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Shtukas and the Taylor expansion
of L-functions

By ZHiwEl YUN and WEI ZHANG

Abstract

We define the Heegner—Drinfeld cycle on the moduli stack of Drinfeld
Shtukas of rank two with r-modifications for an even integer r. We prove an
identity between (1) the r-th central derivative of the quadratic base change
L-function associated to an everywhere unramified cuspidal automorphic
representation m of PGL2, and (2) the self-intersection number of the 7-
isotypic component of the Heegner—Drinfeld cycle. This identity can be
viewed as a function-field analog of the Waldspurger and Gross—Zagier
formula for higher derivatives of L-functions.
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1. Introduction

In this paper we prove a formula for the arbitrary order central derivative
of a certain class of L-functions over a function field F = k(X) for a curve
X over a finite field k£ of characteristic p > 2. The L-function under consid-
eration is associated to a cuspidal automorphic representation of PGLg r, or
rather, its base change to a quadratic field extension of F. The r-th central
derivative of our L-function is expressed in terms of the intersection number
of the “Heegner—Drinfeld cycle” on a moduli stack denoted by Shty; in the
introduction, where G = PGLjy. The moduli stack Shtg; is closely related to
the moduli stack of Drinfeld Shtukas of rank two with r-modifications. One
important feature of this stack is that it admits a natural fibration over the
r-fold self-product X" of the curve X over Speck

Sht; — X7

The very existence of such moduli stacks presents a striking difference between
a function field and a number field. In the number field case, the analogous
spaces only exist (at least for the time being) when r» < 1. When r = 0, the
moduli stack ShtY, is the constant groupoid over k

(L.1) Bung(k) =~ G(F)\(G(A)/K),

where A is the ring of adeles and K is a maximal compact open subgroup of
G(A). The double coset in the right-hand side of (1.1) remains meaningful for
a number field F' (except that one cannot demand the archimedean component
of K to be open). When r = 1 the analogous space in the case F' = Q is the
moduli stack of elliptic curves, which lives over Spec Z. From such perspectives,
our formula can be viewed as a simultaneous generalization (for function fields)
of the Waldspurger formula [26] (in the case of » = 0) and the Gross—Zagier
formula [11] (in the case of r = 1).

Another noteworthy feature of our work is that we need not restrict our-
selves to the leading coefficient in the Taylor expansion of the L-functions:
our formula is about the r-th Taylor coefficient of the L-function regardless
whether r is the central vanishing order or not. This leads us to speculate
that, contrary to the usual belief, central derivatives of arbitrary order of mo-
tivic L-functions (for instance, those associated to elliptic curves) should bear
some geometric meaning in the number field case. However, due to the lack
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of the analog of Shty; for arbitrary r in the number field case, we could not
formulate a precise conjecture.

Finally we note that, in the current paper, we restrict ourselves to every-
where unramified cuspidal automorphic representations. One consequence is
that we only need to consider the even r case. Ramifications, particularly the
odd r case, will be considered in subsequent work.

Now we give more details of our main theorems.

1.1. Some notation. Throughout the paper, let k£ = [F, be a finite field of
characteristic p > 2. Let X be a geometrically connected smooth proper curve
over k. Let v: X’ — X be a finite étale cover of degree 2 such that X’ is also
geometrically connected. Let o € Gal(X'/X) be the nontrivial involution. Let
F = k(X) and F’ = k(X') be their function fields. Let g and ¢’ be the genera
of X and X', then ¢’ = 2g — 1.

We denote the set of closed points (places) of X by |X|. For x € | X]|, let
Oz be the completed local ring of X at x and let F); be its fraction field. Let
A = che\X| Fy be the ring of adeles, and let O = [],¢|x| Oy be the ring of
integers inside A. Similar notation applies to X’. Let

neyp s FPA\AY/OX —— {£1}

be the character corresponding to the étale double cover X’ via class field
theory.

Let G = PGLy. Let K = [[¢x| K where K; = G(O;). The (spherical)
Hecke algebra ¢ is the Q-algebra of bi- K-invariant functions C°(G(A) /K, Q)
with the product given by convolution.

1.2. L-functions. Let A = C°(G(F)\G(A)/K,Q) be the space of ev-
erywhere unramified Q-valued automorphic functions for G. Then A is an
#¢-module. By an everywhere unramified cuspidal automorphic representa-
tion 7 of G(Ap) we mean an 7#-submodule A, C A that is irreducible over Q.

For every such 7, End »(A;) is a number field E, which we call the co-
efficient field of . Then by the commutativity of J#, A, is a one-dimensional
E-vector space. If we extend scalars to C, A, splits into one-dimensional
Jtc-modules A ®p,, C, one for each embedding ¢ : E; — C, and each
Ar®g, ,C C Ac is the unramified vectors of an everywhere unramified cuspidal
automorphic representation in the usual sense.

The standard (complete) L-function L(w,s) is a polynomial of degree
4(g—1) in ¢~5~ Y2 with coefficients in the ring of integers Op,_. Let 7 be the
base change to F’, and let L(wgs, s) be the standard L-function of wp/. This
L-function is a product of two L-functions associated to cuspidal automorphic
representations of G over F':

L(T‘-FH 8) = L(ﬂ-7 S)L(ﬂ- ® nr'JF, S)‘
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Therefore, L(mp, s) is a polynomial of degree 8(g — 1) in ¢~ /2 with coeffi-
cients in E,. It satisfies a functional equation

L(rpr,s) = €(wpr, 8)L(mpr, 1 — 8),
where the epsilon factor takes a simple form
Let L(m,Ad, s) be the adjoint L-function of 7. Denote

—1/2 L(mp, s)

(1.2) f(ﬂpl,S)ZE(WFI,S) L(T(' Ad 1),

where the the square root is understood as

e(mpr, )12 = gHomD(s=1/2),

Then we have a functional equation:
g(ﬂ'p/,s) Zg(ﬂpl,l —8).

Note that the constant factor L(mw, Ad, 1) in £ (7, s) does not affect the func-

tional equation, and it shows up only through the calculation of the Petersson

inner product of a spherical vector in 7; see the proof of Theorem 4.5.
Consider the Taylor expansion at the central point s = 1/2:

(s—1/2)"

rl ’

L(rp,s) =Y L (np,1/2)
r>0
ie.,
d?“
ds”

L) (g, 1/2) =

_1/9 L(mpr,s)
, 1/2 F’,
—0 (6(” ) L Ad, 1)) ‘

If r is odd, by the functional equation we have
L") (g, 1/2) = 0.
Since L(m,Ad,1) € E,, we have L(npr,s) € Erlg~*" 2, ¢°~1/?]. It follows
that
L) (g, 1/2) € By - (logq)".
The main result of this paper is to relate each even degree Taylor coefficient to
the self-intersection numbers of a certain algebraic cycle on the moduli stack

of Shtukas. We give two formulations of our main results, one using certain
subquotient of the rational Chow group, and the other using ¢-adic cohomology.
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1.3. The Heegner—Drinfeld cycles. From now on, we let » be an even in-
teger. In Section 5.2, we will introduce moduli stack Shtg; of Drinfeld Shtukas
with r-modifications for the group G = PGLy. The stack Shty; is a Deligne-
Mumford stack over X", and the natural morphism

g Shtg —— X7

is smooth of relative dimension r, and locally of finite type.

Let T' = (Resgr/p Gyn) /G be the nonsplit torus associated to the double
cover X’ of X. In Section 5.4, we will introduce the moduli stack Sht/. of
T-Shtukas, depending on the choice of an r-tuple of signs p € {£}" satisfying
certain balance conditions in Section 5.1.2. Then we have a similar map

. o Shth, —— X',

which is a torsor under the finite Picard stack Picx/(k)/ Picx (k). In particular,
Shtf. is a proper smooth Deligne-Mumford stack over Spec k.
There is a natural finite morphism of stacks over X"

Sht, —— Shty, .
It induces a finite morphism
6# : Shtf, —— Sht¢; := Shtgy x xr X'
This defines a class in the Chow group
6% [Sht.] € Che,(Shté:)q-

Here Ch.,(—)gp means the Chow group of proper cycles of dimension r, ten-
sored over Q. See Section A.1 for details. In analogy to the classical Heegner
cycles [11], we will call 64 [Sht.] the Heegner—Drinfeld cycle in our setting.

1.4. Main results: cycle-theoretic version. The Hecke algebra .7 acts on
the Chow group Ch,,(Sht/s)g as correspondences. Let W C Ch,,,(Sht/)g be
the sub #-module generated by the Heegner—Drinfeld cycle 64 [Sht/.]. There
is a bilinear and symmetric intersection pairing?

(1.3) (3 dsm W X W —— Q.
Let VT/O be the kernel of the pairing, i.e.,
Wo = {z € W‘ (2,2') =0, for all 2’ € W}

'In this paper, the intersection pairing on the Chow groups will be denoted by (-, -), and
other pairings (those on the quotient of the Chow groups, and the cup product pairing on
cohomology) will be denoted by (-, ).
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The pairing (-, ->Shtg then induces a mondegenerate pairing on the quotient
W =W /W
(1.4) () WxW—7—Q.
The Hecke algebra 5 acts on W. For any ideal Z C 57, let
Wiz ={we W‘I-wzo}.
Let m be an everywhere unramified cuspidal automorphic representation of G
with coefficient field E, and let A, : 2 — E, be the associated character,
whose kernel m;; is a maximal ideal of .77. Let
We=Wim;]CW
be the A\ -eigenspace of W. This is an E -vector space. Let Zgis C J€ be the
Eisenstein ideal as defined in Definition 4.1, and define

WEis = W[IEIS] .

THEOREM 1.1. We have an orthogonal decomposition of 7€ -modules

(1.5) W = Weis ® (@ Wﬂ) ;

where ™ runs over the finite set of everywhere unramified cuspidal automorphic
representation of G and Wy is an E,-vector space of dimension at most one.

The proof will be given in Section 9.3.1. In fact one can also show that W
is a free rank one module over Q[Picy (k)]*Pic (for notation see Section 4.1.2),
but we shall omit the proof of this fact.

The Q-bilinear pairing (-,-) on Wy can be lifted to an Er-bilinear sym-
metric pairing

(1.6) (v ) We x Wy —— En,
where for w,w" € Wr, (w,w'), is the unique element in £ such that Trg,_/g(e-

(w,w);) = (ew,w’).
We now present the cycle-theoretic version of our main result.

THEOREM 1.2. Let w be an everywhere unramified cuspidal automorphic
representation of G with coefficient field Ex. Let [Shtf.]. € Wi be the projection
of the image of 64 [Sht}] € W in W to the direct summand Wr under the
decomposition (1.5). Then we have an equality in Er

1
- (r) , — I H
Siog gy 112 (e 1/2) (IShtf)x,  [Sheflx) .

where wy 1is the canonical divisor of X, and |wx| = q~de8wx,

The proof will be completed in Section 9.3.2.
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Remark 1.3. Assume that » = 0. Then our formula is equivalent to the
Waldspurger formula [26] for an everywhere unramified cuspidal automorphic
representation m. More precisely, for any nonzero ¢ € 7, the Waldspurger
formula is the identity

_ ‘fT(F)\T(A) B(t) dt‘2

1
§|U.)X|$(7TF/,1/2)— <¢’¢>Pet y

where (¢, ¢)pet is the Petersson inner product (4.10), and the measure on G(A)
(resp. T'(A)) is chosen such that vol(K) =1 (resp. vol(7'(0)) = 1).

Remark 1.4. Our Er-valued intersection paring is similar to the Néron—
Tate height pairing with coefficients in [27, §1.2.4].

1.5. Main results: cohomological version. Let ¢ be a prime number differ-
ent from p. Consider the middle degree cohomology with compact support

Vg, = H'((Sht) @ k, Qe)(r).

In the main body of the paper, we simply denote this by V’. This vector space
is endowed with the cup product

(~, ) : V(lh X V(é?l E— Qg.
Then for any maximal ideal m C J¢g,, we define the generalized eigenspace of
Vg, With respect to m by
V@g,m = Ui>0V@Z [m’]
We also define the Eisenstein part of V@ by
Vo,.Eis = UisoVQ, [T
We remark that in the cycle-theoretic version (cf. Section 1.4), the gener-

alized eigenspace coincides with the eigenspace because the space W is a cyclic
module over the Hecke algebra.

THEOREM 1.5 (see Theorem 7.16 for a more precise statement). We have
an orthogonal decomposition of Hg,-modules

(1.7) Vi, = Vi, Bis ® (@ v@,m> ,
m

where m runs over a finite set of maximal ideals of g, whose residue fields
En := JHgp,/m are finite extensions of Qq, and each V@,m is an JHgp,-module
of finite dimension over Qq supported at the mazximal ideal m.

The action of /g, on V@,m factors through the completion %bm with

residue field Fy,. Since Ey, is finite étale over Qy, and %z,m is a. complete local
(hence henselian) Q-algebra with residue field Ey,, Hensel’s lemma implies
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that there is a unique section Ey, — f%/’@’m. (The minimal polynomial of every
element h € Ey, over Q, has a unique root h € %Nﬂ whose reduction is h.)
Hence each V@,m is also an Ep,-vector space in a canonical way. As in the case
of W, using the Ey-action on V@bm, the Qg-bilinear pairing on V(ébm may be
lifted to an Fy-bilinear symmetric pairing

(y)m = V@,m X V(ébm — B

Note that, unlike (1.5), in the decomposition (1.7) we cannot be sure
whether all m are automorphic; i.e., the homomorphism 5 — E, is the
character by which .77 acts on the unramified line of an irreducible automorphic
representation. However, for an everywhere unramified cuspidal automorphic
representation 7w of G with coefficient field E,, we may extend A\, : 7 — E;
to Qg to get

Ar @ Qe 2 Ay, —— Ex @ Qo = [y Exa

where A runs over places of E, above ¢. Let m;  be the maximal ideal of g,
obtained as the kernel of the A\-component of the above map 7, — Ex .

To alleviate notation, we denote V@,mﬁ,A simply by V;y/\ and denote the
E \-bilinear pairing (-, )m, , on V], by

. / /
(', -)W’)\ : Vﬂ,’)\ X Vﬂ,’)\ B E7T7)\‘
We now present the cohomological version of our main result.

THEOREM 1.6. Let w be an everywhere unramified cuspidal automorphic
representation of G with coefficient field E,. Let \ be a place of E; above L.
Let [Sht7]zx € V], be the projection of the cycle class cl(04[Sht7]) € V{,
to the direct summand V;A under the decomposition (1.7). Then we have an
equality in Er \

1
—_— ") (7t o = p p
200z g wx| L) (xp,1/2) = ([Shth ] a, [ShtT]m)\)w .

In particular, the right-hand side also lies in Fy.

)

The proof will be completed in Section 9.2.

1.6. Two other results. We have the following positivity result. This may
be seen as an evidence of the Hodge standard conjecture (on the positivity of
intersection pairing) for a subquotient of the Chow group of middle-dimensional
cycles on Shtg.

THEOREM 1.7. Let Weysp be the orthogonal complement of Wgis in W
(cf. (1.5)). Then the restriction to Weusp of the intersection pairing (-,-) in
(1.4) is positive definite.



TAYLOR EXPANSION 775

Proof. The assertion is equivalent to the positivity for the restriction to
W of the intersection pairing for all 7 in (1.5). Fix such a w. Then the coeffi-
cient field E is a totally real number field because the Hecke operators 57 act
on the positive definite inner product space A®gR (under the Petersson inner
product) by self-adjoint operators. For an embedding ¢ : E; — R, we define

WTM = W; QEx. R.
Extending scalars from E to R via ¢, the pairing (1.6) induces an R-bilinear
symmetric pairing
()t Way X We, — R
It suffices to show that, for every embedding ¢ : E; — R, the pairing (-, ), is
positive definite. The R-vector space Wy, is at most one dimensional, with a
generator given by [Sht] ., = [Sht/]®1. The embedding ¢ gives an irreducible
cuspidal automorphic representation m, with R-coefficient. Then Theorem 1.2
implies that
g(kquy x| 2 (m,1/2) = ([Shh)ess [S0t51r) € R
It is easy to see that L(m,,Ad,1) > 0. By Theorem B.2, we have
L0 (7, p1,1/2) > 0.
It follows that
([Shth ], [Sht%]m)ﬂ > 0.

N2

This completes the proof. [l

Another result is a “Kronecker limit formula” for function fields. Let
L(n, s) be the (complete) L-function associated to the Hecke character 7.

THEOREM 18 When r > 0 iS even, we hcwe

22
= LM(n,0).
(logq)" (7.0)

The proof will be given in Section 9.1.1. For the case r = 0, see Re-
mark 9.3.

(04]Shth],  0[Sht] g =

Remark 1.9. To obtain a similar formula for the odd order derivatives
L")(n,0), we need moduli spaces analogous to Sht4. and Sht{ for odd r. We
will return to this in future work.

1.7. Outline of the proof of the main theorems.

1.7.1. Basic strategy. The basic strategy is to compare two relative trace
formulae. A relative trace formula (abbreviated as RTF) is an equality between
a spectral expansion and an orbital integral expansion. We have two RTFs, an
“analytic” one for the L-functions, and a “geometric” one for the intersection
numbers, corresponding to the two sides of the desired equality in Theorem 1.6.
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We may summarize the strategy of the proof into the following diagram:
(1.8)

§2 §4

Analytic: Suept(F)—{1}y Ir (u; f) I (f) Sorde(m, f)
~Th81 = Th9.2 = =Th 1.6
. 86 87
Geometric: >ouept (F)—{13 I (4, f) L.(f) S L (m, f)

The vertical lines mean equalities after dividing the first row by (logq)".

1.7.2. The analytic side. We start with the analytic RTF. To an f € 57
(or more generally, C°(G(A))), one first associates an automorphic kernel
function Ky on G(A) x G(A) and then a regularized integral:

reg
J(f, S) = Kf(hl,hQ)’hth‘sn(hQ) dh1 dhg.

[Alx[A]
Here A is the diagonal torus of G and [A] = A(F)\A(A). We refer to Section 2.2
for the definition of the weighted factors and the regularization. Informally, we
may view this integral as a weighted (naive) intersection number on the con-
stant groupoid Bung (k) (the moduli stack of Shtukas with » = 0 modifications)
between Buny4 (k) and its Hecke translation under f of Buny(k).

The resulting J(f, s) belongs to Q[¢™*, ¢°]. For an f in the Eisenstein ideal

Tgis (cf. Section 4.1), the spectral decomposition of J(f, s) takes a simple form:
it is the sum of

1
Jn(f,8) = 5 lwx| L (mpr, s +1/2) A (f),
where 7 runs over all everywhere unramified cuspidal automorphic represen-

tations 7 of G with Q-coefficients (cf. Proposition 4.5). We define J,.(f) to be

the r-th derivative
_ (4 )r
5= (5

We point out that in the case of r = 0, the relative trace formula in
question was first introduced by Jacquet [12], in his reproof of Waldspurger’s
formula. In the case of r = 1, a variant was first considered in [30] (for number
fields).

J(f,s).
0

Ss=|

1.7.3. The geometric side. Next we consider the geometric RTF. We con-
sider the Heegner—Drinfeld cycle 64[Sht}:] and its translation by the Hecke
correspondence given by f € J#, both being cycles on the ambient stack Shtg.
We define I,.(f) to be their intersection number

L(f) == (02[Sheh], [+ 0L[Shth)gnes € Q. f € .



TAYLOR EXPANSION ot

To decompose this spectrally according to the Hecke action, we have two per-
spectives, one viewing the Heegner—Drinfeld cycle as an element in the Chow
group modulo numerical equivalence, the other considering the cycle class of
the Heegner—Drinfeld cycle in the f-adic cohomology. In either case, when f
is in a certain power of Zgis, the spectral decomposition (Section 7 or Theo-
rem 1.5) of Wy, or Vée as an A -module expresses I.(f) as a sum of

L(m, f) = ([Shtf]m, [+ [Sht}]m),

where m runs over a finite set of maximal ideals of e%f@ whose corresponding
generalized eigenspaces appear discretely in W@Z or V@. We remark that
the method of the proof of the spectral decomposition in Theorem 1.5 can
potentially be applied to moduli of Shtukas for more general groups G, which
should lead to a better understanding of the cohomology of these moduli spaces.

We point out here that we use the same method as in [30] to set up the
geometric RTF, although in [30] only the case of r = 1 was considered. In the
case r = 0, Jacquet used an integration of kernel function to set up an RTF
for the T-period integral, which is equivalent to our geometric RTF because in
this case Sht%, and Sht; become discrete stacks Buny (k) and Bung(k). Our
geometric formulation treats all values of r uniformly.

1.7.4. The key identity. In view of the spectral decompositions of both
L.(f) and J,(f), to prove the main Theorem 1.6 for all 7 simultaneously, it
suffices to establish the following key identity (cf. Theorem 9.2):

(1.9) L.(f) = (logq) "J-(f) € Q forall fe 2.

This key identity also allows us to deduce Theorem 1.1 on the spectral de-
composition of the space W of cycles from the spectral decomposition of J,.
Theorem 1.2 then follows easily from Theorem 1.6.

Since half of the paper is devoted to the proof of the key identity (1.9),
we comment on its proof in more detail. The spectral decompositions allow us
to reduce to proving (1.9) for sufficiently many functions f € J#, indexed by
effective divisors on X with large degree compared to the genus of X (cf. The-
orem 8.1). Most of the algebro-geometric part of this paper is devoted to the
proof of the key identity (1.9) for those Hecke functions.

In Section 3, we interpret the orbital integral expansion of J,.(f) (the upper
left sum in (1.8)) as a certain weighted counting of effective divisors on the
curve X. The geometric ideas used in the part are close to those in the proof
of various fundamental lemmas by Ngo6 [20] and by the first-named author [29],
although the situation is much simpler in the current paper. In Section 6, we
interpret the intersection number I,.(f) as the trace of a correspondence acting
on the cohomology of a certain variety. This section involves new geometric
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ideas that did not appear in the treatment of the fundamental lemma type
problems. This is also the most technical part of the paper, making use of the
general machinery on intersection theory reviewed or developed in Appendix A.

After the preparations in Sections 3 and 6, our situation can be summa-
rized as follows. For an integer d > 0, we have fibrations

I Ng=| [Na— Aa, fam: Mg — Ag,
da

where d runs over all quadruples (di1, d12, d21,d22) € Zio such that di1 +dos =
d = di2 4+ dg;. We need to show that the direct image complexes Rf M« Qe
and Rfnr«Lq are isomorphic to each other, where Ly is a local system of
rank one coming from the double cover X'/X. When d is sufficiently large,
we show that both complexes are shifted perverse sheaves, and are obtained
by middle extension from a dense open subset of Ay over which both can be
explicitly calculated (cf. Propositions 8.2 and 8.5). The isomorphism between
the two complexes over the entire base Ay then follows by the functoriality
of the middle extension. The strategy used here is the perverse continuation
principle coined by Ngo6, which has already played a key role in all known
geometric proofs of fundamental lemmas; see [20] and [29].

Remark 1.10. One feature of our proof of the key identity (1.9) is that it
is entirely global, in the sense that we do not reduce to the comparison of local
orbital integral identities, as opposed to what one usually does when comparing
two trace formulae. Therefore, our proof is different from Jacquet’s in the case
r = 0 in that his proof is essentially local. (This is inevitable because he also
considers the number field case.)

Another remark is that our proof of (1.9) in fact gives a term-by-term
identity of the orbital expansion of both J,(f) and L.(f), as indicated in the
left column of (1.8), although this is not logically needed for our main results.
However, such more refined identities (for more general GG) will be needed in
the proof of the arithmetic fundamental lemma for function fields, a project to
be completed in the near future [28].

1.8. A guide for readers. Since this paper uses a mixture of tools from
automorphic representation theory, algebraic geometry and sheaf theory, we
think it might help orient the readers by providing a brief summary of the
contents and the background knowledge required for each section. We give the
“Leitfaden” in Table 1.

Section 2 sets up the relative trace formula following Jacquet’s approach
[12] to the Waldspurger formula. This section is purely representation-theo-
retic.

Section 3 gives a geometric interpretation of the orbital integrals involved
in the relative trace formula introduced in Section 2. We express these orbital
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| HIN

’ Section 4‘ ’ Section 3‘ ’ Section 6‘ ’ Section 7‘

™

Table 1.

integrals as the trace of Frobenius on the cohomology of certain varieties, in
the similar spirit of the proof of various fundamental lemmas ([20], [29]). This
section involves both orbital integrals and some algebraic geometry but not
yet perverse sheaves.

Section 4 relates the spectral side of the relative trace formula in Sec-
tion 2 to automorphic L-functions. Again this section is purely representation-
theoretic.

Section 5 introduces the geometric players in our main theorem: moduli
stacks Sht; of Drinfeld Shtukas, and Heegner-Drinfeld cycles on them. We
give self-contained definitions of these moduli stacks, so no prior knowledge
of Shtukas is assumed, although some experience with the moduli stack of
bundles will help.

Section 6 is the technical heart of the paper, aiming to prove Theorem 6.5.
The proof involves studying several auxiliary moduli stacks and uses heavily the
intersection-theoretic tools reviewed and developed in Appendix A. The first-
time readers may skip the proof and only read the statement of Theorem 6.5.

Section 7 gives a decomposition of the cohomology of Shty; under the
action of the Hecke algebra, generalizing the classical spectral decomposition
for the space automorphic forms. The idea is to remove the analytic ingredi-
ents from the classical treatment of spectral decomposition and to use solely
commutative algebra. (In particular, we crucially use the Eisenstein ideal in-
troduced in Section 4.) For first-time readers, we suggest read Section 7.1,
then jump directly to Definition 7.12 and continue from there. What he/she
will miss in doing this is the study of the geometry of Sht¢, near infinity (horo-
cycles), which requires some familiarity with the moduli stack of bundles, and
the formalism of /-adic sheaves.
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Section 8 combines the geometric formula for orbital integrals established
in Section 3 and the trace formula for the intersection numbers established in
Section 6 to prove the key identity (1.9) for most Hecke functions. The proofs
in this section involve perverse sheaves.

Section 9 finishes the proofs of our main results. Assuming results from
the previous sections, most arguments in this section only involve commutative
algebra.

Both appendices can be read independently of the rest of the paper. Ap-
pendix A reviews the intersection theory on algebraic stacks following Kresch
[14], with two new results that are used in Section 6 for the calculation of the
intersection number of Heegner—Drinfeld cycles. The first result, called the
Octahedron Lemma (Theorem A.10), is an elaborated version of the following
simple principle: in calculating the intersection product of several cycles, one
can combine terms and change the orders arbitrarily. The second result is a
Lefschetz trace formula for the intersection of a correspondence with the graph
of the Frobenius map, building on results of Varshavsky [24].

Appendix B proves a positivity result for central derivatives of automor-
phic L-functions, assuming the generalized Riemann hypothesis in the case
of number fields. The main body of the paper only considers L-functions for
function fields, for which the positivity result can be proved in an elementary
way (see Remark B.4).

1.9. Further notation.

1.9.1. Function field notation. For x € | X|, let w, be a uniformizer of Oy,
k. be the residue field of z, d, = [k, : k], and ¢, = #k, = ¢%. The valuation
map is a homomorphism

val: A —— Z
such that val(w,) = d,. The normalized absolute value on A* is defined as
|-|: A —— Q%, C R
a——— g vala),
Denote the kernel of the absolute value by
Al = Ker(- ).

We have the global and local zeta function

Cr(s) = H C(s),  Culs) = —s-

z€|X| 1= ga

1

Denote by Div(X) =2 AX/O* the group of divisors on X.
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1.9.2. Group-theoretic notation. Let G be an algebraic group over k. We
will view it as an algebraic group over F' by extension of scalars. We will
abbreviate [G] = G(F)\G(A). Unless otherwise stated, the Haar measure on
the group G(A) will be chosen such that the natural maximal compact open
subgroup G(Q) has volume equal to one. For example, the measure on A,
resp. G(A) is such that vol (O*) =1, resp. vol(K) = 1.

1.9.3. Algebro-geometric notation. In the main body of the paper, all geo-
metric objects are algebraic stacks over the finite field £ = F,. For such a
stack S, let Frg : S — S be the absolute g-Frobenius endomorphism that
raises functions to their ¢-th powers.

For an algebraic stack S over k, we write H*(S ®j, k) (resp. H:(S @4 k))
for the étale cohomology (resp. étale cohomology with compact support) of
the base change S ®j, k with Qg-coefficients. The f-adic homology H. (S ®y. k)
and Borel-Moore homology H*BM(S ®y k) are defined as the graded duals of
H*(S @4, k) and H:(S @y, k) respectively. We use D2(S) to denote the derived
category of QQs-complexes for the étale topology of S, as defined in [17]. We
use Dg to denote the dualizing complex of S with Q-coefficients.
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Sarnak for their help on Appendix B. We thank Benedict Gross for his com-
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April 2017 devoted to this paper, and we thank the participants, especially
Jochen Heinloth and Yakov Varshavsky, for their valuable feedbacks.

Part 1. The analytic side
2. The relative trace formula

In this section we set up the relative trace formula following Jacquet’s
approach [12] to the Waldspurger formula.

2.1. Orbits. In this subsection F' is allowed to be an arbitrary field. Let
F’ be a semisimple quadratic F-algebra; i.e., it is either the split algebra F'® F
or a quadratic field extension of F. Denote by Nm : F’ — F' the norm map.

Denote G = PGLy  and A the subgroup of diagonal matrices in G. We
consider the action of A x A on G where (h1,hs) € A x A acts by (hi,h2)g =
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hi'ghs. We define an A x A-invariant morphism:

inv: G%P};— {1}

be
Y ad’

(2.1)

where [¢%] € GLg is a lifting of v. We say that v € G is A x A-regular
semisimple if

inv(7) € Pk — {0,1,00},

or equivalently all a,b, c,d are invertible in terms of the lifting of v. Let Gig
be the open subscheme of A X A-regular semisimple locus. A section of the
restriction of the morphism inv to Gy is given by

v: PL—-{0,1,00} ———— G

(2.2) u}—w(u)_“ 7”

We consider the induced map on the F-points inv : G(F) — PY{(F) — {1}
and the action of A(F) x A(F) on G(F). Denote by

Ors(G) = A(F)\Gys(F) /A(F)

the set of orbits in Gys(F') under the action of A(F) x A(F'). They will be called
the regular semisimple orbits. It is easy to see that the map inv : Gs(F) —
PL(F) —{0,1, 00} induces a bijection

inv : O(G) — PYF) — {0, 1, 00}.
A convenient set of representative of O.5(G) is given by

1 u

O (G) = {wu) - { L } ‘u e P\(F) - {o,l,oo}}.

There are six nonregular-semisimple orbits in G(F'), represented respectively

by
[ (11 1
- 1[0 T 1 "7

- 1 ) + — 1 1 ) - — 1 )

where the first three (the last three, resp.) have inv = 0 (oo, resp.)
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2.2. Jacquet’s RTF. Now we return to the setting of the introduction. In
particular, we have n = np//p. In [12] Jacquet constructs an RTF to study the
central value of L-functions of the same type as ours (mainly in the number
field case). Here we modify his RTF to study higher derivatives.

For f € C(G(A)), we consider the automorphic kernel function

(2.3) Kf(g1,92) = Y, [flgi'v92), 91,92 € G(A).
YEG(F)

We will define a distribution, given by a regularized integral

reg

J(f, S) = / Kf(hl,hg)’hlhﬂsn(h@) dh1 th.
[A]x[A]

Here we recall that [A] = A(F)\A(A), and for h = [* ;] € A(A), for simplicity

we write

, - n(h) = n(a/d).

The integral is not always convergent but can be regularized in a way analogous
o [12]. For an integer n, consider the “annulus”

= |os

n

AX = {:EEAX

wl(e) = nf.

This is a torsor under the group A! = AJ. Let A(A), be the subset of A(A)

defined by
a

Then we define, for (n1,ns) € Z2,

c A(A)

a/d e A;;}

24)  Jums(frs) = / K (hy, ha)|hihal*n(hs) dhi dh.
[A]n1 X[A]nz

The integral (2.4) is clearly absolutely convergent and equal to a Laurent poly-
nomial in ¢°.

PROPOSITION 2.1. The integral I, n,(f,s) vanishes when |ni| + |na| is
sufficiently large.

Granting this proposition, we then define

(25) J(fa 3) = Z J?’L1,n2(fa S)'

(n1,n2)€Z?

This is a Laurent polynomial in ¢°.
The proof of Proposition 2.1 will occupy Sections 2.3-2.5.
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2.3. A finiteness lemma. For an (A x A)(F)-orbit of v, we define
(2.6) Kyq(hi,he) = Y f(hy'6h2), hi,ho € A(A).
SEA(F)YA(F)
Then we have
(2.7) Ky (hi, ho) = > Ky~ (h1, ho).
YEA(F)\G(F)/A(F)
LEMMA 2.2. The sum in (2.7) has only finitely many nonzero terms.

Proof. Denote by G(F), the fiber of v under the (surjective) map (2.1)
inv : G(F) — PY(F) — {1}.
We then have a decomposition of G(F') as a disjoint union
G(F) = H G(F)y.
ueP!(F)—{1}
There is exactly one (three, resp.) (A x A)(F)-orbit in G(F'), when u €
PY(F) — {0,1,00} (when u € {0,00}, resp.). It suffices to show that for all
but finitely many u € P*(F) — {0,1,00}, the kernel function Ky ) (h1, ha)

vanishes identically on A(A) x A(A).

Consider the map
Ti= L G(A) — A.

1—inv’

The map 7 is continuous and takes constant values on A(A) x A(A)-orbits.
For Ky () (h1, h2) to be nonzero, the invariant 7(y(u)) = 1=, must be in the
image of supp(f), the support of the function f. Since supp(f) is compact, so
is its image under 7. On the other hand, the invariant 7(y(u)) = 1=, belongs
to F. Since the intersection of a compact set supp(f) with a discrete set F'
in A must have finite cardinality, the kernel function K fﬁ(u)(hl, hg) is nonzero

for only finitely many w. (]

For v € A(F)\G(F)/A(F), we define

(2.8) Tnima (7, fr8) = / Ky (h1, h2)|h1he|*n(hz2) dhy dhs.
[Alny X [Alng
Then we have
T o (f8) = Z Jnina (V5 £ 8)-
YEA(F\G(F)/A(F)

By the previous lemma, the above sum has only finitely many nonzero

terms. Therefore, to show Proposition 2.1, it suffices to show

PROPOSITION 2.3. For any v € G(F), the integral I, n, (7, f, s) vanishes
when |n1| + |[na| is sufficiently large.
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Granting this proposition, we may define the (weighted) orbital integral
(29) J(V?f: 8) = Z Jnl,n2(77 fv S)'
(n1,n2)€Z2

To show Proposition 2.3, we distinguish two cases according to whether 7 is
regular semisimple.

2.4. Proof of Proposition 2.3: regular semisimple orbits. For u € P1(F) —
{0,1, 00}, the fiber G(F), = inv_!(u) is a single A(F) x A(F)-orbit of v (u),
and the stabilizer of y(u) is trivial. We may rewrite (2.8) as

(2.10)  Jnyny(v(u), fr8) = F(hT (W) ha)|haha|*n(hs) dhy dhs.

/A(A)nl X A(A)ny
For the regular semisimple v = 7(u), the map
ty i (Ax A)(A) — G(A)
(h1, ha) — hi'yhs
is a closed embedding. It follows that the function f o, has compact support,

hence belongs to C2°((A x A)(A)). Therefore, the integrand in (2.10) vanishes
when |n;| + |n2| > 0 (depending on f and ~(u)).

2.5. Proof of Proposition 2.3: nonregular-semisimple orbits. Let u € {0,00}.
We only consider the case u = 0 since the other case is completely analogous.
There are three orbit representatives {1,ny,n_}.

It is easy to see that for v = 1, we have for all (n1,n2) € Z2,

Jn1,n2 (77 f7 3) = 07

because 7|41 is a nontrivial character.
Now we consider the case v = ny; the remaining case v = n_ is similar.
Define a function

(2.11) ¢<x,y>=f({“" v ) (£,4) € A% x A,
Then we have ¢ € C°(A* x A). The integral Jp, n,(n4, f, s) is given by
(2.12) [, ol e ) nleyt ey,

An ><An2

where we use the multiplicative measure d*x on A*. We substitute y by xy,

and then z by 2~

| syl =l d e dy,
Z(nl,ng)

where

Z(nl’n2) = {($7y) | T € A(A)_nl,x_ly € A(A)nz} :
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Since C(A* x A) ~ CP(AX) ® C*(A), we may reduce to the case
d(z,y) = ¢1(x)p2(y) where ¢ € C°(AX), 2 € C°(A). Moreover, by writing
¢1 as a finite linear combination, each supported on a single AX, we may even
assume that supp(¢y) is contained in A for some n € Z. The last integral is
equal to

(/An b1 (y)n(y)\ylsdxy> (/A

Finally we recall that, from Tate’s thesis, for any ¢ € C2°(A), the integral

¢2 () n(a)|a] = Xm’) :

X X
—nq mA—nZ—Q—n

on an annulus
e @ (@)
An
vanishes when |n| > 0. We briefly recall how this is proved. It is clear if
n < 0. Now assume that n > 0. We rewrite the integral as

/FX\A% > elax)n()a|* dz.

acF'%

The Fourier transform of ¢, denoted by @, still lies in C2°(A). By the Poisson
summation formula, we have

(2.13) Y plax) = —p(0) + ||~ 3(0) + [2[ 7" Y Pla/x).

acFX aEFX

By the boundedness of the support of @, the sum over F'* on the right-hand
side vanishes when val(z) = n > 0. Finally we note that the the integral of
the remaining two terms on the right-hand side of (2.13) vanishes because 7 is

nontrivial on F*\ Al
This completes the proof of Propositions 2.3 and 2.1. (|

2.6. The distribution J. Now J(f, s) is a Laurent polynomial in ¢*. Con-
sider the r-th derivative

a]]r(f) = (zS)T s:OJ(f, S)'
For v € A(F)\G(F)/A(F), we define
Ir(v, f) = (CZ)T 0 fos).

We then have expansions (cf. (2.5))
J(f,s) = > I(v, £, 5),
YEA(P\G(F)/A(F)
and (cf. (2.9))
(2.14) I.(f) = > 3:-(v, f)-

YEA(FN\G(F)/A(F)
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We define

(2.15) J(u, f,s) = > I(v, f,8), wePY(F)—{1}
YEA(F\G(F)u/A(F)

and

(2.16) Jr(u, f) = > Jr(v, f), weP'(F)—{1}.
YEA(FNG (F)u/A(F)

Then we have a slightly coarser decomposition than (2.14):

(2.17) L(H= > Il

ueP(F)—{1}
2.7. A special test function f = 1k.

PROPOSITION 2.4. For the test function

[ =1k,
we have
L(777 28) + L(nv _25) qu € {Oa OO}>
(2.18) J(u,1g,8) =<1 ifuek—{0,1},

0 otherwise.

Proof. We first consider the case u € PY(F) — {0,1,00}. In this case, we

have
- 710 [1u] [yO s < ax

= 1K<{$_1w—11ublxy\sn(y)~

z,yeAX JOX y

The integrand is nonzero if and only if g = [m_yly ’”_11“} € K. This is equivalent
to the condition that ggj/det(g) € O, where {gi;}1<i j<2 are the entries of g.

We have det(g) = 2~ 'y(1 — u), therefore, g € K is equivalent to
syl —w) e, 2zl NP1 -u)! €0,

2.19
( ) xy(l — u)_1 €0, and :L‘y_l(l — u)_l e 0.

Multiplying the first and last conditions we get (1 — u)~! € Q. Therefore,
1 —wu € F* must be a constant function, i.e., u € k — {0,1}. This shows that
J(u,1x,s) =0 when u € F — k.

When u € k —{0,1}, the conditions (2.19) become

e, z7lyte0, zye0, andazy!eO.
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These together imply that x,y € Q™. Therefore, the integrand is nonzero only
when both z and y are in the unit coset of A* /0, and the integrand is equal
to 1 when this happens. This proves J(u,1x,s) =1 when u € k — {0, 1}.

Next we consider the case v = 0. For f = 1k and v = n4, in (2.11) we
have ¢ = ¢1 ® ¢p2, where

01 = 1lgx, ¢2=1g.

Therefore, we have

U taeos) = [ dalapn(a)lal > d*a = Lin,~29).

Similarly, we have
J(’I’l_, 1K) 8) = L(nu 28)

This proves the equality (2.18) for u = 0. The case for u = oo is analogous. O

COROLLARY 2.5. We have

Jacy/
4L(7770) q_2:4iJz(;X((k))+q_2 r =0,

J-(1g) = {27 +2 (fs) ’ L(n,s) r >0 even,
s=0

0 r >0 odd.

3. Geometric interpretation of orbital integrals

In this section, we will give a geometric interpretation of the orbital inte-
grals J(7, f, s) (cf. (2.9)) as a certain weighted counting of effective divisors on
the curve X, when f is in the unramified Hecke algebra.

3.1. A basis for the Hecke algebra. Let z € | X|. In the case G = PGLgy, the
local unramified Hecke algebra 77, is the polynomial algebra Q[h,], where h, is
the characteristic function of the G(O,)-double coset of [ 1] and w, € O
is a uniformizer. For each integer n > 0, consider the set Mata(Oy )., (det)=n
of matrices A € Maty(O,) such that vy(det(A)) = n. Let M, be the image
of Mata(Oy)y, (det)=n in G(Fr). Then M, is a union of G(O)-double cosets.
We define h,, to be the characteristic function

(3.1) hmc = 1Mz,n'

Then {hpg}n>0 is a Q-basis for /2.

Now consider the global unramified Hecke algebra 7 = ®,¢|x| 7, which
is a polynomial ring over Q with infinitely generators h,. For each effective
divisor D = Y ¢ x|z - T, we can define an element hp € J using

(32) hp = ®z€|X|hnwxa

where h,,, . is defined in (3.1). It is easy to see that the set {hp|D effective
divisor on X'} is a Q-basis for /7.
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The goal of the next few subsections is to give a geometric interpretation
of the orbital integral J(v, hp, s). We begin by defining certain moduli spaces.

3.2. Global moduli space for orbital integrals.

3.2.1. For d € Z, we consider the Picard stack Pic% of lines bundles over
X of degree d. Note that Picgl( is a Gy,-gerbe over its coarse moduli space.
Let X\d — Picgl( be the universal family of sections of line bundles; i.e., an
S-point of )/(\d is a pair (£, s), where £ is a line bundle over X x S such that
deg L] x x4y = d for all geometric points ¢ of S, and s € HO(X x S, L).

When d < 0, X, = Picd since all global sections of all line bundles
L € Pic% vanish. When d > 0, let Xy = X?%//S; be the d-th symmetric power
of X. Then there is an open embedding X, — X\d as the open locus of nonzero
sections, with complement isomorphic to Picgl(.

For dy,ds € Z, we have a morphism

adddl’d2 : Xd1 X Xd2 — Xd1+d2

sending ((L1, s1), (L2, 52)) to (L1 ® L2, 51 ® s2). The restriction of a/dTideQ to
the open subset Xy, x Xy, becomes the addition map for divisors addg, 4, :

Xd1 X Xd2 — Xd1+d2-

3.2.2. The moduli space Ny. Let d > 0 be an integer. Let X4 be the set
of quadruple of nonnegative integers d = (dij); jef1,2) satisfying di1 + da2 =
di2 + do = d.

For d € ¥4, we consider the moduli functor /T/d classifying (K1, o, i, Kb, )
where

° K:Z,K:; € Picx with deg ,C; — deg Kj = dij.
e v: K1 ® Ky — Kj & Kb is an Ox-linear map. We express it as a matrix

] P11 P12
4 { P21 P22 } ’
where ;5 : Kj — K.

o If di1 < dss, then 11 # 0 otherwise @os # 0. If dio < do1, then @19 # 0
otherwise @91 # 0. Moreover, at most one of the four maps ¢;;,4,j € {1,2}
can be zero.

The Picard stack Picx acts on ﬁd by tensoring each XC; and IC;- with the same

line bundle. Let Ny be the quotient stack /A\@ / Picx, which will turn out to be
representable by a scheme over k. We remark that the artificial-looking last
condition in the definition of Ny is to guarantee that Ny is separated.

3.2.3. The base A4. Let Agq be the moduli stack of triples (A, a, b), where
A € Pick and a and b are sections of A with the open condition that a and b
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are not simultaneously zero. Then we have an isomorphism
(33) .Ad = Xd XPici( Xd — Zd,

where Z; = Pic% is the image of the diagonal zero sections (0,0) : Pick
Xd X picd Xd.
X

We claim that Ay is a scheme. In fact, A is covered by two opens V =
Xy X Picd. Xgand V' = Xy X picd. X4. Both V and V' are schemes because the
map Xg — Picgl( is schematic.

We have a map

0: .Ad — X\d

given by (A, a,b) = (A,a —b).

3.2.4. The open part AS. Later we will consider the open subscheme
Ad@ C A, defined by the condition a # b, i.e., the preimage of X; under
the map ¢ : Ay — Xy.

3.2.5. To a point (K1, Ke, K}, K, 0) € ./\N/'d we attach the following maps:

® a:= 11 ®pxn: KoK — K@K

o bi=p1®p : K1 @Ky = Ky @K =K @K,
Both a and b can be viewed as sections of the line bundle A = K} ® K} ®
Kt @ Kyt € Pick. Clearly this assignment (K1, Ka, K, Kb, @) — (A, a,b) is
invariant under the action of Picx on /f\/z. Therefore, we get a map

fNi : Ni — .Ad.

The composition 6 o far, : Ng — X, takes (K1, Ko, K1, K5, ) to det(p) as a
section of A = K} ® K’gé Kite st

3.2.6. Geometry of Ny. Fix d = (d;j) € X4. For i,j € {1,2}, we have
a morphism j; : Ng — X\dz’j sending (K1,...,K5,¢) to the section ¢;; of
the line bundle £;; = K} ® ICj_1 € Picgléj . We have canonical isomorphisms
L11® Lo = L1900 Lo1 2 A=K, @Kh@ K@Ky Thus we get a morphism

(3'4) Jd = (]ij)iaj : Ni—> (Xdu X Xd22) XPicg( (de X de)'

Here the fiber product on the right side is formed using the maps j(\du X )?dm —
d12 d21

Picl! x Pic®? 2 Pick and Xy, x Xg,, — Pick? x Pic®2 2 Pic%.
PROPOSITION 3.1. Let d € ¥,.

(1) The morphism jq is an open embedding, and Ny is a geometrically con-
nected scheme over k.

(2) Ifd > 2¢g' —1 = 4g — 3, then Ny is smooth over k of dimension 2d — g+ 1.
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(3) We have a commutative diagram

Jd — —~ ~ o~
Nd (an X Xd22) XPicgl( (Xd12 X Xd21)

(3'5) Jde ladddnydmxadddmydm
.Adc Xd XPngl( Xd.

Moreover, the map f/\@ 18 proper.

Proof. (1) We abbreviate Pick by P9. Let Z; C (X\du X )/(\dm) X picd.

(5(\(112 x Xg,,) be the closed substack consisting of ((Lij,si5) € )A(dij)lgi7j§2
such that

e cither two of {s;;}1<; j<2 are zero,

e or s11 = 0if di1 < dog,

® Or S99 — 0 if d11 > d22,

e or s;10 =20 if dis < d21,

® Or So1 — 0 if d12 Z dQl.

By the definition of N, we have a Cartesian diagram

.71 — ~~ —~ o~
Nd e — (Xdu X Xdzz) X pd (Xd12 X Xd21) - Zd

| |

Pdii—diz o pdil y pda L , (Pdu % pd22) X pd (Pd12 % Pd21)'

Here A sends (Kp,...,Kh,¢) to (X = Ko @ K{1 X = K o K{1 A =

Lo KDY, and p sends (X, X7, A5) to (X, Xp @ Xyt Xl @ X' X)), Note
that p is an isomorphism. Therefore, j; is an isomorphism. Since the geo-
metric fibers of A\ are connected, and P%117%2 x pdi1 x pd21 ig geometrically
connected, so is Nj.

The stack N is covered by four open substacks U;;, i, j € {1,2}, where Uj;
is the locus where only ¢;; is allow to be zero. Each U;; is a scheme over k. In
fact, for example, Uy; is an open substack of (X\du X Xdgy) X pa (Xdyp X Xy, ),
and the latter is a scheme since the morphism X\du — P11 is schematic.

(2) We first show that Ny is smooth when d > 2¢’ — 1 = 4g — 3. For this
we only need to show that U;; is smooth. (See the proof of part (1) for the
definition of Uj;.) By the definition of Ny, ¢;; is allowed to be zero only when
di; > d/2, which implies that d;; > 2g — 1. Therefore, we need U;; to cover Ny
only when d;; > 2g—1; otherwise ;; is never zero and the rest of the Uy j still
cover Ny. Therefore, we only need to prove the smoothness of U;; under the
assumption that d;; > d/2. Without loss of generality, we argue for i = j = 1.
Then di; > 2g — 1 implies that the Abel-Jacobi map AlJg,, : X\d“ — P s
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smooth of relative dimension di; — g + 1. We have a Cartesian diagram

Ug ——— Xy,

s

Xy X Xgy X Xgy, — PI1,

where the bottom horizontal map is given by (Lo2, s22, L12, S12, Lo1, $21) —
Lo ® Lo ® 52_21. Therefore, Uyp is smooth over Xg4,, x X4, X Xg,, with
relative dimension di; — g + 1, and Uy is itself smooth over k of dimension
2d—g+1.

(3) The commutativity of the diagram (3.5) is clear from the definition
of 4. Finally we show that fu;, : Ny — Ag is proper. Note that Ag is covered
by open subschemes V = X\d X pa Xg and V' = Xy X pa X\d whose preimages
under fy;, are Upp U Uz and Uja U Usy respectively. Therefore, it suffices to
show that fv : U1 UUx — V and fy+ : Uip U Uy — V' are both proper.

We argue for the properness of fy,. There are two cases: either di; > dao
or di1 < dao.

When dy1 > dos, by the last condition in the definition of ./\fd, (29 is never
zero, hence U1y U Ugg = Upp. By part (2), the map fy becomes

(X, X Xdyy) X pa (Xayy X Xy, ) — Xg X pa Xa.
Therefore, it suffices to show that the restriction of the addition map

o = adddn,dgg : Xd11 X Xd22 — Xd

’an X Xdgy

ii proper. We may factor o as the composition of the closed embedding
Xd11 X Xd22 — Xd X Xd22 sending (,C11,811,D22) to (£11(D22)7811,D22) and
the projection )?d X Xy, — )A(d, and the properness of « follows.

The case d11 < dos is argued in the same way. The properness of fy is also
proved in the similar way. This finishes the proof of the properness of fa,. [

3.3. Relation with orbital integrals. In this subsection we relate the deriv-
ative orbital integral J(v,hp,s) to the cohomology of fibers of Iy

3.3.1. The local system L4. Recall that v : X’ — X is a geometrically
connected étale double cover with the nontrivial involution o € Gal(X’'/X).
Let L = (1.Q)?=~!. This is a rank one local system on X with L®? = Q.
Since we have a canonical isomorphism H; (X, Z/2Z) = H,(Pic',Z/27Z), each
Pic’y carries a rank one local system L, corresponding to L. By abuse of
notation, we also denote the pullback of L, to )?n by L,. Note that the
pullback of L,, to X,, via the Abel-Jacobi map X,, — Picy is the descent of
L¥" along the natural map X" — X,,.
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Using the map jq (3.4), we define the following local system L4 on Ny:
Lg = 35(La;; XQp X Lg,, Q).

3.3.2. Fix D € X4(k). Let Ap C Ay be the fiber of Ay over D under
the map 0 : Ay — )/(\d. Then Ap classifies triples (Ox (D), a,b) in Ay with the
condition that a — b is the tautological section 1 € I'(X, Ox(D)). Such a triple
is determined uniquely by the section a € T'(X,Ox(D)). Therefore, we get
canonical isomorphisms (viewing the right-hand side as an affine spaces over k)

(3.6) Ap =T(X,O0x(D)).
On the level of k-points, we have an injective map
invp : Ap(k) 2 T'(X,0x(D)) — PYF) - {1}
(Ox(D),a,a—1) < ar— (a—1)/a=1—a"L.

PROPOSITION 3.2. Let D € X4(k), and consider the test function hp

defined in (3.2). Let u € PY(F) — {1}.

(1) If u is not in the image of invp, then we have J(v,hp,s) = 0 for any
v € A(F)\G(F)/A(F) with inv(y) = u;

(2) If u = invp(a) for some a € Ap(k) = I'(X,O0x (D)), and u ¢ {0,1,00}
(i.e., a ¢ {0,1}), then

J(v(u), hp,s) = 3 ¢*42=D3 T (Frob,, (R f/\/’d7*L¢)a> .
de¥y a
(3) Assume d > 29’ — 1 =49 — 3. If u = 0, then it corresponds to a = 1 €
Ap(k); if u = oo then it corresponds to a =0 € Ap(k). In both cases we
have

(3.7) > Iy hp,s) =Y qPN2m D T (Frobg, (Rfny«La)_) -
inv(vy)=u desq B

Here the sum on the left-hand side is over the three irreqular double cosets

vye{l,ng,n_} if u=0 and over v € {w,wny,wn_} if u = oco.

Proof. We first make some general constructions. Let A C GL, be the
diagonal torus, and let 7 € GLa(F) — (A(F) UwA(F)) with image v € G(F).
Let o : A — Gy be the simple root [* 4] = a/d. Let Z = G, C A be the
center of GLa. We may rewrite J(v, hp, s) as an orbital integral on A(A)-double
cosets on GLa(A) (cf. (2.10), (2.11), (2.12)):

3.8)  J(v,hp,s) = hp(t'~'Ft)la()a()*n(a(t)) dt dt'.

/A(Z<A>>\<ZXZ><A>
Here for D = Y, ngz, ED :~®mi~z,~@gC is an element in the global unramified
Hecke algebra for GLg, where h,,_ . is the characteristic function of the compact
open subset Mata(Oy)y, (det)=n,; cf. Section 3.1.
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Using the isomorphism A(A)/ [[,eix| A(Op) = (AX/0%)? 2 Div(X)?
given by taking the divisors of the two diagonal entries, we may further write
the right-hand side of (3.8) as a sum over divisors i, Fa, F, F} € Div(X),

up to simultaneous translation by Div(X). Suppose t € A(A) gives the pair
(E1, E3) and t' € A(A) gives the pair (E}, E}). Then the integrand hp (¢ ~17t)
takes value 1 if and only if the rational map 5 : 0% --»+ O% given by the

matrix v fits into a commutative diagram

5
0% - ————-—————- + 0%.

(3.9)

N

Ox(—E1) ® Ox(—Ey) —— Ox(—E}) & Ox(—E})

Here the vertical maps are the natural inclusions, and @5 is an injective map

of Ox-modules such that det(¢x) has divisor D. The integrand hp(t'~131) is
zero otherwise.

Let ‘)N?Dﬁ C Div(X)* be the set of quadruples of divisors (Ey, E, B}, Eb)
such that 7 fits into a diagram (3.9) and det(yz) has divisor D. Let N~ =
;JvtDﬁ/ Div(X), where Div(X) acts by simultaneous translation on the divisors
El,EQ, Ei and Eé

We have |a(t)a(t')|® = ¢~ deePr-E2+E1-E3)s - Viewing 7 as a character
on the idele class group F*\AL/[T.eix| Ox = Picx(k), we have n(a(t)) =
n(E1)n(Es) = n(E1 — E))n(Ey — EY). Therefore,

(3.10)
J(v,hp,s) = > g deslBr =Bt = l)sy (B — E{n(By — EY).
(Ev, B2, B Y EM  ~

(1) Since w = 0 and oo are in the image of invp, we may assume that
u ¢ {0,1,00}. For v € G(F) with invariant u, any lifting ¥ of v in GLa(F") does
not lie in A or wA. Therefore, the previous discussion applies to 7. Suppose
I(v.hp,s) # 0, then Ny~ # @. Take a point (E1, By, By, E5) € Ny~ The
map det(¢s) gives an isomorphism Ox(—E] — E3) = Ox(—E1 — E2 + D).
Taking a = ¢ 19549 + Ox(—E1 — E2) = Ox(—FE} — Ej), then a can be
viewed as a section of Ox (D) satisfying 1 — a~! = inv(y). Therefore, u =
inv(y) = invp(a) is in the image of invp.

(2) When u ¢ {0,1, 00}, recall y(u) is the image of J(u) = [1 ¥]. Let Ny,
be the fiber of Ny over a € Ap(k). Let Ny = [[4ex, Ngqa- We have a map

Uy - mD;,‘Y'(u) —>Na(k)
(E17 Ej, Ei? Eé) — (OX(_E1)7 OX(_E2)7 OX(_ED? OX<_E§)? %(u))
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We show that this map is bijective by constructing an inverse. We may assume
K1 = Ox for (K1, K2, K7, K, ¢ij) € Ngqo(k) (since we mod out by the action
of Picx in the end). Let S = |div(a)|U|div(a—1)|U|D] be a finite collection of
places of X. Then each ¢;; is an isomorphism over U = X —S. In particular, we
get isomorphisms ¢11 : Oy = K|, @21 : Oy = Kb|y and (p2_21g021 : Oy = Kaly.
Let E{, £ and Es be the negative of the divisors of the isomorphisms ¢11, @21
and @5219021, viewed as rational maps between line bundles on X. Set F; = 0.
Then we have K; = Ox(—FE;) and K, = Ox(—E]) for i = 1,2. The map ¢
guarantees that we have the quadruple (Ey = 0, Eq, B}, Eb) € Np 5 This
gives a map Ny (k) = N D)’ which is easily seen to be inverse to v,.
By the Lefschetz trace formula, we have

3 q(2diz=d)s . (Froba, (Rf/\/i,*Lg)a))
dexy

= > q®H2= D5 (Dyy)n(Ds2),
(K1,K2,K K ) ENG (k)

where D;; is the divisor of ¢;;. Moreover, under the isomorphism v,, the
term q_deg(El_EﬁEi_Eé)s corresponds to q(2d12_d)s where dis = deg(D12).
Therefore, Part (2) follows from the bijectivity of v, and (3.10).

(3) We treat the case u = 0 (i.e., a = 1), and the case u = oo is similar.
Let ‘ﬁ’D’mr be the set of triples of effective divisors (D11, D12, D22) such that
D11 4+ Do = D. Then we have a bijection

szn+ é s)/IIID,’VL,,
(El,Ez, i, Eé) — (El — Ei, E2 — Ei,EQ — Eé)
Using this bijection, we may rewrite (3.10) as

J(ny,hp,s) = > g AeP2)= D5 (D) )y (Dia)

(D11,D12 7D22)E‘J'I/D’n+

(3.11) =q " Y ¢ Pein(Dy) - > p(Di)

D12>0 D114+D22=D
D11,D22>0

=q ®L(-2s,m) Y. n(Dn)
0<Dn <D

Similarly, let m’D’n_ be the set of triples of effective divisors (D11, D21, D22)

such that D11 + D2y = D. Then we have a bijection Np,_ <« ‘ﬁ’D’n_ and an

identity

J(n—,hp,s) = > g2 48D ( Dy, )y(Dag)
(D11,D21,D22)€NY, |

=q®L(2s,m) Y. n(Dan).
0<Dg2<D

(3.12)
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We now introduce a subset ‘)T%ym - ‘ﬁ’Dm+ consisting of (D11, D12, D22)
such that deg(D12) < d/2; similarly, we introduce ‘ﬁg,m C N, consisting
of those (D11, D21, Dag) such that deg(D21) < d/2. Then the same argument
as Part (2) gives a bijection

e 05 T, = Nalh) = T Naah)

de¥y

Here the degree constraints deg(D12) < d/2 or deg(D21) < d/2 come from the
last condition in the definition of Ny in Section 3.2.2.
Using the Lefschetz trace formula, we get

Z q(2d12_d)3 Ty (FI'Oba, Hz (Nd,a Rk Ea LQ))
de¥y
_ Z q(2 deg(D12)*d)5n(D11)77(D12)

(D11,D127D22)€9ﬁ‘g,mr

N Z q\?=2dee(D20)5 (Do Yy (Day)
(D11,D21,D22)ENG,

(3.13) :q—ds Z q2deg(D12)s77(D12) Z W(Dll)
D152>0,deg(D12)<d/2 0=Du<D

(3.14) +q% > g 24P (Do) ST p(Dag).
D21>0,deg(D21)<d/2 0<D22<D

The only difference between the term in (3.13) and the right-hand side of (3.11)
is that we have restricted the range of the summation to effective divisors D19
satisfying deg(D12) < d/2. However, since 7 is a nontrivial idele class character,
the Dirichlet L-function L(s,n) = > g>0q~ deg(E)sp(F) is a polynomial in ¢—*
of degree 2g — 2 < d/2. Therefore, (3.13) is the same as (3.11). Similarly,
(3.14) is the same as (3.12). We conclude that

3 g2d2=d)s Ty (Froba, H}(Ngq @y K, L@))
(3.15) deXq
= J(’I’L+7 hD, S) + J(n77 hD7 S)-

Finally, observe that
(3.16) J(1,hp,s) =0

because 7 restricts nontrivially to the centralizer of v = 1. Putting together
(3.15) and the vanishing (3.16), we get (3.7). O
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COROLLARY 3.3. For D € Xy4(k) and u € P1(F) — {1}, we have
Jr(uy hD)
_ {(10g Q)" Y ges, (2d12 — d)" Tr (Froby, (Rf/\@*Li)a) if u=invp(a),a € Ap(k),

0 otherwise.

4. Analytic spectral decomposition

In this section we express the spectral side of the relative trace formula in
Section 2 in terms of automorphic L-functions.

4.1. The FEisenstein ideal. Consider the Hecke algebra J = ®,¢|x |-z
We also consider the Hecke algebra .7 for the diagonal torus A = G, of G.
Then H) = Que|x|H A With 4, = Q[F)/OF] = Q[ts, t; "], and ¢, stands
for the characteristic function of w, 'O, where w, is a uniformizer of F.

Recall we have a basis {hp} for % indexed by effective divisors D on X.
For fixed z € |X|, we have h, € 5, and 7, = Qlh,] is a polynomial algebra
with generator h,.

4.1.1. The Satake transform. To avoid introducing ,/q, we normalize the
Satake transform in the following way:

Saty : A — THa
hy —>ty + th;1>

where g, = #k,. Consider the involution ¢, on J% , sending t, to g,t, L Then
Sat, identifies 77, with the subring of ,-invariants of 7 ,. This normalization
of the Satake transform is designed to make it compatible with constant term
operators; see Lemma 7.8. Let

Sat : . — T
be the tensor product of all Sat,,.

4.1.2.  'We have natural homomorphisms between abelian groups:
A% /0¥ — = Div(X)
FX\AX /0% —=— Picx (k).
In particular, the top row above gives a canonical isomorphism
Ay = QA" /0%] = Q[Div(X)],

the group algebra of Div(X).
Define an involution ¢pi. on Q[Picx (k)] by

Lpic(lg) = qdegﬁlﬁﬂ.
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Here 1, € Q[Picx (k)] is the characteristic function of the point £ € Picx (k).
Since the action of ®t, on 4 = Q[Div(X)] is compatible with the involution
tpic on Q[Picx (k)] under the projection Q[Div(X)] — Q[Picx(k)], we see that
the image of the composition

A 5 4 = QDiv(X)] — Q[Picy (k)]

lies in the tpjc-invariants. Therefore, the above composition gives a ring ho-
momorphism

(4.1) agis : H — Q[PiCX(k)]LPiC =: Hhjs-

Definition 4.1. We define the FEisenstein ideal Zgis C ¢ to be the kernel
of the ring homomorphism agis in (4.1).

The ideal Zgis is the analog of the Eisenstein ideal of Mazur in the function
field setting. Taking the spectra we get a morphism of affine schemes

Spec(agis) : Zmis := Spec Q[Picx (k)]'ic — Spec .72

LEMMA 4.2.

(1) For any x € |X|, under the ring homomorphism agis, Q[Picx (k)]"Pic is
finitely generated as an F.-module.

(2) The map agis is surjective, hence Spec(ag;s) is a closed embedding.?

Proof. (1) We have an exact sequence 0 — Jacx (k) — Picx(k) = Z — 0
with Jacx (k) finite. Let x € |X|. Then the map Z — Picx(k) sending
n — Ox(nz) has finite cokernel since Jacx (k) is finite. Therefore, Q[Picx (k)]
is finitely generated as a 54, = Q[t,,t;']-module. On the other hand, via
Saty, 4, is a finitely generated JZ;-module (in fact a free module of rank
two over ;). Therefore, Q[Picx (k)] is a finitely generated module over the
noetherian ring .7, and hence so is its submodule Q[Picx (k)]*Pic.

(2) For proving surjectivity, we may base change the situation to Q,. Let
3gis = Spec Qy[Picx (k)]*Pe. We still use Spec(ag;s) to denote 3gis — Spec %f@.
We first check that Spec(agis) is injective on Q-points. Identifying Picy (k)
with the abelianized Weil group W (X )" via class field theory, the set 3g;s(Qp)
is in natural bijection with Galois characters y : W(X) — Q, up to the
equivalence relation x ~ x~!(—1) (where (—1) means Tate twist). Sup-
pose x1 and Yo are two such characters that pullback to the same homo-
morphism # — Qq[Picx (k)] Xy Q. Then xi(agis(hz)) = xi1(Frob,) +
¢z x1(Frob;1) = x2(Frob,) + gux2(Frob, ') = x2(agis(he)) for all 2. Con-
sider the two-dimensional representation p; = x; @® x; 1(=1) of W(X). Then
Tr(p1(Frobg)) = Tr(p2(Froby)) for all . By Chebotarev density, this implies

2This result is not used in an essential way in the rest of paper.
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that p; and po are isomorphic to each other (since they are already semisim-
ple). Therefore, either x1 = x2 or x1 = x5 (—1). In any case, x; and X2
define the same Q/-point of 3gi. We are done.

Next, we show that Spec(ags) is injective on tangent spaces at Q,-points.
Let 3pis = Spec Q;[Picx (k)]. Then Ipis 1S a disjoint union of components
indexed by characters xo : Jacx(k) — @Z , and each component is a torsor
under G,,,. The scheme 3g;is is the quotient i J (tpic). For a character x :
Picx (k) — Q, with restriction xq to Jacx (k), we may identify its component
Sxo with G,, in such a way that s € G,,, corresponds to the character y - 51 :
Picx (k) = Q,, £ — x(£)s%8£. The map Spec(agss) pulled back to EXO then
gives a morphism

b: G = 3y, — Jmis — Spec g = AR
given by the formula

(4.2) Gm 25— (x(ta)s™ + qxx(t;)g—dz)xax‘ ;

where d, = [k, : k]. The derivative % at s = 1 is then the vector (dy(x(t;) —

qxx(tgl)))max‘. This is identically zero only when x(t;) = :I:qi/2 for all x and
hence if and only if x? = ¢° = Qy(—1). Therefore, when x? # Qy(—1), we
have proved that the tangent map of b at s = 1 is nonzero, hence a fortiori the
tangent map of Spec(agis) at the image of y is nonzero. If x? = Q,(—1), then y
is a fixed point under ¢pjc. The component BXO is then stable under ¢p;., which
acts by s — s
with affine coordinate z = s + s~!. Therefore, we may factor b into two steps:

, and its image 3, C 3gis is a component isomorphic to Al

~ _ —1
b:3y =G, T gl 3 S Spec A, = A,

: s gl : dedz __ db
where ¢ is the restriction of Spec(ag;s) to Zy,. By chain rule we have 292 = 7.

Using this we see that the derivative % at z = s+ s~ ! is the vector

d —d
(d:cX(ta:) s _ 51 ) X
BAS

(using that x(tz) = gzx(t;!)). Evaluating at s = 1 we get the nonzero vector
(x(tm)di)me‘m. We have checked that the tangent map of Spec(ag;s) is also
injective at the image of those points x € 3gis(Qy) such that x2 = Qg(—1).
Therefore, the tangent map of Spec(ag;s) is injective at all Q,-points. Combin-
ing the two injectivity results we conclude that Spec(ags) is a closed immersion
and hence agjs is surjective. O
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4.2. Spectral decomposition of the kernel function. Recall that we have
defined the automorphic kernel function by (2.3). For a cuspidal automorphic
representation 7 (in the usual sense, i.e., an irreducible sub-representation of
the C-values automorphic functions), we define the m-component of the kernel
function as (cf. [12, §7.1(1)])

(4.3) Kyn(z,y) =Y 7(f)o(@)y),
s

where the sum runs over an orthonormal basis {¢} of 7. The cuspidal kernel
function is defined as

(4.4) Kf.cusp = Z Kf.r
i

where the sum runs over all cuspidal automorphic representations = of G. Note
that this is a finite sum.
Similarly, we define the special (residual) kernel function (cf. [12, §7.4])

Kysp(z.y) == w(f)x(@)x(y),
X
where the sum runs over all one-dimensional automorphic representations
m = ¥, indeed solely characters of order two:
x: G(A) —— FX\AX/(AX)2 —— {£1}.

THEOREM 4.3. Let f € Igis be in the Fisenstein ideal Tgis C €. Then
we have
Ky =Kreusp + Kysp-
Proof. To show this, we need to recall the Eisenstein series (cf. [12, §8.4]).
We fix an o € A* with valuation one, and we then have a direct product
AX = Al x of.

For a character y : F*\A! — C*, we extend it as a character of F*\A*, by
demanding y(«) = 1. Moreover, we define a character for any u € C:

Xu: A —— C*
a—— x(a)|al.
We also define

Sp:  B(A) — A
x: B(A) —C~

{a H — s a/d b x(a/d).
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For v € C, the (induced) representation p, ., of G(A) = PGLy(A) is
defined to be the right translation on the space V, , of smooth functions
¢:GA)—C
such that
¢ (bg) = x (0) |95 (B)[*T24(g), be B(A), geG(A).

Note that we have p, , = By restriction to K, the space V, . is

pX u+ 127\'1 .
ogq
canonically identified with the space of smooth functions

Vy: = {qﬁ : K — C, smooth

6(08) = X @)o0), be KN BA)).
This space is endowed with a natural inner product

(4.5) (6,¢) = /K o) & (k) dk

Let ¢ € V.. We denote by ¢(g,u, x) the corresponding function in Vj ,, i.e.,

1
u+3

6(g,1,x) = x (B) ]53@ o(k)

if we write g = bk, where b € B(A),k € K.
For ¢ € V,, the Eisenstein series is defined as (the analytic continuation of)

E(g,¢u,x) = >, o9, u,x)

YEB(F)\G(F)

Let {¢;}; be an orthonormal basis of the Hermitian space V,. We define
(4.6)

27

logq To -
Kf’ElsX(x y Z/ o Xu ¢’L7¢j) ( )¢i7u7 X)E(y7¢]7u7X) du)

21

where the inner product is given by (4.5) via the identification V, , ~ V... We
set (cf., [12, §8.4])

(4'7) Kf,Eis = ZKf,Eis,Xy
X

where the sum runs over all characters y of F*\A!. Since our test function f is
in the spherical Hecke algebra 77, for Ky ;s , to be nonzero, the character  is
necessarily unramified everywhere. Therefore, the sum over y is in fact finite.

By [12, §7.1(4)], we have a spectral decomposition of the automorphic
kernel function K defined by (2.3)

(4.8) Ky = Kycusp + Kysp + Ky pis-

Therefore, it remains to show that Ky g;s vanishes if f lies in the Eisenstein
ideal IEis'
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We may assume that y is unramified. Then we have

log q
21

(49)  Kjmoy(e:y) = ﬁﬂ%wmwmw%mmw%mm

where ¢ = 1x € V,. (We are taking the Haar measure on G(A) such that
vol(K) = 1.)

Recall that the Satake transform Sat has the property that for all unram-
ified characters y, and all u € C, we have

tr px,u(f) = Xu+1/2(Sa‘t(f))7

where we extend X,1/2 to a homomorphism J#4 ¢ ~ C[Div(X)] — C. Since
Xu: A(A)/(A(A) N K) ~ Div(X) — C* factors through Picx (k), we have

tr pXﬂL(f) = Xu+1/2(aEis(f))‘

Then we may rewrite (4.9) as

log ¢
271

27
Tog q -
Ky,gis,x (2, y) = /0 " Xus1/2(amis(f)) E(z, 6, u, x)E(y, 6,u, X) du.

In particular, if f lies in the Eisenstein ideal, then agis(f) = 0, and hence the
integrand vanishes. This completes the proof. ([l

4.3. The cuspidal kernel. Let m be a cuspidal automorphic representation
of G(A), endowed with the natural Hermitian form given by the Petersson
inner product:

(4.10) wwm:ﬁﬂwwm%¢¢em

We abbreviate the notation to (¢, ¢’). For a character x : F*\A* — C*, the
(A, x)-period integral for ¢ € 7 is defined as

(4.11) %mwzwwmmww.
We simply write & (¢, s) if x = 1 is trivial. This is absolutely convergent for
all s € C.

The spherical character (relative to (A x A,1 x 1)) associated to 7 is a
distribution on G(A) defined by

t@(ﬂ(f)ﬁm S)’@”I($7 S)
(4.12) Jx(fss) =
2 (6, 9)

, [eCX(G(A)),

where the sum runs over an orthogonal basis {¢} of 7. This is a finite sum,
and the result is independent of the choice of the basis.
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LEMMA 4.4. Let f be a function in the Fisenstein ideal Tgis C €. Then
we have

I(f,8) =2 I=(f,5),

where the sum runs over all (everywhere unramified) cuspidal automorphic
representations w of G(A).

Proof. For x = cusp,sp or m, we define J.(f,s) by replacing K, by Ky,
in both (2.4) and (2.5). To make sense of this, we need to show the analogous
statements to Proposition 2.1. When * = sp, we note that for any character
x : AX — C*, one of y and x7n must be nontrivial on A'. It follows that for
any (ny,ns) € Z2, we have

/ x(h1)x " (ho)|h1ha|*n(ha) dhy dhy = 0.
[Alny x[Aln,

Consequently, we have
JSp(f S ) =0.

When x = 7, we need to show that, for any ¢ € m, the following integral
vanishes if [n| > 0:

o(h)x(h)|h|"dh.
[Aln

But this follows from the fact that ¢ is cuspidal, particularly ¢(h) = 0 if
h € [A], and |n| > 0. This also shows that this definition of J;(f, s) coincides
with (4.12). The case * = cusp follows from the case for * = 7 and the finite
sum decomposition (4.4). We then have

qusp(fa S) = Zjﬂ(fa 8)'

The proof is complete, noting that by Theorem 4.3, we have
J(f, S) :qusp(f73)+Jsp(f7S)- O

PROPOSITION 4.5. Let m be a cuspidal automorphic representation of
G(A), unramified everywhere. Let \x : 7€ — C be the homomorphism as-
sociated to w. Then we have

Ie(f.5) = 5 lox] L, s+ 1/2)( ).

Proof. Write m = ®,¢|x|7z, and let ¢ be a nonzero vector in the one-
dimensional space 7/, Since f € . is bi-K-invariant, the sum in (4.12) is
reduced to one term,

(4.13) J-(f,s) = @(i;;)il(f, s)

Ar(f) vol(K),
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where we may choose any measure on G(A), and then define the Petersson inner
product using the same measure. We will choose the Tamagawa measure on
G(A) in this proof. To decompose the Tamagawa measure into local measures,
we fix a nontrivial additive character associated to a nonzero meromorphic
differential form ¢ on X:

v: A —— C*.
We note that the character 1 is defined by

¥(a) = vm, < > Trg,w, (Resm(ca))> )

z€|X|

where 1, is a fixed nontrivial character F, — C*.

We decompose ¢ = [[,¢|x| ¥z, Where 1, is a character of F;. This gives
us a self-dual measure dt = dty, on F,, a measure d*t = an(l)ldf| on F,
and the product measure on A*. We then choose the Haar measure dg, =
C2(1)] det(ge)| "2 TTi<ij<2 dgij on GLa(Fy), where g, = (gi;) € GLa(Fy). The
measure on G(Fy) is then the quotient measure, and the Tamagawa measure on
G(A) decomposes dg = []¢|x| d9:- Note that under such a choice of measures,
we have

(4.14) vol(0™) = vol(Q) = |WX’1/2,
(4.15) vol(K) = (p(2) " vol(0)? = ¢p(2) Hwx [P/2.

To compute the period integrals, we use the Whittaker models with respect
to the character ¢. Denote the Whittaker model of m, by Wy, . Write the
¢-Whittaker coefficient Wy as a product ®,¢|x|Waz, where W, € Wy, .

Let L(my X Ty, 8), resp. L(m x 7, s) denote the local, resp. global Rankin—
Selberg L-functions. By [31, Prop. 3.1] there are invariant inner products 6%
on the Whittaker models Wy,_,

n0v D = gz W ([ )7 ([ 1))

such that
Ress—1 L(w X 7, s

vol(F*\AT)

) [T 65(Wa, Wa).
z€| X|

<¢a ¢>Pet =2

Note that
Ress—1 L(m x 7, 8) = L(m, Ad, 1) Ress—1 Cr(s) = L(m, Ad, 1) vol(F*\A!).
Hence we have

(6, ®)per = 2L(m, Ad, 1) [ 02(Wa, Wa).
z€|X|
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Moreover, when ), is unramified, we have 63 (W,, W,) = vol(K,) = (,(2)~!
(cf. loc. cit.).

In Proposition 3.3 of [31], there are linear functionals A on the Whittaker
models Wy,

1 a
)\h zs Xz = / x T s d* y
07 = g o W (|1 | ol

such that
Po(65) = Lir @ x5 +1/2) [] 2a(Wa xas 9):
ze|X|
While in loc. cit. we only treated the case s = 0, the same argument goes
through. Moreover, when 1, and y, are unramified, we have )\56 =1
We now have
P(6,5)Py(G,5) | 1 Limp,s+1/2
= x| = g

)
<¢7 ¢>Pet 2L(7T,Ad, 1) mg(fx,wz(wmynm,s),

(4.16)

where the constant |wy|~! is caused by the choice of measures (cf. (4.14)), and
the local term at a place z is

)\PE(WCIH 1., 5))\57(va Nz 5)
0% (Wo, W) ’

Note that the local term &, ,, is now independent of the choice of the nonzero

(4.17) Expy Wy, 8) 1=

vector W, in the one-dimensional space Wy We thus simply write it as

&E,L/Jx (7796’ 8) = 51‘,1/135 (ny N,y 5)~

When v, is unramified, we have

o e (N2, 8) = Cu(2)-

We want to know how &, . depends on v,. Let ¢, € FC, and denote by
Yz ¢, the twist ¥y o, (£) = Yz (cat).

LEMMA 4.6. For any unramified character x5 of F)*, we have

é.x:'lpz,cz (X:Ca 3) = X_l (cz) ’Cz|_25+1/2§1','¢'1 (Xw s).

Proof. The self-dual measure on F, changes according to the following
rule:

dth,% = ‘Cx‘l/Q dt¢z .
Then the multiplicative measure on F* changes by the same multiple. Now we
compare &; 5, and §; y, . using the same measure on F* to define the integrals.
There is a natural isomorphism between the Whittaker models Wy, ~
Wis.o, » Dreserving the natural inner product 0%. We write )‘Epz to indicate the
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dependence on ,. Then for any character x, : F, — C*, we have

Ny (W Xar5) = X (ea)leal N, (Wa, X, 5)-
This completes the proof of Lemma 4.6. O

Let v, have conductor ¢, 'O,. Then the idele class of (cz)ze x| in Picx (k)
is the class of div(c) and hence the class of wx. Hence we have

[T leal = lwx| = g~ d89x = =972,
z€|X|
This shows that the product in (4.16) is equal to
[T G Orers) =nwx) [T Go(@)lex|>+/2
z€| X| z€|X|
= n(wx)wx |2 (p(2) g*0 1.
We claim that
n(wx) = 1.
In fact, this follows from
nwx) = [[ €t 1/2,¢2) = €(n,1/2) =1,
z€|X|
where €(7, s) is in the functional equation (of the complete L-function) L(n, s) =
e(n,s)L(n,1 —s).
We thus have
P(¢,5)Py(0, 5)
(¢, @) pet
Together with (4.13) and (4.15), the proof of Proposition 4.5 is complete. [

1
= 5 lox| V2 Cr(2) L mprs +1/2)

4.4. Change of coefficients. Let E be algebraic closed field containing Q.
We consider the space of E-valued automorphic functions

Ap = CZ(GIF\G(A)/K, E),

and its subspace Ag of cuspidal automorphic functions. For an irreducible
H-module 7 in Ag g, let A; : 7 — E be the associated homomorphism. The
L-function £ (mwpr, s 4+ 1/2) is a well-defined element in E[¢~*, ¢°]. Recall that
f € A, the distribution J(f, s) defines an element in Q[¢~*, ¢°] (cf. Section 2).

THEOREM 4.7. Let f be a function in the Eisenstein ideal Tgys C I€.
Then we have an equality in Elq—*,q°],

3,9) = 5 lox| Y 2, s+1/2) Ma(f),

where the sum runs over all irreducible Fx-module 7 in the E-vector space

Ago.
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Proof. It suffices to show this when £ = Q, and we fix an embedding
Q < C. For f € Igis, then Theorem 4.3 on the kernel functions remains valid
if we understand the sum in (4.4) over 7 as #z-submodule. In fact, to prove
Theorem 4.3, we are allowed to extend F = Q to C.

Since a cuspidal ¢ has compact support, the integral &, (¢, s) defined by
(4.11) for x € {1,n} reduces to a finite sum. In particular, it defines an element
in Flqg—*, ¢°]. Therefore, the equalities in Lemma 4.4 and Proposition 4.5 hold,
when both sides are viewed as elements in E[g%,¢°], and \; as an E = Q-
valued homomorphism. This completes the proof. O

Part 2. The geometric side
5. Moduli spaces of Shtukas

The notion of rank n Shtukas (or F-sheaves) with one upper and one
lower modification was introduced by Drinfeld [5]. It was generalized to an
arbitrary reductive group G and arbitrary number and type of modifications
by Varshavsky [23]. In this section, we will review the definition of rank n
Shtukas and then specialize to the case of G = PGLy and the case of T' a
nonsplit torus. Then we define Heegner—Drinfeld cycles to set up notation for
the geometric side of the main theorem.

5.1. The moduli of rank n Shtukas.

5.1.1.  We fix the following data:

e r > (0 is an integer;

o 1= (u1,...,pr) is an ordered sequence of dominant coweights for GL,,,
where each p; is either equal to uy = (1,0,...,0) or equal to u_ =
0,...,0,—1).

To such a tuple p we assign an r-tuple of signs

sgn(p) = (sgn(m), - .. sen(pr)) € {£1}7,
where sgn(puy) = +1.

5.1.2. Parity condition. At certain places we will impose the following
conditions on the data (r, ) above:

e 1 is even;
e exactly half of u; are 4, and the other half are p_; equivalently, we have

>oi—1sgn(u;) = 0.

5.1.3. The Hecke stack. We denote by Bun,, the moduli stack of rank n
vector bundles on X. By definition, for any k-scheme S, Bun,(S) is the
groupoid of vector bundles over X x S of rank n. It is well known that Bun,,
is a smooth algebraic stack over k of dimension n?(g — 1).
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Definition 5.1. Let p be as in Section 5.1.1. The Hecke stack Hk/ is the
stack whose S-points Hk (S) is the groupoid of the following data:

(1) a sequence of vector bundles (&, &1, ...,&,) of rank n on X x S;
(2) morphisms x; : S — X fori=1,...,r, with graphs I';, C X x S
(3) isomorphisms of vector bundles
fi: &icilxxs-r,, = &lxxs-r,,, i=1,2,...,m
such that
o if y; = py, then f; extends to an injective map &_1 — & whose
cokernel is an invertible sheaf on the graph I';;;
o if y; = p_, then f;l extends to an injective map & — &1 whose
cokernel is an invertible sheaf on the graph I'y,.

For each ¢ = 0,...,r, we have a map
p; : Hk? — Bun,
sending (&, ..., &, 1, Try f1,- .., fr) to &. We also have a map
px : Hkh — X7
recording the points (x1,...,z,) € X".

Remark 5.2. The morphism (pg, px) : Hk” — Bun,, x X" is representable,
proper and smooth of relative dimension r(n —1). Its fibers are iterated P"~!-
bundles. In particular, Hk” is a smooth algebraic stack over k because Bun, is.

5.1.4. The moduli stack of rank n Shtukas.

Definition 5.3. Let p satisfy the conditions in Section 5.1.2. The moduli
stack Sht! of GL,-Shtukas of type u is the fiber product

Sh Hk
(5.1) J (pomr)l
(id,Fr)

Bun, ——— Bun,, X Bun,,.

By definition, we have a morphism
7k : Sht* — Hk! 25 X7,

5.1.5. Let S be a scheme over k. For a vector bundle £ on X x S, we
denote

TE = (idx x Frg)*€.
An object in the groupoid Sht#(S) is called a Shtuka of type p over S. Con-
cretely, a Shtuka of type p over S is the following data:
(1) (o, &1, &1,y xe; f1, ..., fr) as in Definition 5.1;
(2) an isomorphism ¢ : & ~ 7&.
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The basic geometric properties of Sht! are summarized in the following
theorem.

THEOREM 5.4 (Drinfeld [5] for r = 2 ; Varshavsky [24, Prop 2.16, Th. 2.20]
in general).

(1) The stack Shth is a Deligne-Mumford stack locally of finite type.
(2) The morphism 7 : Shth — X" is separated and smooth of relative dimen-
sion r(n —1).

We briefly comment on the proof of the separatedness of 7#. Pick a place
x € |X|, and consider the restriction of 7 to (X —{x})". By [24, Prop 2.16(a)],
Shtf|(x —{z})~ is an increasing union of open substacks X; C X3 C --- where
each X; = [V;/G;] is the quotient of a quasi-projective scheme V; over k by
a finite discrete group G;. These V; are obtained as moduli of Shtukas with
level structures at x and then truncated using stability conditions. Therefore,
each map X; — (X — {z})" is separated, hence so is 74| x_{z})-- Since X" is
covered by open subschemes of the form (X — {z})", the map 7/ is separated.

5.1.6. The Picard stack Picx of line bundles on X acts on Bun,, and on
Hk® by tensoring on the vector bundles.

Similarly, the groupoid Picx (k) of line bundles over X acts on Sht. For
a line bundle £ over X and (&;z;; fi;¢) € Shth(S), we define £ - (&;; 45 fist)
to be (& ®oy L;x;; f; @idg; /), where ¢/ is the isomorphism

ERoy L 9Ly ((idx xFrg)*E0)®0 L= (idx xFrg)* (Eo@0 L) ="(E ®oy L).

5.2. Moduli of Shtukas for G = PGLs. Now we move on to G-Shtukas
where G = PGLy. Let Bung be the moduli stack of G-torsors over X.

5.2.1. Quotient by a Picard stack. Here and later we will consider quo-
tients of the form [Y/Q], where ) is an algebraic stack and Q is a Picard
stack such as Picx or Picx (k). Making such a quotient involves considering
2-categories a priori. However, according to [19, Lemme 4.7], whenever the
automorphism group of the identity object in Q injects to the automorphism
groups of objects in ), the quotient [)/Q] makes sense as a stack. This injec-
tivity condition will be satisfied in all situations we encounter in this paper.

We have Bung = Bung/ Picx, where Picx acts on Bung by tensoring.

For each p as in Section 5.1.1, we define

Hk{, := Hkh/ Picx .
For p satisfying Section 5.1.2, we define

Shtf, := Sht} / Picx (k).
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The actions of Picx and Picx (k) are those introduced in Section 5.1.6. The
maps p; : HkS — Buny are Picx-equivariant, and they induce maps

(5.2) pi : HK, — Bung, 0<i<r.

LEMMA 5.5. For different choices p and p' as in Section 5.1.1, there
are canonical isomorphisms Hkh = Hky and HkF, = Hk{,. Moreover, these
isomorphisms respect the maps p; in (5.2).

Proof. For p! := (pi4,. .., f14), we denote the corresponding Hecke stack
by Hk5. The S-points of Hkj classify a sequence of rank two vector bundles
on X x S together with embeddings

Slhe o Ing

such that the cokernel of f; is an invertible sheaf supported on the graph of a
morphism z; : S — X.
We construct a morphism

¢, : Hkb — HK}.

Consider a point (&;x;; f;) € HkS(S). For i = 1,...,7, we define a divisor on

X xS
Di:= Y  Ty.
1<i<i,pj=p—
Then we define
& =& (D).

If i = py, then D;—; = D;, and the map f; induces an embedding f/ : & | =
Ei—1(Di—1) — &(Dji—1) = &L If i = p—, then D; = D;_1 +T',, and the map
fi + & — &i—1 induces an embedding &_1 — &;(I'y,), and hence an embedding
fz/ : 1{_1 = gifl(Difl) — gi(Difl +F331) = gz/ The map (;5# sends (gl, X5 fz) to

(& @i f7)-

We also have a morphism
1, : Hky — HkS
(&5 ais fi) > (E(=Dy)s i fi).

It is easy to check that ¢, and v, are inverse to each other. This way we get a
canonical isomorphism Hkh = Hk?, which is clearly Picy-equivariant. There-
fore, all HKY, are also canonically isomorphic to each other. In the construction
of ¢, the vector bundles &; only change by tensoring with line bundles, there-
fore, the image of & in Bung remain unchanged. This shows that the canonical
isomorphisms between the Hké respect the maps p; in (5.2). ([l
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LEMMA 5.6. There is a canonical Cartesian diagram

Shtg, HKF,
(53) J/ l(ﬁmpr)
(id,Fr)

Bung ——  Bung x Bung.
In particular, for different choices of u satisfying the conditions in Sec-
tion 5.1.2, the stacks Sht*é are canonically isomorphic to each other.

Proof. This follows from the Cartesian diagram (5.1) divided termwisely
by the Cartesian diagram

PiCX(k) PiCX
. (id,Fr) . .
Picxy ——— Picx x Picx . O

By the above lemmas, we may unambiguously use the notation
(5.4) Shtg;  Hkg

for Shty, and HkY, with any choice of p. If r is fixed from the context, we
may also drop r from the notation and simply write Sht. The morphism 74 :
Shty, — X" is invariant under the action of Picy (k) and induces a morphism

ng : Shtg — X"

Theorem 5.4 has the following immediate consequence.

COROLLARY b5.7.

(1) The stack Shtg, is a Deligne—Mumford stack locally of finite type.
(2) The morphism g : Shtg; — X" is separated and smooth of relative dimen-
sion 1.

5.3. Hecke correspondences. We define the rational Chow group of proper
cycles Ch,;(Shtg;)g as in Section A.1. As in Section A.1.6, we also have a
Q-algebra .Chy,(Shtg; x Shtg)g that acts on Ch,;(Shtg)g. The goal of this
subsection is to define a ring homomorphism from the unramified Hecke algebra
H = C(K\G(A)/K,Q) to .Cha,(Shtg; x Shtg)g.

5.3.1. The stack Shtg:(hp). Recall from Section 3.1 that we have a basis
hp of 7 indexed by effective divisors D on X. For each effective divisor D =
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> ze| x| Nz, we shall define a self-correspondence Shtg;(hp) of Shtg over X':

Sht?,

Sht (hp)
Shtg,

PN
>~

For this, we first fix a 4 as in Section 5.1.2. We introduce a self-correspondence

Sht} (hp) of Shtl, whose S-points is the groupoid classifying the following data:

(1) two objects (&;;x;; fi;e) and (Ef5x;; f1;1)) of Shth(S) with the same collec-
tion of points x1,...,x, in X(95);

(2) for each i = 0,...,r, an embedding of coherent sheaves ¢; : & — &/ such
that det(¢;) : det & — det &/ has divisor D x S C X x S;

(3) the following diagram is commutative:

g -lag s e g
(5.5) Jﬂﬁo J{¢1 l% lT%
7l 7 / :
g -t e e

There is a natural action of Picx (k) on Sht5(hp) by tensoring on each &;
and &/. We define

Shtg; (hp) := Shth (hp)/ Picx (k).
Using Lemma 5.5, it is easy to check that Shtg;(hp) is canonically independent

of the choice of y. The two maps ., 7 : Shti;(hp) — Shtg send the data
above to the image of (&;x;; fi;¢) and (&5 x;; f/;¢/) in Shty, respectively.

LEMMA 5.8. The maps 9,7 as well as (?,7) : Shtgy(hp) — Shtg x
Sht¢, are representable and proper.

Proof. Once the bottom row of the diagram (5.5) is fixed, the choices of
the vertical maps ¢; for i = 1,...,r form a closed subscheme of the product of
Quot schemes []i_; Quot?(E!), where d = deg D, which is proper. Therefore,
? is representable and proper. The same argument applied to the dual of the
diagram (5.5) proves that $p is proper.

The representability of (217, ?) is obvious from the definition, since its
fibers are closed subschemes of [[i_; Hom(&;, E). Since Shty; is separated by
Corollary 5.7 and ? is proper, (?, ?) is also proper. O

LEMMA 5.9. The geometric fibers of the map Shti;(hp) — X" have di-
Mension 1.
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The proof of this lemma will be postponed to Section 6.4.4, because the
argument will involve some auxiliary moduli spaces that we will introduce in
Section 6.3.

Granting Lemma 5.9, we have dim Shtg(hp) = 2r. By Lemma 5.8, it
makes sense to push forward the fundamental cycle of Shtg(hp) along the
proper map (?,?) Therefore, p ? )«[Sht¢y(hp)] defines an element in
<Cha,(Sht¢; x Shtg)g (because <ﬁ is also proper). We define the Q-linear map

(5.6) H:— Chgr(ShtTG x Shtg)o,

(5.7) hp— (p x 7)«[Shtl(hp)]  for all effective divisors D.
PROPOSITION 5.10. The linear map H in (5.6) is a ring homomorphism.
Proof. Since hp form a Q-basis of 72, it suffices to show that

(5.8) H(hDhD/) = H(hD) * H(hD/) S CChQT(ShtTG X Shtg)(@

for any two effective divisors D and D’.

Let U = X — |D| — |D’|. Since hphps is a linear combination of hg for
effective divisors E < D+D'’ such that D+D’—F has even coefficients, the cycle
H(hDhD/) is supported on Ugp<D+D/,D+D'—E evenShtTG(hE) = Shtg(hD+D/).
The cycle H(hp) * H(hp) is supported on the image of the projection

pri3: Shtg(hD) X?,Sht'&fﬁ Shtg(hzy) — Shtg X Shtg,

which is easily seen to be contained in Shtg(hpipr). We see that both sides
of (5.8) are supported on Z := Shtg(hpypr).

By Lemma 5.9 applied to Z = Sht(hpypr), the dimension of Z — Z|yr
is strictly less than 2r. Therefore, the restriction map induces an isomorphism

(59) ChQT(Z)Q L) ChQT(Z|U1")Q.

Restricting the definition of H to U", we get a linear map Hy : 57 —
<Cha, (Shtg |- x Shtg; | ). For any effective divisor E supported on |D|U|D'|,
the two projections 9, 7 : Shtfs(hg)|yr — Shtl|pr are finite étale. The
equality

(5.10) HU(hDhD/) = HU(hD) * HU(hD/) S ChQT(Z‘Ur)Q

is well known. By (5.9), this implies the equality (5.8) where both sides are
interpreted as elements in Chy,(Z)q, and a fortiori as elements in .Chy, (Shtg x
Shtg ). O

Remark 5.11. Let g = (92) € G(A), and let f = 1g,x € J€ be the
characteristic function of the double coset K¢gK in G(A). Traditionally, one
defines a self-correspondence I'(g) of Shtg|x_g)- over (X — S)", where S is
the finite set of places where g, ¢ K, (see [15, Construction 2.20]). The two
projections ., 7 : I'(g) — Shtg|(x—s)y- are finite étale. The disadvantage of
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this definition is that we need to remove the bad points S that depend on f, so
one is forced to work only with the generic fiber of Shty; over X" if one wants
to consider the actions of all Hecke functions. Our definition of H(f) for any
f € J gives a correspondence for the whole Shtg,. It is easy to check that for
[ = 1kgK, our cycle H(f)|x—_g)r, which is a linear combination of the cycles
Sht¢;(hp)|(x—s)- for divisors D supported on S, is the same cycle as I'(g).
Thus, our definition of the Hecke algebra action extends the traditional one.

5.3.2. A wvariant. Later we will consider the stack Shtg: := Shtg x xr X"
defined using the double cover X’ — X. Let Shtf(hp) = Shtg(hp) x xr X'
Then we have natural maps

', P Shtfi(hp) — Sht/.

The analogs of Lemmas 5.8 and 5.9 for Sht{:(hp) follow from the original
statements. The map hp — (p’ x T").[Sht&(hp)] € Cha,(Shtd x Sht)g
then gives a ring homomorphism H':

H': # — .Chy,(Shtg: x Shté)g.

5.3.3. Notation. By Section A.1.6, the Q-algebra .Cha, (Shtg x Shtf)g
acts on Ch, . (Sht{:)g. Hence the Hecke algebra .7 also acts on Ch, .(Sht()g
via the homomorphism H’. For f € J#, we denote its action on Ch, .(Sht¢:)g
by

f# (=) : Che.(Shté)g — Che«(Shtéh)g.

Recall that the Chow group Ch, .(Shtg;)g (or Che.(Shté)g) is equipped

with an intersection pairing between complementary degrees; see Section A.1.4.

LEMMA 5.12. The action of any f € H on Ch, . (Shtg;)g or Che . (Shté:)g
is self-adjoint with respect to the intersection pairing.

Proof. It suffices to prove self-adjointness for hp for all effective divisors D.
We give the argument for Shty;, and the case of Sht¢: can be proved in the
same way. For (; € Ch.;(Shtg)g and (2 € Cheo,—;(Shty)g, the intersection
number (hp * (1, Cg}Shtg is the same as the following intersection number in
Sht x Shtg:

(G1 % G2, (P, )« [Shts (hp)]) sy, xsher, -

We will construct an involution 7 on Sht¢ (hp) such that the following diagram
is commutative:

Sht’s (hp) —— " Shtl(hp)
(5.11) yw) ywz)

Sht?, x Sht}, ——=— Sht}, x Sht/,.
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Here 015 in the bottom row means flipping two factors. Once we have such a
diagram, we can apply 7 to Shtg(hp) and 012 to Shtg; x Shtg; and get

(G % G2, (P, P)w[Shts (hp)]) sy, xsher,
= (G2 x (1, (P, P)+[Shte (hp)])shiz, xshir,

which is the same as the self-adjointness for h * (—):
(hp * C1, Q)sntr, = (hp * G2, Ci)shey, = (C1 hD * C2)sher, -

We pick any g as in Section 5.1.2, and we identify Shty; with Shtf, =
Sht} / Picx (k). We use —pu to denote the negated tuple if we think of p € {£1}"
using the sgn map. We consider the composition

5+ Sht?, &5 Shtg = Shtt,

where &' (E;xy; fise) = (€52 (f)7(1Y)™1), and the second map is the

(2
canonical isomorphism Sht./ = Shtf, given by Lemma 5.6.

Similarly, we define 7 as the composition
(5.12) 7 Sht!(hp) = Sht(hp) = Sht! (hp),

where 7/ sends the diagram (5.5) to the diagram

f/\/ 1 f/\/fl T/\/ 1
R A >
f\/ 1 f\/ 1 7\/ 1 1
gy ey ey ey

and the second map in (5.12) is the canonical isomorphism Sht. " (hp) =
Sht?(hp) given by the analog of Lemma 5.6. It is clear from the definition
that if we replace the bottom arrow of (5.11) with o120 (6 x §) (i.e., the map
(a,b) — (6(b),d(a))), then the diagram is commutative.

We claim that § is the identity map for Shtf,. In fact,  turns (&; z;; fi;¢) €
Shtf into (£ (Dy);xi; (fY)~1 (0¥)™h), where Dy = Yq<j<;sgn(uj)Ts,. Note
that we have a canonical isomorphism & = & ® (det &)~! and isomorphisms
det & = (det &) (D;) induced by the f;. Therefore, we get a canonical isomor-
phism EZV(DZ) 2 E5E® (det 5i)_1 X O(DZ) 2 E® (det 50)_1 compatibly with
the maps (f)~! and f;, and also compatible with (:Y)~! and «. Therefore,
0(Ei; x5 fiy ) is canonically isomorphic to (&;x4; fi;¢) up to tensoring with
det(&). This shows that 4 is the identity map of Shtf..

Since § =1id, the diagram (5.11) is also commutative. This finishes the
proof. O
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5.4. Moduli of Shtukas for the torus T.

5.4.1. Recall that v : X’ — X is an étale double covering with X’ also
geometrically connected. Let o € Gal(X’/X) be the nontrivial involution.
Let T be the two-dimensional torus over X defined as

T = RGSX//X Gm

We have a natural homomorphism G,, — T. We define a one-dimensional
torus over X:

T:=T/Gp = (Resxr/x G)/Gm.

Let Bunt be the moduli stack of T-torsors over X. Then we have a
canonical isomorphism of stacks

Buny = Picy/ / Picx .

In particular, Buny is a Deligne-Mumford stack whose coarse moduli space is
a group scheme with two components, and its neutral component is an abelian
variety over k.

5.4.2. Specializing Definition 5.1 to the case n = 1 and replacing the
curve X with its double cover X', we get the Hecke stack Hk{ y,. This makes
sense for any tuple p as in Section 5.1.1. ’

Now assume that p satisfies the conditions in Section 5.1.2. We may view
each u; as a coweight for GL; = G, in an obvious way: p4 means 1 and
u— means —1. Specializing Definition 5.3 to the case n = 1 and replacing X
with X/, we get the moduli stack Sht’iX, of rank one Shtukas over X' of type u.
We define

Sh‘c;~ = Sht’f’X/.

We have a Cartesian diagram

Sht’% Hk’f} X7
J J/(po,pr)
. (id,Fr) . .
PICX/ e PICX/ X PICX/.
We also have a morphism
7w Sht’t —s HKM o, 25 X7,
T T ;

5.4.3. Fix p as in Section 5.1.2. Concretely, for any k-scheme S, Sht’%(S)
classifies the following data:

(1) aline bundle £ over X’ x S;
(2) morphisms z} : S — X' for i = 1,...,r, with graphs ',y C X' x S;
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(3) an isomorphism

v L (Z sgn(,u,z-)l“xg> — 7L = (id x Frg)*L;

i=1
here the signs sgn(py) = £1 are defined in Section 5.1.1.

This description of points appears to be simpler than its counterpart in Sec-
tion 5.1.5: the other line bundles £; are canonically determined by £y and «
using the formula

(5.14) Li= Lo ( > Sgn(uj)Fx;> :

1<5<s
5.4.4. The Picard stack Picyxs, and hence Picx, acts on Hk’l‘X,. We
consider the quotient

(5.15) HkY, = HkY ./ Picy .

In fact we have a canonical isomorphism Hk. = Buny x X" sending (L;; 2; fi)
to (Lo; x}). In particular, Hk. is a smooth and proper Deligne-Mumford stack
of pure dimension r + g — 1 over k.

5.4.5. The groupoid Picx/ (k) acts on Shtf% by tensoring on the line bun-

dle £. We consider the restriction of this action to Picx (k) via the pullback
map v* : Picx (k) — Picx/(k). We define

Sht. := Sht%/ Picx (k).
The analog of Lemma 5.6 gives a Cartesian diagram
Shtf HKY,
(516) J/ l(p(hp'r')
(id,Fr)

Buny ——— Bungy x Bunry.

Since the morphism ﬂf‘Tv is invariant under Picx (k), we get a morphism

B Qph /
s Sty — X7
LEMMA 5.13. The morphism 74 is a torsor under the finite groupoid

Picx/(k)/ Picx (k). In particular, 7l is finite étale, and the stack Sht}. is a
smooth proper Deligne—Mumford stack over k of pure dimension r.

Proof. This description given in Section 5.4.3 gives a Cartesian diagram

Sht ————— Picxs

(5.17) y; }d_ﬁ

X —2 3 Pick,
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where ¢(z,...,z.) = Ox/(321_; sgn(pi)2;). Dividing the top row of the dia-

»r

gram (5.17) by Picx (k) we get a Cartesian diagram

Sht’, —— Picys /(Picx (k)

lwéﬂ JidF‘r

X Pic%, .

Since the right vertical map id — Fr : Picys /(Picx(k)) — Pic%, is a torsor
under Picy/(k)/ Picx (k), so is mh. O

5.4.6. Changing j. For a different choice p’ as in 5.1.1, we have a canonical
isomorphism

(5.18) HkA 5 HKY
T T
sending (L;; x}; fi) to (Ki;yl; gi) where
/ if =
(5.19) =0
o(z;) if wi # i,
and
(5.20) Ki = Lo ( > sgn(u;-)I’y9> .
1<5<i

The rational maps g; : K;—1 --+ K; is the one corresponding to the identity
map on Ly via the description (5.20). Note that we have

sgn(p;) — sgn(y;)
ICz:E'L ®OX><S OXXS < Z ¢ ! Fa}j y

1<j<i 2

where z; : S — X is the image of a}. Therefore, K; has the same image as £;
in Buny. The isomorphism (5.18) induces an isomorphism

(5.21) HK/, % HKY

From the construction and the above discussion, this isomorphism preserves
the maps p; to Buny but does not preserve the projections to X. (It only
preserves the further projection to X".)

Since the isomorphism (5.21) preserves the maps py and p,, the diagram
(5.16) implies a canonical isomorphism

(5.22) Ly Shth, =5 Shtt

Just as the map (5.21), ¢, ,» does not respect the maps w4, and mfﬁl from Sht/.

and Sht%/ to X'": it only respects their further projections to X".
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5.5. The Heegner—Drinfeld cycles.
5.5.1. We have a morphism
II : Buny — Bung
(L mod Picx)— (. mod Picyx).
5.5.2. For any p as in Section 5.1.2, we define a morphism
6 : Sht’. —» Shth
i
Lo = L. We may define the line bundles £; using (5.14). Then there are

natural maps g; : £;_1 — L; if gy = py or g; + L; — L1 if u; = p—. Let
vg =v Xidg : X' x § — X x S be the base change of v. We define

& = vsi L,

as follows. Let (L£;xl;1) € Sht’%(S) as in the description in Section 5.4.3. Let

with the maps f; : &1 — & or & — &;_1 induced from g;. The isomorphism ¢
then induces an isomorphism

J: gr = I/S*ﬁr ﬂ) I/S*(idxl X Frs)*[:(] = (idX X Fl“s)*l/s*ﬁo = T(c,'o.

Let z; = v oz}. The morphism 6" then sends (L;al;0) to (& 245 fi 7). Clearly
0" is equivariant with respect to the Picx (k)-actions. Passing to the quotients,
we get a morphism

M. Quik I

¢" : Sht, — Shtl..
For a different p/, the canonical isomorphism ¢, s in (5.22) intertwines the

/
i . . .
maps 6§ and 0" ; i.e., we have a commutative diagram

S
Sht#, —% Sht#,

lLu,u’ l
I

Sht# — % gtk
where the right vertical map is the canonical isomorphism in Lemma 5.6. By
our identification of Shtf, for different p (cf. (5.4)), we get a morphism, still
denoted by 6",
0" : Sht, — Shtf..

5.5.3. By construction we have a commutative diagram

S
Sht#, —  Sht?,

b

T

) I SE— '
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Recall that
Shtgs := Shty, x x» X
Then the map 6" factors through a morphism
6" : Shty. — Sht¢

over X", Since Shtf. is proper of dimension r, 6¥[Sht/] is a proper cycle class
in Sht¢: of dimension r.

Definition 5.14. The Heegner—Drinfeld cycle of type p is the direct image
of [Sht4] under 6/

0%[Sht!] € Che,(Sht/5)g.

Recall from Proposition 5.10 and Section 5.3.3 that we have an action of
¢ on Ch,,(Sht#)g. Since

1
dim Shtf, = r = 3 dim Sht¢,

both 04[Shts] and f = 6%[Sht}] for any function f € J# are proper cycle
classes in Shty; of complementary dimension, and they define elements in
Ch,,(Sht¢)g. The following definition then makes sense.

Definition 5.15. Let f € 2 be an unramified Hecke function. We define
the following intersection number:

I(f) := (B4[Sht}], [+ 64[Sht}])gper € Q.

5.5.4. Changing pu. For different p and ' as in Section 5.1.2, the Heegner—
Drinfeld cycles 64[Sht’] and 64 [Shts.] are different. Therefore, a priori the
intersection number I.(f) depends on u. However, we have

LEMMA 5.16. The intersection number L.(f) for any f € S is indepen-
dent of the choice of p.

Proof. Let Z" denote the cycle 0%[Shtf]. Using the isomorphism ¢,
in (5.22), we see that Z* and Z* are transformed to each other under the
involution o(yu, ut') : Shts = Shty, x xr X7 — Shty, x xr X7 = Sht, which
is the identity on Shty, and on X' sends (2, ...,2}) to (y],...,y.) using the
formula (5.19). Since o(u, ') is the identity on Shtg,, it commutes with the
Hecke action on Ch,,(Sht¢:)g. Therefore, we have

<ZN, f * ZN>Sht'GT' = <O—<M7/’L/)*ZH70—<M7:U'/)*(JC * ZH))Shtg
= (0 (1 1) 2%, 5 (0 (s 1) 2" it = (27, f % 2" )gpr. O



TAYLOR EXPANSION 821

6. Intersection number as a trace

The goal of this section is to turn the intersection number I,.(hp) into the
trace of an operator acting on the cohomology of a certain variety. This will
be accomplished in Theorem 6.5. To state the theorem, we need to introduce
certain moduli spaces similar to Ny defined in Section 3.2.2.

6.1. Geometry of Mg.

6.1.1. Recall that v : X’ — X is a geometrically connected étale double
cover. We will use the notation X/ and X as in Section 3.2.1. We have
the norm map 7; : X}, — X4 sending (£, € T'(X', £)) to (Nm(L), Nm(«) €
I'(X,Nm(L))).

Let d > 0 be an integer. Let M, be the moduli functor whose S-points is
the groupoid of (£, L', a, 8), where

e L L' € Pic(X' x S) such that deg(L}) — deg(Ls) = d for all geometric

points s € S;

e a: L — L'is an Oxs-linear map;
e 3:L — o*L is an Ox-linear map;
e for each geometric point s € S, the restrictions a|x/«s and §|x/xs are not
both zero.
There is a natural action of Picx on My by tensoring: K € Picx sends
(L, L a,B) to (LK, L @v'K,a®idk, S ®idc). We define
My = ./Wd/ Picy .
6.1.2. To (L, L a,p) € My, we may attach
e a:=Nm(a): Nm(£) — Nm(L');
e b:=Nm(f): Nm(£) - Nm(c*L') = Nm(L’).
Both a and b are sections of the same line bundle A = Nm(£') ® Nm(£)™! €
Picgl(, and they are not simultaneously zero. The assignment (£, L' a, 8) —
(A,a,b) is invariant under the the action of Picx on My, and it induces a
morphism
fM : ./Vld — Ad.
Here A, is defined in Section 3.2.3.

6.1.3. Given (L, L', ,B) € .//\/lvd, there is a canonical way to attach an
Ox-linear map v : v, £ — v, L' and vice versa. In fact, by adjunction, a map
Y v L — v, L' is the same as a map v*v,. L — L'. Since v*'v,L = L ® o*L
canonically, the datum of v is the same as a map of O x,-modules L&Ho*L — L',
and we name the two components of this map by a and ¢*5. Note that we
have a canonical isomorphism

Nm(£) = det(v, L) ® det(1,.0)",
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and likewise for £’. Therefore, det(v)) : det(vi L) — det(v. L") can be identified
with a map Nm(£) — Nm(£L'), which is given by

(6.1) det(¢) = Nm(a) — Nm(8) = a — b : Nm(L) — Nm(L’).

The composition § o faq : Mg — Ag — X, takes (L, L, «, ) to the pair
(A =Nm(L£')®Nm(L)™!, det(z))).

6.1.4. We give another description of My. We have a map ¢ : /\/ld—U?C’l
sending (£, £, a, B) to the line bundle £’ ® £~! and its section given by a.
Similarly, we have a map g : My — )A(& sending (£, L', «, 3) to the line
bundle ¢*£’ ® £~ and its section given by 3. Note that the line bundles
underlying ¢ (L, L', o, §) and 15(L, L', o, ) have the same norm A = Nm(L')®
Nm(L£)~! € Pick. Since a and 3 are not both zero, we get a map

t=(tastg) : Mg — X\C’l X picd, X\C’l - Zk,
where the fiber product on the right-hand side is taken with respect to the
map X\(’i — Picd, LN Pick, and Z/) := Pic%, X picd. Pic%, is embedded into
X 4 X picd. X " by viewing Pic%, as the zero section of X /, in both factors.
PROPOSITION 6.1.

(1) The morphism v is an isomorphism of functors, and Mg is a proper
Deligne-Mumford stack over k.3

(2) Ford > 2¢" — 1, My is a smooth Deligne-Mumford stack over k of pure
dimension 2d — g + 1.

(3) The morphism Uy : )?é — X is proper.

(4) We have a Cartesian diagram

My——— X\C/l X picd )A(él
(6.2) ‘fM lﬁdxf/\d
Al Xy X picd. X,

Moreover, the map faq is proper.

Proof. (1) Let (Picxs x Picx/)q be the disjoint union of Pick, x Pic?,d over
all ¢ € Z. Consider the morphism

0 : (Picxs x Picxs)q/ Picx — Picks X ps.a Picks
X

(the fiber product is taken with respect to the norm map) that sends (£, L) to
(L@ L7Yo*L ® L1, 7), where T is the tautological isomorphism between

3The properness of My will not be used elsewhere in this paper.
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m(£' ® £71) =2 Nm(£') ® Nm(£)™! and Nm(o*L' ® £7!) =2 Nm(L') ®
Nm(£)~!. By definition, we have a Cartesian diagram

L 5% 5% /
Mg ———— X Xpies Xg— %4

(6.3) lw j

. . . [% . d . d
(Picxs x Picxs)q/ Picx —— Pick, X picd. Pic%/,

where the map w sends (£, L', a, 8) to (£, L’). Therefore, it suffices to check
that 0 is an isomorphism. For this we will construct an inverse to 6.
From the exact sequence of étale sheaves

- id
1— 0% 50,05 2% 0,058, 2 0% — 1,

we get an exact sequence of Picard stacks
1 —s Picys / Picy 2% Pic%, 22 Picd — 1.

Given (K1, K2, 7) € Pick/ X picd. Pic%, (where 7 : Nm(K;) = Nm(Ks)), there
is a unique object £ € Picyxs/Picy such that £ ® o*L'~! = K1 ® IC2_1
compatible with the trivializations of the norms to X of both sides. We
then define (K1, Ko, 7) = (£ ® K71, L"), which is a well-defined object in
(Picxs x Picyr)g/ Picx. It is easy to check that v is an inverse to #. This
proves that 6 is an isomorphism, and so is ¢.

We show that My is a proper Deligne-Mumford stack over k. By extend-
ing k we may assume that X’ contains a k-point, and we fix a point y € X'(k).
We consider the moduli stack M\d classifying (K1, 71, K, p, o, B), where K1 €
Picgl(,, 7 is a trivialization of the stalk Ky ,, K € Pic%., p is an isomorphism
Nm(K) = Oy, « is a section of Ky, and (8 is a section of Ky ® K such that o
and 3 are not both zero. There is a canonical map p : ./\/ld — Xd Picd, Xd Z),
sending (K1,71, K, p, o, 8) to (K1,Ke :== K1 ® K, 7,0, 3). (The 1som0rphlsm
7 : Nm(K;) = Nm(Ks) is induced from the trivialization p.) Clearly p is the
quotient map for the G,,-action on .K/l\d that scales ;. There is another G,-
action on M\d that scales a and 8 simultaneously. Using automorphisms of Xy,
we have a canonical identification of the two G,,-actions on M\d; however, to
distinguish them, we call the first torus G,,(y) and the second Gy, (a, 8). By
the above discussion, :~! o p gives an isomorphism ./\/ld/ Gm(y) = Mg, hence
also an isomorphism My / Gm(a, B) = M.

Let Prymy,, x = ker(Nm : Pic%, — Pic%), which classifies a line bundle
K on X' together with a trivialization of Nm(£). This is a Deligne-Mumford
stack isomorphic to the usual Prym variety divided by the trivial action of us.
Let in(, be the degree d-component of the Picard scheme of X', which clas-
sifies a line bundle K1 on X’ of degree d together with a trivialization of
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the stalk Ky ,. We have a natural map h : My — JE, x Prymy/, x sending
(K1,7,K,p,a, B) to (Ki,7m) € J& and (K, p) € Prymy/ x. The map h is
invariant under the G,,(a, #)-action and hence induces a map

The fiber of h over a point ((K1,71), (K, p)) € J&, x Prymy/, x is the projective
space P(I'(X', K1) @ T'(X’, K1 ® K)). In particular, the map h is proper and
schematic. Since J;l(, X Prymy/,x is a proper Deligne-Mumford stack over k,
so is My.

(2) Since My is covered by open substacks X, Xpicd. X\C/l and X\é X pied. X/,
it suffices to show that both of them are smooth over k. For d > 2¢’ — 1, the
Abel-Jacobi map AJ; : X, — Picg(, is smooth of relative dimension d — ¢’ + 1,
hence X/, is smooth over Pic% of relative dimension d — g + 1. Therefore,
both X, X pid. 5(\(; and )?C’l X picd. X/, are smooth over X/, of relative dimension
d— g+ 1. We conclude that My is a smooth Deligne-Mumford stack of
dimension 2d — g + 1 over k.

(3) We introduce a compactification Y;l of X !, as follows. Consider the
product X ;X Al with the natural G,,-action scaling both the section of the line
bundle and the scalar in A'. Let 2o : Pick/ — X\L’i x Al sending £ to (£,0,0).
Let X, = (5(\(’1 x Al — 2(Pic%/))/G,,. Then the fiber of X, over L € Pic4,
is the projective space P(I'(X', £ @ Ox-)). In particular, Y; is proper and
schematic over Pic%,. The stack Yﬁi contains X, /, as an open substack where
the Al-coordinate is invertible, whose complement is isomorphic to the pro-
jective space bundle X/;/G, over Pic‘)l(,. Similarly, we a have compactification
Yd of X\ d-

Consider the quadratic map 5(:’1 x Al - X, x A! sending (L,s,\) to
(Nm(£),Nm(s), A\?). This quadratic map passes to the projectivizations be-
cause (Nm(s),A2) = (0,0) implies (s,\) = (0,0) on the level of field-valued
points. The resulting map 7y : 7; — X4 extends U;. We may factorize Uy as
the composition

Vg : YZI — Yd XPicf( Picgl(/ — Yd.
Here the first map is proper because both the source and the target are proper
over Picgl(,; the second map is proper by the properness of the norm map
Nm : Picg(, — Pich. We conclude that 74 is proper. Since U, is the restriction
of 74 to )/(\d < X g4, it is also proper.

(4) The commutativity of the diagram (6.2) is clear from the construc-
tion of «. Note that Z, is the preimage of Z; under vy x g, and Mg and Ay
are complements of Z/; and Z,; respectively. Therefore, (6.2) is also Cartesian.
Now the properness of fu follows from the properness of ; proved in part (3)
together with the Cartesian diagram (6.2). O
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6.2. A formula for I,(hp).

6.2.1. The correspondence Hk‘/‘w’d. Fix any tuple u = (u1,...,4,) as in
Section 5.1.1. We define III\IT:MM,d to be the moduli functor whose S-points
classify the following data:

(1) fori=1,...,r, amap 2} : S — X’ with graph Ly
(2) for each i =0,1,...,r, an S-point (L;, L], o, ;) of My:
;i Ly — L B Ly — o* L

(3) a commutative diagram of Ox/-linear maps between line bundles on X’

£07}11$£17]i2$ *flﬁﬁr
(6.5) J l J
El _ fj El _ ff f’“ ﬁl
where the top and bottom rows are S-points of Hk/. over the same point
(@),...,2)) € X'(S), such that the following diagram is also commutative:
Lo- s oL "L,
(6.6) lﬁo lﬁl Jm
*Eliifl *ﬁl 7*! . —jfgg*ﬁl

There is an action of Picx on HK, M.a Dy tensoring on the line bundles £; and L.
We define

Hkh, ;== Hk)y 4/ Picx .
The same argument as Section 5.4.6 (applying the isomorphism (5.21) to both
rows of (6.6)) shows that for different choices of 1, the stacks Hk/ ; are canon-
ically isomorphic to each other. However, as in the case for Hk’., the morphism
Hk/\( ; — X" does depend on 4.

6.2.2. Let v : ij/l,d — M be the projections given by taking the dia-
gram (6.5) to its i-th column. It is clear that this map is schematic, therefore,
Hk’f% g itself is a Deligne-Mumford stack.

In the diagram (6.5), the line bundles A; = Nm(£;) ® Nm(£;)™! are
all canonically isomorphic to each other for ¢ = 0,...,7. Also the sections
a; = Nm(o;) (resp. b; = Nm(p;)) of A; can be identified with each other for
all ¢4 under the isomorphisms between the A;’s. Therefore, composing ; with
the map fa : Mg — Ay all give the same map. We may view HkM g as a
self-correspondence of My over A, via the maps (7o, 'yr)

There is a stronger statement. Let us define .Ad C Xd X Picd. Xd to be

the preimage of Az under Nm xid : Xd X picd. X, — Xy X picd. X,. Then Ay
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classifies triples (K, a,b), where K € Picxs, « is a section of K, and b is a
section of Nm(K) such that o and b are not simultaneously zero. Then fuy
factors through the map

fM:Md%Zd

sending (£, L', o, B) to (L' ® L7, a, Nm(p)).

Consider a point of Hk”M7 4 giving, among others, the diagram (6.5). Since
the maps f; and f/ are simple modifications at the same point zj, the line
bundles £; @ L L are all isomorphic to each other for all i = 0,1,...,r. Un-
der these isomorphisms, their sections given by «; correspond to each other.
Therefore, the maps f MO Hkﬁ/t, 4= Xd are the same for all 7.

6.2.3. The particular case r = 1 and p = (u4) gives a moduli space
H = Hk}\/l,d classifying commutative diagrams up to simultaneous tensoring
by Picx:

E() S ﬁl EO _— £1
(67) lao loq lﬁo lﬁl
oo o T o,

such that the cokernel of f and f’ are invertible sheaves supported at the same
point 2’ € X', and the data (Lo, L), o, Bo) and (L1, L], a1, 1) are objects
of Md.

We have two maps (y0,71) : H — Mg, and we view H as a self-corre-
spondence of My over A;. We also have a map p : H — X' recording the
point &’ (support of £1/Ly and L /L}).

The following lemma follows directly from the definition of Hkﬁ/l, -

LEMMA 6.2. As a self-correspondence of Mg, Hk‘/(,l,d s canonically iso-
morphic to the r-fold composition of H:

Hk}/(/l,d = H Xy Mao XH X, My X0 Xy Mo T
6.2.4. Let .Ad<> C Ay be the open subset consisting of (A,a,b) where
b #0;ie., Ag =Xy X picd. X, under the isomorphism (3.3). Let ./\/lg, Hk“MO’d
and H® be the preimages of .Ag in Mg, Hk\, , and .

LEMMA 6.3. Let I}, C X}, x X' be the incidence scheme; i.e., I}, — X/,
is the universal family of degree d effective divisors on X'. There is a natural
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map HO — I, such that the diagram

p
T N — Y

/!
d  pp
(6:) & |
MG == X X piea X)) X
d d *Pict “d d

is commutative and the square is Cartesian. Here the q : I, — X, sends
(D,y) e X, x X" to D —y+o0o(y), and pp : I, = X' sends (D, y) to y.

Proof. A point in H< is a diagram as in (6.7) with §; nonzero (hence
injections). Such a diagram is uniquely determined by (Lo, £{), o, o) € ./\/lél>
and y = div(f) € X', for then £ = Lo(y), £} = L{(y) are determined, and
f, f' are the obvious inclusions and «; the unique map making the first dia-
gram in (6.7) commutative; the commutativity of the second diagram uniquely
determines (31, but there is a condition on y to make it possible:

div(Bo) + o(y) = div(B1) +y € Xg41.

Since o acts on X’ without fixed points, y must appear in div(fp). The as-
signment H® 3 (y,Lo,..., B0, L1,...,51) — (div(B),y) then gives a point
in I);. The above argument shows that the square in (6.8) is Cartesian and the
triangle therein is commutative. O

LEMMA 6.4. We have

(1) the map 7o : Hk”M<> " /\/ljl> 18 finite and surjective; in particular, we have

dimHKy o, = dim MG = 2d — g+ 1;
(2) the dimension of the image of HK'\, ; — Hk‘j\/[<> g I Mg x Mg is at most

d+2g — 2.

Proof. (1) In the case r = 1, this follows from the Cartesian square in
(6.8), because the map ¢ : I}, — X} is finite. For general r, the statement
follows by induction from Lemma 6.2.

(2) The closed subscheme Y = Hk/y, , — Hklj\/(o, J
only because all the (; are zero. Its image Z C My x My under (vyo,7,)
consists of pairs of points (Lo, £{), ap,0) and (L., L), «,,0) in My such that
there exists a diagram of the form (6.5) connecting them. In particular, the
divisors of ag and «,. are the same. Therefore, such a point in Z is completely
determined by two points Lo, £, € Buny and a divisor D € X, (as the divisor
of ap and «,). We see that dim Z < 2dim Buny + dim X, = d + 2g — 2. O

classifies diagrams (6.5)
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6.2.5. Recall that H = Hk}\/t,d is a self-correspondence of M, over Ay;
see the discussion in Section 6.2.2. Let

[H9] € Chag—g11(H)g

denote the class of the closure of H?. The image of [H?] in the Borel-Moore
homology group H2B(1\2/1d7 g+1) (H @5, k)(—2d+ g — 1) defines a cohomological self-
correspondence of the constant sheaf Qy on My . According the discussion in
Section A.4.1, it induces an endomorphism

I O] s Rfan Qe — RifanQp.

For a point a € Ag(k), we denote the action of fay, [H¢] on the geometric stalk
(Rfm,Qe)a = Hi(frf (@) @k k) by (faa[HO))a.

Recall from Section 3.3.2 that Ap = 6~ 1(D) C Ag is the fiber of D under
0 : Ay — Xg. The main result of this section is the following.

THEOREM 6.5. Suppose D is an effective divisor on X of degree d >
max{2¢’ — 1,2g}. Then we have

(6.9) I(hp) = > Tr((famuHC); o Frobe, (Rfr1Qe)z) -
ac€Ap (k)

6.2.6. Orbital decomposition of I.(hp). According Theorem 6.5, we may
write

(6.10) L.(hp)= Y.  IL(uhp),
uePl(F)—{1}

where
(6.11)
MY o B if u=1invp(a)
5 (u,hp) = Tr ((faa 1 [HO)); o Froba, (Rfum,Qe)z) for some a € Ap (k).

0 otherwise.

The rest of the section is devoted to the proof of this theorem. In the rest
of this subsection we assume d > max{2¢’ — 1,2g}.

6.2.7. We apply the discussion in Section A.4.4 to M = My EECN - Aqg
and the self-correspondence C' = Hk’j\/[’d of Mgy. We define Sht‘j\/l’d by the
Cartesian diagram

Shtlt, y ———— HK}

(6.12) l l(wmr)
(id,Fraq,)
Mg——— Mg x Mq.
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This fits into the situation of Section A.4.4 because faq 0y = far 0 by the
discussion in Section 6.2.2, hence Hk‘fw 4 1s a self-correspondence of M, over
Ag while (id, Fraq,) covers the map (id, Fra,) : Ag — Ag x Ag. In particular,
we have a decomposition

(6.13) Shtfy o= I Sht!y4(a).
ac€Aq(k)
For D € X4(k), we let
(6.14) Shtf p = [ Sht)yq(a) C Shthy, .
acAp (k)

Using the decompositions (6.13) and (6.14), we get a decomposition

Cho(Shtj/tvd)@—< B Cho(Sht“M’D)Q>

DeXy(k)
(6.15)

® @  Cho(Shthy, 4(a))e
a€Aq(k)—AS (k)

Let ¢ € Cth,g+1(Hk“M7d)@. Since My is a smooth Deligne-Mumford
stack by Proposition 6.1(2), (id,Fraq,) is a regular local immersion, and the

refined Gysin map (which is the same as intersecting with the Frobenius graph
I'(Fraq,) of Mg) is defined

(id, Frpq,)" : Chog_gi1 (HKR ) — Cho(Shth, ,)o-

Under the decomposition (6.15), we denote the component of (id, Fraq,)'¢ in
the direct summand Cho(Sht‘j\/L p)o by

((id, Fraq,)'¢) , € Cho(Shthy p)o-

Composing with the degree map (which exists because Sht‘jw p is proper over k
— see the discussion after (A.26)), we define

(¢, T(Fran,))p = deg ((id, Frar,)'¢) , € Q.
As the first step towards the proof of Theorem 6.5, we have the following

result.

THEOREM 6.6. Suppose D is an effective divisor on X of degree d >
max{2¢g’ — 1,2g}. Then there exists a class ( € Chag_g11(HKY, )0 whose
restriction to Hk‘/t/l,d’Ad@mAg 1s the fundamental cycle, such that

(6.16) L.(hp) = (¢, T'(Fray)) -

This theorem will be proved in Section 6.3.6, after introducing some aux-
iliary moduli stacks in the next subsection.
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6.2.8. Proof of Theorem 6.5. Granting Theorem 6.6, we now prove Theo-
rem 6.5. Let ¢ € Chag—g41(HK', ;)@ be the class as in Theorem 6.6. By (6.14),
we have a decomposition

(6.17) Cho(Shthy, p)o = €B Cho(Shth, 4(a))q-
a€Ap (k)
We write

<C7F(Fer)>D - Z <C7F(Fer)>¢l

acAp (k)
under the decomposition (6.17), where (¢,I'(Fraq,))q is the degree of

((id,Fer)!()a € Chy(Shth 4(a))q.
Combining this with Theorem 6.6 we get
(618) ]Ir(hD) = Z <C7 F(Fr/\/ld)>a‘
a€Ap (k)

On the other hand, by Proposition A.12, for any a € Ap(k), we have

(6.19) <C, F<Fer)>a = TY((fM,!Cl(C))a (¢] FI"Oba, (RfMJ@g)a).

Here we are viewing the cycle class cl(¢) € Hg(l\zdd_gﬂ)(Hk“M )(=2d+g-1)
as a cohomological self-correspondence of the constant sheaf O, on M, which
induces an endomorphism

(6.20) Fael(€) s R Qe — Rifag,1 Qe

andan endomorphism(faq1cl(¢))a on the geometric stalk (Rfa1Qp)az. Since

we only care about the action of fay1cl(¢) on stalks in .A;?, only the restriction

¥ = (4o € Zog—gi1(HK, 4| 4o)g matters. Combining (6.19) with (6.18),
d ’ d

we see that in order to prove (6.9), it suffices to show that fucl(¢%) and
(frma[HO))"™ give the same endomorphism of the complex R 1Qy| 49 This
d

is the following lemma, which is applicable because d > 3¢ — 2 is implied by
d>2¢ —1=4g — 3 (since g > 1).

LEMMA 6.7. Suppose d > 3g—2 and (¥ € ng_g+1(Hk‘/‘\A7d|Ado)Q. Suppose
the restriction of ¢¥ to Hkl;\A,d‘Ad@mAg is the fundamental cycle. Then the
endomorphism fMJcl(Co) of RfMJQAA;; 1s equal to the r-th power of the
endomorphism fai[H¥].

Proof. Let [H®]" denote the r-th self-convolution of [H®], which is a cycle
on the r-th self composition of H, and hence on Hkﬁ/t, 4 by Lemma (6.2). We
have two cycle ¢V and (the restriction of) [H?]" in ZQd,gH(ijA,dug)Q. We
temporarily denote M| AY by /\/l;? (although the same notation will be defined

in an a priori different way in Section 6.3). We need to show that they are in
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the same cycle class when projected to MC? X /\/ldo under (7o, ¥r) : Hk’fw Jl 40 =
’ d

Mg X ij.

By assumption, when restricted to Hk/y, 4| ;o 40, both ¢¥ and [HO]" are

’ d d
the fundamental cycle. Therefore, the difference
(0, 7)+(¢7 = [HO)) € Zaa—gr1 (M x Mo
is supported on the image of Hk’j\/t al A9 40 In Mg X Mg, which is contained
’ d d

in the image of Hk{, ; — Hk‘/‘wo’d in My x My. By Lemma 6.4(2), the latter
has dimension < d+ 2g — 2. Since d > 3g — 3, we have d+2g —2 < 2d —g+1,
therefore, (70,7 )«(¢Y — [HO]") =0 € Z2d_g+1(M;? X ./\/ldo)(@, and the lemma
follows. O

6.3. Auziliary moduli stacks. The goal of this subsection is to prove The-
orem 6.6. Below we fix an integer d > max{2¢’ — 1,2¢}. In this subsection,
we will introduce moduli stacks Hkg, ; and Hg that will fit into the following
commutative diagram:

(6.21)

1 /
HK x HkE o HIE x i 77

(707'}’7‘)l J(VO?V'/‘) (’Y(ljv'yfr)l l(')/(l)v’y{")

Hk/&d

J((V(l)v%,ﬂ)

— <
(Bunz)? x (Bung)? DAbADA, (Bung)? x (Bung)? PRALLS L Hy; x Hy.
(id,Fr)T T(id,Fr) (id,Fr)T T(id,Fr) T(id,Fr)
H:
Bunr x Bunyp -t Bung x Bung PP Hy

The maps in this diagram will be introduced later. The fiber products of the
three columns are

(6.22) Shtt: x Shets 2% Shtf, x Shtf; <77 gy

where Sht¢; ; is defined as the fiber product of the third column.
The fiber products of the three rows will be denoted

i
HkMQ?,d

l (v0,7r)

(6.23) M x M.

T(id,Fr)

Mg

These stacks will turn out to be the restrictions of My and Hk“M 4 to Ag, as
we will see in Lemmas 6.8(2) and 6.9.
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6.3.1. In Section A.3 we discuss an abstract situation as in the above dia-
grams, which can be pictured using a subdivided octahedron. By Lemma A.9,
the fiber products of the two diagrams (6.22) and (6.23) are canonically iso-
morphic. We denote this stack by

o
Sht!{ o 4-

Below we will introduce Hy and Hkg 4.

6.3.2. Wedefine ﬁd to be the moduli stack whose S-points is the groupoid
of maps
¢:E— €&,
where £, £’ are vector bundles over X x S of rank two, ¢ is an injective map of
Ox xs-modules (so its cokernel has support finite over ), and prg, coker(¢) is
a locally free Og-module of rank d (where prg : X x S — S is the projection).
We have an action of Picx on ﬁd by tensoring, and we form the quotient

Hd = ﬁd/ PiCX .

Taking the map ¢ to its source and target gives two maps ?, ? : H; — Bung.
The map P13 x P’24 that appears in (6.21) is the map

?13 X ?24 : Hy x Hj — Bung X Bung X Bung X Bung

(hy 1) = (P (h), P (W), B (B), B (1))

On the other hand, we have the morphism II : Buny — Bung sending £
to v L; see Section 5.5.1. We form the following Cartesian diagram, and take
it as the definition of Mg:

M Hy
(6.24) l J(W?)

TIxII
Buny x Bunp —— Bung x Bung.

LEMMA 6.8.

(1) The morphisms <§, ? : Hy — Bung are representable and smooth of pure
relative dimension 2d. In particular, Hg is a smooth algebraic stack over
k of pure dimension 2d + 3g — 3.

(2) There is a canonical open embedding Mg < M, whose image is f; (Ag).
(For the definition of Ag, see Section 3.2.4.) In particular, ./\/ldQQ is a
smooth Deligne—Mumford stack over k of pure dimension 2d — g + 1.

Proof. (1) Let Cohd be the stack classifying torsion coherent sheaves on
X of length d. By [18, (3.1)], Cohd is smooth of dimension 0. Consider
the map ¢ : Hy — Cohg sending ¢ : £ — &’ to coker(¢). Then the map
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(?, q) : Hy — Bung x Cohd is a vector bundle of rank 2d whose fiber over
(€,Q) is Ext'(Q, &). Therefore, $p is smooth of relative dimension 2d.

There is an involution 6y on Hy sending ¢ : £ — &' to ¢V : £V — V. We
have p 08y = P because £V = & canonically as G-bundles. Therefore, 7 is
also smooth of relative dimension 2d.

(2) By the diagram (6.24), Mg classifies (£, L',1)) up to the action of
Picx, where £ and £’ are as in the definition of Mvd, and v is an injective
Ox-linear map v, L — v, L.

The discussion in Section 6.1.3 turns a point (£, L', 1) : vu L — v L) € M;
into a point (£, Lo : L — L', : L — oc*L") € My. The condition that 1)
be injective is precisely the condition that det(¢)) # 0, which is equivalent to
saying that fa(L,L',) € Ad@, according to (6.1).

Proposition 6.1(2) shows that M, is a smooth Deligne-Mumford stack
over k of pure dimension 2d — g + 1, hence the same is true for its open
substack ./\/l(?. O

6.3.3.  Recall the Hecke stacks Hky; and HkY. defined in (5.4) and (5.15).
Let HKY , be the moduli stack of commutative diagrams

507—981——9---7—987‘
(6.25) PO lm J(d»
L

where both rows are points in Hk} with the same image in X", and the vertical
maps ¢; are points in Hy (i.e., injective maps with colength d). Let

Hkf, 4 = Hk 4/ Picx,

where Picx simultaneously acts on all & and & by tensor product. The same
argument of Lemma 5.5 shows that Hkg ; is independent of .
There are natural maps Hkg; — X" and Hkg ; — X7 We define

HK = HKG xr X5 HK g o= HkG g xxr X7
The map Hk%. — Hkg, given by & = v,.L; induces a map
T : kY — H.
We have two maps
9,7 Hk 4y — Hkg,

sending the diagram (6.25) to its top and bottom row. We denote their base
change to X' by

', P Hk§ 4 — Hk.
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We define Hk‘;w@’ 4 by the following Cartesian diagram:

I
HkM@’d

(6.26) J l(?’,ﬁ’)
KA x HES — 5 HK x HKG.

Hk’c’}’d

The same argument of Lemma 6.8(2) shows the following result. Recall
that the stack Hk!, ; is defined in Section 6.2.1.

LEMMA 6.9. There is a canonical isomorphism between Hk“M@ g and the

preimage of .Ag under the natural map fag 0 : Hk‘/(/l a— Ad

6.3.4. We have a map
s Hkg g — Xa x X"

that sends a diagram (6.25) to (D;x1,...,x,), where D is the divisor of det(¢;)
for all 4. Let (X4 x X")° C Xgx X" be the open subscheme consisting of those
(D;xy,...,x,) where z; is disjoint from the support of D for all i. Let

HKgD, = 5 (Xa x X7)%)

be an open substack of Hkg 4. Let Hkg’; C Hk¢; 4 and Hkﬁf@’d C Hkﬁ/ﬁ?,d be

the preimages of Hk,.
LEMMA 6.10.

(1) The stacks Hkg?d and Hkgfi are smooth of pure dimension 2d+2r+3g—3.

(2) The dimensions of all geometric fibers of s are d+r+3g—3. In particular,
dim Hkg, 4 = dimHk'&d = 2d + 2r + 3g — 3.

(3) Recall that HI'\ . is the restriction Hk[/L\A,d‘AdO’ where .Ag C Ay is de-
fined in Section 6.2.4. Suppose d > max{2¢' — 1,2g}. Let Hk'', = be the

MO d
intersection of Hkﬁx&,d with Hk“M’%jd inside Hkﬁ/l,d. Then

dim(HkﬁAo’d — Hkl/t(oo,d) <2d—g+1=dim Hk’j\/w,d.
The proof of this lemma will be postponed to Sections 6.4.1-6.4.3.
LEMMA 6.11. Suppose d > max{2g¢' — 1,2g}.

(1) The diagram (6.26) satisfies the conditions in Section A.2.8. In particular,
the refined Gysin map

(I x I1)' : Ch,(HK 4)g —> Chy oz 4r) (HK: 0 )0

is defined.
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(2) Let

(6.27) ¢V = (" x ") [HKE 4] € Chag— g1 (HKY 0 ))o-

Then the restriction of ¢ to Hk“M@ d‘AomAQ’ is the fundamental cycle.
’ d d

Proof. (1) We first check that Hk, admits a finite flat presentation.

M. d

The map ~g : Hk“M@’ P ./\/l;9 is schematic, so it suffices to check that ./\/l;9
or My admits a finite flat presentation. In the proof of Proposition 6.1(1) we
constructed a proper and schematic map h : My — J%, x Prymy,, x; see (6.4).
Since J}i(, is a scheme and Prymy., x is the quotient of the usual Prym variety
by the trivial action of usa, Jgé, X Prymy., x admits a finite flat presentation,
hence so do M, and Hk/’(/l@’d.

Next we verify condition (2) of Section A.2.8. Extending k if necessary,
we may choose a point y € X (k) that is split into ¢/, y” € X'(k). Let Bung(y)
be the moduli stack of G-torsors over X with a Borel reduction at y. Let
Hk{(y) = Hk¢ XBune Bung(y) where the map Hk; — Bung sends (&;; 245 fi)
to &. We may lift the morphism II* to a morphism

" (y) : Hkf, — HkG(y),

where the Borel reduction of & = v.Ly at y (i.e., a line in the stalk &) is
given by the stalk of £ at y/. The projection p : Hk{(y) — Hk{ is smooth,
and IT* = p o TT#(y). So to check condition (2) of Section A.2.8, it suffices to
show that IT#(y) is a regular local immersion.

We will show by tangential calculations that Hk{(y) is a Deligne-Mumford
stack in a neighborhood of the image of II*(y), and the tangent map of I1#(y)
is injective. For this it suffices to make tangential calculations at geometric
points of Hk and its image in Hk{:(y). We identify Hk with Buny x X' as
in Section 5.4.4. Fix a geometric point (£;z') € Picyx/(K) x X'(K)". For nota-
tional simplicity, we base change the situation from k to K without changing
notation. So X means X ®; K, etc.

The relative tangent space of HkY. — X" at (£;2) is HY(X, Ox//Ox).
The relative tangent complex of Hk{:(y) — X' at

I (y)(L;2') = (L — v L(x]) — -+ 5 Ly)
H* (X, AdZY (v, £))[1],

where AdZ¥ (v, L) = End®¥ (v, L)/Ox - id and End®¥(v,L) is the endomor-
phism sheaf of the chain of vector bundles v,.L — v, L(x}) — --- preserving
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the line £,/ of the stalk (v.L),. Note that

End%¥(v,£) C End? (v, L) = v,Hom(L & (6 L) (y"), L)

(6.28) 1
= 1,0x B (L@ LT (—y")).

We also have a natural inclusion
v : 1,0y < End=Y (v, L)

identifying the left-hand side as those endomorphisms of v, L that are Ox:-
linear. Now ~(v,Ox/) maps isomorphically to v,Ox/ on the right-hand side
of (6.28). Combining these we get a canonical decomposition End®Y (v, L) =
v+Ox: @ K for some line bundle £ on X with deg(K) < 0. Consequently, we
have a canonical decomposition

(6.29) AdEY(1,L) = Ox:1 /Ox ® K.

In particular, HO(X, AdZY (L)) = HY(X,Ox//Ox) = 0. This shows that
Hk{:(y) is a Deligne-Mumford stack in a neighborhood of IT#(y)(L; z’).
The tangent map of IT#(y) is the map

H'(X, 0x//Ox) — H' (X, Ad™Y(1.L))

induced by =, hence it corresponds to the inclusion of the first factor in the
decomposition (6.29). In particular, the tangent map of IT*(y) is injective. This
finishes the verification of all conditions in Section A.2.8 for the diagram (6.26).

(2) Let Hkﬁj@ , be the preimage of Hkg’fi. By Lemma 6.10(1), Hkgfi is

smooth of dimension 2d+2r+3¢g—3. On the other hand, by Lemma 6.4, Hk‘/‘w<> d

has dimension 2d —g+1. Combining these facts, we see that Hk/io, ,NHK, .,
has the expected dimension in the Cartesian diagram (6.26). This implies that

QA is the fundamental cycle. By Lemma 6.10(3), HK/ , , —
MO .d M,

M@ .4
HK/\; , has lower dimension than HK'\ ,, ., therefore, (¥~ must be the
) ) ./\/1<>,d
fundamental cycle. O

6.3.5. There are 7 + 1 maps v; (0 < i < r) from the diagram (6.26) to
(6.24): it sends the diagram (6.25) to its i-th column, etc. In particular, we
have maps v; : Hkg; g — Hg and ] : Hk( ; — Hy. The maps 4 and ~,. appear
in the diagram (6.21).

We define the stack Shtg, ; by the following Cartesian diagram:

Shtfy g — Ak 4

(6.30) l l(vw)
(id,Fr)

Hd4>Hd X Hd.
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Similarly, we define Sht¢; ; as the fiber product of the third column of (6.21):

Shtf; y — Hk 4

(6.31) l l(%’mé)
(id,Fr)

Hd —_— Hd X Hd.
We have Sht¢; ; = Sht 4 X xr X'

LEMMA 6.12. There are canonical isomorphisms of stacks

Shtg s =[] Shtg(hp),
DEXd(k‘)
Shtgi =[] Shté(hp).
DEXd(k;)

For the definitions of Sht{;(hp) and Sht&(hp), see Sections 5.3.1 and 5.3.2.

Proof. From the definitions, (vo,7:) factors through the map Hkg ;, —
Hg xx, Hy. On the other hand, (id,Fr) : H; — Hy x Hy covers the similar
map (id,Fr) : X; — X4 x X4. By the discussion in Section A.4.5, we have a
decomposition

Shtg =[] Shtgp-
DeXy(k)

Let Hp and Hkg p be the fibers of Hy and Hkg 4 over D. Then the D-com-
ponent Sht¢ p of Shtg, ;4 fits into a Cartesian diagram

Shty, p —— Hk

(6.32) l J('yo,’yr)
(id,Fr)

HD4>HD XHD.

Comparing this with the definition in Section 5.3.1, we see that Shtg p =
Shtg; (hp). The statement for Sht¢, ; follows from the statement for Shtg, 4 by
base change to X'". O

COROLLARY 6.13. Let D € X4(k) (i.e., an effective divisor on X of de-

gree d). Recall the stack ShtuMyd defined in (6.12) and Shtﬁ/l@ g defined in

Section 6.3.1. Then Sht’jwo 4 s canonically isomorphic to the restriction of
Sht!t, 4 to A7 (k) € Aq(k).

Moreover, there is a canonical decomposition

Sht“,/\/l@,d: H Sht“M,D,

DeXy(k)
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where Sht’fWD is defined in (6.14). In particular, we have a Cartesian diagram

(6.33) Shtfy, Sht/5(hp)

j h/,?')

Shtt x Shts — ", Sht/; x Sht/s.

Proof. Note that Sht“M@ 4 18 defined as a fiber product in two ways: one as
the fiber product of (6.22) and the other as the fiber product of (6.23). Using
the first point of view and the decomposition of Sht¢; ; given by Lemma 6.12,
we get a decomposition of Sht”MQ,,d = [pex.k) Sht”MQ,’D, where Shti/tO,D
by definition the stack to put in the upper left corner of (6.33) to make the
diagram Cartesian.

On the other hand, using the second point of view of Shtjj’w, 4 as the
fiber product of (6.23), and using the fact that Hkﬁ/l@ 4 1s the restriction
of Hk“fvud over .Ad@ by Lemma 6.9, we see that Sht/“wv,d
Shtufvl,d over .Ag by comparing (6.23) and (6.12). By (6.13) and (6.14), and
the fact that A5 (k) = [Ipex k) Ap(k), we get a decomposition Shti/l@,d =

[pex,m) Sht‘jVLD. Therefore, both Shtf, and Shtlfvl,p are the fiber of the

18

is the restriction of

M®.D
map Sht“M 4 — Ad — Xgq over D, and they are canonically isomorphic. Hence
we may replace the upper left corner of (6.33) by Shtﬁ/l@ p» and the new dia-
gram is Cartesian by definition. O
LEMMA 6.14.

(1) The diagram (6.31) satisfies the conditions in Section A.2.10. In particu-
lar, the refined Gysin map

(id, Frpg,)" : Chu(HkE 4)g — Chy—dim 1, (Sht5 ¢)g

is defined.
(2) We have

[Sht; 4] = (id, Frp,) [HKE 4] € Chay(Shtfs o).

Proof. (1) Since p : Sht}y(hp) — Shtl, is representable by Lemma 5.8,
Sht; (hp) is also a Deligne-Mumford stack. Since Shtg; 4 is the disjoint union of
Sht¢; (hp) by Lemma 6.12, Shtg, 4 is Deligne-Mumford, hence so is Sht; ;. The
map v, : Hk¢; ; — Hg is representable because its fibers are closed subschemes
of iterated Quot schemes (fixing & — &, building &; and &/ step by step and
imposing commutativity of the maps). Therefore, (7, .) is also representable.
This verifies condition (1) in Section A.2.10.

Since Hy is smooth by Lemma 6.8, the normal cone stack of the map
(id,Frg,) : Hi — Hq x Hg is the vector bundle stack Fr* T Hg, the Frobenius
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pullback of the tangent bundle stack of H;. Therefore, (id,Fry,) satisfies
condition (2) in Section A.2.10. It also satisfies condition (3) of Section A.2.10
by the discussion in Remark A.7.

Finally the dimension condition (4) in Section A.2.10 for Hk{, ; and Shtg, 4
= [Ip Sht&(hp) follows from Lemma 6.10(2) and Lemma 5.9. We have verified
all conditions in Section A.2.10.

(2) Take the open substack Hk(, C Hk{; ; as in Lemma 6.10. Then HK(;
is smooth of pure dimension 2d + 2 + 3g — 3. According to Lemma 6.12, the
corresponding open part Shtg’:l is the disjoint union of Shtg’o(hp), where

Sht°(hp) = Shté(hp)|(x1—-1(p))r-

It is easy to see that both projections Sht°(hp) — Sht(s are étale, hence
Shty°(hp) is smooth of dimension 2r = dim Hkg’z — codim(id, Frg, ), the ex-

Ir,0

pected dimension. This implies that if we replace Hkg ; with Hkg 4, and
replace Sht’é’d with Shtgfj in the diagram (6.31), it becomes a complete inter-
section diagram. Therefore, (id, Fry d)![Hk’C’j’d] is the fundamental cycle when
restricted to Shtg’;l. Since Sht¢; ; — Shtgfi has lower dimension than 27 by
Lemma 5.9, we see that (id, Fry d)![Hkgd] must be equal to the fundamental

cycle over the whole Shtg; ;. O

6.3.6. Proof of Theorem 6.6. Consider the diagram (6.33). Since Sht/.
is a proper Deligne-Mumford stack over k and the map (%’ ,?’ ) is proper
and representable, Sht”M7 p is also a proper Deligne-Mumford stack over k. A
simple manipulation using the functoriality of Gysin maps gives

I(hp) = (0[Sht], hp * 04 [Sht!r])gyer = deg (6" x 6*)'[Shté(hp)])

Here (6 x 9*) : Cha,(Shtf(hp))g — Chy(Sht!y( p)q is the refined Gysin map
attached to the map 6% x 6*. By Corollary 6.13, (6* x 6*)'[Sht/s(hp)] is the
D-component of the 0-cycle

(0" x 0)'[Shtfs 4] € Cho(Sht!y 0 s)o = P Cho(Shth, ).
DeX4(k)
Therefore, to prove (6.16) simultaneously for all D of degree d, it suffices to

find a cycle class ¢V € Chgd_gH(Hk”M@’d)Q whose restriction to Hk’j\/ﬁ?,d N

HK o , = HK 4l 4o 40 s the fundamental class, and that
’ ’ d d
(6.34) (0" x 0")'[Sht(s 4] = (id, Fr Mg)!c@ € Cho(Shthy 0 ))q-

The statement of Theorem 6.6 asks for a cycle ¢ on Hklf\/l, 4» but we may extend
the above ¢V arbitrarily to a (2d — g + 1)-cycle in Hk/ ,.

To prove (6.34), we would like to apply Theorem A.10 to the situation of
(6.21). We check the following assumptions:
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(1) The smoothness of Buny and Bung is well known. The smoothness of Hk{
and Hk/. follow from Remark 5.2 and Section 5.4.4. Finally, by Lemma 6.8,
Hg is smooth of pure dimension 2d + 3g — 3. This checks the smoothness
of all members in (6.21) except B = Hk{; 4.

(2) By Corollary 5.7, Shty,, and hence Sht{; is smooth of pure dimension 2r;
by Lemma 5.13, Sht‘jﬂ is smooth of pure dimension . By Lemma 6.8, ./\/l;?
is smooth of pure dimension 2d — g + 1. All of them have the dimension
expected from the Cartesian diagrams defining them.

(3) The diagram (6.31) satisfies the conditions in Section A.2.10 by Lemma
6.14. The diagram (6.26) satisfies the conditions in Section A.2.8 by
Lemma 6.11.

(4) We check that the Cartesian diagram formed by (6.23), or rather (6.12),
satisfies the conditions in Section A.2.8. The map Sht‘fw 4 — Mg is repre-
sentable because Hk!y, ; — Mg x M, is. In the proof of Lemma 6.11(1)
we have proved that My admits a finite flat presentation, hence so does
Sht’ﬁMyd. This verifies the first condition in Section A.2.8. Since M, is
a smooth Deligne-Mumford stack by Lemma 6.1(2), (id, Fraq,) : Mg —
Mg x My is a regular local immersion, which verifies condition (2) of
Section A.2.8.

Finally we consider the Cartesian diagram formed by (6.22) (or equiv-
alently, the disjoint union of the diagrams (6.33) for all D € X,(k)). We
have already showed above that Sht‘;/l’ 4 admits a finite flat presentation.
All members in these diagrams are Deligne-Mumford stacks, and Shtf.
and Sht¢; are smooth Deligne-Mumford stacks by Lemma 5.13 and Corol-
lary 5.7. Hence the map 6 x " satisfies condition (2) of Section A.2.8 by
Remark A.4.

Now we can apply Theorem A.10 to the situation (6.21). Let
¢V = (1" x I*)'[Hk¢ 4] € Chza—gr1(HK o )0
as defined in (6.27). Then the restriction of ¢V to Hk!/i/l,dugmAff is the funda-
mental cycle by Lemma 6.11(2). Finally,
(id, Fng)!g@ = (id,FrM;;)!(H“ x 11" [HKZ 4]
= (6" x 6")'(id, Fer)![Hkad] (Theorem A.10)
= (" x 9“)![Sht/57d] (Lemma 6.14(2)),
which is (6.34). This finishes the proof of (6.16).

6.4. Some dimension calculation. In this subsection, we give the proofs of
several lemmas that we stated previously concerning the dimensions of certain
moduli stacks.
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6.4.1. Proof of Lemma 6.10(1). In the diagram (6.25), when the divisors
of the ¢; are disjoint from the divisors of the horizontal maps — namely, the
x;’s — the diagram is uniquely determined by its left column ¢ : & — &) and
top row. Therefore, we have

Hkg?d = (Hq XBung HkTG)|(Xd><XT)O-

Since Hy is smooth of pure dimension 2d 4+ 3g — 3 by Lemma 6.8, and the map
po : Hk; — Bung is smooth of relative dimension 2r, we see that Hyxpun, Hkg
is smooth of pure dimension 2d + 2r + 3¢ — 3.

6.4.2. Proof of Lemma 6.10(2). Over (X4 x X")°, we have dimHk;’;, =
2d+2r+3g—3, therefore, the generic fiber of s has dimension d—|—7’—|—39—3.7 By
the semicontinuity of fiber dimensions, it suffices to show that the geometric
fibers of s have dimension < d 4+ r + 3g — 3. We will actually show that the
geometric fibers of the map (s,po) : Hkg 4 — X4 x X" x Bung sending the
diagram (6.25) to (D;x;; EL) have dimension < d + 7.

We present Hkg, 4 as the quotient of Hkg’ 4/ Picx with g = p’y . Therefore,
a point in Hkg, 4 is a diagram of the form (6.25) with all arrows f;, /! pointing
to the right.

Let (D;z = (2;)) € Xg x X" and & € Bung be geometric points. For
notational simplicity, we base change the whole situation to the field of defini-
tion of this point without changing notation. Let Hp . ¢ be the fiber of (s, po)

over (D;x;; ). We consider the scheme H' = H, | o, classifying commutative
diagrams
& fi & f2 o fr g,
(6.35) o o
fi f3 Ir
& ! & 2, ... &,

where div(det ¢9) = D = div(det ¢,) and div(det f;) = z; = div(det f/). The
only difference between H' and H Dz 18 that we do not require the maps ¢;
for 1 <i <r —1 to exist. (They are unique if they exist.) There is a natural
embedding Hp ;¢ < H’, and it suffices to show that dim(H’) < d 4 r. We
isolate this part of the argument into a separate lemma below, because it will
be used in another proof. This finishes the proof of Lemma 6.10(2).

LEMMA 6.15. Consider the scheme H' = H’D&g; introduced in the proof
of Lemma 6.10(2). We have dim H' = d + r.

Proof. We only give the argument for the essential case where all x; are
equal to the same point x and D = dx. The general case can be reduced to this
case by factorizing H' into a product indexed by points that appear in |D| U
{z1,...,2,}. Let Gryr g4 be the iterated version of the affine Schubert variety
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classifying chains of lattices Ag C Ay C Ay C --- C A, C A = O? in F? where
all inclusions have colength 1 except for the last one, which has colength d.
Similarly, let Grgi~ be the iterated affine Schubert variety classifying chains
of lattices Ag C Aj C A} C--- C AL = O in F? where the first inclusion has
colength d and all other inclusions have colength 1. Let Grgy, C Grg, be the
affine Schubert variety classifying O,-lattices A C O? with colength d +7. We
have natural maps 7 : Grir g — Grgy, and 7 : Grgyr — Grgy, sending the
lattice chains to Ag. By the definition of H’, after choosing a trivialization of
&' in the formal neighborhood of x, we have an isomorphism

(636) H/ = Gr1r7d XGrd+r Grdjl'r.

Since m and 7’ are surjective, therefore, dim H" > dim Grgy, = d + r.
Now we show dim H' < d + r. Since the natural projections Gryas» —
Gryr g and Grya+r — Grg 1 are surjective, it suffices to show that

dim(Gr1d+r XGrd+r Gr1d+r) S d —+ 7.

In other words, letting m = d + r, we have to show that m,, : Grym — Gr,, is a
semismall map. This is a very special case of the semismallness of convolution
maps in the geometric Satake equivalence, and we shall give a direct argument.
The scheme Gr,, is stratified into Y}, (0 < i < [m/2]), where Y}, classifies those
A C 02 such that O2/A =2 O, /! & O, /™ ". We may identify Y;!, with the
open subscheme Y _9; C Gry,—2; by sending A € Y’ to w, e (92 hence
dimY,} = m — 2i and codimg;,,, Y, = i. We need to show that for A € Y;,
dim 7, (A) < i. We do this by induction on m. By definition, 7} (A) classifies
chains A = Ag C Ay C --- C Ay, = O2, each step of which has colength one.
For i = 0, such a chain is unique. For i > 0, the choices of Ay are parametrized
by P!, and the map p : 7.} (A) — P! recording A; has fibers 7r*1_1(A1) Either
O2/\ = O, /wi ' @ O, /w™ %, in which case dim p~1(Ay) = dimn,t (A}) <

i—1 by inductive hypothesis, or 02 /A1 =2 O, /@’ 0O, /o™ ! (Whlch happens
for exactly one Ap), in which case dim p_l(Al) = dim7,' (A1) <. These
imply that dim7,,'(A) <i. The lemma is proved. O

6.4.3. Proof of Lemma 6.10(3). We denote Hk", , —Hk"'". by OHKA

MO d MO d MO d*

By Lemmas 6.2 and 6.3, HkM<> = X& Pict, B, 4, where B, 4 classifies (r+1)-
triples of divisors (Do,Dl,...7 D,) of degree d on X', such that for each
1 < i < r, D; is obtained from D;_; by changing some point z; € D;_1 to
o(z}). In particular, all D; have the same image Dy := 7w(D;) € X4. We
MO d by z = (L,a, Dy, ...,D,) € )A(é X picd. B, 4, where

(L,a) € Xc’l denotes a line bundle £ on X’ and a section « of it, together
with an isomorphism Nm(L) = Ox(Dp). Therefore, both Nm(«) and 1 give
sections of Ox (D). The image of z under Hk/ Mo ™ Ag LN )/(\d is the pair

(Ox(Dp), Nm(a) — 1). Therefore, z € OHK/, , « if and only if div(Nm(«) — 1)

denote a point in Hk
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contains 7(z}) for some 1 < ¢ < r; Nm(a) = 1 is allowed. Since z € D;_j,

%) also appears in the divisor of

we have m(x}) € m(D;_1) = Dy, therefore, 7 (2}
Nm(a). So we have two cases: either & = 0 or div(Nm(«)) shares a common
point with Dy,

In the former case, z is contained in Picff(, X picd. B, 4 that has dimension
g—1+d<2d—g+1since d > 2g.

In the latter case, the image of z in Ay lies in the subscheme C; C Xy
X picd. Xa consisting of triples (Dy, D2,y : O(D1) = O(D2)) such that the divi-
sors D1 and D9 have a common point. There is a surjection X x (Xz_1 XPngl(fl
X4-1) — C4, which implies that dimCy < 1+2(d—-1) —g+1 = 2d — g.
Here we are using the fact that d — 1 > 29 — 1 to compute the dimension
of X 1 XPiCdX—l Xg—1. The conclusion is that in the latter case, z lies in
i/t<>,d’
cause Hk/f\/t,d — Ay is finite when restricted to Cq C Xy X Picd. X4), which
is<2d—g<2d—g+1.

Combining the two cases we conclude that dim OHk, <2d—g+1=

MO d
; iz
dim HkMO,d'

the preimage of C; in Hk which has dimension equal to dimCy (be-

6.4.4. Proof of Lemma 5.9. Let x = (x1,...,2,) € X" be a geometric
point. Let Shtg(hp), be the fiber of Shtg;(hp) over z. When z is disjoint
from |D|, then  : Shtls(hp), — Shtg; , is étale, and hence in this case
dim Shtl,(hp), = r. By semicontinuity of fiber dimensions, it remains to show
that dim Shtg;(hp), < r for all geometric points = over closed points of X.
To simplify notation we assume z; € X (k). The general case can be argued
similarly.

We use the same notation as in Section 6.4.2. In particular, we will use
Hkg 4 and think of it as Hkg}d/ Picy with p = p!.. Let Hp be the fiber over
D of Hy — X4 sending (¢ : £ — £’) to the divisor of det(¢). Let Hk}, , be the
fiber of s : Hkg; ; — X4 x X" over (D;z). -

Taking the fiber of the diagram (6.32) over x we get a Cartesian diagram

Sht¢ (hp)e — Hkp ,

(6.37) l J((Po,m)
(id,Fr)

HD—>HD XHD.

For each divisor D’ < D such that D — D’ has even coefficients, we have a
closed embedding Hpr — Hp sending (¢ : € — &') € Hp to & LA RN
&'(3(D—D")). Let Hp <pr be the image of this embedding. Also let Hp pr =
HD,SD’ — UD”<D’HD,§D”- Then {HD,D’} give a stratification of Hp indexed
by divisors D’ < D such that D — D’ is even. We may restrict the diagram
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(6.37) to Hp pr x Hp pr — Hp x Hp and get a Cartesian diagram

Shtg(hD)D/Q EE— HkTD,D,72

(6.38) l ypo,pT.)
(id,Fr)

Hp pr ——— Hp p x Hp pr.

We will show that dim Shtg(hp)pr z < 7 for each D' < D and D — D’ even.

The embedding Hpr — Hp above restricts to an isomorphism Hpr pr =
Hp pr. Similarly, we have an isomorphism Hkp, = Hkp, o sending a
diagram of the form (6.25) to the diagram of the same shape with each &l
changed to &'(3(D — D’)). Therefore, we have Shtg(hp/)pz = Shte(hp) D g,
and it suffices to show that the open stratum Shtg(hp)p , has dimension at
most r. This way we reduce to treating the case D’ = D.

Let D = D4z =D+x1+- -4z, € Xgq1r be the effective divisor of degree
d+r. Let Bun b be the moduli stack of G bundles with a trivialization over D.
A point of Bun, 5 is a pair (&7 5’5 = O%) (where &’ is a vector bundle of
rank two over X) up to the action of Picx (D) (line bundles with a trivialization
over D). There is a map h : Bun, 5 — Hp p sending & 7)to(p:E—=E,
where &£ is the preimage of the first copy of Op under the surjective map

E &5 O% — 0%. Let Bp C ReskOD G = PGL2(Op) be the subgroup

—~ O~
stabilizing the first copy of 0%, and let Bp C Res, ? G = PGL3(O5) be the

preimage of Bp. Then h is a B, p-torsor. In particular, Hp p is smooth, and
the map h is also smooth. Since smooth maps have sections étale locally, we
may choose an étale surjective map w : Y — Hp p andamaps:Y — BunGﬁ
such that hs = w.

Let W = Hkp, p . XHp, p Y (using the projection v, : Hkl, p . — Hp p).
We claim that the projection W — Y is in fact a trivial fibration. In fact,
let T be the moduli space of diagrams of the form (6.25) with &, = 0%,
& = Ox(—D) & Ox, and ¢, being the obvious embedding & — &.. In
such a diagram all & and & contain 57{(—5) Therefore, it contains the same
amount of information as the diagram formed by the torsion sheaves & /E.(—D)
and &!/E/(—D). For a point y € Y with image (¢, : & — E.) € Hp.p,
s(y) € Bung, 5 gives a trivialization of & |5. Therefore, completing ¢; into
a diagram of the form (6.25) is the same as completing the standard point
(& = Ox(—D) ® Ox — 0%) € Hp p into such a diagram. This shows that
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W 2Y xT. We have a diagram
~ xid
U w Y xT L) HD,D x T

| |-

Shte;(hp)pe —— Hkp p o

J/ J/(PYO(YT)
(id,Fr)

Hpp—Hp p x Hpp,

where U is defined so that the top square is Cartesian. The outer Cartesian
diagram fits into the situation of [15, Lemme 2.13], and we have used the same
notation as in loc. cit, except that we take Z = Hp p. Applying loc. cit.,
we conclude that the map U — T' is étale. Since w : W — Hk}, p , is étale
surjective, so is u : U — Shtf:(hp)p .. Therefore, Shtf:(hp)p . is étale locally
isomorphic to T" and, in particular, they have the same dimension.

It remains to show that dimT" < r. Recall the moduli space H' = Hp, , ¢/
introduced in the proof of Lemma 6.10(2) classifying diagrams of the form
(6.35). Here we fix £, = O%. Let T' be subscheme of H' consisting of diagrams
of the form (6.35) where (¢, : & — &) is fixed to be (£, = Ox(—D) & Ox
— (’)g() Then we have a natural embedding 7' < T, and it suffices to show
that dim 7" < r. Again we treat only the case where D and z are both sup-
ported at a single point x € X. The general case easily reduces to this by
factorizing T" into a product indexed by points in |D| U {z1,...,2,}.

Let Gry C Grg . be the affine Schubert variety classifying lattices A C 02
of colength d. Let Gr]r;7 C Grg be the open Schubert stratum consisting of
lattices A C O2 such that O2/A = O, /w?. (Here w, is a uniformizer at z.)
We have a natural projection p : H — Grg sending the diagram (6.35) to
A = & lspeco, > Ellspeco, = O2. Then T’ is the fiber of p at the point
A = @0, ® O, Let HY = pfl(Grg). There is a natural action of the
positive loop group L}G on both H' and Grgy making p equivariant under
these actions. Since the action of L} G on Grg is transitive, all fibers of p over
points of Grg have the same dimension, i.e.,

(6.39) dim T’ = dim HY — dim Gr§ = dim H — d.
By Lemma 6.15, dim H' = d + r. Therefore, dim HY = d 4+ r and dim7’ < r
by (6.39). We are done.

7. Cohomological spectral decomposition

In this section, we give a decomposition of the cohomology of Shty under
the action of the Hecke algebra 7, generalizing the classical spectral decom-
position for the space of automorphic forms. The main result is Theorem 7.14,
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which shows that Hzr(ShtTG 5 Qp) is an orthogonal direct sum of an Eisenstein
part and finitely many (genéralized) Hecke eigenspaces. We then use a variant
of such a decomposition for Sht; to make a decomposition for the Heegner-
Drinfeld cycle.

7.1. Cohomology of the moduli stack of Shtukas.

7.1.1. Truncation of Bung by index of instability. For a rank two vector
bundle £ over X, we define its index of instability to be

inst(€) := max{2deg L — deg £},

where £ runs over the line subbundle of £. When inst(£) > 0, £ is called
unstable, in which case there is a unique line subbundle £ C &£ such that
deg L > %deg E. We call this line subbundle the maximal line subbundle of €.
Note that there is a constant ¢(g) depending only on the genus g of X such
that inst(€) > ¢(g) for all rank two vector bundles £ on X.

The function inst : Buns — Z is upper semi-continuous and descends to a
function inst : Bung — Z. For an integer a, inst™!((—o0, a]) =: Bunéa is an
open substack of Bung of finite type over k.

7.1.2. Truncation of Shtg by index of instability. For Shty; we define a
similar stratification by the index of instability of the various &. We choose u
as in Section 5.1.2 and present Shty, as Sht,/ Picx (k).

Consider the set D of functions d : Z/rZ — Z such that d(i)—d(i—1) = £1
for all 2. There is a partial order on D by pointwise comparison.

For any d € D, let Sht"=? be the open substack of Sht) consisting of those
(&i; 243 fi) such that inst(&;) < d(i). Then each Shtg’éd is preserved by the
Picx (k)-action, and we define Shtgigd = Shtg’gd/ Picx (k), an open substack
of Shtg; of finite type. If we change 4 to 1/, the canonical isomorphism Shtf, &
Sht’é; in Lemma 5.6 preserves the G-torsors &;, and therefore the open substacks
Sht’é’gd and Sht‘é”gd correspond to each other under the isomorphism. This
shows that Shtg’gd is canonically independent of the choice of u, and we will
simply denote it by Shtéd.

In the sequel, the superscript on Shtg will be reserved for the truncation
parameters d € D, and we will omit r from the superscripts. In the rest of the
section, Shtg means Shtg.

Define Shth = Shtéd — Ud/<dShtéd/. This is a locally closed substack of
Shtq of finite type classifying Shtukas (&;; z;; fi) with inst(&;) = d(¢) for all 1.
A priori we could define Shté for any function d : Z/rZ — 7Z; however, only
for those d € D is Sht& nonempty, because for (&;z;; fi) € Shth, inst(&;) =
inst(&;_1) & 1. The locally closed substacks {Sht }4ep give a stratification of
Shtg.
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7.1.3. Cohomology of Shtg. Let wéd : Shtéd — X7 be the restriction

of mg, and similarly define ﬂéd and 7r‘(1;. For d < d € D, we have a map
induced by the open inclusion Shtéd — Shtéd/:

ld,d Rﬂ'éﬁ@g — Rﬂ'éﬁ Qg.
The total cohomology H(Shte @y k) is defined as the inductive limit

H (Shtg ®4 k) := lim H: (Sht5? @y k) = lim H* (X" @y F, R75{Q).
deD deD

7.1.4. The action of Hecke algebra on the cohomology of Shtg. For each
effective divisor D of X, we have defined in Section 5.3.1 a self-correspondence
Shti(hp) of Shtg over X

For any d € D, let <%Shtg(hp) C Shtg(hp) be the preimage of Shtéd
under p. For a point (& < &) of =9Shtg(hp), we have inst(&;) < d(i),
hence inst(E]) < d(i) + deg D. Therefore, the image of <?Shtg(hp) under
7 lies in ShtéderegD. For any d > d + deg D, we may view <9Shtg(hp)
as a correspondence between Shtéd and Shtéd, over X". By Lemma 5.9,
dim Shtg(hp) = dimShtg = 2r, the fundamental cycle of <¢Shtg(hp) gives
a cohomological correspondence between the constant sheaf on Shtéd and the

constant sheaf on Shtéd, (see Section A.4.1), and induces a map
(7.1) C(hp)aa : RrgiQe — Rrs{ Q.

Here we are using the fact that sds5 SdShtg(hp) — Shtéd is proper (which
is necessary for the construction (A.24)), which follows from the properness of
0 : Shtg(hp) — Shte by Lemma 5.8.

For any e > d and ¢/ > ¢+ degD and ¢ > d', we have a commutative
diagram

C(hp)a,ar

<d <d
Rz Qe Rrg) Qe

lLd,e lbd’,e/
C

(hD)e,er ’
Rr55Q — " Rag Qy,
which follows from the definition of cohomological correspondences. Taking
H*(X" ®y k, —) and taking inductive limit over d and e, we get an endomor-
phism of HZ(Shtg ®y k):
C(hp) : H(Shtg @4 k) = lim H* (X" @, k, Rr5 Q)
deD

li C(h ) , _ ’ —_
= Yy BY(XT @ F, Rt Q) = Hi(Shtg ).
d’'eD

The following result is a cohomological analog of Proposition 5.10.
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PROPOSITION 7.1. The assignment hp — C(hp) gives a ring homomor-
phism for each i € Z:

C : A — End(H.(Shtg @ k)).

Proof. The argument is similar to that of Proposition 5.10; for this reason
we only give a sketch here. For two effective divisors D and D’, we need to check
that the action of C(hphpr) is the same as the composition C'(hp) o C(hp).

Let d,d' and d' € D satisfy d' > d 4+ deg D’ and d’ > d' + deg D. Then
the map

T U
C(hD)dT,d’ o C(hD/)ddf : R?Téf!l(@g — Rﬂ’éﬁ Qg — Rﬂ'éﬁ Qg

is induced from a cohomological correspondence ¢ between the constant sheaves
on Shtéd and on Shtéd supported on

<4Shte (hp) * =¥ Shtg(hpr) == =IShta(hp) X5 sue.5 = Shta(hpr);

ie., ¢ € HBM(S9Shte(hp) * <% Shte (hpy) @k k).

On the other hand, the Hecke function Aphps is a linear combination
of hg where E < D+ D' and D+ D' — E is even. Since d € D and d' >
d+ deg D + deg D', the map

C(hphp)ga : RrgiQ — Rrg| Qo

is induced from a cohomological correspondence & between the constant sheaves
on Sht5? and on Sht5? supported on the union of <*Sht¢(hg) for E < D+ D’
and D + D' — F even, i.e., supported on <Shtg(hpyp/). In other words,
¢ € HYM(SShtg (hpipr) @ k).

There is a proper map of correspondences 0 : <?Shtg(hp) * SdTShtg(hD/)
— S9Shtg(hpyp), and the action of C(hp)gt@ © C(hpr)gqr is also induced
from the class 6, € HEM(SShtg(hpyp) @k k), viewed as a cohomological
correspondence supported on <Shtg(hp,p/). Let U = X — |D| — |D'|. It
is easy to check that &|y» = 0.(|yr using that, over U", the correspondences
Sht(hp), Sht(hpr) and Sht(hpyps) are finite étale over Shtg. By Lemma 5.9,
SShta(hpsp) — S9Shtq(hpspr)|ur has dimension < 2r, therefore, £ = 0,¢
holds as elements in HEM(S9Shtg(hpyp/) @k k), and hence C(hphp)aa =
C(hp)gi g © C(hpr)gqr- Applying H* (X" @y k, —) and taking inductive limit
over d and d’, we see that C(hphp/) = C(hp) o C(hps) as endomorphisms of
H’(Shtg @4 k). O

7.1.5. Notation. For o € H(Shtg ®y k) and f € #, we denote the action
of C(f) on a simply by f * a € H:(Shtg @ k).
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7.1.6. The cup product gives a symmetric bilinear pairing on H(Shtg ®y, k):
(—,—) : H.(Shtg ® k) x HI" 7 (Shtg @4 k) — HI"(Shtg ®4 k) = Q,(—2r).
We have a cohomological analog of Lemma 5.12.

LEMMA 7.2. The action of any f € 2 on H:(Shtg ®y. k) is self-adjoint
with respect to the cup product pairing.

Proof. Since {hp} span ¢, it suffices to show that the action of hp is self-
adjoint. From the construction of the endomorphism C(hp) of H:(Shtg ®4 k),
we see that for o € H:(Shtg @y k) and B € HY~(Shtg ®; k), the pairing
(hp*a, B) is the same as the pairing ([Shtq(hp)], P *aUP*B) (i.e, the pairing
of p*aUP*B € HY (Shtg(hp) ® k) with the fundamental class of Shtg(hp)).
Similarly, («, hp * ) is the pairing ([Shtg(hp)] ,p*BU P*a). Applying the
involution 7 on Sht(hp) constructed in the proof of Lemma 5.12 that switches
the two projections ? and 7, we get

((htc(ho)], 5 a U F*B) = (Shta(hp)), P*BU T *a),

which is equivalent to the self-adjointness of hp: (hp *x«, ) = (o, hpx3). O
7.1.7. The cycle class map gives a Q-linear map (see Section A.1.5)
cl : Ch.;(Shtg)g — HE "% (Shtg ®4 k) (2r — i).
LEMMA 7.3. The map cl is € -equivariant for any i.

Proof. Since {hp} span ¢, it suffices to show that cl intertwines the
actions of hp on Ch.;(Shtg) and on HY~%(Shtg @ k)(2r — i). Let ¢ €
Ch,,;(Sht). By the definition of the hp-action on Ch.;(Shtg), hp * ( €

Che,i(Sht) is pra, ((Pri€) shte xShtq (7, @* [Shtg(hp)]). Taking its cycle class
we get that cl(hp * ¢) € H~2(Shtg ®4 k)(2r — ) can be identified with the
class

P (P*cl(¢) N [Shte(hp)]) € Hai(Shte @ &) (—i)
under the Poincaré duality isomorphism
H2"=2(Sht @y, k) = Ha;(Shtg @5 k) (—27).
On the other hand, by (A.24), the action of hp on HY =2 (Shtg @y k) is
the composition

. . 5+ . —
H" 2 (Shtq @5 F) ~— B2 (Shtg(hp) @4 F) —omeol,

Ha; (Shta(hp) @ k) (—2r) EEN Ha;(Shtg @y, k)(—2r) = HI =2 (Shtg @4, k).

Therefore, we have cl(hp * () = hp * cl((). O
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7.1.8. We are most interested in the middle-dimensional cohomology
Vo, == HET(ShtG QR k, Qg)(?“)
This is a Q-vector space with an action of 7. In the sequel, we simply write
V for Vo,.

For the purpose of proving our main theorems, it is the cohomology of
Shty; rather than Shtg that matters. However, for most of this section, we
will study V. The main result in this section (Theorem 7.14) provides a de-
composition of V into a direct sum of two #-modules, an infinite-dimensional
one called the Eisenstein part and a finite-dimensional complement. The same
result holds when Sht is replaced by Shty; with the same proof. We will only
state the corresponding result for Shty, in the final subsection Section 7.5 and
use it to decompose the Heegner-Drinfeld cycle.

7.2. Study of horocycles. Let B C G be a Borel subgroup with quotient
torus H =2 G,,,. We think of H as the universal Cartan of GG, which is to be
distinguished with the subgroup A of G. We shall define horocycles in Shtg
corresponding to B-Shtukas.

7.2.1. Bung. Let B C GLs be the preimage of B. Then Bung classifies
pairs (£ < &), where £ is a rank two vector bundle over X and L is a line sub-
bundle of it. We have Bung = Bun§ / Picx, where Picx acts by simultaneous
tensoring on £ and on £. We have a decomposition

Bung = H Bung,
ne”L
where Bun'y = Bun%/ Picx, and Bun% is the open and closed substack of
Bunz classifying those (£ — &) such that 2deg £ — deg & = n.

7.2.2. Hecke stack for B. Fix d € D. Choose any p as in Section 5.1.2.
Consider the moduli stack Hk%d whose S-points classify the data (£; —
Ei;xi; fi), where
(1) a point (&;zi; fi) € Hikb(S);

(2) foreach i =0,...,r, (£L; = &) € Bun%(i) such that the isomorphism f; :
é}_l\XXS_pIZ_ = SZ"XXS_FZZ_ restricts to an isomorphism o : £z‘_1‘XXS_FIZ_
= Lilxxs-1,,-

d(i)

We have (r + 1) maps p; : Hk%’d — Bunz" by sending the above data to

(Li—&),i=0,1,...,7. We define Sht%d by the Cartesian diagram

Sht%’d Hk%’d
(7.2) | | o)
id,Fr
Buncflv(o) # Bun(i(o) X Buncflv(o).
B B B
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In other words, Sht%d classifies (£; — & a5 fiye), where (£; < &2y fi) is
a point in Hk’fBJd and ¢ is an isomorphism &, =2 7&) sending L, isomorphically
to T,Co.

We may summarize the data classified by Sht%d as a commutative dia-
gram:

0 Eo g() MO 0
| | |
| o | f1 | o
+ + <
| | |
| afr I fr I a{r‘/
(7.3) ! & !
0 L, Er M, 0
LIJZ LJZ L"JZ
0 T£0 7—50 T./\/lo — 0.

Here we denote the quotient line bundle &;/L; by M,;.

7.2.3. B-Shtukas. There is an action of Picx(k) on Sht%d by tensoring
each member in (7.3) by a line bundle defined over k. We define

Sht% := Sht%d / Picx (k).

Equivalently, we may first define Hk’fB’d = Hk%’d /Picx and define Sht4 by a

diagram similar to (7.2), using Hk% and Buncjé(o) instead of Hk%’d and Bundg(o).

The same argument as Lemma 5.5 shows that Hk%’d is canonically independent
of the choice of p and these isomorphisms preserve the maps p;, hence Sht% is
also independent of the choice of p.

7.2.4. Indexing by degrees. In the definition of Shtukas in Section 5.1.4,
we may decompose Shth according to the degrees of &. More precisely, for
d € D, we let u(d) € {£1}" be defined as

(7.4) i(d) = d(i) — d(i —1).
Let Sht? ¢ Sht/) be the open and closed substack classifying rank n Shtukas
(gi; cee ) with deg f,'z = d(l)

Consider the action of Z on D by adding a constant integer to a function
d € D. The assignment d — u(d) descends to a function D/Z — {+1}". For a
Z-orbit 6 € D/Z, we write p(d) as p(d) for any d € §. Then for any 6 € D/Z,
we have a decomposition

(7.5) Sht#(®) = T Sht.
deod
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In particular, after identifying H with G,,, we define Sht% to be Sht¢ for any
deD.

7.2.5. The horocycle correspondence. From the definition of Sht%, we have
a forgetful map
pa : Sht} — Shtg
sending the data in (7.3) to the middle column.
On the other hand, mapping the diagram (7.3) to (£; ® M;l;xi;ag ®
of; @) we get a morphism

qq : Sht4, — Sht?,.

Via the maps pg and ¢4, we may view Sht% as a correspondence between
Shte and Shtd; over X”:

Sht%
YA
(7.6) Sht¢ mt Sht,
H
X

LEMMA 7.4. Let DT C D be the subset consisting of functions d such that
d(i) > 0 for alli. Suppose d € DT. Then the map pq : Sht% — Shtg has image
Shtd. and induces an isomorphism Sht% = Shtl..

Proof. We first show that pg(Sht%) ¢ Shtd. If (£; < & xy; fise) € Shté
(up to tensoring with a line bundle), then deg £; > %(deg Ei+d(i)) > % deg&;,
hence £; is the maximal line subbundle of &;. Therefore, inst(&;) = d(i) and
(&;JL‘Z’; f2> S Shth.

Conversely, we will define a map Shth — ShtdB. Let (& fise) €
Shtd,(S). Then the maximal line bundle £; < &; is well defined since each
&; is unstable.

We claim that for each geometric point s € S, the generic fibers of L£;] x {5}
map isomorphically to each other under the rational maps f; between the &;’s.
For this we may assume S = Spec(K) for some field K, and we base change
the situation to K without changing notation. Let L] ; C &1 be the line
bundle obtained by saturating £; under the rational map f;1q : & --+ Eiq1.
Then d'(i + 1) := 2L} | —deg&1 = d(i) £ 1. If d'(i + 1) > 0, then L], is
also the maximal line subbundle of &1, hence £ | = Liy1. If d'(i +1) <0,
then we must have d(i) = 1 and d’'(i + 1) = 0. Since d € D', we must have
d(i +1) = 2. In this case the map £j ; ® L;y1 — &1 cannot be injective
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because the source has degree at least
1 1
i(deg 5i+1 + d/(l + 1)) + §(deg 5¢+1 + d(’L + 1)) = deg 5i+1 +1> deg 5’£+1~

Therefore, £; ; and L;41 have the same generic fiber, which is impossible since
they are both line subbundles of &£;+1 but have different degrees. This proves
the claim.

Moreover, the isomorphism ¢ : £, = 7&y must send L, isomorphically onto
"Lo by the uniqueness of the maximal line subbundle. This together with
the claim above implies that (L;;x;; filz,;¢lz,) s a rank one sub-Shtuka of
(Eisxi; fi;¢0), and therefore, (£; < &;xi; fi;¢1) gives a point in Sht%. This way
we have defined a map Sht{, — Sht%. It is easy to check that this map is
inverse to pg : Sht4 — Shtd,. O

LEMMA 7.5. Let d € D be such that d(i) > 29 — 2 for all i. Then the
morphism qq : Shth — Shtd; is smooth of relative dimension /2, and its
geometric fibers are isomorphic to [Gz/z/Z] for some finite étale group scheme
Z acting on GZ/2 via a homomorphism Z — GZ/Q.

Proof. We pick p as in Section 5.1.2 to realize Shtg as the quotient
Sht4 / Picx (k), and Sht% as the quotient Sht%’d/ Picx (k).

In the definition of Shtukas in Section 5.1.4, we may allow some coordi-
nates u; of the modification type u to be 0, which means that the correspond-
ing f; is an isomorphism. Therefore, we may define Sht? for more general
w € {0,£1}" such that > p; = 0.

We define the sequence p/(d) = (¢ (d), ..., p.(d)) € {0,£1}" by

pi(d) = 3 (sem(yu) +d(3) — d(i — 1))

We also define p”'(d) = (uf(d), ..., pl(d)) € {0,+1}" by
1 . .
wi (d) = 5 (sgn(pi) — d(@) + d(i — 1)) = sgn(ps) — p;(d).
We write p/(d) and p”’(d) simply as ' and p”. Mapping the diagram (7.3)
to the rank one Shtuka (L;;z;; ;') defines a map Sht%d — Sht}"; similarly,
sending the diagram (7.3) to the rank one Shtuka (M;; z;; ;") defines a map
Sht%d — Sht/ " Combining the two maps we get
Ga : Sht'’2? — Sht)’ xxr Shtf”.

Fix a pair Lo := (Li;25500;0) € Sht‘f/(S) and M, 1= (M a;;0]50") €
Sht’f”(S). Then the fiber of gg over (£;@M; ;23 - -+ ) € Sht$;(S) is isomorphic
to the fiber of gy over (Lo, Ma,), the latter being the moduli stack Egp(Me, Ls)
(over S) of extensions of M, by L, as Shtukas.
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Since deg(L;) — deg(M;) = d(i) > 2g — 2, we have Ext!(M;, £;) = 0. For
each i, let E(M;, L;) be the stack classifying extensions of M; by £;. Then
E(M;, L;) is canonically isomorphic to the classifying space of the additive
group H; := Hom(M;, L;) over S. For each i = 1,...,r, we have another
moduli stack C; classifying commutative diagrams of extensions

0 ﬁifl 52‘71 — Mifl —0
I I I
| o | fi | aff
4 + 4

0 L; & M; 0.

Here the left and right columns are fixed. We have four cases:

(1) When (u, /) = (1,0), then o : £;_1 < L; with colength one and o is an
isomorphism. In this case, the bottom row is the pushout of the top row
along o/, hence determined by the top row. Therefore, C; = E(M;_1,Li_1)
in this case.

(2) When (p, i) = (=1,0), then o' : £; < £;_; with colength one and

"

a; is an isomorphism. In this case, the top row is the pushout of the

bottom row along a;_l, hence determined by the bottom row. Therefore,
C; = E(M;, L;) in this case.

(3) When (u}, ) = (0,1), then « is an isomorphism and o : M;_1 < M,
with colength one. In this case, the top row is the pullback of the bottom
row along o/, hence determined by the bottom row. Therefore, C; =
E(M;, L;) in this case.

(4) When (pl, 1) = (0,—1), then o/ is an isomorphism and of~' : M; —
M;_1 with colength one. In this case, the bottom row is the pullback
of the top row along a;’_l, hence determined by the top row. Therefore,
C; = E(M;_1,L;_1) in this case.

From the combinatorics of ' and p” we see that the cases (1), (4) and (2), (3)

each appear r/2 times. In all cases, we view C; as a correspondence

E(Mi_hﬁi_l) “— C,’ — E(M,’,,Ci).

Then Cj is the graph of a natural map E(M;_1,L;—1) — E(M;, L;) in cases
(1) and (4) and the graph of a natural map E(M;, L;) — E(M;_1,L;_1) in
cases (2) and (3). We see that C; is canonically the classifying space of an
additive group scheme €; over S, which is either H;_; in cases (1) and (4) or
H; in cases (2) and (3).
Consider the composition of these correspondences:
C(M., ﬁ.) = Cl XE(M1,[:1) CQ XE(MQ,EQ) s XE(Mr—l,ﬁr—l) CT.

This is viewed as a correspondence

E(Mo, Lo) + C(Mae, Lo) — E(My, L) 2= E(" Mo, Lo).
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To compute C(M,, L,) more explicitly, we consider the following situa-
tion. Let G be a group scheme over S with two subgroup schemes G; and Gs.
Then we have a canonical isomorphism of stacks over S

B(G1) xp(g) B(G2) = G1\G/G2.
Using this fact repeatedly, and using that E(M,, £;) = B(H;) and C; = B(%;),
we see that
Q'rfl

Qo Q
(7.7) C(Ma, Lo) = O\Hy X Hy % -+ X Hy_1/Qy,

Q;
where H; 1 X H; means dividing by the diagonal action of €2; on both H; 4
and H; by translations. Let

Qr—l

of Qs Q,
A(Mae,Le):=Hy X Hy X -~ X H,_1 X H,.

Since €; is always the smaller of H;_1 and H;, A(Ma,, L) is an additive group
scheme over S. Then we have

(7.8) C(Me, L) = HO\A(Ma, L)/ H, .

Note that H, = "H, is the pullback of Hy via Frg. We have a relative
Frobenius map over S:

Frgy s

Fr/g : E(Mo, Lo) = B(Ho) B(H,) = E(M,,L,).

By the moduli meaning of Egnt(Ma, Ls), we have a Cartesian diagram of stacks

ESht(Mn Lo) C(M., ,C.)
l (id,Fr/S) J
E(Mo,ﬁg) E— E(Mo,[,o) X E(Mhﬁr).
Using the isomorphism (7.8), the above diagram becomes
ESht (Mu ﬁo) E— HO\A(M07 ﬁo)/Hr

(7.9)
J’ (id,Fre,/s) J’
B(Hy) B(H) x B(H,).

This implies that
(7.10) Egni(Me, L) = [A(Mae, Lo)/ (i, Fry, ,5)Hol,

where Hy acts on A(M,, L) via the embedding (id, Frg, /g) : Ho — Ho x H,
and the natural action of Hy x H, on A(Ma,,L,). Since A is an additive
group scheme over S, hence smooth over S, the isomorphism (7.10) shows that
Egpt(Me, L) is smooth over S.
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To compute the dimension of A(M,, L), we compare dim €; with dim H;.
We have dim H; — dim ; = 1 in cases (1) and (4) and dim H; — dimQ; = 0 in
cases (2) and (3). Since (1), (4) and (2), (3) each appear r/2 times, we have

,
dim A(M,, Lo) = dim Hy + Z(dimHZ- —dim Q;) = dim Hy + r/2.
i=1
This implies Egp(Ma, Lo) is smooth of dimension r/2.

When S is a geometric point Spec(K), Hy and H, can be viewed as
subspaces of the K-vector space A := A(Mas,L,), and ¢ = Fry /x + Ho —
H, is a morphism of group schemes over K. Choose a K-subspace L C A
complement to Hy, then L = GZ/ ?asa group scheme over K. Consider the
homomorphism

a:HyxL — A

given by (z,y) — = + y + ¢(z). By computing the tangent map of « at the
origin, we see that « is étale, therefore, Z = ker(«) is a finite étale group
scheme over K. We conclude that in this case the fiber of ¢4 over S = Spec(K)
is

Esne(Ma, La) = [A/ ga,6Ho| = [L/Z) = [G}/?/Z). g

COROLLARY 7.6. Suppose d € D satisfies d(i) > 2g — 2 for all i. Then
the cone of the map Rﬂ‘éf{@g — R?Téil(@g is isomorphic to 7T?L!Qg[—’l"](—7‘/2),
which is a local system concentrated in degree r.

Proof. The cone of Rﬂéﬁ@g — Rﬂ'éﬁ@g is isomorphic to R?T%J@g, where
g : Sht¢, - X". By Lemma 7.4, for d € DT, we have R ,Q; = Rrfs ,Qp.
By Lemma 7.5, g4 is smooth of relative dimension r/2, and the relative funda-
mental cycles give Rqq1Q¢ — R"qq 1Q¢[—1] — Q¢[—7r](—r/2), which is an iso-
morphism by checking the stalks (using the description of the geometric fibers
of g4 given in Lemma 7.5). Therefore, RT[‘%,!QZ = RW?{’!@K[—T](—T/Q). Finally,
7 Shtd, — X7 is a Pick (k)-torsor by an argument similar to Lemma 5.13.
Therefore, Rﬂ}lu@g is a local system on X", and Rwéj,(@g = W?{,!Qg[—r](—r/Q)
is a local system shifted to degree 7. ([

7.3. Horocycles in the generic fiber. Fix a geometric generic point 77 of X”.
For a stack X over X", we denote its fiber over 77 by X5. Next we study the
cycles in Shtg 7 given by images of ShtdB,ﬁ.

LeEMMA 7.7 (Drinfeld [5, Prop 4.2] for » = 2; Varshavsky [23, Prop 5.7]
in general). For each d € D, the map pay : ShtdBﬁ — Shtgz is finite and
unramified.

7.3.1. The cohomological constant term. Taking the geometric generic fiber
of the diagram (7.6), we view ShtdBﬁ as a correspondence between Shtg 7 and
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Shtﬁl{ﬁ. The fundamental cycle of ShtdBﬁ (of dimension r/2) gives a cohomo-
logical correspondence between the constant sheaf on Shtgz; and the shifted
constant sheaf Qy[—r|(—7r/2) on Shtcll{yﬁ. Therefore, [ShtdBﬁ] induces a map

0 H(Shtg) (r/2) 227 HI(Shih ) (r/2)
(7.11)

d
[Sht 5] 94,7,

Ho(Sht% ;) = Ho(Sht; ).
Here we are implicitly using Lemma 7.7 to conclude that py7 is proper, hence
pjm induces a map between compactly supported cohomology groups.

Taking the product of 4 for all d in a fixed Z-orbit § € D/Z, using the
decomposition (7.5), we get a map

~ 6
(7.12) 75 + Hi(Shtgz)(r/2) — [ Ho(Shtd; ) = HO(Sht}'?).
ded
When r = 0, (7.12) is exactly the constant term map for automorphic forms.
Therefore, we may call 5 the cohomological constant term map.
The right-hand side of (7.12) carries an action of the Hecke algebra ¢ =

Dpe|x|Qltz, t; '] In fact, Sht’f%s) is a Picx (k)-torsor over Spec k(7). The action

of s on Shtﬂ(’%) is via the natural map #z = Q[Div(X)] — Q[Picx(k)].

LEMMA 7.8. The map s in (7.12) intertwines the J€-action on the left-
hand side and the F¢r-action on the right-hand side via the Satake transform

Sat : S — .

Proof. Since J is generated by {h:},c x| as a Q-algebra, it suffices to
show that for any = € | X/, the following diagram is commutative:

HY(Shtc ;) —— [Laes Ho(Shtf; )

(7.13) chz) }ﬁqzt;

HY(Shtc ;) ——— [Taes Ho(Sht$; ).

Let U = X — {z}. For a stack X over X", we use Xyr to denote its
restriction to U". Similar notation applies to morphisms over X".

Recall that Shtgy-(S) classifies (&;; 5 fi;¢) such that x; are disjoint
from x. Hence the composition ¢ o f.---f1 : & --+ 7&y is an isomorphism
near z. In particular, the fiber £, = &o|sxy,) carries a Frobenius struc-
ture &y, = "&y 4, hence &, descends to a two-dimensional vector space over
Spec k. (k; is the residue field of X at x) up to tensoring with a line. In other
words, there is a morphism w, : Shtg yr — B(G(k;)) sending (z4;&;; fi;¢) to
the descent of &, to Speck,. In the following we shall understand that &,
is a two-dimensional vector space over k;, up to tensoring with a line over k.
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The correspondence Shtg(h,)yr classifies diagrams of the form (5.5), where
the vertical maps have divisor x. Therefore, if the first row in (5.5) is fixed,
the bottom row is determined by &), which in turn is determined by the line
ex = ker(&o o — &) ,) over k;. Recall that 9 and 7 : Shtg(h,) — Shtg are
the projections sending (5.5) to the top and bottom row respectively. Then we
have a Cartesian diagram

Shtg (he)vr — B(B(kz))

FUT l

ShtG’Ur i) B(G(l{?gj)),

where B C G is a Borel subgroup. We have a similar Cartesian diagram where
?Ur is replaced with ?Ur. In particular, ?Ur and 7Ur are finite étale of
degree q, + 1.

Let Sht%(h,) be the base change of { along Sht} — Shtg. Let pp :
Sht% (ha)yr — Sht%ljr be the base-changed map restricted to U". A point
(Li = Eisag; fize) € ShtdB gives another line ¢, := Lo, C & . Therefore, for
a point (L; < & — &) € Shth(h,)|yr, we get two lines £, and e, inside
&o,z- In other words, we have a morphism

w: Shtdh(ha)urr — B(B(ke)) Xp(ci(ke)) BIB(ke)) = Bka)\G(ke)/Blkz).
This allows us to decompose Sht%(h, )y into the disjoint union of two parts
Shth (he)ur = C1 [] Ca,

where C} is the preimage of the unit coset B(k;)\B(k.)/B(k;) and Cy is the
preimage of the complement.

For a point (£; < & < &J;--+) € C1, &/ is determined by e, = €, = Lo 5.
Therefore, the map ﬁéﬁ = $B|Cl :C1 — ShtdBvUr is an isomorphism. In this
case, £/ is obtained via the pushout of £; — &; along £; < L;(x). This way
we get an exact sequence 0 — L;(z) — &(x) = M; — 0, where M; = &;/L;.
We define a map m :C1 — Sht%fgﬁ sending (£; < & — &;--) € C1 to
(Li(z) < &;--+). Since 53771 is an isomorphism, C; viewed as a correspondence
between Sht%yr and Shtjlgfgif can be identified with the graph of the map
©r = DPBi0 PBa1 L Sht%yr — ShtdBfgi. Note that ¢, is a finite étale map of
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degree ¢q,. We have a commutative diagram

Shtf) ;e ¢4 T(t,) ——» Shtd s

qu quJﬁdz
P

PB,1
Sht v +—- Cy = T(pg) —— Sht{

J{pd J{pd+dz

Shtq - (i Shtg(hs)ur L Shtayr.

Here I'(t,,) is the graph of the isomorphism Sht%,Ur — Sht?jfgi given by tensor-
ing the line bundles with O(z). Therefore, the action of [C] on the compactly
supported cohomology of the generic fiber of ShtdB fits into a commutative
diagram

[Sht?, ]
HY(Shtd, ) (r/2) ————— Ho(Sht% 7) — Ho(Sht% ;)

(7.14) l[ol] sz,* ltw
[Shtdde]

HE(Sht G ) (r/2) —"—— Ho(Shthd*) —— Ho(Shtd/ ).

Similarly, for C9, we define a morphism pTgZ : Cy — ShtdB_’gi sending
(Li = & = &L--+) € Cy to (L; < E;+-+). Then m is an isomorphism
while <§ B2 = ? Blc, is finite étale of degree q,. Therefore, Cy viewed as a

correspondence between ShtdB,Ur and ShtdBfflei can be identified with the trans-

pose of the graph of the map ¢, : Sht%jggﬁ — ShtdB’Ur defined previously. We
also have a commutative diagram

i to! _
smgm 4 ri;t) ——— sm;ﬁlﬁga
TQd qudz
P52 P53

Shtd e ¢ Cy = 'T(ips) —— Sht %

J{pd lpddz

Shtg - i Shtg(hs)ur L ShtG,Ur.
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The action of [C3] on the compactly supported cohomology of the generic fibers
of Sht fits into a commutative diagram

[Shtd, _
HY(Sht ) (r/2) —— s Ho(Sht$ ) — Ho(Sht% ;).

(715) l[Cﬂ:‘P; qulwzy* qultz
[Sht%—d=]

T —Ugx B, oz sy
G (Shids ) (r/2) —"—— Ho(Shtd; #+) —— Ho(Shtf; &)

The appearance of g, in the above diagram is because the degree of o, is ¢g.
Combining (7.14) and (7.15) we get a commutative diagram

[Taes Hi(Sht% ) (r/2) —— [Taes Ho(Shtf; )
(7.16) J{[C1]+[C2] J/tgc-i-qxt;l
[laes HZ(Sht%,ﬁ)(T/Q) — [laes HO(Sht%lI,ﬁ>'

Finally, let pg : Sht&(he)yr — ShtdB,Ur be m on C and p—BZ on Ch.

Consider the commutative diagram

.%
P
[Taes St (ha)ur —— [aes Sht 7

l(pd)dea J(pd)deé

Shtg(hy)yr ———— ShtG’Ur.

Since pg and 7 are both finite étale of degree ¢, + 1, by examining geometric
fibers we conclude that the above diagram is Cartesian. The similar diagram
with pg and 7 replaced with p5 and $p is Cartesian by definition. From these
facts we get a commutative diagram

(P})aes

H{ (Shtg) ——— [Taes He(Sht )

JC(hm) J[01]+[C2]
(

p)des
HJ, (Shte7) ————— [Taes H(Sht ).

Combining this with (7.16) we obtain (7.13), as desired. O

7.4. Finiteness. For fixed d € D, the Leray spectral sequence associ-
ated with the map wéd gives an increasing filtration LSngT(Shtéd ®y k) on

Hzr(Sh‘céd ® k), with LSiHET(Shtéd ®i k) being the image of
HY (X" @ k, r<iR75(Q0) — H (X" @4 k, Rn5(Qp) = HY (Shtg @ k).

Here 7<; means the truncation in the usual ¢-structure of DE(X ", Q). Let L<;V
be the inductive limit lim LSinr(Shtéd ®p k)(r), which is a subspace of V.
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This way we get a filtration on V:

OCLS()VCLSlVC”- CLSQTV:V
LEMMA 7.9. Each L<;V is stable under the action of .

Proof. The map C(hp)g,qw in (7.1) induces 7<;C(hp)qq4 : TSiRﬂéf!ng —

TSiRﬂ'éilng. By the construction of C'(hp) we have a commutative diagram

. 2r r T <d hETSiC(hD)d’d,- 2r r T <d’
hﬂd H (X Rk k‘, TSiRWC_;V!@E) _ hﬂd’ H (X Rk k, TSZ'R’JT@J Qg)

J J

_ C(h _
H2"(Shtg @y, k) (o) HZ"(Shtg ® k).

The image of the vertical maps are both L<;V up to a Tate twist; therefore,
L;V is stable under C(hp). When D runs over all effective divisors on X,
C(hp) span J, hence L<;V is stable under .. O

LEMMA 7.10. For i # r, GriLV = L<;V/L<; 1V s finite dimensional
over Q.

Proof. We say d € D is large if d(i) > 2g — 2 for all i. In the following
argument it is convenient to choose a total order on D that extends its partial
order. Under the total order, Sht5? = [[<q Shth/ and Shtéd = [a<a Shtd, are
different from their original meanings, and we will use the new notion during
the proof.

By Corollary 7.6, the inductive system 7'9~—1R7T§f@4 stabilizes for d large.
Hence so does Lgr_ngr(Shtéd ® k). Therefore, L<,_1V is finite dimensional.

It remains to show that V/L<,V is finite dimensional. Again by Corol-
lary 7.6, for d large, the map R’”“lwéff(@g — RTHTré:j,Qg is surjective because
the next term in the long exact sequence is RT+17Tg~7!Qg = 0. This implies
that the inductive system R’"‘Hﬂ'éf@g is eventually stable because any chain
of surjections F; — Fo —» --- of constructible sheaves on X" has to stabilize;
i.e., constructible QQs-sheaves satisfy the ascending chain condition. Also by
Corollary 7.6, the inductive system T>T+1R7r(§;ff(@g is stable. Combined with
the stability of R”lwéﬂl@g, we see that the system T>7«R7T§C!l(@g is stable. In
other words, there exists a large dy € D such that for any d 2 dp, the natural
map T>TR7TC<;7d!Qg — T>7»R7T(§;ff(@g is an isomorphism.

We abbreviate H?' (Sht5¢ @ k) by Hgq and H2" (Sht5? @, k) by H<g. For
d > dp, the distinguished triangle of functors 7<, — id — 7, — applied to
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Rﬂé‘f(@g and Rwéﬂl(@g gives a morphism of exact sequences

LerHeq Heq H (X7 @5 kb, 7o RrgiQe) —— -+
| |
L<,H<; H<y H? (X" @y k, T>7~R7T§f1l@z) —

Therefore, the inductive system H<;/L<,H<4 is a subsystem of
H?" (X" @y k, T>TR7r(§;:i!Qg),

which is stable with finite-dimensional inductive limit. Hence the inductive sys-
tem H<q/L<,H<g is itself stable with finite-dimensional inductive limit. Tak-
ing inductive limit, using that V' = ligrld He4(r) and L<;V = hﬂd L<iH<q4(r),
we see that V/L<,V = lim , H<4(r)/L<yH<q4(r) is finite dimensional. O

LEMMA 7.11. The space Igis - (L<,;V) is finite dimensional over Qy.

Proof. Let U C Shtg be the union of those Shtéd for d € D such that
min;ez,/,z{d(i)} < 2g — 2. Since inst(€) has an absolute lower bound, there
are only finitely many such d with Shth # &, hence U is an open substack of
finite type. Let Fg : U — X7 be the restriction of mg. For f € 57, and any
d € D, its action defines a map C(f)qq4 : Riﬂ'éil@g — Riwéf{l(@g for sufficiently
large d’. We may assume d’ > 2g — 2 , which means d'(j) > 2g — 2 for all j.
We shall show that when f € Zg;s and i < r, the image of C(f)q,# is contained
in the image of the map vy ¢4 : Riwgl(@g — Riwéﬁl/@g induced by the inclusion

U C Shtéd/, which implies the proposition. In other words, we need to show

.. i <d C(fa,ar i <d .
that the composition ¢ : R'nz\Q, ——— R'nz' Q; — coker(ty,a) is zero.

By Corollary 7.6, either (74 is an isomorphism (if ¢ < r) or when i = r,
coker(uyrqr) is a subsheaf of a local system on X". Therefore, to show that ¢
is zero, it suffices to show that ¢ vanishes at the generic point of X".

Let 77 be a geometric generic point of X". We use a subscript 77 to denote
the fibers over 7, as in Section 7.3. Let y : H{(Uy) — H{(Shtgz) be the
map induced by the inclusion of U. It suffices to show that for f € Zgs, the
composition Hy(Shtg 5) ELN HY (Shte5) — HL(Shtez)/w (HL(Uy)) is zero.

Recall from (7.11) the cohomological constant term map 4 : H,(Shtg ) —
Hg(Sht%Lﬁ). By the definition of =4, for d > 29 — 2, 4 factors through the quo-
tient Hf(Shtq5)/w (HL(Uy)) and induces a map

ve = [[ 7a:HL(Shtez)/wHLU7) — [ Ho(Shtd; ).
d>2g—2 d>2g—2
Both sides of the above map admit filtrations indexed by the poset {d € D;d >
2g — 2}: on the left-hand side this is given by the image of HZ(Shtédﬁ), and
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on the right-hand side this is given by [[og_2<ar<a Ho(Sht%ﬁ). The map v+
respects these filtrations, and by Corollary 7.6, the associated graded map of
~v4+ under these filtrations is injective. Therefore, v4 is injective.

By Lemma 7.8, we have a commutative diagram

H (Shtc 7)(r/2) —— HE(Sht ) (r/2) —— HE(Sht ) (r/2) /0w (L (Ug))(r/2)

lH a ln a Jw

Sat(f)=*
[laen HO(Sht(Ii{,ﬁ) — [laep HO(Sht(Ii{,ﬁ) ——— [las29-2 HO(ShtiI,ﬁ)‘

Since the action of ¢y on [[4ep Ho(ShtCIli,ﬁ) factors through Qy[Picx(k)],
Sat(f) acts by zero in the bottom arrow above. Since «y; is injective, the
composition of the top row is also zero, as desired. O

Definition 7.12. We define the Q-algebra % to be the image of the map
A ® Q¢ — Endg, (V) x Q¢[Picx (k)]"",
the product of the action map on V and agis ® Q.
LEMMA 7.13.

(1) For any z € |X|, V is a finitely generated 7, @ Qg-module.
(2) The Qq-algebra 54 is finitely generated over Qp and is a ring with Krull
dimension one.

Proof. (1) Let D<,, C D be the subset of those d such that min;{d(i)} <
29 —2+ndy. Let D,, = D<y, — D<y—1. For each n > 0, let U,, = Udep<nShtéd.
Then Uy C U; C --- are finite type open substacks of Sht¢ that exhaust Shtc.
Let m, : U, — X" be the restriction of mg, and let K,, = Rm,1Q,. The
inclusion U,, <= U, induces maps ¢y, : K, = Kp11. Let Cp41 be the cone of
tn. Then by Corollary 7.6, when n > 0, C), 41 is a successive extension of shifted
local systems w%},Qg[—r](—r/Q) for those d € Dp41. In particular, for n > 0,
Ch+1 is a shifted local system in degree r and pure of weight 0 as a complex.

By construction, the action of h, € J%, on H*(Shtg ®y, k) is induced from
the correspondence Shtg (), which restricts to a correspondence <"Shtg(h,)
= 9 ~1(U,) between U,, and Uy,1. Similar to the construction of C(hg)d,q in
(7.1), the fundamental class of <"Shtg(h,) gives a map C(hy)n : K — Knp1.
Since C'(hg)notn—1 = tnoC(hy)n—1, we have the induced map 7, : C;, = Chpy1.
We claim that 7, is an isomorphism for n > 0. In fact, since C,, and C), 41 are
local systems in degree r, it suffices to check that 7,, induces an isomorphism
between the geometric generic stalks Cy, 7z and C),157. By Corollary 7.6, we
have an isomorphism induced from the maps 4 for d € D), (cf. (7.11)):

Cnyi = €D Ho(Sht ).
deDy,
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By Lemma 7.8, 7, 77 : Cp, 5 — Cp417 is the same as the direct sum of the isomor-
phisms ¢, : HO(Sht%Lﬁ) — Ho(Sht;lIfﬁdz). (The other term q,t, " : HO(ShtCIl_I’ﬁ) —
HQ(Sht?{Tﬁdz) does not appear because d —d, € D<,_1, hence the corresponding
contribution becomes zero in Cy, 11 5.) Therefore, 7, 5 is an isomorphism, hence
S0 iS Ty,

We claim that there exists ng > 0 such that for any n > ng, the map

Weo, H X" @1 k, Kp) — W, BN (X" @4 K, Kpy1)

is an isomorphism. Here W<, is the weight filtration using Frobenius weights.
In fact, the next term in the long exact sequence is Weo, H* ™1 (X" @4 k, Cppi1),
which is zero because Cp11 is pure of weight 0. Therefore, the natural map
Weo, H Y X" @1 k, K) — Weo, HT (X" @4, k, K,y 1) is always surjective
for n > 0, hence it has to be an isomorphism for sufficiently large n.

The triangle K,, — K, 11 — Cp11 — Ky[1] gives a long exact sequence

(717) H*" (X" @p k, K,) — B (X" @ k, Kpi1) — B (X" @1 k, Cri1)
— W, H U (X" @1 k, Kpy) — Weo, H Y X" @4 b, Kpih).

Here we are using the fact that H*" (X" ®j k, Cy,11) is pure of weight 2r (since
Cp41 is pure of weight 0). For n > ng, the last map above is an isomorphism;
therefore, the first row of (7.17) is exact on the right.

Let F<,V be the image of

HY (X7 @y k, Kp) (r) — lim H? (X7 @ k, Kp) (r) = V.

Then for n > ng, the exactness of (7.17) implies H*" (X" @ k, Cpy1)(r) —
GrTIfHV for n > ng. The Hecke operator C'(h;) sends F<,V to F<,4+1V and
induces a map Gr% C(hy) : GrE'V — GrZ,; V. We have a commutative diagram
for n > ng:

— H2" (X" Qk,mn -
HQT‘(XT’ @ K, Cn)(T‘) &)HQT(XT R k, Cn+1)(7‘)

J l

GrfC(hy
Gty nClha) GrﬁHV.

The fact that 7, : C,, — Cp41 is an isomorphism implies that Grf C(hy) is
surjective for n > ng. Therefore, the action map

I D F<noV = Qlhs] ®g F<pV—V

is surjective by checking the surjectivity on the associated graded. Since F<,,V

is finite dimensional over g, V' is finitely generated as an %, ® Q-module.
(2) We have % C Endzg0,(V @ Q[Picx (k)]*P). Since both V and

Q¢ [Picx (k)] are finitely generated ¢, ® Qg-modules by Part (1) and Lemma
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4.2, End 50,V ® Q¢[Picx (k)]*Pic) is also finitely generated as an J¢, ® Q-
module. Since %, ® Q, is a polynomial ring in one variable over Qp, 4%
is a finitely generated algebra over Qy of Krull dimension at most one. Since
M — Qu[Picx (k)]*Pic is surjective by Lemma 4.2 and Q[Picy (k)]*Fic has Krull
dimension one, .74 also has Krull dimension one. O

The map @gis : # — Qu[Picx (k)]*P is surjective by Lemma 4.2(2). Tt
induces a closed embedding Spec(amis) : Zgis,p, = Spec Qy[Picx (k)]'Pic —
Spec /4.

THEOREM 7.14 (Cohomological spectral decomposition).

(1) There is a decomposition of the reduced scheme of Spec 4 into a disjoint

UNION
—\red
(7.18) Spec (7)) = Zisg, [ Z54
where Zjy , consists of a finite set of closed points. There is a unique de-
composition
V= VEis 2] Vb

into & @ Qq-submodules, such that Supp(Viis) C Zis g, and Supp(Vp) =
zr 4

(2) The subspace Vy is finite dimensional over Qy.

Proof. (1) Let V! = L<,V. Let Zgis C % be the ideal generated by
the image of Zgis. By Lemma 7.13, V' is a submodule of a finitely generated
module V over the noetherian ring .7%; therefore, V' is also finitely generated.
By Lemma 7.11, Zgi V' is a finite-dimensional .%%-submodule of V. Let Z’ C
Spec(.74)™4 be the finite set of closed points corresponding to the action of 7%
on Zg;isV'. We claim that Supp(V’) is contained in the union Zg;sg, U Z’. In
fact, suppose f € 7 lies in the defining radical ideal J of Zgisg, U Z’. Then
after replacing f by a power of it, we have f € g (since J is contained in
the radical of Zg;s), and f acts on Zg;sV’ by zero. Therefore, f2 acts on V' by
zero, hence f lies in the radical ideal defining Supp(V”).

By Lemma 7.10, V/V" is finite dimensional. Let Z” C Spec(.7%)"? be the
support of V/V' as a 7#-module, which is a finite set. Then Spec(J%)"! =
Supp(V) U Zgis g, = Zris,, U Z' U Z". Let Zg = (Z'UZ") — Zgis,g,; we get
the desired decomposition (7.18).

According to (7.18), the finitely generated J#-module V, viewed as a
coherent sheaf on Spec.7%, can be uniquely decomposed into

V ="Vas ®W
with Supp(Veis) C Zgis,q, and Supp(Vo) = Zg -

4When we talk about the support of a coherent module M over a Noetherian ring R, we
always mean a closed subset of Spec R with the reduced scheme structure.
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(2) We know that V; is a coherent sheaf on the scheme Spec 7 that is of
finite type over Qr, and we know that Supp(Vo) = Zj , is finite. Therefore, Vo
is finite dimensional over Q. O

7.4.1. The case r = 0. Let us reformulate the result in Theorem 7.14 in
the case r = 0 in terms of automorphic forms. Let A = C.(G(F)\G(Ar)/K,Q)
be the space of compactly supported Q-valued unramified automorphic forms,
where K = [[, G(O). This is a Q-form of the Q-vector space V for r = 0.
Let ¢, be the image of the action map . — Endg(A) x Q[Picx (k)]*Pic. The
Qe-algebra J7,1.q, = Hauw ® Qg is the algebra #; defined in Definition 7.12
for r = 0.

Theorem 7.14 for r = 0 reads

(7.19) Spec Hido, = Zrisa, 1125,

where Z&E is a finite set of closed points. Below we will strengthen this de-
composition to work over QQ and link Z(()),é to the set of cuspidal automorphic
representations.

7.4.2. Positivity and reducedness. The first thing to observe is that .t
is already reduced. In fact, we may extend the Petersson inner product on A
to a positive definitive quadratic form on Ag. By the » = 0 case of Lemma 7.2,
Sy, acts on Ag as self-adjoint operators. Its image in End(.A) is therefore
reduced. Since Q[Picx(k)]*Pic is reduced as well, we conclude that %, is
reduced.

Let Acusp C A be the finite-dimensional Q-vector space of cusp forms.
Let Jusp be the image of J%u in Endg(Acusp). Then ., is a reduced
artinian Q-algebra, hence a product of fields. Let Z..sp, = Spec #¢usp. Then a
point in Zg,p is the same as an everywhere unramified cuspidal automorphic
representation 7 of GG in the sense of Section 1.2. Therefore, we have a canonical
isomorphism

<%i:usp = H Eﬂ‘?
TE Zcusp

where F is the coefficient field of .

LEMMA 7.15.

(1) There is a canonical isomorphism of Q-algebras
Hoant = Q[PicX(k)]LPic X %usp-

FEquivalently, we have a decomposition into disjoint reduced closed sub-
schemes

(7.20) Spec At = Zgis | [ Zeusp-
(2) We have Z&@ = Zcusp,Q,+ the base change of Zeusp from Q to Q.
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Proof. (1) The Q version of Lemma 7.13 says that J# is a finitely gen-
erated Q-algebra and that A is a finitely generated .#4,-module. By the same
argument of Theorem 7.14, we get a decomposition

(7.21) Spec At = Spec Hau = Ziis | [ Zo,

aut —

where Z; is a finite collection of closed points. Correspondingly we have a
decomposition

A = Agis ® Ao

with Supp(Agis) C Zgis and Supp(Ag) = Zp. Since Ay is finitely generated
over ., with finite support, it is finite dimensional over QQ. Since Ay is finite
dimensional and stable under .7, we necessarily have Ay C Acusp. (See [15,
Lemme 8.13]; in fact in our case it can be easily deduced from the r = 0 case
of Lemma 7.8.)

We claim that Ay = Acusp- To show the inclusion in the other direction, it
suffices to show that any cuspidal Hecke eigenform ¢ € Acusp @Q lies in Ag®Q.
Suppose this is not the case for ¢, letting A : 5# — Q be the character by which
A acts on @; then X ¢ Zy(Q). By (7.21), A € Zgis(Q), which means that the
action of J# on ¢ factors through Q[Picx (k)] via agis, which is impossible.

Now Ap = Acysp implies that Zg = Supp(Ag) = Supp(Acusp) = Zeusp-
Combining with (7.21), we get (7.20).

Part (2) follows from comparing (7.19) to the base change of (7.20) to Q.

O

7.5. Decomposition of the Heegner—Drinfeld cycle class. In previous sub-
sections, we have been working with the middle-dimensional cohomology (with
compact support) of Shtg = Shty,;, and we established a decomposition of it
as an t%f@—module. Exactly the same argument works if we replace Shtg with
Shty, = Sht{s. Instead of repeating the argument we simply state the corre-
sponding result for Shty, in what follows.

Let

V' = H2"(Shty, @4 k, Qo)().
Then V' is equipped with a Q-valued cup product pairing
(7.22) (-, ) V! XQ, Vi — Qy

and an action of 7 by self-adjoint operators.
Similar to Definition 7.12, we define the Q-algebra %’ to be the image
of the map

H Q) — EndQe (V/) X Qg[PicX(k)]LPic.

THEOREM 7.16 (Variant of Lemma 7.13 and Theorem 7.14).
(1) For any z € |X|, V' is a finitely generated 7, @ Qp-module.
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(2) The Qq-algebra %/ is finitely generated over Qp and is one dimensional
as a ring.

(3) There is a decomposition of the reduced scheme of Spec%’ into a disjoint
UNLON
—\red
(7.23) Spec () = Zews, |1 260,

where Z(’)fg consists of a finite set of closed points. There is a unique de-
composition

V/ = VE/lis S VE)/
into A @ Qg-submodules, such that Supp(Vi) C Zgis,g, and Supp(Vy) =
z,.
(4) The subspace Vy is finite dimensional over Q.
We may further decompose V@ = V' ®q, Qy according to points in
. - 4
Zy¢(Qg). A point in Z,(Qp) is a maximal ideal m C g, or equivalently

a ring homomorphism # — Q, whose kernel is m. We have a decomposition

1y /
(7.24) V5 =Yg o D V)
mezyr,(@r)

Then V! is characterized as the largest Q-subspace of Vé on which the action
L

of m is locally nilpotent. By Theorem 7.16, V| turns out to be the localization
of V' at the maximal ideal m, hence our notation V, is consistent with the
standard notation used in commutative algebra.

We may decompose the cycle class cl(0¥[Sht]) € V@ according to the

decomposition (7.24),
(7.25) cl(0%[Sht,]) = [Shtr]es + Y [Shtr]m,
meZ&[(@IZ)
where [Shtr|gis € Vigis and [Shtr]m € Vi
COROLLARY 7.17.

(1) The decomposition (7.24) is an orthogonal decomposition under the cup
product pairing (7.22) on V.
(2) For any f € A, we have

(7.26) L(f) = ([Shtr)ess, f * [Shtr]es) + >, L(m, f),
mezéfg(@é)

where
]Ir(m, f) = ([ShtT]m, f* [ShtT]m) .
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Proof. The orthogonality of the decomposition (7.24) follows from the
self-adjointness of s with respect to the cup product pairing, i.e., variant of
Lemma 7.2 for Shty,. The formula (7.26) then follows from the orthogonality
of the terms in the decomposition (7.25). O

Part 3. The comparison
8. Comparison for most Hecke functions

The goal of this section is to prove the key identity (1.9) for most Hecke
functions. More precisely, we will prove the following theorem.

THEOREM 8.1. Let D be an effective divisor on X of degree d > max{2g’'—
1,2g}. Then for any u € PY(F) — {1}, we have

(8.1) (logq) "Iy (u,hp) = L.(u, hp).
In particular, we have
(8'2) (log Q)_TJT(hD) = Hr(hD)'

For the definition of J, (u, hp) and I,(u, hp), see (2.16) and (6.11) respec-
tively.

8.1. Direct image of fa.

8.1.1. The local system L(p;). Let j : X3 C Xgq C X, be the locus of
multiplicity-free divisors. Taking the preimage of X7 under the branched cover
X4 5 X4 5 X, we get an étale Galois cover

w: X' — xde 5 X9

with Galois group I'y := {#1}% x Sy4. For 0 < i < d, let x; be the character
{£1}¢ — {#1} that is nontrivial on the first i factors and trivial on the
rest. Let S; q—; = S; x Sq—; be the subgroup of Sy stabilizing {1,2,...,i} C
{1,...,d}. Then y; extends to the subgroup I'y(i) = {£1}9 xS, 4_; of I'y with
the trivial representation on the S; 4_;-factor. The induced representation
(8:3) pi =Tndp? (i ® 1)
is an irreducible representation of I'y. This representation gives rise to an irre-
ducible local system L(p;) on X3. Let K; := ji.(L(p;)[d])[—d] be the middle ex-
tension of L(p;); sce [3, 2.1.7]. Then K; is a shifted simple perverse sheaf on Xj.
PROPOSITION 8.2. Suppose d > 2g' — 1. Then we have a canonical iso-

morphism of shifted perverse sheaves
d

(8.4) RimvQe = @ (Ki K Kj)|a,
i,j=0

Here K; XK lives on Xg X picd, X4, which contains Ag as an open subscheme.
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Proof. By Proposition 6.1(4), faq is the restriction of Uy X Uy : X\(li X picd.
)A(é Xy X picd. X\d, where 7 : X\& — X\d is the norm map. By Proposi-
tion 6.1(3), Uy is also proper. Therefore, by the Kiinneth formula, it suffices
to show that

d
(8.5) R74.Q, = P K.
=0

We claim that 7, is a small map (see [10, 6.2]). In fact the only positive
dimension fibers are over the zero section Pic% — )/(\d, which has codimension
d — g + 1. On the other hand, the restriction of 7; to the zero section is
the norm map Picgf, — Picf;l(, which has fiber dimension g — 1. The condition
d>2g'—1>3g—2implies d—g+1 > 2(g—1)+1; therefore, Dy is a small map.

Now g4 is proper, small with smooth and geometrically irreducible source,
and R74,Qy is the middle extension of its restriction to any dense open subset
of X\d (see [10, Th. at the end of 6.2]). In particular, R7;.Qy is the middle
extension of its restriction to Xj. It remains to show

d
(8.6) RU4, Q| xs = P L(pi).-
=0

Let v : X[ = I/d_1<X3) — X3 be the restriction of vg : X} — X4
over Xj. Then Rug,*@g is the local system on X associated with the rep-
resentation Indgj(@g = Q[T'q/S4) of Ty. A basis {1} of Q[['y/S4] is given
by the indicator functions of the Sg-coset of ¢ € {#1}9. For any character
x i {1} = {£1}, let 1, := Y. x(e)1. € Qu['y/S4]. For the character x;
considered in Section 8.1.1, 1, is invariant under S; 4—;, and therefore, we have
a I'g-equivariant embedding p; = Indgj(i)(xi@ 1) < Qy[I'4/S4]. Checking total
dimensions we conclude that

d

Q[Ta/Sa) = €D pi-

=0

This gives a canonical isomorphism of local systems Ry, Q; = @?:OL(pi),
which is (8.6). O

In Section 6.2.3, we have defined a self-correspondence ‘H = Hk}\/{,d of My
over Ag. Recall that Ag C A, is the open subscheme X, X picd. X4, and Mg and

H® are the restrictions of My and H to Ag. Recall that [H®] € Chag_g+1(H)o
is the fundamental cycle of the closure of HC.

PROPOSITION 8.3. Suppose d > 2¢' — 1. Then the action fu)[HV] on
R fm«Qp preserves each direct summand K; X K; under the decomposition
(8.4) and acts on K; W K by the scalar (d — 2j).
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Proof. By Proposition 8.2, R fa+Qy is a shifted perverse sheaf all of whose
simple constituents have full support. Therefore, it suffices to prove the same
statement after restricting to any dense open subset U C A;. We work with
U=AS.

Recall H is indeed a self-correspondence of M over Ay (see Section 6.2.2):

/\
f\4

By Lemma 6.3, the diagram (8.7) restricted to Zg (the preimage of Ag in
Ag) is obtained from the following correspondence via base change along the
second projection pry : Ag = X X picd, X4 — Xy, which is smooth:

/\
\/

Here for (D,y) in the universal divisor I, C X} x X', pr(D,y) = D and
a(D,y) =D —y+o(y)

Let Ty := vgy[I}] : Rvg.Qr — Rug Qg be the operator on Ry Qp in-
duced from the cohomological correspondence between the constant sheaf Qp
on X, and itself given by the fundamental class of I/;. Under the isomorphism
RfNM,gQg\Ag = pryRyg Qy, the action of fMJ[’HQ] is the pullback along the
smooth map pr, of the action of Ty = vg44[I}]. Therefore, it suffices to show
that Ty preserves the decomposition (8.5) (restricted to X;) and acts on each
K by the scalar (d — 2j).

Since Rvg .Qy is the middle extension of the local system L = EB;[:OL(pj)
on X, it suffices to calculate the action of T; on L, or rather calculate its
action over a geometric generic point n € Xy. Write n = 21 + 22 + - -+ + x4,
and name the two points in X’ over x; by iL':'_ and z; (in one of the two ways).
The fiber v;!(n) consists of points & where e € {£}", and & = Y%, 25 . As
in the proof of Proposition 8.2, we may identify the stalk L, with Q,[I's/S4] =
Span{l.;e € {£}"}. (We identify {£} with {1}.) Now we denote 1. formally
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by the monomial z7" - - - 2. The stalk L(p;), has a basis given by {Ps}, where

d
P5 = H(l‘j_ + (Szl‘z_),
i=1
and d runs over those elements § = (d1,...,dq) € {£}? with exactly i minuses.

The action of Ty on L, turns each monomial basis element z7' .-z into
Zle Pt exy e -:Ufld. Therefore, T, is a derivation in the following sense:

for any linear form ¢; in x;” and z; , we have
d
T[]t = (Talr) - la-- - Lg+ 0a(Talo)ls - g+ -+ Ly -+ La_1(Talq).
i=1
Also Ty(zf +z;) = af +2; and Ty(x] —x7) = —(z — 2;). From these we

easily calculate that TyPs = (d — 2|6]) P5, where |J| is the number of minuses
in 0. Since L(p;), is the span of Ps with |0| = j, it is exactly the eigenspace of
Ty with eigenvalue (d — 2j). This finishes the proof. O

Combining Theorem 6.5 and (6.11) with Proposition 8.3, we get
COROLLARY 8.4. Suppose d > max{2¢’ — 1,2¢g}. Let D € X4(k). Then

5 j-o(d = 2j)" Tr(Frobg, (K)a ® (Kj)a) "7 iiVDD(g;?a

0 otherwise.

Hr(ua hD) =

8.2. Direct image of fa,. Recall the moduli space Ny defined in Sec-
tion 3.2.2 for d € ¥4. It carries a local system Lg; see Section 3.3.1.

PROPOSITION 8.5. Letd > 2¢g' —1 and d € ¥4. Then there is a canonical
isomorphism

(8'8) Rng,*Ld = (Kdu X Kde)‘Ad'

Proof. The condition d > 2¢g’ — 1 does not imply that f;, is small. Never-
theless we shall show that the complex K4 := R fxr, «Lq is the middle extension
from its restriction to B := Xy X picd. X4 C Ag. By Proposition 3.1(2), Ny is
smooth, hence Ly[dim N is Verdier self-dual up to a Tate twist. By Propo-
sition 3.1(3), fa;, is proper, hence the complex Kgy[dimAj] is also Verdier
self-dual up to a Tate twist. The morphism fn, is finite over the open stra-
tum B; therefore, Ky|p is concentrated in degree 0. The complement Ay — B
is the disjoint union of C = {0} x Xy and ¢’ = X4 x {0}. We compute the
restriction Kjylc.

When dy; < dog, by the last condition in the definition of Ni’ P92 is al-
lowed to be zero but 1y is not. The fiber of fy;, over a point (0,D) € C

is of the form Xy, X abdd;ll2 d21(D)7 where add;q—; : X; x Xg; — Xg is
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the addition map. We have (Kg)qp) = H"(Xg,; ®% k,Lq,,) ® M, where
M = Ho(addgll% dyy (D) ®r k, Lgy,) is a finite-dimensional vector space. We have
H* (X4, @1 K, Lay, ) =2 A (HYX @4 K, Lx/x))[—d11], which is concentrated
in degree d11, and is zero for di; > 2g —2. Therefore, (Kg)o,p) is concentrated
in some degree < 2g — 2, which is smaller than codim4,C =d — g + 1.

When di; > da2, 11 may be zero but (99 is nonzero. The fiber of fys, over
a point (0, D) € C is of the form Xg,, x addy’ , (D). For (Dag, D12, Da1) €
Xy, X add;ll%dm (D), its image in Pic%! is Ox (D — Dqy); therefore, the restric-
tion of Lg,, to fj([j((), D) is isomorphic to Lg; on the Xy,, factor. Therefore,
(Ka)0,p) = H*(Xay, @k k, Ly,)) @ H(add ) 4, (D) @4 k, Lay, ), which is again
concentrated in some degree < 2g — 2 < codimy,C =d — g + 1.

The same argument shows that the stalks of Ky over C’ are concentrated
in some degree < 2g—2 < codim 4,C’ = d — g+ 1. Using Verdier self-duality of
K4[dim Ny], we conclude that Ky is the middle extension from its restriction
to B.

By Proposition 3.1(3) and the Kunneth formula, we have

KQ|B = addd117d22,*(Ld11 X Qf) X addd12,d217*(Ld12 X Qf)

To prove the proposition, it suffices to give a canonical isomorphism
(89) addj,d_j’*(Lj X @g) = Kj‘Xd

for every 0 < j < d. Both sides of (8.9) are middle extensions from X§3; we
only need to give an isomorphism between their restrictions to X7. Over X7,
the local system L; is given by the representation m1(X7) — m1(X)’ x S; —
Gal(X'/X) x S; = {£1}? x S; — {£1}, which is nontrivial on each fac-
tor Gal(X'/X) and trivial on the Sj-factor. The finite étale cover addj,;_; :
(Xj X Xg-;)° — X3 (restriction of add;4_; to X3) is the quotient X%°/S; 4_;
where S;q_; C Sg is the subgroup defined in Section 8.1.1. Therefore, the
local system addj; ;. (L; X Q) corresponds to the representation p; of I'y,
and add; ;_; . (L; Q) = L(p;) as local systems over Xj. This completes the
proof of (8.9), and the proposition is proved. O

Combining Propositions 8.2 and 8.5, we get
COROLLARY 8.6. Assume d > 2g' — 1. Then there is a canonical isomor-
phism

Rfnv:Qe= P RifnLa
de¥y

such that the (i, j)-grading of the left-hand side appearing in (8.4) corresponds
to the (di1,d12)-grading on the right-hand side.
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8.3. Proof of Theorem 8.1. By Corollary 3.3 and (2.16), both J,(u, hp)
and I.(u,hp) vanish when u is not of the form invp(a) for a € Ap(k). We
only need to prove (8.1) when u = invp(a) for a € Ap(k). In this case we have

(log Q)_TJT (ua hD)
= > (2d1s — d)" Tr (Frobg, (Rfx;.«Lq) ) (Corollary 3.3)

a

deXq
d
= Z (2d12 — d)" Tr (Frobg, (K4,,)a ® (K4,,)a) (Prop. 8.5)
di1,d12=0
d
= ) (d—2§)" Tr (Frobg, (Ki)z ® (K;)z) (r is even)
4,7=0

=1I,(u,hp) (Corollary 8.4).

Therefore, (8.1) is proved. By (2.14) and (6.10), (8.1) implies (8.2).

9. Proof of the main theorems

In this section we complete the proofs of our main results stated in the
introduction.

9.1. The identity (logq)™"J,(f) = L.(f) for all Hecke functions. By The-
orem 8.1, we have (log ¢)™"J.(f) = L.(f) for all f = hp, where D is an effective
divisor with deg(D) > max{2¢’ —1,2¢}. Our goal in this subsection is to show
by some algebraic manipulations that this identity holds for all f € 7.

We first fix a place x € | X|. Recall the Satake transform identifies 7, =
Q[h,] with the subalgebra of Q[tf!] generated by h, = t, + q.t;'. For n >0,
we have Saty (hng) = t7 + qut? 2 + -+ + 2 "2 4 g

LEMMA 9.1. Let E be any field containing Q. Let I be a nonzero ideal of
Hp = A ®q E, and let m be a positive integer. Then

I + Spang{hme, himit)es - - -} = B

Proof. Let t = q;1/2tx. Then h,; = qZ/QTn where T), = t" + "2+ ... +
27" 4 ¢7" for any n > 0. It suffices to show that I + Spang{Tp, Trnt1,. .-} =
Iy E-

Let 7 : s, g — % r/I be the quotient map. Let J#, g C 4, g be the
E-span of t" +¢t™" for n > m. Note that T,, — T,,_o = t" + t~"; therefore, it
suffices to show that 7(74, ) = 74, /I for all m. To show this, it suffices to
show the same statement after base change from E to an algebraic closure E.
From now on we use the notation %,, I and 7%, to denote their base changes

to E.
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To show that 7(s7,) = /I, we take any nonzero linear function ¢ :
/I — E. We only need to show that £(m(t" 4+ ¢t~™)) # 0 for some n > m.
We prove this by contradiction: suppose ¢(7(t" +¢t~")) = 0 for all n > m.

Let v : G,, — A! = Spec .7, be the morphism given by ¢t — T =t + ¢ 1.
This is the quotient by the involution o (¢) = ¢t~!. Consider the finite subscheme
Z = Spec(#,/I) and its preimage Z = v~1(Z) in G,,. We have Oy =
S = O% C O5. One can uniquely extend ¢ to a o-invariant linear function
(- O; — E. Note that O is a product of the form E[t]/(t — z)% for a finite
set of points z € E, and that z € Z if and only if 0(2) = 271 € Z. Any linear
function ¢ on O, when pulled back to Og,, = E[t,t71], takes the form

Elt,t 5 f— > (D.f)(2)

€7

with D, = Y,50¢j(2)(t4)7 (finitely many terms) a differential operator on
G, with constant coefficients ¢;j(2) depending on z. The o-invariance of ¢ is
equivalent to

(9.1) cj(2) = (=1)Y¢j(z71) forall z € Z and j.
Evaluating at f =t +¢™", we get that

Ur(t"+t7™)) = Z P,(n)z" 4+ P,(—n)z"",
2eZ
where P.(T) = Y,¢j(2)T? € E[T] is a polynomial depending on z. The
symmetry (9.1) implies P,(T') = P,-1(—T). Using this symmetry, we may
collect the terms corresponding to z and z~! and re-organize the sum above
as
Lr(t"+t7™) =2 Z P,(n)z" =0 for all n > m.
2eZ

By linear independence of ¢, . : n +— n®z" as functions on {m, m+1,m+2, ...},
we see that all polynomials P,(T") are identically zero. Hence ¢=0and ¢ =0,
which is a contradiction! O

THEOREM 9.2. For any f € 5, we have the identity

(log ¢)™"J-(f) = L:(f)-
Proof. Let 7 be the image of 2 ® Qq in Endg,(V') x Endg, (A ® Qq) X

Q¢[Picx (k)]*Pic. Denote the quotient map .7 ® Q; — % by a. Then for any
z € |X|, A C End s g0, (V' & A® Qp & Q[Picx (k)]*Pi<). The latter being
finitely generated over 7, ® Q; by Lemma 7.13 (or rather, the analogous
assertion for V'), % is also a finitely generated 72, ® Q-module and hence a

finitely generated Qg-algebra. Clearly for f € 5, I,.(f) and J,(f) only depend
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on the image of f in %. Let T C A be the linear span of the functions hp
for effective divisors D such that deg D > max{2¢’ — 1,2¢}. By Theorem 8.1,
we have (logq)™"J.(f) = L.(f) for all f € s#T. Therefore, it suffices to show
that the composition .#T @ Q) — # ® Q; = % is surjective.

Since % is finitely generated as an algebra, there exists a finite set S C | X|
such that {a(hs)}zes generate ;. We may enlarge S and assume that S
contains all places with degree < max{2¢’ — 1,2¢g}. Let y € |X| — S. Then
for any f € g = ®gzc5.5;, we have fhy, € AT, Therefore, a(1T @ Q) D
a(Hs ® Qg)a(hy) = %a(hy). In other words, a(#1 ® Q) contains the ideal
I generated by the a(hy) for y ¢ S.

We claim that the quotient %/ I is finite dimensional over Q. Since
A, is finitely generated over Q, it suffices to show that Spec(%/I) is finite.
Combining Theorem 7.16 and (7.19), Spec% = Spec%/ U Spec Hut,0, =
Zris,Q, Y Z(’)fe U Z(()),Z' Let o : %/I — Q be a Qg-point of Spec(%/[). If

o lies in Zgis g,, then the composition 5 — %/ I % Q, factors as 7 Sat,

Q[Picx (k)] % Q@ for some character x : Picy (k) — Q, . Since hy vanishes in
/1 for any y ¢ S, we have x(Sat(hy)) = x(ty) + qyx(t,; ') =0 for all y ¢ S,
which implies that x(t,) = +(—q,)"/? for all y ¢ S. Let x' : Picx(k) — Q;
be the character X' = x - ¢~ 98/2. Then y/ is a character with finite image
satisfying }/(t,) = £+/—1 for all but finitely y. This contradicts Chebotarev
density since there should be a positive density of y such that x'(¢,) = 1.
Therefore, Spec(7% /1) is disjoint from Zgis,,, hence Spec(4 /1) C Zgy U
Zg,é, hence finite.

Leta: # ®Q, % % — %/I be the quotient map. For each z € |X]|,
consider the surjective ring homomorphism 77, @ Q, — a(, ® Q). Note that
Y N A, is spanned by elements of the form h,,, for ndeg(z) > max{2¢’ —
1,2¢g}. Since a(4, ® Qp) C %/I is finite dimensional over Qy, Lemma 9.1
implies that (JZ1N.4,)2Q, — a(#,®Qy) is surjective. Therefore, a(#T@Qy)
contains a(, ® Q) for all x € |X|. Since @ is surjective, a(s, ® Q) (all
z € |X|) generate the image /I as an algebra, hence a(#T ® Q) = /1.
Since a(##1 ® Q) already contains I, we conclude that a(#T @ Q) = 7. O

9.1.1. Proof of Theorem 1.8. Apply Theorem 9.2 to the unit function h =
1x. We get

(6X[Sht7],  OL[Sht7])shy = (logq)™"Jr (1)

We then apply Corollary 2.5 to write the right-hand side using the r-th deriv-
ative of L(n, s), as desired.

Remark 9.3. Let » = 0. Note that Sht%, resp. Sht{, is the constant
groupoid Buny(k), resp. Bung(k). We write 6,[Bunp(k)] for 64 [Sht7], as an
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element in C2°(Bung(k), Q). The analogous statement of Theorem 1.8 should
be

(9-2) (0«[Bunr(k)],  0.[Bunr(k)))Bung(r) = 4L(1,0) + ¢ — 2.

Here the left side (—, —)Bun (k) is the inner product on C2°(Bung(k), Q) de-
fined such that the characteristic functions {1(¢]}ccBung (k) are orthogonal to
each other and that

1
(g Lig))Bune (k) = ZAu(E)

The equality (9.2) can be proved directly. We leave the detail to the reader.

9.2. Proof of Theorem 1.6. The theorem was formulated as an equality
in E; », but for the proof we shall extend scalars from Q to Q, and use the
decomposition (7.24) instead. For any embedding ¢ : E; — Q,, we have
the point m(m, 1) € Zeusp(Qy) corresponding to the homomorphism 7 Ay
E. 5 Q. To prove the theorem, it suffices to show that for all embeddings
L : E; — Qy, we have an identity in Q,

x| g
Al r 1 _ i Lk
2(log Q)le(g (mpr,1/2)) ([S tT]m(Tr,L)7 S tT]m(ﬂ',[,))@za

where (-, -)@Z is the Q-bilinear extension of the cup product pairing (7.22)
on V'. In other words, for any everywhere unramified cuspidal automorphic
Qq-representation m of G(Ap) that corresponds to the homomorphism A, :
%@Z — Qy, we need to show

wx|
2(log )"
where m, = ker(\;) is the maximal ideal of A, and [Sht/ ], is understood
to be zero if my ¢ Z,(Qy).

As in the proof of Theorem 9.2, let /% be the image of 9, in Endg, (V') x
Endg, (A ® Q) x Qq[Picx (k)]*Pic. By Theorem 7.16 and (7.19), we may write

(9.3) L0 (pr,1/2) = ([Shth ], [Sht#]mﬂ)@ ,

Spec .7; as a disjoint union of closed subsets
——red ~
(9.4) Spec. G = Zgisg, || Zoye

where 2075 = Zéfg U Zg,g is a finite collection of closed points. This gives a
product decomposition of the ring %
(9.5) I = HEis X Hap

with Spec jffﬁ?s = Zgis,@, and Spec ,%”ngd = ZO!- For any element h € %\”ZO,
we view it as the element (0, h) € . By Corollary 7.17, for any h € j%zo we
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have

(9.6) L(hy= > ([Shtz)m,h * [Shtr]w).
meZ,(Q)

Extending by linearity, the above formula also holds for all h € ﬁfi’z 0 ®0, Q.
Note that the linear function h — ([Sht7]|m, h * [Shtr]m) on %’Zo ® Qy factors
through the localization jf‘fz 0®Qp — (% 0® Qp)m (viewing m as a maximal
ideal of %O ® Qy).
On the other hand, let Zg;is be the ideal of % generated by the image of
Tris. We have (0,h) € Zg;s. By Theorem 4.7, for any h € 7%y ® Q, we have
d'l“
(9.7) J-(h) = Z e

ﬂ'EZcusp(@Z)
= Z |w2X)\7r(h)$(r)(7Tp/,1/2)
ﬂ'eZcusp(@é)
By Lemma 7.15(3), Zeusp(Qy) = nge(@g), which hence can be viewed as a
subset of 20’5. Comparing the right-hand side of (9.6) and (9.7), and using

Theorem 9.2, for any h € %’zo ® Q we get
(9.8)

S ((Shtr)m,hx Shtgln) = > Mxﬂ(h)g<T>(ﬂF,,1/2).

J=((0, 1))

s=0

mGZS,g(Qe) ﬂ-EZcusp(@Z)

Since J; o ® Qy is an artinian algebra, we have a canonical decomposition
into local artinian algebras:

(9.9) %0 Q= ] (%0 ® Q)m-

meZo,0(Qy)

As linear functions on %’Z 0®Qy, the m-summand of the left side of (9.8) factors
through (4 ® Qg)m while the 7-summand of the right side of (9.8) factors
through (47,0 ® Q)m,. By the decomposition (9.9), we conclude that

o Ifme Z({e(@e) — Zcusp(@g), then for any h € %’Zo ® Qy,
([ShtT]m, h * [ShtT]m)@z =0.

o Ifm € Z§,(Qp)NZeusp(Qy), i-e., there is a (necessarily unique) 7 € Zeusp(Qp)
such that m = m,, then for any h € %ZO ® Qy, we have

wx|

Ar(h)3 log q)rgm(m, 1/2) = ([Shtr]m., kb * [Shtr]m, )s

Q-
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In particular, taking h = 1 we get

lwx|
2(log q)"

o If 7 e Zcusp(@ﬂ) — Z&ﬂe(@g), then

L") (g, 1/2) = 0.

L (wpr,1/2) = ((Shtg)my,  [Shtrlw,)g,

These together imply (9.3), which finishes the proof of Theorem 1.6.

9.3. The Chow group version of the main theorem. In Section 1.4 we de-
fined an #-module W equipped with a perfect symmetric bilinear pairing (-, -).
Recall that W is the .#-submodule of Ch,,(Sht%)q generated by 6%[Sht%],
and W is by definition the quotient of w by the kernel f/[v/o of the intersection
pairing.

COROLLARY 9.4 (of Theorem 9.2). The action of 7 on W factors through
Flut- In particular, W is a cyclic 76u-module and hence finitely generated
module over 7, for any x € | X|.

Proof. Suppose f € S is in the kernel of # — J#,. Then J,.(f) =0,
hence I,(f) = 0 by Theorem 9.2. In particular, for any h € 7, we have
J.(hf) = 0. Therefore, (h * 64 [Sht7], f * 0 [Sht%]) = I.(hf) = 0. This implies
that f * 64[Sht}] € Wo, hence f x 0 [Shtf] is zero in W, ie., f acts as zero
on W. U

9.3.1. Proof of Theorem 1.1. By the decomposition (7.20), we have an
orthogonal decomposition

W= WEis ¥ Wcusp

with Supp(Wgis) C Zgis and Supp(Weusp) C Zeusp. Since Weysp is a finitely
generated 7%,,-module with finite support, it is finite dimensional over Q. By
Lemma 7.15, Zgysp is the set of unramified cuspidal automorphic representa-
tions in A, which implies the finer decomposition (1.5). Since W is a cyclic
Hu-module, we have dimp, W, < dimg, Ju» = 1 by the decomposition in
Lemma 7.15(1).

9.3.2. Proof of Theorem 1.2. Pick any place A of E over £. Then by the
compatibility of the intersection pairing and the cup product pairing under the
cycle class map, we have

([Sht7ple,  [Shtf]r)r = ([Sht7]ax,  [Shtpler)ra,

both as elements in the local field E . Therefore, Theorem 1.2 follows from
Theorem 1.6.
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Appendix A. Results from intersection theory

In this appendix, we use Roman letters X, Y, V, W, etc to denote algebraic
stacks over a field k. In particular, X does not mean an algebraic curve. All
algebraic stacks we consider are locally of finite type over k.

A.1. Rational Chow groups for Deligne—Mumford stacks.

A.1.1. Generalities about intersection theory on stacks. We refer to [14]
for the definition of the Chow group Ch,(X) of an algebraic stack X over k.

For a Deligne-Mumford stack of finite type over k, the rational Chow
group Ch,(X)g can be defined in a more naive way using Q-coefficient cycles
modulo rational equivalence; see [25].

A.1.2. Chow group of proper cycles. Let X be a Deligne—-Mumford stack
locally of finite type over k. Let Z;(X)g denote the Q-vector space spanned
by irreducible i-dimensional closed substacks Z C X that are proper over k.
Let Ch,;(X)g be the quotient of Z.;(X)g modulo rational equivalence that
comes from rational functions on cycles that are proper over k. Equivalently,
Ch.i(X)g = @YC « Chi(Y)q where Y runs over closed substacks of X that
are proper over k, partially ordered by inclusion.

From the definition, we see that if X is exhausted by open substacks
X1 C Xy C---, then we have

Chei(X)g 2 lim Che (X,)g-

A.1.3. The degree map. When X is a Deligne-Mumford stack, we have a
degree map

deg : Ch.o(X)p — Q.
Suppose x € X is a closed point with residue field k, and automorphism group
Aut(z) (a finite group scheme over k). Let | Aut(z)|g, be the order of Aut(x)

as a finite group scheme over k,. Let [x] € Ch.o(X)qg be the cycle class of the
closed point x. Then

deg([x]) = [kz : K]/] Aut(z)lx, -

A.1.4. Intersection pairing. For the rest of Section A.1, we assume that
X is a smooth separated Deligne-Mumford stack, locally of finite type over k
with pure dimension n. There is an intersection product

(=) -x (=) : Chei(X)g % Chej(X)g — Cheirjn(X)q

defined as follows. For closed substacks Y7 and Y, of X that are proper over k,
the refined Gysin map attached to the regular local immersion A : X — X x X
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gives an intersection product
Chl(Yi)Q X Chj ()/2)@ — Chi+j,n(}/1 N YQ)Q — Chc’iJrj,n(X)Q
(15 G2) — A (G % Ga),

Note that Y1NY; = Y1 X x Yo — Y7 is proper, hence Y1NY5 is proper over k. Tak-
ing direct limits for Y7 and Y3, we get the intersection product on Ch, . (X)g.
Composing with the degree map, we get an intersection pairing

(A.1) (-,)x : Ch j(X)g % Chep—j(X)g — Q
defined as
(C1,C2)x = deg(C1-x ¢2), C1 € Chej(X)q, ¢ € Chepn—j(X)g.

A.1.5. The cycle class map. For any closed substack Y C X that is proper
over k, we have the usual cycle class map into the ¢-adic (Borel-Moore) ho-
mology of Y

cly : Ch;(Y)g — HEM (Y @5 k, Qo) (—) = Haj (Y @y, k, Qp)(—5).
Composing with the proper map i : Y — X, we get
(A.2)
cly x : Ch;(Y)q v, Hy; (Y ® k, Q) (—7)
5 Haj (X @4 k. Qu)(—4) = B (X @, Q) (n — j),

where the last isomorphism is the Poincaré duality for X. Taking inductive
limit over all such proper Y, we get a cycle class map for proper cycles on X

. ligely,x —on_o; T .
clx : Chcyj(X)Q :thhj(Y)Q —— H7 J(X R k‘,@g)(n*]).
Y
This map intertwines the intersection pairing (A.1) with the cup product pair-
ing
HY (X @ k, Qo) (5) x HZ" ™ (X @ k, Qo) (n — )
— niX
YRI(X @ F, Q) (n) 1 Q.
A.1.6. A ring of correspondences. Let

«Chy (X x X)g = li Ch,(Z)g.
ZCXxX,pri:Z—X is proper

For closed substacks Z1, Zo C X x X that are proper over X via the first
projections, we have a bilinear map

Chy(Z1)g x Chy(Z2)g — Chy((Z1 x X) N (X X Z))g 2225 .Chy, (X % X)g
(p1, p2) — p1 % p2 = prig, ((p1 X [X]) -xs ([X] % p2)).
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Note that (Z1 x X) N (X x Z3) = Z1 Xpr, x,pr, Z2 is proper over Z1, hence is
proper over X via the first projection. Taking direct limit over such Z; and
Zo, we get a convolutiton product

(=) * (=) : cChp(X x X)g X Chyp(X x X)g — Ch,(X x X)g.

This gives .Ch, (X x X)q the structure of an associative Q-algebra.
For a closed substack Z C X x X such that pr; is proper, and a closed
substack Y C X that is proper over k, we have a bilinear map

Ch,(Z)g x Chi(Y)g — Chi(Z N (Y x X))g 22 Chei(X)g
(p,¢) > p ¢ = pron(p-xxx (¢ X [X])).

Note here that Z N (Y x X) = Z xp, x Y is proper over Y, hence is itself
proper over k. Taking direct limit over such Z and Y, we get a bilinear map

CChn(X X X)Q X Chqi(X)Q — Chc’,;<X)@.
This defines an action of the Q-algebra .Ch, (X x X)g on Ch.;(X)q.
A.2. Graded K|, and Chow groups for Deligne—Mumford stacks.

A.2.1. A naive filtration on K{(X)g. For an algebraic stack X over k, let
Coh(X) be the abelian category of coherent Ox-modules on X. Let K{(X)
denote the Grothendieck group of Coh(X).

Let Coh(X )<y be the full subcategory of coherent sheaves of Ox-modules
with support dimension < n. We define K(’)(X)E‘g’fl to be the the image of
Ko(Coh(X)<n)g — K((X)g. They give an increasing filtration on K{j(X)q.
This is not yet the correct filtration to put on Ky(X)q, but let us first review
the case where X is a scheme.

Let X be a scheme of finite type over k. Recall from [6, §15.1.5] that
there is a natural graded map ¢y : Ch.(X)g — G2 K/ (X)g sending the
class of an irreducible subvariety V' C X of dimension n to the image of Oy
in Gri®V*K/(X)g. This map is in fact an isomorphism, with inverse 1y :
Grive K} (X)g — Chy(X)g given by the leading term of the Riemann-Roch
map 7x : Ky(X)g — Chi(X)g. For details, see [6, Th. 18.3 and proof of
Cor. 18.3.2]. These results also hold for algebraic spaces X over k by Gillet [7].

A.2.2. A naive attempt to generalize the map 1 x to stacks is the follow-
ing. Let Z,(X)g be the naive cycle group of X, namely, the Q-vector space
with a basis given by integral closed substacks V' C X of dimension n.

We define a linear map suppy : Ko(Coh(X)<p)g — Zn(X)g sending a
coherent sheaf F to >"y my (F)[V], where V runs over all integral substacks
of X of dimension n and my (F) is the length of F at the generic point of V.

Clearly this map kills the image of Ky(Coh(X)<p—1)g, but what is not

clear is whether or not the composition Ko(Coh(X)<p)o PP, Zn(X)g —
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Ch,,(X)g factors through K{(X )&3’2’2 For this reason we will look for another
filtration on K{(X)g.”
When X is an algebraic space, the map suppy does induce a map

Griave K} (X)g — Chy(X)g,
and it is the same as the map v x, the top term of the Riemann—Roch map.

A.2.3. Another filtration on K{(X)g. Now we define another filtration on
K{(X)g when X is a Deligne-Mumford stack satisfying the following condition.

Definition A.1. Let X be a Deligne-Mumford stack over k. A finite flat
surjective map U — X from an algebraic space U of finite type over k is called
a finite flat presentation of X. We say that X admits a finite flat presentation
if such a map U — X exists.

We define K((X)g < to be the subset of elements o € K{((X)g such that
there exists a finite flat presentation m : U — X such that 7%« € K(’](U){@ag’fl

We claim that K{(X)g,<n is a Q-linear subspace of K{(X)g. In fact,
for any two elements aj, s € Ky(X)g,<n, we find finite flat presentations
m » Up — X such that 7fa; € K(’)(Ul)gig’fl for + = 1,2. Then the pullback
of the sum a7 + a9 to the finite flat presentation U; xx Us — X lies in
Ko(Ur xx Up) s,

By this definition, K(X)g,<, may not be zero for n < 0. For any neg-
ative n, Ky(X)g,<n consists of those classes that vanish when pulled back to
some finite flat presentation U — X.

LEMMA A.2. When X is an algebraic space of finite type over k, the
filtration K((X)g <n is the same as the naive one K(’)(X)&ag’g

Proof. To see this, it suffices to show that for a finite flat surjective map
7 : U — X of algebraic spaces over k, and an element a € K|(X)q, if 7*a €
K(’)(U)&ag’fl, then a € K(’)(X)(I@ag’fl In fact, suppose a € K(’)(X){ff‘g’f;Z for some
m > n. Let a,, be its image in Gr)?V*K((X)g. Since the composition m,m* :
Chp,(X)g — Chy,(U)g — Chy,(X)g is the multiplication by deg(m) # 0 on
each connected component, it is an isomorphism and hence 7* : Chy,(X)g —
Ch,,(U)q is injective. By the compatibility between the isomorphism ¢x :
Griave K} (X)g = Chy,(X)g and flat pullback, the map 7* : Gr,,, K5 (X)g —
Gr, K)(U)g is also injective. Now 7*(ay,) = 0 € Gri¥VeK}(U)g because
m > n. We see that a,,, =0, i.e., a € K{)(X)@agﬁ%l Repeating the argument
we see that o has to lie in Ké(X){éagg O

5Our definition in Section A.2.3 may still seem naive to experts, but it suffices for our
applications. We wonder if there is a way to put a natural A-structure on K{\(X)g when X
is a Deligne-Mumford stack, and then one may define a filtration on it using eigenvalues of
the Adams operations.
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For a Deligne-Mumford stack X that admits a finite flat presentation,
we denote by Gr, K((X)g the associated graded of K((X)g with respect to
the filtration K{(X)g,<n. We always have K(’)(X)@ag’g C K{(X)qg,<n, but the
inclusion can be strict. For example, when X is the classifying space of a
finite group G, we have K((X)g = Ri(G)qg is the k-representation ring of
G with Q-coefficients. Any element o € Ry(G)g with virtual dimension 0
vanishes when pulled back along the finite flat map Speck — X; therefore,
K{(X)g,<—1 C Kj(X)q is the augmentation ideal of classes of virtual degree 0,
and GroK)(X)g = Q.

A.2.4. Functoriality under flat pullback. The filtration K{(X)g, <y is func-
torial under flat pullback. Suppose f : X — Y is a flat map of relative dimen-
sion d between Deligne-Mumford stacks that admit finite flat presentations.
Then f*: Ky(Y)g — K((X)g is defined. Let a € K{(Y)g,<n. We claim that
f*a € Kyj(X)g,<nta- In fact, choose a finite flat presentation 7 : V' — Y such
that 7o € Kj(V)§Ys. Let W =V xy X. Then 7’/ : W — X is representable,
finite flat and surjective. Although W itself may not be an algebraic space, we
may take any finite flat presentation o : U — X and let U’ := W x x U. Then
U’ is an algebraic space and € : U' = W x x U — X is a finite flat presentation.
The map f' : U — W — V is flat of relative dimension d between algebraic
spaces, hence f*n*a € K(’)(U’)&?ig"&rn. Since f*m*a = £*f*a, we see that
fra € Ko(X)g,<nta-

As a particular case of the above discussion, we have

LEMMA A.3. Let X be a Deligne—Mumford stack that admits a finite flat
presentation. Let o € K((X)qg,<n. Then for any finite flat representable map
f X' = X, where X' is a Deligne—-Mumford stack (which automatically
admits a finite flat presentation), f*o € Ky(X')g,<n-

A.2.5. Functoriality under proper pushforward. The filtration K{(X)g,<n
is also functorial under proper representable pushforward. Suppose f: X — Y
is a proper representable map of Deligne-Mumford stacks that admit finite flat
presentations. Suppose o € K{(X)g,<n. We claim that foa € Kj(Y)g,<n. Let
m:V — Y be a finite flat presentation. Let o : U = X xy V — X be the
corresponding finite flat presentation of X. (U is an algebraic space because
f is representable.) Then f’ : U — V is a proper map of algebraic spaces.
By Lemma A.3, o*a € Ky(U)g,<n = K(’)(U)@ag’fl, therefore * foa = flo*a €
Ko(V)ELe, hence foo € Kj(Y)g,<n-

A.2.6. For a Deligne-Mumford stack X that admits a finite flat presen-

tation, we now define a graded map ¢x : Gr.Ky(X)g — Ch.(X)g extending
the same-named map for algebraic spaces X.
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We may assume X is connected for otherwise both sides break up into
direct summands indexed by the connected components of X, and we can
define 1 x for each component. Let w : U — X be a finite flat presentation
of constant degree d. For a € K{(X)g <pn, we know from Lemma A.3 that
m*a € K\(U)g,<n- Then we define

Yx(a) = éﬂ'*w[](ﬂ'*a) € Chy(X)o.

It is easy to check that thus defined, ¢ x is independent of the choice of the
finite flat presentation U by dominating two finite flat presentations by their
Cartesian product over X.

A.2.7. The definition of ¥ x is compatible with the support map supp,,
in the sense that the following diagram is commutative when X is a Deligne—
Mumford stack admitting a finite flat presentation:

Ko(Coh(X)<p)g — Ko(X)FYe —— Kj(X)g,<n

lsuppx lwx

Zu(X)g Ch, (X)e.

A.2.8. Compatibility with the Gysin map. We need a compatibility result
of ©x and the refined Gysin map. Consider a Cartesian diagram of algebraic

stacks
;L /
X —Y
(A.3) lo In
x-1.y

satisfying the following conditions:

(1) the stack X’ is a Deligne-Mumford stack that admits a finite flat presen-
tation;

(2) the morphism f can be factored as X - P £ Y, where i is a regular local
immersion of pure codimension e , and p is a smooth relative Deligne—
Mumford type morphism of pure relative dimension e — d.

Remark A.4. Let X and Y be smooth Deligne-Mumford stacks, and let
f X — Y be any morphism. Then we may factor f as X M Xxy 2, Y,
which is the composition of a regular local immersion with a smooth morphism

of Deligne-Mumford type. In this case any f always satisfies condition (2).

A.2.9. In the situation of Section A.2.8, the refined Gysin map [14,
Th. 2.1.12(xi) and end of p. 529] is defined

f': Chy(Y')g — Ch,_q(X')g.
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We also have a map
(A4) [ K)(Y) — Kj(X)
defined using derived pullback of coherent sheaves. Let F be a coherent sheaf

L
on Y’. Then the derived tensor product f'~!F ®(fg)-10y g 'Ox has coho-
mology sheaves only in a bounded range because for a regular local immersion
it can be computed locally by a Koszul complex. Then the alternating sum

P = S Lo (571 F, g7 Ox)]
is a well-defined element in K(X’). We then extend this definition by linearity
to obtain the map f* in (A.4).

PROPOSITION A.5. In the situation of (A.3), assume all conditions in
Section A.2.8 are satisfied. Let n > 0 be an integer. We have
(1) the map f* sends Ko(Y')FLS to Ko(X')g,<n—a and hence induces

Groaive . Grialve Kl (Y ) g — Gr, g K (X')g;
(2) the following diagram is commutative:

naive f*

(A.5) Ko(Coh(Y")<p)g — GV K (V") g —— Gr,_a K5(X')g

lsuppy/ lwx,
f!

Zn(Y/)Q _— Chn(yl)(@ —_—> Chn_d(X,)Q;

(3) if Y’ is also a Deligne-Mumford stack that admits a finite flat presentation,
then f* sends K{(Y')g,<n to K{(X')@,<n—d, and we have a commutative
diagram

Grp, f*
Cra K (Y g L Grp_ g K (X )g

lwy/ Jfﬁx’

Chn(Y')g —— Chy_a(X')g.

Proof. (1) and (2). Write f = poi: X % P 2 Y as in condition (2)
in Section A.2.8. Let P’ = P xy Y’. For the smooth morphism p of relative
dimension e — d, p* sends Coh(Y')<,, to Coh(P’')<pte—a- Then we have a
commutative diagram

K§(Coh(Y')<n)g — K§(Con(P ) <ntea)o
(AG) Jsuppy/ lsupppl

p
Zn(Yo ———— Znte-a(P o
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Therefore, to prove (1) and (2) we may replace f : X — Y with i : X — P,
hence reducing to the case f is a regular local immersion of pure codimension d.

Let o € Ko(Coh(Y”")<y ). Then there exists a closed n-dimensional closed
substack Y” C Y’ such that « is in the image of Kj(Y")g. We may replace
Y’ with Y” and replace X’ with X” := X’ xy+ Y". It suffices to prove the
statements (1) and (2) for X” and Y” for then we may pushforward along
the closed immersion X” < X’ to get the desired statements for X’ and Y.
Therefore, we may assume that dimY’ = n.

The construction of the deformation to the normal cone can be extended
to our situation; see [14, p. 529]. Let N be the normal bundle of the regular lo-
cal immersion f. Then the normal cone C'x/Y” for the morphism f’: X' — Y”’
is a closed substack of g*Ny. We denote the total space of the deformation by
M$,Y’'. This is a stack over P! whose restriction to Al is Y’ x Al and whose
fiber over oo is the normal cone Cx/Y’. Let io : Cx/Y' — M5, Y’ be the
inclusion of the fiber over co. We have the specialization map for K-groups

Sp: K§(¥")g — K§(¥' % Al)g
~ K (MY )o/K)(Cx/Y)g 22 Ki(Cx/Y')g.

Similarly, we also have a specialization map for the naive cycle groups

!

Sp : Zu(Y)g —5 Znia (V! x AV)g 5 Znat (MY )g =22 Zo(CxrY')g.

Here we are using the fact that n = dimY’ = dimCx/Y’ = dim M%, Y’ — 1,
and Z,(—)g is the naive cycle group. For any n-dimensional integral closed
substack V' C Y’, Sp([V]) is the class of the cone CxqyV C Cx/Y'.

The diagram (A.5) can be decomposed into two diagrams:

Sp *
K§(Yg — K{(CxY")g - 2+ K§(X)g,<n—d

lsuppyf JsuppC’X/Y' J/wxl
|

S s
Zn(Y)g — Zn(Cx/Y")g —— Chy_a(X')g.

The dotted arrow is conditional on showing that the image of s* (where s is
the embedding X — CxY') lands in K{(X")g,<n—d. The left square above is
commutative: since we are checking an equality of top-dimensional cycles, we
may pass to a smooth atlas and reduce the problem to the case of schemes
for which the statement is easy. Therefore, it remains to show that the image
of s* lands Ko(X')g,<n—d and that the right square is commutative. Since
Cx'Y' C g* Ny, it suffices to replace Cx/Y’ by g* Ny and prove the same origi-
nal statements (1) and (2), but without assuming that dim g* Ny = n. In other
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words, we have reduced the problem to the following special situation:

X' =X,Y’ =Y is a vector bundle of rank d over X,

(A7) g =idx,h =idy and f = s is the inclusion of the zero section.

In this case, let 7 : U — X be a finite flat presentation, and let Yy be the
vector bundle Y base changed to U. Then U and Y;; are both algebraic spaces.
Let sy : U < Yy be the inclusion of the zero section , and let o : Yy — Y be
the projection. For any o € Kj(Y)§Ys, we have 7*s*a = sjo*a € Ki(U)q-
We have oc*a € K| (YU)f@agfL In the case of the regular embedding of algebraic
spaces sy : U — Yy, si; sends K((Yu)g,<n to Ky(U)g,<n—a by the com-
patibility of the Riemann-Roch map with the Gysin map ([6, Th. 18.3(4)]).
Therefore, 7*s*a = sj;0*a € K{(U)g,<n—d, hence s*a € Ky(X)g,<n—d-

We finally check the commutativity of (A.5) in the special case (A.7). For
any a € K}(Coh(Y)<y)g, we need to check that § = s'suppy (o) — ¥x(s*a) €
Ch,,—q(X)q is zero. Since m,m* : Chy,_4(X)gp — Chy,—q(U)g — Ch,—4(X)o
is the multiplication by deg(w) on each component of X, in particular, it
is an isomorphism and 7* is injective. Therefore, it suffices to check that
76 = 0 € Chy,_q(U)q. Since %8 = sysuppy,, (0* @) — ¢ysj(o*a), we reduce
to the situation of sy : U — Yy, a regular embedding of algebraic spaces. In
this case, the equality S!UsuppU = vy sj; follows from the compatibility of the
Riemann-Roch map with the Gysin map ([6, Th. 18.3(4)]).

(3) Let o€ K(y(Y"),<n- Then for some finite flat presentation 7y : V—Y",
oo € Ko(V)FLe. Let W = X' xy V = X xy V, and let f” : W — V be
the projection. Then we have a Cartesian diagram as in (A.3) with the top
row replaced by f” : W — V. Since my : W — X’ is a finite flat surjective
map (W may not be an algebraic space because we are not assuming that f
is representable), 7j;, : Chy,_q(X’)g — Chy,_q(W)gq is injective. Therefore, in
order to show that f*a € K{(X")g.<n_a and that ¢x: f*a — flyra = 0 in
Ch,,—q(X")g, it suffices to show that 7y, f*a = f*nrja € K{(W)g <n—d and
that 73 (Vx fra— flhyra) = b f*(m5a) — flaby (m5a) is zero in Ch,,_g(W)g.
Therefore, we have reduced to the case where Y/ = V is an algebraic space.
In this case K{(Y')g,<n = K(’)(Y’)&%ig"fw and the statements follows from (1)
and (2). O

By applying Proposition A.5 to the diagonal map X — X x X (and taking
g, h to be the identity maps), we get the following result, which is not used in
the paper.

COROLLARY A.6. Let X be a smooth Deligne—Mumford stack that admits
a finite flat presentation. Then the map Yx is a graded ring homomorphism.
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A.2.10. The case of proper intersection. There is another situation where
an analog of Proposition A.5 can be easily proved. We consider a Cartesian
diagram as in (A.3) satisfying the following conditions:

(1) X’ is a Deligne-Mumford stack, and h (hence g) is representable;

(2) the normal cone stack of f is a vector bundle stack (see [2, Def. 1.9]) of
some constant virtual rank d;

(3) there exists a commutative diagram

Uy

(A.8) Ju f l

X —Y,

where U and V are schemes locally of finite type over k, u and v are smooth
surjective and ¢ is a regular local immersion;

(4) we have dimY’ =n and dim X’ = n —d.

Remark A.7. Suppose X and Y are smooth stacks over k. Pick any
smooth surjective W — Y where W is a smooth scheme, and let v : U —
X Xy W be any smooth surjective map from a smooth scheme U. Take

= U xW. Then i = (id,pryyou) : U - V = U x W is a regular lo-
cal immersion. Therefore, in this case, f satisfies condition (3) above.

If f satisfies condition (2) above, the refined Gysin map is defined; see
[14, end of p. 529 and footnote]. We only consider the top degree Gysin map

f': Chy (Y — Chya(X')o.
On the other hand, derived pullback by f* gives
frKo(Y') — Ko(X)
as in (A.4). Here the boundedness of Tor can be checked by passing to a
smooth cover of X', and we may use the diagram (A.8) to reduce to the case

where f is a regular local immersion, where Tor-boundedness can be proved
by using the Koszul resolution.

LEMMA A.8. Under the assumptions of Section A.2.10, we have a com-
mutative diagram

f*
Ko(Y)o —— Kp(X')g

suppy/J/ lsuppxl
f!
Zn(Y/)Q Em— Zn,d(X/>Q.

Proof. The statement we would like to prove is an equality of top-dimen-
sional cycles in X’. Such an equality can be checked after pulling back along a
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smooth surjective morphism X" — X’. We shall use this observation to reduce
the general case to the case where all members of the diagram are algebraic
spaces and that f is a regular embedding.

Let i : U — V be a regular local immersion of schemes as in condition (3)
of Section A.2.10 that covers f : X — Y. By passing to connected components
of U and V, we may assume that the maps u,v and ¢ in (A.8) have pure
(co)dimension. Let U = X' xx U and V! = Y’ xy V. Then we have a
diagram where all three squares and the outer square are Cartesian:

fl
x gy My
LT
X+t v v—tyy

Let a € K{(Y"). To show suppx/(f*a) — f'suppy(a) = 0 € Z,_a(X")g, it
suffices to show its pullback to U’ is zero. We have

(A9) u* (supp .y (f™* @) — f'suppy(a)) = suppy (u* f*@) — u' f'suppy- (@)
. = suppy (i*v*a) — i'v'suppy- ().

Since v is smooth and representable, we have v'suppy.(a) = suppy (v™*a).
Letting 8 = v*a € K{(V'), we get

suppyy (i*v* @) — i'v'suppy- () = suppyy (i*8) — i'suppy ().

To show that the left-hand side of (A.9) is zero, we only need to show that
suppy (i*8) — i‘'suppy+(B) = 0. Therefore, we have reduced to the following
situation:

X and Y are schemes and f is a regular local immersion.

In this case, X’ and Y’ are also algebraic spaces by the representability of h
and g. In this case we have suppx, = ¢¥xs and suppys = ¥ys. The identity
supp v/ (f*a) = px/ (f*a) = flahy(a) = f'suppy-(a) follows from the compat-
ibility of the Riemann-Roch map with the Gysin map ([6, Th. 18.3(4)]). O
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A.3. The octahedron lemma. We consider the following commutative di-
agram of algebraic stacks over k:

a

—_— X —

S—W

d

—

A

|
(A.10) U——s

T

C

N e

>

*> %
Now we enlarge this diagram by one row and one column in the following way:
we form the fiber product of each row and place it in the corresponding entry
of the rightmost column; we form the fiber product of each column and place
it in the corresponding entry of the bottom row:

A X B Axx B
U S 1% UxgV
R
C Y D C xy D
CxyA—25Y xgX+—DxyB N.

Finally, the lower right corner N is defined as the fiber product
(A.12)
N AxBxCxD

| |

XXSYXsUXSV%(XXSU)X(XXSV)X(YXSU)X(YXSV).

We denote the lower right corner of the diagram by R.
We now form the fiber product of the rightmost column of (A.11),

(C xy D) X@wxsvy (Axx B) —— Axx B

(A.13) J J

C xy D UxgsV
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and the fiber product of the bottom row of (A.11)

(C xy A) X(yxgx) (D xy B)—— D xy B

(A.14) l l

Cxy A e Y xg X.

LEMMA A.9. There is a canonical isomorphism between N and the stacks
that appear in the upper left corners of (A.13) and (A.14):

(A15) (C Xy D) X(UXSV) (A Xx B) =N (C XU A) X(YXSX) (D Xy B)

Proof. For the first isomorphism, we consider the diagram (to shorten
notation, we use - instead of x)
(A.16)

| J |

Y'SX'sU-SVH(Y-sU-SV)-(X~SU-SV)*>R

| J

U-sV —2 5 (U-gV)? y.x 2V yaox2
Here all the squares are Cartesian. The upper two squares combined give the
square in (A.12). This shows that the left-hand side of (A.15) is canonically
isomorphic to N.

For the second isomorphism, we argue in the same way using the following
diagram instead:
(A.17)

| J |

Y'SX-SU'SVH(Y‘SX-SU)-(Y-SX'SV)%R

— ]

Vg X —2 5 (Y 5 X)? U.v—=00Y L pry2,
O

There is a way to label the vertices of the barycentric subdivision of an
octahedron by the stacks introduced above. We consider an octahedron with
a north pole, a south pole and a square as the equator. We put S at the
south pole. The four vertices of the equator are labelled with A, B, D and C
clockwisely. The barycenters of the four lower faces are labeled by U, V, X,Y
so that their adjacency relation with the vertices labelled by A, B,C,D is
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consistent with the diagram (A.10). At the barycenters of the four upper faces
we put the fiber products; e.g., for the triangle with bottom edge labeled by
A, B, we put A xx B at the barycenter of this triangle. Finally we put IV at
the north pole.

THEOREM A.10 (The Octahedron Lemma). Suppose we are given the
commutative diagram (A.10). Suppose further that

(1) The algebraic stacks A,C,D,U,V,X,Y and S (everybody except B, B for
bad) are smooth and equidimensional over k. We denote dim A by d 4, etc.

(2) The fiber products U xg V, Y xg X, C xy D and C xy A have ezxpected
dimensions dy + dy — dg, etc.

(3) Each of the Cartesian squares

Axx B——B
(A.18) l
A—2 X
DxyB——B
(A.19) l
d

D—V
satisfies either the conditions in Section A.2.8 or the conditions in Sec-
tion A.2.10.
(4) The Cartesian squares (A.13) and (A.14) satisfy the conditions in Sec-
tion A.2.8.

Letn=ds+dp+dc+dp —dy —dy —dx —dy +dg. Then
8'a'[B] = o'd'[B] € Ch,(N).

Proof. Since U, S and V are smooth and pure dimensional, and U xg V'
has the expected dimension, it is a local complete intersection and we have

L
Ovxsv = Ou ®og4 Oy.

Here we implicitly pull back the sheaves Oy, Oy and Og to U xg V using the
plain sheaf pullback. Similar argument shows that the usual structure sheaves
Oy xsx,0cxyp and Ocx, 4 coincide with the corresponding derived tensor
products.

We now show a derived version of the isomorphism (A.15). We equip each
member of the diagrams (A.13), (A.14) and (A.12) with the derived struc-
ture sheaves, starting from the usual structure sheaves of A, B,C, D, X, Y, U,V
and S. For N, we use (A.12) to equip it with the derived structure sheaf

L L L L
O(]{fer = (OX Rog Oy Rog Oy Rog Ov) ®0dRer (OA XOgKOcK OD),



894 ZHIWEI YUN and WEI ZHANG

where OFT is the derived structure sheaf (Ox (%‘@@S Oy)X---X(Oy é@os Oy)
on R = (X xgU) x - x (Y xgV). To make sense of this derived tensor
product over (’)%er, we need to work with dg categories of coherent complexes
rather than the derived category.

We claim that under the isomorphisms between both sides of (A.15)
and NV, their derived structure sheaves are also quasi-isomorphic to each other.
In fact we simply put derived structures sheaves on each vertex of the dia-
gram (A.16). Since the upper two squares combined give the square in (A.12),

transitivity of the derived tensor product gives a quasi-isomorphism

L L L
(A.20) 0¥ = (Oc ®o, Op) ® 1, (04 @0y OB).
(OuRog40v)

Similarly, by considering the diagram (A.17), we get a quasi-isomorphism

L L L
(A.21) O = (O¢ ®o, 04) ® (Op ®oy Op).

L
(Oy®040x)
Combing the isomorphisms (A.20) and (A.21), and using the fact that U xgV/,
Y x¢ X, C xy D and C xy A need not be derived, we get an isomorphism of
coherent complexes on N

L L L L
OcxyD ®0stv (Oa ®ox Op) = OCXUA ®OY><SX (Op Koy OB)'

These are bounded complexes because the diagrams (A.18), (A.19), (A.13) and
(A.14) satisfy the conditions in Section A.2.8 or Section A.2.10. Taking classes
in Ky(N)g we get

(A.22) §*a*Op = a*d*Op € K{(N)g.

Here a*,d*,a* and ¢* are the derived pullback maps between K(-groups de-
fined using the relevant Cartesian diagrams. Now we apply Proposition A.5
to the diagrams (A.18), (A.19), (A.13) and (A.14) to conclude that both sides
of (A.22) lie in K((N)g,<n (where n is the expected dimension of V). In case
(A.18) or (A.19) satisfies Section A.2.10 instead of Section A.2.8, the corre-
sponding statement K[,)(B)Q,Sd]g — K(/)(A X x B)Q,SdA-i-dB—dX or K(l)(B)Q,SdB
— K{(D xv B)g,<dp+ds—dy 1S automatic for dimension reasons.

Now we finish the proof. We treat only the case where (A.18) satisfies the
conditions in Section A.2.8 and (A.19) satisfies the conditions in Section A.2.10.
This is the case that we actually use in the main body of the paper, and the
other cases can be treated in the same way.

Let 0*a*Op and a*d*Op denote their images in Gr, K{(N)qg. Similarly,
we let a*Op € Gry, tdy—dy K((A xx B)g be the images of a*Op. Applying
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Proposition A.5 three times and Lemma A.8 once we get
0'a'[B] = ¢'a'supp(Op)

= 0"YaxB(a*Op) (Prop A.5(2) applied to (A.18))
= Yn(0*a*Op) (Prop A.5(3) applied to (A.13))
— in(@T0p) (A22)
= a!suppDXVB(d*OB) (Prop A.5(2) applied to (A.14))
= o'd'suppp(Op) (Lemma A.8 applied to (A.19))
= o'd'[B]. O

A.4. A Lefschetz trace formula. In this subsection, we will assume

e all sheaf-theoretic functors are derived functors.

A.4.1. Cohomological correspondences. We first review some basic defini-
tions and properties of cohomological correspondences following [24]. Consider
a diagram of algebraic stacks over k

(A.23) X ¢,y

We call C' together with the maps ‘¢ and ¢ a correspondence between X
and Y.
Let F € D% X) and G € DY) be Q¢-complexes of sheaves. A cohomo-
logical correspondence between F and G supported on C is a map
(: ¢ F—7'g
in Db(O).

Suppose we have a map of correspondences

< <
X+—(C—Y

bbb

S#B%T,

P
where @ and b are proper. Then we have an induced map between the group
of cohomological correspondences supported on C' and on B (see [24, §1.1.6(a)])

h! : Homc(%*]—", ?'g) — HomB(%*ﬁ]—", ?!g!g).

— =
In particular, if S = B =T and b = b = idg, then ¢ € Hom¢(¢*F, 2'Q)
induces a map hi¢ between fiF and G given by the composition

(A.24) h1< : f}f — f;%g%*}— m f;%;?lg = gg?!?!g — g!Q.
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When S = T, B the diagonal of S, X = Y and f = g, we call C a
self-correspondence of X over S. In this case, for a cohomological corre-

spondence ¢ between F and G supported on C, we also use fi( to denote
hi¢ € Homg(fi.F, f1G) defined above.

A.4.2. Fized locus and the trace map. Suppose in the diagram (A.23) we
have X =Y. We denote X by M. Define the fixed point locus Fix(C) of C
by the Cartesian diagram

Fix(C) ——— C

For any F € D%(M), there is a natural trace map (see [24, Eqn(1.2)])
¢ : Hom(‘'e* F, @' F) — HEM(Fix(C) @ k).

In other words, for a cohomological self-correspondence ¢ of F supported on C,
there is a well-defined Borel-Moore homology class 7¢(¢) € HSM(Fix(C) @3, k).

A.4.3. In the situation of Section A.4.2, we further assume that both C
and M are Deligne—-Mumford stacks, M is smooth and separated over k of
pure dimension n, and that 7 = Q / is the constant sheaf on M.

Using Poincaré duality for M, a cohomological self-correspondence of the
constant sheaf Qy s supported on C' is the same as a map

Que = T*"Quyr — C'Quas = T'Dar[—2n)(—n) = De[—2n](—n).

Over C ®y k, this is the same thing as an element in HBM(C @y, k)(—n). In
this case, the trace map 7¢ becomes the map

7o HBM(C @y, k) (—n) — HEM(Fix(C) @y k).
On the other hand, we have the cycle class map
cle : Chy,(C)g — H™2"(C, De(—n)) = Hom(C* Qe ar, ' Qe,r)
— H];,?A(C R k)(—n).
Therefore, any cycle ¢ € Ch,(C)q gives a cohomological self-correspondence
of the constant sheaf Q@ ys supported on C. We will use the same notation
¢ to denote the cohomological self-correspondence induced by it. Since Ajy :

M — M x M is a regular local immersion of pure codimension n, we have the
refined Gysin map

Al : Ch,(C)g — Chy(Fix(C))o-
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LEMMA A.11. Under the assumptions of Section A.4.3, we have a com-
mutative diagram

!

A
Ch,, (C)g ————— Chy(Fix(C))g

Jclc ldFix(C)

HEM(C @, B) (—n) — s HBM(Fix(0) @y, F).

Proof. Let us base change to k and keep the same notation for M, C etc.
Tracing through the definition of 7, we see that it is the same as the cap prod-
uct with the relative cycle class of A(M) in H**(M x M, M x M — A(M))(n).
Then the lemma follows from [6, Th. 19.2]. Note that [6, Th. 19.2] is for
schemes over C but the argument there works in our situation as well, using
the construction of the deformation to the normal cone for Deligne-Mumford
stacks in [13, p.489]. O

A.4.4. Intersection with the graph of Frobenius. Suppose we are given a
self-correspondence C' of M over S

satisfying

k is a finite field;
S is a scheme over k;
M is a smooth and separated Deligne-Mumford stack over k of pure dimen-

sion n;
f: M — S is proper;
€0 — M is representable and proper.

We define Shte by the Cartesian diagram

Sht¢ —— C

(A.25) l J(t?)
(id,FI‘[\/[
M ——- x M.

Here the notation Shto suggests that in applications Shto will be a kind of
moduli of Shtukas. We denote the image of the fundamental class [M] under
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(id, Frps)« by I'(Frps). Since (id, Fryy) is a regular immersion of pure codimen-
sion n, the refined Gysin map

(id, FI“M)! : Chy,(C)g — Cho(Shtc)g
is defined. In particular, for ( € Ch,(C)q, we get a 0-cycle
(id, FI‘M)!C € Cho(Shtc)Q.

A.45. Since C — M xg M, while (id,Frys) : M — M x M covers the
similar map (id,Frg) : S — S x S, the map Shte — S factors through the
discrete set S(k), viewed as a discrete closed subscheme of S. Since Shto —
S(k), we get a decomposition of Sht¢ into open and closed subschemes

Shto = H Shte(s).
seS(k)

Therefore,

Cho(Shtc)Q: @ Cho(Shtc(s))Q.
seS(k)

For ¢ € Ch,(C)q, the 0-cycle ¢ -aprxar I'(Fras) can be written uniquely as the
sum of O-cycles

(A.26) ((id, Fras)'¢)s € Cho(Shtc(s))g Vs € S(k).

Each Shte(s) = I'(Fras,) Xar, <, Cs. Since T 05— My is proper and M is
separated (because f is proper), Cs — Mg x M, is proper, therefore Shto(s) is
proper over I'(Fryy, ), hence it is itself proper over k because I'(Frys,) = M is
proper over k. Therefore, the degree map deg : Chy(Shtc(s))g — Q is defined.
We get an intersection number indexed by s € S(k):

(¢, T(Fray))s = deg((id, Frar)'¢)s € Q.
The main result of this subsection is the following.

ProOPOSITION A.12. Assume all conditions in Section A.4.4 are satisfied.
Let ¢ € Chy,(C)q. Then for all s € S(k), we have

(A.27) (¢, T(Frar))s = Tr ((ficle(€))s o Frobg, (fiQr)s) -

Here ficlg(C) := hicla(C) is the endomorphism of fiQq induced by the cohomo-
logical correspondence clo(C) supported on C, and (ficlo(C))s is its action on
the geometric stalk (/iQg)s-

Proof. Let 'C = C but viewed as a self-correspondence of M via the
following maps:

s_:F o' 7
M MO ey C’LM.
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However, 'C' is no longer a self-correspondence of M over S. Instead, it maps
to the Frobenius graph of S:

e 2

Mt 10—y
(A.28) lf " Jf
gets g g

Here’S = S but viewed as a self-correspondence of S via (Frg,id) : 'S — Sx S.
The map 'h : 'C' — 'S is simply the original map h: C — S.

We have the following diagram where both squares are Cartesian and the
top square is (A.25):

Shtc ——'C =C

o

(A.29) M——Mx M

JFI"M J(FrM,id)
Apny

M —— M x M.

Therefore, the outer square is also Cartesian; i.e., there is a canonical isomor-
phism Fix('C') = Shtc.

For ¢ € Ch,(C)g = Ch,('C)q, we may also view it as a cohomological
self-correspondence of Qg 5s supported on 'C. We denote it by ¢ € Ch,('C)g
to emphasize that it is supported on C’. We claim that

(id,Fl“M)!C = A'J\/I(IQ) € Cho(Shtc)Q.

In fact, this is a very special case of the Excess Intersection Formula [6, Th. 6.3]
applied to the diagram (A.29), where both (id, Frys) and Ajs are regular im-
mersions of the same codimension. In particular, taking the degree of the s
components, we have

(A.30) (¢, AM))s = (C,D(Frar))s  for all s € S(k).

By [24, Prop. 1.2.5] applied to the proper map (A.28) between correspon-
dences, we get a commutative diagram

T ¢

Hom (e Qe ar, 7¢'Qoar) S HEM (Fix('C) @1 K) == @, ) BEM (Shtc (5) @5 )

J/h! (7) J{dEg

Hom(Fr§ fiQear, iQuar) — s HEM(S(k) @1 k) =—= @, cs) Q.
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Combining the with the commutative diagram in Lemma A.11 applied to 'C,
we get a commutative diagram

(A.31)

Ch('C)g —— s Chg(Fix('C))g —— @,es() Cho(Shtc(s))

l’h!ocllc J{ Jdeg

Hom(Frs fiQ ar, f1Qe 1) 5 HBM(S () @) k) ——— Dsesx) Qe
Applying (A.31) to ¢, and using (A.30), we get that for all s € S(k),
(A.32) 7s('clio('Q)) = (¢ AuM])s = (¢, T(Fr))s.
Here 75(—)s € Q¢ denotes the s-component of the class
s(—) € HP¥(S(k) @k k) = Boes( Qe

Next we would like to express 7 5(’ hicle('¢ ))S as a trace. The argument

works more generally when Q s is replaced with any F € Db(M) and clg(€)
is replaced with any cohomological self-correspondence 7 : C*F 5 7'F sup-
ported on C. So we will work in this generality. For any F € D%(M), we have
a canonical isomorphism @ : Fri, 7 = F whose restriction to the geometric
stalk at « € M(k) is given by the geometric Frobenius Frob, acting on Fz. A
similar remark applies to complexes on S. Using 1 we define a cohomological
self-correspondence 'n of F supported on 'C' as the composition

Trd

%
n: borF = Fri, F =L F L 2'F="¢c'F.

On the other hand we have a commutative diagram

(A33)  Frf AF — fFey, F 9 e Fryy F —— b e* F —— fiF

§ ! 7'$ F Zlfh C @]: Jh!(/”)
: dj h (7]) adj
af ! .
! - ?'F ! f"F

AF ———— e F——— 5 h

Here the arrows indexed by “adj.” are induced from adjunctions, using the
properness of ‘¢. The middle square is commutative by the definition of 'n,
and the right square is commutative by design. The composition of the top row
in (A.33) is by definition the push-forward 'h'n as a cohomological self-corre-
spondence of fi.F supported on’S; the composition of the bottom row in (A.33)
is by definition the push-forward hin as a cohomological self-correspondence of
/1F supported on the diagonal S. Therefore, (A.33) shows that 'h/n may be
written as the composition

(b 1 |
(A.34) W' Fry AF —25 fF M0 6 F
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For any cohomological self-correspondence & of G € DIC’(S) supported on
the graph of Frobenius 'S, i.e., £ : Fr§ G — G, the trace 7g(€)s at s € S(k)
is simply given by the trace of s acting on the geometric stalk Gz: this is
because the Frobenius map is contracting at its fixed points, so the local term
for the correspondence supported on its graph is the naive local term (a very
special case of the main result in [24, Th. 2.1.3]). Applying this observation to
& ="h'n, we get

75('h'n)s = Tr ('), (AF)5)
= Tr ((hn)s o Frob,, (fiF)s) by (A.34).

Now apply (A.35) to F = Qg s, n = clo(C) and note that 'n = cl('¢). Then
(A.35) gives

(A.36) ms(hcle('())s = Tr ((f!dc(C))s o Frob, (f!@ﬂ,M)E)-
Combining (A.36) with (A.32) we get the desired formula (A.27). O

(A.35)

Appendix B. Super-positivity of L-values

In this appendix we show the positivity of all derivatives of certain
L-functions (suitably corrected by their epsilon factors), assuming the Rie-
mann hypothesis. The result is unconditional in the function field case since
the Riemann hypothesis is known to hold.

It is well known that the positivity of the leading coeflicient of such an
L-function is implied by the Riemann hypothesis. For nonleading terms, we
provisionally call such a phenomenon “super-positivity.”

Upon the completion of the paper, we learned that Stark and Zagier ob-
tained a result in [22] similar to our Proposition B.1.

B.1. The product expansion of an entire function. We recall the (canon-
ical) product expansion of an entire function following [1, §5.2.3, §5.3.2]. Let
¢(s) be an entire function in the variable s € C. Let m be the vanishing order
of ¢ at s = 0. List all the nonzero roots of ¢ as ay,ag,...,q;, ... (multiple
roots being repeated) indexed by a subset I of Z~, such that |a;| < |ag| < ---.
Let E,, be the elementary Weierstrass function

(=) n =0,
Enlu) = {(1 —u) et Uit Uty s

An entire function ¢ is said to have finite genus if it can be written as an
absolutely convergent product

(B.1) o(s) = 5" ") ] B, G)

I€EZ
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for a polynomial h(s) € Cls| and an integer n > 0. The product (B.1) is
unique if we further demand that n is the smallest possible integer, which is
characterized as the smallest n € Z>( such that

(B.2) P

n+1
el |0y

< 00.

The genus g(¢) of such ¢ is then defined to be

9(¢) == max{deg(h), n}.

The order p(¢) of an entire function ¢ is defined as the smallest real number
p € [0,00] with the following property: for every ¢ > 0, there is a constant C,
such that

‘d)(s)‘ < e|8|p+€, when |s| > C..

If ¢ is a nonconstant entire function, an equivalent definition is

logl
p(¢) = lim sup %

r—>00 r

i

where |¢]co,p, is the supremum norm of the function ¢ on the disc B, of
radius r. If the order of ¢ is finite, then Hadamard theorem [1, §5.3.2] asserts
that the function ¢ has finite genus and

(B.3) 9(#) < p(¢) < g(¢) + 1.

In particular, an entire function of finite order admits a product expansion of
the form (B.1).

The following result can be deduced from the proof in [22]. Since the proof
is very short, we include it for the reader’s convenience.

PROPOSITION B.1. Let ¢(s) be an entire function with the following prop-
erties:
(1) it has a functional equation ¢p(—s) = £¢(s);
(2) for s € R such that s > 0, we have ¢(s) € Rs;
(3) the order p(¢) of ¢(s) is at most 1;
(4)

4) (RH) the only zeros of ¢(s) lie on the imaginary axis Re(s) = 0.

Then for all r > 0, we have

_ 4
_dS s=0

¢"(0) : ¢(s) > 0.

Moreover, if ¢(s) is not a constant function, we have

¢(T0)(0) £ 0 = ¢rot+2) (0) #0  for all ro and i € Z>g.
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Proof. By the functional equation, if « is a root of ¢, so is —« with the
same multiplicity. Therefore, we may list all nonzero roots as {«;};ez\ {0} such
that

a_;=—qa; and |ai| <|ag| <---.
If ¢ has only finitely many roots, the sequence terminates at a finite number.

Since the order p(¢) < 1, by (B.3) we have g(¢) < 1. Hence we may write
¢ as a product

o0
o) =5 TT e () B (=),
i=1 & i
where m is the vanishing order at s = 0. Note that it is possible that g(¢) = 0,
in which case one still has a product expansion using E; by the convergence
of (B.2).
By the functional equation, we conclude that h(s) = h is a constant.
By condition (4)(RH), all roots «; are purely imaginary, and hence @; =
a_;. We have

o= T (2) 1 (2)

[e%}
0o 2
= sMeh H 14+ —1.
i=1 Qi

By condition (2), the leading coefficient e” is a positive real number. Then the
desired assertion follows from the product above. O

B.2. Super-positivity. Let F be a global field (i.e., a number field, or the
function field of a connected smooth projective curve over a finite field Fy).
Let A be the ring of adeles of F'. Let m be an irreducible cuspidal automorphic
representation of GL,,(A). Let L(m,s) be the complete (standard) L-function
associated to 7 [8]. We have a functional equation

L(rm,s) = ¢e(m,s)L(w,1 — s),
where 7 denotes the contragredient of 7, and
e(m,s) = e(m,1/2)N:~1/2

for some positive real number N,. Define

_(s—=1/2)
A(m,s) =Nr 2?2 L(m,s)

and
d
A m,1/2) == — A(m, s).
/2= | )
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THEOREM B.2. Let 7 be a nontrivial cuspidal automorphic representation
of GL,(A). Assume that it is self-dual:

T T
Assume that, if F' is a number field, then the Riemann hypothesis holds for
L(m, s); that is, all the roots of L(m,s) have real parts equal to 1/2.
(1) For allr € Z>o, we have

AT (7,1/2) > 0.
(2) If A(m, s) is not a constant function, we have
AT (1,1/2) # 0 = ACOF2)(1.1/2) £ 0 for all i € L.
Proof. We consider
Am,s) = A(m, s+ 1/2).

Since 7 is cuspidal and nontrivial, its standard L-function L(7,s) is entire in
s € C. By the equality e(m, s)e(m,1 —s) = 1 and the self-duality 7 ~ 7 we
deduce

1=e(m 1/2)e(m,1 —1/2) = e(m,1/2)°.
Hence ¢(m,1/2) = £1, and we have a functional equation
(B.4) A(m,s) = £A(m, —s).

We apply Proposition B.1 to the entire function \(m, s). The function L(, s)
is entire of order one, and so is A(w, s). In the function field case, condition
(4)(RH) is known by the theorem of Deligne on Weil conjecture, and of Drinfeld
and L. Lafforgue on the global Langlands correspondence. It remains to verify
condition (2) for A\(m, s). This follows from the following lemma. O

The local L-factor L(m,, s) is of the form ﬁ, where Py, is a polyno-
mial with constant term equal to one when v is nénarchimedean, and a product

of functions of the form I'c(s + «), or I'r(s + «), where a € C, and
Te(s) = 2(2m) °I(s), Tr(s) =x"’I(s/2),

when v is archimedean. We say that L(m,, s) has real coefficients if the poly-
nomial P;, has real coefficients when v is nonarchimedean, and the factor
I'p, (s + «) in L(my, s) has real «a or the pair I'r, (s + «) and I'p, (s + @) show
up simultaneously when v is archimedean. In particular, if L(m,,s) has real
coefficients, it takes positive real values when s is real and sufficiently large.

LEMMA B.3. Let m, be unitary and self-dual. Then L(m,,s) has real co-
efficients.
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Proof. We suppress the index v in the notation and write F' for a local
field. Let 7 be irreducible admissible representation of GL, (F). It suffices to
show that, if 7 is unitary, then we have

(B.5) L(m,3) = L(7, s).

Let 2 be the space of local zeta integrals, i.e., the meromorphic continuation of

2@.5.0= [ f@lg T dg

GLn(F)
where f runs over all matrix coefficients of 7, and ® runs over all Bruhat—
Schwartz functions on Mat, (F') (a certain subspace, stable under complex
conjugation, if F' is archimedean; cf. [8, §8]). We recall from [8, Th. 3.3, 8.7]
that the Euler factor L(7,s) is uniquely determined by the space 2. (For
instance, it is a certain normalized generator of the C[¢®, ¢~ *]-module Z; if F’
is nonarchimedean.)

Let %, be the space of matrix coefficients of w, i.e., the space consist-
ing of all linear combinations of functions on GL,(F): g — (7(g)u,v) where
u€emvemand (+,-): m x T — C is the canonical bilinear pairing. We remark
that the involution g — g~!

To show (B.5), it now suffices to show that, if 7 is unitary, the complex

induces an isomorphism between % with ¢-.

conjugation induces an isomorphism between % and €. Let (-,-) : 7 x7m — C
be a nondegenerate Hermitian pairing invariant under GL,,(F). Then the space
¢ consists of all functions f, , : g — (7(g)u,v),u,v € 7. Under complex con-
jugation we have fu.(g) = ((g)u,v) = (v,7(g)u) = ((g7 v, u) = foulg™).
This function belongs to 4> by the remark at the end of the previous para-
graph. This clearly shows that the complex conjugation induces the desired
isomorphism. O

Remark B.4. In the case of a function field, we have a simpler proof of
Theorem B.2. The function L(7,s) is a polynomial in ¢~* of degree denoted
by d. Then the function A(m,s) is of the form

d
(B.6) A, s) = q®2 T (1 — cug™),
=1

where all the roots «; satisfy |o;| = 1. By the functional equation (B.4), if « is

1

a root in (B.6), so is ™" = @. We divide all roots not equal to £1 into pairs

+1  +1 +1

a; a5, ..., an (some of them may repeat). Consider

Ai(s) =" (1 - g™ ) (1~ a7 'q ™)

s

=q¢ +q

)
= (2-a;—a) +227(3105'Q) .
>

- Oy
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From |a;| =1 and «; # 1 it follows that A;(s) has strictly positive coefficients
at all even degrees. Now let a (resp., b) be the multiplicity of the root 1
(resp., —1). We then have

A(m,s) = (qs/2 — q_5/2)a (qs/2 + q_s/2>b ﬁ Ai(s), 2m+a+b=d.
i=1

The desired assertions follow immediately from this product expansion.

Remark B.5. In the statement of the theorem, we excludes the trivial
representation. In this case the complete L-function has a pole at s = 1.
If we replace A(m,s) by s(s — 1)A(m, s), the theorem still holds by the same
proof. Moreover, if F' = Q, we have the Riemann zeta function, and the super-
positivity is known without assuming the Riemann hypothesis, by Pdlya [4].
The super-positivity also holds when the L-function is “positive definite” as
defined by Sarnak in [21]. One of such examples is the weight 12 cusp form
with g-expansion A = ¢J,>1(1 — q")**. More recently, Goldfeld and Huang
in [9] prove that there are infinitely many classical holomorphic cusp forms
(Hecke eigenforms) on SLgy(Z) whose L-functions satisfy super-positivity.

Remark B.6. The positivity of the central value is known for the standard
L-function attached to a symplectic cuspidal representation of GL, (A) by [16].

Remark B.7. The positivity of the first derivative is known for the L-
function appearing in the Gross—Zagier formula in [11], [27], for example the
L-function of an elliptic curve over Q.
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