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From conjugacy classes in the Weyl group to representations

George Lusztig and Zhiwei Yun

1. Definition of the map ¥

1.1. Let G be a connected reductive algebraic group defined and split over
the finite field F, with p elements where p is a prime number which we assume
to be good for G. Let W be the Weyl group of G (a Coxeter group with length
function w — |wl), let W be the set of conjugacy classes of W and let Ry, be the
Grothendieck group of (finite dimensional) representations of W over Q; here [ is
a fixed prime number, [ # p. Let U be the variety of unipotent elements of G. Let
U be the set of G-conjugacy classes of unipotent elements. Let B be the variety of
Borel subgroups of G. We fix BT € B such that B is defined over F,,.

In [12] a (surjective) map ® : W — U was defined based on the study of
intersections of unipotent classes in G with (B*, BT) double cosets in G.

Let q be an indeterminate. In this paper we define a map

WE—)Z[q]@RW

whose image is denoted by Z. We also define a (surjective) map © : Z — U
such that ®(C) = ©(¥(C)) for any C € W. Thus, ¥ is a refinement of ®. The
definition of ¥ again involves the study of intersections of unipotent classes in G
with (B, BT) double cosets in G. We also describe ¥ explicitly for G of low rank
(see §3)).

A map closely related to ¥ appears in the work of Minh-Tam Trinh [14].

1.2. For (B, B’) € B x B we denote by pos(B, B’) € W the relative position
of B, B’ (see []). For w € W let B*wB* = {g € G;pos(B*,gBTg™!) = w}. Let
Fy : G — G be the Frobenius map relative to the Fp-structure. Let ¢ = p® (e > 1)
and let F' = Ff : G — G. This induces Frobenius maps U — U, B — B denoted
again by F. For y € W, we set X, = {B € B;pos(B, F(B)) = y} (see []). Ifi € Z,
the Q;-cohomology space with compact support H{(X,) has a natural action of
the finite group G¥ (see [4]); here ?¥" denotes the fixed point set of F':? —7?. Let
Ry =>,(-1)"Hi(X,), a virtual representation of G*. For g € G¥, tr(g, R;) is an
integer, see [4], §3.3]. For w € W,y € W we set

(1.1) .y = > tr(u, R) € Z.
wEUFN(B+wB+)
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1.3. PROPOSITION. Let w € W. There is a unique element Cy,q € Rw such
that for any y € W we have tr(y, Cuw,q) = Guw,y-

ProOOF. For u € U we set B, = {B € B;u € B}. It is known (Springer)
that W acts naturally on the [-adic cohomology space H'(B,). Let Irr(W) be a
set of representatives for the isomorphism classes of irreducible representations of
W over Q;. We can identify H'(B,) = ®gerew)E @ H'(By)g where H (B,)g =
Homy (E, H(B,)). From [11] (or [7] when p > 0), for u € UF" and y € W we have

(12)  tr(u,R) = (=1)'tr(yF, H'(B.) = > tr(y, EB) tr(F, H*(Bu)g).

% Eeclrr(W)

Here F : HY(B,) — H'(B,) and F : H'(B,)g — H'(B,)r are induced by the
restriction of F': B — B to B, and tr(F, H*(B,)g) is defined to be

> (=)' tr(F, H (Bu) ).
Thus we have

U,y = Z Z tr(y, E) tr(F, H (By)g)-

weUFN(BtwB*) E€lrr(W)

For E € Irr(W) we set

(1.3) CogiB = > tr(F, H*(B,)g)

ueUFN(BtwB*t)
so that

Ao,y = Z Cw,q;E tr(va)

Eclrr(W)

for any y € W. Since a4y € Z and the matrix (tr(y, £)) (with y running through
representatives for the conjugacy classes in W, and E € Irr(W)) has integer entries
and nonzero determinant, we see that (4.5 € Q for any E € Irr(IW). On the other
hand from the definition we see see that (. is an algebraic integer. It follows
that

(1.4) Cu,q:E € 2.
We set Cu,q = > perr(w) Gw.;2E € Rw. This proves the existence statement in
the proposition. The uniqueness is obvious. O

1.4. Let F be the vector space of functions BY — Q. For w € W we define a
linear map Ty : F — F by Tow(f)(B) = X prenrpos(n,5/)=w | (B')- Let H be the
subspace of End(F) with basis {Ti,;w € W}; this is a subalgebra of End(F) (the
Hecke algebra). Now G*" acts on F by g : f — f’ where f'(B) = f(g~'Bg). This
action commutes with the H-action so that we can identify F = @gcppp)& @ Fe
where Fg = Homy (€, F) and Irr(H) is a set of representatives for the simple H-
modules; here F¢ is an irreducible GF-module. For v € UF we have

4(B € BY;pos(B,uBu™') = w) = tr(uT,, F) = Z tr(Thy, €) tr(u, Fg).
Eelr(H)
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Hence for y € W we have

(1.5) 8B )y = > tr(u, Ry)

weUF ,BEBF ;pos(B,uBu~1)=w

Z Ztr(u7fg)tr(u,R?1/)tr(Tw,é').

Eelrr(H) ueld”

From (L3) and (L2) for any w € W, E € Irr(W) we have:
(1.6) 1B ) Cwge =Y Y tr(u, Fe) tr(F, H*(Bu)g) tr(Tw, £).

ueUF Eclrr(H)
1.5. Let we W, E' € Irr(W). We set
(1.7) Cwmg =) D (Fe: RYgr tr(z, B tr(T,, €) € Q.

Eelr(H) zeW

Here (:)gr is the standard inner product of virtual representations of G¥'. We shall
now regard ¢ as variable. We show:
(1.8) Cw, B g 18 the value at q of a polynomial ¢,y g/ (q) in q with rational

’ coefficients independent of q.

We can assume that G is adjoint simple. The only part of the right hand side
of (LT) which depends on ¢ is tr(Ty,£). This is known to be the value at ¢ of
a polynomial in q with integral coefficients independent of g except when G is of
type E7, dimE’ = 512 or G is of type Eg, dim B/ = 4096. Assume now that
G is of type E7, dimE’ = 512. Let £',&” be the two objects of Irr(£) which
have dimension 512. We have ¢y 5 q = (1/2)(tr(Tyw,E’) + tr(Ty,E”)) (see the
proof of [9] §7.12]). Although the quantities tr(Ty,, &), tr(T,, E") are separately not
necessarily polynomials in ¢ their sum is. This proves (L)) in the case where G is of
type E7,dim E’ = 512. The proof in the case where G is of type Fg,dim E’ = 4096,
is entirely similar.

1.6. For € € Irr(H) there is a well defined class function & on G¥ such that

(1.9) tr(g, Fe) = §(W) ™1 Y (Fe : R)gr tr(g, RY) + &e(9)
zeW

for all g € G¥ and

&g is orthogonal to the character of any virtual representation R,
of [].

From (LI0) we deduce using results in [10] that for any E € Irr(W) we have

> &e(u)tr(F, H*(B,)g) = 0.

ueU ¥
Using (L9) and (LE) we see that for any w € W, E € Irr(W) we have

ﬁ(BF)Cw,q;
P> Y (Fe: RYer te(u, RY) tr(F H (Bu) g) tr(Tw, ).

ueUF E€lrr(H) zeW

(1.10)
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Using (L2) we deduce
(111) (B VCwgr= D cwm.g Y te(FH (B)g)tr(F, H (B,)g).
E’elrr(W) ueUF

The right hand side of (LII)) is the value at q = ¢ of a polynomial 7 (q) (with the
coefficients of m being rational numbers independent of ¢). This follows from (L)
and the known properties of tr(F, H(B,)g), see [3].

1.7. Let w € W, E € Trr(W). Tt is known that
(1.12) H(B,)g can be interpreted as the stalk at u € U of an intersection

cohomology complex Kg on the closure of a unipotent class of G.

(This was stated in [8, §3, Conj.2] and proved in [I].) We use this and the
Grothendieck trace formula to rewrite the definition of ¢, 4. in the form

CUMI%E = Z(_l)l tI‘(F, Hi(Xv KE|X))
where X =U N (BTwB™) and the map H (X, Kg|x) — H (X, Kg|x) induced by
F : G — G is denoted again by F. Replacing g by p® with s =1, 2, ... we see that
Cw,ps;E = Z AN’
eV

where V is a finite subset of Q; — {0} and n) are nonzero integers independent of

s. It follows that
(Z P”) Gurip = 3 i

veW Aev!

where V' is a finite subset of Q; — {0} and n}, are nonzero integers independent of
s. By the results in 1.6l we have also

(Z pvs> Cw,ps;E _ Z n;:,psm

veW me[0,N]
for some N > 1 where n/, € Q are independent of s. We deduce that
Z ny\ A = Z ny p*™
Nev! me[0,N]
for s = 1, 2, .... This forces V' to be a subset of {1,p,p?,...}. Thus we have the
following result.

There exists a polynomial 7(q) in q with integer coefficients inde-
(1.13) pendent of s such that (3", oy P'"1*)Cwpesp = w(p°) for s =1, 2,

1.8. For C' € W we denote by C,;, the set of elements of minimal length in
C'. Let p be the reflection representation of W. For w € W let n,, = det(1 — w, p).
We have n,, > 0. We say that w is elliptic if n,, > 0. Let W, be the set of all
C € W such that for some/any w € C, w is elliptic.

Let Zg be the center of G. Let v = dim B. Let r be the rank of G/Zg.
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In this subsection we fix C' € W, and w € Chyp. Let nl, > 1 be the part prime
to p of ny. According to [12] §5.2], for any g € BtwB™,
The group {b € BY;bgb~t = g}/Zq is finite abelian of order divid-
ing m,.
(In the first line of [12] §5.1] one should add the sentence: We fix w € Cip.) We
show:

(1.15) For any E € Irr(W) we have ¢7" (¢ —1)""nl,Cw.qE € Z.

We have (g8 = g #(S) tr(F, H*(Bys)r) where S runs over the set of orbits of
B+ acting on U N BtwB* by conjugation and for each such S, ug is an element
of S. Here for any S in the sum, tr(F, H*(B,s)g) is an algebraic integer and, by
@IA), 4(5) € ¢"(¢—1)"nl,~'Z. Hence ¢~"(q¢—1)""n!,Cw .k is an algebraic integer.
By (T4, this is also a rational number, hence an integer. This proves (L.I3)).

(1.14)

1.9. PROPOSITION. Let C € W.; and w € Cpyip. Let E € Irr(W). Then there
exists a polynomial m1(q) € Z[q] such that Cy pe.p/ (P (p°—1)") = m1(p®) fors =1,
2, .... In particular, Cy.q.r/(¢"(¢—1)") € Z.

Proor. Let mo(q) = (X cw q"*)q”(q — 1)". This is a monic polynomial
in q of degree 2v + r with integer coefficients. Let w(q) be as in (LI3). We
have 7(q) = m1(q)mo(q) + m2(q) where m1(q), m2(q) are polynomials with integer
coefficients and m2(q) is either 0 or has degree < 2v + r. By ([LI3) and (IIH) for
s=1,2,... we have 7(¢°)n.,/7o(¢®) € Z hence m(¢°)n., + m2(q°)n.,/70(¢°) € Z
so that ma(¢®)nl,/mo(q®) € Z. 1If ma(q) # O this is impossible for large s since
degmy < degmy. We see that m(q) = mi(q)mo(q). Setting q = ¢ we see that
Cw,q:e/(¢" (g —1)") = m1(q) € Z. The proposition is proved. O

1.10. Let P be a parabolic subgroup of G containing B™. Let L be an F-stable
Levi subgroup of P and let U be the unipotent radical of P. Then BZF =BtNL
is an F-stable Borel subgroup of L and we have Bt = BZFU. Let Ur be the set
of unipotent elements of L. Let W}, be the Weyl group of L. We can view W, as
a subgroup of W and as an indexing set for the (BZ‘, B}f) double cosets of L, so
that for w € Wy, the double coset B} wB] satisfies (Bf wB})U = BtwB™*. For
y' € Wi, we define X,/ 1, in the same way as X,, but replacing G,y by L,y’; then
Ry, ;=Y (=1)"Hi(X,y 1) is naturally a (virtual) L¥-module.

Let o be an irreducible L¥-module. We can view ¢ as a P"-module on which
UT acts trivially. Let y € W. The following identity is a reformulation of a special
case of a result in [5]:

. F —
(1.16) (indGr (o) : R)gr = (W)™ > (0:R.,. 1 )pr
zeEWizyz—leW,

Here (:),r denote the standard inner product of virtual representations of L. The
left hand side of (II6]) is equal to (o : Zi(—l)iHé(Xy)UF)LF where Hg(Xy)UF is
the space of U -invariants on H(X,) viewed as an L¥-module. It follows that

fv) S (-1HIX,)Y = > R

i 2€EW5zyz—1eWy,

as virtual L¥-modules.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



458 GEORGE LUSZTIG AND ZHIWEI YUN

For w € W,y € Wi, we define a,, 1, as in (ILI)), in terms of L instead of G
that is,

A,y L = Z tr(u, RZIJI,L) cZ.
weUFN(BFwB})
Now let w € Wr,y € W. We have
(1.17) Ay = Z tr(u, R})
weUFN(BFwB)U

_ o0 pl
= E tr(u'u”, R))
(u’7u”)EL{f><UF;u’EB2'wB2'

=0 > Y ()i, H(X,)")

weul (BfwB}) 1

=t(W) 0" > > (W R, )

w'eUF (Bf wB}) z€W;zyz"1eW,
—1 F
=) THOT) > Gwmer
z€W;zyz—1eW

Let Ry, be the Grothendieck group of Wr-modules over Q;. We define Cw,L,q €
Rw, as in Proposition [[33] in terms of L instead of G. Using (LT1) we have

(Y, Cug) = BWVL)THUT) D0 ey o),

zeEW;zyz—1eWp

that is,

(1.18) Cug = 4(UT) indyy, (Gu.1q)-
1.11. Let C € W. For w € Cpin, w’ € Cprin We show:

(1.19) Cw.q = Cu'.q-

It is enough to show that for any y € W we have a.,, = @ y. We write (ILH) for
w,y and for w’,y. We see that it is enough to show that tr(Ty,, &) = tr(Ty, &) for
any € € Irr(H); this follows from results in [6].

1.12. Let C € W. Let m(C) be the multiplicity of the eigenvalue 1 of w in p
(see §L.8) for some/any w € C. We define an element ¢, . € Q® Rw by

_ v _ 1\r—m(C)
Cog = Cwa/(¢"(a—1) )
where w € Cp;y,. This is independent of the choice of w by 1.11. We show that
(1.20) gC’,q € Rw.

If m(C) = 0 (so that C € W) this follows from Proposition [l Assume now
that m(C) > 0. In this case Cy,;, contains an element w which is contained and
elliptic in W, where P,U, L, Wy, are as in §I.10l and P # G. By Proposition [L9
for L instead of G we have Cy 1.4/(¢"“(q — 1)""™()) € Ry, where #(U) = ¢*.
It follows that indyy, (Cu,r,¢/(¢" (g — 1)""™())) € Ryy. Using (LIS) we deduce

Cwq/(@%¢" % (q — 1)T_m(c)) € Ry . This proves ([20).
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1.13. Let C € W. From Proposition [[.9 and the definitions we see that there
is a well defined element ¥(C) € Z[q] ® Rw such that for any s = 1, 2, ...,
the specialization W(C)|q=ps € Rw is equal to ¢, pe 88 10 1121 We can write

U(C) = >2i50d"Pi(C) where ¥;(C) € Rw are zero for i > 0. Thus we have a
map U : W — Z[q] ® Rw and maps ¥; : W — Ry .

2. Properties of the map ¥
2.1. Let w e W, E € Irr(W). We show:
(2.1) \BE|Cuw.E.q i a polynomial in q of degree < |w|+ 2v;

(2.2) |BE|Cuw.1.4 s @ monic polynomial in q of degree |w| + 2v.
From (L8) and the definitions, for any E’ € Irr(W),

(2.3) Cw, B ,q 15 @ polynomial in q of degree < |w|.

Moreover, we have

(2.4) Cwtg =EW)™ D > (Fe: RY)gr tr(Tw, €)

E€lrr(H) zeW

= Z (]:g : 1)GF tI‘(Tw,g) = tI‘(Tl,gl) = qlw‘
Eelr(H)

where &; € Trr(H) is such that T, acts on it as ¢/l for any y € W.
For any v € Y and any E’ € Irr(W) we consider the sum

Mp g =Y t(F,H*(B,)g) tx(F, H*(B.)E).
uEWF
It is known that
This is a polynomial in q of degree < 2dim B, +dim~y = 2v (where
(2.5) u € v) with the inequality being strict unless E, E' appear in the
top cohomology of By, u € 7.

We have
ﬁ(BF)Cw,q;E = Z Cw,E’ q Z Mg g ~-

E’elrr(W) YEU
(See (IT)).) Using this together with (23] and (23] we see that (Z1]) holds. Now
assume that £ = 1. If v is not the regular unipotent class then F does not appear
in the top cohomology of B,,,u € v hence by (Z5), Mg, g~ is a polynomial in ¢ of
degree < 2v. If 7 is the regular unipotent class and E’ # 1 then Mg g/, = 0. If y is
the regular unipotent class and E’ = 1 then Mg g/, = |vF| is a monic polynomial
in ¢ of degree 2v. Combining this with (24) we see that ([2:2)) holds.
Now let C € W and let w € Cipypp. From (1) and (22) we deduce

(2.6) If i > |w| — (r —m(C)) then ¥,;(C) = 0.
If i = \w| — (r = m(C)) then ¥,(C) # 0; more precisely, the multi-
plicity of 1 in ¥;(C) is 1.

Note that |w| — (r — m(C)) is even.
We make the following conjecture.

(2.7)
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460 GEORGE LUSZTIG AND ZHIWEI YUN

2.2. CONJECTURE. Ifi,i" € N satisfy i +i' = |w| — (r — m(C)), then V,;(C) =
U,/ (C). In particular the multiplicity of 1 in Uy(C) is 1.

This is supported by the examples in §31

2.3. For v € U we set d(y) = dim B,, where u € . According to Springer, for
any E € Trr(W) there is a unique v € U such that H>¥)(B,)g # 0 for some/any
u € v; we set Z(FE) =, d'(F) = d(y). The map = : Irr(W) — U is surjective. We
shall need the following property of =.

Lety €U, u € v and let E € Trr(W) be such that H (B,)g # 0 for
(2.8) some i. Then d'(E) = d(E(E)) < d(v). If in addition i < 2d(y)
then d'(E) < d(v).

This follows from ([I2I).

2.4. Let ® : W — U be the (surjective) map defined in [12]. By definition, if
C € W and w € Chuin, then ®(C) N (BTwB™) # 0; moreover, if 4/ € U satisfies
v N (BTwB™) # () then ®(C) is contained in the closure of 7/ in U.

Let C € W and let v = ®(C). Let w € Cypip. We show:

(2.9) If E € Iex(W) appears in gC,q then d'(E) < d(v).

From (3) we see that H*(B,)r # 0 for some u € UN(BTwB™). Now (2.9) follows

from (2.8).
We show:

(2.10) If E € Irr(W) appears in £C7q and E(E) # ~ then d'(E) < d(7).

From ([L3]) we see that H(B,) g # 0 for some o/ € U and some u € v'N(BTwB*). If
i < 2d(v') then by (28] we have d'(E) < d(v'). Using (29) we deduce d(y) < d(v);
but by the definition of ®, v is contained in the closure of 4’ so that d(vy) > d(v'),
a contradiction. If ¢ = 2d(y’) then Z(E) = 4 hence d'(FE) = d(7'). Since 7 is
contained in the closure of 4" and 4" # v we have d(y') < d(v) hence d'(E) < d(7).
This proves (Z.10).

If By € Trr(W) s the part of H**)(B,,) which is fized by the

(2.11) action of the centralizer of ug (ug € v) then Eqy appears in gcq.

We must show that -, /e (p+ypp+) 0 H* (Bu)g,) # 0. Assume that

(2.12) > tr(F, H*(B.)g,) = 0.

ueUFN(BtwB*)
If v/ € U is such that v is contained in the closure of 4" and v # +' then H*(B,) g, =
0 for all ¢ hence from 2.I2) we deduce >, rr(pty,p+) TE H (Bu)g,) = 0. It
follows that f(u € v N (BTwB*))q*") = 0. This contradicts v N (BTwB*) # 0.
This proves ([211)).

2.5. Let Z = U(W) C Z[q] ® Rw. For £ € Z there is a unique v € Y such
that the following holds:

If E € Irr(W) appears in £ then d'(E) < d(y). If E € Irr(W) appears in £ and
E(E) # v then d'(E) < d(v). If Ey € Irr(W) is the part of H??)(B,,) which is
fixed by the action of the centralizer of ug (ug € v), then Ey appears in &.
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The existence of v follows from §2.4t the uniqueness is obvious. Thus E + v is
a well defined map © : Z — U. From §2.4 we have that &(C) = (¥ (C)) for any
C € W. Since @ is surjective, we see that © is surjective.

2.6. Let Goq = G/Zg. From ([L2) for any u € U and E € Irr(W) we have

(2.13) tr(F, H*(Bu)g) = (W)~ Y tr(y, B) tr(u, R)).
yeWw

For y,y in W we have
> tr(u, Ry) tr(u, RY) = 4(z € Wizyz~" = o) det(q — y, p)'4(Ghy),
ueU ¥

see [, Theorem 6.9]. Using this and (ZI3) we obtain

(2.14) > te(F H* (By) ) tr(F, H* (Bu) k)
ueUF

=1W)™2 > tr(y, B tr(zyz ', E) det(q — y, p) " #(Ghy)
yeW,zeW

=4(W) > tr(y, E® E')det(q — y, p) HH(GLy).
yeWw

Using this and (II)) we see that if C € W, w € Ciyp then the coefficient of
E € Irr(W) in gcq is

(2.15) > AceAr g Al g,
Eelrr(H),E’ elrr(W)

where
Ac’g = (q - l)m(c) tr(TmS),
e = 4W)"P > (Fe: R)gr tr(z, EY),

zeW

rw =1W) > tr(y, E® E') det(q —y,p) "
yeWw

Thus this coefficient is an entry of a product of three square matrices of size §(IW) =
f(Trr(W)). The matrices (Ac,e), (A% ) are known to be invertible when regarded
as matrices with entries in Q. We see that

{gcq;C € W} is a basis of Q ® Rw if and only if the matriz

(2.16) (A’&E,) (with entries independent of q) is invertible.

The entries of the last matrix are some of the entries of the nonabelian Fourier
transform [9] for the various two-sided cells of W. This matrix is not necessarily
invertible. For example if W is of type B,, or C,, this matrix is invertible if n < 11
but is not invertible if n = 12. Also if W is of type Fj this matrix is not invertible.

2.7. PROPOSITION. For anyy € W we have

oy = Z (—D)W¥I(Fe : dim(RL)RY) tr(To, €) g 8(BY) 2.
E€lrr(W)
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Proor. Combining (L), 1)) and (2I4]), we obtain the identity
1BNawy =t 3 D]
BE,E' E€lr(W) 2,y €W

(Fe : R tr(z, B') tr(Ty, ) tr(y/, E) tr(y', E') det(q — o/, p) " 4(GE) tr(y, E),
where (Fg :?) is the multiplicity of F¢ in the virtual representation ? of G¥', p is
the reflection representation of W and G4 is the adjoint group of G.

We now replace g ey tr(z, E') tr(y’, E') by (e € W; eze™! =¢/) and we
obtain

€lrr

B ay, =4 ST 3

EE€lrr(W) zeW
(Fe : R tr(Tw, €) tr(z, E) det(q — 2, p) " #(Gag) tr(y, E).
We now replace 3 per, ) t1(2, E) tr(y, E) by f(e € W; ¢’ze' 7! = y) and we obtain

Gwy = Y. (Fe:Ry)tx(To, &) det(q —y,p) H(GE)H(BT) .
Eelrr(W)

We now replace det(q—y, p) 14(GL,) by dim(R;)q”(—l)‘y| and we obtain the desired
identity. O

2.8. In this subsection we diverge from the setup of LI} we assume instead
that T is a finite Coxeter group. Then all ingredients of (213 make sense. The
(constant) matrix (Ag p/) makes sense as a matrix whose entries involve the appro-
priate generalization of the nonabelian Fourier transform. Hence the map ¥ can
be defined in this generality (although the ring of coefficients Z may have to be
increased).

3. Examples

3.1. We return to the setup in §L.I1 We shall denote by sgn the sign represen-
tation of W, by 1 the unit representation of W. Let p be as in §L.8 In this section
we shall sometime write w instead of C when w is an element of C' € W.

Assume first that W is of type A;. The elements of W are represented by 1, s
where s is the simple reflection. The objects of Irr(WW) are 1, p = sgn. We have

U(1) =1+ sgn,

U(s) = 1.

3.2. We now assume that W is of type As. The elements of W are represented
by 1,s1,c where s1,sy are the simple reflections and ¢ = sys2. The objects of
Irr(W) are 1, p, sgn. We have

V(1) =1+ 2p+sgn,

\1/(81) =1+4p,

U(c) =1.

3.3. We now assume that W is of type By. The elements of W are represented
by 1, s1, 82, ¢, c? where s1, s, are the simple reflections and ¢ = sy55. The objects
of Trr(W) are 1,p,€,€”’,sgn where ¢,¢” are the one dimensional representations
other than 1,sgn. The following result was obtained by making use of [13]. We can
arrange notation so that:
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V(1) =14+2p+€ + € +sgn,
U(s1)=1+p+¢€,
U(sy)=1+p+€,

U(c) =1,

V() =q*1+qp+1.

3.4. We now assume that W is of type G2. The elements of W are represented
by 1, s1, 2, ¢, c2, ¢ where s1, s, are the simple reflections and ¢ = s1s5. The objects
of Irr(W) are 1, p, €, ", p) = pR¢€ = pR¢€”’, sgn where €, e” are the one dimensional
representations other than 1,sgn. The following result was obtained by making use
of [2]. We can arrange notation so that:
1)=1+4+2p+42p +€ + €' +sgn,
s1)=1+p+p +¢€,
se)=1+p+p +¢,
c)=1,

A=’ 1+ap+1,
V() =q'l+a’p+a*(p +1) +ap+1.

U
U
U
U
U

3.5. In the examples above, ¥;(C) is always an actual representation of W.
This is not so in higher rank. We have calculated ¥(C) for G of type Fy on a
computer using the formulas in §2.6 by the same method as in [12] §1.2]; we thank
Gongqin Li for programming this in GAP. If C' consists of the longest element in W
of type F, and F is a one-dimensional representation of W other than 1,sgn then
the coefficient of E in ®(C) is —2q'%; thus, ®1¢(C) is not an actual representation
of W. A similar thing happens in type Bs and Cj.
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