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ON KOSZUL DUALITY FOR KAC-MOODY GROUPS

ROMAN BEZRUKAVNIKOV AND ZHIWEI YUN

Abstract. For any Kac-Moody group G with Borel B, we give a monoidal
equivalence between the derived category of B-equivariant mixed complexes on
the flag variety G/B and (a certain completion of) the derived category of G∨-
monodromic mixed complexes on the enhanced flag variety G∨/U∨, here G∨

is the Langlands dual of G. We also prove variants of this equivalence, one of
which is the equivalence between the derived category of U-equivariant mixed
complexes on the partial flag variety G/P and a certain “Whittaker model”
category of mixed complexes on G∨/B∨. In all these equivalences, intersection
cohomology sheaves correspond to (free-monodromic) tilting sheaves. Our
results generalize the Koszul duality patterns for reductive groups in [BGS96].
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0. Introduction

0.1. History. The formalism of Koszul duality in representation theory goes back
to the work of Beilinson, Ginzburg, Schechtman [BGS88] and Soergel [So90] from
1980s, and was developed later by these and other authors in [BGS96], [BG99], etc.
The formalism uncovers some intriguing phenomena. On the one hand, it shows
that some categories of representations (such as Bernstein-Gel’fand-Gel’fand cate-
gory O) are “controlled” by Koszul quadratic algebras; this fact, closely related to
Kazhdan-Lusztig conjectures, is proven using purity theorem about Frobenius (or
Hodge) weights on Ext’s between irreducible perverse sheaves. On the other hand,
the duality (or rather equivalence) between derived categories of representations
has some interesting geometric properties. In particular, it interchanges the Lef-
schetz sl(2) (i.e., the sl(2) containing multiplication by the first Chern class of an
ample line bundle acting on cohomology of a smooth projective variety) with the
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ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 3

Picard-Lefschetz sl(2) (i.e., sl(2) containing the logarithm of monodromy acting on
cohomology of nearby cycles).1

In this paper we extend the result of [So90] and [BGS96] to a much more general
setting: we replace a semi-simple algebraic group considered in loc. cit. by an arbi-
trary Kac-Moody group. A comment is required on the precise relation between the
two settings. First, [So90] works with a regular integral block in category O of high-
est weight modules over the semi-simple Lie algebra. By the Beilinson-Bernstein
Localization Theorem this category is identified with a category of perverse sheaves
on the flag variety. In this paper we work directly with the geometric category of
sheaves and its generalizations. (A generalization of the Localization Theorem to a
general Kac-Moody group is not known, so one cannot restate our result in terms
of modules in this more general setting). The parabolic-singular variant of Koszul
duality developed in [BGS96] involves singular category O. By [MS97] the latter is
equivalent to the category of “generalized Whittaker” perverse sheaves on the flag
variety; hence the appearance of Whittaker sheaves in the present paper.

Finally, we would like to point out that equivalences below generalize the vari-
ant of Koszul duality equivalence suggested in [BG99] rather than the original
equivalences of [So90] and [BGS96]. While the latter send irreducible objects to
projective ones, the former sends irreducible objects to tilting ones. The advantage
of the “tilting” version of the equivalence is that it turns out to be a monoidal
functor (in the cases when the categories in question are monoidal); in the finite
dimensional group case this verifies a conjecture in [BG99, Conjecture 5.18]. For a
finite dimensional semi-simple group, the two functors differ by a long intertwining
functor (Radon transform). In the Kac-Moody setting there is a more essential
difference between the two formulations; in fact, the categories we consider do not
have enough projectives, so the requirement for the functor to send irreducibles to
projectives does not apply here. So we work out a generalization of the “tilting”
version of the formalism, and show that the resulting equivalences are monoidal
(when applicable).

The price to pay for including monoidal categories into consideration is addi-
tional technical difficulties of foundational nature (appearing already in the finite
dimensional semi-simple group case). As pointed out in [BG99], the dual to the
Borel equivariant derived category of the flag variety is a completion of the cate-
gory of unipotently monodromic sheaves on the base affine space to a category of
pro-objects. The formal definition of such a completion and extension of the con-
volution monoidal structure to it requires additional work, done in the Appendix
to the paper. See [BG99] for a discussion of the relation of convolution with such
pro-objects to projective functors on category O.

We should also mention that although in this article we work with mixed �-adic
sheaves on varieties over a finite field, there should be a parallel story for mixed
Hodge modules on the complex analogs of the relevant varieties.

0.2. Main results. Fix a finite field k = Fq. Let G be a Kac-Moody group defined
over k. For the purpose of the introduction, the reader is welcomed to take G to
be a split reductive group over k. Let B = UH be a Borel subgroup of G with
unipotent radical U and Cartan subgroup H. The ind-scheme G/B is called the flag

1We mention in passing that this property is at least formally similar to a key property of
mirror symmetry; perhaps a better understanding of this similarity can provide insight into the
nature of Koszul duality.
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4 ROMAN BEZRUKAVNIKOV AND ZHIWEI YUN

variety of G and G/U is called the enhanced flag variety of G. For other notations
associated to G, we refer the readers to §2.1 and the “List of Symbols” at the end
of the paper.

Let G∨ be the Langlands dual Kac-Moody group of G. This is a Kac-Moody
group with root system dual to that of G, with Borel subgroup B∨ = U∨H∨. Let
W be the Weyl group of G and G∨, which is a Coxeter group with simple reflections
Σ (in bijection with simple roots of G). Let Θ ⊂ Σ be such that the subgroup WΘ

generated by Θ is finite, hence determining a parabolic subgroup PΘ of G. The
main results of the paper consist of four equivalences of derived categories in the
spirit of Koszul duality:

Main Theorem. There are equivalences of triangulated categories:

• Equivariant-monodromic duality (Theorem 5.2.1) which is a monoidal
equivalence:

Φ : Db
m(B\G/B)

∼−→ D̂b
m(B∨��� G∨

���B
∨);

• “Self-duality” (Theorem 5.3.1):

Ψ : Db
m(B∨\G∨/U∨)

∼−→ Db
m(U\G/B);

• Parabolic-Whittaker duality (Theorem 5.4.1):

ΦΘ : Db
m(PΘ\G/B)

∼−→ D̂b
m((U∨,ΘU∨,−

Θ , χ)\G∨
���B

∨);

• “Paradromic-Whittavariant” duality (Theorem 5.5.1):

ΨΘ : Db
m(P∨

Θ\G∨/U∨)
∼−→ Db

m((UΘU−
Θ , χ)\G/B);

We need to explain some notation. For a scheme X over k with a smooth
group scheme A over k acting from the left, we denote by Db

m,A(X) or Db
m(A\X)

the derived category of A-equivariant mixed Q�-complexes on X (using either an
�-adic analog of [BL94], or the formalism of [LO08] if we view A\X as a stack).
Therefore, Db

m(B\G/B) is understood as the derived category of left-B-equivariant
mixed complexes on the flag variety G/B, etc.

The category D̂b
m(B∨��� G∨

���B
∨) is a completion of Db

m(B∨��� G∨
���B

∨), the

latter being the derived category of left U∨-equivariant mixed complexes on the
enhanced flag variety G∨/U∨, which, along the H∨-orbits (under the action given
by either left or right multiplication), have unipotent monodromy. The completion
procedure adds objects with free unipotent monodromy (called free-monodromic
sheaves) to the monodromic category. For details about the completion procedure,
see the discussion in Appendix A.

In the target of the last equivalence ΨΘ, U
Θ is the unipotent radical of PΘ, and

U−
Θ is the unipotent radical of a Borel subgroup of LΘ (the Levi subgroup of PΘ),

which is opposite to the standard Borel. The left quotient by (UΘU−
Θ , χ) means

taking mixed complexes which are left equivariant under UΘU−
Θ against a generic

character χ : U−
Θ → Ga. Such a construction is called the geometric Whittaker

model (cf. [BBM04b]). The meaning of (U∨,ΘU∨,−
Θ , χ) in the target of ΦΘ is

similar, with G replaced by G∨.
The equivalences in the Main Theorem enjoy the following properties:

• They respect the relevant monoidal structures. For example, both sides
of the equivariant-monodromic duality carry monoidal structures given by
convolution of sheaves, and Φ is a monoidal functor. Similarly, both sides of
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ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 5

the parabolic-Whittaker duality are module categories under the respective
monoidal categories in the equivariant-monodromic duality (given by con-
volution on the right), and ΦΘ respects these module category structures.

• They send standard (resp. costandard) sheaves to standard (resp. costan-
dard) sheaves. The spaces in question have Schubert stratifications indexed
by (cosets of) the Weyl group. The standard and costandard sheaves are !-
and ∗-extensions of constant sheaves (or free-monodromic sheaves) on the
strata.

• They send intersection cohomology (IC-)sheaves to indecomposable (free-
monodromic) tilting sheaves (Definition A.7.1). For example, under the
equivalence Φ, the intersection cohomology sheaf ICw (w ∈ W , the Weyl
group of G) of the closure of the Schubert stratum BwB/B ⊂ G/B is

sent to the free-monodromic tilting sheaf T̃w supported on the closure of
B∨wB∨/U∨ ⊂ G∨/U∨. In the case of Ψ and ΨΘ, they also send inde-
composable tilting sheaves to IC-sheaves. More generally, all these equiv-
alences send very pure complexes of weight 0 (Definition 3.1.2) to (free-
monodromic) tilting sheaves.

• They are exact functors between triangulated categories, but not t-exact
with respect to the perverse t-structures. Under all these equivalences, the
Tate twist (1) becomes the functor [−2](−1).

0.3. A baby case. We look at the simplest case G = Gm. Let Q�[T ] = H∗
Gm

(pt)
be the Gm-equivariant cohomology ring of a point, where T is a generator in degree
2 with (geometric) Frobenius acting by q. The analog of [BL94, Main Theorem
12.7.2(i)] in the mixed �-adic setting gives the equivalence

Db
m(Gm\Gm/Gm) = Db

m,Gm
(pt) ∼= Dfg(Q�[T ],Fr),

the RHS being the derived category of finitely generated differential graded Q�[T ]-
modules L = [· · ·L−1 → L0 → · · · ] with a Frobenius action on each Li, compatible
with the Frobenius action on Q�[T ], and with integer weights (see §1.2 for the
definition of weights).

The Langlands dual group G∨ is again Gm. We consider the nonmixed situation
first (i.e., passing to k, the nonmixed derived categories will be denoted by Db

c

instead of Db
m). A local system on Gm with unipotent monodromy is given by

a representation of the pro-� quotient of π1(Gm ⊗k k̄). Taking the logarithm of
the unipotent monodromy, such a sheaf corresponds to a finite dimensional Q�[[t]]-
module on which t acts nilpotently. Denote the category of such Q�[[t]]-modules by

Modnil(Q�[[t]]), then

Db
c(Gm

��� Gm ���Gm) ∼= Db(Modnil(Q�[[t]])).

The completion procedure will give

D̂b
c(Gm

��� Gm ���Gm) ∼= Db(Q�[[t]]),

the RHS being the bounded derived category of all finitely generated Q�[[t]]-mod-

ules. The object L̃ in the completed category that corresponds to Q�[[t]] ∈
Db(Mod(Q�[[t]])) is a free-monodromic sheaf. The mixed version reads:

D̂b
m(Gm

��� Gm ���Gm) ∼= Db(Q�[[t]],Fr).
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Here the RHS is the bounded derived category of finitely generated Q�[[t]]-modules
with a compatible Frobenius action (Frobenius acts on t by q−1). One can even
replace Q�[[t]] by Q�[t] to get an equivalent derived category on the RHS (see
Remark B.5.2).

The equivariant-monodromic equivalence Φ for G = Gm and G∨ = Gm is given
by the following regrading functor

φ : Dfg(Q�[T ],Fr)
∼−→ Db(Q�[t],Fr).

For a differential graded Q�[T ]-module L =
⊕

Li with each Li a Frobenius module,
write each Li =

⊕
j L

i
j according to the weights of the Frobenius action. Then φ(L)

is a complex with i-th degree φ(L)i =
⊕

j(L
i−j
−j )

�. Here (−)� denotes the same

vector space with the inverse Frobenius action. Each term φ(L)i then carries a
Q�[t]-module structure, with t-action induced from that of T on L.

0.4. Other results. Along the way of proving the Main Theorem, we also show:

Variant. (1) The various categories involving G in the Main Theorem can be com-

binatorially reconstructed from the pair (VH ,W ) alone (VH is the Q�-Tate
module of the maximal torus H in G).

(2) If LieG is symmetrizable (e.g., G is a reductive group or an affine Kac-
Moody group), then we can replace all the G∨’s by G in the various equiv-
alences in the Main Theorem.

In fact, for LieG symmetrizable one can choose a W -equivariant isomorphism
VH

∼−→ VH∨ . Hence by (1) above, the various categories forG∨ in the Main Theorem
can be combinatorially identified with the corresponding categories for G.

Recall that the categories Db
m(B\G/B) and D̂b

m(B
��� G ���B) carry convolution

products, which we denote by
B∗ and

U∗. In proving the Main Theorem, we also get
some results on IC and free-monodromic tilting sheaves regarding the Frobenius
semisimplicity of their convolutions:

Proposition (see Proposition 3.2.5 and Corollary 5.2.3).

(1) For w1, w2 ∈ W , the convolution ICw1

B∗ ICw2
, as a mixed complex, is a

direct sum of ICw[n](n/2) for n ≡ �(w1) + �(w2)− �(w)(mod 2);

(2) For w1, w2 ∈ W , the convolution T̃w1

U∗ T̃w2
, as a mixed complex, is a direct

sum of T̃w(n/2) for n ≡ �(w1) + �(w2)− �(w)(mod 2).

0.5. The case of loop groups. Among all Kac-Moody groups the affine ones are
of particular interest in representation theory. These are modifications of the loop
groups of reductive groups. Below we spell out our Main Theorem in the case of
loop groups. We should mention that the results listed below are not literally special
cases of the Main Theorem; nevertheless, only minor modifications are needed to
prove them from the argument given in the main body of the paper.

Let G be the affine Kac-Moody group associated to the loop group of a split

simply-connected almost simple groupG0 over k. In other words, G = Ĝ0((t))�Grot
m

where Ĝ0((t)) is a nontrivial central extension of G0((t)) by a one-dimensional torus
Gcen

m and the one-dimensional torus Grot
m acts on G0((t)) by “rotating the loops”.

Fix a split maximal torus H0 in G0 and a Borel subgroup B0 ⊂ G0 containing H0.
We get an Iwahori subgroup I ⊂ G0((t)) as the preimage of B0 under the evaluation
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ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 7

map G0[[t]] → G0. We put a hat on top of I or H0 to denote their preimage in

Ĝ0((t)). The unipotent radical Iu of I admits a canonical lifting into Ĝ0((t)). The
affine Cartan subgroup of G is H = Gcen

m ×H0 × Grot
m and B = HIu is the Borel

subgroup of G with unipotent radical U = Iu.
The ind-scheme F� = G0((t))/I = G/B is the affine flag variety of G0; the

ind-scheme F̂� = Ĝ0((t))/I
u is the enhanced affine flag variety of G0, which is a

right Ĥ0-torsor over F�. Note that this is different from the enhanced flag variety

F̃� = G/Iu (which is a right H-torsor over F�).
The group I�Grot

m acts on theG0((t))/I (where I acts by left translation andGrot
m

acts by rotating the loop). Let E0 be the derived category of I � Grot
m -equivariant

mixed complexes on F�. On the other hand, let M0 be the derived category of left

Iu-equivariant and right Ĥ0-monodromic complexes (with unipotent monodromy)

on F̂�. We can also define a completion M̂0 of M0 by adding objects with free
unipotent monodromy (see Appendix A.3). There are monoidal structures on E0

and M̂0 defined by convolutions (similar to the convolutions in §3.2 and §4.3).
The various duality theorems for loop groups take the form:

Theorem.
• Equivariant-monodromic duality (quantized version):

Φ : E0 = Db
m,Grot

m
(I\G0((t))/I)

∼−→ D̂b
m(Î

��� Ĝ0((t)) ���Î) = M̂0.

This is a monoidal equivalence. The “quantization parameter” is given
by a generator of H2

Grot
m
(pt) on the LHS, and is given by the logarithmic

monodromy along Gcen
m -orbits on the RHS.

• Equivariant-monodromic duality (nonquantized version):

Db
m(I\G0((t))/I)

∼−→ D̂b
m(I

��� G0((t)) ���I).
This is obtained from the above quantized version by specializing the “quan-
tization parameters” to zero.

• Self-duality:

Ψ : Db
m(Iu\G0((t))/I)

∼−→ Db
m(I\G0((t))/I

u),

which exchanges IC-sheaves and tilting sheaves. Moreover, the functor inv◦
Ψ is involutive (where inv : Db

m(Iu\G0((t))/I)
∼−→ Db

m(I\G0((t))/I
u) is

induced by the inversion map of G0((t))).

For parabolic-Whittaker duality, we need to fix a parahoric2 subgroup of G0((t)).
Here, to simplify notation, we only spell out the case when this parahoric subgroup
isG0[[t]]. Let GrG0

be the affine GrassmannianG0[[t]]\G0((t)). LetD
b
m,Grot

m
(GrG0

/I)

be the derived category of mixed complexes on GrG0
equivariant under the right

I-action and the loop rotation. Let V be the preimage of U−
0 (unipotent radical

of the Borel B−
0 opposite to B0) under the evaluation map G0[[t]] → G0. Let

χ : V → U−
0 → Ga be a generic additive character. We can consider the category

Db
m((V, χ)\F̂� ���Ĥ0) of (V, χ)-equivariant complexes on F̂� which are monodromic

under the right Ĥ0-action with unipotent monodromy.

2Parabolic subgroups of a loop group are usually called parahoric subgroups.
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8 ROMAN BEZRUKAVNIKOV AND ZHIWEI YUN

• Parabolic-Whittaker duality (for the affine Grassmannian):

ΦGr : Db
m,Grot

m
(GrG0

/I)
∼−→ D̂b

m((V, χ)\F̂� ���Ĥ0).

• Paradromic-Whittavariant duality (for the affine Grassmannian):

ΨGr : Db
m(GrG0

/Iu)
∼−→ Db

m((V, χ)\F�).

0.6. Main steps of the proof. To motivate the main idea of the proof of the
equivariant-monodromic duality (Theorem 5.2.1), we briefly indicate the main steps
of the proof of the quantized equivariant-monodromic duality for loop groups.

Step I (§3). Taking global sections (or equivariant cohomology) of an object F ∈
E0 gives a module over the equivariant cohomology ring H∗

Grot
m
(I\G((t))/I). This

equivariant cohomology ring has been studied by Kostant and Kumar [KK86]. We
can identify H2

Grot
m
(I\G((t))/I) with V ∨

H′ , the dual of the Q�-Tate module of the

following torus (see [Y10, §3.7])

H ′ = ker(H ×H
p1/p2−−−→ Grot

m )/Δ(Gcen
m ).

Here p1 and p2 are the canonical projections H → Grot
m applied to the first and

second copy of H, and Δ means the diagonal embedding. Therefore we get a global
section functor

H : E0 → Db(Sym(V ∨
H′),Fr).

(Here the grading on HF = H∗
I(F�,F) is modified: it is given by a mixture of

cohomological grading and Frobenius weights) In §3.2, we show that H has a natural
monoidal structure (Proposition 3.2.1). In §3.3, we prove that H is fully faithful on
very pure complexes, using essentially the argument of Ginzburg [G91].

Step II (§4). Each object of M̂0 carries unipotent monodromy coming from the
action of H ×H on Iu\G/Iu by (h1, h2) ·x = h1xh2. More precisely, let H ′′ be the
torus

ker(H ×H
p1p2−−−→ Grot

m )/Δ−(Gcen
m ),

where Δ− is the anti-diagonal embedding. Then Sym(VH′′) acts as logarithmic

monodromy operators on each object of M̂0. In §4.5, we define an exact functor:

V : M̂0 → Db(Sym(VH′′),Fr).

The functor V can be thought of as an averaging functor. In §4.4 we define the usual
averaging functors relating M̂0 and its Whittaker versions. However, extending this
definition to V involves averaging along infinite dimensional orbits. This technical
complication is worked out in §4.5. In §4.6, we show that V has a natural monoidal
structure (Proposition 4.6.4). In §4.7, we prove that V is fully faithful on free-
monodromic tilting sheaves, generalizing [BBM04a, Proposition in §2.1].

There are other technical complications in dealing with the completed category

M̂0, e.g., the construction of the convolution structure on M̂0 in §4.3.

Step III (§5.2). Let {ICw|w ∈ Waff} be the IC-sheaves in E0 and {T̃w|w ∈ Waff}
the indecomposable free-monodromic tilting sheaves in M̂0 (both indexed by the
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ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 9

affine Weyl group Waff). We define two algebras:

E0 :=
⊕

u,v∈Waff

Ext•E0
(ICu, ICv),

M0 :=
⊕

u,v∈Waff

Hom
M̂0

(T̃u, T̃v)f ,

where (−)f means taking the Frobenius locally finite part (here the Hom and Ext
spaces are taken in the nonmixed categories, hence carrying Frobenius actions).
Applying the general result in Appendix B, we get the equivalences

E0
∼= Dperf(E0,Fr), M̂0

∼= Dperf(M0,Fr).

In other words, E0 and M0 serve as differential graded models for the triangu-

lated categories E0 and M̂0. By the discussion in the previous two steps, we can
compute E0 by the endomorphism algebra of

⊕
w H(ICw), and compute M0 by

the endomorphism algebra of
⊕

w V(T̃w). Therefore to prove the equivalence, we
first need to identify V ∨

H′ with VH′′ (up to an inversion of the Frobenius action)

using the Killing form, and then identify H(ICw) with V(T̃w), which can be done
in an explicit way. In fact, our strategy will be slightly different: instead of using

ICw and T̃w to produce the algebras E0 and M0, we use the iterated convolutions

ICs1

I∗ · · · I∗ ICsm and T̃s1
Iu

∗ · · · Iu

∗ T̃sm for reduced words s1 · · · sm. This strategy
only requires explicit knowledge of the case SL(2) (which is done in Appendix C).

The discussion above also shows why E0 and M̂0 only depend on the combi-
natorial data (VH ,W ): the algebras E0 (or M0) can be identified with the endo-
morphism algebra of certain explicit Sym(V ∨

H′)-modules. These are the so-called
Soergel bimodules in the case where G is a reductive group.

0.7. Organization of the paper. Above we reviewed the contents of §3 through
§5.2. The rest of §5 is devoted to the proof of the other three dualities mentioned
in the Main Theorem. The self-duality is derived from the equivariant-monodromic
duality by killing part of the equivariance/monodromy. The parabolic-Whittaker
duality is derived from the equivariant-monodromic duality by a Barr-Beck type
argument.

This paper has three appendices, written by Z. Yun. Appendix A constructs
the completions of the various monodromic categories by adding objects with free
unipotent monodromy. To this end, we need to set up the framework for working
with pro-objects in triangulated categories. Appendix B constructs the differential
graded models for the equivariant categories and completed monodromic categories.
We treat these two cases in a uniform way. Appendix C collects some simple results
in the case of G = SL(2) which are proved by direct calculations.

1. Notation and conventions

1.1. Notation concerning categories. Given an adjoint pair of functors (L,R)
(i.e., L is the left adjoint of R), we usually write the arrow representing L above
the arrow representing R. For example, the diagram

D1

L ��
D2

R
��

means that L is the left adjoint of R.
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10 ROMAN BEZRUKAVNIKOV AND ZHIWEI YUN

We adopt the following notation: let Fi be objects in a triangulated category
D , then 〈F1,F2 · · · 〉 (denoted by 〈F1 ∗ F2 ∗ · · · 〉 in [BBD82]) means the class of
objects in D which are successive extensions of Fi.

1.2. Notation concerning algebra. Let k = Fq be a finite field. Let Fr be the

geometric Frobenius element in Gal(k/k). Let � be a prime different from char(k).
Fix an isomorphism Q�

∼= C so that we have an archimedean norm | − | on Q�. Fix
a square root of q in Q� so that the half Tate-twist (1/2) makes sense.

A Fr-module is a Q�-vector space equipped with an automorphism FrM : M →
M . A Fr-module is called locally finite if it is a union of finite-dimensional Fr-
submodules. We will use

(1.1) (−)f : {Fr-modules} → {locally finite Fr-modules}

to denote the functor which sends a Fr-module M to the union of its finite-
dimensional Fr-submodules.

A locally finite Fr-module is called continuous if the eigenvalues of FrM on M are
�-adic units. If M is finite-dimensional, this is equivalent to saying that the assign-
ment Fr �→ FrM extends to a continuous homomorphism Gal(k/k) → Aut

Q�
(M)

(the target being under the �-adic topology). A general Fr-module M is called
continuous if Mf if Mf is continuous in the previous sense.

For a locally finite Fr-moduleM , the weights ofM are the real numbers 2 log(|λ|)/
log(q) where λ runs over the eigenvalues of FrM on M . The weights of a general
Fr-module M are those of Mf .

For a Fr-module M , we use MFr-unip to denote the Fr-submodule ofMf on which
Fr acts unipotently.

For a Fr-module M , we use M� to denote the same vector space M , but the
action of Fr is the inverse of the original one.

For a Q�-algebra E, we denote by Mod(E) the abelian category of finitely gener-
ated E-modules. If E carries a continuous Fr-module structure which is compatible
with its algebra structure, let Mod(E,Fr) denote the abelian category consisting
of E-modules M together with a compatible Fr-action, which can be written as
a quotient of E ⊗ V where V is a finite-dimensional continuous Fr-module with
integer weights. We have the bounded derived categories Db(E) (resp. Db(E,Fr))
of Mod(E) (resp. Mod(E,Fr)).

Unless otherwise claimed, all Fr-modules in the sequel are understood to be con-
tinuous with integer weights.

1.3. Notation concerning geometry. All stacks in this paper on which we talk
about Q�-sheaves will be the quotient stack X = [G\Y ] where Y is a scheme
of finite type over k and G a smooth group scheme over k acting on Y . We will
encounter ind-schemes such as the flag variety F� for a Kac-Moody group; however,
when talking about sheaves on them, we actually mean sheaves on their finite-type
subschemes Y ⊂ F� (with the only exception of the so-called *-complexes, see §1.4).

For a global quotient stack X = [G\Y ] over Fq, we will need the notion of the

bounded derived category Db
c(X) of constructible Q�-complexes on X. Following

[BL94], we may define this as the derived category of Cartesian and constructible
Q�-complexes on the simplicial scheme

(1.2) · · ·G×G× Y
�� ���� G× Y �� �� Y .
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ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 11

In a series of papers [O07], [LO08], Laszlo and Olsson show that the usual sheaf-
theoretic operations also work for such stacks.

When X = [G\Y ] is a global quotient stack over k = Fq, we also need the notion

of mixed Q�-complexes on X. We first recall the definition of the mixed derived
category Db

m(Y ) for a scheme Y over k. This is the bounded derived category of
Q�-complexes on Y whose cohomology sheaves are mixed with integer punctual
weights (cf. [BBD82, §5.1.5]). Now for a stack X = [G\Y ], we define Db

m(X) to
be the derived category of Cartesian Q�-complexes on the simplicial scheme (1.2)
(based changed to k̄), whose value on Y (and hence on each Gn × Y ) belongs to
Db

m(Y ).
In particular, Db

m(pt) ∼= Db(Fr). When we talk about a “twist” of an object
F ∈ Db

m(X), we mean F ⊗ M for some one-dimensional Fr-module (continuous
with integer weights). The notation F(?) means any such twist.

Let ω : Db
m(X) → Db

c(X ⊗k k̄) be the pull-back along X ⊗k k̄ → X. For a
subcategory D ⊂ Db

m(X), we use ωD to denote its essential image in Db
c(X ⊗k k̄)

under the functor ω. We use the notation 〈n〉 to mean any combination of shifts
and twists which increases the weight by n (note that [1] increases the weight by
1).

We think of Db
m(X) as enriched over Db(Fr): for any two objects F ,F ′, we have

Fr-modules:

RHomX(F ,F ′) = RHomX⊗kk̄(ωF , ωF ′) ∈ Db(Fr),

ExtiX(F ,F ′) = ExtiDb
c(X⊗kk̄)

(ωF , ωF ′) ∈ Mod(Fr),

which are the RHom-complex and Ext-groups in Db
c(X ⊗k k̄), rather than in

Db
m(X). The actual RHom-complex in Db

m(X) is

R homX(F ,F ′) = RΓ(ZFr,RHomX(F ,F ′)).

where RΓ(ZFr,−) means the derived functor of taking Fr-invariants on Db(Fr).
The actual Ext-groups (the cohomology groups of R homX(F ,F ′)) in Db

m(X) are
denoted by extiX(F ,F ′), and they fit into short exact sequences (see [BBD82, Eq.
5.1.2.5])

(1.3) 0 → Exti−1
X (F ,F ′)Fr → extiX(F ,F ′) → ExtiX(F ,F ′)Fr → 0.

In summary, the “Hom” and “Ext” groups are Frobenius modules, while “hom”
and “ext” groups are plain vector spaces.

We use Ext• to mean the sum of all Exti.
The notation H∗(X) or H∗

c(X) is understood to be the étale cohomology (with
compact support) of X ⊗k k̄ with constant coefficients Q�.

If Y is a scheme over k, the triangulated category Db
m(Y ) carries the perverse

t-structure with middle perversity (pD≤0
m (Y ), pD≥0

m (Y )) (cf. [BBD82, §2.2]). The
heart of this t-structure is denoted Pm(Y ), the mixed perverse sheaves. For a
subcategory D ⊂ Db

m(Y ), we usually omit the left exponent p and write D≤0 =
D ∩ pD≤0

m (Y ), etc.
For a torus A over k, let T�(A) be its �-adic Tate module and VA = T�(A)⊗Z�

Q�
∼=

H1(A,Q�). This is a Fr-module of weight -2.

1.4. Sheaves on ind-schemes. Let X =
⋃

α∈I Xα be an ind-scheme with pre-
scribed closed subschemes X≤α indexed by a partially ordered set I. For α ≤ β ∈ I,
let iα,β : X≤α ↪→ X≤β be the closed embedding.
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12 ROMAN BEZRUKAVNIKOV AND ZHIWEI YUN

The categories {Db
m(X≤α)}α∈I together with the functors iα,β,∗ form an induc-

tive system of triangulated categories. Let

Db
m(X) = 2− lim−→

α∈I

Db
m(X≤α)

be the inductive 2-limit of Db
m(X≤α).

On the other hand, the categories {Db
m(X≤α)}α∈I together with the pullback

functors i∗α,β form a projective system of triangulated categories. Let

D←−
b
m(X) = 2− lim←−

α∈I

Db
m(X≤α)

be the projective 2-limit of Db
m(X≤α). Objects of D←−

b
m(X) are called *-complexes,

and are usually denoted by F = (F≤α) with F≤α ∈ Db
m(X≤α).

There is an obvious fully faithful embedding

Db
m(X) ↪→ D←−

b
m(X).

A morphism of ind-schemes f : X =
⋃

α∈I Xα → Y =
⋃

β∈J Yβ is said to be

bounded if for every β ∈ J , the preimage f−1(Yβ) is contained in Xα for some α ∈ I,
and the restriction of f to Yβ is of finite type. For a bounded morphism f , we can
define the functor

f! : D←−
b
m(X) → D←−

b
m(Y ).

In fact, for F = (Fα) ∈ Db
m(X), let (f!F)β = (f |f−1(Yβ))!(j

∗Fα) (where j :

f−1(Yβ) ↪→ Xα is the inclusion). The fact that this family of objects is com-
patible with the pullback functors iβ,β′ for β ≤ β′ ∈ J follows from the proper base
change theorem. Therefore the functor f! sends D←−

b
m(X) to D←−

b
m(Y ).

For a morphism of ind-schemes f : X =
⋃

α∈I X≤α → Y =
⋃

β∈J Y≤β , the
functor

f∗ : D←−
b
m(Y ) → D←−

b
m(X)

is always defined. In fact, for a complex F = (F≤β) ∈ D←−
b
m(X), we let (f∗F)≤α =

j∗(f |f−1(Y≤β))
∗(F≤β) where j : X≤α → f−1(Y≤β) is the inclusion. If, in addition,

f is bounded, then f∗ sends Db
m(Y ) to Db

m(X).
We also need a variant of the notion of ∗-complexes in the case of completed

monodromic categories (cf. Appendix A.3). In the case where X =
⋃

α∈I Xα is an
A-torsor over an ind-scheme Y =

⋃
α∈I Yα (with the induced ind-scheme structure:

Xα is the preimage of Yα), where A is a torus, we similarly define

D̂←−
b
m(X ���A) = 2− lim←−

α∈I

D̂b
m(X≤α ���A)

with the transition functors given by ı̃∗α,β .

2. Kac-Moody groups and their flag varieties

2.1. Kac-Moody groups. We briefly review the notation concerning Kac-Moody
groups that we will use in this paper, following [M89]. Let A be a generalized
Cartan matrix of either finite or affine type, together with a realization over Q. Let
g = g(A) be the Kac-Moody algebra associated to A, which is a Lie algebra over
Q. It has a root decomposition:

(2.1) g = h⊕
⊕
α∈R

gα
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ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 13

where h is the Cartan subalgebra and R ⊂ h∗ is the set of roots. By construction,
we have a set of simple roots Σ ⊂ R, hence also the positive roots R+ ⊂ R. Let W
be the Weyl group associated to h. This is a Coxeter group with simple reflections
in bijection with the set of simple roots Σ. Let � : W → Z≥0 be the length function
of W in terms of the simple reflections Σ.

The universal enveloping algebras U(g), U(h) as well as the integrable highest
weight representations L(λ) of g admit Z-forms. Let k be any field. Using these Z-
forms, one can construct a Kac-Moody group G over k. This is a group ind-scheme
over k. A construction of this group ind-scheme is given in [M89, §II]. We also
have the Borel subgroup B ⊂ G (an affine group scheme), its pro-unipotent radical
U , and the Cartan subgroup H (a finite dimensional split torus over k), such that
B = UH. The Lie algebras of H and U are k-forms of h and

⊕
α∈R+ gα.

2.2. Flag varieties and Schubert varieties. The flag variety F� = F�G asso-
ciated to G is the ind-scheme G/B over k. For finite type G, F� is the usual flag
variety parametrizing Borel subgroups of G. In general, the ind-scheme structure
on F� is defined by a family of closed projective subschemes F�≤w called Schubert
varieties (denoted by Sw in [M89]). Here F�≤w is the closure of the B-orbit (also
the U -orbit) F�w ⊂ F� under left translation. The orbit F�w is isomorphic to an
affine space A�(w). We have F�≤w1

⊂ F�≤w2
if and only if w1 ≤ w2 in the Bruhat

order of W . Let F�<w = F�≤w − F�w. Let iw, i≤w and i<w be the embeddings of
F�w,F�≤w and F�<w into F�.

For each subset Θ of Σ, let WΘ ⊂ W be the subgroup generated by Θ. We
say Θ is of finite type if WΘ is finite. Associated to such a Θ of finite type we
have a standard parabolic subgroup PΘ containing B with Levi decomposition
PΘ = UΘLΘ (where LΘ contains H). Let UΘ = U ∩ LΘ. Let U−

Θ ⊂ LΘ be the

radical of the Borel of LΘ which is opposite to B∩LΘ; i.e., U
−
Θ is the group generated

by U−
s for s ∈ Θ. We can identify WΘ with the Weyl group of LΘ. Let wΘ ∈ WΘ be

the element with maximal length, whose length we denote by �Θ. Let [WΘ\W ] ⊂ W
(resp. {WΘ\W}) be the minimal (resp. maximal) length representatives of cosets

in WΘ\W . We also have a length function � : WΘ\W ∼= [WΘ\W ]
�−→ Z≥0 and a

partial order on WΘ\W inherited from the Bruhat order on W .
Let ΘF� = PΘ\G be the partial flag variety associated to the parabolic subgroup

PΘ. Let π
Θ : ∅F� = B\G → ΘF� be the natural projection. The orbits of the right

B (or U) action on ΘF� are indexed by WΘ\W . For each w ∈ WΘ\W , the orbit

ΘF�w = PΘ\PΘwB is isomorphic to A�(w). As in the case of F�, the notations

ΘF�≤w,ΘF�<w, iw, i≤w have the obvious meanings.
Fix Θ ⊆ Σ. The UΘU−

Θ -orbits on F� are still indexed by the Weyl group W .

The closure relation of UΘU−
Θ -orbits define another partial ordering

Θ
≤ on W : we

have w
Θ
≤ w′ ⇔ wΘw ≤ wΘw

′. For each w ∈ W , let F�Θw = UΘU−
ΘwB/B and let

F�Θ≤w be its closure in F�.

Let F̃� := G/U be the enhanced affine flag variety of G. The natural projection

π : F̃� → F� is a right-H-torsor. The ind-scheme F̃� is stratified by B-orbits

which are also indexed by W . Let F̃�w, F̃�≤w, F̃�<w, F̃�
Θ

w , F̃�
Θ

≤w and F̃�
≤w

be the
preimages of their counterparts in F� under π. Let ı̃w (resp. ı̃≤w) be the inclusion

of F̃�w (resp. F̃�≤w) into F̃�.
The following fact is well known:
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14 ROMAN BEZRUKAVNIKOV AND ZHIWEI YUN

Lemma 2.2.1. Fix Θ ⊂ Σ. For each w ∈ WΘ\W , there exists a normal subgroup
Jw of U of finite codimension such that the right translation action of Jw on ΘF�≤w

is trivial.

2.3. The big cell. In [M89, Remarks following Lemma 8], the big open cell C =
C(G/B) ⊂ F� is defined as follows. Recall from [M89, §I] that F�≤w admits a
projective embedding F�≤w ↪→ P(Ew(λ)), where Ew(λ) = U(b)L(λ)wλ, and L(λ)wλ

is the wλ-weight line in the highest weight representation L(λ) (the highest weight
λ is regular dominant). Let L(λ)∗ be the contragredient of L(λ) with lowest weight
vector σ−λ of weight −λ. Then σ−λ = 0 defines a hyperplane in P(Ew(λ)) and we
let C≤w := C ∩F�≤w be the complement of this hyperplane in F�≤w ↪→ P(Ew(λ)).

For any simple reflection s ∈ Σ corresponding to the simple root αs, pick a
nonzero vector es ∈ gαs

. Consider the vector esσ−λ ∈ L(λ)∗, which has weight
−λ + αs. The rational function esσ−λ/σ−λ on P(Ew(λ)), pulled back to F�≤w,
gives a rational function ρs,λ on F�≤w. It is easy to check

Lemma 2.3.1. The rational function ρs,λ is independent of the regular dominant
weight λ and compatible with the embeddings F�≤w ↪→ F�≤w′ . Therefore it defines
a rational function ρs on F� which is regular on C.

Let C̃ ⊂ F̃� be the preimage of C.

Lemma 2.3.2. The H-torsor πC : C̃ → C is trivializable.

Proof. This follows from [M89, Remark before Lemma 9]: “Le morphism P →
PicC(G/B) est nul”. �

Lemma 2.3.3. Let πC
s : C ↪→ G/B → G/Ps be the projection to the minimal

partial flag variety corresponding to a simple reflection s ∈ Σ. For any geometric
point x ∈ G/Ps, let Cx := πC,−1

s (x) ⊂ C be the fiber. Then the function ρs′ is

constant on Cx if s′ �= s and the function ρs gives an isomorphism ρs : Cx
∼−→ A1.

Proof. Fix a regular dominant weight λ, and the embedding ι : F�≤w ↪→ P(Ew(λ)).
Choose bases v0 and vs′ of the one-dimensional weight spaces L(λ)λ and L(λ)λ−αs′

(s′ is any simple root). Let c ∈ C≤w be any geometric point. Then ι(c) is a
line in Ew(λ) which contains a vector v0+(lower weight vectors). We may write
ι(c) = [gv0] ([v] stands for the line containing v) for some g ∈ G equal to a product
of elements in U−β for negative simple roots −β (this follows by looking at the
Bott-Samelson resolution of F�≤w). For g of this form, we have

(2.2) gv0 = v0 + (lower weight terms), gvs = vs + (lower weight terms).

Let x = πC
s (c). The fiber π−1

s (x) ∼= P1, under the embedding ι, can be identified
with the pencil of lines [g(t0v0 + tsvs)] for [t0, ts] ∈ P1. The fiber Cx ⊂ P1 is the
set of lines [g(v0 + tvs)] for t ∈ A1. By (2.2), for s′ �= s, the coefficient of vs′ in gvs
is zero; hence the coefficient of vs′ in g(v0 + tvs) is independent of t. This implies
that ρs′ |Cx is constant. On the other hand, the coefficient of vs in g(v0 + tvs) is a
nonconstant linear function in t, which implies that ρs|Cx induces an isomorphism

ρs : Cx
∼−→ A1. �

It is also easy to see:

Lemma 2.3.4. Let μ : Gm ⊂ H be given by any anti-dominant regular coweight.
Then for any w ∈ W , C≤w contracts to the base point B/B ∈ F� under the left
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action of μ(Gm). More generally, for any v, w ∈ W , vC ∩ F�≤w contracts to the
point vB/B ∈ F� under the action of (vμ)(Gm).

3. Equivariant categories

In this section, we define and study the category of B-equivariant complexes on
the flag variety F� = G/B of the Kac-Moody group G, as well as its parabolic ver-
sion. We will study functors between these categories and the convolution product
on the equivariant category. Of particular importance is the global section functor
H. We will also give emphasis on the behavior of very pure complexes (such as
IC-sheaves) under these operations.

3.1. The equivariant category and its parabolic version. For each Θ ⊆ Σ,
consider the right B-action on ΘF�G. For each w ∈ WΘ\W , choose Jw � U as in
Lemma 2.2.1(1), and we define EΘ,≤w to be the derived category of (right) B/Jw-
equivariant mixed complexes on ΘF�G,≤w. It is easy to see that this category is
canonically independent of the choice of Jw. These form an inductive system under
the fully faithful functors iw,∗ : EΘ,≤w → EΘ,≤w′ induced by the closed embeddings
iw : ΘF�G,≤w ↪→ ΘF�≤w′ for w ≤ w′ ∈ WΘ\W . Let EΘ be the inductive 2-limit of
EΘ,≤w.

Recall that VH is the Q�-Tate module of H. Then the graded algebra Š• :=
Sym(V ∨

H [−2]) is the H-equivariant cohomology ring of a point.
For Θ = ∅, we also write E for E∅ = Db

m(B\G/B). Consider the action of
H × H on the stack U\G/U given by (h1, h2) · x = h1xh

−1
2 . We may view E as

the derived category of H ×H-equivariant complexes on U\G/U , hence E has the
structure of an Š• ⊗ Š•-linear category: Š• ⊗ Š• acts on Ext•E (F ,F) for all F ∈ E
functorially. Each EΘ is naturally an Š•-linear category for the right copy of Š•.

For each w ∈ WΘ\W , the standard, costandard, and IC-complexes indexed by
w are

Δw = iw,!Q�[�(w)](�(w)/2),

∇w = iw,∗Q�[�(w)](�(w)/2),

ICw = iw,!∗Q�[�(w)](�(w)/2).

The projection πΘ : ∅F�G → ΘF�G gives adjunctions

(3.1)

πΘ,∗
←−−−−

E
πΘ
∗−−−→ EΘ←−−−
πΘ,!

.

Consider the H ×H-equivariant global sections functor

RΓH×H(U\G/U,−) : E → Db
m(B(H ×H))

By Corollary B.4.1, we have an equivalence Db
m(B(H × H)) ∼= Dperf(Š ⊗ Š,Fr).

Here Š = Sym(V ∨
H ) is viewed as a nongraded algebra. We can thus consider the

H ×H-equivariant global section functor as a functor:

H : E → Dperf(Š ⊗ Š,Fr).

For w ∈ W , let Γ(w) = {(w · v, v)|v ∈ VH} ⊂ VH × VH be the graph of the w-
action on VH . We view VH × VH as the spectrum of Š ⊗ Š and denote by O(Γ(w))
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16 ROMAN BEZRUKAVNIKOV AND ZHIWEI YUN

the coordinate ring of the closed subscheme Γ(w) ⊂ VH × VH , which carries a
grading and a Fr-action.

Lemma 3.1.1. For each w ∈ W , we have isomorphisms of graded (Š ⊗ Š,Fr)-
modules

H(Δw) ∼= OΓ(w)[−�(w)](−�(w)/2),

H(∇w) ∼= OΓ(w)[�(w)](�(w)/2).

Proof. Consider the left H-equivariant embedding ι : HwH/H = wB/B ↪→ F�w.
The restriction map on cohomology ι∗ : H∗(F�w) → H∗(wB/B) is an isomorphism
because F�w is isomorphic to an affine space. Since both wB/B and F�w are
equivariantly formal with respect to the left H-action, the restriction map is also
an isomorphism on equivariant cohomology, i.e.,

H(∇w)[−�(w)](−�(w)/2) ∼= H∗(H\F�w) ∼= H∗(H\HwH/H).

Here the stabilizer of the H ×H-action on HwH (recall that the action is given by
(h1, h2) · x �→ h1xh

−1
2 ) is the subtorus {(whw−1, h)|h ∈ H} ⊂ H × H. Therefore

H∗(H\HwH/H) is isomorphic to OΓ(w). The second identity follows.
The proof of the first identity is similar, except we use the natural isomorphisms

H(Δw)[−�(w)](−�(w)/2) ∼= H∗
c(B\BwB/B)

∼= H∗(H\HwH/H, i!Q�) ∼= H∗(H\HwH/H)[−2�(w)](−�(w)). �

Recall from [D80, Definition 1.2.2(i)] that a local system L on a scheme X over

k is pointwise pure of weight n (with respect to the chosen isomorphism Q�
∼−→ C),

if for any closed point x ∈ X with residue field k(x), all the eigenvalues of the
geometric Frobenius Frx acting on the stalk Fx̄ has norm #k(x)n under the chosen

isomorphism Q�
∼−→ C. If L is pointwise pure of weight n, then we say L[m] is pure

of weight m+ n.

Definition 3.1.2 (compare [BB93, §5.2]). Let X =
⊔
Xα be a stratified scheme

and F ∈ Db
m(X) is constructible with respect to the stratification. Let iα : Xα ↪→ X

be the embeddings. Then F is said to be ∗-pure (resp. !-pure) of weight n if for
each α and m ∈ Z, the local system Hmi∗αF (resp. Hmi!αF) is pointwise pure of
weight n+m. It is said to be very pure of weight n if it is both ∗-pure and !-pure
of weight n.

We use V ⊂ E (resp. VΘ ⊂ EΘ) to denote the full subcategory of very pure
complexes of weight 0. The notion of very pure is stronger than the notion of
purity of complexes (cf. [BBD82, §5.1]). However, in the situation of flag varieties,
they are equivalent.

Lemma 3.1.3. Suppose F ∈ EΘ is pure of weight 0 in the sense of [BBD82, §5.1],
then it is very pure of weight 0.

Proof. We only need to consider the case F ∈ E , the parabolic case F ∈ EΘ can be
deduced from the case of πΘ,∗F ∈ E .

Assume F ∈ E≤w. By Lemma 2.3.4, for v ∈ W , the open subset vC ∩ F�≤w

contracts to the point v under a one-parameter subgroup of H. We denote the
inclusion of v into F�G still by v. Therefore, by [S84, Corollary 1], we have

v∗F = H∗(vC ∩ F�≤w,F),
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which has weight ≥ 0 as a complex because the open restriction F|vC∩F�w is pure
of weight 0 and H∗(−) does not decrease weight. On the other hand, since F is
pure of weight 0, v∗F has weights ≤ 0. Therefore v∗F has weight 0, hence so does
i∗vF for any v, i.e., F is ∗-pure of weight 0. A dual argument shows that F is also
!-pure of weight 0. Hence F is very pure of weight 0. �

Example 3.1.4. The IC-complex ICw is pure of weight zero in the sense of
[BBD82], hence very pure by the above lemma. One can alternatively show this
by the argument of Lemma 3.2.4 below (essentially using the Bott-Samelson reso-
lution). By Example B.2.1, the subcategory V ⊂ E (resp. VΘ ⊂ EΘ) satisfies all
the assumptions in Appendix B.

Here are some easy consequences of purity.

Lemma 3.1.5.
(1) If F ∈ E is either ∗-pure or !-pure of weight 0, Hi(F) is a Fr-module of

weight i and H(F) is free over each of the left and the right copies of Š
(note that we are not claiming the freeness as (Š,Fr)-modules, but only the
freeness as Š-modules).

(2) If F1 ∈ E is ∗-pure of weight 0 and F2 ∈ E is !-pure of weight 0, then

ExtiE (F1,F2) is a Fr-module of weight i and Ext•E (F1,F2) is free over each
of the left and the right copies of the graded algebra Š•.

Proof. Note that (1) is a special case of (2) when F1 is the constant sheaf. Therefore
we only give the proof of (2). We use induction on the support of F1,F2. Suppose
the statement is true for Fi ∈ E<w. Now consider Fi ∈ E≤w, then we have a long
exact sequence

· · · → Exti(i∗<wF1, i
!
<wF2) → Exti(F1,F2) → Exti(i∗wF1, i

∗
wF2) → · · ·

By assumption, i∗wF1 and i!wF2 are pure of weight 0, hence Exti(i∗wF1, i
∗
wF2) has

weight i. Also i∗<wF1 (resp. i
!
<wF2) is ∗-pure (resp. !-pure) of weight 0; by induction

hypothesis we know that Exti(i∗<wF1, i
!
<wF2) has weight i. By reasons of weight,

the above long exact sequence splits into short exact sequences:

0 → Ext•(i∗<wF1, i
!
<wF2) → Ext•(F1,F2) → Ext•(i∗wF1, i

∗
wF2) → 0.

The two ends of the short sequences are free over each copy of Š•, hence so is the
middle one. �

An important property of the global sections functor H is the following, whose
proof (essentially borrowed from the argument of Ginzburg in [G91]) will be post-
poned to Section 3.3.

Proposition 3.1.6. Suppose F1,F2 ∈ V , then the natural map

(3.2) Ext•E (F1,F2) → HomŠ⊗Š(H(F1),H(F2))

is an isomorphism of Fr-modules.

Lemma 3.1.7. For any w ∈ W , write w = uv with u ∈ WΘ and v ∈ [WΘ\W ]. We
have

πΘ
∗ Δw

∼= Δw[−�(u)](−�(u)/2),

πΘ
∗ ∇w

∼= ∇w[�(u)](�(u)/2).
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18 ROMAN BEZRUKAVNIKOV AND ZHIWEI YUN

Proof. We only need to observe that the projection ∅F�G,≤w → ΘF�G,w is a trivial

fibration with fibers isomorphic to A�(u). �

Corollary 3.1.8. The functor πΘ
∗ sends very pure (resp. ∗-pure, !-pure) complexes

of weight 0 to very pure (resp. ∗-pure, !-pure) complexes of weight 0.

Proof. By Lemma 3.1.7, πΘ
∗ sends 〈Δw〈0〉|w ∈ W 〉 to 〈Δw〈0〉|w ∈ WΘ\W 〉 and

sends 〈∇w〈0〉|w ∈ W 〉 to 〈∇w〈0〉|w ∈ WΘ\W 〉. But these two classes consist
precisely of ∗-pure and !-pure complexes of weight 0. Moreover very pure complexes
are precisely those objects in the intersection of the two classes. �

3.2. Convolution. Consider the convolution diagram

(3.3) G
B
× F�

p1

����
��
��
��
��

p2

���
��

��
��

��
�

m �� F�

F� B\F�

where p1, p2 are projections to the left and right factors and m is induced by the
multiplication map of G. The convolution diagram induces a convolution product

B∗: E × E → E

(F1,F2) �→ m!(F1

B
� F2).

Note that F1 �F2 is a B-equivariant complex on G×F� with respect to the action

i · (g, x) = (gi−1, ix) and hence descends to a complex F1

B

� F2 on G
B
× F�. There

is an obvious associativity constraint which makes
B∗ into a monoidal structure on

E . More generally, the convolution gives a right action of the monoidal category E
on EΘ given by the same formula.

Proposition 3.2.1. The functor H has a natural monoidal structure which inter-

twines the convolution
B∗ on E and the tensor product (N1, N2) �→ N1

L
⊗Š N2 (with

respect to the right Š-action on N1 and left Š-action on N2) on Dperf(Š ⊗ Š,Fr).

Proof. Consider the groupH×H acting on F̃�×F� by (h1, h2)·(x, y) = (xh−1
1 , h2y).

The quotient map by H ×H can be factorized into two steps:

F̃�×F�
p0−→ F̃�

H
× F�

(p1,p2)−−−−→ F�×H\F�,

where p0 is the quotient by the diagonal copy of Δ(H) ⊂ H ×H.
Applying Corollary B.4.2 (the isomorphism (B.9)) to the H × H/Δ(H)-torsor

F̃�
H
× F�

(p1,p2)−−−−→ F�×H\F�, we get a functorial quasi-isomorphism

(3.4) (H(F1)
L
⊗ H(F2))

L
⊗Š⊗Š Š ∼= H(F̃�

H
× F�,F1

H

� F2).

In the tensor product on LHS, the Š⊗Š-module structure on H(F1)
L
⊗ H(F2) comes

from the right Š-action on H(F1) and the left Š-action on H(F2); the Š⊗ Š-module
structure on Š comes from left and right multiplication. Now (3.4) is obviously the
same as

(3.5) H(F1)
L
⊗Š H(F2) ∼= H(F̃�

H
× F�,F1

H
� F2).
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Since both projections G
H
× F� → F̃�

H
× F� and G

H
× F� → G

B
× F� are fibrations

with fibers isomorphic to pro-affine spaces, we have

(3.6) H(F̃�
H
× F�,F1

H
� F2) ∼= H(G

B
× F�,F1

B
� F2) = H(F1

B∗ F2).

Combining (3.5) and (3.6), we get a functorial quasi-isomorphism

H(F1)
L
⊗Š H(F2) ∼= H(F1

B∗ F2). �

Lemma 3.2.2. Suppose w1, w2 ∈ W and �(w1w2) = �(w1) + �(w2), then

(3.7) Δw1

B∗ Δw2
∼= Δw1w2

, ∇w1

B∗ ∇w2
∼= ∇w1w2

.

Moreover, δ := Δe = ∇e ∈ E (e is the identity in W ) is the unit object under the

convolution
B∗.

Proof. The morphism m in the convolution diagram (3.3) restricts to the following
B-equivariant isomorphism

(3.8) Bw1B
B
× F�w2

mw1,w2−−−−−→ F�w1w2
.

The isomorphisms in (3.7) follows easily from the isomorphism (3.8). The second
statement about δ is obvious. �

Proposition 3.2.3. If F1,F2 ∈ V , then so is F1
B∗ F2.

Proof. By definition,

V = 〈Δw〈0〉|w ∈ W 〉 ∩ 〈∇w〈0〉|w ∈ W 〉
We observe that

Δw1

B∗ Δw2
∈ 〈Δw〈≤ 0〉|w ∈ W 〉,(3.9)

∇w1

B∗ ∇w2
∈ 〈∇w〈≥ 0〉|w ∈ W 〉.(3.10)

In fact, to prove (3.9), we can write each Δw = Δs1

B∗ · · · B∗ Δsm by Lemma 3.2.2
(for a reduced word expression w = s1 · · · sm) and we reduce to the computation

of Δs
B∗ Δs′ for two simple reflections s, s′. If s �= s′, then Δs

B∗ Δs′
∼= Δss′ by

Lemma 3.2.2. For s = s′, this follows by Lemma C.3. The proof of (3.10) is similar.
Therefore, for F1,F2 ∈ V , we have

F := F1
B∗ F2 ∈ 〈Δw〈≤ 0〉|w ∈ W 〉 ∩ 〈∇w〈≥ 0〉|w ∈ W 〉;

but this is the same as saying that F is pure of weight 0 in the sense of [BBD82].
By Lemma 3.1.3, F is very pure of weight 0. �

Lemma 3.2.4. For each w ∈ W , Hw := H(ICw) is a direct sum of Fr-modules
Q�[n](n/2) for n ≡ �(w)(mod 2).

Proof. For w = s a simple reflection, by Lemma C.1, we have H(ICs) ∼= O(Γ(e) ∪
Γ(s))[1](1/2), for which this statement is true. In general, write w as a reduced

word w = s1 · · · sm where sj are simple reflections. Let ICw := ICs1

B∗ · · · B∗ ICsm ,
which is a very pure of weight 0 by Proposition 3.2.3.

By Proposition 3.1.6 and Proposition 3.2.1, End(ICw) is a direct summand of

EndŠ⊗Š(H(ICw)) = EndŠ⊗Š(Hs1 ⊗Š · · · ⊗Š Hsm),
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which is in particular Fr-semisimple. By Corollary B.2.5, ICw decomposes as a
sum of shifted and twisted IC-sheaves, among which ICw necessarily appears with
multiplicity one. Then, as a Fr-module, Hw is a direct summand of H(ICw) =

Hs1 ⊗Š · · · ⊗Š Hsm , which is a direct sum of Q�[n](n/2) for n ≡ �(w)(mod 2). �

Proposition 3.2.5. For w1, w2 ∈ W , the convolution ICw1

B∗ ICw2
, as a mixed

complex, is a direct sum of ICw[n](n/2) for n ≡ �(w1) + �(w2) − �(w)(mod 2).
In particular, if �(w1w2) = �(w1) + �(w2), then ICw1w2

is a direct summand of

ICw1

B∗ ICw2
with multiplicity one.

Proof. Let F = ICw1

B∗ ICw2
. By Proposition 3.1.6 and Proposition 3.2.1, EndE (F)

is a direct summand of EndŠ⊗Š(H(F)) = EndŠ⊗Š(Hw1
⊗Š Hw2

), which is Fr-
semisimple. By Corollary B.2.5, F then decomposes as a direct sum of ICw ⊗Mw

for some complexes Mw of semisimple Fr-modules. Apply H, we see H(F) =
Hw1

⊗ŠHw2
is a direct sum of Hw⊗Mw. Applying Lemma 3.2.4 again, we conclude

that Mw is a direct sum of Q�[n](n/2) for n ≡ �(w1) + �(w2)− �(w)(mod 2).

If �(w1w2) = �(w1) + �(w2), then the multiplication Bw1B
B
× Bw2B/B →

Bw1w2B/B is birational. Therefore ωICw1w2
is a direct summand of ωF with

multiplicity one. By the above discussion, ICw1w2
is also a direct summand of F

with multiplicity one. �
Remark 3.2.6. The new content of this proposition is the semisimplicity of the

Fr-action on ICw1

B∗ ICw2
, which does not seem to be known before.

For Θ ⊂ Σ of finite type, let CΘ be the constant sheaf on ∅F�≤wΘ
. Then

CΘ ∼= ICwΘ
[−�Θ](−�Θ/2).

Lemma 3.2.7. We have a natural isomorphism of functors

πΘ,∗πΘ
∗ (−) ∼= CΘ

B∗ (−).

Proof. We have a Cartesian diagram

NΘ\LΘ

NΘ× Pu
Θ\G

m ��

p2

��

B\G

πΘ

��
B\G πΘ

�� PΘ\G

where m, p2 are as in the convolution diagram (3.3). By proper base change we get
for any F ∈ E ,

πΘ,∗πΘ
∗ F ∼= m∗p

∗
2F ∼= m∗(CΘ

NΘ

� F) ∼= CΘ
B∗ F . �

Remark 3.2.8. By the adjunction (3.1), the functor πΘ,∗πΘ
∗ has a comonad struc-

ture. By Lemma 3.2.7, the object CΘ is hence a coalgebra object in the monoidal

category E . In other words, there are comultiplication map μ : CΘ → CΘ
B∗ CΘ and

counit map ε : CΘ → δ satisfying obvious associativity and compatibility conditions.

Lemma 3.2.9. For w ∈ W , the complex πΘ
∗ ICw is a direct sum of ICv[n](n/2) for

n ≡ �(w)− �(v)(mod 2). In particular, for w ∈ [WΘ\W ], ICw is a direct summand
of πΘ

∗ ICw with multiplicity one.
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Proof. By the Decomposition Theorem, ωπΘ
∗ ICw is a direct sum of ωICv[n]. By

adjunction and Lemma 3.2.7,

EndEΘ
(πΘ

∗ ICw) ∼= HomEΘ
(πΘ,∗πΘ

∗ ICw, ICw)

∼= HomE (CΘ
B∗ ICw, ICw).

But the latter is a direct summand of HomŠ⊗Š(HwΘ
[−�Θ](−�Θ/2)⊗Š Hw,Hw) by

Proposition 3.1.6. By Lemma 3.2.4, Fr acts semisimply on

HomŠ⊗Š(HwΘ
[−�Θ](−�Θ/2)⊗Š Hw,Hw),

hence on EndEΘ
(πΘ

∗ ICw). By Corollary B.2.5, πΘ
∗ ICw is a direct sum of ICv ⊗Mv

for some complexes Mv of semisimple Fr-modules. Then, πΘ,∗πΘ
∗ ICw = CΘ

B∗ ICw

is a direct sum of πΘ,∗ICv ⊗ Mv
∼= ICv[−�Θ](−�Θ/2) ⊗ Mv where v ∈ {WΘ\W}

lifting v. Applying H to this decomposition and using Lemma 3.2.4 again, we
conclude that each Mv is a direct sum of Q�[n](n/2) for n ≡ �(w)− �(v)(mod 2) .

If w ∈ [WΘ\W ], then F�≤w → ΘF�≤w is birational, therefore ωICw is a direct
summand of ωπΘ

∗ ICw of multiplicity one. By the above discussion, ICw is a direct
summand of πΘ

∗ ICw with multiplicity one. �
3.3. Proof of Proposition 3.1.6. This section is devoted to the proof of Propo-
sition 3.1.6. Let A≤w be the equivariant cohomology ring H∗(B\F�≤w). We first
show

Lemma 3.3.1. Let F1,F2 ∈ V≤w, then there is an isomorphism of Fr-modules,

(3.11) Ext•E (F1,F2)
∼−→ HomA≤w

(H(F1),H(F2)).

Proof. The proof is essentially borrowed from [G91]. Since Ginzburg’s proof in
loc. cit. was carried out for varieties over C using mixed Hodge modules, and we
are working with mixed complexes on varieties over Fq, we decide to include a self-
contained proof here. We use induction on the set {v ∈ W |v ≤ w} (for this we
extend the partial ordering to a total ordering) to show that

Ext•E (i
∗
≤vF1, i

!
≤vF2)

∼−→ HomA≤v
(H(i≤v,∗i

∗
≤vF1),H(i≤v,∗i

!
≤vF2)).

For v = e this follows from the equivalence E≤e
∼= Db

m(BH) ∼= Dperf(Š,Fr)
established in Corollary B.4.1. Suppose this is proved for all elements v′ < v. Let

Z := B\F�<v
i
↪→ X := B\F�≤v

j←↩ U := B\F�v

be the inclusions. Now let

(3.12) K1 = i∗≤vF1, K2 = i!≤vF2.

Note that K1 is now only ∗-pure and K2 is only !-pure.

Lemma 3.3.2. For K = K1 or K2, we have exact sequences:

0 → H(j!j
∗K) → H(K) → H(i∗i

∗K) → 0,(3.13)

0 → H(i∗i
!K) → H(K) → H(j∗j

∗K) → 0.(3.14)

Proof. The exactness of (3.13) for K1 and the exactness of (3.14) for K2 easily
follow from the same argument as Lemma 3.1.5. We prove the exactness of (3.14)
for K1, and the exactness of (3.13) for K2 follows by duality.

Now let K = K1 = i∗≤vF1. It suffices to show that the restriction map j∗ :

Hk(X,K) → Hk(U,K) is surjective for all k. Let vH denote the inclusion of the
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stack H\{v} into H\F�G. We can factor the restriction of Hk(B\F�G,F1) ∼=
Hk(H\F�G,F1) to its stalk cohomology Hkv∗HF1 in two ways:

(3.15) Hk(B\F�G,F1) �� Hk(X,K)
j∗ �� Hk(U,K)

v∗
H �� Hkv∗HK

Hk(H\F�G,F1)
α∗

�� Hk(H\vC,F1)
v∗

�� Hkv∗HF1

Here α : H\vC ⊂ H\F�G is an open substack and vC contracts to the point v
under the left action of some Gm ⊂ H as in Lemma 2.3.4. The two maps labelled
by v∗H are isomorphisms by [S84, Corollary 1] (because of the contracting Gm-
action). Therefore in order to show that j∗ is surjective, it suffices to show that α∗

is also. Let β : H\(F�G − vC) ↪→ H\F�G be the closed embedding. Consider the
long exact sequence associated with the triangle β∗β

!F1 → F1 → α∗α
∗F1, we get

(3.16)

· · · → Hk(H\F�G,F1) → Hk(H\vC,F1) → Hk+1(H\(F�G − vC), β!F1) → · · · .

Since F1 is pure of weight 0, β!F1 is of weight ≥ 0 and hence Hk+1(H\(F�G −
vC), β!F1) has weight ≥ k + 1 because H∗(−) does not decrease weights. On the

other hand, since vC contracts to v, Hk(H\vC,F1) = v∗HF1 has weight 0, therefore
the connecting homomorphism in (3.16) is zero. This shows α∗ is surjective, hence
j∗ is also surjective. �

We continue the proof of Lemma 3.3.1. We have the following commutative
diagram from the functoriality of H:

(3.17) Ext•Z(i
∗K1, i

!K2)

��

a �� HomA<v
(H(i∗i

∗K1),H(i∗i
!K2))

��
Ext•X(K1,K2)

��

b �� HomA≤v
(H(K1),H(K2))

��
Ext•U (j

∗K1, j
∗K2)

c �� HomH∗(U)(H(j∗j
∗K1),H(j∗j

∗K2))

Now a is an isomorphism by inductive hypothesis; c is an isomorphism because
Ev = Db

m(U) ∼= Dperf(Š,Fr) by Corollary B.4.1. The left side sequence is exact by
Lemma 3.1.5(2) (for reasons of weight). The right side sequence is exact on the top
by the exact sequences (3.13) and (3.14). We claim that the right side sequence is
also exact in the middle. Admitting this fact, then b is also an isomorphism and
the induction is complete.

We have an exact sequence:

0 → H∗
c(U) → A≤v → A<v → 0.

Now H∗
c(U) is a free Š-module of rank one. Choose a generator [U ] ∈ H2�(v)

c (U)(cor-
responding to a lifting of a fundamental class into equivariant cohomology). By
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Lemma 3.3.2, we see that the action of [U ] on H(K) (K = K1 or K2) factors as:

(3.18) H(K) �� �� H(j∗j
∗K)

u�
��

H(j!j
∗K)[2�(v)](�(v)) �

� �� H(K)[2�(v)](�(v))

where u is an isomorphism. Now we show that the right side sequence in (3.17)
is exact in the middle. If φ : H(K1) → H(K2) is an A≤v-linear homomorphism
which induces the zero map H(j∗j

∗K1) → H(j∗j
∗K2), then the image of φ lies in

H(i∗i
!K2). Moreover, [U ]◦φ = 0 because [U ] factors through H(j∗j

∗K1). Therefore
φ ◦ [U ] = 0 (because [U ] ∈ A≤v commutes with φ), hence φ is zero on the image
of [U ], which is H(j!j

∗K1). Therefore φ comes from an A<v-linear homomorphism
H(i∗i

∗K1) → H(i∗i
!K2). This completes the proof of the claim. �

Now we show that Lemma 3.3.1 implies Proposition 3.1.6. We use the following
simple observation

Lemma 3.3.3. Let S be a ring and let B → C be a homomorphism of S-algebras
that induces a surjection after base change to the ring of total fractions Frac(S).
Let M1,M2 be two C-modules with M2 torsion-free over S. Then the natural ho-
momorphism

HomC(M1,M2) → HomB(M1,M2)

is an isomorphism.

We want to apply this lemma to the situation B = Š ⊗ Š, C = A≤w and S the

right copy of Š in Š ⊗ Š. For this we need

Lemma 3.3.4. The homomorphism of (Š ⊗ Š,Fr)-modules given by restrictions

A≤w →
∏
v≤w

H∗(B\F�w)

is an isomorphism after tensoring by Frac(Š) over the right Š-module structures.

Proof. We do induction on w. We have a commutative diagram

H∗
c(B\F�w) ��

a

��

A≤w
��

b

��

A<w

c

��
H∗(B\F�w) �� ∏

v≤w H(∇v) �� ∏
v<w H(∇v)

where a is the “forgetting the support” map. To show that b ⊗Š Frac(Š) is an

isomorphism, it suffices to show a⊗Š Frac(Š) and c⊗Š Frac(Š) are also. For c we
can use inductive hypothesis. The map a factors as

H∗
c(B\F�w)

a1−→ H∗(B\F�≤w)
a2−→ H∗(B\F�w),

where a1 is “forgetting the support” and a2 is the restriction map. The cones of a1
and a2 are successive extensions of shifts and twists of H(Δv) and H(∇v) for v < w.
As Š⊗ Š-modules, the supports of the cones of a1 and a2 are contained in the union
of Γ(v) for v < w by Lemma 3.1.1. Since the source and target of a are supported
on Γ(w), a ⊗Š Frac(Š) is the same thing as the localization of a at the generic
point of Γ(w), where the cones of a1 and a2 become zero (because Γ(w)∩ Γ(v) is a
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proper subscheme of Γ(w)). Therefore a⊗Š Frac(Š) is an isomorphism. The proof
is complete. �

Consider the composition

Š ⊗ Š → A≤w →
∏
v≤w

H∗(H\HvH/H) ∼=
∏
v≤w

O(Γ(v)).

After tensoring these maps by Frac(Š) over the right copy of Š, we get

Š ⊗ Frac(Š) → A≤w ⊗Š Frac(Š)
∼−→

∏
v≤w

O(Γ(v))⊗Š Frac(Š),

which is obviously surjective (on the level of spectra, this corresponds to the closed
embedding of the generic points of the graphs Γ(v) into VH⊗kFrac(Š)). Also notice
that H(F2) is free (hence torsion-free) over either copy of Š by Lemma 3.1.5(1).
Therefore we can apply Lemma 3.3.3 to conclude that

Ext•E (F1,F2) ∼= HomA≤w
(H(F1),H(F2))

∼= HomŠ⊗Š(H(F1),H(F2))

as graded Fr-modules.

4. Monodromic categories

In this section, we define and study the category of U -equivariant and H-

monodromic complexes on the enhanced flag variety F̃� = G/U of the Kac-Moody
group G, as well as its Whittaker version. We will study averaging functors relat-
ing these categories and the convolution product on the monodromic category. We
will give emphasis to the behavior of (free-monodromic) tilting objects under these
operations. We have tried to arrange the materials in parallel with that of §3, with
the exception of the functor V (the counterpart of H), whose definition requires

extra work when F̃� is infinite dimensional.
This section relies on the foundational material on the completed monodromic

categories in Appendix A. We suggest reading §A.1 before getting into this section,
leaving however the rest of Appendix A as references.

4.1. The monodromic category. Recall F� = G/B is the flag ind-variety for

G and F̃� = G/U is the enhanced flag ind-variety. Consider the right H-torsor

π : F̃� → F�. Let D≤w = Db
m(U\F�≤w) be the derived category of U -equivariant

mixed complexes on F�≤w. It is easy to check that, as a full subcategory of
Db

m(F�≤w), D≤w satisfies the assumptions in Appendix A.6, so that we can de-
fine the monodromic categories

M≤w := Db
m(U\F̃�≤w ���H)

and its completion M̂≤w following the construction in Appendix A.3 and A.6. Let

M (resp. M̂ , D) be the inductive 2-limit of M≤w (resp. M̂≤w, D≤w).
The triangulated category M carries the perverse t-structure with heart P. By

Remark A.6.2, this t-structure extends to M̂ , and we denote its heart by P̂ . Recall

from §A.1 that π† = π![−r] : D → M̂ is t-exact and its left adjoint π† = π![r] :

M̂ → D is right t-exact.
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Let P̂≤w = P̂ ∩ M̂≤w. The irreducible objects in P̂ are twists of π†ICw.
When there is no confusion, we will also write ICw for π†ICw. The basic free-

monodromic perverse local system L̃w on F̃�w (see Definition A.4.1) is normalized

so that π†L̃w = Q�[�(w)](�(w)/2) on F�w. For w = e, we also write δ̃ for L̃e, a

free-monodromic perverse local system on H = F̃�e. In comparison with the free-

monodromic local system L̃ on A = H in Example A.1.2, we have δ̃ = L̃[r](r). The
free-monodromic standard and costandard sheaves are denoted by Δ̃w and ∇̃w.

The group H × H acts on the stack U\G/U via (h1, h2) · x = h1xh2. Note
that this action differs from the action defined in §3.1 by an inversion of the right
copy of H. We will see later (in the proofs of Lemma 4.5.6 and Proposition 4.6.4)
that this modification makes the equivariant and monodromic categories match
perfectly. It is easy to see that the full subcategory M ⊂ Db

c(U\G/U) consists
exactly of H × H-monodromic objects (because the generating objects ICw are

also). Let S = Sym(VH) and Ŝ = lim←−S/(V n
H). The left and right actions of H

give logarithmic monodromy operators by the algebra S ⊗ S (see discussions in

Appendix A.1), so that ωM̂ is naturally an Ŝ ⊗ Ŝ-linear category.

Remark 4.1.1. We have defined M̂ as the completion with respect to the mon-
odromy of the right copy of H. We could have defined another completion of M
using the left copy of H. It turns out that these two completions are canonically
equivalent. Therefore we sometimes prefer to use the more symmetric notation

D̂b
m(B

��� G ���B) to denote M̂ .

4.2. The Whittaker category. Let Θ ⊂ Σ be a subset of finite type. For each
simple reflection s ∈ W , recall that U−

s denotes the 1-dimensional unipotent sub-
group of G whose Lie algebra is the root space corresponding to −αs. Then we
have a canonical isomorphism:

(4.1)
∏
s∈Θ

U−
s

∼−→ U−
Θ /[U−

Θ , U−
Θ ].

Fix an isomorphism U−
s

∼−→ Ga for each s ∈ Σ. Let

χ :
∏
s∈Θ

U−
s

∼−→
∏
s∈Θ

Ga
+−→ Ga

be the sum of the isomorphisms U−
s

∼−→ Ga . We can view the map χ as an additive
character of U−

Θ , or even of the pro-unipotent group UΘU−
Θ .

Fix a nontrivial additive character ψ : k → Q
×
� . This determines an Artin-

Schreier local system ASψ on Ga and hence the local system χ∗ASψ on U−
Θ or

UΘU−
Θ . We want to define the category DΘ of complexes on F� which are

(UΘU−
Θ , χ)-equivariant, i.e., equivariant under UΘU−

Θ against the character sheaf
χ∗ASψ.

We first recall some definitions in the finite-dimensional setting. Suppose V is
a group scheme with a one-dimensional local system A on it which is a character
sheaf. This means there is an isomorphism m∗A ∼= A � A on V × V with which is
compatible with the identity section and the associativity of V in the obvious sense.
Let X be a scheme with a V -action a : V ×X → X. A perverse F on X is said to be
(V,A)-equivariant if it is equipped with an isomorphism a∗F ∼= A�F with obvious
compatibility conditions. When V is connected, the category of (V,A)-equivariant
perverse sheaves is a full subcategory of perverse sheaves on X.
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In our situation, each orbit F�Θw of UΘU−
Θ is finite dimensional whose closure

F�Θ≤w is a projective variety contained in some Schubert variety of F�. The closure

relation among the orbits defines a partial order
Θ
≤ on W : w1

Θ
≤ w2 if F�Θw1

is in

the closure of F�Θw2
. By Lemma 2.2.1, we can choose Jw �UΘ of finite codimension

which acts trivially on F�Θ≤w. We can define Q
Θ,

Θ
≤w

to be the category of (Jw\UΘ ·

U−
Θ , χ)-equivariant perverse sheaves on F�Θ≤w. This notion is obviously independent

of Jw. Let QΘ be the inductive 2-limit of {Q
Θ,

Θ
≤w

}. Let DΘ be the triangulated

subcategory of Db
m(F�) generated by QΘ.

Recall [WΘ\W ] is a set of minimal length representatives in the left WΘ-cosets
of W .

Lemma 4.2.1. The subquotient categories DΘ,w = D
Θ,

Θ
≤w

/D
Θ,

Θ
<w

admit t-exact

equivalences:

DΘ,w
∼−→

{
Db(Fr) w ∈ [WΘ\W ],

0 w /∈ [WΘ\W ].

Proof. Let F ∈ DΘ,w. For w /∈ [WΘ\W ], we can find some simple reflection s ∈ Θ
such that �(sw) < �(w). Then the stabilizer of the point wB/B under U−

Θ contains
U−
s , on which χ is nontrivial. Therefore the stalk cohomology of F at wB/B is

zero, hence F has to be zero along F�Θw since its cohomology sheaves are locally
constant along F�Θw . This implies F = 0 ∈ DΘ,w.

If w ∈ [WΘ\W ], then the action of U−
Θ on F�Θw is free with quotient isomorphic

to an affine space A�(w). We may choose a section of the quotient map F�Θw → A�(w)

and identify F�Θw with U−
Θ × A�(w). Any (U−

Θ , χ)-equivariant perverse sheaf F on

F�Θw has the form χ∗ASψ � F [�Θ] for some perverse sheaf F on A�(w), and vice
versa. The equivariance under UΘ forces F to be constant. Therefore DΘ,w is

equivalent to the full triangulated subcategory of Db
m(U−

Θ × A�(w)) generated by

twists of the local system χ∗ASψ � Q�. Hence DΘ,w
∼= Db(Fr). �

The above lemma implies that DΘ satisfies Assumption S in Appendix A.6,
therefore we can define the Whittaker-monodromic category MΘ of (UΘU−

Θ , χ)-

equivariant and right H-monodromic complexes on F̃�. Note that MΘ in fact
depends on the character χ (which in turn depends on the choice of the isomorphism

U−
s

∼−→ Ga). However, to alleviate notation, we omit χ systematically.

We can also define the completion M̂Θ of MΘ. According to Lemma 4.2.1, we can
index the subquotient categories of DΘ,MΘ by elements or subsets of WΘ\W ; for

example, MΘ,≤w for w ∈ WΘ\W . The categories MΘ and M̂Θ carry the perverse

t-structure with hearts PΘ and P̂Θ (see Lemma A.6.2).
For each w ∈ WΘ\W , we have a (UΘU−

Θ , χ)-equivariant perverse sheaf Lw,χ of
rank one and weight 0 in QΘ,w (w ∈ [WΘ\W ] representing w). This is the sheaf

χ∗ASψ � Q�[�(w) + �Θ](
�(w)+�Θ

2 ) that appears in the proof of Lemma 4.2.1. We

also have the basic free-monodromic (UΘU−
Θ , χ)-equivariant perverse local system

L̃w,χ ∈ P̂Θ,w (cf. Definition A.4.1), which we normalize so that π†L̃w,χ
∼= Lw,χ.

We also have the standard and costandard sheaves Δw,χ = iw,!Lw,χ and ∇̃w,χ =

iw,∗Lw,χ in QΘ. We have standard and costandard free-monodromic sheaves Δ̃w,χ

and ∇̃w,χ in P̂Θ.
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Since e is the minimal element in WΘ\W , we immediately conclude with the

cleanness of the local system L̃e,χ:

Corollary 4.2.2. The natural maps

Δe,χ → ∇e,χ, Δ̃e,χ → ∇̃e,χ,

are isomorphisms. We denote these objects by δΘχ ∈ QΘ and δ̃Θχ ∈ P̂Θ, respectively.

4.3. Convolution. Consider the convolution diagram

(4.2) G
U
× F̃�

p1

����
��
��
��
��

p2

���
��

��
��

��
m̃ �� F̃�

F̃� U\F̃�

where p1, p2 are projections to the left and right factors and m̃ is induced by the
multiplication map of G. The convolution diagram induces a convolution product
on M :

U∗: M × M → M

(F1,F2) �→ m̃!(F1

U
� F2)[r].

Note that F1 �F2 is a U -equivariant complex on G×F̃� with respect to the action

i · (g, x) = (gi−1, ix) and hence descends to a complex F1

U

� F2 on G
U
× F̃�. There

is an obvious associativity constraint which makes
U∗ into a monoidal structure on

M . More generally, the convolution gives a right action of the monoidal category
M on MΘ given by the same formula.

Lemma 4.3.1. The monoidal structure
U∗ naturally extends to the completed cate-

gory M̂ .

Proof. We can decompose
U∗ into two steps: the first step is

φ(−,−) : M × M → Db
m(U\G

U
× F̃� ���Hmid) → Db

m(U\G
B
× F̃� ���H).

(F ,F ′) �→ F
U
� F ′ �→ πmid,!(F

U
� F ′)[r],

where Hmid means the torus acts on G
U
× F̃� by (g1, g2) · h = (g1h, h

−1g2), and
πmid denotes the quotient map by Hmid.

Fix F ′ ∈ M . For any pro-object “ lim←− ”Fn ∈ M̂ , the pro-object “ lim←− ”φ(Fn,F ′)

is in fact isomorphic to an object in Db
m(G

B
× F̃�). In fact, since F ′ is a successive

extension of π!F ′′ for F ′′ ∈ D , it suffice to check with F ′ = π!F ′′. In this case one
easily sees

(4.3) φ(Fn, π
!F ′′) = π!

(
(π!Fn)

B

� F ′′
)
.

Therefore “ lim←− ”φ(Fn,F ′) = φ(“ lim←− ”(π!Fn),F ′′) is essentially constant because

“ lim←− ”(π!Fn) is essentially constant (i.e., belongs to D). This shows that φ extends
to

φ̂ : M̂ × M → Db
m(U\G

B
× F̃� ���H).
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Similarly, we may define

ψ̂ : M̂ × D → Db
m(U\G

B
× F�)

so that the following diagram commutes

M̂ × M
φ̂��

id×π!

��

Db
m(U\G

B
× F̃� ���H)

Π!

��

M̂ × D
ψ̂ �� Db

m(U\G
B
× F�)

where Π : U\G
B
× F̃� → U\G

B
× F� is the projection. Proposition A.3.3 then

implies that φ̂ further extends to

φ̂ : M̂ × M̂ → D̂b
m(U\G

B
× F̃� ���H).

The second step is given by the multiplication m : G
B
× F̃� → F̃�:

m! : D
b
m(U\G

B
× F̃� ���H) → M ,

which, by Corollary A.3.4, extends to completed categories

m̂! : D̂
b
m(U\G

B
× F̃� ���H) → M̂ .

Now for F = “ lim←− ”Fm,F ′ = “ lim←− ”F ′
n ∈ M̂ , we define

F U∗ F ′ = m̂!φ̂(F ,F ′) = “ lim←−
n

”m!(φ̂(F ,F ′
n))

= “ lim←−
n

”“ lim←−
m

”m!φ(Fm,Fn) = “ lim←−
n

”“ lim←−
m

”Fm
U∗ F ′

n.

We construct the associativity constraint for the extended
U∗. Let F = “ lim←− ”Fj ,

F ′ = “ lim←− ”F ′
m,F ′′ = “ lim←− ”F ′′

n ∈ M̂ . On one hand,

(F U∗ F ′)
U∗ F ′′ = “ lim←−

n

”m!φ̂(F
U∗ F ′,F ′′

n )

= “ lim←−
n

”m!φ̂(“ lim←−
m

”m!φ̂(F ,F ′
m),F ′′

n)

= “ lim←−
n

”“ lim←−
m

”m!φ(m!φ̂(F ,F ′
m),F ′′

n)

= “ lim←−
n

”“ lim←−
m

”“ lim←−
j

”m!φ(m!φ(Fj ,F ′
m),F ′′

n)

= “ lim←−
n

”“ lim←−
m

”“ lim←−
j

”(Fj
U∗ F ′

m)
U∗ F ′′

n .

Here the order in which the “ lim←− ” is taken is important. Similarly, one verifies

F U∗ (F ′ U∗ F ′′) = “ lim←−
n

”“ lim←−
m

”“ lim←−
j

”Fj
U∗ (F ′

m

U∗ F ′′
n ).
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Let a(G,G′,G′′) : (G U∗ G′)
U∗ G′′ ∼−→ G U∗ (G′ U∗ G′′) be the associativity constraint in

(M ,
U∗), then we define the associativity constraint â for (M̂ ,

U∗) by
â(F ,F ′,F ′′) = “ lim←−

n

”“ lim←−
m

”“ lim←−
j

”a(Fj ,F ′
m,F ′′

n).

To check the pentagon relation for â, we only need to observe that the two ways

of getting from ((F U∗ F ′)
U∗ F ′′)

U∗ F ′′′ to F U∗ (F ′ U∗ (F ′′ U∗ F ′′′)) is obtained by

taking “ lim←−n
”“ lim←−m

”“ lim←−j
”“ lim←−i

” of the two ways of getting from ((Fi
U∗ F ′

j)
U∗

F ′′
m)

U∗ F ′′′
n to Fi

U∗ (F ′
j

U∗ (F ′′
m

U∗ F ′′′
n )). This completes the proof. �

Remark 4.3.2. Recall the Hmid-action on G
U
× F̃� defined in the proof of the above

lemma. The monodromy action of VHmid
on F1

U

� F2 corresponds to the difference
of the right VH -action on F1 and the left VH -action on F2. Since the multiplication

map m̃ factors as m̃ = m ◦ πmid, the V�(Hmid) acts trivially on πmid(F1

U
� F2),

hence on F1
U∗ F2. Therefore, the following two Ŝ-actions on F1

U∗ F2 are the same:

one is the right Ŝ-action on F1; the other is the left Ŝ-action on F2. Here we are
making use of the convention of the H ×H-action fixed in §4.1.

Similarly, the convolution action of M on MΘ extends to an action of the

monoidal category (M̂ ,
U∗) on M̂Θ. Using similar convolution diagrams, we can

define a right convolution
B∗ of E on D = Db

m(U\F�); we can also define a left

convolution
U∗ of M̂ on D .

Lemma 4.3.3. Suppose w1, w2 ∈ W and �(w1w2) = �(w1) + �(w2), then

Δ̃w1

U∗ Δ̃w2
∼= Δ̃w1w2

, ∇̃w1

U∗ ∇̃w2
∼= ∇̃w1w2

.

Moreover, the object δ̃ is the unit object in the monoidal category M̂ .

Proof. Here we only give the proof of δ̃
U∗ F ∼= F , the rest is either similar (and

parallel to Lemma 3.2.2). The relevant convolution diagram becomes simply the

left action map a : H × F̃� → F̃�. Therefore

δ̃
U∗ F ∼= a!(δ̃ � F)[r] = a!(L̃ � F)[2r](r).

By Lemma A.3.6, we have a!(L̃ � F)[2r](r) ∼= F . �

Proposition 4.3.4. For free-monodromic tilting sheaves T̃1, T̃2 ∈ P̂, the convolu-

tion T̃1
U∗ T̃2 is also a free-monodromic tilting sheaf.

Proof. By Lemma A.7.2, it is enough to check that T := π†(T̃1
U∗ T̃2) ∼= T̃1

U∗ π†T̃2
is a tilting sheaf on F�. Observe that

Δ̃w1

U∗ Δw2
∼= Δw1

B∗ Δw2
∈ 〈Δw(?)[≤ 0]|w ∈ W 〉 ⊂ D ,(4.4)

∇̃w1

U∗ ∇w2
∼= ∇w1

B∗ ∇w2
∈ 〈∇w(?)[≥ 0]|w ∈ W 〉 ⊂ D .(4.5)

In fact, to prove (4.4), we can write each Δw = Δs1

B∗ · · · B∗ Δsm by Lemma 3.2.2
(for a reduced word expression w = s1 · · · sm) and we reduce to the computation
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of Δs
B∗ Δs′ for two simple reflections, s, s′. If s �= s′, then Δs

B∗ Δs′
∼= Δss′ . For

s = s′, this follows by Lemma C.3. The proof of (4.5) is similar.

Therefore, since π†T̃2 admits a Δ-flag and a ∇-flag, the convolution T = T̃1
U∗

π†T̃2 satisfies

(4.6) ωT ∈ 〈Δw[≤ 0]|w ∈ W 〉 ∩ 〈∇w[≥ 0]|w ∈ W 〉.

We show that the above condition already implies that T is a tilting sheaf. In
fact, we know that ∇w is perverse (since iw is affine), hence T ∈ 〈∇w[≥ 0]|w ∈
W 〉 ⊂ D≤0, i.e., i∗wT ∈ D≤0

w . On the other hand, T ∈ 〈Δw[≤ 0]|w ∈ W 〉 implies
that i∗wT ∈ D≥0

w . Hence i∗wT is perverse. Similarly, we can argue that i!wT is also

perverse. Therefore T is a tilting sheaf, and T̃1
U∗ T̃2 is a free-monodromic tilting

sheaf. �

4.4. Averaging functors. In this section, we fix a subset Θ ⊂ Σ of finite type.

4.4.1. Averaging along UΘ. Consider the left action:

a+ : UΘ × F̃� → F̃�.

For ? =! or ∗, define the functors

avΘ? : Db
m(F̃�) → Db

m(UΘ\F̃�)

F �→ a+? (Q�[�Θ](�Θ/2) � F).

The functor avΘ? obviously preserves right H-monodromic subcategories. Moreover,
since UΘ is normal in U with quotient UΘ, the functor avΘ? also preserves left UΘ-
equivariant structures. Therefore, we get a functor

MΘ
Forg−−−→ Db

m(UΘ\F̃� ���H)
avΘ

?−−→ M

which passes to the completions (cf. Proposition A.3.3)

AvΘ? : M̂Θ → M̂ .

4.4.2. Averaging along (U−
Θ , χ). Similarly, consider the action:

(4.7) a− : U−
Θ × F̃� → F̃�.

For ? =! or ∗, define the functors

avΘχ,?(F) := a−? (χ
∗ASψ[�Θ](�Θ/2) � F).

As in the case of avΘ? , the functor avΘχ,? preserves right H-monodromicity and left

UΘ-equivariance. Therefore we get a functor

M
Forg−−−→ Db

m(UΘ\F̃� ���H)
avΘ

χ,?−−−→ MΘ.

which passes to the completions

AvΘχ,? : M̂ → M̂Θ.

Using the convolution, we give an alternative description for AvΘχ,?.
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Lemma 4.4.3. We have a natural isomorphism

(4.8) AvΘχ,?(−) ∼= δ̃Θχ
U∗ (−).

In particular, there is a natural isomorphism of functors AvΘχ,!
∼−→ AvΘχ,∗. From

now on, we denote these functors by AvΘχ .

Proof. The argument is essentially the same as [BBM04a, Theorem 1.5(1), Theo-
rem 2.2]. We only need to exhibit such a natural isomorphism between the restric-
tion of the functors to M . Let j be the open immersion of the big Bruhat cell in
the flag variety of LΘ:

j : U−
Θ ↪→ LΘU/B = LΘ/LΘ ∩B

and let

j̃ : U−
Θ ×H ↪→ LΘU/U ∼= LΘ/UΘ.

By Corollary 4.2.2, we can view the free-monodromic perverse local system δ̃Θχ as

either j̃! or j̃∗ of the perverse local system χ∗ASψ[�Θ](�Θ/2) � δ̃ on U−
Θ ×H.

Consider the diagram

U−
Θ ×H × F̃�

id×aH

��

j̃×id �� LΘU
U
× F̃�

qH
��

m̃

���
��

��
��

��
��

U−
Θ × F̃�

j×id �� LΘU
B
× F̃�

m �� F̃�

where aH : H × F̃� → F̃� is the left action map. For ? =! or ∗, we have

δ̃χ
U∗ F = m̃!(j̃× id)?(χ

∗ASψ[�Θ](�Θ/2) � δ̃ � F)[r]

= m!(j × id)?(χ
∗ASψ[�Θ](�Θ/2) � aH,!(δ̃ � F))[r].

By Lemma A.3.6, we have aH,!(δ̃ �F) ∼= F [−r] (note that δ̃ is normalized to be

L̃[r](r) on H). Hence

δ̃χ
U∗ F ∼= m!(j × id)!(χ

∗ASψ[�Θ](�Θ/2) � F)

= a−! (χ
∗ASψ[�Θ](�Θ/2) � F) = AvΘχ,!(F)

which proves the (4.8) for ? =!.
To prove the case ? = ∗, we note that by Corollary 4.2.2, j!(χ

∗ASψ) ∼= j∗(χ
∗ASψ)

= δΘχ . Notice also that m is proper (hence m! = m∗), therefore,

δ̃χ
U∗ F ∼= m!(j × id)!(χ

∗ASψ[�Θ](�Θ/2) � F)

∼= m!(δ
Θ
χ

B
� F) = m∗(δ

Θ
χ

B
� F)

∼= m∗(j × id)∗(χ
∗ASψ[�Θ](�Θ/2) � F)

= a−∗ (χ
∗ASψ[�Θ](�Θ/2) � F) = AvΘχ,∗(F). �

Corollary 4.4.4. The functor AvΘχ is t-exact with respect to the perverse t-structures

on M̂ and M̂Θ.
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Proof. Since the action map a− in (4.7) is affine, we conclude that AvΘχ,! is right

exact and AvΘχ,∗ is left exact, by [BBD82, Théorème 4.1.1 and Corollaire 4.1.2]. By

Lemma 4.4.3, AvΘχ is exact. �

Lemma 4.4.5. We have adjunctions

(4.9)

AvΘ
!←−−−−

M̂
AvΘ

χ−−−−→ M̂Θ
←−−−−
AvΘ

∗

.

Proof. By Proposition A.3.3, it suffices to check the adjunctions for functors before
completion. There we have the adjunctions

M �� Db
m(UΘ\F̃� ���H)

avΘ
∗

��

avΘ
!��

avΘ
χ,! ��

avΘ
χ,∗

�� MΘ
��

where the unlabeled functors are forgetful functors Forg. The compositions give ad-
junction pairs (avΘ! ◦Forg, avΘχ,∗◦Forg) and (avΘχ,!◦Forg, avΘ∗ ◦Forg), i.e., (AvΘ! ,AvΘχ )

and (AvΘχ ,AvΘ∗ ). �

Lemma 4.4.6. For w /∈ [WΘ\W ], we have AvΘχ (ICw) = 0.

Proof. If w /∈ [WΘ\W ], then there exists a simple reflection s ∈ Θ such that
�(w) = �(sw) + 1. Therefore ICw is Ps-equivariant with respect to the left action

of Ps on F̃�. Let πs : LΘ/UΘ = LΘU/U → LΘU/Ps = LΘ/LΘ ∩ Ps be the natural
projection. Then by Lemma 4.4.3,

AvΘχ (ICw) = δ̃Θχ
U∗ ICw = πs,!(δ̃

Θ
χ )

Ps∗ ICw,

where the convolution
Ps∗ : Db

m(G/Ps) × Db
m(Ps\F̃�) → Db

m(F̃�) is defined in a

similar way to
B∗. Now πs,!(δ̃

Θ
χ ) ∈ Db

m((U−
Θ , χ)\LΘ/Ps ∩ LΘ) and we claim this

category is zero. Just as in the proof of Lemma 4.2.1, it suffices to show that the
stabilizer of any v(Ps ∩ LΘ)/(Ps ∩ LΘ) (v ∈ WΘ) under U

−
Θ contains U−

t for some
t ∈ Θ (on which χ is nontrivial). In fact, if v �= e, then �(tv) < �(v) for some t ∈ Θ
and the stabilizer of v(Ps ∩ LΘ)/(Ps ∩ LΘ) contains N

−
t ; if v = e, the stabilizer of

(Ps∩LΘ)/(Ps∩LΘ) contains U
−
s . Therefore πs,!(δ̃

Θ
χ ) = 0 and AvΘχ (ICw) = 0. This

completes the proof. �

Let Q be the category of left U -equivariant mixed perverse sheaves on F�. Let
Q+ be the Serre subcategory of Q generated by twists of ICw, w > e.

Lemma 4.4.7. For each w ∈ W :

(1) There is an injection δ(�(w)/2) ↪→ Δw in Q whose cokernel is contained in
Q+, and ωδ is the only semisimple sub-object of ωΔw.

(2) Dually, there is a surjection ∇w � δ(−�(w)/2) in Q whose kernel is con-
tained in Q+, and ωδ is the only semisimple quotient object of ω∇w.

Proof. The proof is essentially borrowed from [BBM04a, §2.1], where the finite flag
variety was treated. We prove that (1) and (2) follow by Verdier duality.
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We do induction on �(w). For w = e this is clear. Suppose �(w) > 0, then �(w) =
�(ws) + 1 for some simple reflection s. Consider the P1-fibration πs : F� → G/Ps.
Then we have an exact sequence in Q,

0 → Δws(1/2) → Δw → π∗
sΔw[1](1/2) → 0,

where Δw is the standard sheaf on G/Ps corresponding to the B-orbit BwPs/Ps.
By inductive hypothesis, we have an injection δ(�(ws)/2) ↪→ Δws whose cokernel
is in Q+. Note that the simple constituents of π∗

sΔw[1](1/2) are twists of ICv =
π∗
sICv[1](1/2) for some v ∈ {WΘ\W}, hence π∗

sΔw[1](1/2) ∈ Q+. This proves the
first statement of (1).

Let ωICv ↪→ ωΔw be a simple sub-object. Consider the image of ωICv in
ωπ∗

sΔw[1]. If this image is nonzero, then v ∈ {WΘ\W} and ICv = π∗
sICv[1](1/2).

We have

HomQ(ICv,Δw) = HomQ(π∗
sICv[1](1/2),Δw)

∼= HomG/Ps
(ICv[1](1/2), πs,∗Δw)

∼= HomG/Ps
(ICv[1](1/2),Δw[−1](−1/2)) = 0.

Here we use the fact that πs is proper and F�w → UwPs/Ps is a trivial A1-bundle
to conclude πs,∗Δw = πs,!Δw

∼= Δw[−1](−1/2). The above vanishing means that
ωICv has zero image in ωπ∗

sΔw[1] and hence lies in ωΔws. We then use inductive
hypothesis for Δws to conclude that v must be e. Similarly, any semisimple sub-
object of ωΔw must also lie in ωΔws. Hence such a semisimple sub-object can only
be ωδ, by inductive hypothesis. �

Lemma 4.4.8. (1) For u ∈ WΘ, we have

AvΘχ (Δ̃u) ∼= δ̃Θχ (�(u)/2),(4.10)

AvΘχ (∇̃u) ∼= δ̃Θχ (−�(u)/2).(4.11)

(2) For w ∈ W , write w = uv where u ∈ WΘ and v ∈ [WΘ\W ], then

AvΘχ (Δ̃w) ∼= Δ̃v,χ(�(u)/2),(4.12)

AvΘχ (∇̃w) ∼= ∇̃v,χ(−�(u)/2).(4.13)

Proof. We prove the statements about Δ̃w; the argument for ∇̃w is similar. We

first show that (1) implies (2). In fact, by Lemma 4.3.3, Δ̃w
∼= Δ̃u

U∗ Δ̃v, therefore,

AvΘχ (Δ̃w) ∼= δ̃Θχ
U∗ Δ̃u

U∗ Δ̃v
∼= AvΘχ (Δ̃u)

U∗ Δ̃v.

Assuming (4.10), we get

(4.14) AvΘχ (Δ̃w) ∼= AvΘχ (Δ̃u)
U∗ Δ̃v

∼= δ̃Θχ (�(u)/2)
U∗ Δ̃v = AvΘχ (Δ̃v)(�(u)/2).

Since v ∈ [WΘ\W ], the action map a− gives an isomorphism

a− : U−
Θ ×BvB/U ∼= F̃�

Θ

v .

Therefore AvΘχ (Δ̃v) ∼= Δ̃v,χ follows from the definition of AvΘχ . This, combined
with (4.14), proves the isomorphism (4.12).
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It remains to prove (1). By the last sentence in Remark A.5.5, it suffices to show

that π†AvΘχ (Δ̃u) ∼= δΘχ (�(u)/2). We have

π†AvΘχ (Δ̃u) = δ̃Θχ
U∗ π†Δ̃u = δ̃Θχ

U∗ Δu.

By Lemma 4.4.7(1), there is an injection δ(�(u)/2) ↪→ Δw whose cokernel is in Q+.

By the argument of Lemma 4.4.6, δ̃Θχ
U∗ (−) is zero on Q+, hence

δ̃Θχ
U∗ Δu

∼←− δ̃Θχ
U∗ δ(�(u)/2) ∼= π†δ̃

Θ
χ (�(u)/2)

∼= δΘχ (�(u)/2).

This completes the proof of the lemma. �

The following is an immediate consequence of Lemma 4.4.8.

Corollary 4.4.9. If F̃ ∈ P̂ is a free-monodromic tilting sheaf, then AvΘχ T̃ is also
a free-monodromic tilting sheaf.

4.4.10. The object P̃Θ. Define the object

P̃Θ := AvΘ! (δ̃
Θ
χ ).(4.15)

Since δ̃Θχ is supported on F̃�≤wΘ
= LΘB/B, P̃Θ is also supported on F̃�≤wΘ

; i.e.,

P̃Θ ∈ M̂≤wΘ
.

Lemma 4.4.11.
(1) The object ωP̃Θ is a projective cover of ωδ in ωP̂≤wΘ

.

(2) The object P̃Θ is a successive extension of Δ̃u(�(u)/2) for u ∈ WΘ, each
appearing exactly once.

(3) There is a natural isomorphism of functors M̂ → M̂ ,

AvΘ! AvΘχ (−) ∼= P̃Θ
U∗ (−).

Proof. (1) Note that we have an equivalence ι : M̂Θ,≤e
∼= Db(Ŝ,Fr) with δ̃Θχ corre-

sponding to Ŝ. For any F ∈ ωM̂≤wΘ
, we have

RHom
M̂≤wΘ

(P̃Θ,F) ∼= RHom
M̂Θ,≤e

(δ̃Θχ ,AvΘχ (F))(4.16)

∼= RHomŜ(Ŝ, ιAvΘχ (F)) = ιAvΘχ (F).(4.17)

Therefore ωP̃Θ represents the exact functor ι ◦ AvΘχ : ωM̂≤wΘ
→ Db(Ŝ,Fr). The

exactness implies ωP̃Θ is a projective object in ωP̂≤wΘ
. By Lemma 4.4.6 and

Lemma 4.4.8, we have

Hom
P̂
(P̃Θ, ICw) = ιAvΘχ (ICw) =

{
Q�, w = e,

0, w ∈ WΘ − {e}.

Therefore ωP̃Θ is a projective cover ωδ in ωP̂≤wΘ
.

(2) By (4.16) and the isomorphism (4.11), we have for any u ∈ WΘ,

Hom
M̂

(P̃Θ, ∇̃u) = ιAvΘχ (∇̃u) = Ŝ(−�(u)/2).

This implies that in the Δ̃-flag of P̃Θ, each Δ̃u(�(u)/2) appears exactly once.

(3) For any object F ∈ M̂ , we have functorial isomorphisms

AvΘ! AvΘχ (F) ∼= AvΘ! (δ̃
Θ
χ

U∗ F) ∼= (AvΘ! δ̃
Θ
χ )

U∗ F = P̃Θ
U∗ F .
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Here we used the obvious fact that AvΘ! commutes with right convolution. �

Remark 4.4.12. As in Remark 3.2.8, by Lemma 4.4.11(3), the comonad structure

on AvΘ! AvΘχ gives a coalgebra structure on P̃Θ with respect to the convolution
U∗;

we will see a similar phenomenon in Proposition 4.6.4.

4.5. The functor V. In this section, we will define a functor V : M̂ → Db(S ⊗
S,Fr). In the case when G is of finite type, this is essentially the averaging functor

AvΣχ . However, when G is infinite-dimensional, the averaging procedure involves
the infinite-dimensional big cell C ⊂ F�, which causes some technical complication.

4.5.1. The functor avχ. Recall from Lemma 2.3.1 that we have a regular function
ρs on C for every simple reflection s. Let χ be the sum of these functions:

χ : C
∏

s ρs−−−−→
∏
s∈Σ

A1 +−→ A1.

We define Lχ to be the *-complex χ∗ASψ on the ind-scheme C. Then Lχ is the
projective limit of local systems on C≤w.

By Lemma 2.3.2, the H-torsor πC : C̃ → C is trivializable. Let us fix a section

σ : C → C̃ whose image is denoted by Cσ. Let Cσ
G ⊂ G be the preimage of

Cσ ⊂ F̃�, which admits a right U -action, and the quotient Cσ
G/U

∼= C. We will
also view Lχ as a *-complex on Cσ or Cσ

G by pull-back.
For each w ∈ W , consider the convolution:

a−≤w : Cσ
G

U
× F̃�≤w ⊂ G

U
× F̃�

m−→ F̃�.

Both the source and the target of the morphism a−≤w are ind-schemes (the ind-

scheme structure of the source is given by
⋃

w′∈W Cσ
G,≤w′

U
× F̃�≤w), and a−≤w is

clearly of finite type, therefore we can define the functor

avχ,≤w,! : M≤w → D←−
b
m(F̃� ���H)

F �→ a−≤w,!(Lχ

U

� F).

By Proposition A.3.3, this functor extends to

avχ,≤w,! : M̂≤w → D̂←−
b
m(F̃� ���H).

Passing to the inductive 2-limit, we get

avχ,! : M̂ → D̂←−
b
m(F̃� ���H).

Recall the projection πC
s : C ⊂ F� → G/Ps for any simple reflection s.

Lemma 4.5.2. The ∗-complex πC
s,!Lχ is zero.

Proof. It is enough to check that the stalk of πC
s,!Lχ at any geometric point x ∈ G/Ps

is zero. By Lemma 2.3.3, the restriction of Lχ to the fiber Cx = πC,−1
s (x) can be

identified with the Artin-Schreier sheaf ASψ on A1 via ρs : Cx
∼−→ A1. Therefore

the stalk of πσ
s,!Lχ at x is

H∗
c(Cx,Lχ|Cx

) ∼= H∗(A1,ASψ) = 0. �

Lemma 4.5.3. For w �= e, avχ,!(ICw) = 0.
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Proof. For F1 ∈ Db
m(U\F�),F2 ∈ Db

m(B\F�), av!(F1
B∗ F2) ∼= avχ,!(F1)

B∗ F2

because avχ,! is itself defined by convolution. Since each ICw (w �= e) is a direct

summand of ICs1

B∗ · · · B∗ ICsm for a reduced word w = s1 · · · sm, it suffices to show
that avχ,!(ICs) = 0 for any simple reflection s ∈ Σ.

Let π̃s : F̃� → G/Ps be the projection. Let δs be the skyscraper sheaf at
Ps/Ps ∈ G/Ps. Then ICs can be identified with π̃∗

sδs up to shift and twist. We
have

avχ,!(π̃
∗
sδs) = π̃∗

sa
−
! (Lχ

U

� δs) = π̃∗
sπ

C
s,!Lχ

which is zero by Lemma 4.5.2. Hence avχ,!(ICs) = 0 and the lemma is proved. �

If we further take stalks along the stratum F̃�e, we get

V′ := ı̃∗eavχ,! : M̂ → D̂←−
b
m(F̃� ���H) → D̂b

m(F̃�e ���H)
∼−→ Db(Ŝ,Fr).

Corollary 4.5.4. The functor V′ is t-exact.

Proof. By Lemma A.6.2, in order to show that V′ is t-exact, it suffices to show that
it is t-exact when restricted to M .

By Lemma 4.5.3, we see that V′(ICw) = 0 for w �= e. For w = e, V′(π†δ) =

ı̃∗eπ
†Lχ = Q�[r](r) = π†δ ∈ Db

m(F̃�e ���H) corresponds to the trivial module Q� ∈
Db(Ŝ,Fr) placed at degree 0. Therefore, V′ sends simple objects ICw ∈ P to the

heart of Db(Ŝ,Fr), hence t-exact on P. �

4.5.5. The functor V. Let (V′)f be the composition of V′ with the equivalence (cf.
(1.1))

(−)f : Db(Ŝ,Fr) ∼= Db(S,Fr).

By Corollary 4.5.4, (V′)f restricts to an exact functor P̂ → Mod(S,Fr) with the
S-action on V′(F)f coming from the right H-monodromy. We also have the left
H-monodromy acting on each object F ∈ P functorially, hence acting as natural
transformations on the functor (V′)f . Therefore, we can lift (V′)f uniquely into an
exact functor

(4.18) V = (V′)f : P̂ → Mod(S ⊗ S,Fr).

We also write

V : M̂ → Db(S ⊗ S,Fr)

for the derived functor of (4.18). It is easy to see that V is a lifting of (V′)f as

functors on M̂ .
For w ∈ W , let the Γ∗(w) = {(w · v∗, v∗)|v∗ ∈ V ∨

H } ⊂ V ∨
H × V ∨

H be the graph of
the w-action on V ∨

H . Let OΓ∗(w) be the coordinate ring of Γ∗(w) ⊂ V ∨
H × V ∨

H .

Lemma 4.5.6. For each w ∈ W , we have

V(Δ̃w) ∼= OΓ∗(w)(�(w)/2),

V(∇̃w) ∼= OΓ∗(w)(−�(w)/2).

Proof. We prove the first identity; the proof of the second one is similar. We first

claim that V(Δ̃w) as a right S is isomorphic to S(�(w)/2). For this, it suffices to

show that V′(Δ̃w) = ı̃∗eavχ,!(Δ̃w)[r](r) ∼= L̃[r](r + �(w)/2). By the last sentence in

Remark A.5.5, it suffices to show that π† ı̃
∗
eavχ,!(Δ̃w) ∼= Q�(�(w)/2) ∈ Db

c(F�e).
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We can similarly define

avχ,! : D → D←−
b
m(F�)

which kills all ICw except δ (see Lemma 4.5.3). By the definition of V′, we have

π†ı̃
∗
eavχ,!(Δ̃w) = i∗eπ†avχ,!(Δ̃w) = i∗eavχ,!(Δw).

By Lemma 4.4.7(1), we have an injection δ(�(w)/2) ↪→ Δw whose cokernel is in Q+

(hence killed by avχ,!), therefore,

i∗eavχ,!(Δw) ∼= i∗eavχ,!(δw)(�(w)/2)
∼= Q�(�(w)/2).

This shows that V(Δ̃w) ∼= S(�(w)/2) as right S-modules.

Second, we show that the S ⊗ S-action on V(Δ̃w) factors through OΓ∗(w). Note

that the S ⊗ S-structure on V(Δ̃w) comes from the action of S ⊗ S on Δ̃w. Since

F̃�w ∼= F�w ×H and F�w is isomorphic to an affine space, we have

(4.19) End(Δ̃w) = EndF�w×H(Q� � δ̃) ∼= EndwB/U (δ̃).

Note that the H×H-action on HwH ∼= wB/U factors through (H×H)/Hw where

Hw = {(whw−1, h−1)|h ∈ H}; therefore, the S ⊗ S-action on EndwB/U (δ̃) factors
through Sym((VH ⊕ VH)/VHw

), which is OΓ∗(w).

Combining the two steps, we see that V(Δ̃w) ∼= OΓ∗(w)(�(w)/2). �

The following result is parallel to Proposition 3.1.6. We postpone its proof to
§4.7.

Proposition 4.5.7. Suppose T̃1, T̃2 ∈ P̂ are free-monodromic tilting sheaves, then
the natural map

(4.20) Hom
P̂

(T̃1, T̃2)f → HomS⊗S(V(T̃1),V(T̃2))
is an isomorphism of Fr-modules.

4.6. The pro-sheaf P̃. We first define a shifted version of Av!, averaging along
U -orbits. For w ∈ W , pick a normal subgroup Jw � U of finite codimension d(Jw)

which acts trivially on F̃�≤w. Let a+≤w : Jw\U × F̃�≤w → F̃�≤w be the action
morphism. Define

av≤w,! : D
b
m(F̃�≤w) → Db

c(F̃�≤w)

F �→ a+≤w,!(Q�[2d(Jw)](d(Jw)) � F).

It is easy to see that av≤w,! is independent of the choice of Jw and compatible with

the restriction functors ı̃∗w,w′ for the inclusions ı̃w,w′ : F̃�≤w ↪→ F̃�≤w′ , hence it
defines a functor

av! : D̂←−
b
m(F̃� ���H) → M̂←−

which is left adjoint to the forgetful functor M̂←− → D̂←−
b
m(F̃� ���H).

Recall that we have a trivialization C̃ = Cσ × H. Let L̃χ be the pro-object

Lχ � δ̃ in D←−
b
m(C̃ ���H) (where δ̃ is the basic free-monodromic local system on H).

Let j̃ be the open embedding C̃ ↪→ F̃�. We define

P̃ := av!j̃!L̃χ ∈ M̂←−.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



38 ROMAN BEZRUKAVNIKOV AND ZHIWEI YUN

Lemma 4.6.1. There is a nonzero morphism P̃ → δ making ωP̃ a projective cover

of ωδ in ωP. In particular, we can view P̃ as an object in P̂←− = 2− lim←−w∈W
P̂≤w.

Proof. We first show that

(4.21) HomM←−
(P̃, ICw) =

{
0 w �= e,

Q� w = e.

Since av! is adjoint to the forgetful functor, then Hom(P̃, ICw)=HomF�(j̃!L̃χ, ICw).
If w �= e, then ICw has the form π̃!

sF for some simple reflection s and some complex

F ∈ Db
m(G/Ps) (π̃s : F̃� → G/Ps is the projection). Hence

HomF̃�
(j̃!L̃χ, ICw) = HomF̃�

(j̃!L̃χ, π̃
!
sF)

= HomG/Ps
(π̃s,!j̃!L̃χ, π̃

!
sF)

= HomG/Ps
(πC

s,!π
C
! L̃χ,F) = HomG/Ps

(πC
s,!Lχ,F).

Here we used the fact that πC
! L̃χ = Lχ. By Lemma 4.5.2, πC

s,!Lχ = 0. Hence

Hom(P̃, ICw) = 0 for w �= e.
For w = e,

Hom(P̃, ICe) = HomF̃�
(j̃!L̃χ, π

!δ) = i∗eLχ = Q�.

This proves (4.21).

We then prove that RHom(P̃,−) : M̂ → Db(Vect) is an exact functor; i.e.,

Ext<0(P̃, M̂≥0) = 0 and Ext>0(P̃, M̂≤0) = 0. By Lemma A.6.2, it suffices to

show that Ext<0(P̃,M≥0) = 0 and Ext>0(P̃,M≤0) = 0. But this follows from
(4.21), because every object in ωM≥0 (resp. ωM≤0) is a successive extension of
ωICw[≤ 0] (resp. ωICw[≥ 0]). This finishes the proof. �

Corollary 4.6.2. The object P̃ ∈ M̂←− is a successive extension of Δ̃w(�(w)/2) for

w ∈ W , each appearing exactly once.

Proof. By Lemma 4.4.7(2), δ(−�(w)/2) is the only simple constituent of ∇w whose
underlying complex is ωδ. By Lemma 4.6.1, we have

Hom(π†P̃,∇w) = Hom(P̃, π†∇w) = Q�(−�(w)/2).

This means π† ı̃
∗
wP̃ = i∗wπ†P̃ ∼= Q�(�(w)/2). By Remark A.5.5, ı̃∗wP̃ ∼= L̃w(�(w)/2),

which proves the corollary. �

Composing with the exact functor (−)f , the functor Hom(P̃,−)f on P̂ is still

exact. Since Hom(P̃,−)f carries an action of S ⊗ S coming from the left and right
H-monodromy, it can be lifted to an exact functor

(4.22) Hom(P̃,−)f : P̂ → Mod(S ⊗ S,Fr).

We define

RHom(P̃,−)f : P̂ → Db(S ⊗ S,Fr)

to be the derived functor of (4.22). It is easy to see that, the i-th cohomology of

RHom(P̃,F)f is nothing but the Fr-locally finite part of Hom-space between ωP̃
and ωF [i] as pro-objects in M .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 39

Lemma 4.6.3. There is a natural isomorphism of functors

RHom(P̃,−)f ∼= V : M̂ → Db(S ⊗ S,Fr).

Moreover, such an isomorphism is unique up to a scalar.

Proof. First we claim that V(P̃)Fr-unip = Q�. In fact, by Corollary 4.6.2, P̃ is a

successive extension of Δ̃(�(w)/2). By Lemma 4.5.6, V(Δ̃(�(w)/2)) ∼= OΓ∗(w)(�(w))

has negative Fr-weights except when w = e, in which case V(δ̃)Fr-unip = Q�.

The identity V(P̃)Fr-unip = Q� gives a map, functorial in F ∈ M̂ :

β(F) : RHom(P̃,F)f =RHom(P̃,F)f⊗V(P̃)Fr ↪→RHom(P̃,F)f⊗V(P̃) → V′(F).

We claim β(F) is a quasi-isomorphism for any F ∈ M̂ . By our remarks following

the definitions of the derived V(−) and RHom(P̃,−), for a general object F =

“ lim←− ”Fn, the i-th cohomology groups of V(F) and RHom(P̃,F) are computed as

the projective limits of i-th cohomology groups of V(Fn) and RHom(P̃,Fn), hence
it suffices to show that β(F) is an isomorphism for any F ∈ M , or even for the
generating objects {ICw}. Using Lemma 4.5.3, β(ICw) is trivially an isomorphism
for w �= e; for w = e, β(δ) : Q� → Q� is also an isomorphism by construction.

Hence, β(F) is an isomorphism for all F ∈ M , hence also for all F ∈ M̂ .
The uniqueness (up to scalar) of β follows from the fact that the Fr-equivariant

endomorphisms of the functor RHom(P̃,−)f reduce to V(P̃)Fr = Q�. �

The following result is the counterpart of Proposition 3.2.1. In the statement,

we need to consider the convolution P̃ U∗ P̃, which we understand as the pro-object

“ lim←−
′′
v,w∈W

ı̃∗≤vP̃
U∗ ı̃∗≤wP̃ in proM̂ . Note that this object does not have finite

dimension stalks, and hence is not an object in M̂←−.

Proposition 4.6.4.

(1) The pro-object P̃ has a coalgebra structure with respect to the convolution
U∗; i.e., there is a comultiplication map μ : P̃ → P̃ U∗ P̃ and a counit map

ε : P̃ → δ̃ satisfying obvious co-associativity and compatibility conditions.
Moreover, this coalgebra structure is unique once we fix the counit map ε,
which is unique up to a scalar.

(2) The functor V has a monoidal structure which intertwines the convolution
U∗ on M̂ and the tensor product (N1, N2) �→ N1

L
⊗S N2 (with respect to the

right S-action on N1 and the left S-action on N2) on Db(S ⊗ S,Fr).

Proof. (1) By Lemma 4.5.6, we have

hom
P̂←−
(P̃, δ̃) = Hom

P̂←−
(P̃, δ̃)Fr ∼= ŜFr = Q�.

Hence we have a map ε : P̃ → δ̃ in M̂ , unique up to a scalar. We fix such an ε.
Using the argument in the proof of Lemma 4.6.3, we see that the only simple

constituent of P̃ U∗ P̃ isomorphic to δ (and not just a twist of it) is the quotient

P̃ U∗ P̃ → δ̃
U∗ δ̃ = δ̃ → δ. In other words,

(4.23) hom
proM̂

(P̃, P̃ U∗ P̃) ∼= hom
M̂←−

(P̃, δ) = Q�,
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which gives a map μ : P̃ → P̃ U∗ P̃ in proM̂ , unique up to a scalar. If we require

that P̃ μ−→ P̃ U∗ P̃ ε
U∗ε−−→ δ̃

U∗ δ̃ = δ̃ be the same as ε, then μ is uniquely determined.
The co-associativity of μ follows essentially from the fact that

hom
proM̂

(P̃, P̃ U∗ P̃ U∗ P̃) ∼= hom
M̂←−

(P̃, δ) = Q�,

which is proved using the same argument as (4.23).
(2) Using Lemma 4.6.3 and the coalgebra structure μ defined in (1), we have a

map functorial in F1,F2 ∈ M̂ :

V(F1)⊗ V(F2) = Hom(P̃,F1)
f ⊗Hom(P̃,F2)

f

α−→ Hom
proM̂

(P̃ U∗ P̃,F1
U∗ F2)

f

μ∗

−→ Hom(P̃,F1
U∗ F2)

f = V(F1
U∗ F2).

By Remark 4.3.2, the map α above factors through Hom(P̃,F1)
f ⊗S Hom(P̃,F2)

f

because the right S-action on the first term and the left S-action on the second
term coincide after applying α. Therefore, we get a bifunctorial map

(4.24) β(F1,F2) : V(F1)
L
⊗S V(F2) → V(F1

U∗ F2).

The compatibility of β with the monoidal structures
U∗ and ⊗S follows from the

coalgebra structure of P̃ given in (1).

It remains to show that β(F1,F2) is an isomorphism for any F1,F2 ∈ M̂ .
Clearly, it suffices to show that β|M×M is an isomorphism. Since β(−,−) is a nat-
ural transformation between bi-exact bifunctors, it suffices to show that β(F1,F2)
is an isomorphism for generating objects of M , say F1 = π†ICw and F2 = π†ICw′

for w,w′ ∈ W . If w and w′ are not both equal to e, the convolution F1
U∗ F2 =

π†(ICw
B∗ ICw′) does not have a simple constituent isomorphic to δ (for example, if

w′ �= e, then ICw′ is the pull-back of a complex on G/Ps for some simple reflection

s; hence, so is ICw
B∗ ICw′). Therefore, in this case, both sides of (4.24) are zero,

hence β is trivially an isomorphism.
In the case w = w′ = e, both sides of (4.24) are isomorphic to S viewed as an

S-bimodule, and the map β(δ, δ) is also easily seen to be an isomorphism. This
completes the proof. �

4.7. Proof of Proposition 4.5.7. We partly follow the strategy of the proof of

[BBM04a, Proposition in §2.1]. Fix w ∈ W and let P̃≤w = ı̃∗≤wP̃ ∈ P̂≤w, whose

underlying complex is a projective cover of ωδ in ωP̂≤w, by Lemma 4.6.1. By

Lemma 4.6.3, V|P̂≤w, factors as:

V : P̂≤w
α=Hom(P̃≤w,−)−−−−−−−−−−−→ Mod(A≤w,Fr) → Mod(S ⊗ S,Fr).

Here α(−) = Hom(P̃≤w,−) and Aopp
≤w := End

P̂≤w
(P̃≤w) and the second functor

above is the restriction of scalars via the central homomorphism S ⊗ S → A≤w

given by left and right logarithmic monodromy operators.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 41

The functor α admits a left adjoint:

β : Mod(A≤w,Fr) → P̂≤w

M �→ P̃≤w ⊗A≤w
M.

Concretely, if we write M as the the cokernel of a map of free A≤w-modules V1 ⊗
A≤w → V0 ⊗ A≤w (where Vi are vector spaces), then β(M) is the cokernel of the

corresponding map V1 ⊗ P̃≤w → V0 ⊗ P̃≤w. Note that β is a right inverse of α.

Let P̂+ = ker(α) and P+ = P̂+ ∩ P. By Lemma 4.4.6, P+ ⊂ P is the full
subcategory of objects F whose simple subquotients in the Jordan-Hölder series
are twists of ICv for v > e.

Lemma 4.7.1. For any object F ∈ P̂+ and any u ∈ W , we have

Hom(F , Δ̃u) = 0,(4.25)

Hom(∇̃u,F) = 0.(4.26)

Proof. We first prove (4.25). Since ωΔ̃u is a successive extension of ωπ†Δu, it

suffices to show that Hom(F , π†Δu) = 0. Write F = “ lim←− ”Fn. Since F ∈ M̂≤0,

by Lemma A.6.2, we may assume each Fn ∈ M≤0. Suppose fn : ωFn → ωΔu is
any nonzero map, we will show that this map becomes zero when composed with

Fm → Fn for large m. In fact, since F ∈ P̂+ = ker(α), we can choose m large
enough so that α(Fm) → α(Fn) is zero. Now fn and fm : ωFm → ωFn → ωΔu

factor through f0
n : ωpH0Fn → ωΔu and f0

m : ωpH0Fm → ωpH0Fn → ωΔu. Let
Gn and Gm be the image of f0

n and f0
m. Then we have Gm ⊂ Gn ⊂ ωΔu. If both Gm

is nonzero, then by Lemma 4.4.7(1), we must have ωδ ⊂ Gm ⊂ Gn, which implies
that α(Gm) → α(Gn) is nonzero, hence α(Fm) → α(Fn) is nonzero, contradiction!
This proves that any map fn is zero in the direct limit lim−→Hom(Fn,Δu).

The proof of (4.26) is similar. �

Suppose T̃1, T̃2 are free-monodromic tilting sheaves in P̂≤w. We will first prove
that the natural map

(4.27) Hom
P̂≤w

(T̃1, T̃2) → HomA≤w
(αT̃1, αT̃2)

is an isomorphism of Fr-modules, and then deduce the isomorphism (4.20) from
(4.27).

By adjunction, we have

(4.28) HomA≤w
(αT̃1, αT̃2) = Hom

P̂≤w
(βαT̃1, T̃2).

Consider the adjunction map c : βαT̃1 → T̃1. If we apply α to c, we get an

isomorphism since αβ ∼= id, therefore the kernel and cokernel of c lie in P̂+. Since

ωT̃1 admits a ∇̃-flag, Hom(T̃1, coker(c)) = 0 by the above claim, hence coker(c) = 0,
i.e., c is surjective. Therefore we have an exact sequence

0 → Hom
P̂≤w

(T̃1, T̃2) → Hom
P̂≤w

(βαT̃1, T̃2) → Hom
P̂≤w

(ker(c), T̃2).

Again, since ωT̃2 admits a Δ̃-flag, Hom(ker(c), T̃2) = 0 by the above claim, hence
we get an isomorphism

Hom
P̂≤w

(T̃1, T̃2) ∼= Hom
P̂≤w

(βαT̃1, T̃2)

which, combined with (4.28), proves (4.27).
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Now we show (4.27) implies (4.20). For this we need an analog of Lemma 3.3.4.

Recall from Corollary 4.6.2 that ı̃∗vP̃≤w
∼= L̃v(�(v)/2), a free-monodromic local

system on F̃�v.

Lemma 4.7.2. The algebra homomorphism given by
∏

v≤w ı̃∗v:

End
P̂≤w

(P̃≤w)
f →

∏
v≤w

End
P̂v

(̃ı∗vP̃≤w)
f ∼=

∏
v≤w

End
P̂v

(L̃v)
f ,

is an isomorphism after tensoring by Frac(S) over the right S-module structures.

Proof. We do induction on w (for this we need to extend the partial ordering on

W to a total ordering). For w = e this is obvious. Suppose this is true for P̃<w.
The exact sequence

(4.29) 0 → Δ̃w(�(w)/2) = ı̃w,!̃ı
∗
wP̃≤w → P̃≤w → ı̃<w,∗ı̃

∗
<wP̃≤w = P̃<w → 0

gives a commutative diagram with exact rows

Hom(P̃≤w, Δ̃w(�(w)/2))f ��

a

��

End(P̃≤w)
f ��

��

End(P̃<w)
f

b

��
End(L̃w(�(w)/2))f �� ∏

v≤w End(L̃v(�(v)/2))
f �� ∏

v<w End(L̃v(�(v)/2))
f

The arrow b ⊗S Frac(S) is an isomorphism by induction hypothesis, therefore to
prove the lemma, it suffices to show that a ⊗S Frac(S) is also an isomorphism.

Applying RHom(−, Δ̃w(�(w)/2)) to the exact sequence (4.29), we see that

Hom(P̃<w, Δ̃w(�(w)/2))
f � ker(a),

coker(a) ↪→ Ext1(P̃<w, Δ̃w(�(w)/2))
f .

To compute the complex RHom(P̃<w, Δ̃w(�(w)/2)), we write P̃<w as a successive

extension of Δ̃v(�(v)/2) for v < w, by Corollary 4.6.2. We reduce to computing

Ext∗(Δ̃v, Δ̃w)
f for v < w. But notice that in the second part of the proof of

Lemma 4.5.6, we have shown that the S ⊗ S-action on Δ̃w factors through the
quotient O(Γ∗(w)) (see formula (4.19) and the discussion afterwards), therefore

the S⊗S-action on Ext∗(Δ̃v, Δ̃w)
f factors through the quotient O(Γ∗(v)∩Γ∗(w)),

which is a torsion module over either copy of S. Therefore, ker(a)⊗S Frac(S) and
coker(a)⊗S Frac(S) are zero, i.e., a⊗S Frac(S) is an isomorphism. �

Consider the maps

(4.30) S ⊗ S → Af
≤w →

∏
v≤w

End
P̂v

(L̃v(�(v)/2))
f ∼=

∏
v≤w

O(Γ∗(v)).

After tensoring the maps (4.30) by Frac(S) over the right copy of S, we get

S ⊗ Frac(S) → Af
≤w ⊗S Frac(S)

∼−→
∏
v≤w

O(Γ∗(v))⊗S Frac(S)
∼−→

∏
v≤w

Frac(S),

which is obviously surjective (on the level of spectra, this corresponds to the closed
embedding of the generic points of the graphs Γ∗(v) into V ∗

H ⊗k Frac(S)). Also

notice that V(T̃2) is free (hence torsion-free) over either copy of S (writing T̃2 as

a successive extension of Δ̃’s and applying Lemma 4.5.6). Therefore we can apply
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Lemma 3.3.3 to the situation B = S ⊗ S,C = Af
≤w and S to the second copy of S

in S ⊗ S and conclude that

Hom
P̂≤w

(T̃1, T̃2)f ∼= HomAf
≤w

(α(T̃1)f , α(T̃2)f ) ∼= HomS⊗S(V(T̃1),V(T̃2))

as Fr-modules.
To conclude this section, we describe the endomorphism algebra End

P̂
(P̃)f ex-

plicitly in the case G is finite-dimensional following Soergel and Bernstein. This
result is not used in the rest of the paper.

Proposition 4.7.3. Assume W is of finite type. Then

(1) The algebra homomorphism S ⊗ S → End
P̂
(P̃)f coming from the left and

right logarithmic H-monodromy induces an isomorphism

S ⊗SW S
∼−→ End

P̂
(P̃)f .

(2) Let P̂0 ⊂ P̂ be the full subcategory consisting of F such that ωF is a direct

sum of copies of P̃. Then P̂0 is stable under the convolution
U∗ and the

functor V induces an equivalence of monoidal categories

V0 : P̂0
∼−→ Modfree(S ⊗SW S,Fr).

Here Modfree(S⊗SW S,Fr) is the full subcategory of (S⊗SW S,Fr)-modules
which are free of finite rank as S⊗SW S-modules, and the monoidal structure
is defined as in Proposition 4.6.4(2).

Proof. (1) The algebra End
P̂
(P̃)f = V(P̃) is a free S-module over both the left

and right S-actions(this follows by writing P̃ as a successive extension of Δ̃’s and
applying Lemma 4.5.6). The sequence of maps (4.30) for w = w0 (the longest
element of W ) becomes

S ⊗ S
μ−→ End

P̂
(P̃)opp,f

ν−→
∏
v∈W

O(Γ∗(v)).

By Lemma 4.7.2, ν becomes an isomorphism after tensoring with Frac(S) over the

right copy of S. Since End
P̂
(P̃)opp,f is free as a right S-module, ν is injective. The

composition ν ◦ μ factors through the quotient S ⊗SW S followed by an injection
S ⊗SW S ↪→

∏
v∈W O(Γ∗(v)), hence μ also factors as an algebra homomorphism

μ′ : S ⊗SW S → End
P̂
(P̃)opp,f , which is necessarily injective. To show μ′ is also

surjective, by graded Nakayama lemma, we only need to show that it is so after
reduction modulo the augmentation ideal of the right copy of S. In other words,

letting P = π†P̃ ∈ P (F�), we need to show that S ⊗SW Q� → EndF�(P)opp,f is
surjective, which follows from Soergel’s result ([So90, Endomorphismensatz 3], see
also the footnote in [BBM04a, §2.6]).

(2) By (1), the functor V = Hom
P̂
(P̃,−)f , when restricted to P̂0, takes values

in Modfree(S ⊗SW S,Fr). The functor V0 = V|
P̂0

is fully faithful and essentially

surjective by construction. It remains to show that P̂0 is stable under the con-

volution
U∗, and then V0 is monoidal by Proposition 4.6.4(2). Applying Lemma

4.4.11(3) to Θ = Σ, we have

P̃ U∗ P̃ ∼= AvΣ! AvΣχ P̃ .
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Since AvΣχ is t-exact, ωAvΣχ P̃ ∈ ωP̂Σ, which consists of direct sums of ωδ̃Σχ by

Lemma 4.2.1. Therefore ωAvΣ! AvΣχ P̃ is a direct sum of ωAvΣ! δ̃
Σ
χ

∼= ωP̃. This

proves that P̂0 is stable under
U∗, and hence finishes the proof of (2). �

5. Equivalences

In this section we prove the Main Theorem, i.e., the four equivalences mentioned
in §0.2. The proof will rely on the construction of DG models in Appendix B. We
suggest reading the statement of Theorem B.2.7 before getting into the proofs of
the four equivalences.

5.1. Langlands duality for Kac-Moody groups. Throughout this section, we
fix a root datum (X∗,Φ,X∗,Φ

∨) with generalized Cartan matrix A; the dual root
datum (X∗,Φ

∨,X∗,Φ) has generalized Cartan matrix At (the transpose of A). Let
G and G∨ be the Kac-Moody groups over k = Fq associated to these root data.
We say that the Kac-Moody groups G and G∨ are Langlands dual to each other.

Remark 5.1.1. When G is a Kac-Moody group associated to the affine root system
of a split simple group G0, the group G∨ may not be isogenous to a Kac-Moody
group associated to the affine root system of G∨

0 ; G
∨ is sometimes a twisted loop

group.

In the rest of this section, we will need to distinguish notations for G and G∨.
In general, the equivariant categories E = EG and EΘ = EG,Θ are for the group G,

while the monodromic categories M̂ = M̂G∨ and M̂Θ = M̂G∨,Θ are for G∨. In
§5.3 and §5.5, the notation will be further explained.

Let H and H∨ be the Cartan subgroups of G and G∨, respectively. We identify
the Weyl groups of G and G∨ and call it W . Then there is a natural W -equivariant
and Fr-equivariant isomorphism

(5.1) (V ∨
H )� ∼= X∗ ⊗Z Q�(1) ∼= VH∨ .

Let ŠH = Sym(V ∨
H ) and SH∨ = Sym(VH∨) be (graded) algebras with Fr actions.

Then (5.1) gives a natural W -equivariant and Fr-equivariant isomorphism Š�
H

∼=
SH∨ . This isomorphism gives an equivalence of triangulated categories

(−)� : Dperf(ŠH ⊗ ŠH ,Fr)
∼−→ Db(SH∨ ⊗ SH∨ ,Fr)

L �→ L�.

Definition 5.1.2. The regrading functor is the self-functor of the category Cf (Fr)
of complexes of locally finite Fr-modules with integer weights:

φ : Cf (Fr) → Cf (Fr)

sending a complex L = (· · · → Li → Li+1 → · · · ) to the complex N = (· · · →
N i → N i+1 → · · · ), where

(5.2) N i
j = (Li−j

−j )
�, ∀i, j ∈ Z.

Here, subscripts stand for Fr-weights. Forgetting the grading, we have

φ(N•) = N•,�.
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5.2. Equivariant-monodromic duality.

Theorem 5.2.1 (Equivariant-monodromic duality). There is an equivalence of
triangulated categories

(5.3) Φ = ΦG→G∨ : E = EG
∼= M̂G∨ = M̂

satisfying the following properties:

(1) Φ has a monoidal structure which intertwines the convolutions
B∗ and

U∗.
(2) There is an isomorphism of functors θ : H� ⇒ V ◦ Φ compatible with the

monoidal structures of these functors.

(3) Φ(Δw) ∼= Δ̃w, Φ(∇w) ∼= ∇̃w for all w ∈ W .
(4) Φ sends very pure complexes of weight 0 to free-monodromic tilting sheaves.
(5) There is a functorial isomorphism of (SH∨ ⊗ SH∨ ,Fr)-modules

(5.4) φExt•E (F1,F2) ∼= Ext•
M̂
(ΦF1,ΦF2)

f

for any F1,F2 ∈ E .
(6) For any M ∈ Db(Fr) and F ∈ E , there is a functorial isomorphism

Φ(F ⊗M) ∼= Φ(F)⊗ φ(M).

In particular, Φ ◦ [1](1/2) = (−1/2) ◦ Φ.
We have an immediate consequence of the theorem:

Corollary 5.2.2. For each w ∈ W , let T̃w := Φ(ICw). Then

(1) T̃w is a free-monodromic tilting extension of L̃w and ωT̃w is indecomposable.

(2) Any free-monodromic tilting extension of L̃w with indecomposable underly-

ing complex is isomorphic to T̃w.
Proof. (1) The fact that T̃w is a free-monodromic tilting sheaf follows directly from

Theorem 5.2.1(4). Since Δw
∼−→ ICw (mod E<w), we have Δ̃w

∼−→ T̃w (mod M̂<w).

Therefore T̃w is a free-monodromic tilting extension of L̃w. Finally, by (5.4),

End
M̂

(T̃w)f ∼=
⊕
i∈Z

ExtiE (ICw, ICw)

is a Z≥0-graded algebra whose degree 0 part reduces to Q�, and End
M̂

(T̃w) is the
completion of Ext∗

M̂
(ICw, ICw) with respect to the augmentation ideal. Therefore

there is no nontrivial idempotent in End
M̂

(T̃w), i.e., ωT̃w is indecomposable.

(2) Suppose T̃ ′ is a free-monodromic tilting extension of L̃w with indecomposable

underlying complex. Let C′ = Φ−1(T̃ ′). Then by Theorem 5.2.1(4), C′ is a very
pure complex. By Lemma B.2.3, ωC′ is a direct sum of shifted IC-sheaves. But

since ωT̃ ′ is indecomposable, ωC′ is also indecomposable by the same argument of

(1). Therefore C′ is a (shifted and twisted) IC-sheaf. Since Δ̃w
∼−→ T̃ ′ (mod M̂<w),

we have Δw
∼−→ C′ (mod E<w), hence C′ ∼= ICw and T̃ ′ ∼= T̃w. �

Combining Corollary 5.2.2, Theorem 5.2.1(1), (6), and Proposition 3.2.5, we get

Corollary 5.2.3. For w1, w2 ∈ W , the convolution T̃w1

U∗ T̃w2
, as a mixed complex,

is a direct sum of T̃w(n/2) for n ≡ �(w1) + �(w2) − �(w)(mod 2). In particular,

if �(w1w2) = �(w1) + �(w2), then T̃w1w2
is a direct summand of T̃w1

U∗ T̃w2
with

multiplicity one.
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The following observation will be used in establishing the parabolic-Whittaker
duality.

Corollary 5.2.4. If G is finite dimensional, let w0 be the longest element in the

Weyl group W and recall the object P̃ defined in the §4.6 (in this case it is an honest

object of P̂). Then

T̃w0
∼= P̃(−�(w0)/2).

Proof. By Theorem 5.2.1(2), we have Φ(Q�) ∼= P̃ because the functors they repre-
sent (H and V) are intertwined under Φ. Therefore by Theorem 5.2.1(6),

T̃w0
= Φ(ICw0

) ∼= Φ(Q�[�(w0)](�(w0)/2)) ∼= Φ(Q�)(−�(w0)/2) ∼= P̃(−�(w0)/2).

�

The rest of this subsection is devoted to the proof of Theorem 5.2.1. First we

need to pick generating objects of the categories E and M̂ .
For each simple reflection s, by the calculation in Appendix C, Lemma C.1

and C.2, we have a free-monodromic tilting sheaf T̃s ∈ P̂≤s, and we have an
isomorphism

θs : (Hs)
� := H(ICs)

� ∼−→ Vs := V(T̃s).
We fix such an isomorphism for each s ∈ Σ. For each w ∈ W , fix a reduced word
expression w = (s1(w), · · · , sm(w)) where m = �(w). We define

ICw := ICs1(w)
B∗ · · · B∗ ICsm(w), Hw := H(ICw),

T̃w := T̃s1(w)
U∗ · · · U∗ T̃sm(w), Vw := V(T̃w).

By Proposition 3.2.3 and Proposition 4.3.4, ICw is very pure of weight 0 and T̃w
is a free-monodromic tilting sheaf. The isomorphisms {θs|s ∈ Σ} (together with
Propositions 3.2.1 and 4.6.4) induce an isomorphism

(5.5) θw : (Hw)
� ∼−→ Vw.

5.2.5. The DG models. We are going to define algebras and bimodules which control

the categories E≤w and M̂≤w and their respective embeddings for w ≤ w′. For
w ≤ w′, define:

E≤w′

≤w :=
⊕

u≤w′,v≤w

Ext•E (ICu, ICv).

We write E≤w for the opposite algebra of E≤w
≤w. Then E≤w′

≤w is a (E≤w′ , E≤w)-

bimodule. Each ICv (v ≤ w) gives an (E≤w,Fr)-module

C≤w,v =
⊕
u≤w

Ext•E (ICu, ICv).

We emphasize that we view E≤w as a plain algebra with Fr-action (placed in degree
0), not as a dg-algebra with the natural grading. Applying Theorem B.2.7 to the
triple (V≤w ⊂ E≤w, {ICu|u ≤ w}), we get an equivalence of triangulated categories

(5.6) E≤w
∼−→ Dperf(E≤w,Fr)

where the RHS is the full triangulated subcategory of Db(E≤w,Fr) generated by
twists of {C≤w,v|v ≤ w}.
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Similarly, we define:

M≤w′

≤w :=
⊕

u≤w′,v≤w

Hom
P̂
(T̃u, T̃v)f

and M≤w = (M≤w
≤w)

opp. For each v ≤ w, T̃v gives an (M≤w,Fr)-module T≤w,v :=⊕
u≤w Hom(T̃u, T̃v)f . Applying Theorem B.2.7 and Remark B.5.2 to the triple

(T≤w ⊂ M̂≤w, {T̃v|v ≤ w}), there is an equivalence of triangulated categories

(5.7) M̂≤w
∼−→ Dperf(M≤w,Fr)

where the RHS is the full triangulated subcategory of Db(M≤w,Fr) generated by
twists of {T≤w,v|v ≤ w}.

5.2.6. Construction of Φ. We first construct an equivalence Φ≤w : E≤w
∼−→ M̂≤w

for each w ∈ W . According to the equivalences (5.6) and (5.7), it suffices to give
an equivalence

Φ′
≤w : Dperf(E≤w,Fr)

∼−→ Dperf(M≤w,Fr).

By Proposition 3.1.6 and Proposition 4.5.7, we have

E≤w′

≤w
∼=

⊕
u≤w′,v≤w

HomŠH⊗ŠH
(Hu,Hv),(5.8)

M≤w′

≤w
∼=

⊕
u≤w′,v≤w

HomS∨⊗S∨(Vu,Vv).(5.9)

The isomorphisms {θw|w ∈ W} in (5.5) give a Fr-equivariant isomorphism of alge-
bras:

(5.10) E�
≤w

∼−→ M≤w.

For a complex of (E≤w,Fr)-module L = (· · · → Li → Li+1 → · · · ), we define

Φ′
≤w(L) to be the complex L�, which is a complex of (M≤w,Fr)-modules via the

isomorphism (5.10). This gives the desired equivalence Φ′
≤w.

By Proposition B.3.1, the embedding iw,w′,∗ : E≤w ↪→ E≤w′ corresponds to the
functor

Dperf(E≤w,Fr) → Dperf(E≤w′ ,Fr)

L �→ E≤w′

≤w

L
⊗E≤w

L.

Similarly, the embedding ı̃w,w′,∗ : M̂≤w ↪→ M̂≤w′ corresponds to the functor

Dperf(M≤w,Fr) → Dperf(M≤w′ ,Fr)

N �→ M≤w′

≤w

L
⊗M≤w

N.

The isomorphisms in (5.8), (5.9) and (5.10) give an isomorphism Φ′
≤w′(E

≤w′

≤w )
∼−→

M≤w′

≤w as (M≤w′ ,M≤w)-bimodules. Therefore the embeddings iw,w′,∗ and ı̃w,w′,∗
are naturally intertwined under Φ≤w and Φ≤w′ . Passing to the inductive 2-limit,

we get an equivalence of triangulated categories Φ : E → M̂ .
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5.2.7. Verification of the properties. Property (6). Suppose F ∈ E≤w corresponds
to the (E≤w,Fr)-complex N under the equivalence (5.6). Then for a Fr-module M
of weight i, F⊗M corresponds to N⊗M [i] under the equivalence (5.6) (this follows
from the construction in Theorem B.2.7). Then Φ′

≤w(N ⊗ M [i]) = N� ⊗ M�[i],

which corresponds to Φ(F)⊗M�[i] under the equivalence (5.7).
Property (5). By Lemma B.4.3 and Lemma B.5.1, we have

Ext•(F ,F ′[i])�pur
∼= Hom(Φ(F),Φ(F ′)[i])f .

On the other hand,⊕
j

(φExt•(F ,F ′))ij =
⊕
j

Exti−j(F ,F ′)�−j = Hom(F ,F ′[i])�pur.

Combining these two identities, we get (5.4).
Property (3). The isomorphisms {θv} give an isomorphism of (M≤w,Fr)-modules

C�
≤w,v

∼−→ T≤w,v, ∀v ≤ w.

Therefore Φ(ICw) ∼= T̃w.
Consider the following diagram:

(5.11) E<w

i<w,∗ ��

Φ<w

��

E≤w

i∗w ��

Φ≤w

��

Ew

Φw

��
M̂<w

ı̃<w,∗ �� M̂≤w

ı̃∗w �� M̂w

By construction, the functors Φ≤w and Φ<w are equivalences and there is a natural
transformation making the left square commutative (we did not construct Φ<w ex-
plicitly, but it is from the same construction of Φ≤w by comparing the algebras E<w

and M<w). Since the two rows in the diagram (5.11) are short exact sequences of

triangulated categories, there is (an essentially unique) equivalence Φw : Ew
∼−→ M̂w

(the dotted arrow in the diagram (5.11)) with a natural transformation making the
right square commutative. This implies that there are natural transformations
intertwining the adjoints of i∗w and ı̃∗w; i.e., there is a natural transformation inter-
twining iw,! and ı̃w,!; there is another natural transformation intertwining iw,∗ and
ı̃w,∗. Note that

Δw = iw,!i
∗
wICw, Δ̃w = ı̃w,!̃ı

∗
wT̃w,

∇w = iw,∗i
∗
wICw, ∇̃w = ı̃w,∗ı̃

∗
wT̃w.

Therefore we have isomorphisms Φ(Δw)
∼−→ Δ̃w and Φ(∇w)

∼−→ ∇̃w coming from

the isomorphisms Φ(ICw)
∼−→ T̃w.

Property (4). Note that the class of very pure complexes are

〈Δw〈0〉|w ∈ W 〉 ∩ 〈∇w〈0〉|w ∈ W 〉
while the class of free-monodromic tilting sheaves are

〈Δ̃w(?)|w ∈ W 〉 ∩ 〈∇̃w(?)|w ∈ W 〉.
These two classes of objects correspond to each other under Φ by Property (6) and
(3).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 49

Property (1). This requires the construction of a monoidal structure of Φ. Fix
w,w′ ∈ W such that �(w) + �(w′) = �(ww′). We define an (E≤ww′ , E≤w ⊗ E≤w′)-
bimodule

Q≤w,≤w′ :=
⊕

u≤ww′,v≤w,v′≤w′

Ext•E (ICu, ICv
B∗ ICv′)

∼=
⊕

u≤ww′,v≤w,v′≤w′

HomŠH⊗ŠH
(Hu,Hv ⊗ŠH

Hv′).

Similarly, we define an (M≤ww′ ,M≤w ⊗M≤w′)-bimodule

R≤w,≤w′ :=
⊕

u≤ww′,v≤w,v′≤w′

Hom
M̂
(T̃u, T̃v

U∗ T̃v′)f

∼=
⊕

u≤ww′,v≤w,v′≤w′

HomSH∨⊗SH∨ (Vu,Vv ⊗SH∨ Vv′).

They carry natural Fr-actions.

By Remark B.3.2, the transport of the convolution
B∗ to Dperf(E≤w,Fr) is given

by the functor

Dperf(E≤w,Fr)×Dperf(E≤w′ ,Fr) → Dperf(E≤ww′ ,Fr)

(L,L′) �→ Q≤w,≤w′
L
⊗(E≤w⊗E≤w′ ) (L⊗ L′).

Again, by Remark B.3.2, the transport of the convolution
U∗ to Dperf(M≤w,Fr) is

given by the functor

Dperf(M≤w,Fr)×Dperf(M≤w′ ,Fr) → Dperf(M≤ww′ ,Fr)

(N,N ′) �→ R≤w,≤w′
L
⊗(M≤w⊗M≤w′ ) (N ⊗N ′).

The isomorphisms {θw|w ∈ W} give a Fr-equivariant isomorphism

Q�
≤w,≤w′ ∼= R≤w,≤w′

which intertwines the (E≤ww′ , E≤w ⊗ E≤w′)-bimodule structure on Q≤w,≤w′ and
the (M≤ww′ ,M≤w ⊗ M≤w′)-bimodule structure on R≤w,≤w′ . This isomorphism
gives a natural isomorphism making the following diagram commutative:

E≤w × E≤w′

B∗ ��

Φ≤w

��
Φ≤w′
��

E≤ww′

Φ≤ww′
��

M̂≤w × M̂≤w′

U∗ �� M̂≤ww′

To check that these natural transformations are compatible with the associativity
constraints essentially reduces to the following identification (we omit the details
here) ⊕

Ext•E (ICu, ICv
B∗ ICv′

B∗ ICv′′)� ∼=
⊕

Hom
M̂
(T̃u, T̃v

U∗ T̃v′
U∗ T̃v′′)f .

Passing to the inductive 2-limit as w,w′ run over W , we get the required monoidal
structure of Φ.
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Property (2). Define

H≤w :=
⊕
v≤w

Hv

Using (5.8), H≤w can be viewed as a right E≤w-module (compatible with the

(ŠH ⊗ ŠH ,Fr)-module structure). Similarly, using (5.9), we define a right M≤w-
bimodule

V≤w :=
⊕
v≤w

Vv.

The transport of the functor H on Dperf(E≤w,Fr) is given by L �→ H≤w

L
⊗E≤w

L;

the transport of the functor V on Dperf(M≤w,Fr) is given by N �→ V≤w

L
⊗M≤w

N .

Using {θw|w ∈ W}, we get a Fr-equivariant isomorphism H�
≤w

∼−→ V≤w intertwining

the right E≤w-structure and right M≤w-structure (hence also intertwining the ŠH⊗
ŠH-structure and SH∨⊗SH∨ -structure). Therefore we get an isomorphism θ : H� ⇒
V ◦ Φ by passing to the inductive 2-limit. It is easy to check that θ is compatible
with the monoidal structures by using the explicit dg-models.

Remark 5.2.8. In the sequel, it is convenient to use two more “compact” algebras

as dg-models of E and M̂ . Let

E≤w :=

⎛⎝ ⊕
u,v≤w

Ext•E (ICu, ICv)

⎞⎠opp

,(5.12)

M≤w :=

⎛⎝ ⊕
u,v≤w

Hom
M̂

(T̃u, T̃v)f
⎞⎠opp

.(5.13)

Then Theorem B.2.7 again gives equivalences

E≤w
∼−→ Dperf(E≤w,Fr),

M̂≤w
∼−→ Dperf(M≤w,Fr).

5.3. Koszul “self-duality”. Consider the category D† = Db
m(U\G/B), the de-

rived category of left-U -equivariant mixed complexes on F� = G/B. Recall π :

F̃� → F� is the projection which induces π† : M̂G → D†. By Lemma A.7.3, for

each w ∈ W , Tw := π†T̃w is a tilting extensions of Q�[�(w)](�(w)/2) on F�w whose
underlying complex is indecomposable. On the other hand, we have the forgetful
functor Forg : EG → D† by forgetting the left-B-equivariant structure on objects
in EG. For w ∈ W , we still write ICw ∈ D† for Forg(ICw).

Now consider the category †D := Db
m(B∨\G∨/U∨), the derived category of right-

U∨-equivariant mixed complexes on B∨\G∨. Now the situation is identical with

D† after interchanging left and right, G and G∨. To distinguish objects in †D with
objects in D†, we usually add a (−)∨ to the objects in †D , e.g., the indecomposable

tilting sheaves T ∨
w ∈ †D and IC-sheaves IC∨

w ∈ †D , etc.
The theorem below is not really a self-duality, because the category D† is defined

in terms of G while †D is defined in terms of G∨. In Remark 5.3.2, we will explain
in what sense it becomes an involutive self-duality.
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Theorem 5.3.1 (“Self-duality”). There is an equivalence of triangulated categories

Ψ : †D := Db
m(B∨\G∨/U∨)

∼−→ Db
m(U\G/B) =: D†

satisfying the following properties:

(1) Ψ can be given a structure to intertwine the (EG,M̂G)-bimodule category

structure on †D (given by convolutions) and the (M̂G∨ ,EG∨)-bimodule cat-
egory structure on D† (given by convolutions) via the equivalences ΦG→G∨ :

EG
∼−→ M̂G∨ and ΦG∨→G : EG∨

∼−→ M̂G in Theorem 5.2.1.
(2) Ψ(Δ∨

w)
∼= Δw,Ψ(∇∨

w)
∼= ∇w for all w ∈ W .

(3) Ψ(IC∨
w)

∼= Tw,Ψ(T ∨
w ) ∼= ICw for all w ∈ W . More generally, Ψ inter-

changes very pure complexes of weight 0 and tilting sheaves.
(4) There is a functorial isomorphism of (SH∨ ,Fr)-modules for any F1,F2 ∈

†D ,

φExt•†D(F1,F2) ∼= Ext•D†(ΨF1,ΨF2).

(5) The analog of Theorem 5.2.1(6) holds for Ψ.

Proof. We first build DG models for D†. Let T † ⊂ D† be the full subcategory of
mixed tilting sheaves. The twists of {Tw|w ∈ W} ⊂ T † generate the triangulated
category D†. Define

M†
≤w :=

⎛⎝ ⊕
u,v≤w

HomD†(Tu, Tv)

⎞⎠opp

.

Applying Theorem B.2.7 to the triple (T †
≤w ⊂ D†

≤w, {Tu|u ≤ w}), we get an
equivalence

(5.14) D†
≤w

∼−→ Dperf(M
†
≤w,Fr)

where the RHS is the full subcategory of Db(M†
≤w,Fr) generated by twists of the

(M†
≤w,Fr)-modules

⊕
u≤w HomD†(Tu, Tv)f for v ≤ w. Recall the definition of the

algebra M≤w in (5.13). Below we use MG,≤w to emphasize its dependence on G
rather than G∨. Then Lemma A.7.4 gives a Fr-equivariant isomorphism of algebras

(5.15) MG,≤w ⊗SH
Q�

∼= M†
≤w.

On the other hand, let V † ⊂ D† be the full subcategory of very pure complexes of
weight 0. The twists of {ICw|w ∈ W} ⊂ V † generate D† as triangulated category.
Define

E†
≤w :=

⎛⎝ ⊕
u,v≤w

Ext•D†(ICu, ICv)

⎞⎠opp

.

Applying Theorem B.2.7 to the triple (V †
≤w ⊂ D†

≤w, {ICu|u ≤ w}), we get another
equivalence

(5.16) D†
≤w

∼−→ Dperf(E
†
≤w,Fr)

where the RHS is the full subcategory of Db(E†
≤w,Fr) generated by the twists of

the (E†
≤w,Fr)-modules

⊕
u≤w Ext•D†(ICu, ICv) for v ≤ w. Recall the definition of

the algebra E≤w in (5.12). Again we write EG,≤w to emphasize its dependence on
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G. By Corollary B.4.2 (the isomorphism (B.8)) and Lemma 3.1.5 (which implies
EG,≤w is a free left ŠH-module), we have a Fr-equivariant isomorphism of algebras

(5.17) Q� ⊗ŠH
EG,≤w

∼= E†
≤w.

Next we define the DG models for †D . We define

†M≤w :=

⎛⎝ ⊕
u,v≤w

Hom†D(T ∨
u , T ∨

v )

⎞⎠opp

,

†E≤w :=

⎛⎝ ⊕
u,v≤w

Ext•†D(IC∨
u , IC∨

v )

⎞⎠opp

.

Similar to the case of D†, we have equivalences

(5.18) Dperf(
†E≤w,Fr)

∼−→ †D≤w
∼−→ Dperf(

†M≤w,Fr).

We also have Fr-equivariant isomorphisms of algebras

Q� ⊗SH∨ MG∨,≤w
∼= †M≤w,(5.19)

EG∨,≤w ⊗ŠH∨ Q�
∼= †E≤w.(5.20)

Note that

Š�
H = Sym•(V ∨

H )� ∼= Sym(VH∨) = SH∨ ,

Š�
H∨ = Sym•(V ∨

H∨)� ∼= Sym(VH) = SH .

By Theorem 5.2.1, we have isomorphisms

E�
G,≤w

∼= MG∨,≤w; E�
G∨,≤w

∼= MG,≤w.

By (5.15), (5.17), (5.19) and (5.20), we get Fr-equivariant isomorphisms of algebras

†E�
≤w

∼= M†
≤w, E

†,�
≤w

∼= †M≤w,

which, together with the DG models (5.14), (5.16) and (5.18), give equivalences

Dperf(
†E≤w,Fr)

(−)�

∼
��

�
��

Dperf(M
†
≤w,Fr)

†D≤w

Ψ≤w �� D†
≤w

Ξ≤w ��

�

��

†D≤w

�
��

Dperf(E
†
≤w,Fr)

�

��

(−)�

∼
�� Dperf(

†M≤w,Fr)

Passing to the inductive 2-limit, we get equivalences

†D
Ψ−→ D† Ξ−→ †D .

We check the properties.
Properties (2) and (5) for both Ψ and Ξ are verified as in Theorem 5.2.1.

Claim. There are the natural isomorphisms Ξ◦Ψ ⇒ id†D and Ψ◦Ξ ⇒ idD† making
(Ψ,Ξ) a pair of inverse functors.
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Proof. We prove the first isomorphism. The argument for the second is similar.
Since the Properties (2) and (5) are satisfied by both Ψ and Ξ, the functor Ξ ◦Ψ is

a t-exact self-equivalence of †D under the perverse t-structure (because †D≤0 and
†D≥0 are characterized by 〈Δv[≤ 0](?)〉 and 〈∇v[≤ 0](?)〉). Therefore Ξ ◦Ψ sends
IC-sheaves to IC-sheaves. By Property (2), we must have ΞΨ(IC′

w)
∼= IC′

w. In view

of the first equivalence in (5.18), the transport of Ξ ◦Ψ on Dperf(E
†
≤w,Fr) is given

by the identity functor by Proposition B.3.1. Therefore we get an isomorphism
Ξ ◦Ψ ⇒ id†D . �

Property (3). It is obvious from construction that Ψ(IC∨
w)

∼= Tw and Ξ(ICw) ∼=
T ∨
w . Since Ψ is an inverse of Ξ, therefore, Ψ(T ∨

w ) ∼= ΨΞ(ICw) ∼= ICw. The argument
for Theorem 5.2.1(4) shows that both Ψ and Ξ send very pure complexes of weight
0 to tilting sheaves. Since Ψ and Ξ are inverse to each other, Ψ must interchange
very pure complexes of weight 0 and tilting sheaves.

Finally we verify Property (1). The argument for Theorem 5.2.1(1) shows that:

Ψ has a structure intertwining the left-EG∨ -module category structure on †D and

the left-M̂G-module category structure on D†; and that Ξ has a structure inter-

twining the right-EG-module category structure on D† and the right-M̂G∨ -module
category structure on †D . Since Ψ and Ξ are inverse functors, Property (1) is
proved. �

Remark 5.3.2. When LieG is a symmetrizable Kac-Moody algebra, we can replace
G∨ by G in Theorem 5.3.1 and get the equivalence

ΨG : Db
m(B\G/U)

∼−→ Db
m(U\G/B).

Let inv : Db
m(U\G/B)

∼−→ Db
m(B\G/U) be the equivalence induced by the inversion

map of G, then inv◦ΨG becomes a “self-duality” ofDb
m(B\G/U). Further argument

shows that inv ◦ΨG is involutive: (inv ◦ΨG)
2 is isomorphic to the identity functor.

Remark 5.3.3. By Theorem 5.3.1, the perverse t-structure on †D is transported by

Ψ to the following t-structure (
wt

D†≤0
,
wt

D†≥0
) on D†:

wt
D†≤0

= {F ∈ D†|i∗wF is a complex of weight ≥ 0},
wt

D†≥0
= {F ∈ D†|i!wF is a complex of weight ≤ 0}.

The irreducible objects in the heart of this t-structure are precisely weight-0-twists
of Tw. If we transport the characterizing properties of IC-sheaves to any irreducible
object T in the heart of the new t-structure on D†, we see that T satisfies:

For any w ∈ W , i∗wT has weight > 0 and i!wT has weight < 0.
This is precisely the “Condition (W)” observed in [Y09, §1.3] by the second au-

thor, which served as a guiding principle in the study of weights of mixed tilting
sheaves. In particular, Theorem 5.3.1 implies that the condition (W) holds for in-
decomposable mixed tilting sheaves on the flag variety of any Kac-Moody group.
Using Theorem 5.3.1(2), we get a simple relation between the multiplicities of stan-
dard sheaves in IC∨

w and in Tw, and we conclude that the “weight polynomials” of
Tw (cf. [Y09, §3.1]) are essentially given by Kazhdan-Lusztig polynomials. This
gives a generalization of [Y09, Theorem 1.2.1].
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5.4. Parabolic-Whittaker duality.

Theorem 5.4.1 (Parabolic-Whittaker duality). For each Θ ⊂ Σ of finite type,
there is an equivalence of triangulated categories,

ΦΘ : EΘ = EG,Θ
∼−→ M̂G∨,Θ =: M̂Θ,

satisfying the following properties:

(1) ΦΘ can be given a structure to intertwine the right convolution of E on EΘ

and the right convolution of M̂ on M̂Θ (via the equivalence Φ : E
∼−→ M̂

in Theorem 5.2.1).
(2) There are natural isomorphisms which intertwine the adjunctions (3.1) and

(4.9) via the equivalences ΦΘ and Φ.

(3) ΦΘ(Δw) ∼= Δ̃w,χ and ΦΘ(∇w) ∼= ∇̃w,χ for all w ∈ WΘ\W .
(4) The analogs of Theorem 5.2.1(4), (5), (6) hold.

As in the case of Theorem 5.2.1, we have some immediate consequences.

Corollary 5.4.2. For each w ∈ [WΘ\W ], let T̃w,χ := ΦΘ(ICw). Then:

(1) T̃w,χ is a free-monodromic tilting extension of L̃w,χ whose underlying com-
plex is indecomposable.

(2) Any free-monodromic tilting extension of L̃w,χ with indecomposable under-

lying complex is isomorphic to T̃w,χ.

Corollary 5.4.3. For any w ∈ {WΘ\W}, we have isomorphisms

πΘ,∗ICw[�Θ](�Θ/2) ∼= ICw
∼= πΘ,!ICw[−�Θ](−�Θ/2),(5.21)

AvΘ! T̃w,χ(−�Θ/2) ∼= T̃w ∼= AvΘ∗ T̃w,χ(�Θ/2).(5.22)

Here �Θ = �(wΘ) is the length of the longest element wΘ in WΘ.

Proof. The isomorphisms (5.21) follow from the fact that πΘ is smooth of relative
dimension �Θ; the isomorphisms (5.22) follow from (5.21) by Theorem 5.4.1 and
Theorem 5.2.1. �

Corollary 5.4.4. For w ∈ W , the mixed perverse pro-sheaf AvΘχ T̃w is a direct sum

of T̃v,χ(n/2) for n ≡ �(w) − �(v)(mod 2). In particular, for w ∈ [WΘ\W ], T̃w,χ is

a direct summand of AvΘχ T̃w with multiplicity one.

The rest of this subsection is devoted to the proof of Theorem 5.4.1.
Recall that wΘ is the longest element inWΘ. Sometimes in a complicated symbol

we write Θ for wΘ, e.g., we abbreviate ICwΘ
by ICΘ, V(T̃wΘ

) by VΘ, etc. Recall

the object P̃Θ from (4.15). Applying Corollary 5.2.4 to G = LΘ we get an isomor-

phism P̃Θ
∼= T̃Θ(�Θ/2). By Remark 3.2.8 and 4.4.12, CΘ = ICΘ[−�Θ](−�Θ/2) is a

coalgebra object with respect to
B∗ and P̃Θ = T̃Θ(�Θ/2) is a coalgebra object with

respect to
U∗.

Lemma 5.4.5. For each Θ ⊂ Σ of finite type, there is a unique isomorphism

βΘ : Φ(CΘ) ∼−→ P̃Θ which is a coalgebra isomorphism (Here Φ is the equivalence in
Theorem 5.2.1).
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Proof. Start from any isomorphism β′
Θ : Φ(CΘ) ∼= P̃Θ (which exists because Φ(ICΘ)

= T̃Θ). Observe that

CΘ
B∗ CΘ = H∗(LΘ/NΘ)⊗ CΘ.

Therefore,

homE (CΘ, CΘ
B∗ CΘ) = homE (CΘ,H∗(LΘ/NΘ)⊗ CΘ) = homE (CΘ, CΘ) = Q�.

Equivalently,

hom
P̂
(Φ(CΘ), P̃Θ

U∗ P̃Θ) = Q�.

This means the diagram of co-multiplications

(5.23) Φ(CΘ)
Φ(μ) ��

β′
Θ

��

Φ(CΘ
B∗ CΘ) ∼ �� Φ(CΘ)

U∗ Φ(CΘ)

β′
Θ��

β′
Θ��

P̃Θ
μ′

�� P̃Θ
U∗ P̃Θ

is already commutative up to a nonzero scalar. Hence there is a unique nonzero
scalar multiple βΘ of β′

Θ making the diagram (5.23) commutative, i.e., βΘ commutes
with the co-multiplications. In particular, for Θ = ∅, β∅ is the unique isomorphism

Φ(δ)
∼−→ δ̃ which preserves the structures of δ and δ̃ as the unit objects in the

monoidal categories E and M̂ .

We check that βΘ also intertwines the co-unit maps ε : CΘ → δ and ε′ : P̃Θ → δ̃.
Again, we verify that

hom
P̂
(Φ(CΘ), δ̃) = homE (CΘ, δ)

= homE≤e
(i∗eCΘ, δ) = homŠH

(Q�,Q�) = Q�.

Therefore ε′ ◦βΘ = λβ∅ ◦ ε for some λ ∈ Q
×
� . On the other hand, the compatibility

between co-multiplication and co-unit maps give

(ε
B∗ id) ◦ μ = id : CΘ → CΘ,

(ε′
U∗ id) ◦ μ′ = id : P̃Θ → P̃Θ.

Since βΘ already intertwines μ and μ′, we see from the above identities that λ = 1,
i.e., βΘ also intertwines ε and ε′. This completes the proof. �

For F1,F2 ∈ V ⊂ E (very pure of weight 0), let T̃i := Φ(Fi) ∈ T ⊂ M̂ be
corresponding free-monodromic tilting sheaves. By adjunction and Lemma 3.2.7,
we have

Ext•EΘ
(πΘ

∗ F1, π
Θ
∗ F2) ∼= Ext•E (π

Θ,∗πΘ
∗ F1,F2) ∼= Ext•E (CΘ

B∗ F1,F2).

On the other hand, by adjunction and Lemma 4.4.11(3), we have

Hom
P̂Θ

(AvΘχ T̃1,AvΘχ T̃2) ∼= Hom
P̂
(AvΘ! AvΘχ T̃1, T̃2) ∼= Hom

P̂
(P̃Θ

U∗ T̃1, T̃2).
We have an isomorphism given by Theorem 5.2.1(5),

Ext•E (CΘ
B∗ F1,F2)

� ∼= Hom
P̂
(P̃Θ

U∗ T̃1, T̃2)f ,
hence an isomorphism

ψ(F1,F2) : Ext
•
EΘ

(πΘ
∗ F1, π

Θ
∗ F2)

� ∼−→ Hom
P̂Θ

(AvΘχ T̃1,AvΘχ T̃2)f .
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Lemma 5.4.6. The following diagram is commutative:

Ext•E (F1,F2)
�

πΘ
∗ ��

Φ

��

Ext•EΘ
(πΘ

∗ F1, π
Θ
∗ F2)

�

ψ(F1,F2)

��
Hom

P̂
(T̃1, T̃2)f

AvΘ
χ �� Hom

P̂Θ
(AvΘχ T̃1,AvΘχ T̃2)f

Proof. By the construction of ψ(F1,F2), the commutativity of the above diagram
is equivalent to the commutativity of

(5.24) Φ(CΘ)
U∗ Φ(F1)

∼ ��

βΘ

��
�
��

Φ(πΘ,∗πΘ
∗ F1)

adj. �� Φ(F1)

�
��

P̃Θ
U∗ T̃1 ∼ �� AvΘ! AvΘχ T̃1

adj. �� T̃1

In this diagram, the composition of maps in the rows are given by Φ(ε)
U∗ id and

ε′
U∗ id (recall ε and ε′ are co-unit maps for CΘ and P̃Θ). Since βΘ intertwines the

co-unit maps, the diagram (5.24) is commutative. �

Lemma 5.4.7. The isomorphisms ψ(−,−) are compatible with compositions. More
precisely, for Fi ∈ V , i = 1, 2, 3, we have the following commutative diagram:
(5.25)

Ext•(πΘ
∗ F2, π

Θ
∗ F3)

� ⊗ Ext•(πΘ
∗ F1, π

Θ
∗ F2)

� ��

ψ(F2,F3)

��
ψ(F1,F2)

��

Ext•(πΘ
∗ F1, π

Θ
∗ F3)

�

ψ(F1,F3)

��
Hom(AvΘχ T̃2,AvΘχ T̃3)f ⊗Hom(AvΘχ T̃1,AvΘχ T̃2)f �� Hom(AvΘχ T̃1,AvΘχ T̃3)f

Proof. We verify the case of degree 0 maps, i.e., maps in Hom(πΘ
∗ Fi, π

Θ
∗ Fj). The

argument for the general case is similar.

For a map α : πΘ
∗ F → πΘ

∗ F ′, we write α# for the map CΘ
B∗ F ∼= πΘ,∗πΘ

∗ F → F ′

induced by adjunction. Similarly, for a map γ : AvΘχ T̃ → AvΘχ T̃ , we write γ# for

the map P̃Θ
U∗ T̃ ∼= AvΘ! AvΘχ T̃ → T̃ ′ induced by adjunction. Consider the following

composition of maps:

πΘ
∗ F1

α1−→ πΘ
∗ F2

α2−→ πΘ
∗ F3.

Then we can write (α2 ◦ α1)
# as the composition

CΘ
B∗ F1

μ
B∗id−−−→ CΘ

B∗ CΘ
B∗ F1

id
B∗α#

1−−−−→ CΘ
B∗ F2

α#
2−−→ F3.

On the other hand, let

AvΘχ T̃1
γ1−→ AvΘχ T̃2

γ2−→ AvΘχ T̃3
be the corresponding maps under ψ(−,−). Then we can write (γ2 ◦ γ1)

# as the
composition

P̃Θ
U∗ T̃1

μ′U∗id−−−→ P̃Θ
U∗ P̃Θ

U∗ T̃1
id

U∗γ#
1−−−−→ P̃Θ

U∗ T̃2
γ#
2−−→ T̃3.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 57

In view of the definition of ψ(−,−), the commutativity of the diagram (5.25) follows

from the fact that βΘ : Φ(CΘ) ∼= P̃Θ intertwines the co-multiplication structures μ
and μ′, which is proved in Lemma 5.4.5. �

Proof of Theorem 5.4.1. For each w ∈ WΘ\W , define an algebra with Fr-action:

EΘ,≤w :=

⎛⎝ ⊕
u,v∈[WΘ\W ],u,v≤w

Ext•EΘ
(πΘ

∗ ICu, π
Θ
∗ ICv)

⎞⎠opp

.

Applying Theorem B.2.7 to the triple (VΘ ⊂ EΘ, {πΘ
∗ ICv|v ∈ [WΘ\W ]}), we get an

equivalence

(5.26) EΘ,≤w
∼−→ Dperf(EΘ,≤w,Fr)

where the RHS is by definition generated by twists of the (EΘ,≤w,Fr)-modules⊕
u∈[WΘ\W ],u≤w

Ext•EΘ
(πΘ

∗ ICu, π
Θ
∗ ICv)

for v ∈ [WΘ\W ], v ≤ w.
Similarly, define another algebra with Fr-action:

MΘ,≤w :=

⎛⎝ ⊕
u,v∈[WΘ\W ],u,v≤w

Hom
P̂Θ

(AvΘχ T̃u,AvΘχ T̃v)f
⎞⎠opp

.

Applying Theorem B.2.7 to the triple (TΘ ⊂ M̂Θ, {AvΘχ T̃v|v ∈ [WΘ\W ]}), we get
an equivalence

(5.27) M̂Θ,≤w
∼−→ Dperf(MΘ,≤w,Fr),

where the RHS is by definition generated by twists of the (MΘ,≤w,Fr)-modules⊕
u∈[WΘ\W ],u≤w

Hom
P̂Θ

(AvΘχ T̃u,AvΘχ T̃v)f

for v ∈ [WΘ\W ], v ≤ w.
The isomorphisms ψ(ICu, ICv) give an isomorphism⊕

u,v∈[WΘ\W ],u,v≤w

ψ(ICu, ICv) : E
�
Θ,≤w

∼−→ MΘ,≤w.

By Lemma 5.4.7, this is an algebra isomorphism, which induces an equivalence

Φ′
Θ,≤w : Dperf(EΘ,≤w,Fr)

∼−→ Dperf(MΘ,≤w,Fr).

sending L �→ L�. This, together with the equivalences (5.26) and (5.27), induce an
equivalence

ΦΘ,≤w : EΘ,≤w
∼= M̂Θ,≤w.

Passing to the inductive 2-limits, we get the desired equivalence ΦΘ.
We verify the properties.
Properties (3) and (4) are proved similarly as in Theorem 5.2.1.
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Property (2). We only need to construct a natural isomorphism AvΘχ ◦Φ ⇒ ΦΘ ◦
πΘ
∗ , and the other natural isomorphisms AvΘ! ◦ΦΘ ⇒ Φ◦πΘ,∗ and AvΘ∗ ◦ΦΘ ⇒ Φ◦π!

Θ

follow from the adjunctions. For each w ∈ W , we define the (EΘ,≤w, E≤w)-bimodule

ΠΘ,≤w :=
⊕

u∈[WΘ\W ],u≤w,v≤w

Ext•EΘ
(πΘ

∗ ICu, π
Θ
∗ ICv).

Similarly, we define the (MΘ,≤w,M≤w)-bimodule

AΘ,≤w :=
⊕

u∈[WΘ\W ],u≤w,v≤w

Hom
P̂Θ

(AvΘχ T̃u,AvΘχ T̃v)f .

By Proposition B.3.1, the transport of πΘ
∗ as a functor

Dperf(E≤w,Fr) → Dperf(EΘ,≤w,Fr)

takes the form

L �→ ΠΘ,≤w

L
⊗E≤w

L;

while the transport of AvΘχ as a functor Dperf(M≤w,Fr) → Dperf(MΘ,≤w,Fr) takes
the form

N �→ AΘ,≤w

L
⊗E≤w

N.

By Lemma 5.4.6 and Lemma 5.4.7, the isomorphism⊕
u∈[WΘ\W ],u≤w,v≤w

ψ(ICu, ICv) : Π
�
Θ,≤w

∼−→ AΘ,≤w

intertwines the (EΘ,≤w, E≤w)-bimodule structure on ΠΘ,≤w and the (MΘ,≤w,M≤w)-
bimodule structure on AΘ,≤w. Therefore this isomorphism induces a natural iso-

morphism AvΘχ ◦ Φ ⇒ ΦΘ ◦ πΘ
∗ .

Property (1). The verification is a combination of the argument for Theo-
rem 5.2.1(1) and the Property (2) above. The essential step is to verify that
for w ∈ [WΘ\W ], w′ ∈ W such that �(ww′) = �(w) + �(w′), the isomorphism⊕

ψ(ICu, ICv
B∗ ICv′):⊕

Ext•EΘ
(πΘ

∗ ICu, π
Θ
∗ ICv

B∗ ICv′)�
∼−→

⊕
Hom

P̂Θ
(AvΘχ T̃u,AvΘχ T̃v

U∗ T̃v′)f

(where the direct sum is over {u, v ∈ [WΘ\W ], v′ ∈ W |u ≤ ww′, v ≤ w, v′ ≤
w′}) intertwines the (EΘ,≤ww′ , EΘ,≤w⊗E≤w′)-module structure and the (MΘ,≤ww′ ,
MΘ,≤w ⊗M≤w′)-module structure. Details are left to the reader. �

5.5. “Paradromic-Whittavariant” duality. Fix Θ ⊂ Σ of finite type. Let
D†

Θ := Db
m((UΘU−

Θ , χ)\G/B) be the derived category of (VΘ, χ)-equivariant mixed
complexes on F�G = G/B, which we call the “Whittavariant” category, taking a
portmanteau of the words “Whittaker” and “equivariant”.

On the other hand, let †DΘ := Db
m(P∨

Θ\G∨/U∨) be the derived category of right
U∨-equivariant mixed complexes on the partial flag variety ΘF�G∨ = P∨

Θ\G∨.

Since objects in †DΘ are automatically monodromic under the right H-action, we
call †DΘ the “paradromic” category, taking a portmanteau of the words “parabolic”
and “monodromic”.

Just as we deduced the self-duality from the equivariant-monodromic duality, we
can also deduce the following theorem from the parabolic-Whittaker duality. We
omit the proof.
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Theorem 5.5.1 (Paradromic-Whittavariant duality). Let Θ ⊂ Σ be of finite type.
Then there is an equivalence of triangulated categories

ΨΘ : †DΘ
∼−→ D†

Θ

satisfying the following properties:

(1) ΨΘ can be given a structure to intertwine the right convolution of M̂G∨ on
†DΘ and the right convolution of EG on D†

Θ (via the equivalence Φ : EG
∼−→

M̂G∨ in Theorem 5.2.1).
(2) There are natural isomorphisms which intertwine the following adjunctions

(which are defined in a similar way as the adjunctions (3.1) and (4.9))

†D ��

Ψ

��

†DΘ

πΘ,!

��

πΘ,∗

πΘ
∗

��

ΨΘ

��
D† �� D†

Θ

AvΘ
∗

��

AvΘ
!

AvΘ
χ

��

(3) ΨΘ(Δ
∨
w)

∼= Δw,χ and ΨΘ(∇∨
w)

∼= ∇w,χ for all w ∈ WΘ\W .

(4) ΨΘ(IC∨
w)

∼= Tw,χ := π†T̃w,χ. More generally, ΨΘ interchanges very pure
complexes of weight 0 and tilting sheaves.

(5) The analogs of parts (4) and (5) of Theorem 5.3.1 hold.

Corollary 5.5.2.
(1) For w ∈ {WΘ\W}, we have the isomorphisms

πΘ,∗ICw[�Θ](�Θ/2) ∼= ICw
∼= πΘ,!ICw[−�Θ](−�Θ/2),

AvΘ! Tw,χ(−�Θ/2) ∼= Tw ∼= AvΘ∗ Tw,χ(�Θ/2).

(2) For w ∈ [WΘ\W ], πΘ
∗ T ∨

w =: T ∨
w is a tilting extension of the constant

perverse sheaf Q�[�(w)](�(w)/2) on (P∨
Θ\G∨)w and ωTw is indecomposable.

For w /∈ [WΘ\W ], πΘ
∗ T ∨

w = 0.

(3) For w ∈ [WΘ\W ], AvΘχ ICw =: ICw,χ is the middle extension of the simple

perverse (U−
Θ , χ)-equivariant local system Lw,χ on (G/B)wΘw. For w /∈

[WΘ\W ], AvΘχ ICw = 0.
(4) ΨΘ(T ∨

w ) ∼= ICw,χ.

Proof. (1) is proved in the same way as Corollary 5.4.3.
(2) follows from [Y09, Proposition 3.4.1]. In particular, T ∨

w also satisfies the
condition (W) mentioned in Remark 5.3.3.

(3) Note that by Theorem 5.5.1(2) and Theorem 5.3.1(3),

AvΘχ ICw
∼= AvΘχΨ(T ∨

w ) ∼= ΨΘ(π
Θ
∗ T ∨

w ).

For w /∈ [WΘ\W ], ΨΘ(π
Θ
∗ T ∨

w ) = 0 by part (2). For w ∈ [WΘ\W ], we have
ΨΘ(π

Θ
∗ T ∨

w ) ∼= ΨΘ(T ∨
w ) by part (2). Since ωT ∨

w is an indecomposable tilting sheaf,
ωΨΘ(T ∨

w ) is an indecomposable very pure complex, i.e., ΨΘ(T ∨
w ) is a shifted and

twisted IC-sheaf. Since Δ∨
w

∼−→ T ∨
w (mod †DΘ,<w), we have Δw,χ

∼−→ ΨΘ(T ∨
w ) (mod

D†
Θ,<w), therefore ΨΘ(T ∨

w ) is the middle extension of Lw,χ.
(4) follows from parts (2) and (3). �
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APPENDICES
by Zhiwei Yun

Appendix A. Completions of monodromic categories

The goal of this appendix is to make rigorous the procedure of “adding free-
monodromic objects to the category of monodromic complexes”.

A.1. Unipotently monodromic complexes. Let k be an algebraically closed
field. Let A be an algebraic torus over k and X a right A-torsor over a scheme Y
over k. Let π : X → Y be the projection.

Definition A.1.1. The A-unipotently monodromic category of the torsor π : X →
Y is the full subcategory of Db

c(X) generated by the image of π! : Db
c(Y ) → Db

c(X)

(or equivalently π∗). We denote this full subcategory by Db
c(X ���A), and its objects

are called unipotently monodromic complexes.

Note that Db
c(X ���A) inherits the perverse t-structure from Db

c(X). We denote

its heart by P (X ���A).

Let r = dimA. We use (π†, π
†) to denote the adjoint pair (π![r], π

![−r]). Note
that under the perverse t-structures, π† is t-exact and π† is right t-exact.

In [V83], Verdier studied the monodromic complexes in the case A = Gm and
X is a cone over Y . His argument extends to any split torus A. Verdier’s notion
of monodromic complexes allows arbitrary tame monodromy along the fibers of π
whereas our category Db

c(X ���A) only allows unipotent monodromy. Verdier’s con-

struction of the canonical monodromy operator in [V83, §5] applies to our situation:

for each object F ∈ Db
c(X ���A) there is an action μ(F) of the tame Tate module of

T t(A) = lim←−(n,p)=1
A[n] on the underlying complex ωF . For F ∈ Db

c(X ���A), this

action necessarily factors through the �-adic quotient T�(A), and gives:

μ(F) : T�(A) → AutX(F).

It is shown in loc.cit. that these operators commute with all morphisms inDb
c(X ���A).

Since F has unipotent monodromy along the fibers of π, the operator μ(F) is unipo-
tent. Therefore it makes sense to take the logarithm of μ(F) and get a morphism

in Db
c(X ���A):

m(F) := log(μ(F)) : VA ⊗F → F ,

where VA = T�(A)⊗Z�
Q�. These logarithmic monodromy operators also commute

with all morphisms in Db
c(X ���A), and Db

c(X ���A) becomes a category enriched

over S = Sym(VA)-modules.

Our goal is to enlarge the category Db
c(X ���A) to a category D̂b

c(X ���A) ⊂
proDb

c(X ���A), by adding certain pro-objects called “free-monodromic ” objects.

The prototypical example of such a free-monodromic objects is the following.

Example A.1.2. Let Y = pt and X = A. We will construct a pro-object in the
category of unipotently monodromic local systems on A, called the free-monodromic
local system. Recall that a Q�-local system on A is given by a finite dimensional
continuous Q�-representation ρ of π1(A, e). Such a local system is unipotently
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monodromic (i.e., being a successive extension of sheaves pulled back from Db
c(pt))

if and only if it is unipotent and hence factors through the �-adic tame quotient

π1(A, e) � π�
1(A, e) ∼= T�(A).

Let Ln be the local system on A given by the representation ρn = Sym(VA)/(V
n+1
A ),

on which an element t ∈ T�(A), viewed as an element of VA, acts as multiplication
by exp(t). Let

L̃ := “ lim←− ”Ln ∈ proDb
c(A ���A).

This pro-object is a typical example of a free-monodromic local system.

Let Ŝ = lim←−n
Sym(VA)/(V

n+1
A ). It is easy to see that we have an equivalence

Db
c(A ���A) ∼= Db(Modnil(Ŝ)).

Here Modnil(Ŝ) stands for the abelian category of finite dimensional Ŝ-modules.
The free-monodromic completion would be

D̂b
c(A ���A) ∼= Db(Ŝ),

of the bounded derived category of all finitely generated Ŝ-modules. If we normalize
the equivalence so it is t-exact with respect to the perverse t-structure on the LHS
and the natural t-structure on the RHS, then under this equivalence, the pro-object

L̃[r] ∈ D̂b
c(A ���A) corresponds to the free module Ŝ ∈ Db(Ŝ).

Remark A.1.3. To better understand the situation, we consider the case Y is smooth
and k = C. Then there is a parallel story for holonomic DX -modules instead of
constructible complexes, linked to each other via the Riemann-Hilbert correspon-
dence.

We recall some basic construction of [BB93, §2.5]. A weakly A-equivariant DX -
module is a quasi-coherent sheaf M on X with a DX -action together with an
A-action such that the action map DX ⊗OX

M → M is A-equivariant.
Let ΘY be the tangent bundle of Y . Let Θ

X ���A
be the vector bundle on Y

which is the descent of the tangent bundle of X. It is a Lie algebroid on Y and fits
into an exact sequence

0 → LieA⊗OY → Θ
X ���A

→ ΘY → 0.

Let D
X ���A

⊂ DX be the A-invariant part. This is a sheaf of OY -algebras generated

by the Lie algebroid Θ
X ���A

. The functor M �→ MA gives an equivalence between

weakly A-equivariant DX -modules and D
X ���A

-modules which are quasi-coherent

on Y .
Note that LieA ⊂ Θ

X ���A
⊂ D

X ���A
is actually central, hence S = Sym(LieA) is

a central subalgebra of D
X ���A

. Localizing the category of D
X ���A

at various points

of (LieA)∗ = SpecS corresponds to specifying the monodromy along the fibers
of X → Y under the Riemann-Hilbert correspondence. Thus an A-unipotently
monodromic DX -module is the same as a quasi-coherent D

X ���A
-module on which

LieA acts nilpotently.
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Let Ŝ be the completion of S with respect to the ideal (LieA), and we define
the completion

D̂
X ���A

:= Ŝ ⊗S D
X ���A

,

equipped with the (LieA)-adic topology. The desired completion of the derived
category of DX -modules can then be defined as the derived category of certain

D̂
X ���A

-modules.

The above examples suggest that D̂b
c(X ���A) should look like a tensor product

Db
c(X ���A) ⊗S Ŝ, i.e., the category of Ŝ-modules in Db

c(X ���A). Turning this into

a rigorous construction involves two technical difficulties.
First, we need to deal with such categorical issues as: how to extend the tri-

angulated category structure and the t-structure to the completed category; how
to extend the sheaf-theoretic functors to the completed categories? The general
categorical formalism for dealing with pro-completions is contained in §A.2, and is
applied to our situation in §A.3.

Second, to make sense of Ŝ-modules in Db
c(Y ) we need to work on the level of

abelian categories (perverse sheaves). Even in the situation where X = Y × A
this is not obvious, see §A.4. Extra care has to be taken in the mixed setting; see
§A.5. Finally, we deal with the case where Y is nicely stratified and the category in
consideration is glued from simple categories coming from each stratum; see §A.6.

The ultimate goal is to define and study free-monodromic tilting sheaves, which
will be done in §A.7. The free-monodromic tilting sheaves will play important roles
in constructing DG models for the completed categories, as we will see in Appendix
B.

A.2. Pro-objects in a filtered triangulated category. Let D be a category
and let pro(D) be the category of pro-objects in D. By definition, objects in
pro(D) are sequences of objects (indexed by non-negative integers) {Xn}n≥0 with
transition maps · · · → X2 → X1 → X0. We denote such a sequence by “ lim←− ”Xn.
The morphism sets are defined by

(A.1) Hompro(D)(“ lim←− ”Xm, “ lim←− ”Yn) = lim←−
n

lim−→
m

HomD(Xm, Yn).

The Yoneda embedding of ηD : D → Fun(D,Set) extends to pro-objects to give
an embedding

η̂D : pro(D) → Fun(D,Set)(A.2)

“ lim←− ”Xn �→
(
Y �→ lim−→

n

HomD(Xn, Y )

)
.

It is easy to check that η̂D is a full embedding.
For any partially ordered set I, viewed as a category, we can consider Fun(I,D)

as “diagrams of shape I” in D. In particular, for n ≥ 0, let [0, n] be the ordered
set n > · · · > 0. Then Fun([0, n], D) is the category of chains of morphisms
Xn → · · · → X0. In particular, Fun([0, 1], D) is the category of morphisms in D.

Lemma A.2.1. Let I be a countable partially ordered set in which every element
i has only finitely many successors (a successor is an element j < i). Then the
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natural functor

ΠI : proFun(I,D) → Fun(I, pro(D))

is an equivalence of categories.

Proof. We first prove that ΠI is essentially surjective. We write I =
⋃

N IN where
I1 ⊂ I2 ⊂ · · · ⊂ IN ⊂ · · · , each IN has cardinality N and is closed under successors.
We use induction on N to show that each ΠIN is essentially surjective, which suffices
for our purpose.

Assume ΠIN−1
is essentially surjective. For notational simplicity, we denote

IN by I and IN−1 by J . Let {i0} = I\J . For any diagram X : I � i �→
“ lim←− ”X(i)n ∈ pro(D), apply the inductive hypothesis to its restriction to J ,

we get a projective system {Yn : J � j �→ Yn(j)} and an isomorphism α :

Π(“ lim←− ”Yn)
∼−→ X|J . Since each α(j) : “ lim←− ”Yn(j) → “ lim←− ”X(j)n is an iso-

morphism, the maps “ lim←− ”X(i0)n → “ lim←− ”X(j)n for i0 > j naturally lifts to

f(i0, j) : “ lim←− ”X(i0)n → “ lim←− ”Yn(j). By choosing a subsequence of {X(i0)a(n)}
of {X(i0)n}, we can manage so that f(i0, j) comes from a projective system of
maps f(i0, j)n : X(i0)a(n) → Yn(j). By possibly passing to another subsequence of
{X(i0)a(n)}, we can make sure that for each fixed n, adding Yn(i0) := X(i0)a(n)
and {f(i0, j)n : Yn(i0) → Yn(j)}i0<j extends the diagram Yn : J � j �→ Yn(j) into

a diagram Ỹn : I ∈ i �→ Yn(i). As n varies, these diagrams form a projective sys-

tem {Ỹn}n in Fun(I,D). It is clear that the natural isomorphism “ lim←− ”Yn(i0) =

“ lim←− ”X(i0)a(n)
∼−→ “ lim←− ”X(i0)n together with α extends to an isomorphism α̃ :

ΠI(“ lim←− ”Ỹn)
∼−→ X. This completes the induction step.

We next prove that ΠI is injective on morphism sets. Let {Yn : I → D}, {Zn :
I → D} be two objects in proFun(I,D). Then their Hom-set in both proFun(I,D)
and Fun(I, proD) can be naturally identified with subsets of

lim←−
n

lim−→
m

∏
i∈I

HomD(Ym(i), Zn(i)) =
∏
i∈I

lim←−
n

lim−→
m

HomD(Ym(i), Zn(i)).

From this we conclude that ΠI is injective on Hom-sets.
To prove that ΠI is surjective on morphism sets, it suffices to show that

Fun([0, 1],ΠI) : Fun([0, 1], proFun(I,D)) → Fun([0, 1],Fun(I, pro(D)))

is essentially surjective. Consider the commutative diagram of functors

proFun([0, 1],Fun(I,D))
Π[0,1] ��

adj�

��

Fun([0, 1], proFun(I,D))

Fun([0,1],ΠI)

��
Fun([0, 1],Fun(I, pro(D)))

adj�
��

proFun([0, 1]× I,D])
Π[0,1]×I �� Fun([0, 1]× I, pro(D))

where “adj” is the adjunction equivalence between the Cartesian product × and
Fun. The essential surjectivity of Fun([0, 1],ΠI) then follows from that of Π[0,1]×I .

�
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For a category D with a shift functor [1], let T̃ri(D) denote the category of all

triangles in D, i.e., chains of morphisms X
f−→ Y

f ′

−→ Z
f ′′

−−→ X[1]
f [1]−−→ Y [1] · · · such

that the composition of any two consecutive arrows is zero.
Now suppose D is a triangulated category equipped with a shift functor [1] and

a category of distinguished triangles Tri(D) ⊂ T̃ri(D). We clearly have a functor

γ : pro(Tri(D)) → T̃ri(pro(D)). Let Tri(pro(D)) be the essential image of γ.
However, in general there is no guarantee that the distinguished triangles defined
in such a way should give a triangulated structure on pro(D). In fact, the octahedral
axiom does not hold automatically for situations arising from pro-objects, because
no condition was imposed on the morphisms between octahedra. We will resolve
this difficulty with the help of a filtered structure of D. For basic definitions and
notations of a filtered structure on a triangulated category; see [B87, Appendix A].
We will use the decreasing version of filtered categories, and use F≥n to mean “the
n-th filtration” and use F≤n to mean “quotient by F≥n+1”. Let DF be a filtered
triangulated category over D with the “forgetting filtration” functor Ω : DF → D.
We have the “taking the associated graded” functors:

GrnF : DF → D.

For any interval of integers [m,n], let DF [m,n] be the full subcategory of DF con-
sisting of objects X such that GriF (X) = 0 unless m ≤ i ≤ n. In particular, we can
identify D with DF [0,0].

For each [m,n], we have a functor

Ω[m,n] : DF [m,n] → Fun([m,n], D)

sending X ∈ DF [m,n] to the diagram F≥nX → · · · → F≥mX = X.
For n = 1, Ω[0,1] can be lifted to a functor

ΩTri : DF [0,1] → Tri(D)

which sends X ∈ DF [0,1] to the distinguished triangle F≥1X → X → F≤0X →
F≥1X[1]. Therefore Ω[0,1] is the composition of τ ◦ ΩTri where τ : Tri(D) →
Fun([0, 1], D) is “forgetting the third vertex of a triangle”.

Let Oct(D) be the category of octahedra in D. We recall that an octahedron is
a commutative diagram of the form

(A.3) X

f

		�
��

��
��

�

h

		
Z

h′

		�
��

��
��

�

g′




W

g′′

���
��

��
��

��

j′′

��
U [1]

Y

f ′

		�
��

��
��

�

g

����������
V

h′′



	
		

		
		

	

j′
��










Y [1]

f ′[1]
����������

U

j

����������

f ′′
��
X[1]

f [1]
����������

where (f, f ′, f ′′), (g, g′, g′′), (h, h′, h′′) and (j, j′, j′′) are distinguished triangles.
There is an obvious notion of morphisms between octahedra.
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The functor Ω[0,2] can be lifted to a functor

ΩOct : DF [0,2] → Oct(D)

which sends X ∈ DF [0,2] to the octahedron

Gr2F X

���
��

��
��

��
X

���
��

��
��

��
Gr0F X



	
		

		
		

	

��
Gr1F X[1]

F≥1X

���
��

��
��

���������
F≤1X

		�
��

��
��

�

��







F≥1X[1]

��









Gr1F X

���������

��
Gr2F X[1]

��









so that Ω[0,2] is the composition of ΩOct with the functor of “remembering the top
left commutative triangle only”.

Let D be a category equipped with a shift functor [1] and distinguished triangles
Tri(D). A strictly full subcategory D′ ⊂ D is said to be triangle-complete, if it
is stable under [1], and for any triangle X → Y → Z → in Tri(D), if two of the
vertices are in D′, then so is the third. When D′ is triangle-complete, we define its
distinguished triangles Tri(D′) to be those in Tri(D) with all vertices in D′.

Theorem A.2.2. Let k be a field and D a k-linear triangulated category with a
filtered lifting DF . Let D′ ⊂ D be a full triangulated subcategory. Equip pro(D′)
with the shift functor [1] induced from that of D′ and the distinguished triangles

Tri(pro(D′))⊂T̃ri(pro(D′)) (recall this is the essential image of γ : pro(Tri(D′))→
T̃ri(pro(D′))). Let D̂ ⊂ pro(D′) be a triangle-complete full subcategory. Assume:

(P-1) pro(Ω[0,2]) : pro(DF [0,2]) → proFun([0, 2], D) is essentially surjective.

(P-2) For any two objects “ lim←− ”Xm ∈ D̂ and Yn ∈ D′, lim−→m
HomD′(Xm, Yn) is

a finite dimensional vector space over k.

Then D̂ with the induced shift functor [1] and distinguished triangles Tri(D̂) is a
triangulated category.

Proof. (1) For the axioms (TR1)–(TR4) of a triangulated category, we refer to
Verdier’s original article [V63, Chapitre I, §1, 1-1]. We first check (TR1). The only

thing we need to show is that any morphism “ lim←− ”Xn → “ lim←− ”Yn in D̂ extends

to a distinguished triangle. We will prove this for any morphism in pro(D). Since

D̂ ⊂ pro(D′) ⊂ pro(D) is triangle-complete, (TR1) then holds for D̂. Consider the
commutative diagram

(A.4) proTri(D)
pro(τ)��

��

proFun([0, 1], D)

Π1

��
Tri(pro(D))

T �� Fun([0, 1], pro(D))

where τ, T are “forgetting the third vertex” functors. We would like to show that T
is essentially surjective. Axioms (TR1) for D implies that τ is essentially surjective;
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axiom (TR2) for D implies that τ is surjective on morphism sets. These two facts
together imply that pro(τ ) is essentially surjective. By Lemma A.2.1, Π1 is an
equivalence. Therefore Π1 ◦ pro(τ ), hence T , is essentially surjective.

The axiom (TR2) is obvious because proTri(D) is stable under the rotation of
triangles.

Next we check (TR3). Note that by [M01, Lemma 2.2], this axiom is implied by
the other axioms. We still verify it here because we will need it to check (TR4).
Note that (TR3) is equivalent to saying that

(A.5) τ̂ = T |Tri(D̂) : Tri(D̂) → Fun([0, 1], D̂)

is surjective on morphism sets.

Consider a diagram in D̂,

(A.6) “ lim←− ”Xn

ξ

��

f �� “ lim←− ”Yn

η

��

g �� “ lim←− ”Zn
h �� “ lim←− ”Xn[1]

ξ[1]

��
“ lim←− ”X ′

n

f ′
�� “ lim←− ”Y ′

n

g′
�� “ lim←− ”Z ′

n
h′

�� “ lim←− ”X ′
n[1]

where the rows are distinguished triangles. We would like to find a morphism
ζ : “ lim←− ”Zn → “ lim←− ”Z ′

n making all the squares commutative. By the definition of

Tri(proD′), the two rows in (A.6) are pro-objects in Tri(D′), i.e., f = “ lim←− ”fn,

g = “ lim←− ”gn, etc. However, the morphisms ξ and η are morphisms in pro(D′) as

in (A.1): for fixed n, we have an inductive system ξm,n : Xm → X ′
n compatible

with transition maps Xm+1 → Xm for large m. These inductive systems form a
projective system as n varies, i.e., ξ = lim←−n

lim−→m
ξm,n. Similarly, we have η =

lim←−n
lim−→m

ηm,n.

Fix n ≥ 0. Then for m large enough, ξm,n and ηm,n are defined and f ′
nξm,n =

ηm,nfm. By (TR3) for D′, the set of dotted arrows making the following diagram
commutative,

Xm

ξm,n

��

fm �� Ym

ηm,n

��

gm �� Zm
hm ��

���
�
� Xm[1]

ξm,n[1]

��
X ′

n

f ′
n �� Y ′

n

g′
n �� Z ′

n

h′
n �� X ′

n[1]

form a torsor Em,n under a subspace Hm,n ⊂ HomD′(Zm, Z ′
n). The set E of mor-

phisms ζ : “ lim←− ”Zn → “ lim←− ”Z ′
n making (A.6) commutative can thus be expressed

as

E = lim←−
n

lim−→
m

Em,n.

Each E∞,n = lim−→m
Em,n is a torsor under H∞,n = lim−→m

Hm,n. By assumption (P-

2), H∞,n ⊂ lim−→m
HomD′(Zm, Z ′

n) is finite dimensional over k. Hence the projective

system {E∞,n}n≥0 is Mittag-Leffler. Since each E∞,n is nonempty, so is E =
lim←−n

E∞,n. This proves the existence of ζ ∈ E.

An easy consequence of (TR3) is that τ̂ in (A.5) is conservative.
Finally we check the octahedral axiom (TR4). For any category C equipped

with [1] and distinguished triangles Tri(C), we can define the category Oct(C) as
in (A.3) and its relative Octpre(C) called the category of pre-octahedra. An object
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in Octpre(C) is a commutative diagram:

X

f

		�
��

��
��

�

h

		
Z

h′

		�
��

��
��

�

g′




W

g′′

���
��

��
��

��
U [1]

Y

f ′

		�
��

��
��

�

g

����������
V

h′′



	
		

		
		

	 Y [1]

f ′[1]
����������

U

f ′′
��
X[1]

f [1]
����������

such that (f, f ′, f ′′), (g, g′, g′′) and (h, h′, h′′) are in Tri(C). We have forgetful func-

tors Oct(C)
α−→ Octpre(C)

β−→ Fun([0, 2], C) whose composition only remembers
the top left commutative triangle of the octahedron. In particular, we can define

Oct(pro(D)),Octpre(pro(D)),Oct(D̂) and Octpre(D̂).
Consider the following diagram (which is commutative with obvious choices of

natural transformations)

(A.7) pro(DF [0,2])

pro(ΩOct)

��

pro(Ω[0,2])

�������
������

������
������

����

proOct(D)

��

pro(α)
�� proOctpre(D)

��

pro(β)
�� proFun([0, 2], D)

Π2�
��

Oct(pro(D))
A �� Octpre(pro(D))

B �� Fun([0, 2], pro(D))

Axiom (TR4) for D̂ is the same as saying that

α̂ = A|Oct(D̂) : Oct(D̂) → Octpre(D̂)

is essentially surjective.
By Lemma A.2.1, Π2 is an equivalence. By (P-1), pro(Ω[0,2]) is essentially surjec-

tive. Hence the composition B ◦A is essentially surjective. Let β̂ be the restriction

of B to Octpre(D̂). Then the composition

β̂ ◦ α̂ : Oct(D̂)
α̂−→ Octpre(D̂)

β̂−→ Fun([0, 2], D̂)

is also essentially surjective, because if a commutative triangle in D̂ can be com-

pleted into a octahedron, the vertices of the octahedron must all belong to D̂ by
triangle-completeness.

To recover an object in Octpre(pro(D)) from its image in Fun([0, 2], pro(D)),
one only needs to construct distinguished triangles from the three arrows, i.e., the
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following is a pullback diagram:

Octpre(D̂)

��

β̂ �� Fun([0, 2], D̂)

��
Tri(D̂)3

τ̂3
�� Fun([0, 1], D̂)3

Axiom (TR3) for D̂ implies that τ̂ is surjective on morphism sets and conservative,

hence β̂ is also surjective on morphism sets and conservative. We already proved

that β̂ ◦ α̂ is essentially surjective, therefore α̂ is also essentially surjective. This
verifies (TR4). The proof is now complete. �

Remark A.2.3. We also have a filtered version of Theorem A.2.2. Under the same
assumption as Theorem A.2.2, let D̂F ⊂ proDF be the full subcategory consisting

of objects “ lim←− ”Xn such that “ lim←− ”GriF Xn ∈ D̂ and the filtrations of Xn are

uniformly bounded; i.e., there exists N ∈ Z≥0 such that GriF Xn = 0 for all n and

any i �= [−N,N ]. Then it is easy to see that D̂F is a filtered triangulated category.

Example A.2.4. Let X be a scheme over k (k is a finite field or an algebraically
closed field). Let Λ be a coefficient ring, for example, Λ = F�,Z/�

nZ,Z�,Q� or
Q�, with � �= char(k). The derived category Db

c(X,Λ) is equipped with a filtered
structure Db

cF (X,Λ) (see [D80, §1.1.2]).
We claim that proΩ[m,n](Λ) : pro(DF [m,n](X,Λ)) → proFun([m,n], Db

c(X,Λ))
is essentially surjective; i.e., the assumption (P-1) in Theorem A.2.2 is satisfied for
D = Db

c(X,Λ).
We first assume that Λ is a finite ring. Let Kb

c (X,Λ) and Kb
cF (X,Λ) be the

homotopy categories of Cb
c(X,Λ) (constructible Λ-complexes) and Cb

cF (X,Λ) (fil-
tered constructible Λ-complexes). Then the forgetful functor Ω[m,n](Λ) admits a
section, the “telescoping functor”:

Tel = Tel[m,n] : Fun([m,n],Kb
c(X,Λ)) → Kb

cF
[m,n](X,Λ).

For a chain of complexes K = [(K(n), dn)
fn−→ (K(n − 1), dn−1) → · · · fm+1−−−→

(K(m), dm)] and m ≤ i ≤ n, define

F≥iTel(K) = K(n)⊕K(n)[1]⊕K(n− 1)⊕K(n− 1)[1]⊕ · · · ⊕K(i+ 1)[1]⊕K(i),

with differentials a signed sum of dj , dj [1] and fj . When m = n− 1, Tel[m,n](K) is

the mapping cylinder of K(n)
fn−→ K(n− 1).

Consider the following commutative diagram

(A.8) Fun([m,n],Kb
c(X,Λ))

Tel[m,n]
��

Fun([m,n],Q(Λ))

��

Kb
cF

[m,n](X,Λ)

QF (Λ)

��
Fun([m,n], Db

c(X,Λ)) Db
cF

[m,n](X,Λ)
Ω[m,n](Λ)��

where Q(Λ) and QF (Λ) are natural quotient functors. Now take “pro” of the
diagram (A.8). It is easy to see that proFun([m,n], Q(Λ)) is essentially surjective,
hence proΩ[m,n](Λ) is also essentially surjective.
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Now consider the case Λ = Rλ, a complete DVR with uniformizing parameter
λ and residue field Fλ, a finite field of characteristic � �= char(k). Consider the
projective system of diagrams (A.8) for Λ = Rλ/(λ

n), n = Z≥0 (by [D80], we should
replace Db

c by constructible complexes with finite Tor-dimension, but we ignore this
notational change). It is also easy to check that proFun([m,n], lim←−n

Q(Rλ/(λ
n))) is

essentially surjective (the argument is similar to that of Lemma A.2.1). Therefore,
taking pro lim←−n

of the diagram (A.8) for Rλ/(λ
n), we conclude that proΩ[m,n](Rλ)

is essentially surjective.
Finally we consider the case Λ = Eλ = Frac(Rλ). We claim that for any finite

partially ordered set I, the natural functor

(A.9) proFun(I,Db
c(X,Rλ)) → proFun(I,Db

c(X,Eλ))

is essentially surjective. In fact, any projective system {Kn : I → Db
c(X,Eλ)}n≥0

can be viewed as a functor K : [0,∞)×I → Db
c(X,Eλ), where [0,∞)×I is equipped

with the product partial order. For each index α ∈ [0,∞) × I, K(α) is an object
of Db

c(X,Rλ) by definition. For α > β, the transition map fα
β : K(α) → K(β) is a

morphism in Db
c(X,Eλ). It is easy to see that there exists a sequence of integers

Nα ∈ Z≥0, such that the assignment K̃ = (K(α), f̃α
β = λNα−Nβfα

β ) defines a functor

K̃ : [0,∞)× I → Db
c(X,Rλ), hence an object in proFun(I,Db

c(X,Rλ)). Moreover,

the morphism K̃ → K defined by λNα id : K(α) → K(α) gives an isomorphism in
proFun(I,Db

c(X,Eλ)).
The surjectivity of (A.9) for I = [m,n], together with the surjectivity of

proΩ[m,n](Rλ), implies the surjectivity of proΩ[m,n](Eλ). The case Λ = Q� fol-
lows from the case Λ = Eλ for various finite extensions Eλ of Q�.

A.3. The completion. We recap the notation from §A.1. We fix a full triangu-
lated subcategory D′(Y ) ⊂ Db

c(Y ) with the induced perverse t-structure with heart

P ′(Y ). Let D′(X ���A) ⊂ Db
c(X ���A) be the full subcategory generated by π†D′(Y ),

with the induced perverse t-structure with heart P ′(X ���A).

Definition A.3.1.
(1) An object “ lim←− ”Fn ∈ proDb

c(X) is called π-constant if “ lim←− ”π†Fn ∈
proDb

c(Y ) is in the essential image of Db
c(Y ).

(2) An object “ lim←− ”Fn ∈ proDb
c(X) is called uniformly bounded in degrees, if

it is isomorphic to “ lim←− ”F ′
n for which there exists N ∈ Z such that all

F ′
n ∈ pD

[−N,N ]
c (X).

(3) Let D̂′(X ���A) ⊂ proD′(X ���A) be the full subcategory of objects which

are both π-constant and uniformly bounded in degrees.

Theorem A.3.2. Let Tri(D̂′(X ���A)) ⊂ Tri(proD′(X ���A)) consist of those trian-

gles whose vertices are in D̂′(X ���A). Then under the shift functor [1] induced from

proD′(X ���A) and the distinguished triangles Tri(D̂′(X ���A)), D̂′(X ���A) becomes

a triangulated category.

Proof. We would like to apply Theorem A.2.2 to D = Db
c(X,Q�), D

′ = D′(X ���A)

and D̂ = D̂′(X ���A). We first check that D̂′(X ���A) is a triangle-complete sub-

category of proD′(X ���A). For any triangle “ lim←− ”(Fn
fn−→ Gn

gn−→ Hn
hn−−→) in
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Tri(proD′(X ���A)), suppose “ lim←− ”Fn and “ lim←− ”Gn are in D̂′(X ���A), we need

to show that “ lim←− ”Hn is also in D̂′(X ���A). Boundedness is clear, we only need

to check that “ lim←− ”Hn is also π-constant. Let A,B ∈ D′(Y ) with isomorphisms

α : A ∼−→ “ lim←− ”π†Fn and β : B ∼−→ “ lim←− ”π†Gn, then we have a morphism a : A → B
(which is the transport of “ lim←− ”fn). Let C be a cone of the map a. Consider the
following diagram

A

αn

��

a �� B

βn

��

b �� C c ��

���
�
� A[1]

αn[1]

��
π†Fn

π†(fn) �� π†Gn

π†(gn)�� π†Hn

π†(hn) �� Fn[1]

The choices of the dotted arrow form a torsor En under a subgroup

Hn ⊂ HomY (C, π†Hn),

which is a finite dimensional Q�-vector space. Hence the projective system {En} is
Mittag-Leffler. Since each En is nonempty, lim←−En is also nonempty, i.e., we have a

morphism γ : C → “ lim←− ”π†Hn making (α, β, γ) into a morphism of triangles. We

claim that γ is an isomorphism. In fact, we can check this by applying HomY (−, T )
to this morphism of triangles, for any test object T ∈ D′(Y ), using the long exact
sequence of Hom’s. This shows that “ lim←− ”Hn is also π-constant, and completes
the first step.

The assumption (P-1) is verified in Example A.2.4.

Finally, we check the assumption (P-2) for morphisms in D̂′(X ���A). Let “ lim←− ”Fn,

“ lim←− ”Gn∈D̂′(X ���A). We now show that for fixed n, lim−→m
HomX(Fm,Gn) is a finite

dimensional Q�-vector space. This would then imply (P-2).

Since the functor lim−→m
RHomX(Fm,−) is an exact functor from D′(X ���A) to

the derived category ofQ�-vector spaces, it suffices to check that lim−→m
HomX(Fm,G)

is finite dimensional for a set of generators G of D′(X ���A). So we may assume

G = π†H for some H ∈ D′(Y ). Then

lim−→
m

HomX(Fm, π†H) = lim−→
m

HomY (π†Fm,H)

= HomproD′(Y )(“ lim←− ”π†Fm,H).

The π-constancy of “ lim←− ”Fm means “ lim←− ”π†Fm is isomorphic to an object in

D′(Y ), therefore the above Hom-set is a Hom-set inD′(Y ), hence finite dimensional.
This completes the proof. �

Proposition A.3.3. Let πi : Xi → Yi be A-torsors (i = 1, 2). Let D′(Yi) ⊂ Db
c(Yi)

be full triangulated subcategories. Suppose we have a commutative diagram of exact
functors (i.e., we have a natural isomorphism α : Φ ◦ π1,†

∼⇒ π2,† ◦ Φ)

(A.10) D′(X1 ���A)
Φ ��

π1,†

��

D′(X2 ���A)

π2,†

��
D′(Y1)

Φ �� D′(Y2)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ON KOSZUL DUALITY FOR KAC-MOODY GROUPS 71

Then Φ naturally extends to an exact functor Φ̂ : D̂′(X1 ���A) → D̂′(X2 ���A). More-

over, this extension is compatible with compositions, adjunctions and natural trans-
formations.

Proof. It is clear that pro(Φ) sends distinguished triangles to distinguished triangles
and commutes with [1]. The only thing we need to check is that pro(Φ) sends
π1-constant objects to π2-constant objects. But this follows from the diagram
(A.10). �

Corollary A.3.4. Let f : X1 → X2 be an A-equivariant morphism between A-
torsors and D′(Yi) ⊂ Db

c(Yi) be full triangulated subcategories. Let f : Y1 → Y2 be
the induced morphism. Let Φ be any of the exact functors f∗, f∗, f! and f !, and let
Φ be the corresponding functor for f .

Suppose Φ restricts to a functor between the D′(Yi)’s, then Φ naturally extends to

exact functors between the D̂′(Xi ���A)’s. Moreover, these extensions are compatible

with compositions, adjunctions and proper base change.

Proof. (1) For Φ = f!, we have π2,†f! = f !π1,†, then apply Proposition A.3.3.

(2) For Φ = f∗, we have proper base change isomorphism π1,†f
∗ ∼= f

∗
π2,†, then

apply Proposition A.3.3.
(3) For Φ = f∗, we have a natural transformation π2,†f∗ → f∗π1,† (apply ad-

junction to f∗ → f∗π
†
1π1,† ∼= π†

2f∗π1,†). This natural transformation is in fact an

isomorphism when restricted to D′(X1 ���A). In fact, we only need to check it on

objects of the form π†
1F . The problem being étale local, we may assume that X2

is a trivial A-torsor over Y2, and fix a trivialization X2
∼= Y2 × A. This induces

a trivialization X1
∼= Y1 × A and f = f × idA. By proper base change and the

projection formula, we have

π2,†f∗π
†
1F ∼= π2,!(f∗F � Q�) ∼= f∗F ⊗H∗

c(A).

On the other hand, we have

f∗π1,†π
†
1F ∼= f∗(F ⊗H∗

c(A)) = f∗F ⊗H∗
c(A).

Therefore π2,†f∗π
†
1F

∼−→ f∗π1,†π
†
1F . Knowing π2,†f∗ → f∗π1,† is an isomorphism,

we then apply Proposition A.3.3 to finish the proof.

(4) For Φ = f !, we have a natural transformation π1,†f
! → f

!
π2,†, which is an

isomorphism when restricted to D′(X2 ���A) for the same reason as in (3). We then

apply Proposition A.3.3. �

The adjunction (π†, π
†) extends to the adjunction (the extended functors are

denoted by the same letter):

D̂′(X ���A)
π† ��

D′(Y )
π†

�� .

Lemma A.3.5. The functor π† : D̂
′(X ���A) → D′(Y ) is conservative.

Proof. Since π† is an exact functor, to show it is conservative we only need to show
that it sends a nonzero object to a nonzero object.
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Suppose π†(“ lim←− ”Fn) = 0, then any map “ lim←− ”Fn → π†G is zero for any G ∈
D′(Y ). Since objects of the form π†G generate D′(X ���A), this means

Hom(“ lim←− ”Fn,F) for any F ∈ D′(X ���A). By the full faithfulness of the Yoneda

embedding (A.2), this implies that “ lim←− ”Fn = 0. �

The following lemma is used only in the proof of Lemma 3.2.2 and Lemma 4.4.3.

Lemma A.3.6. Let a : A×X → X be the action map. Recall the free-monodromic

local system L̃ on A defined in Example A.1.2. Then there is a functorial isomor-

phism for F ∈ D̂′(X ���A):

a!(L̃ � F) ∼= F [−2r](−r).

Proof. It suffices to give the isomorphism for F ∈ D′(X ���A). We first need to

construct a natural map L̃ � F → a∗F = a!F [−2r](−r). We may assume F is
a Z�-complex, and is given by a projective system Fn ∈ Db

c(X,Z/�n). For each
m ∈ Z≥1, write

am : A×X
[m]×id−−−−→ A×X

a−→ X.

Let p : A×X → X be the projection. By [V83, Proposition 5.1], for fixed n, if m
is sufficiently divisible, we have an isomorphism

θm : p∗Fn
∼= a∗mFn = ([m]× id)!(a∗F)

In our case F is a successive extension of sheaves pulled back from Y , it is easy to
see that such an isomorphism exists if m = �b for large b. By adjunction, θm gives

([m]!Z/�
n) � Fn = ([m]× id)!p

∗Fn → a∗Fn.

As m = �b and n varies, [�b]!Z/�
n form a projective system indexed by two integers

b, n. Taking projective limit, we get a map

(A.11) (lim←−
b,n

[�b]!Z/�
n) � F → a∗F .

As a representation of π1(A, e), the local system [�b]!Z/�
n is Z/�n[A[�b]], the

regular representation of the quotient π1(A, e) → A[�b]. Let Z�[T�(A)]∧aug be the
completion along the augmentation ideal of Z�[T�(A)]. There is a natural map in
Rep(π�

1(A, e)) (note that π�
1(A, e) ∼= T�(A)):

(A.12) Z�[T�(A)]∧aug → lim←−
b,n

Z/�n[T�(A)/�b].

In fact, for any n, b, elements of the form (t − 1)�
N

(t ∈ T�(A)) lies in the ideal
generated by �n and �bT�(A) ⊂ T�(A) in Z�[T�(A)] for large N = N(n, b) (by
binomial expansion).

On the other hand, we have a map in proRep(π�
1(A, e),Q�)

(A.13) Ŝ = lim←−
n

Sym(VA)/(V
n
A ) → Q�[T�(A)]∧aug

which sends t ∈ T�(A) ⊂ VA ⊂ ŜA to log(t) = −
∑

i≥1(1 − t)i/i ∈ Q�[T�(A)]∧aug.

Combining (A.12) and (A.13), we get a continuous map between π�
1(A, e)-represen-

tations

Ŝ →
(
lim←−
b,n

Z/�n[T�(A)/�b]

)
⊗Q�.
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Composing with the map (A.11), we get the desired map L̃ � FQ�
→ a∗FQ�

. By

adjunction, we get a functorial map

β(F) : a!(L̃ � F) → F [−2r](−r).

Finally, we check this is an isomorphism for F ∈ D′(X ���A). Since D′(X ���A) is

generated by π†G, it suffices to check β(π†G) is an isomorphism. Applying proper
base change to the Cartesian diagram

A×X

a

��

idA ×π �� A× Y

pY

��
X

π �� Y

we get

a!(L̃ � π†G) = π†pY,!(L̃ � G) = π†(RΓc(A, L̃)⊗ G) ∼= π†G[−2r](−r).

In the last equality we used RΓc(A, L̃) = Q�[−2r](−r). The above isomorphism is
in fact the same as β(π†G). This proves β(−) is an isomorphism. �

A.4. The case of a trivial A-torsor. In this section, we study the special case
where π : X → Y is a trivial A-torsor. Fix a section ε : Y → X. Consider the
t-exact functor

ε† = ε![r] : D′(X ���A) → D′(Y ).

There is a natural transformation

(A.14) ε† = π!ε∗ε
![r]

adj−−→ π![r] = π†.

We also consider the functor

Free : D′(Y ) � F �→ F � L̃[r](r) ∈ D̂′(X ���A)

where L̃ ∈ D̂′(A ���A) is as defined in Example A.1.2.

Definition A.4.1. Objects of the form Free(F) ∈ D̂′(X ���A) for F ∈ P ′(Y ) are

called free-monodromic perverse local systems.

Lemma A.4.2. The functors (Free, ε†) satisfy the following adjunction

(A.15) Hom
D̂′(X ���A)

(Free(F),G) ∼−→ Hompro(D′(Y ))(F , ε†G)

for F ∈ D′(Y ),G ∈ D′(X ���A).

Proof. Note that ε!L̃[2r](r) ∼= ε∗L̃ = Ŝ = “ lim←− ” Sym(VA)/(V
n
A ) ∈ Db

c(pt). Let

s : Q� → Ŝ be the unit map. For any map φ : Free(F) → G, we have a map

F id⊗s−−−→ F ⊗ Ŝ ∼= F � ε!L̃[2r](r) = ε†Free(F)
ε†(φ)−−−→ ε†G.

This established the required map between the Hom-spaces in (A.15). To check
that it is an isomorphism, it suffices to check for generating objects G = π†H,
where it is obvious. �
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For any object F ∈ P ′(X ���A), ε†F ∈ P ′(Y ) naturally carries the nilpotent

logarithmic monodromy operator

ε† log(μF ) : VA ⊗ ε†F → ε†F

so that ε†F becomes an Ŝ-module in P ′(Y ), on which VA acts nilpotently.

Lemma A.4.3. The functor ε† lifts to an equivalence of abelian categories

σ : P ′(X ���A)
∼−→ Modnil(Ŝ;P ′(Y ))

where Modnil(Ŝ;P ′(Y )) denotes the abelian category of Ŝ-module objects in P ′(Y )
on which VA acts nilpotently.

Proof. This is a variant of the usual Barr-Beck theorem in the following situation

proP ′(X ���A) �� � �P ′(X ���A)
ε†

�� P ′(Y )

Free
��

.

Here ε† is exact, faithful and conservative; the only issue is that the functors ε† and
Free are only adjoint in the sense of Lemma A.4.2. But the argument for Barr-Beck
theorem still works. We have a functor in the other direction:

(A.16) Modnil(Ŝ;P ′(Y )) → P ′(X ���A)

which sends a nilpotent Ŝ-module F in P (Y ) to

(A.17) coker

(
VA ⊗ (F � L̃)[r](r) m(F)�id− id�m(L̃)−−−−−−−−−−−−−→ F � L̃[r](r)

)
,

where m(F) : VA ⊗ F → F and m(L̃) : VA ⊗ L̃ → L̃ are action maps given by the

Ŝ-module structures. Since V n+1
A acts as zero on F for large n, so that (A.17) is

actually a quotient of F�Ln (for Ln, see Example A.1.2), hence lands in P ′(X ���A).

It is easy to check that the functor (A.16) and σ are inverse to each other. �

Corollary A.4.4. Under the equivalence σ, the functors

P ′(X ���A)

pH0π† ��
P ′(Y )

π†
��

become

Modnil(Ŝ;P ′(Y ))
⊗ŜQ� �� P ′(Y )
triv

�� ,

where “triv” sends an object F ∈ P ′(Y ) to the Ŝ-module F on which VA acts as 0.

Proof. It is clear that ε†π†F = F with the trivial monodromy action, hence σπ†

is the same as the functor “triv”. The equality pH0π† = (−) ⊗Ŝ Q� follows by
adjunction. �

Assumption F. Every object in P ′(Y ) has a finite resolution by projective
objects, and that the realization functor

ρY : Db(P ′(Y )) → D′(Y )

is an equivalence.
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Proposition A.4.5. Under Assumption F, the free-monodromic objects Free(F),

F ∈ P ′(Y ) generate D̂′(X ���A).

Proof. Given an object “ lim←− ”Fn ∈ D̂′(X ���A), by Assumption F, we may resolve

“ lim←− ”π†Fn ∈ D′(Y ) by projective objects in P ′(Y ):

(A.18) [· · · → K−1 → K0 → · · · ] ∈ Db(P ′(Y )) ∼= D′(Y ).

The amplitude of the complex “ lim←− ”π†Fn is the least number of nonzero terms
among all such projective resolutions. If the amplitude of “ lim←− ”π†Fn is 0, i.e.,
“ lim←− ”π†Fn = 0, then by Lemma A.3.5, “ lim←− ”Fn = 0.

Now suppose that any “ lim←− ”Fn such that “ lim←− ”π†Fn has amplitude < N can
be expressed as a successive extension of free-monodromic objects. Let “ lim←− ”Fn ∈
D̂′(X ���A) such that the amplitude of “ lim←− ”π†Fn is N . We may assume (A.18) is

a minimal resolution which terminals on the right at K0 (i.e., K0 �= 0 and Ki = 0
for i > 0).

Claim. The componentwise truncation “ lim←− ”pτ<0Fn → “ lim←− ”Fn is an isomor-

phism in proD′(X ���A).

Proof. By uniform boundedness, we may assume every Fn ∈ pD≤d
c (X) for some

d ≥ 0. If d = 0, there is nothing to argue. Suppose d > 0, we only need to prove
that α : “ lim←− ”pτ<dFn → “ lim←− ”Fn is an isomorphism, and repeat the argument.

For this, it suffices to show that Cone(α) ∼= “ lim←− ”pHdFn is zero (although we

do not have “ lim←− ”pτ<dFn ∈ D̂′(X ���A) a priori, the vanishing of the cone still

implies α is an isomorphism: we only need to apply Hom(−, T ) to α for any test

object T ∈ D′(X ���A), and note that lim−→ is exact) . Let Pn = pHdFn. Since π† is

right t-exact, “ lim←− ”π†
pτ<dF ′

n ∈ pD<d
c (Y ), the projective system of perverse sheaves

pHdπ†Pn is zero. This means for fixed n, the transition map pHdπ†Pm → pHdπ†Pn

is zero for large m. By Corollary A.4.4, this means that the image of Pm in Pn

falls into VAPn. Since each Pn is killed by a power of VA, this means the transition
map Pm → Pn is zero for large m. This proves the claim. �

By this claim, we may assume that each Fn ∈ pD≤0
c (X). We will construct a map

Free(K0) → “ lim←− ”Fn in D̂′(X ���A). By Lemma A.4.2, it suffices to give a compat-

ible system of maps {K0 → ε†Fn}n. By the assumption that ρY is an equivalence
and K0 is projective, such a map is equivalent to a map K0 → pH0ε†Fn = ε†pH0Fn.

On one hand, we have a natural map

αn : K0 → pH0(“ lim←− ”π†Fn) → pH0π†Fn.

On the other hand, we have a surjection by (A.14)

βn : ε†pH0Fn � pH0π†
pH0Fn = pH0π†Fn.

Since K0 is projective, it is possible to lift αn to α̃n : K0 → ε†pH0Fn. The set
of such liftings is a torsor under HomP ′(Y )(K0, ker(βn)), which is a Mittag-Leffler
projective system. Therefore, the compatible system of maps {αn} can be lifted
to a compatible system of maps {α̃n}. According to the argument above, it gives
a map s0 : Free(K0) → “ lim←− ”Fn such that π†(s

0) coincides with the natural map

K0 → “ lim←− ”π†Fn.
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Let “ lim←− ”F ′
n be a cone of s0 in D̂′(X ���A). Then π†(“ lim←− ”F ′

n) is represented

by the complex

[· · · → K−2 → K−1 → 0 → · · · ] ∈ Db(P ′(Y )) ∼= D′(Y )

which has amplitude < N . This completes the induction step. �

Example A.4.6. The Assumption F is essential. We give an example where

D̂′(X ���A) is not generated by free-monodromic objects. Let X = Gm×Gm be the

trivial Gm-torsor over Y = Gm via the first projection. Consider the diagram

X = Gm ×Gm
mult ��

π

��

Gm

��
Y = Gm

�� pt

where “mult” is the multiplication map. Take D′(Y ) ⊂ Db
c(Y ) to be the full

triangulated subcategory generated by the constant sheaf. Let L̃ denote the free-

monodromic local system on Gm. Then the object mult∗L̃ ∈ D̂′(X ���A) does not lie

in the triangulated category generated by free-monodromic perverse local systems.
In fact, we have

D′(Y ) ∼= Db(Modnil(Q�[[t]])) and D′(X ���A) ∼= Db(Modnil(Q�[[s, t]])).

The object mult∗L̃ corresponds to the module Q�[[s, t]]/(s − t) ∈ proD′(X ���A),

which lies in D̂′(X ���A) because π!mult∗L̃ = Q�[−2](−1). However, the subcat-

egory of D̂′(X ���A) generated by free-monodromic perverse local systems can be

identified with Db(Modt−nil(Q�[[s, t]])) (where the superscript “t-nil” means only
the action of t on the module is nilpotent, and t denotes the logarithmic monodromy
in the Y -direction). Obviously Q�[[s, t]]/(s− t) does not lie in this subcategory.

Corollary A.4.7. Under Assumption F,

(1) The realization functor ρX : Db(P ′(X ���A)) → D′(X ���A) is an equiva-

lence. We have a t-exact equivalence

ρX ◦ σ−1 : Db(Modnil(Ŝ;P ′(Y )))
σ−1

−−→ Db(P ′(X ���A))
ρX−−→ D′(X ���A).

(2) Suppose we are given a t-exact equivalence of triangulated categories

ν : Db(E) ∼= D′(Y )

for some finite dimensional algebra E with finite cohomological dimension.
Then the equivalence ρX ◦ σ−1 extends to an equivalence of triangulated
categories

ν̂ : Db(E ⊗ Ŝ) ∼= D̂′(X ���A).

(3) Under ν̂, the adjunctions (π†, π
†) becomes

Db(E ⊗ Ŝ)

L
⊗ŜQ� �� Db(E)
triv

�� .
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Proof. (1) First, ρX is essentially surjective. This is because both sides are gener-
ated by objects of the form π†F for F ∈ P ′(Y ).

Next we check that ρX induces an isomorphism between the Ext-groups for these
generating objects. On one hand,

RHom
D′(X ���A)

(π†F , π†F ′) = RHomD′(Y )(F ,F ′)⊗H∗(A).

On the other hand, by Lemma A.4.3, we have

RHom
P ′(X ���A)

(π†F , π†F ′) = RHomModnil(Ŝ;P ′(Y ))(F ,F ′)

= RHomP ′(Y )(F ,F ′)⊗RHomŜ(Q�,Q�).

To see this, we need to pick a projective resolution K∗ for F in P ′(Y ), and use

Koszul resolution of K∗ by free Ŝ-modules.
By Assumption F, RHomP ′(Y )(F ,F ′)

∼−→ RHomD′(Y )(F ,F ′) . Moreover,

RHomŜ(Q�,Q�) ∼= ∧∗(V ∨
A [−1]) ∼= H∗(A),

hence the two RHom-complexes are naturally isomorphic.

(2) The equivalence ρX ◦ σ−1 extends to pro-objects. We identify Db(E ⊗ Ŝ)

with a full subcategory of proDb(Modnil(E⊗Ŝ)) ∼= proDb(Modnil(Ŝ;P ′(Y ))), hence
getting a full embedding

Db(E ⊗ Ŝ) ↪→ proD′(X ���A).

Any complex in Db(E ⊗ Ŝ) is quasi-isomorphic to a complex of free objects M ⊗
Ŝ (M ∈ Mod(E)), hence its image lies in D̂′(X ���A). On the other hand, by

Proposition A.4.5, D̂′(X ���A) is generated by free objects Free(F) (F ∈ P ′(Y )),

which correspond to ν−1(F)⊗ Ŝ ∈ Mod(E ⊗ Ŝ). Hence pro(ρX ◦ σ−1) restricts to
the desired equivalence ν̂.

(3) follows from Corollary A.4.4. �

Remark A.4.8. Corollary A.4.7(2) gives a t-structure on D̂′(X ���A) extending the

perverse t-structure on D′(X ���A), whose heart we denote by P̂ ′(X ���A). A priori,

it is not clear that such a t-structure exists. However, a posteriori, this t-structure

can be intrinsically be defined as follows: F ∈
p
D̂′[a,b](X ���A) if and only it is

isomorphic to “ lim←− ”F ′
n where each F ′

n ∈ pD′[a,b](X ���A). In fact, any complex

M = [0 → Ma → · · · → M b → 0] ∈ D[a,b](E ⊗ Ŝ), can be written as the projective

limit of Mn = [0 → Ma/V n+1
A → · · · → M b/V n+1

A → 0] ∈ D[a,b]Modnil(E ⊗ Ŝ).

Remark A.4.9. The proof of Proposition A.4.5 implies a stronger result: if “ lim←− ”Fn

∈ D̂′(X ���A) and π†(“ lim←− ”Fn) has a projective resolution as in (A.18), then

“ lim←− ”Fn can be represented by filtered complex K̃ ∈ D̂′F (X ���A (the filtered

counterpart of D̂′(X ���A), see Remark A.2.3) such that GriF K̃ = Free(Ki)[−i]. We

can identify Cb(P̂ ′(X ���A)) with a full subcategory of D̂′F (X ���A) as in [BBD82,

§3.1.8], hence the object “ lim←− ”Fn itself can be represented by a complex

[· · · → Free(K−1) → Free(K0) → · · · ] ∈ Cb(P̂ ′(X ���A)).
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A.5. The mixed case. From now on till the end of this appendix, let k be a finite
field. We still consider an A-torsor π : X → Y , where everything is now defined
over k and A is a split torus over k. Let D′

m(Y ) ⊂ Db
m(Y ) be a full triangulated

subcategory of mixed Q�-complexes on Y . Let D′
m(X ���A) ⊂ Db

m(X) be the full

triangulated category generated by π†F for F ∈ D′
m(Y ), whose heart of the t-

structure is denoted by P ′
m(X ���A).

Definition A.5.1.
(1) A pro-object “ lim←− ”Fn ∈ proDb

m(X) is uniformly bounded above in weights,

if it is isomorphic to a pro-object “ lim←− ”F ′
n for which there exists N ∈ Z

such that each F ′
n is of weight ≤ N .

(2) Let D̂′
m(X ���A) be the full subcategory of proD′

m(X ���A) whose objects

are π-constant and uniformly bounded in degrees and uniformly bounded
above in weights.

The new requirement of uniform boundedness on weights does not change the
arguments in the previous sections. In particular, Theorem A.3.2 implies that

D̂′
m(X ���A) is a triangulated category, and Corollary A.3.4 continues to hold in the

in the mixed situation. Let ω : D̂′
m(X ���A) → D̂′(X ⊗k k̄ ���A⊗k k̄) be the functor

of pull-back to X ⊗k k̄ (taking the underlying complex).

Lemma A.5.2. For objects F = “ lim←− ”Fn,G = “ lim←− ”Gn ∈ D̂′
m(X ���A), their

Ext-groups fit naturally into short exact sequences:

0 → Exti−1

D̂′(X⊗kk̄ ���A⊗kk̄)
(F ,G)Fr → exti

D̂′
m(X ���A)

(F ,G)(A.19)

→ Exti
D̂′(X⊗kk̄ ���A⊗kk̄)

(F ,G)Fr → 0.

Proof. For fixed m,n, we have the exact sequence (1.3)

(A.20) 0 → Exti−1
X (Fm,Gn)Fr → extiX(Fm,Gn) → ExtiX(Fm,Gn)

Fr → 0.

For any inductive or projective system of finite dimensional vector spaces {Hn},
lim−→ and lim←− commutes with taking Fr-invariants and coinvariants. More precisely,
consider the system of exact sequences

0 → HFr
n → Hn

Fr−id−−−−→ Hn → (Hn)Fr → 0.

Taking lim−→ or lim←− preserves the exactness, hence

(limHn)
Fr = limHFr

n ; (limHn)Fr = lim(Hn)Fr,

where lim means either lim−→ or lim←−.

Applying this remark to (A.20), taking inductive limit over m, we get

0 → Exti−1

D̂′(X⊗kk̄ ���A⊗kk̄)
(F ,Gn)Fr → exti

D̂′
m(X ���A)

(F ,Gn)(A.21)

→ Exti
D̂′(X⊗kk̄ ���A⊗kk̄)

(F ,Gn)
Fr → 0.

Note that each Exti
D̂′(X⊗kk̄ ���A)

(F ,Gn) is still finite dimensional (because of the

π-constancy of F , see the proof of the Mittag-Leffler condition in Theorem A.3.2),
hence we can apply the above remark to (A.21). Taking projective limit over n, we
get the desired exact sequence (A.19). �
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Now we concentrate on the case X = Y ×A. We have the obvious mixed analogs

of Lemma A.4.3 and Corollary A.4.4, where Ŝ is viewed as a Fr-module (Fr acts on
VA by q−1).

We make a mixed analog of the Assumption F.
Assumption Fm. Every object in P ′

m(Y ) has a finite resolution by objects
whose images in P ′(Y ⊗k k̄) are projective, and the realization functor

ρY,m : Db(P ′
m(Y )) → D′

m(Y )

is an equivalence.
We have a mixed analog of Proposition A.4.5:

Proposition A.5.3. Under Assumption Fm, the free-monodromic objects Free(F)

for F ∈ P ′
m(Y ) generate D̂′

m(X ���A).

Proof. We only indicate the modification in the argument comparing with the proof
of Proposition A.4.5. Instead of doing induction on the amplitude of “ lim←− ”π†Fn,
we take into account both cohomological degrees and weights. Let “ lim←− ”π†Fn be
represented by a complex

(A.22) [· · · → K−1 → K0 → · · · ] ∈ Db(P ′
m(Y )) ∼= D′

m(Y ).

where each ωKi ∈ P ′(Y ⊗k k̄) is a projective object. For each Ki, we have a
canonical finite decreasing filtration3

0 ⊂ · · · ⊂ W≥vKi ⊂ W≥v−1Ki ⊂ · · · ⊂ Ki

such that each GrvW Ki is a successive extension of perverse sheaves P whose ωP is
an indecomposable projective object in P ′(Y ), and the unique simple quotient of
P has weight v. (This canonical filtration follows from the fact that ext1(P,P ′) =
Hom(P,P ′)Fr = 0 if the simple quotient of P has larger weight than the weights of
P ′.)

We define the width of the “ lim←− ”π†Fn to be the least number of (v, i) such that

GrvW Ki �= 0, among all representing complexes K∗ as in (A.22). We do induction
on the width of “ lim←− ”π†Fn. If its width is 0, then “ lim←− ”π†Fn = 0 and hence
“ lim←− ”Fn = 0.

Suppose for “ lim←− ”π†Fn of width < N , “ lim←− ”Fn is a successive extension of
free-monodromic objects. Now let “ lim←− ”π†Fn be of width N . Let us assume that

(A.22) is a representing complex which terminate at K0, and that W≥1K0 = 0 but
W≥0K0 �= 0. Then K0 has weight ≤ 0. The argument of the Claim in Proposition
A.4.5 proves that we can first replace “ lim←− ”Fn by “ lim←− ”pτ<0Fn, and then assume

each pH0Fn has weight ≤ 0.
We can then try to construct a map W≥0K0 → ε†pH0Fn. For a mixed perverse

sheaf P, let P≥w be its quotient of weight ≥ w in the weight filtration of [BBD82,

Theorem 5.3.5]. By Corollary A.4.4, we have an isomorphism (ε†pH0Fn)≥0
∼−→

(pH0π†Fn)≥0 (because VA has weight −2). The projective system of maps αn :
W≥0K0 → pH0π†Fn → (pH0π†Fn)≥0 thus gives a projective system of maps αn :
W≥0K0 → (ε†pH0Fn)≥0. Note that

hom(W≥0K0, ε†pH0Fn) → hom(W≥0K0, (ε†pH0Fn)≥0)

3This filtration is not be confused with the weight filtration in [BBD82].

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



80 ROMAN BEZRUKAVNIKOV AND ZHIWEI YUN

is surjective because ext1(W≥0K0,P) = 0 for any perverse sheaf P of weight
< 0. Hence the projective system αn can be lifted to a projective system α̃n :
W≥0K0 → ε†pH0Fn. Note further that the canonical map hom(W≥0K0,Fn) →
hom(W≥0K0, pH0Fn) is surjective since the next term in the long exact sequence

is ext1(W≥0K0, pτ<0Fn), which is zero because ext≥2(K0, P ′
m(X ���A)) = 0. Hence

the projective system of maps {α̃n} lifts to a map W≥wK0 → ε†“ lim←− ”Fn. Let

“ lim←− ”F ′
n be the cone of this map, then “ lim←− ”π†F ′

n is represented by the complex.

[· · · → K−1 → K0/W≥0K0 → 0] ∈ Db(P ′
m(Y ))

which has width < N . This completes the induction step. �

We also have an analog of Corollary A.4.7.

Corollary A.5.4. Under Assumption Fm,

(1) The realization functor ρX,m : Db(P ′
m(X ���A)) → D′

m(X ���A) is an equiv-

alence. We have a t-exact equivalence

ρX,m ◦ σ−1
m : Db(Modnil(Ŝ;P ′

m(Y )))
σ−1
m−−→ Db(P ′

m(X ���A))
ρX,m−−−→ D′

m(X ���A).

(2) Suppose we are given a t-exact equivalence of triangulated categories

νm : Db(E,Fr) ∼= D′
m(Y )

for some finite dimensional algebra E of finite cohomological dimension
with a Fr-action. Then ρX,m ◦σ−1

m extends to an equivalence of triangulated
categories

ν̂m : Db(E ⊗ Ŝ,Fr) ∼= D̂′
m(X ���A).

We define P̂ ′
m(X ���A) to be the image of Mod(E ⊗ Ŝ,Fr) under ν̂m.

(3) Under ν̂m, the adjunctions (π†, π
†) become

Db(E ⊗ Ŝ,Fr)

L
⊗ŜQ� �� Db(E,Fr)
triv

�� .

Proof. Most of the arguments are the same as the proof of Corollary A.4.7. We
only have to notice that the ext-groups in the mixed settings (both the Yoneda ext’s

in P ′
m(X ���A) and the ext’s in D′

m(X ���A)) are obtained by taking H∗(ZFr,−)

on the RHom-complexes for the underlying complexes on X ⊗k k̄. Hence the
full faithfulness of ρX,m follows from the calculations in the proof of Corollary
A.4.7(1). �

Remark A.5.5. A mixed analog of Remark A.4.9 holds: if F ∈ D̂′(X ���A) and π†F
has a resolution as in (A.22), then F can be represented by a filtered complex K̃ ∈
D̂′

mF (X ���A) such that K̃i := GriF K̃[i] satisfies π†K̃i ∼= Ki, and ωK̃i ∼= Free(ωKi)

(however, there is no guarantee that K̃i is isomorphic to Free(Ki)). After identifying

Cb(P̂ ′
m(X ���A)) with a full subcategory of D̂′

mF (X ���A), the object F itself can be

represented by a complex

[· · · → K̃−1 → K̃0 → · · · ] ∈ Cb(P̂)

which has the same length as (A.22).
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In particular, if π†F ∈ P ′
m(Y ) and ω(π†F) is a projective object in P ′(Y ), then

ωF is itself a free-monodromic perverse local system. If, moreover, GriW (π†F) is
nonzero for at most one i, then F ∼= Free(π†F).

A.6. The stratified case. We continue with the situation in §A.5. We further
suppose that Y has a finite stratification:

Y =
⊔
α∈I

Yα

such that each embedding iα : Yα ↪→ Y is affine and each Yα is smooth of equidi-
mension dα. Let Xα := π−1(Yα). Let iα : Yα ↪→ Y and ı̃α : Xα ↪→ X be the
inclusions. For each α ∈ I, let Y≤α be the closure of Yα and let Y<α = Y≤α − Yα.
Similarly, define X≤α and X<α.

Let D ⊂ Db
m(Y ) be a full triangulated subcategory stable under twists from

sheaves on Spec(k), whose objects are constructible with respect to the given strat-
ification. Let D≤α = D∩Db

m(Y≤α) and define D<α similarly. Let Dα := D≤α/D<α,
which is naturally a full subcategory of Db

m(Yα).
Now we take D′

m(Y ) = D and apply the constructions in Definition A.5.1. We

denote D′
m(X ���A) by M and D̂′

m(X ���A) by M̂ . We can also restrict the situation

to any locally closed union of strata. In particular, we can define M≤α, M̂≤α,Mα, M̂α,
etc. The natural functors ı̃?α, ı̃α,?, ı̃

?
≤α, ı̃≤α,?, etc. (for ? =! or ∗) and their adjunc-

tions, natural transformations all extend to the completions.

We denote the nonmixed versions of the above categories by ωD , ωM , ωM̂ , etc.
These are categories of complexes on Y ⊗k k̄, X ⊗k k̄, etc.

The category D (resp. M ) inherits a perverse t-structure whose heart we denote
by Q (resp. P). Similarly, let Qα (resp. Pα) be the heart of Dα (resp. Mα).

We assume that each category Dα has the simplest possible type:
Assumption S. Each Xα is a trivial A-torsor over Yα, and H∗(Yα ⊗k k̄) = Q�.

Moreover, there is a rank one perverse local system Lα ∈ Qα such that ωLα is the
unique irreducible object in ωQα.

Assumption S implies a t-exact equivalence of triangulated categories

να : Db(Fr) ∼= Dα,

sending the trivial Fr-module Q� to Lα. For each α, Corollary A.5.4 gives a natural
equivalence

(A.23) ν̂α : Db(Ŝ,Fr) ∼= M̂α

under which the free module Ŝ goes to L̃α = Free(Lα) ∈ M̂α.
Let

Δα := iα,!Lα,∇α := iα,∗Lα.

Then D is generated as a triangulated category by either the twists of {Δα|α ∈ I}
or {∇α|α ∈ I}. Let

Δ̃α := ı̃α,!L̃α, ∇̃α := ı̃α,∗L̃α.

Lemma A.6.1. The triangulated category M̂ is generated by either the twists of

{Δ̃α|α ∈ I} or {∇̃α|α ∈ I}.

Proof. Any F ∈ M̂ is expressed as a successive extension of ı̃α,∗ ı̃
!
αF (resp. ı̃α,! ı̃

∗
αF)

for α ∈ I. By Proposition A.5.3, each ı̃!αF ∈ M̂α (resp. ı̃∗αF) is a successive
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extension of shifts of free-monodromic objects, hence a successive extension of shifts

and twists of L̃α by Assumption S. Therefore F is a successive extension of shifts

and twists of ∇̃α (resp. Δ̃α). �

Lemma A.6.2. The perverse t-structure on M extends to a t-structure (M̂≤0, M̂≥0)

on M̂ , such that the natural inclusions

proM≤0 ∩ M̂ ↪→ M̂≤0,(A.24)

proM≥0 ∩ M̂ ↪→ M̂≥0(A.25)

are equivalences of categories.

Proof. According to Remark A.4.8, for each α, the equivalence ν̂α in (A.23) gives

a t-structure (M̂≤0
α ,M̂≥0

α ) on M̂α. We can apply the gluing procedure in [BBD82,

§1.4] to obtain the desired t-structure on M̂ .
Next we prove that (A.24) is an equivalence (and proof for (A.25) is similar and

will be omitted). We first prove a general result.

Claim. Let D′ be a triangulated category with a t-structure (D′≤0, D′≥0). Let

D̂ ⊂ pro(D′) be a triangle-complete full subcategory satisfying the assumptions of

Theorem A.2.2. Then D̂ is naturally a triangulated category. Suppose X → Y →
Z → X[1] is a distinguished triangle in D̂ such that X,Z ∈ pro(D′≤0), then Y is
isomorphic to an object in pro(D′≤0).

Proof. Let X = “ lim←− ”Xn, Z = “ lim←− ”Zn with Xn, Zn ∈ D≤0. Then the map

f : Z → X[1] is given by a projective system of maps fn : Zz(n) → Xn[1] where
{Zz(n)} is a cofinal subsequence of {Zn}. Let Yn[1] be the cone of fn. It is then

clear that Yn ∈ D≤0. The axiom (TR3) of triangulated categories makes Yn into a
projective system “ lim←− ”Yn ∈ pro(D≤0). Since “ lim←− ”Yn[1] is also a cone of f , we
have Y ∼= “ lim←− ”Yn. �

Now we prove that (A.24) is an equivalence. If F ∈ M̂≤0, we need to find a
projective system F ′

n ∈ M≤0 such that F ∼= “ lim←− ”F ′
n. We do this by induction

on the support of F . Suppose F ∈ M̂≤0
≤α , and by induction hypothesis we can

find Gn ∈ M≤0
<α such that ı̃∗<αF ∼= “ lim←− ”Gn. Using Remark A.4.8, we can also

find Hn ∈ M̂≤0
α such that ı̃∗αF ∼= “ lim←− ”Hn. Therefore F fits into a distinguished

triangle

ı̃α,! ı̃
∗
α“ lim←− ”Hn → F → ı̃<α,∗ ı̃

∗
<α“ lim←− ”Gn → ı̃α,! ı̃

∗
α“ lim←− ”Hn[1].

Now we apply the above claim to finish the proof. �

We denote the heart of the extended perverse t-structure on M̂ by P̂. It is clear

that proP ∩ M̂ ⊂ P̂. This inclusion is in fact also an equivalence of categories,

but we shall not need this fact. The objects Δ̃α, ∇̃α belong to P̂ .
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A.7. Free-monodromic tilting sheaves.

Definition A.7.1.
(1) An object T ∈ ωM̂ is called a free-monodromic tilting sheaf, if for each α ∈

I, both complexes ı̃∗αT and ı̃!αT (as objects in ωM̂α) are free-monodromic
perverse local systems (see Definition A.4.1; in our situation, this simply

means a direct sum of ωL̃α’s).

(2) An object T ∈ M̂ is called a (mixed) free-monodromic tilting sheaf, if

ωT ∈ M̂ is a free-monodromic tilting sheaf.

It is clear that T ∈ M̂ is a free-monodromic tilting sheaf if and only if it is both

a successive extension of twists of Δ̃α (we call such an expression a Δ̃-flag) and a

successive extension of twists of ∇̃α (we call such an expression a ∇̃-flag).

Let T ⊂ P̂ be the additive full subcategory consisting of free-monodromic
tilting sheaves.

Lemma A.7.2. An object T ∈ M̂ is a free-monodromic tilting sheaf if and only if
π†T ∈ D is a tilting sheaf.

Proof. For fixed α and an object Fα ∈ M̂α, ωFα is a free-monodromic perverse
local system if and only if π†Fα ∈ Qα. In fact, this follows from the equivalence

ν̂α in (A.23) and the well-known facts about Ŝ-modules. This immediately implies
the lemma. �

By [BBM04a, §1.1–1.4] and [Y09, Lemma 2.2.3], for each stratum α, there is a
mixed tilting sheaf Tα ∈ Q≤α whose restriction to Yα is Lα and whose underlying
complex ωTα is indecomposable (note that loc. cit only dealt with the case when Lα

is constant, however, for the argument there to work one only needs the vanishing
of Hi(Xα ⊗k k̄) for i = 1, 2, which is ensured by Assumption S). The following
lemma is an analogous existence result for mixed free-monodromic tilting sheaves.
By [BBM04a, §1.4], {ωTα|α ∈ I} are the only indecomposable tilting sheaves (up
to isomorphism), and any tilting sheaf T ∈ ωQ is a direct sum of the ωTα’s. A
free-monodromic analog of this structure result will be proved in Remark B.2.4(2).

Lemma A.7.3. For each α ∈ I, there exists a mixed free-monodromic tilting sheaf

T̃α ∈ M̂≤α such that π†T̃α ∼= Tα.
Proof. We use the pattern of the proof of [BBM04a, §1.1] and [Y09, Lemma 2.2.3]
(for the mixed case), although some new argument is required. We proceed by
induction on strata. In the induction step, as in loc.cit, we may assume that on
X has a minimal stratum Z, and the required mixed free-monodromic tilting sheaf

has been constructed on U = X − Z (call it T̃U , such that π†T̃U ∼= Tα|U ). Let

j̃ : U ↪→ X and ı̃ : Z ↪→ X be the inclusions. Since T̃U is a successive extension of

twists of the Δ̃β,U ’s, j̃!T̃U is still a successive extension of twists of the Δ̃β ’s, hence

belongs to P̂. Same remark applies to j̃∗T̃U .
The complex [j̃!T̃U → j̃∗T̃U ] ∈ Db(P̂) ∼= M̂ , after applying π†, becomes the

complex [j!Tα,U → j∗Tα,U ] ∈ Db(Q) ∼= D , which can be represented by [i∗A 0−→ i∗B]
for some A,B ∈ QZ (cf. the argument in loc. cit).

By Remark A.5.5, the complex [j̃!T̃U → j̃∗T̃U ] itself can therefore be represented

by [̃ı∗K̃−1 d−→ ı̃∗K̃0], where K̃−1, K̃0 ∈ P̂Z satisfy π†K̃−1 ∼= A and π†K̃0 ∼= B. We
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therefore get an extension class

ı̃∗K̃0 → [j̃!T̃U → j̃∗T̃U ] → j̃!T̃U [1].

Let T̃ ∈ P̂ be an object realizing the above extension class. Then π†T̃ realizes a
similar extension class i∗B → j!Tα,U [1], which is known to be realized by Tα (cf.

the argument in loc.cit). Therefore π†T̃ ∼= Tα. By Lemma A.7.2, this implies that

T̃ is a free-monodromic tilting sheaf. �

Lemma A.7.4. Let T̃1, T̃2 ∈ T . Then Hom
M̂
(T̃1, T̃2) is a free Ŝ-module, and there

is a Fr-equivariant isomorphism

Hom
M̂

(T̃1, T̃2)⊗Ŝ Q�
∼= HomD(π†T̃1, π†T̃2).

Proof. We prove a stronger version when T̃1 is only assumed to have a Δ̃-flag

and T̃2 is only assumed to have a ∇̃-flag. The functorial map Hom
M̂

(T̃1, T̃2) →
HomD(π†T̃1, π†T̃2) necessarily factors through the quotient Hom

M̂
(T̃1, T̃2) ⊗Ŝ Q�

because the monodromy operator acts trivially after taking π†.
For X = Xα = A × Yα a single stratum, we simply apply Corollary A.5.4(3).

In general, we proceed by induction on strata. In the induction step, let Xα be an
open stratum and assume the lemma holds for X<α = X −Xα (extend the partial
order on strata to a total order). Then we have an exact sequence

0 → Hom
M̂<α

(̃ı∗<αT̃1, ı̃!<αT̃2) → Hom
M̂

(T̃1, T̃2) → Hom
M̂α

(̃ı∗αT̃1, ı̃∗αT̃2) → 0.

Since the two ends are free Ŝ-modules, so is the middle one. Moreover, letting

Ti = π†T̃i, we have a commutative diagram of short exact sequences

Hom
M̂<α

(̃ı∗<α
˜T1, ı̃!<α

˜T2)⊗Ŝ
Q�

��

�� Hom
M̂

(˜T1, ˜T2)⊗Ŝ
Q�

��

�� Hom
M̂α

(̃ı∗α ˜T1, ı̃∗α ˜T2)⊗Ŝ
Q�

��
HomD<α(i

∗
<αT1, i!<αT2) �� HomD(T1,T2) �� HomDα (i

∗
αT1, i∗αT2)

The two vertical arrows on the left and right ends are isomorphisms by induction
hypothesis, therefore the middle vertical arrow is also an isomorphism. �

Appendix B. Construction of DG models

In this appendix, we construct differential-graded (DG) models for certain trian-
gulated categories of complexes of sheaves on schemes or stacks. These DG models
are known to exist in greater generality; however, we need explicit constructions for
the purpose of proving the various equivalences in §5. The basic strategy is to single
out certain distinguished generators of the category in question (such as IC-sheaves
or free-monodromic tilting sheaves) and show that the endomorphism algebra of
their direct sum is a formal DG algebra. We then identify the original category with
the derived category of DG modules over this formal DG algebra. We remark that
this strategy is standard in geometric representation theory; see [ABG04, §9.5-9.7]
and [BF08, §6.5]; see also [S11] for an approach in the setting of complex algebraic
geometry and mixed Hodge modules. Our contribution here is to give a unified way
of treating diverse situations (such as equivariant and monodromic categories that
appear in the main body of the article).
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B.1. A simple subcategory. We will consider one of the following two situations.
(i) Let X be a global quotient stack (see §1.3) over a finite field k with a finite

stratification X =
⊔

α∈I Xα such that each embedding iα : Xα ↪→ X is affine. Let

D ⊂ Db
m(X) be a full triangulated subcategory stable under twists (tensoring by

Fr-modules), and all of whose objects are constructible along the given stratification.
(ii) Consider the situation of §A.6. Let Y be a scheme as in (i) and let π :

X → Y be an A-torsor, where A is a split torus over k. Let X =
⊔

α∈I Xα be the

induced stratification: Xα = π−1(Yα). Let D′(Y ) ⊂ Db
m(Y ) be a full triangulated

subcategory stable under twists (tensoring by Fr-modules), and all of whose objects

are constructible along the given stratification. Let D = D̂′
m(X ���A).

In either of the two situations, we denote by X≤α, X<α the closure and boundary
of Xα. We therefore get full subcategories D≤α,D<α ⊂ D by considering X≤α and
X<α instead of X. Let Dα = D≤α/D<α. We use ωD , ωDα, etc. to denote the
nonmixed versions of D ,Dα, etc. For example, ωD is the image of D in Db

m(X⊗k k̄)

or D̂′
m(X ⊗k k̄ ���A⊗k k̄).

Assumption C1. Suppose we are given, for each α ∈ I, a full additive subcate-
gory Cα ⊂ Dα stable under tensoring with unipotent Fr-modules, such that for any
objects C1, C2 ∈ Cα,

ExtiDα
(C1, C2)Fr-unip = 0, for i �= 0.

Let C ⊂ D be the full additive subcategory consisting of objects F such that
i∗αF , i!αF ∈ Cα for all α ∈ I. Then C is also stable under tensoring with unipotent
Fr-modules. An immediate consequence of Assumption C1 is:

Lemma B.1.1. For C1, C2 ∈ C , we have

ExtiD(C1, C2)Fr-unip = 0, for i �= 0,(B.1)

extiD(C1, C2) =

⎧⎪⎨⎪⎩
HomC (C1, C2)Fr i = 0,

HomC (C1, C2)Fr i = 1,

0 otherwise.

(B.2)

Proof. (B.1). We do induction by strata. For a single stratum this follows from
Assumption C1. Suppose (B.1) holds for objects in C<α. Then for C1, C2 ∈ C≤α,
we have a long exact sequence

(B.3)
· · · → Exti(i∗<αC1, i!<αC2)Fr-unip → Exti(C1, C2)Fr-unip

→ Exti(i∗αC1, i∗αC2)Fr-unip → · · ·
where the Ext-groups are taken in ωD<α, ωD≤α and ωDα, respectively. We then
use the induction hypothesis and Assumption C1 for Cα to finish the induction
step.

(B.2) follows from (B.1) and (1.3). In situation (ii), we refer to Lemma A.5.2 for
the calculation of Ext-groups in D . �
Example B.1.2. In situation (i), we assume Hi(Xα ⊗k k̄) is pure of weight i. Let
Cα consist of mixed complexes C on Xα which are pure of weight 0 and constant
over Xα ⊗k k̄. The purity of Hi(Xα) ensures that Ext

i
Dα

(C1, C2) is pure of weight i
for C1, C2 ∈ Cα, which, in particular, implies Assumption C1.

In this case, C consists of very pure complexes (compare Definition 3.1.2). A
typical example in applications is that of Xα = BA, the classifying space of a torus
A.
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Example B.1.3. In situation (ii), we suppose Assumption S in §A.6 holds. Recall

L̃α a free-monodromic perverse local system on Xα. Let Cα consist of objects

L̃α ⊗M , for any Fr-modules M . The vanishing of H>0(Yα ⊗k k̄) (see Assumption
S) ensures a stronger vanishing than Assumption C1:Ext

i
Dα

(C1, C2) = 0 for i �= 0
and C1, C2 ∈ Cα.

In this case, C consists of free-monodromic tilting sheaves (see Definition A.7.1).
Note that we may take A to be the trivial torus, then no completion is needed, and
C consists of tilting sheaves.

Let DF be the filtered version of D (see Remark A.2.3 for situation (ii)). Let
Ω : DF → D be the “forgetting the filtration” functor. Let DF (C ) be the full

subcategory consisting of filtered complexes K such that GriF K ∈ C [−i] for each
i ∈ Z. We have a natural functor

Gr∗F : DF (C ) → Cb(C )

which sends K to the complex

· · · → GriF K[i]
di−→ Gri+1

F K[i+ 1] → · · ·
where di comes from the third arrow of the distinguished triangle Gri+1

F K →
F≤i+1F≥iK → GriF K → Gri+1

F [1]. The argument of [BBD82, Proposition 3.1.8]
shows that

Lemma B.1.4. The functor Gr∗F is an equivalence of categories.

Here, the key point that makes the argument in loc.cit. work is the vanishing of
ext<0

D between objects in C .

Let ρ̃(C ) be the composition Cb(C )
(Gr∗F )−1

−−−−−→ DF (C )
Ω−→ D . Then ρ̃(C ) factors

through an exact functor

ρ(C ) : Kb(C )/Kb
acyc(C ) → D ,

where Kb
acyc(C ) ⊂ Kb(C ) is the thick subcategory consisting of complexes in C

whose image in D is 0. We call such complexes acyclic complexes.

Lemma B.1.5. For any C ∈ C , HomC (C,−)Fr-unip and HomC (−, C)Fr-unip trans-
form acyclic complexes in Kb

acyc(C ) into long exact sequences of vector spaces.

Proof. We prove the statement about HomC (C,−)Fr-unip and the other one is sim-
ilar. Let K ∈ DF (C ) be a filtered object which gives an acyclic complex in C
by taking Gr∗F , i.e., K is isomorphic to the zero object in D . There is a spectral
sequence {Er}r with

Ep,q
1 = Extp+q

D (C,GrpF K) = ExtqD(C,GrpF K[p])

abutting Extp+q
D (C,K) = 0. Taking (−)Fr-unip, we get a spectral sequence {EFr-unip

r }r
with EFr-unip

1 concentrated on the row q = 0 by Lemma B.1.1. The differentials on

EFr-unip
1 make it the complex of vector spaces [· · · → HomC (C,GrpF K[p]) → · · · ]

obtained by applying HomC (C,−) to Gr∗F K. This complex is necessarily exact
because {EFr-unip

r }r abuts zero. �
Let C Fr-unip be the category with the same objects as C , but the Hom sets are

defined by
HomCFr-unip(C1, C2) := HomC (C1, C2)Fr-unip.
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Lemma B.1.6. If a complex K ∈ Kb(C ) has zero image in D , then it is zero in
Kb(C Fr-unip), i.e., idK is homotopic to the zero map in Cb(C Fr-unip).

Proof. Suppose [· · · → C1
∂1−→ C0 → 0] is a complex in C that terminates at degree

0. We construct inductively a homotopy hi ∈ Hom(Ci, Ci+1)
Fr-unip such that

(B.4) hi−1∂i + ∂i+1hi = idCi
, for i = 0, 1, ... .

Starting with i = 0, by Lemma B.1.5, we have a long exact sequence

· · · → Hom(C0, C1)Fr-unip
∂1−→ Hom(C0, C0)Fr-unip → 0 → · · · .

Therefore idC0
lifts to a map h0 ∈ Hom(C0, C1)Fr-unip.

Suppose we have found h0, · · · , hi−1 satisfying (B.4). Then by Lemma B.1.5, we
again have a long exact sequence

· · · → Hom(Ci, Ci+1)
Fr-unip ∂i+1−−−→ Hom(Ci, Ci)Fr-unip

∂i−→ Hom(Ci, Ci−1)
Fr-unip → · · ·

Since idCi
−hi−1∂i has zero image under ∂i, it lifts to the desired map

hi ∈ Hom(Ci, Ci+1)
Fr-unip.

This completes the induction. �

Proposition B.1.7. The functor ρ(C ) : Kb(C )/Kb
acyc(C ) → D is fully faithful. It

is an equivalence of categories if each Cα generates Dα as a triangulated category.

Proof. By definition, the ext-groups in Kb(C )/Kb
acyc(C ) are computed by

extiKb(C )/Kb
acyc(C )(C, C′) = lim−→

K→C with acyclic cone

homKb(C )(K, C′[i]).(B.5)

We will exhibit a cofinal set of maps to C with acyclic cones. Consider C[t]/tn =
C⊗Q�[t]/t

n ∈ D where Q�[t]/t
n+1 is viewed as a Fr-module where Fr acts as multi-

plication by exp(t). Since Q�[t]/t
n is a unipotent Fr-module, and C is stable under

tensoring with unipotent Fr-modules, C[t]/tn ∈ C . Let C[[t]] := “ lim←− ”C[t]/tn ∈
proC .

Recall we have a forgetful functor C → C Fr-unip. It admits a left adjoint
C Fr-unip → proC sending C �→ C[[t]]. The adjunction means

(B.6) homproC (C[[t]], C′) = lim−→Hom(C[t]/tn+1, C′)Fr ∼= Hom(C, C′)Fr-unip.

In fact, the bijection is given by restricting φ : C[[t]] → C′ to ωC = ωC ⊗ 1 ⊂ ωC[[t]];
its inverse is given by sending ψ : ωC → ωC′ to φ where φ|(ωC ⊗ tn) = log(Fr)nψ
(this makes sense because (Fr− 1)Nψ = 0 for large N).

Now suppose we are given a complex K = [· · · → K−1 d−1

−−→ K0 → · · · ] which
maps to C (i.e., f : K0 → C) with acyclic cone

· · · → K−1 −d−1

−−−→ K0 (−d0,f)−−−−−→ K1 ⊕ C (−d1,0)−−−−−→ K2 → · · · .
Taking Hom(C,−)Fr-unip on this sequence still yields a long exact sequence by
Lemma B.1.5:

· · · → Hom(C,K0)Fr-unip → Hom(C,K1 ⊕ C)Fr-unip → · · · .
By (B.6), we get an exact sequence

· · · → hom(C[[t]],K0) → hom(C[[t]],K1 ⊕ C) → hom(C[[t]],K2) → · · · .
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Let pr : C[[t]] → C be the natural projection. Then (0, pr) ∈ hom(C[[t]],K1 ⊕ C)
has zero image in hom(C[[t]],K2), hence lifts to a map φ0 : C[[t]] → K0. Similarly,
tφ0 ∈ hom(C[[t]],K0) has zero image in hom(C[[t]],K1 ⊕ C), hence lifts to a map

φ−1 : C[[t]] → K−1. The maps (φ−1, φ0) :
[
C[[t]] t−→ C[[t]]

]
→ K give a map between

complexes which factors through

· · · → 0

��

�� C[t]/tn t ��

φ̄−1

��

C[t]/tn+1 ��

φ̄0

��

0 → · · ·

��
· · · → K−2 d−2

�� K−1 d−1
�� K0 d0

�� K1 → · · ·

for some n. This proves the cofinality of the maps
[
C[t]/tn t−→ C[t]/tn+1

]
→ C.

Finally, when computing ext∗Kb(C )/Kb
acyc(C )(C, C′) using the cofinal set of maps[

C[[t]] t−→ C[[t]]
]
→ C, we see it is the cohomology of the following two-step complex

0 → hom(C[[t]], C′)
t−→ hom(C[[t]], C′) → 0.

By (B.6), this is the same as

0 → Hom(C, C′)Fr-unip
log(Fr)−−−−→ Hom(C, C′)Fr-unip → 0.

But this is quasi-isomorphic to the complex calculating ext∗D(C, C′) (see Lemma
B.1.1). This shows that ρ(C ) is fully faithful. �

B.2. The DG model. To get nice DG models of C and D , we make two more
assumptions.

Assumption C2. For every α, there is an object L̃α ∈ Cα such that every

object in Cα has the form L̃α ⊗M for some complex M of Fr-modules. Moreover,
Cα generates Dα as a triangulated category.

Note that this assumption is not saying that L̃α ⊗M ∈ Cα for any M ∈ Db(Fr).
For example, in Example B.1.2, Cα is stable under tensoring with Fr-modules of
weight 0 only.

It is clear that the twists of either the objects {iα,!Lα|α ∈ I} or the objects
{iα,∗Lα|α ∈ I} generate D as a triangulated category.

Assumption C3. For every α, there exists an object Cα ∈ C≤α such that

i∗αCα ∼= L̃α. Moreover, the kernel of the ring homomorphism i∗α : EndC (Cα)Fr-unip →
EndCα

(L̃α)
Fr-unip is nilpotent.

Example B.2.1. In Example B.1.2, assume the stratification on X is given by

orbits of a group G acting on X. Assumption C2 is satisfied with L̃α being the
constant sheaf. Here it is crucial that we work with complexes with integer weights:
otherwise Cα would not generate Dα as a triangulated category.

Let ICα = iα,!∗Q� (we may need to shift Q� to make sense of iα,!∗, then shift
back). Obviously ICα is G-equivariant, hence geometrically constant along each
orbit. Then ICα ∈ C if and only if it is very pure, i.e., both i∗αICα and i!αICα

are pure of weight zero as complexes. In this case, Assumption C3 is satisfied
with Cα = ICα. In fact, the restriction map EndD(ICα) → EndCα

(Q�) is an
isomorphism.
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Example B.2.2. The example in B.1.3 satisfies Assumptions C2 and C3 if we

take L̃α to be the free-monodromic perverse local system as before. In fact, we

take Cα = T̃α constructed in Lemma A.7.3. Note that π†T̃α = Tα is a tilting sheaf
on Y≤α such that the natural map i!αTα → i∗αTα is zero (see the construction in

[BBM04a, §1.1]), therefore the natural map ı̃!αT̃α → ı̃∗αT̃α is topologically nilpotent

(in the VA-adic topology, since both are Ŝ-modules of finite type). This ensures
Assumption C3.

Lemma B.2.3. For every object C ∈ C , there are complexes Mα ∈ Db(Fr) such
that C is isomorphic to

⊕
α Mα ⊗Cα up to Frobenius semisimplification, i.e., there

is an isomorphism
⊕

α Mα ⊗ Cα ∼−→ C in C Fr-unip. In particular, α ↔ ωCα sets up
a bijection between the strata set I and the isomorphism classes of indecomposable
objects in ωC .

Proof. We will make use of the simple observation that for C1, C2 ∈ C≤α, the re-
striction map

HomC (C1, C2)Fr-unip → HomCα
(i∗αC1, i∗αC2)Fr-unip

is surjective. In fact, this follows from the long exact sequence (B.3) and the
vanishing of Ext1C<α

(i∗<αC1, i!<αC2)Fr-unip.
We do induction on the support of C. Suppose C ∈ C≤α. By Assumption C2,

i∗αC = Mα ⊗ ωL̃α for some Mα ∈ Db(Fr). The above observation gives maps in
both directions in C Fr-unip

ω(Mα ⊗ Cα)
φ−→ ωC ψ−→ ω(Mα ⊗ Cα),

whose restrictions on Xα are identity. The composition ψφ ∈ End(Mα ⊗ Cα)Fr-unip
is an isomorphism because its restriction to Xα is (here we use the nilpotency

Assumption C3). This implies that C ∼−→ Mα⊗Cα⊕C′ in C Fr-unip for some C′ ∈ C<α.
We then apply induction hypothesis to C′. �
Remark B.2.4. (i) In Example B.2.1, the objects Mα that appear in the decomposi-
tion above are necessarily pure of weight 0. The above statement can be rephrased
as “every very pure complex is a direct sum of shifted simple perverse sheaves up to
Frobenius semisimplification”, which is a special case of the decomposition theorem
[BBD82, Théorème 6.2.5].

(ii) In Example B.2.2, the objectsMα that appear in the decomposition above are
necessarily in degree 0. The above statement can be rephrased as “every mixed free-
monodromic tilting sheaf is a direct sum of indecomposable mixed free-monodromic

tilting sheaves T̃α up to Frobenius semisimplification”. Note, however, this state-
ment does not imply that any mixed free-monodromic tilting sheaf with indecom-

posable underlying complex is isomorphic to the twist of some T̃α.
Corollary B.2.5. Let C ∈ C be such that EndC (C) is Fr-semisimple. Then C ∼=⊕

α∈I Mα ⊗ Cα for Fr-semisimple complexes Mα (i.e., complexes Mα = [· · · →
M0

α → M1
α → · · · ] where each M i

α is Fr-semisimple).

Proof. By Lemma B.2.3, the idempotents ια corresponding to the direct summand
ω(Mα ⊗ Cα) of ωCα belong to End(C)Fr-unip. Since Fr acts semisimply on End(C),
these idempotents are Fr-invariant, hence the Mα ⊗ Cα are direct summands in C .
Since idCα

⊗End(Mα) ⊂ End(C), End(Mα) is also Fr-semisimple. This implies that
Mα is itself Fr-semisimple. �
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Suppose we are given another set of objects �Cα ∈ C≤α, one for each α ∈ I, such

that i∗α
�Cα ∼= L̃α. For example, we could take �Cα to be Cα.

Lemma B.2.6. The triangulated category D is generated by the twists of the objects
{�Cα|α ∈ I}.

Proof. We do induction on the strata4. Suppose D<α is generated by twists of
{�Cβ |β < α}. We want to show that D≤α is generated by twists of {�Cβ |β ≤ α}.
We have a canonical map iα,!L̃α → �Cα whose cone lies in D<α, hence iα,!L̃α is

generated by twists of {�Cβ |β ≤ α}. By Assumption C2, D≤α is generated by

iα,!L̃α and D<α, we are done. �

Let �C =
⊕

α
�Cα and

(B.7) E =
⊕
i∈Z

ExtiD(�C, �C)opp

be a Q�-algebra with Frobenius action (forgetting the cohomological grading).

Theorem B.2.7. Fix a triple (C ⊂ D , {�Cα|α ∈ I}) satisfying Assumptions C1,
C2 and C3. Then

(1) The functor

h�C =
⊕
i∈Z

ExtiD(�C,−) : C → Mod(E,Fr)

is a fully faithful embedding.
(2) The functor Cb(C ) → Cb(E,Fr) induces a fully faithful embedding

h�C : Kb(C )/Kb
acyc(C ) ↪→ Db(E,Fr).

(3) The composition of functors (note that ρ(C ) is an equivalence by Proposi-
tion B.1.7 and Lemma B.2.6)

M = M(C ⊂ D ; {�Cα}) : D
ρ(C )−1

−−−−−→ Kb(C )/Kb
acyc(C )

h�C−−→ Db(E,Fr)

is fully faithful, and the essential image is the full triangulated subcategory
generated by the twists of (E,Fr)-modules {Hom(�C, �Cα)|α ∈ I}.

Proof. (1) Let C1, C2 ∈ C . By Lemma B.1.1,

homC (C1, C2) = HomC (C1, C2)Fr.
On the other hand,

homMod(E,Fr)(h�C(C1), h�C(C2)) = HomE(h�C(C1), h�C(C2))Fr.
Therefore it suffices to show that the natural map

H(C1, C2) : HomC (C1, C2)Fr-unip → HomE(h�C(C1), h�C(C2))Fr-unip

is an isomorphism for any C1, C2 ∈ C . If C1 = �C, we have

HomE(h�C(
�C), h�C(C2))Fr-unip = HomE(E, h�C(C2))Fr-unip

= h�C(C2)Fr-unip

= HomC (�C, C2)Fr-unip.

4For this, we need to extend the partial order on the set of strata to a total order, and redefine
D≤α, etc. Suppose we have done this modification in the notation.
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The last equality follows from Lemma B.1.1. Hence H(C1, C2) is an isomorphism

for C1 = �C. Therefore it is an isomorphism for C1 = �Cα, for any α. By Lemma
B.2.3, ω�Cα is a direct sum of the ωCβ ’s, which in particular contains ωCα as a
direct summand in C Fr-unip, hence H(Cα, C2) is also an isomorphism. By Lemma
B.2.3 again, this means H(C1, C2) is an isomorphism for all C1, C2 ∈ C .

(2) By Lemma B.1.6, objects in Kb
acyc(C ) are null-homotopic in Kb(C Fr-unip),

hence they get mapped to acyclic complexes in Kb(E,Fr). Therefore we have the
factorization h : Kb(C )/Kb

acyc(C ) → Db(E,Fr). By Proposition B.1.7, the ext-

groups in Kb(C )/Kb
acyc(C ) are computed in the same way as in D , i.e., as in

Lemma B.1.1. Notice that the ext-groups in Db(E,Fr) are computed similarly by
Fr-invariants and coinvariants. Therefore h is fully faithful.

(3) Obvious. �

B.3. Functoriality of the DG model. We study the functorial properties of the
equivalences in Theorem B.2.7. Let D and D ′ be two categories as in §B.1. Let
Φ : D → D ′ be an exact functor which admits a filtered lifting ΦF : DF → D ′F .
Let C (resp. C ′) be the subcategory of D (resp. D ′) satisfying all Assumptions Ci

(i = 1, 2 and 3). Let �C ∈ C and �C′ ∈ C ′ be the sum of generating objects {�Cα}
and {�C′

α} as in Lemma B.2.6, and let E,E′ be the algebras as in (B.7).

Proposition B.3.1. Suppose Φ sends C to C ′. Let Φ|C : C → C ′ be the restriction
of Φ. Then there are canonical natural isomorphisms making the following diagram
commutative:

D

Φ

��

Kb(C )/Kb
acyc(C )

ρ(C )��
h�C ��

K(Φ|C )

��

Db(E,Fr)

BΦ

L
⊗E(−)

��
D ′ Kb(C ′)/Kb

acyc(C
′)

ρ(C ′)��
h�C′ �� Db(E′,Fr)

where BΦ is the (E′, E)-bimodule (with Fr-action)

BΦ = HomC ′(�C′,Φ(�C)).

Proof. The commutativity of the left side square is obvious. To give the natural
transformation for the right side square, we only need to give a natural isomorphism
making the following diagram commutative:

C
h�C ��

Φ|C
��

Mod(E,Fr)

BΦ⊗E(−)

��
C ′ h�C′ �� Mod(E′,Fr)

There is a natural transformation,

β(−) : BΦ ⊗E HomC (�C,−)

= HomC ′(�C′,Φ(�C))⊗E HomC (�C,−)

→ HomC ′(�C′,Φ(−)),

sending f ⊗g to Φ(g)◦f . Since β(−) is Fr-equivariant, it suffices to show that β(C)
is an isomorphism for any C ∈ C . This is obvious if C1 = �C, hence also for C = �Cα
for any α. By Lemma B.2.3, ω�Cα contains ωCα as a direct summand in C Fr-unip,
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hence β(Cα) is also an isomorphism. By Lemma B.2.3 again, this means β(C) is an
isomorphism for all C ∈ C . �

Remark B.3.2. The above proposition has obvious versions for functors of the form
Φ : D1 × · · · × Dr → D where Di and D fit into the setting of Theorem B.2.7. In
particular, suppose D carries a monoidal structure ∗ : D × D → D which restricts
to a monoidal structure on C . Let C be the (E,E⊗E)-bimodule HomC (�C, �C∗�C).
Then we have a natural commutative diagram of monoidal structures (i.e., together
with compatibility among the associativity constraints):

D2

∗
��

(Kb(C )/Kb
acyc(C ))2

ρ(C )��
h�C ��

K(∗|C )

��

Db(E,Fr)2

C
L
⊗E⊗E(−)

��
D Kb(C )/Kb

acyc(C )
ρ(C )��

h�C �� Db(E,Fr)

The compatibility among the associativity constraints follows from the canonicity
of the natural isomorphisms in Proposition B.3.1.

B.4. Application to equivariant categories. We first apply Theorem B.2.7 to
the special case X = BA of Example B.2.1. This yields

Corollary B.4.1.
(1) There is an equivalence of triangulated categories

Db
m(BA) ∼= Dperf(ŠA,Fr)

sending the constant sheaf Q� to ŠA. Here ŠA = Sym(V ∨
A ) is viewed

as a Q�-algebra with Fr-action (placed in degree 0) and Dperf(ŠA,Fr) ⊂
Db(ŠA,Fr) is the full triangulated subcategory generated by twists of ŠA.

(2) The pull-back functor Db
m(BA) → Db

m(pt) ∼= Db(Fr) corresponds to the
functor

(−)
L
⊗ŠA

Q� : Dperf(ŠA,Fr) → Db(Fr).

In fact, Corollary B.4.1(2) above follows from the functoriality of the DG model
in Proposition B.3.1.

Corollary B.4.2. Let X be a scheme with a left action of a torus A. Let π : X →
[A\X] be the projection. For any F1,F2 ∈ Db

m([A\X]), we view RHom[A\X](F1,F2)

as an object in Db
m(BA) ∼= Db

m(ŠA,Fr) via Corollary B.4.1. Then we have a func-
torial isomorphism for F1,F2 ∈ Db

m([A\X]):

(B.8) RHom[A\X](F1,F2)
L
⊗ŠA

Q�
∼= RHomX(π∗F1, π

∗F2).

In particular, taking F1 to be the constant sheaf, we get

(B.9) RΓ([A\X],F)
L
⊗ŠA

Q�
∼= RΓ(X, π∗F).

Proof. Applying smooth base change to the Cartesian diagram

X
π ��

��

[A\X]

��
pt

p �� BA
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and the complex RHom(F1,F2) ∈ Db
m([A\X]), we get

p∗RHom[A\X](F1,F2) ∼= RHomX(π∗F1, π
∗F2).

It remains to apply Corollary B.4.1(2). �

More generally, in the situation of Example B.2.1, we have a fully faithful em-
bedding:

M = M(C ⊂ D ; {�Cα}) : D → Db(E,Fr),

where C ⊂ D is the category of very pure complexes.
We can say more about the Hom-sets under M. For any locally finite Fr-module

M , let Mi be the submodule of weight i (i.e., the sum of generalized eigenspaces
with eigenvalues of weight i). For any graded Fr-module N• =

⊕
N i, we define

N•
pur :=

⊕
i∈Z

N i
i .

Lemma B.4.3. There is a functorial isomorphism

(B.10) Ext•D(F1,F2)pur ∼= HomE(MF1,MF2)

for F1,F2 ∈ D .

Proof. The argument of Theorem B.2.7(1) shows that

Ext•D(C1, C2) ∼= HomE(h�C(C1), h�C(C2))
for C1, C2 ∈ C . Note that for C1, C2 ∈ C , Exti(C1, C2) is pure of weight i, hence
(B.10) holds for F1,F2 ∈ C . In general, we represent objects Fi ∈ D by complexes
of objects in C and use a spectral sequence argument to deduce (B.10). �

B.5. Application to monodromic categories. Applying Theorem B.2.7 to Ex-
ample B.2.2, we get a fully faithful embedding:

M = M(T ⊂ M̂ ; {�Cα}) : M̂ → Db(E,Fr)

where T ⊂ M̂ is the category of free-monodromic tilting sheaves. Again, we can
say more about the Hom-sets under M.

Lemma B.5.1. There is a functorial isomorphism

Hom
M̂

(F1,F2) ∼= HomE(MF1,MF2)

for F1,F2 ∈ M̂ .

Proof. We only need to note that there is a functorial isomorphism

HomT (T̃1, T̃2) ∼= HomE(h�C(T̃1), h�C(T̃2))

for any T̃1, T̃2 ∈ T . �

Remark B.5.2. In Example B.2.2, the algebra E will be an ŜA = lim←− Sym(VA)/V
n
A -

module of finite type. Recall the functor (−)f in (1.1). For any (ŜA,Fr)-module M

of finite type, Mf is an (SA,Fr)-module of finite type, where SA = Sym(VA) = Ŝf
A.

It is easy to see that the adjoint functors

Db(E,Fr)
(−)f

�� Db(Ef ,Fr)
ŜA⊗SA

(−)
��
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are actually equivalences of categories. Therefore, in Theorem B.2.7, we may also

use Db(Ef ,Fr) as a DG model for the completed monodromic category D = M̂ .

Appendix C. Calculations for SL(2)

In this section, we specialize to the case G = SL(2) and the other notations

(e.g., E , M̂ ) are understood to be associated to SL(2). Let B = UH be a Borel
subgroup with unipotent radical U . The flag variety F� = P1 and the enhanced

flag variety is F̃� = A2 − {0} with the projection π : F̃� → F� identified with the
usual Gm-quotient A2 −{0} → P1. We denote the inclusion of the open and closed

B-orbit into F� (resp. F̃�) by j and i (resp. j̃ and ı̃). Let s be the nontrivial
element in the Weyl group W . Let IC be the IC-sheaf of P1.

A well-known computation of H∗
B(P

1) gives the following:

Lemma C.1. There is a Fr-equivariant isomorphism of Š-bimodules:

H(IC) ∼= O(Γ(e) ∪ Γ(s))[1](1/2).

The free-monodromic tilting sheaf. We will construct a free-monodromic tilt-

ing object T̃ ∈ M̂ whose underlying complex is indecomposable. For each n ≥ 1,

we have a local system Ln on the open stratum of F̃� corresponding to the rep-
resentation S/V n+1

H S of π1(H, e). Let Δn = j̃!Ln[2](3/2),∇ = j̃∗Ln[2](3/2). We
have an exact sequence in P:

0 → π†δ(1/2 + n) → Δn → ∇n → π†δ(−1/2) → 0.

Passing to the projective limit, we get an exact sequence in P̂ :

(C.1) 0 → Δ̃ → ∇̃ → π†δ(−1/2) → 0.

Now we define T̃ by the fibered product of ∇̃ and δ̃(−1/2) over π†δ(−1/2). There-
fore it fits into two exact sequences

(C.2) 0 → Δ̃ → T̃ → δ̃(−1/2) → 0,

0 → δ̃(1/2) → T̃ → ∇̃ → 0,

where δ̃(1/2) is identified with the kernel of δ̃(−1/2) � π†δ(−1/2). This shows

that T̃ is a free-monodromic tilting sheaf.

Lemma C.2.
(1) There is an isomorphism of (S × S,Fr)-algebras:

End
P̂

(T̃ ) ∼= O(Γ∗(e) ∪ Γ∗(s)).

(2) There is a Fr-equivariant isomorphism of S-bimodules:

V(T̃ ) ∼= O(Γ∗(e) ∪ Γ∗(s))(−1/2).

Proof. (2) Recall the object P̃ ∈ P̂ which represents V (see Lemma 4.4.11). Since

T = π†T̃ is an indecomposable tilting sheaf on P1, it is easy to see that ωT is

also a projective cover of ωδ. Therefore ωT̃ is a projective cover of ωπ†δ in P̂ .

Since T̃ � π†δ(−1/2) is the highest weight quotient, Hom(P̃, T̃ (1/2))Fr-unip = Q�,

hence hom(P̃, T̃ (1/2)) = Q�. Any nonzero homomorphism P̃ → T̃ (1/2) is in fact

an isomorphism because after taking π† it is. Therefore V(T̃ ) = Hom(P̃, T̃ ) =

End(T̃ )(−1/2), and the statement follows from (1).
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(1) We have maps

(C.3) S ⊗ S → End(T̃ )
(j̃∗ ,̃ı∗)−−−−→ End

P̂s
(L̃)× End

P̂e
(δ̃) = O(Γ∗(s))×O(Γ∗(e)),

where the first arrow is given by the left and right logarithmic H-monodromy and
the second given by restrictions to two strata. The exact sequence (C.1) gives an
exact sequence

0 → Hom(T̃ , Δ̃) → End(T̃ )
ı̃∗−→ End(δ̃(−1/2)) = Hom(T̃ , δ̃(−1/2)) → 0.

On the other hand by Lemma 4.5.6 and the isomorphism P̃ ∼= T̃ (1/2), we have

Hom(T̃ , Δ̃) ∼= Hom(P̃, Δ̃)(1/2) ∼= V(Δ̃)(1/2) ∼= O(Γ∗(s))(1)

and the natural homomorphism ı̃∗ : Hom(T̃ , Δ̃) → End(Δ̃) is the inclusion
O(Γ∗(s))(1) ↪→ O(Γ∗(s)). Therefore (j̃∗, ı̃∗) in (C.3) is injective. The composition

of the maps in (C.3) has image O(Γ∗(s) ∪ Γ∗(e)), hence the map S ⊗ S → End(T̃ )
factors through

S ⊗ S � O(Γ∗(s) ∪ Γ∗(e)) → End(T̃ ).

Therefore we have a commutative diagram of exact sequences:

O(Γ∗(s))(1) ��

�
��

O(Γ∗(s) ∪ Γ∗(e)) ��

��

O(Γ∗(e))

�
��

Hom(T̃ , Δ̃) �� End(T̃ ) �� End(δ̃(−1/2))

Since the first and third vertical maps are already shown to be isomorphisms, the
middle one must also be an isomorphism. �

Finally we compute the convolutions in E . Observe that for any F ∈ E , we have

F B∗ IC ∼= H∗(P1,F)⊗ IC,

F B∗ δ ∼= F .

Lemma C.3. We have

Δ
B∗ Δ ∈ 〈Δ(1/2),Δ[−1](−1/2), δ〉,

∇ B∗ ∇ ∈ 〈∇(−1/2),∇[1](1/2), δ〉.

Proof. We prove the first relation; the second can be proved similarly. Applying

Δ
B∗ to the distinguished triangle

(C.4) δ(1/2) → Δ → IC →,

we get another distinguished triangle

Δ(1/2) → Δ
B∗ Δ → IC[−1](−1/2) → .

In other words, Δ
B∗ Δ ∈ 〈Δ(1/2), IC[−1](−1/2)〉. The triangle (C.4) also implies

that IC[−1](−1/2)∈〈Δ[−1](−1/2), δ〉. Therefore ΔB∗Δ∈〈Δ(1/2),Δ[−1](−1/2), δ〉.
�
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List of symbols

G A Kac-Moody group
G∨ A Kac-Moody group whose root system is dual to that of G
H,H∨ A fixed Cartan subgroup of G and its dual in G∨

VH Q�-Tate module of H
B,U The standard Borel in G and its unipotent radical
B∨, U∨ The standard Borel in G∨ and its unipotent radical
W The Weyl group of (G,H)
WΘ The Weyl group of (LΘ,H)
[WΘ\W ] The shortest representatives in the coset WΘ\W
{WΘ\W} The longest representatives in the coset WΘ\W
wΘ, �Θ The longest element in WΘ and its length
PΘ = UΘLΘ The standard parabolic subgroup and its Levi decomposition

UΘ, U−
Θ LΘ ∩ U and its opposite maximal unipotent subgroup of LΘ

F�, ˜F� The flag variety G/B and its enhancement G/U
π The projection G/U → G/B

ΘF�G The partial flag variety PΘ\G
πΘ The projection B\G → PΘ\G
χ A nondegenerate additive character of U−

Θ
EG The equivariant category Db

m(B\G/B)
EG,Θ The parabolic category Db

m(PΘ\G/B)

MG, ̂MG The monodromic category Db
m(B

��� G ���B) and its completion

MG,Θ, ̂MG,Θ The Whittaker category Db
m((UΘU−

Θ , χ)\G ���B) and its completion

D†, †D Db
m(U\G/B) and Db

m(B∨\G∨/U∨)
†DΘ The paradromic category Db

m(P∨
Θ\G∨/U∨)

D†
Θ The “Whittavariant” category Db

m((UΘU−
Θ , χ)\G/B)

AvΘχ The averaging functor ̂M → ̂MΘ

ICw The intersection cohomology complex of F�≤w in various categories.
Δw,Δw The standard sheaves in E and EΘ

∇w,∇w The costandard sheaves in E and EΘ
˜L The free-monodromic local system on a torus H
˜Δw, ˜Δw,χ The free-monodromic standard sheaves in ̂M and ̂MΘ

˜∇w, ˜∇w,χ The free-monodromic costandard sheaves in ̂M and ̂MΘ

˜Tw, ˜Tw,χ The indecomposable free-monodromic tilting sheaves in ̂M and ̂MΘ

Tw, T ∨
w The indecomposable tilting sheaves in D† and †D

CΘ The constant sheaf on F�≤wΘ

˜PΘ Its underlying complex is a projective cover of ωδ in ω ̂P≤wΘ

ŠH Sym(V ∨
H )

SH Sym(VH ); logarithmic monodromy operators by H
H The global section functor of E and its cohomology

V The averaging functor: ̂M → Db(S ⊗ S,Fr)
ω Forgetting the mixed structure
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