, hence is

proper over X via the first projection. Taking direct limit over such Z1 and

Z2, we get a convolutiton product

(−) ∗ (−) : cChn(X ×X)Q × cChn(X ×X)Q −→ cChn(X ×X)Q.

This gives cChn(X ×X)Q the structure of an associative Q-algebra.

For a closed substack Z ⊂ X × X such that pr1 is proper, and a closed

substack Y ⊂ X that is proper over k, we have a bilinear map

Chn(Z)Q × Chi(Y )Q−→Chi(Z ∩ (Y ×X))Q
pr2∗−−→ Chc,i(X)Q

(ρ, ζ) 7−→ ρ ∗ ζ := pr2∗
Ä
ρ ·X×X (ζ × [X])

ä
.

Note here that Z ∩ (Y × X) = Z ×pr1,X Y is proper over Y , hence is itself

proper over k. Taking direct limit over such Z and Y , we get a bilinear map

cChn(X ×X)Q × Chc,i(X)Q −→ Chc,i(X)Q.

This defines an action of the Q-algebra cChn(X ×X)Q on Chc,i(X)Q.

A.2. Graded K ′0 and Chow groups for Deligne–Mumford stacks.

A.2.1. A naive filtration on K ′0(X)Q. For an algebraic stack X over k, let

Coh(X) be the abelian category of coherent OX -modules on X. Let K ′0(X)

denote the Grothendieck group of Coh(X).

Let Coh(X)≤n be the full subcategory of coherent sheaves of OX -modules

with support dimension ≤ n. We define K ′0(X)naive
Q,≤n to be the the image of

K0(Coh(X)≤n)Q → K ′0(X)Q. They give an increasing filtration on K ′0(X)Q.

This is not yet the correct filtration to put on K ′0(X)Q, but let us first review

the case where X is a scheme.

Let X be a scheme of finite type over k. Recall from [6, §15.1.5] that

there is a natural graded map φX : Ch∗(X)Q → Grnaive
∗ K ′0(X)Q sending the

class of an irreducible subvariety V ⊂ X of dimension n to the image of OV
in Grnaive

n K ′0(X)Q. This map is in fact an isomorphism, with inverse ψX :

Grnaive
∗ K ′0(X)Q → Ch∗(X)Q given by the leading term of the Riemann–Roch

map τX : K ′0(X)Q → Ch∗(X)Q. For details, see [6, Th. 18.3 and proof of

Cor. 18.3.2]. These results also hold for algebraic spaces X over k by Gillet [7].

A.2.2. A naive attempt to generalize the map ψX to stacks is the follow-

ing. Let Zn(X)Q be the naive cycle group of X, namely, the Q-vector space

with a basis given by integral closed substacks V ⊂ X of dimension n.

We define a linear map suppX : K0(Coh(X)≤n)Q → Zn(X)Q sending a

coherent sheaf F to
∑
V mV (F)[V ], where V runs over all integral substacks

of X of dimension n and mV (F) is the length of F at the generic point of V .

Clearly this map kills the image of K0(Coh(X)≤n−1)Q, but what is not

clear is whether or not the composition K0(Coh(X)≤n)Q
suppX−−−−→ Zn(X)Q →
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Chn(X)Q factors through K ′0(X)naive
Q,≤n. For this reason we will look for another

filtration on K ′0(X)Q.5

When X is an algebraic space, the map suppX does induce a map

Grnaive
n K ′0(X)Q −→ Chn(X)Q,

and it is the same as the map ψX , the top term of the Riemann–Roch map.

A.2.3. Another filtration on K ′0(X)Q. Now we define another filtration on

K ′0(X)Q whenX is a Deligne–Mumford stack satisfying the following condition.

Definition A.1. Let X be a Deligne–Mumford stack over k. A finite flat

surjective map U → X from an algebraic space U of finite type over k is called

a finite flat presentation of X. We say that X admits a finite flat presentation

if such a map U → X exists.

We define K ′0(X)Q,≤n to be the subset of elements α ∈ K ′0(X)Q such that

there exists a finite flat presentation π : U → X such that π∗α ∈ K ′0(U)naive
Q,≤n.

We claim that K ′0(X)Q,≤n is a Q-linear subspace of K ′0(X)Q. In fact,

for any two elements α1, α2 ∈ K ′0(X)Q,≤n, we find finite flat presentations

πi : Ui → X such that π∗i αi ∈ K ′0(Ui)
naive
Q,≤n for i = 1, 2. Then the pullback

of the sum α1 + α2 to the finite flat presentation U1 ×X U2 → X lies in

K ′0(U1 ×X U2)naive
Q,≤n.

By this definition, K ′0(X)Q,≤n may not be zero for n < 0. For any neg-

ative n, K ′0(X)Q,≤n consists of those classes that vanish when pulled back to

some finite flat presentation U → X.

Lemma A.2. When X is an algebraic space of finite type over k, the

filtration K ′0(X)Q,≤n is the same as the naive one K ′0(X)naive
Q,≤n.

Proof. To see this, it suffices to show that for a finite flat surjective map

π : U → X of algebraic spaces over k, and an element α ∈ K ′0(X)Q, if π∗α ∈
K ′0(U)naive

Q,≤n, then α ∈ K ′0(X)naive
Q,≤n. In fact, suppose α ∈ K ′0(X)naive

Q,≤m for some

m > n. Let αm be its image in Grnaive
m K ′0(X)Q. Since the composition π∗π

∗ :

Chm(X)Q → Chm(U)Q → Chm(X)Q is the multiplication by deg(π) 6= 0 on

each connected component, it is an isomorphism and hence π∗ : Chm(X)Q →
Chm(U)Q is injective. By the compatibility between the isomorphism ψX :

Grnaive
m K ′0(X)Q ∼= Chm(X)Q and flat pullback, the map π∗ : GrmK

′
0(X)Q →

GrmK
′
0(U)Q is also injective. Now π∗(αm) = 0 ∈ Grnaive

m K ′0(U)Q because

m > n. We see that αm = 0, i.e., α ∈ K ′0(X)naive
Q,≤m−1. Repeating the argument

we see that α has to lie in K ′0(X)naive
Q,≤n. �

5Our definition in Section A.2.3 may still seem naive to experts, but it suffices for our

applications. We wonder if there is a way to put a natural λ-structure on K′0(X)Q when X

is a Deligne–Mumford stack, and then one may define a filtration on it using eigenvalues of

the Adams operations.
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For a Deligne–Mumford stack X that admits a finite flat presentation,

we denote by GrnK
′
0(X)Q the associated graded of K ′0(X)Q with respect to

the filtration K ′0(X)Q,≤n. We always have K ′0(X)naive
Q,≤n ⊂ K ′0(X)Q,≤n, but the

inclusion can be strict. For example, when X is the classifying space of a

finite group G, we have K ′0(X)Q = Rk(G)Q is the k-representation ring of

G with Q-coefficients. Any element α ∈ Rk(G)Q with virtual dimension 0

vanishes when pulled back along the finite flat map Spec k → X; therefore,

K ′0(X)Q,≤−1 ⊂ K ′0(X)Q is the augmentation ideal of classes of virtual degree 0,

and Gr0K
′
0(X)Q = Q.

A.2.4. Functoriality under flat pullback. The filtration K ′0(X)Q,≤n is func-

torial under flat pullback. Suppose f : X → Y is a flat map of relative dimen-

sion d between Deligne–Mumford stacks that admit finite flat presentations.

Then f∗ : K ′0(Y )Q → K ′0(X)Q is defined. Let α ∈ K ′0(Y )Q,≤n. We claim that

f∗α ∈ K ′0(X)Q,≤n+d. In fact, choose a finite flat presentation π : V → Y such

that π∗α ∈ K ′0(V )naive
Q,≤n. Let W = V ×Y X. Then π′ : W → X is representable,

finite flat and surjective. Although W itself may not be an algebraic space, we

may take any finite flat presentation σ : U → X and let U ′ := W ×X U . Then

U ′ is an algebraic space and ξ : U ′ = W ×X U → X is a finite flat presentation.

The map f ′ : U ′ → W → V is flat of relative dimension d between algebraic

spaces, hence f ′∗π∗α ∈ K ′0(U ′)naive
Q,≤d+n. Since f ′∗π∗α = ξ∗f∗α, we see that

f∗α ∈ K ′0(X)Q,≤n+d.

As a particular case of the above discussion, we have

Lemma A.3. Let X be a Deligne–Mumford stack that admits a finite flat

presentation. Let α ∈ K ′0(X)Q,≤n. Then for any finite flat representable map

f : X ′ → X , where X ′ is a Deligne–Mumford stack (which automatically

admits a finite flat presentation), f∗α ∈ K ′0(X ′)Q,≤n.

A.2.5. Functoriality under proper pushforward. The filtration K ′0(X)Q,≤n
is also functorial under proper representable pushforward. Suppose f : X → Y

is a proper representable map of Deligne–Mumford stacks that admit finite flat

presentations. Suppose α ∈ K ′0(X)Q,≤n. We claim that f∗α ∈ K ′0(Y )Q,≤n. Let

π : V → Y be a finite flat presentation. Let σ : U = X ×Y V → X be the

corresponding finite flat presentation of X. (U is an algebraic space because

f is representable.) Then f ′ : U → V is a proper map of algebraic spaces.

By Lemma A.3, σ∗α ∈ K ′0(U)Q,≤n = K ′0(U)naive
Q,≤n, therefore π∗f∗α = f ′∗σ

∗α ∈
K ′0(V )naive

Q,≤n, hence f∗α ∈ K ′0(Y )Q,≤n.

A.2.6. For a Deligne–Mumford stack X that admits a finite flat presen-

tation, we now define a graded map ψX : Gr∗K
′
0(X)Q → Ch∗(X)Q extending

the same-named map for algebraic spaces X.
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We may assume X is connected for otherwise both sides break up into

direct summands indexed by the connected components of X, and we can

define ψX for each component. Let π : U → X be a finite flat presentation

of constant degree d. For α ∈ K ′0(X)Q,≤n, we know from Lemma A.3 that

π∗α ∈ K ′0(U)Q,≤n. Then we define

ψX(α) :=
1

d
π∗ψU (π∗α) ∈ Chn(X)Q.

It is easy to check that thus defined, ψX is independent of the choice of the

finite flat presentation U by dominating two finite flat presentations by their

Cartesian product over X.

A.2.7. The definition of ψX is compatible with the support map suppn
in the sense that the following diagram is commutative when X is a Deligne–

Mumford stack admitting a finite flat presentation:

K0(Coh(X)≤n)Q //

suppX
��

K ′0(X)naive
Q,≤n

// K ′0(X)Q,≤n

ψX
��

Zn(X)Q // Chn(X)Q.

A.2.8. Compatibility with the Gysin map. We need a compatibility result

of ψX and the refined Gysin map. Consider a Cartesian diagram of algebraic

stacks

X ′
f ′
//

g
��

Y ′

h
��

X
f
// Y

(A.3)

satisfying the following conditions:

(1) the stack X ′ is a Deligne–Mumford stack that admits a finite flat presen-

tation;

(2) the morphism f can be factored as X
i−→ P

p−→ Y , where i is a regular local

immersion of pure codimension e , and p is a smooth relative Deligne–

Mumford type morphism of pure relative dimension e− d.

Remark A.4. Let X and Y be smooth Deligne–Mumford stacks, and let

f : X → Y be any morphism. Then we may factor f as X
(id,f)−−−→ X×Y prY−−→ Y ,

which is the composition of a regular local immersion with a smooth morphism

of Deligne–Mumford type. In this case any f always satisfies condition (2).

A.2.9. In the situation of Section A.2.8, the refined Gysin map [14,

Th. 2.1.12(xi) and end of p. 529] is defined

f ! : Ch∗(Y
′)Q −→ Ch∗−d(X

′)Q.
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We also have a map

(A.4) f∗ : K ′0(Y ′) −→ K ′0(X ′)

defined using derived pullback of coherent sheaves. Let F be a coherent sheaf

on Y ′. Then the derived tensor product f ′−1F
L
⊗(fg)−1OY g−1OX has coho-

mology sheaves only in a bounded range because for a regular local immersion

it can be computed locally by a Koszul complex. Then the alternating sum

f∗[F ] =
∑
i

(−1)i[Tor
(fg)−1OY
i (f ′−1F , g−1OX)]

is a well-defined element in K ′0(X ′). We then extend this definition by linearity

to obtain the map f∗ in (A.4).

Proposition A.5. In the situation of (A.3), assume all conditions in

Section A.2.8 are satisfied. Let n ≥ 0 be an integer. We have

(1) the map f∗ sends K ′0(Y ′)naive
Q,≤n to K ′0(X ′)Q,≤n−d and hence induces

Grnaive
n f∗ : Grnaive

n K ′0(Y ′)Q −→ Grn−dK
′
0(X ′)Q;

(2) the following diagram is commutative:

(A.5) K0(Coh(Y ′)≤n)Q

suppY ′

��

// Grnaive
n K ′0(Y ′)Q

Grnaiven f∗
// Grn−dK

′
0(X ′)Q

ψX′
��

Zn(Y ′)Q // Chn(Y ′)Q
f !

// Chn−d(X
′)Q;

(3) if Y ′ is also a Deligne–Mumford stack that admits a finite flat presentation,

then f∗ sends K ′0(Y ′)Q,≤n to K ′0(X ′)Q,≤n−d, and we have a commutative

diagram

GrnK
′
0(Y ′)Q

ψY ′
��

Grnf∗
// Grn−dK

′
0(X ′)Q

ψX′
��

Chn(Y ′)Q
f !
// Chn−d(X

′)Q.

Proof. (1) and (2). Write f = p ◦ i : X
i−→ P

p−→ Y as in condition (2)

in Section A.2.8. Let P ′ = P ×Y Y ′. For the smooth morphism p of relative

dimension e − d, p∗ sends Coh(Y ′)≤n to Coh(P ′)≤n+e−d. Then we have a

commutative diagram

K ′0(Coh(Y ′)≤n)Q

suppY ′

��

p∗
// K ′0(Coh(P ′)≤n+e−d)Q

suppP ′

��

Zn(Y ′)Q
p∗

// Zn+e−d(P
′)Q.

(A.6)
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Therefore, to prove (1) and (2) we may replace f : X → Y with i : X → P ,

hence reducing to the case f is a regular local immersion of pure codimension d.

Let α ∈ K0(Coh(Y ′)≤n)Q. Then there exists a closed n-dimensional closed

substack Y ′′ ⊂ Y ′ such that α is in the image of K ′0(Y ′′)Q. We may replace

Y ′ with Y ′′ and replace X ′ with X ′′ := X ′ ×Y ′ Y ′′. It suffices to prove the

statements (1) and (2) for X ′′ and Y ′′ for then we may pushforward along

the closed immersion X ′′ ↪→ X ′ to get the desired statements for X ′ and Y ′.

Therefore, we may assume that dimY ′ = n.

The construction of the deformation to the normal cone can be extended

to our situation; see [14, p. 529]. Let Nf be the normal bundle of the regular lo-

cal immersion f . Then the normal cone CX′Y
′ for the morphism f ′ : X ′ → Y ′

is a closed substack of g∗Nf . We denote the total space of the deformation by

M◦X′Y
′. This is a stack over P1 whose restriction to A1 is Y ′ × A1 and whose

fiber over ∞ is the normal cone CX′Y
′. Let i∞ : CX′Y

′ ↪→ M◦X′Y
′ be the

inclusion of the fiber over ∞. We have the specialization map for K-groups

Sp : K ′0(Y ′)Q
pr∗
Y ′−−−→ K ′0(Y ′ × A1)Q

∼= K ′0(M◦X′Y
′)Q/K

′
0(CX′Y

′)Q
i∗∞−−→ K ′0(CX′Y

′)Q.

Similarly, we also have a specialization map for the naive cycle groups

Sp : Zn(Y ′)Q
pr∗
Y ′−−−→ Zn+1(Y ′ × A1)Q

∼−→ Zn+1(M◦X′Y
′)Q

i!∞−−→ Zn(CX′Y
′)Q.

Here we are using the fact that n = dimY ′ = dimCX′Y
′ = dimM◦X′Y

′ − 1,

and Z∗(−)Q is the naive cycle group. For any n-dimensional integral closed

substack V ⊂ Y ′, Sp([V ]) is the class of the cone CX′∩V V ⊂ CX′Y ′.
The diagram (A.5) can be decomposed into two diagrams:

K ′0(Y ′)Q
Sp
//

suppY ′

��

K ′0(CX′Y
′)Q

suppCX′Y
′

��

s∗
// K ′0(X ′)Q,≤n−d

ψX′
��

Zn(Y ′)Q
Sp
// Zn(CX′Y

′)Q
s!
// Chn−d(X

′)Q.

The dotted arrow is conditional on showing that the image of s∗ (where s is

the embedding X ↪→ CXY ) lands in K ′0(X ′)Q,≤n−d. The left square above is

commutative: since we are checking an equality of top-dimensional cycles, we

may pass to a smooth atlas and reduce the problem to the case of schemes

for which the statement is easy. Therefore, it remains to show that the image

of s∗ lands K0(X ′)Q,≤n−d and that the right square is commutative. Since

CX′Y
′ ⊂ g∗Nf , it suffices to replace CX′Y

′ by g∗Nf and prove the same origi-

nal statements (1) and (2), but without assuming that dim g∗Nf = n. In other
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words, we have reduced the problem to the following special situation:

X ′ = X, Y ′ = Y is a vector bundle of rank d over X,

g = idX , h = idY and f = s is the inclusion of the zero section.
(A.7)

In this case, let π : U → X be a finite flat presentation, and let YU be the

vector bundle Y base changed to U . Then U and YU are both algebraic spaces.

Let sU : U ↪→ YU be the inclusion of the zero section , and let σ : YU → Y be

the projection. For any α ∈ K ′0(Y )naive
Q,≤n, we have π∗s∗α = s∗Uσ

∗α ∈ K ′0(U)Q.

We have σ∗α ∈ K ′0(YU )naive
Q,≤n. In the case of the regular embedding of algebraic

spaces sU : U ↪→ YU , s∗U sends K ′0(YU )Q,≤n to K ′0(U)Q,≤n−d by the com-

patibility of the Riemann–Roch map with the Gysin map ([6, Th. 18.3(4)]).

Therefore, π∗s∗α = s∗Uσ
∗α ∈ K ′0(U)Q,≤n−d, hence s∗α ∈ K ′0(X)Q,≤n−d.

We finally check the commutativity of (A.5) in the special case (A.7). For

any α ∈ K ′0(Coh(Y )≤n)Q, we need to check that δ = s!suppY (α)− ψX(s∗α) ∈
Chn−d(X)Q is zero. Since π∗π

∗ : Chn−d(X)Q → Chn−d(U)Q → Chn−d(X)Q
is the multiplication by deg(π) on each component of X, in particular, it

is an isomorphism and π∗ is injective. Therefore, it suffices to check that

π∗δ = 0 ∈ Chn−d(U)Q. Since π∗δ = s!
U suppYU (σ∗α) − ψUs∗U (σ∗α), we reduce

to the situation of sU : U ↪→ YU , a regular embedding of algebraic spaces. In

this case, the equality s!
U suppU = ψUs

∗
U follows from the compatibility of the

Riemann–Roch map with the Gysin map ([6, Th. 18.3(4)]).

(3) Let α∈K ′0(Y ′)Q,≤n. Then for some finite flat presentation πV : V →Y ′,

π∗V α ∈ K ′0(V )naive
Q,≤n. Let W = X ′ ×Y ′ V = X ×Y V , and let f ′′ : W → V be

the projection. Then we have a Cartesian diagram as in (A.3) with the top

row replaced by f ′′ : W → V . Since πW : W → X ′ is a finite flat surjective

map (W may not be an algebraic space because we are not assuming that f

is representable), π∗W : Chn−d(X
′)Q → Chn−d(W )Q is injective. Therefore, in

order to show that f∗α ∈ K ′0(X ′)Q,≤n−d and that ψX′f
∗α − f !ψY ′α = 0 in

Chn−d(X
′)Q, it suffices to show that π∗W f

∗α = f∗π∗V α ∈ K ′0(W )Q,≤n−d and

that π∗W (ψX′f
∗α−f !ψY ′α) = ψW f

∗(π∗V α)−f !ψV (π∗V α) is zero in Chn−d(W )Q.

Therefore, we have reduced to the case where Y ′ = V is an algebraic space.

In this case K ′0(Y ′)Q,≤n = K ′0(Y ′)naive
Q,≤n, and the statements follows from (1)

and (2). �

By applying Proposition A.5 to the diagonal map X → X×X (and taking

g, h to be the identity maps), we get the following result, which is not used in

the paper.

Corollary A.6. Let X be a smooth Deligne–Mumford stack that admits

a finite flat presentation. Then the map ψX is a graded ring homomorphism.
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A.2.10. The case of proper intersection. There is another situation where

an analog of Proposition A.5 can be easily proved. We consider a Cartesian

diagram as in (A.3) satisfying the following conditions:

(1) X ′ is a Deligne–Mumford stack, and h (hence g) is representable;

(2) the normal cone stack of f is a vector bundle stack (see [2, Def. 1.9]) of

some constant virtual rank d;

(3) there exists a commutative diagram

U

u
��

� � i
// V

v
��

X
f
// Y,

(A.8)

where U and V are schemes locally of finite type over k, u and v are smooth

surjective and i is a regular local immersion;

(4) we have dimY ′ = n and dimX ′ = n− d.

Remark A.7. Suppose X and Y are smooth stacks over k. Pick any

smooth surjective W � Y where W is a smooth scheme, and let u : U →
X ×Y W be any smooth surjective map from a smooth scheme U . Take

V = U × W . Then i = (id,prW ◦ u) : U → V = U × W is a regular lo-

cal immersion. Therefore, in this case, f satisfies condition (3) above.

If f satisfies condition (2) above, the refined Gysin map is defined; see

[14, end of p. 529 and footnote]. We only consider the top degree Gysin map

f ! : Chn(Y ′)Q −→ Chn−d(X
′)Q.

On the other hand, derived pullback by f∗ gives

f∗ : K ′0(Y ′) −→ K ′0(X ′)

as in (A.4). Here the boundedness of Tor can be checked by passing to a

smooth cover of X ′, and we may use the diagram (A.8) to reduce to the case

where f is a regular local immersion, where Tor-boundedness can be proved

by using the Koszul resolution.

Lemma A.8. Under the assumptions of Section A.2.10, we have a com-

mutative diagram

K ′0(Y ′)Q

suppY ′

��

f∗
// K ′0(X ′)Q

suppX′

��

Zn(Y ′)Q
f !
// Zn−d(X

′)Q.

Proof. The statement we would like to prove is an equality of top-dimen-

sional cycles in X ′. Such an equality can be checked after pulling back along a
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smooth surjective morphism X ′′ → X ′. We shall use this observation to reduce

the general case to the case where all members of the diagram are algebraic

spaces and that f is a regular embedding.

Let i : U → V be a regular local immersion of schemes as in condition (3)

of Section A.2.10 that covers f : X → Y . By passing to connected components

of U and V , we may assume that the maps u, v and i in (A.8) have pure

(co)dimension. Let U ′ = X ′ ×X U and V ′ = Y ′ ×Y V . Then we have a

diagram where all three squares and the outer square are Cartesian:

X ′

g

��

f ′

%%

U ′
u′
oo

i′
//

��

V ′

��

v′
// Y ′

h
��

X

f

99U
u

oo
i
// V

v
// Y.

Let α ∈ K ′0(Y ′). To show suppX′(f
∗α) − f !suppY ′(α) = 0 ∈ Zn−d(X

′)Q, it

suffices to show its pullback to U ′ is zero. We have

u′∗(suppX′(f
′∗α)− f !suppY ′(α)) = suppU ′(u

∗f∗α)− u!f !suppY ′(α)

= suppU ′(i
∗v∗α)− i!v!suppY ′(α).

(A.9)

Since v is smooth and representable, we have v!suppY ′(α) = suppV ′(v
′∗α).

Letting β = v′∗α ∈ K ′0(V ′), we get

suppU ′(i
∗v∗α)− i!v!suppY ′(α) = suppU ′(i

∗β)− i!suppV ′(β).

To show that the left-hand side of (A.9) is zero, we only need to show that

suppU ′(i
∗β) − i!suppV ′(β) = 0. Therefore, we have reduced to the following

situation:

X and Y are schemes and f is a regular local immersion.

In this case, X ′ and Y ′ are also algebraic spaces by the representability of h

and g. In this case we have suppX′ = ψX′ and suppY ′ = ψY ′ . The identity

suppX′(f
∗α) = ψX′(f

∗α) = f !ψY ′(α) = f !suppY ′(α) follows from the compat-

ibility of the Riemann–Roch map with the Gysin map ([6, Th. 18.3(4)]). �
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A.3. The octahedron lemma. We consider the following commutative di-

agram of algebraic stacks over k:

A
a
//

��

X

��

Boo

��

U // S V.oo

C //

OO

Y

OO

Doo

d

OO
(A.10)

Now we enlarge this diagram by one row and one column in the following way:

we form the fiber product of each row and place it in the corresponding entry

of the rightmost column; we form the fiber product of each column and place

it in the corresponding entry of the bottom row:

A
a

//

��

X

��

Boo

��

A×X B

��

U // S Voo U ×S V

C //

OO

Y

OO

Doo

d

OO

C ×Y D

δ

OO

C ×U A
α
// Y ×S X D ×V Boo N.

(A.11)

Finally, the lower right corner N is defined as the fiber product

(A.12)

N

��

// A×B × C ×D

��

X ×S Y ×S U ×S V // (X ×S U)× (X ×S V )× (Y ×S U)× (Y ×S V ).

We denote the lower right corner of the diagram by R.

We now form the fiber product of the rightmost column of (A.11),

(C ×Y D)×(U×SV ) (A×X B) //

��

A×X B

��

C ×Y D
δ

// U ×S V

(A.13)
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and the fiber product of the bottom row of (A.11)

(C ×U A)×(Y×SX) (D ×V B)

��

// D ×V B

��

C ×U A
α

// Y ×S X.

(A.14)

Lemma A.9. There is a canonical isomorphism between N and the stacks

that appear in the upper left corners of (A.13) and (A.14):

(A.15) (C ×Y D)×(U×SV ) (A×X B) ∼= N ∼= (C ×U A)×(Y×SX) (D ×V B).

Proof. For the first isomorphism, we consider the diagram (to shorten

notation, we use · instead of ×)

(A.16)

(C ·Y D) ·(U ·SV ) (A ·X B)

��

// (C ·Y D) · (A ·X B)

��

// A ·B · C ·D

��

Y ·S X ·S U ·S V //

ww

(Y ·S U ·S V ) · (X ·S U ·S V ) //

tt ��

R

��

U ·S V
∆
// (U ·S V )2 Y ·X

∆Y ·∆X
// Y 2 ·X2.

Here all the squares are Cartesian. The upper two squares combined give the

square in (A.12). This shows that the left-hand side of (A.15) is canonically

isomorphic to N .

For the second isomorphism, we argue in the same way using the following

diagram instead:

(A.17)

(C ·U A) ·(Y ·SX) (D ·V B)

��

// (C ·U A) · (D ·V B)

��

// A ·B · C ·D

��

Y ·S X ·S U ·S V //

ww

(Y ·S X ·S U) · (Y ·S X ·S V ) //

tt ��

R

��

Y ·S X
∆
// (Y ·S X)2 U · V

∆U ·∆V
// U2 · V 2.

�

There is a way to label the vertices of the barycentric subdivision of an

octahedron by the stacks introduced above. We consider an octahedron with

a north pole, a south pole and a square as the equator. We put S at the

south pole. The four vertices of the equator are labelled with A,B,D and C

clockwisely. The barycenters of the four lower faces are labeled by U, V,X, Y

so that their adjacency relation with the vertices labelled by A,B,C,D is
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consistent with the diagram (A.10). At the barycenters of the four upper faces

we put the fiber products; e.g., for the triangle with bottom edge labeled by

A,B, we put A ×X B at the barycenter of this triangle. Finally we put N at

the north pole.

Theorem A.10 (The Octahedron Lemma). Suppose we are given the

commutative diagram (A.10). Suppose further that

(1) The algebraic stacks A,C,D,U, V,X, Y and S (everybody except B, B for

bad) are smooth and equidimensional over k. We denote dimA by dA, etc.

(2) The fiber products U ×S V , Y ×S X , C ×Y D and C ×U A have expected

dimensions dU + dV − dS , etc.

(3) Each of the Cartesian squares

A×X B

��

// B

��

A
a

// X

(A.18)

D ×V B

��

// B

��

D
d

// V

(A.19)

satisfies either the conditions in Section A.2.8 or the conditions in Sec-

tion A.2.10.

(4) The Cartesian squares (A.13) and (A.14) satisfy the conditions in Sec-

tion A.2.8.

Let n = dA + dB + dC + dD − dU − dV − dX − dY + dS . Then

δ!a![B] = α!d![B] ∈ Chn(N).

Proof. Since U, S and V are smooth and pure dimensional, and U ×S V
has the expected dimension, it is a local complete intersection and we have

OU×SV ∼= OU
L
⊗OS OV .

Here we implicitly pull back the sheaves OU ,OV and OS to U ×S V using the

plain sheaf pullback. Similar argument shows that the usual structure sheaves

OY×SX ,OC×YD and OC×UA coincide with the corresponding derived tensor

products.

We now show a derived version of the isomorphism (A.15). We equip each

member of the diagrams (A.13), (A.14) and (A.12) with the derived struc-

ture sheaves, starting from the usual structure sheaves of A,B,C,D,X, Y, U, V

and S. For N , we use (A.12) to equip it with the derived structure sheaf

Oder
N := (OX

L
⊗OS OY

L
⊗OS OU

L
⊗OS OV )

L
⊗Oder

R
(OA �OB �OC �OD),
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where Oder
R is the derived structure sheaf (OX

L
⊗OS OU )� · · ·� (OY

L
⊗OS OV )

on R = (X ×S U) × · · · × (Y ×S V ). To make sense of this derived tensor

product over Oder
R , we need to work with dg categories of coherent complexes

rather than the derived category.

We claim that under the isomorphisms between both sides of (A.15)

and N , their derived structure sheaves are also quasi-isomorphic to each other.

In fact we simply put derived structures sheaves on each vertex of the dia-

gram (A.16). Since the upper two squares combined give the square in (A.12),

transitivity of the derived tensor product gives a quasi-isomorphism

(A.20) Oder
N
∼= (OC

L
⊗OY OD)

L
⊗

(OU
L
⊗OSOV )

(OA
L
⊗OX OB).

Similarly, by considering the diagram (A.17), we get a quasi-isomorphism

(A.21) Oder
N
∼= (OC

L
⊗OU OA)

L
⊗

(OY
L
⊗OSOX)

(OD
L
⊗OV OB).

Combing the isomorphisms (A.20) and (A.21), and using the fact that U×S V ,

Y ×S X, C ×Y D and C ×U A need not be derived, we get an isomorphism of

coherent complexes on N

OC×YD
L
⊗OU×SV (OA

L
⊗OX OB) ∼= OC×UA

L
⊗OY×SX (OD

L
⊗OV OB).

These are bounded complexes because the diagrams (A.18), (A.19), (A.13) and

(A.14) satisfy the conditions in Section A.2.8 or Section A.2.10. Taking classes

in K ′0(N)Q we get

(A.22) δ∗a∗OB = α∗d∗OB ∈ K ′0(N)Q.

Here a∗, d∗, α∗ and δ∗ are the derived pullback maps between K ′0-groups de-

fined using the relevant Cartesian diagrams. Now we apply Proposition A.5

to the diagrams (A.18), (A.19), (A.13) and (A.14) to conclude that both sides

of (A.22) lie in K ′0(N)Q,≤n (where n is the expected dimension of N). In case

(A.18) or (A.19) satisfies Section A.2.10 instead of Section A.2.8, the corre-

sponding statement K ′0(B)Q,≤dB → K ′0(A ×X B)Q,≤dA+dB−dX or K ′0(B)Q,≤dB
→ K ′0(D ×V B)Q,≤dD+dB−dV is automatic for dimension reasons.

Now we finish the proof. We treat only the case where (A.18) satisfies the

conditions in Section A.2.8 and (A.19) satisfies the conditions in Section A.2.10.

This is the case that we actually use in the main body of the paper, and the

other cases can be treated in the same way.

Let δ∗a∗OB and α∗d∗OB denote their images in GrnK
′
0(N)Q. Similarly,

we let a∗OB ∈ GrdA+dB−dXK
′
0(A ×X B)Q be the images of a∗OB. Applying
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Proposition A.5 three times and Lemma A.8 once we get

δ!a![B] = δ!a!suppB(OB)

= δ!ψA×XB(a∗OB) (Prop A.5(2) applied to (A.18))

= ψN (δ∗a∗OB) (Prop A.5(3) applied to (A.13))

= ψN (α∗d∗OB) (A.22)

= α!suppD×V B(d∗OB) (Prop A.5(2) applied to (A.14))

= α!d!suppB(OB) (Lemma A.8 applied to (A.19))

= α!d![B]. �

A.4. A Lefschetz trace formula. In this subsection, we will assume

• all sheaf-theoretic functors are derived functors.

A.4.1. Cohomological correspondences. We first review some basic defini-

tions and properties of cohomological correspondences following [24]. Consider

a diagram of algebraic stacks over k

(A.23) X C
←−c
oo

−→c
// Y.

We call C together with the maps ←−c and −→c a correspondence between X

and Y .

Let F ∈ Db
c(X) and G ∈ Db

c(Y ) be Q`-complexes of sheaves. A cohomo-

logical correspondence between F and G supported on C is a map

ζ :←−c ∗F −→ −→c !G

in Db
c(C).

Suppose we have a map of correspondences

X

f
��

C
←−c
oo

−→c
//

h
��

Y

g

��

S B
←−
b

oo

−→
b
// T,

where←−c and
←−
b are proper. Then we have an induced map between the group

of cohomological correspondences supported on C and on B (see [24, §1.1.6(a)])

h! : HomC(←−c ∗F ,−→c !G) −→ HomB(
←−
b ∗f!F ,

−→
b !g!G).

In particular, if S = B = T and
←−
b =

−→
b = idS , then ζ ∈ HomC(←−c ∗F ,−→c !G)

induces a map h!ζ between f!F and g!G given by the composition

(A.24) h!ζ : f!F −→ f!
←−c !
←−c ∗F f!

←−c !(ζ)−−−−−→ f!
←−c !
−→c !G = g!

−→c !
−→c !G −→ g!G.
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When S = T , B the diagonal of S, X = Y and f = g, we call C a

self-correspondence of X over S. In this case, for a cohomological corre-

spondence ζ between F and G supported on C, we also use f!ζ to denote

h!ζ ∈ HomS(f!F , f!G) defined above.

A.4.2. Fixed locus and the trace map. Suppose in the diagram (A.23) we

have X = Y . We denote X by M . Define the fixed point locus Fix(C) of C

by the Cartesian diagram

Fix(C) //

��

C

(←−c ,−→c )
��

M
∆
// M ×M.

For any F ∈ Db
c(M), there is a natural trace map (see [24, Eqn(1.2)])

τC : Hom(←−c ∗F ,−→c !F) −→ HBM
0 (Fix(C)⊗k k).

In other words, for a cohomological self-correspondence ζ of F supported on C,

there is a well-defined Borel-Moore homology class τC(ζ) ∈ HBM
0 (Fix(C)⊗k k).

A.4.3. In the situation of Section A.4.2, we further assume that both C

and M are Deligne–Mumford stacks, M is smooth and separated over k of

pure dimension n, and that F = Q`,M is the constant sheaf on M .

Using Poincaré duality for M , a cohomological self-correspondence of the

constant sheaf Q`,M supported on C is the same as a map

Q`,C =←−c ∗Q`,M −→ −→c !Q`,M
∼= −→c !DM [−2n](−n) ∼= DC [−2n](−n).

Over C ⊗k k, this is the same thing as an element in HBM
2n (C ⊗k k)(−n). In

this case, the trace map τC becomes the map

τC : HBM
2n (C ⊗k k)(−n) −→ HBM

0 (Fix(C)⊗k k).

On the other hand, we have the cycle class map

clC : Chn(C)Q−→H−2n(C,DC(−n)) ∼= Hom(←−c ∗Q`,M ,
−→c !Q`,M )

−→HBM
2n (C ⊗k k)(−n).

Therefore, any cycle ζ ∈ Chn(C)Q gives a cohomological self-correspondence

of the constant sheaf Q`,M supported on C. We will use the same notation

ζ to denote the cohomological self-correspondence induced by it. Since ∆M :

M →M ×M is a regular local immersion of pure codimension n, we have the

refined Gysin map

∆!
M : Chn(C)Q −→ Ch0(Fix(C))Q.
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Lemma A.11. Under the assumptions of Section A.4.3, we have a com-

mutative diagram

Chn(C)Q

clC
��

∆!
M

// Ch0(Fix(C))Q

clFix(C)

��

HBM
2n (C ⊗k k)(−n)

τC
// HBM

0 (Fix(C)⊗k k).

Proof. Let us base change to k and keep the same notation for M,C etc.

Tracing through the definition of τC , we see that it is the same as the cap prod-

uct with the relative cycle class of ∆(M) in H2n(M ×M,M ×M −∆(M))(n).

Then the lemma follows from [6, Th. 19.2]. Note that [6, Th. 19.2] is for

schemes over C but the argument there works in our situation as well, using

the construction of the deformation to the normal cone for Deligne-Mumford

stacks in [13, p.489]. �

A.4.4. Intersection with the graph of Frobenius. Suppose we are given a

self-correspondence C of M over S

C

h

��

←−c

~~

−→c

  

M

f
  

M

f
~~

S

satisfying

• k is a finite field;

• S is a scheme over k;

• M is a smooth and separated Deligne–Mumford stack over k of pure dimen-

sion n;

• f : M → S is proper;

• ←−c : C →M is representable and proper.

We define ShtC by the Cartesian diagram

ShtC //

��

C

(←−c ,−→c )
��

M
(id,FrM )

// M ×M.

(A.25)

Here the notation ShtC suggests that in applications ShtC will be a kind of

moduli of Shtukas. We denote the image of the fundamental class [M ] under
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(id,FrM )∗ by Γ(FrM ). Since (id,FrM ) is a regular immersion of pure codimen-

sion n, the refined Gysin map

(id,FrM )! : Chn(C)Q −→ Ch0(ShtC)Q

is defined. In particular, for ζ ∈ Chn(C)Q, we get a 0-cycle

(id,FrM )!ζ ∈ Ch0(ShtC)Q.

A.4.5. Since C → M ×S M , while (id,FrM ) : M → M ×M covers the

similar map (id,FrS) : S → S × S, the map ShtC → S factors through the

discrete set S(k), viewed as a discrete closed subscheme of S. Since ShtC →
S(k), we get a decomposition of ShtC into open and closed subschemes

ShtC =
∐

s∈S(k)

ShtC(s).

Therefore,

Ch0(ShtC)Q =
⊕

s∈S(k)

Ch0(ShtC(s))Q.

For ζ ∈ Chn(C)Q, the 0-cycle ζ ·M×M Γ(FrM ) can be written uniquely as the

sum of 0-cycles

(A.26) ((id,FrM )!ζ)s ∈ Ch0(ShtC(s))Q ∀s ∈ S(k).

Each ShtC(s) = Γ(FrMs)×Ms×Ms Cs. Since ←−c : Cs →Ms is proper and Ms is

separated (because f is proper), Cs →Ms×Ms is proper, therefore ShtC(s) is

proper over Γ(FrMs), hence it is itself proper over k because Γ(FrMs)
∼= Ms is

proper over k. Therefore, the degree map deg : Ch0(ShtC(s))Q → Q is defined.

We get an intersection number indexed by s ∈ S(k):

〈ζ,Γ(FrM )〉s := deg((id,FrM )!ζ)s ∈ Q.

The main result of this subsection is the following.

Proposition A.12. Assume all conditions in Section A.4.4 are satisfied.

Let ζ ∈ Chn(C)Q. Then for all s ∈ S(k), we have

(A.27) 〈ζ,Γ(FrM )〉s = Tr ((f!clC(ζ))s ◦ Frobs, (f!Q`)s) .

Here f!clC(ζ) := h!clC(ζ) is the endomorphism of f!Q` induced by the cohomo-

logical correspondence clC(ζ) supported on C , and (f!clC(ζ))s is its action on

the geometric stalk (f!Q`)s.

Proof. Let ′C = C but viewed as a self-correspondence of M via the

following maps:

M ′C = C

←−′c=FrM ◦←−c
oo

−→′c=−→c
// M.
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However, ′C is no longer a self-correspondence of M over S. Instead, it maps

to the Frobenius graph of S:

M

f
��

′C

′h
��

←−′c
oo

−→c
// M

f
��

S ′S
FrS
oo

id
// S.

(A.28)

Here ′S = S but viewed as a self-correspondence of S via (FrS , id) : ′S → S×S.

The map ′h : ′C → ′S is simply the original map h : C → S.

We have the following diagram where both squares are Cartesian and the

top square is (A.25):

ShtC

��

// ′C = C

(←−c ,−→c )
��

M
(id,FrM )

//

FrM
��

M ×M

(FrM ,id)
��

M
∆M
// M ×M.

(A.29)

Therefore, the outer square is also Cartesian; i.e., there is a canonical isomor-

phism Fix(′C) = ShtC .

For ζ ∈ Chn(C)Q = Chn(′C)Q, we may also view it as a cohomological

self-correspondence of Q`,M supported on ′C. We denote it by ′ζ ∈ Chn(′C)Q
to emphasize that it is supported on C ′. We claim that

(id,FrM )!ζ = ∆!
M (′ζ) ∈ Ch0(ShtC)Q.

In fact, this is a very special case of the Excess Intersection Formula [6, Th. 6.3]

applied to the diagram (A.29), where both (id,FrM ) and ∆M are regular im-

mersions of the same codimension. In particular, taking the degree of the s

components, we have

(A.30) 〈′ζ,∆∗[M ]〉s = 〈ζ,Γ(FrM )〉s for all s ∈ S(k).

By [24, Prop. 1.2.5] applied to the proper map (A.28) between correspon-
dences, we get a commutative diagram

Hom(
←−′c ∗Q`,M ,

−→′c !Q`,M )
τ′C //

′h!(−)

��

HBM
0 (Fix(′C)⊗k k)

��

⊕
s∈S(k) HBM

0 (ShtC(s)⊗k k)

deg

��

Hom(Fr∗S f!Q`,M , f!Q`,M )
τ′S // HBM

0 (S(k)⊗k k)
⊕

s∈S(k) Q`.
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Combining the with the commutative diagram in Lemma A.11 applied to ′C,

we get a commutative diagram

Chn(′C)Q
∆!
M

//

′h!◦cl′C
��

Ch0(Fix(′C))Q

��

⊕
s∈S(k) Ch0(ShtC(s))

deg

��

Hom(Fr∗S f!Q`,M , f!Q`,M )
τ′S
// HBM

0 (S(k)⊗k k)
⊕
s∈S(k) Q`.

(A.31)

Applying (A.31) to ′ζ, and using (A.30), we get that for all s ∈ S(k),

(A.32) τ′S
Ä
′h!cl′C(′ζ)

ä
s

= 〈′ζ,∆∗[M ]〉s = 〈ζ,Γ(FrM )〉s.

Here τ′S(−)s ∈ Q` denotes the s-component of the class

τ′S(−) ∈ HBM
0 (S(k)⊗k k) = ⊕s∈S(k)Q`.

Next we would like to express τ′S
Ä
′h!cl′C(′ζ)

ä
s

as a trace. The argument

works more generally when Q`,M is replaced with any F ∈ Db
c(M) and clC(ζ)

is replaced with any cohomological self-correspondence η : ←−c ∗F → −→c !F sup-

ported on C. So we will work in this generality. For any F ∈ Db
c(M), we have

a canonical isomorphism ΦF : Fr∗M F
∼→ F whose restriction to the geometric

stalk at x ∈M(k) is given by the geometric Frobenius Frobx acting on Fx. A

similar remark applies to complexes on S. Using η we define a cohomological

self-correspondence ′η of F supported on ′C as the composition

′η :
←−′c ∗F =←−c ∗ Fr∗M F

←−c ∗ΦF−−−−→←−c ∗F η−→ −→c !F =
−→′c !F .

On the other hand we have a commutative diagram

(A.33) Fr∗S f!F
adj.

∼
//

Φf!F

∼

%%

f! Fr∗M F

f!ΦFo
��

adj.
// h!
←−c ∗ Fr∗M F

h!
←−c ∗ΦFo

��

h!

←−′c ∗F //

h!(
′η)

��

f!F

f!F
adj.

// h!
←−c ∗F

h!(η)
// h!
−→c !F

adj.
// f!F .

Here the arrows indexed by “adj.” are induced from adjunctions, using the

properness of ←−c . The middle square is commutative by the definition of ′η,

and the right square is commutative by design. The composition of the top row

in (A.33) is by definition the push-forward ′h!
′η as a cohomological self-corre-

spondence of f!F supported on ′S; the composition of the bottom row in (A.33)

is by definition the push-forward h!η as a cohomological self-correspondence of

f!F supported on the diagonal S. Therefore, (A.33) shows that ′h!
′η may be

written as the composition

(A.34) ′h!
′η : Fr∗S f!F

Φf!F−−−→ f!F
h!η−−→ f!F .
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For any cohomological self-correspondence ξ of G ∈ Db
c(S) supported on

the graph of Frobenius ′S, i.e., ξ : Fr∗S G → G, the trace τ′S(ξ)s at s ∈ S(k)

is simply given by the trace of ξs acting on the geometric stalk Gs: this is

because the Frobenius map is contracting at its fixed points, so the local term

for the correspondence supported on its graph is the naive local term (a very

special case of the main result in [24, Th. 2.1.3]). Applying this observation to

ξ = ′h!
′η, we get

τ′S(′h!
′η)s = Tr

Ä
(′h!
′η)s, (f!F)s

ä
= Tr

Ä
(h!η)s ◦ Frobs, (f!F)s

ä
by (A.34).

(A.35)

Now apply (A.35) to F = Q`,M , η = clC(ζ) and note that ′η = cl′C(′ζ). Then

(A.35) gives

τ′S(′h!cl′C(′ζ))s = Tr
Ä
(f!clC(ζ))s ◦ Frobs, (f!Q`,M )s

ä
.(A.36)

Combining (A.36) with (A.32) we get the desired formula (A.27). �

Appendix B. Super-positivity of L-values

In this appendix we show the positivity of all derivatives of certain

L-functions (suitably corrected by their epsilon factors), assuming the Rie-

mann hypothesis. The result is unconditional in the function field case since

the Riemann hypothesis is known to hold.

It is well known that the positivity of the leading coefficient of such an

L-function is implied by the Riemann hypothesis. For nonleading terms, we

provisionally call such a phenomenon “super-positivity.”

Upon the completion of the paper, we learned that Stark and Zagier ob-

tained a result in [22] similar to our Proposition B.1.

B.1. The product expansion of an entire function. We recall the (canon-

ical) product expansion of an entire function following [1, §5.2.3, §5.3.2]. Let

φ(s) be an entire function in the variable s ∈ C. Let m be the vanishing order

of φ at s = 0. List all the nonzero roots of φ as α1, α2, . . . , αi, . . . (multiple

roots being repeated) indexed by a subset I of Z>0, such that |α1| ≤ |α2| ≤ · · · .
Let En be the elementary Weierstrass function

En(u) =

(1− u) n = 0,

(1− u) eu+ 1
2
u2+···+ 1

n
un n ≥ 1.

An entire function φ is said to have finite genus if it can be written as an

absolutely convergent product

φ(s) = sm eh(s)
∏
i∈Z

En

Å
s

αi

ã
(B.1)
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for a polynomial h(s) ∈ C[s] and an integer n ≥ 0. The product (B.1) is

unique if we further demand that n is the smallest possible integer, which is

characterized as the smallest n ∈ Z≥0 such that∑
i∈I

1∣∣∣αi∣∣∣n+1 <∞.(B.2)

The genus g(φ) of such φ is then defined to be

g(φ) := max{deg(h), n}.

The order ρ(φ) of an entire function φ is defined as the smallest real number

ρ ∈ [0,∞] with the following property: for every ε > 0, there is a constant Cε
such that ∣∣∣φ(s)

∣∣∣ ≤ e|s|ρ+ε , when |s| ≥ Cε.

If φ is a nonconstant entire function, an equivalent definition is

ρ(φ) = lim sup
r−→∞

log log ||φ||∞,Br
r

,

where ||φ||∞,Br is the supremum norm of the function φ on the disc Br of

radius r. If the order of φ is finite, then Hadamard theorem [1, §5.3.2] asserts

that the function φ has finite genus and

g(φ) ≤ ρ(φ) ≤ g(φ) + 1.(B.3)

In particular, an entire function of finite order admits a product expansion of

the form (B.1).

The following result can be deduced from the proof in [22]. Since the proof

is very short, we include it for the reader’s convenience.

Proposition B.1. Let φ(s) be an entire function with the following prop-

erties :

(1) it has a functional equation φ(−s) = ±φ(s);

(2) for s ∈ R such that s� 0, we have φ(s) ∈ R>0;

(3) the order ρ(φ) of φ(s) is at most 1;

(4) (RH) the only zeros of φ(s) lie on the imaginary axis Re(s) = 0.

Then for all r ≥ 0, we have

φ(r)(0) :=
d

ds

∣∣∣∣
s=0

φ(s) ≥ 0.

Moreover, if φ(s) is not a constant function, we have

φ(r0)(0) 6= 0 =⇒ φ(r0+2i)(0) 6= 0 for all r0 and i ∈ Z≥0.
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Proof. By the functional equation, if α is a root of φ, so is −α with the

same multiplicity. Therefore, we may list all nonzero roots as {αi}i∈Z\{0} such

that

α−i = −αi and |α1| ≤ |α2| ≤ · · · .

If φ has only finitely many roots, the sequence terminates at a finite number.

Since the order ρ(φ) ≤ 1, by (B.3) we have g(φ) ≤ 1. Hence we may write

φ as a product

φ(s) = sm eh(s)
∞∏
i=1

E1

Å
s

αi

ã
E1

Å
− s

αi

ã
,

where m is the vanishing order at s = 0. Note that it is possible that g(φ) = 0,

in which case one still has a product expansion using E1 by the convergence

of (B.2).

By the functional equation, we conclude that h(s) = h is a constant.

By condition (4)(RH), all roots αi are purely imaginary, and hence αi =

α−i. We have

φ(s) = sm eh
∞∏
i=1

E1

Å
s

αi

ã
E1

Å
s

αi

ã
= sm eh

∞∏
i=1

Ç
1 +

s2

αiαi

å
.

By condition (2), the leading coefficient eh is a positive real number. Then the

desired assertion follows from the product above. �

B.2. Super-positivity. Let F be a global field (i.e., a number field, or the

function field of a connected smooth projective curve over a finite field Fq).
Let A be the ring of adèles of F . Let π be an irreducible cuspidal automorphic

representation of GLn(A). Let L(π, s) be the complete (standard) L-function

associated to π [8]. We have a functional equation

L(π, s) = ε(π, s)L(π̃, 1− s),

where π̃ denotes the contragredient of π, and

ε(π, s) = ε(π, 1/2)N s−1/2
π

for some positive real number Nπ. Define

Λ(π, s) = N
− (s−1/2)

2
π L(π, s)

and

Λ(r)(π, 1/2) :=
d

ds

∣∣∣∣
s=1/2

Λ(π, s).
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Theorem B.2. Let π be a nontrivial cuspidal automorphic representation

of GLn(A). Assume that it is self-dual :

π ' π̃.

Assume that, if F is a number field, then the Riemann hypothesis holds for

L(π, s); that is, all the roots of L(π, s) have real parts equal to 1/2.

(1) For all r ∈ Z≥0, we have

Λ(r)(π, 1/2) ≥ 0.

(2) If Λ(π, s) is not a constant function, we have

Λ(r0)(π, 1/2) 6= 0 =⇒ Λ(r0+2i)(π, 1/2) 6= 0 for all i ∈ Z≥0.

Proof. We consider

λ(π, s) := Λ(π, s+ 1/2).

Since π is cuspidal and nontrivial, its standard L-function L(π, s) is entire in

s ∈ C. By the equality ε(π, s)ε(π̃, 1 − s) = 1 and the self-duality π ' π̃ we

deduce

1 = ε(π, 1/2)ε(π, 1− 1/2) = ε(π, 1/2)2.

Hence ε(π, 1/2) = ±1, and we have a functional equation

λ(π, s) = ±λ(π,−s).(B.4)

We apply Proposition B.1 to the entire function λ(π, s). The function L(π, s)

is entire of order one, and so is λ(π, s). In the function field case, condition

(4)(RH) is known by the theorem of Deligne on Weil conjecture, and of Drinfeld

and L. Lafforgue on the global Langlands correspondence. It remains to verify

condition (2) for λ(π, s). This follows from the following lemma. �

The local L-factor L(πv, s) is of the form 1
Pπv (q−sv )

, where Pπv is a polyno-

mial with constant term equal to one when v is nonarchimedean, and a product

of functions of the form ΓC(s+ α), or ΓR(s+ α), where α ∈ C, and

ΓC(s) = 2(2π)−sΓ(s), ΓR(s) = π−s/2Γ(s/2),

when v is archimedean. We say that L(πv, s) has real coefficients if the poly-

nomial Pπv has real coefficients when v is nonarchimedean, and the factor

ΓFv(s+ α) in L(πv, s) has real α or the pair ΓFv(s+ α) and ΓFv(s+ α) show

up simultaneously when v is archimedean. In particular, if L(πv, s) has real

coefficients, it takes positive real values when s is real and sufficiently large.

Lemma B.3. Let πv be unitary and self-dual. Then L(πv, s) has real co-

efficients.
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Proof. We suppress the index v in the notation and write F for a local

field. Let π be irreducible admissible representation of GLn(F ). It suffices to

show that, if π is unitary, then we have

L(π, s) = L(π̃, s).(B.5)

Let Zπ be the space of local zeta integrals, i.e., the meromorphic continuation of

Z(Φ, s, f) =

∫
GLn(F )

f(g)Φ(g)|g|s+
n−1
2 dg,

where f runs over all matrix coefficients of π, and Φ runs over all Bruhat–

Schwartz functions on Matn(F ) (a certain subspace, stable under complex

conjugation, if F is archimedean; cf. [8, §8]). We recall from [8, Th. 3.3, 8.7]

that the Euler factor L(π, s) is uniquely determined by the space Zπ. (For

instance, it is a certain normalized generator of the C[qs, q−s]-module Zπ if F

is nonarchimedean.)

Let Cπ be the space of matrix coefficients of π, i.e., the space consist-

ing of all linear combinations of functions on GLn(F ): g 7→ (π(g)u, v) where

u ∈ π, v ∈ π̃ and (·, ·) : π× π̃ → C is the canonical bilinear pairing. We remark

that the involution g 7→ g−1 induces an isomorphism between Cπ with Cπ̃.

To show (B.5), it now suffices to show that, if π is unitary, the complex

conjugation induces an isomorphism between Cπ and Cπ̃. Let 〈·, ·〉 : π×π → C
be a nondegenerate Hermitian pairing invariant under GLn(F ). Then the space

Cπ consists of all functions fu,v : g 7→ 〈π(g)u, v〉, u, v ∈ π. Under complex con-

jugation we have fu,v(g) = 〈π(g)u, v〉 = 〈v, π(g)u〉 = 〈π(g−1)v, u〉 = fv,u(g−1).

This function belongs to Cπ̃ by the remark at the end of the previous para-

graph. This clearly shows that the complex conjugation induces the desired

isomorphism. �

Remark B.4. In the case of a function field, we have a simpler proof of

Theorem B.2. The function L(π, s) is a polynomial in q−s of degree denoted

by d. Then the function λ(π, s) is of the form

λ(π, s) = qds/2
d∏
i=1

Ä
1− αiq−s

ä
,(B.6)

where all the roots αi satisfy |αi| = 1. By the functional equation (B.4), if α is

a root in (B.6), so is α−1 = α. We divide all roots not equal to ±1 into pairs

α±1
1 , α±1

2 , . . . , α±1
m (some of them may repeat). Consider

Ai(s) = qs
Ä
1− αiq−s

äÄ
1− α−1

i q−s
ä

= qs + q−s − αi − αi

=
Ä
2− αi − αi

ä
+ 2

∑
j≥1

(s log q)2j

j!
.
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From |αi| = 1 and αi 6= 1 it follows that Ai(s) has strictly positive coefficients

at all even degrees. Now let a (resp., b) be the multiplicity of the root 1

(resp., −1). We then have

λ(π, s) =
Ä
qs/2 − q−s/2

äa Ä
qs/2 + q−s/2

äb m∏
i=1

Ai(s), 2m+ a+ b = d.

The desired assertions follow immediately from this product expansion.

Remark B.5. In the statement of the theorem, we excludes the trivial

representation. In this case the complete L-function has a pole at s = 1.

If we replace Λ(π, s) by s(s − 1)Λ(π, s), the theorem still holds by the same

proof. Moreover, if F = Q, we have the Riemann zeta function, and the super-

positivity is known without assuming the Riemann hypothesis, by Pólya [4].

The super-positivity also holds when the L-function is “positive definite” as

defined by Sarnak in [21]. One of such examples is the weight 12 cusp form

with q-expansion ∆ = q
∏
n≥1(1 − qn)24. More recently, Goldfeld and Huang

in [9] prove that there are infinitely many classical holomorphic cusp forms

(Hecke eigenforms) on SL2(Z) whose L-functions satisfy super-positivity.

Remark B.6. The positivity of the central value is known for the standard

L-function attached to a symplectic cuspidal representation of GLn(A) by [16].

Remark B.7. The positivity of the first derivative is known for the L-

function appearing in the Gross–Zagier formula in [11], [27], for example the

L-function of an elliptic curve over Q.
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