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From conjugacy classes in the Weyl group to representations

George Lusztig and Zhiwei Yun

1. Definition of the map Ψ

1.1. Let G be a connected reductive algebraic group defined and split over
the finite field Fp with p elements where p is a prime number which we assume
to be good for G. Let W be the Weyl group of G (a Coxeter group with length
function w �→ |w|), let W be the set of conjugacy classes of W and let RW be the
Grothendieck group of (finite dimensional) representations of W over Q̄l; here l is
a fixed prime number, l �= p. Let U be the variety of unipotent elements of G. Let
U be the set of G-conjugacy classes of unipotent elements. Let B be the variety of
Borel subgroups of G. We fix B+ ∈ B such that B+ is defined over Fp.

In [12] a (surjective) map Φ : W → U was defined based on the study of
intersections of unipotent classes in G with (B+, B+) double cosets in G.

Let q be an indeterminate. In this paper we define a map

Ψ : W → Z[q]⊗RW

whose image is denoted by Z. We also define a (surjective) map Θ : Z → U
such that Φ(C) = Θ(Ψ(C)) for any C ∈ W . Thus, Ψ is a refinement of Φ. The
definition of Ψ again involves the study of intersections of unipotent classes in G
with (B+, B+) double cosets in G. We also describe Ψ explicitly for G of low rank
(see §3).

A map closely related to Ψ appears in the work of Minh-Tam Trinh [14].

1.2. For (B,B′) ∈ B × B we denote by pos(B,B′) ∈ W the relative position
of B,B′ (see [4]). For w ∈ W let B+wB+ = {g ∈ G; pos(B+, gB+g−1) = w}. Let
F1 : G → G be the Frobenius map relative to the Fp-structure. Let q = pe (e ≥ 1)
and let F = F e

1 : G → G. This induces Frobenius maps U → U , B → B denoted
again by F . For y ∈ W , we set Xy = {B ∈ B; pos(B,F (B)) = y} (see [4]). If i ∈ Z,
the Q̄l-cohomology space with compact support Hi

c(Xy) has a natural action of
the finite group GF (see [4]); here ?F denotes the fixed point set of F :? →?. Let
R1

y =
∑

i(−1)iHi
c(Xy), a virtual representation of GF . For g ∈ GF , tr(g,R1

y) is an
integer, see [4, §3.3]. For w ∈ W, y ∈ W we set

(1.1) aw,y =
∑

u∈UF∩(B+wB+)

tr(u,R1
y) ∈ Z.
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1.3. Proposition. Let w ∈ W . There is a unique element ζw,q ∈ RW such
that for any y ∈ W we have tr(y, ζw,q) = aw,y.

Proof. For u ∈ U we set Bu = {B ∈ B;u ∈ B}. It is known (Springer)
that W acts naturally on the l-adic cohomology space Hi(Bu). Let Irr(W ) be a
set of representatives for the isomorphism classes of irreducible representations of
W over Q̄l. We can identify Hi(Bu) = ⊕E∈Irr(W )E ⊗Hi(Bu)E where Hi(Bu)E =

HomW (E,Hi(Bu)). From [11] (or [7] when p 	 0), for u ∈ UF and y ∈ W we have

(1.2) tr(u,R1
y) =

∑
i

(−1)i tr(yF,Hi(Bu)) =
∑

E∈Irr(W )

tr(y, E) tr(F,H∗(Bu)E).

Here F : Hi(Bu) → Hi(Bu) and F : Hi(Bu)E → Hi(Bu)E are induced by the
restriction of F : B → B to Bu and tr(F,H∗(Bu)E) is defined to be∑

i

(−1)i tr(F,Hi(Bu)E).

Thus we have

aw,y =
∑

u∈UF∩(B+wB+)

∑
E∈Irr(W )

tr(y, E) tr(F,H∗(Bu)E).

For E ∈ Irr(W ) we set

(1.3) ζw,q;E =
∑

u∈UF∩(B+wB+)

tr(F,H∗(Bu)E)

so that

aw,y =
∑

E∈Irr(W )

ζw,q;E tr(y, E)

for any y ∈ W . Since aw,y ∈ Z and the matrix (tr(y, E)) (with y running through
representatives for the conjugacy classes in W , and E ∈ Irr(W )) has integer entries
and nonzero determinant, we see that ζw,q;E ∈ Q for any E ∈ Irr(W ). On the other
hand from the definition we see see that ζw,q;E is an algebraic integer. It follows
that

(1.4) ζw,q;E ∈ Z.

We set ζw,q =
∑

E∈Irr(W ) ζw,q;EE ∈ RW . This proves the existence statement in

the proposition. The uniqueness is obvious. �

1.4. Let F be the vector space of functions BF → Q̄l. For w ∈ W we define a
linear map Tw : F → F by Tw(f)(B) =

∑
B′∈BF ;pos(B,B′)=w f(B′). Let H be the

subspace of End(F) with basis {Tw;w ∈ W}; this is a subalgebra of End(F) (the
Hecke algebra). Now GF acts on F by g : f �→ f ′ where f ′(B) = f(g−1Bg). This
action commutes with the H-action so that we can identify F = ⊕E∈Irr(H)E ⊗ FE
where FE = HomH(E ,F) and Irr(H) is a set of representatives for the simple H-
modules; here FE is an irreducible GF -module. For u ∈ UF we have

�(B ∈ BF ; pos(B, uBu−1) = w) = tr(uTw,F) =
∑

E∈Irr(H)

tr(Tw, E) tr(u,FE).
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Hence for y ∈ W we have

�(BF )aw,y =
∑

u∈UF ,B∈BF ;pos(B,uBu−1)=w

tr(u,R1
y)(1.5)

=
∑

E∈Irr(H)

∑
u∈UF

tr(u,FE) tr(u,R
1
y) tr(Tw, E).

From (1.5) and (1.2) for any w ∈ W,E ∈ Irr(W ) we have:

(1.6) �(BF )ζw,q;E =
∑

u∈UF

∑
E∈Irr(H)

tr(u,FE) tr(F,H
∗(Bu)E) tr(Tw, E).

1.5. Let w ∈ W,E′ ∈ Irr(W ). We set

(1.7) cw,E′,q = �(W )−1
∑

E∈Irr(H)

∑
z∈W

(FE : R1
z)GF tr(z, E′) tr(Tw, E) ∈ Q.

Here (:)GF is the standard inner product of virtual representations of GF . We shall
now regard q as variable. We show:

(1.8)
cw,E′,q is the value at q of a polynomial cw,E′(q) in q with rational
coefficients independent of q.

We can assume that G is adjoint simple. The only part of the right hand side
of (1.7) which depends on q is tr(Tw, E). This is known to be the value at q of
a polynomial in q with integral coefficients independent of q except when G is of
type E7, dimE′ = 512 or G is of type E8, dimE′ = 4096. Assume now that
G is of type E7, dimE′ = 512. Let E ′, E ′′ be the two objects of Irr(E) which
have dimension 512. We have cw,E′,q = (1/2)(tr(Tw, E ′) + tr(Tw, E ′′)) (see the
proof of [9, §7.12]). Although the quantities tr(Tw, E ′), tr(Tw, E ′′) are separately not
necessarily polynomials in q their sum is. This proves (1.8) in the case where G is of
type E7, dimE′ = 512. The proof in the case where G is of type E8, dimE′ = 4096,
is entirely similar.

1.6. For E ∈ Irr(H) there is a well defined class function ξE on GF such that

(1.9) tr(g,FE) = �(W )−1
∑
z∈W

(FE : R1
z)GF tr(g,R1

z) + ξE(g)

for all g ∈ GF and

(1.10)
ξE is orthogonal to the character of any virtual representation Rθ

T

of [4].

From (1.10) we deduce using results in [10] that for any E ∈ Irr(W ) we have∑
u∈UF

ξE(u) tr(F,H
∗(Bu)E) = 0.

Using (1.9) and (1.6) we see that for any w ∈ W,E ∈ Irr(W ) we have

�(BF )ζw,q;E

= �(W )−1
∑

u∈UF

∑
E∈Irr(H)

∑
z∈W

(FE : R1
z)GF tr(u,R1

z) tr(F,H
∗(Bu)E) tr(Tw, E).
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Using (1.2) we deduce

(1.11) �(BF )ζw,q;E =
∑

E′∈Irr(W )

cw,E′,q

∑
u∈UF

tr(F,H∗(Bu)E′) tr(F,H∗(Bu)E).

The right hand side of (1.11) is the value at q = q of a polynomial π(q) (with the
coefficients of π being rational numbers independent of q). This follows from (1.8)
and the known properties of tr(F,Hi(Bu)E), see [3].

1.7. Let w ∈ W,E ∈ Irr(W ). It is known that

(1.12)
Hi(Bu)E can be interpreted as the stalk at u ∈ U of an intersection
cohomology complex KE on the closure of a unipotent class of G.

(This was stated in [8, §3, Conj.2] and proved in [1].) We use this and the
Grothendieck trace formula to rewrite the definition of ζw,q;E in the form

ζw,q;E =
∑
i

(−1)i tr(F,Hi(X,KE|X))

where X = U ∩ (B+wB+) and the map Hi(X,KE|X) → Hi(X,KE|X) induced by
F : G → G is denoted again by F . Replacing q by ps with s = 1, 2, . . . we see that

ζw,ps;E =
∑
λ∈V

nλλ
s

where V is a finite subset of Q̄l − {0} and nλ are nonzero integers independent of
s. It follows that ( ∑

v∈W

p|v|s

)
ζw,ps;E =

∑
λ′∈V ′

n′
λ′λ′s

where V ′ is a finite subset of Q̄l −{0} and n′
λ′ are nonzero integers independent of

s. By the results in §1.6 we have also( ∑
v∈W

p|v|s

)
ζw,ps;E =

∑
m∈[0,N ]

n′′
mpsm

for some N ≥ 1 where n′′
m ∈ Q are independent of s. We deduce that∑

λ′∈V ′

n′
λ′λ′s =

∑
m∈[0,N ]

n′′
mpsm

for s = 1, 2, . . . . This forces V ′ to be a subset of {1, p, p2, . . . }. Thus we have the
following result.

(1.13)
There exists a polynomial π(q) in q with integer coefficients inde-
pendent of s such that (

∑
v∈W p|v|s)ζw,ps;E = π(ps) for s = 1, 2,

. . . .

1.8. For C ∈ W we denote by Cmin the set of elements of minimal length in
C. Let ρ be the reflection representation of W . For w ∈ W let nw = det(1−w, ρ).
We have nw ≥ 0. We say that w is elliptic if nw > 0. Let W el be the set of all
C ∈ W such that for some/any w ∈ C, w is elliptic.

Let ZG be the center of G. Let ν = dimB. Let r be the rank of G/ZG.
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In this subsection we fix C ∈ W el and w ∈ Cmin. Let n
′
w ≥ 1 be the part prime

to p of nw. According to [12, §5.2], for any g ∈ B+wB+,

(1.14)
The group {b ∈ B+; bgb−1 = g}/ZG is finite abelian of order divid-
ing n′

w.

(In the first line of [12, §5.1] one should add the sentence: We fix w ∈ Cmin.) We
show:

(1.15) For any E ∈ Irr(W ) we have q−ν(q − 1)−rn′
wζw,q;E ∈ Z.

We have ζw,q;E =
∑

S �(S) tr(F,H∗(BuS
)E) where S runs over the set of orbits of

B+F acting on UF ∩B+wB+ by conjugation and for each such S, uS is an element
of S. Here for any S in the sum, tr(F,H∗(BuS

)E) is an algebraic integer and, by
(1.14), �(S) ∈ qν(q−1)rn′

w
−1Z. Hence q−ν(q−1)−rn′

wζw,q;E is an algebraic integer.
By (1.4), this is also a rational number, hence an integer. This proves (1.15).

1.9. Proposition. Let C ∈ W el and w ∈ Cmin. Let E ∈ Irr(W ). Then there
exists a polynomial π1(q) ∈ Z[q] such that ζw,ps;E/(p

sν(ps−1)r) = π1(p
s) for s = 1,

2, . . . . In particular, ζw,q;E/(q
ν(q − 1)r) ∈ Z.

Proof. Let π0(q) = (
∑

v∈W q|v|s)qν(q − 1)r. This is a monic polynomial
in q of degree 2ν + r with integer coefficients. Let π(q) be as in (1.13). We
have π(q) = π1(q)π0(q) + π2(q) where π1(q), π2(q) are polynomials with integer
coefficients and π2(q) is either 0 or has degree < 2ν + r. By (1.13) and (1.15) for
s = 1, 2, . . . we have π(qs)n′

w/π0(q
s) ∈ Z hence π1(q

s)n′
w + π2(q

s)n′
w/π0(q

s) ∈ Z
so that π2(q

s)n′
w/π0(q

s) ∈ Z. If π2(q) �= 0 this is impossible for large s since
deg π2 < deg π0. We see that π(q) = π1(q)π0(q). Setting q = q we see that
ζw,q;E/(q

ν(q − 1)r) = π1(q) ∈ Z. The proposition is proved. �

1.10. Let P be a parabolic subgroup of G containing B+. Let L be an F -stable
Levi subgroup of P and let U be the unipotent radical of P . Then B+

L := B+ ∩ L

is an F -stable Borel subgroup of L and we have B+ = B+
LU . Let UL be the set

of unipotent elements of L. Let WL be the Weyl group of L. We can view WL as
a subgroup of W and as an indexing set for the (B+

L , B
+
L ) double cosets of L, so

that for w ∈ WL the double coset B+
LwB+

L satisfies (B+
LwB

+
L )U = B+wB+. For

y′ ∈ WL we define Xy′,L in the same way as Xy, but replacing G, y by L, y′; then
R1

y′,L =
∑

i(−1)iHi
c(Xy′,L) is naturally a (virtual) LF -module.

Let σ be an irreducible LF -module. We can view σ as a PF -module on which
UF acts trivially. Let y ∈ W . The following identity is a reformulation of a special
case of a result in [5]:

(1.16) (indG
F

PF (σ) : R1
y)GF = �(WL)

−1
∑

z∈W ;zyz−1∈WL

(σ : R1
zyz−1,L)LF .

Here (:)LF denote the standard inner product of virtual representations of LF . The

left hand side of (1.16) is equal to (σ :
∑

i(−1)iHi
c(Xy)

UF

)LF where Hi
c(Xy)

UF

is
the space of UF -invariants on Hi

c(Xy) viewed as an LF -module. It follows that

�(WL)
∑
i

(−1)iHi
c(Xy)

UF

=
∑

z∈W ;zyz−1∈WL

R1
zyz−1,L

as virtual LF -modules.
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For w ∈ WL, y
′ ∈ WL we define aw,y′;L as in (1.1), in terms of L instead of G

that is,

aw,y′;L =
∑

u∈UF
L ∩(B+

LwB+
L )

tr(u,R1
y′,L) ∈ Z.

Now let w ∈ WL, y ∈ W . We have

aw,y =
∑

u∈UF∩(B+
LwB+

L )U

tr(u,R1
y)(1.17)

=
∑

(u′,u′′)∈UF
L ×UF ;u′∈B+

LwB+
L

tr(u′u′′, R1
y)

= �(UF )
∑

u′∈UF
L (B+

LwB+
L )

∑
i

(−1)i tr(u′, Hi
c(Xy)

UF

)

= �(WL)
−1�(UF )

∑
u′∈UF

L (B+
LwB+

L )

∑
z∈W ;zyz−1∈WL

tr(u′, R1
zyz−1,L)

= �(WL)
−1�(UF )

∑
z∈W ;zyz−1∈WL

aw,zyz−1;L.

LetRWL
be the Grothendieck group ofWL-modules over Q̄l. We define ζw,L,q ∈

RWL
as in Proposition 1.3 in terms of L instead of G. Using (1.17) we have

tr(y, ζw,q) = �(WL)
−1�(UF )

∑
z∈W ;zyz−1∈WL

tr(zyz−1, ζw,L,q),

that is,

(1.18) ζw,q = �(UF ) indWWL
(ζw,L,q).

1.11. Let C ∈ W . For w ∈ Cmin, w
′ ∈ Cmin we show:

(1.19) ζw,q = ζw′,q.

It is enough to show that for any y ∈ W we have aw,y = aw′,y. We write (1.5) for
w, y and for w′, y. We see that it is enough to show that tr(Tw, E) = tr(Tw′ , E) for
any E ∈ Irr(H); this follows from results in [6].

1.12. Let C ∈ W . Let m(C) be the multiplicity of the eigenvalue 1 of w in ρ
(see §1.8) for some/any w ∈ C. We define an element ζ

C,q
∈ Q⊗RW by

ζ
C,q

= ζw,q/(q
ν(q − 1)r−m(C))

where w ∈ Cmin. This is independent of the choice of w by 1.11. We show that

(1.20) ζ
C,q

∈ RW .

If m(C) = 0 (so that C ∈ W el) this follows from Proposition 1.9. Assume now
that m(C) > 0. In this case Cmin contains an element w which is contained and
elliptic in WL where P,U, L,WL are as in §1.10 and P �= G. By Proposition 1.9
for L instead of G we have ζw,L,q/(q

ν−ω(q − 1)r−m(C)) ∈ RWL
where �(U) = qω.

It follows that indWWL
(ζw,L,q/(q

ν−ω(q − 1)r−m(C))) ∈ RW . Using (1.18) we deduce

ζw,q/(q
ωqν−ω(q − 1)r−m(C)) ∈ RW . This proves (1.20).
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1.13. Let C ∈ W . From Proposition 1.9 and the definitions we see that there
is a well defined element Ψ(C) ∈ Z[q] ⊗ RW such that for any s = 1, 2, . . . ,
the specialization Ψ(C)|q=ps ∈ RW is equal to ζ

C,ps as in §1.12. We can write

Ψ(C) =
∑

i≥0 q
iΨi(C) where Ψi(C) ∈ RW are zero for i 	 0. Thus we have a

map Ψ : W → Z[q]⊗RW and maps Ψi : W → RW .

2. Properties of the map Ψ

2.1. Let w ∈ W,E ∈ Irr(W ). We show:

(2.1) |BF |ζw,E,q is a polynomial in q of degree ≤ |w|+ 2ν;

(2.2) |BF |ζw,1,q is a monic polynomial in q of degree |w|+ 2ν.

From (1.8) and the definitions, for any E′ ∈ Irr(W ),

(2.3) cw,E′,q is a polynomial in q of degree ≤ |w|.
Moreover, we have

cw,1,q = �(W )−1
∑

E∈Irr(H)

∑
z∈W

(FE : R1
z)GF tr(Tw, E)(2.4)

=
∑

E∈Irr(H)

(FE : 1)GF tr(Tw, E) = tr(T1, E1) = q|w|

where E1 ∈ Irr(H) is such that Ty acts on it as q|y| for any y ∈ W .
For any γ ∈ U and any E′ ∈ Irr(W ) we consider the sum

ME,E′,γ =
∑
u∈γF

tr(F,H∗(Bu)E′) tr(F,H∗(Bu)E).

It is known that

(2.5)
This is a polynomial in q of degree ≤ 2 dimBu+dim γ = 2ν (where
u ∈ γ) with the inequality being strict unless E,E′ appear in the
top cohomology of Bu, u ∈ γ.

We have

�(BF )ζw,q;E =
∑

E′∈Irr(W )

cw,E′,q

∑
γ∈U

ME,E′,γ .

(See (1.11).) Using this together with (2.5) and (2.3) we see that (2.1) holds. Now
assume that E = 1. If γ is not the regular unipotent class then E does not appear
in the top cohomology of Bu, u ∈ γ hence by (2.5), ME,E′,γ is a polynomial in q of
degree < 2ν. If γ is the regular unipotent class and E′ �= 1 then ME,E′,γ = 0. If γ is
the regular unipotent class and E′ = 1 then ME,E′,γ = |γF | is a monic polynomial
in q of degree 2ν. Combining this with (2.4) we see that (2.2) holds.

Now let C ∈ W and let w ∈ Cmin. From (2.1) and (2.2) we deduce

(2.6) If i > |w| − (r −m(C)) then Ψi(C) = 0.

(2.7)
If i = |w| − (r−m(C)) then Ψi(C) �= 0; more precisely, the multi-
plicity of 1 in Ψi(C) is 1.

Note that |w| − (r −m(C)) is even.
We make the following conjecture.
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2.2. Conjecture. If i, i′ ∈ N satisfy i+ i′ = |w| − (r−m(C)), then Ψi(C) =
Ψi′(C). In particular the multiplicity of 1 in Ψ0(C) is 1.

This is supported by the examples in §3.

2.3. For γ ∈ U we set d(γ) = dimBu where u ∈ γ. According to Springer, for
any E ∈ Irr(W ) there is a unique γ ∈ U such that H2d(γ)(Bu)E �= 0 for some/any
u ∈ γ; we set Ξ(E) = γ, d′(E) = d(γ). The map Ξ : Irr(W ) → U is surjective. We
shall need the following property of Ξ.

(2.8)
Let γ ∈ U , u ∈ γ and let E ∈ Irr(W ) be such that Hi(Bu)E �= 0 for
some i. Then d′(E) = d(Ξ(E)) ≤ d(γ). If in addition i < 2d(γ)
then d′(E) < d(γ).

This follows from (1.12).

2.4. Let Φ : W → U be the (surjective) map defined in [12]. By definition, if
C ∈ W and w ∈ Cmin, then Φ(C) ∩ (B+wB+) �= ∅; moreover, if γ′ ∈ U satisfies
γ′ ∩ (B+wB+) �= ∅ then Φ(C) is contained in the closure of γ′ in U .

Let C ∈ W and let γ = Φ(C). Let w ∈ Cmin. We show:

(2.9) If E ∈ Irr(W ) appears in ζ
C,q

then d′(E) ≤ d(γ).

From (1.3) we see that Hi(Bu)E �= 0 for some u ∈ U ∩(B+wB+). Now (2.9) follows
from (2.8).

We show:

(2.10) If E ∈ Irr(W ) appears in ζ
C,q

and Ξ(E) �= γ then d′(E) < d(γ).

From (1.3) we see thatHi(Bu)E �= 0 for some γ′ ∈ U and some u ∈ γ′∩(B+wB+). If
i < 2d(γ′) then by (2.8) we have d′(E) < d(γ′). Using (2.9) we deduce d(γ) < d(γ′);
but by the definition of Φ, γ is contained in the closure of γ′ so that d(γ) ≥ d(γ′),
a contradiction. If i = 2d(γ′) then Ξ(E) = γ′ hence d′(E) = d(γ′). Since γ is
contained in the closure of γ′ and γ′ �= γ we have d(γ′) < d(γ) hence d′(E) < d(γ).
This proves (2.10).

(2.11)
If E0 ∈ Irr(W ) is the part of H2d(γ)(Bu0

) which is fixed by the
action of the centralizer of u0 (u0 ∈ γ) then E0 appears in ζ

C,q
.

We must show that
∑

u∈UF∩(B+wB+) tr(F,H
∗(Bu)E0

) �= 0. Assume that

(2.12)
∑

u∈UF∩(B+wB+)

tr(F,H∗(Bu)E0
) = 0.

If γ′ ∈ U is such that γ is contained in the closure of γ′ and γ �= γ′ then Hi(Bu)E0
=

0 for all i hence from (2.12) we deduce
∑

u∈γF∩(B+wB+) tr(F,H
∗(Bu)E0

) = 0. It

follows that �(u ∈ γF ∩ (B+wB+))qd(γ) = 0. This contradicts γF ∩ (B+wB+) �= ∅.
This proves (2.11).

2.5. Let Z = Ψ(W ) ⊂ Z[q] ⊗ RW . For ξ ∈ Z there is a unique γ ∈ U such
that the following holds:

If E ∈ Irr(W ) appears in ξ then d′(E) ≤ d(γ). If E ∈ Irr(W ) appears in ξ and
Ξ(E) �= γ then d′(E) < d(γ). If E0 ∈ Irr(W ) is the part of H2d(γ)(Bu0

) which is
fixed by the action of the centralizer of u0 (u0 ∈ γ), then E0 appears in ξ.
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The existence of γ follows from §2.4; the uniqueness is obvious. Thus E �→ γ is
a well defined map Θ : Z → U . From §2.4 we have that Φ(C) = Θ(Ψ(C)) for any
C ∈ W . Since Φ is surjective, we see that Θ is surjective.

2.6. Let Gad = G/ZG. From (1.2) for any u ∈ UF and E ∈ Irr(W ) we have

(2.13) tr(F,H∗(Bu)E) = �(W )−1
∑
y∈W

tr(y, E) tr(u,R1
y).

For y, y′ in W we have∑
u∈UF

tr(u,R1
y) tr(u,R

1
y′) = �(z ∈ W ; zyz−1 = y′) det(q − y, ρ)−1�(GF

ad),

see [4, Theorem 6.9]. Using this and (2.13) we obtain∑
u∈UF

tr(F,H∗(Bu)E′) tr(F,H∗(Bu)E)(2.14)

= �(W )−2
∑

y∈W,z∈W

tr(y, E′) tr(zyz−1, E) det(q − y, ρ)−1�(GF
ad)

= �(W )−1
∑
y∈W

tr(y, E ⊗ E′) det(q − y, ρ)−1�(GF
ad).

Using this and (1.11) we see that if C ∈ W , w ∈ Cmin then the coefficient of
E ∈ Irr(W ) in ζ

C,q
is

(2.15)
∑

E∈Irr(H),E′∈Irr(W )

AC,EA
′
E,E′A′′

E′,E ,

where

AC,E = (q − 1)m(C) tr(Tw, E),

A′
E,E′ = �(W )−1

∑
z∈W

(FE : R1
z)GF tr(z, E′),

A′′
E′,E = �(W )−1

∑
y∈W

tr(y, E ⊗ E′) det(q − y, ρ)−1.

Thus this coefficient is an entry of a product of three square matrices of size �(W ) =
�(Irr(W )). The matrices (AC,E), (A

′′
E′,E) are known to be invertible when regarded

as matrices with entries in Q. We see that

(2.16)
{ζ

C,q
;C ∈ W} is a basis of Q ⊗ RW if and only if the matrix

(A′
E,E′) (with entries independent of q) is invertible.

The entries of the last matrix are some of the entries of the nonabelian Fourier
transform [9] for the various two-sided cells of W . This matrix is not necessarily
invertible. For example if W is of type Bn or Cn this matrix is invertible if n ≤ 11
but is not invertible if n = 12. Also if W is of type E6 this matrix is not invertible.

2.7. Proposition. For any y ∈ W we have

aw,y =
∑

E∈Irr(W )

(−1)|y|(FE : dim(R1
y)R

1
y) tr(Tw, E)qν�(BF )−1.
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Proof. Combining (1.7),(1.11) and (2.14), we obtain the identity

�(BF )aw,y = �(W )−2
∑

E,E′,E∈Irr(W )

∑
z,y′∈W

(FE : R1
z) tr(z, E

′) tr(Tw, E) tr(y′, E) tr(y′, E′) det(q − y′, ρ)−1�(GF
ad) tr(y, E),

where (FE :?) is the multiplicity of FE in the virtual representation ? of GF , ρ is
the reflection representation of W and Gad is the adjoint group of G.

We now replace
∑

E′∈Irr(W ) tr(z, E
′) tr(y′, E′) by �(e ∈ W ; eze−1 = y′) and we

obtain

�(BF )aw,y = �(W )−1
∑

E,E∈Irr(W )

∑
z∈W

(FE : R1
z) tr(Tw, E) tr(z, E) det(q − z, ρ)−1�(GF

ad) tr(y, E).

We now replace
∑

E∈Irr(W ) tr(z, E) tr(y, E) by �(e′ ∈ W ; e′ze′−1 = y) and we obtain

aw,y =
∑

E∈Irr(W )

(FE : R1
y) tr(Tw, E) det(q − y, ρ)−1�(GF

ad)�(BF )−1.

We now replace det(q−y, ρ)−1�(GF
ad) by dim(R1

y)q
ν(−1)|y| and we obtain the desired

identity. �

2.8. In this subsection we diverge from the setup of §1.1; we assume instead
that W is a finite Coxeter group. Then all ingredients of (2.13) make sense. The
(constant) matrix (A′

E,E′) makes sense as a matrix whose entries involve the appro-
priate generalization of the nonabelian Fourier transform. Hence the map Ψ can
be defined in this generality (although the ring of coefficients Z may have to be
increased).

3. Examples

3.1. We return to the setup in §1.1. We shall denote by sgn the sign represen-
tation of W , by 1 the unit representation of W . Let ρ be as in §1.8. In this section
we shall sometime write w instead of C when w is an element of C ∈ W .

Assume first that W is of type A1. The elements of W are represented by 1, s
where s is the simple reflection. The objects of Irr(W ) are 1, ρ = sgn. We have

Ψ(1) = 1 + sgn,
Ψ(s) = 1.

3.2. We now assume that W is of type A2. The elements of W are represented
by 1, s1, c where s1, s2 are the simple reflections and c = s1s2. The objects of
Irr(W ) are 1, ρ, sgn. We have

Ψ(1) = 1 + 2ρ+ sgn,
Ψ(s1) = 1 + ρ,
Ψ(c) = 1.

3.3. We now assume that W is of type B2. The elements of W are represented
by 1, s1, s2, c, c

2 where s1, s2 are the simple reflections and c = s1s2. The objects
of Irr(W ) are 1, ρ, ε′, ε′′, sgn where ε′, e′′ are the one dimensional representations
other than 1, sgn. The following result was obtained by making use of [13]. We can
arrange notation so that:
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Ψ(1) = 1 + 2ρ+ ε′ + ε′′ + sgn,
Ψ(s1) = 1 + ρ+ ε′,
Ψ(s2) = 1 + ρ+ ε′′,
Ψ(c) = 1,
Ψ(c2) = q21 + qρ+ 1.

3.4. We now assume that W is of type G2. The elements of W are represented
by 1, s1, s2, c, c

2, c3 where s1, s2 are the simple reflections and c = s1s2. The objects
of Irr(W ) are 1, ρ, ε′, ε′′, ρ′ = ρ⊗ε′ = ρ⊗ε′′, sgn where ε′, e′′ are the one dimensional
representations other than 1, sgn. The following result was obtained by making use
of [2]. We can arrange notation so that:

Ψ(1) = 1 + 2ρ+ 2ρ′ + ε′ + ε′′ + sgn,
Ψ(s1) = 1 + ρ+ ρ′ + ε′,
Ψ(s2) = 1 + ρ+ ρ′ + ε′′,
Ψ(c) = 1,
Ψ(c2) = q21 + qρ+ 1,
Ψ(c3) = q41 + q3ρ+ q2(ρ′ + 1) + qρ+ 1.

3.5. In the examples above, Ψi(C) is always an actual representation of W .
This is not so in higher rank. We have calculated Ψ(C) for G of type F4 on a
computer using the formulas in §2.6, by the same method as in [12, §1.2]; we thank
Gongqin Li for programming this in GAP. If C consists of the longest element in W
of type F4 and E is a one-dimensional representation of W other than 1, sgn then
the coefficient of E in Φ(C) is −2q10; thus, Φ10(C) is not an actual representation
of W . A similar thing happens in type B3 and C3.
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