18.706 HOMEWORK 10

DUE NOV. 18, 2020

Theorems

In this part you will see theorems that we studied in the class. Please supply a detailed proof of each.

Theorem 1. Let \(R \) be a central simple algebra of finite dimension over a field \(k \). Let \(S \) be a simple \(k \)-algebra and \(\varphi_1, \varphi_2 : S \to R \) be two \(k \)-linear ring homomorphisms. Then there exists an invertible element \(u \in R \) such that \(\varphi_2(s) = u\varphi_1(s)u^{-1} \) for all \(s \in S \).

Exercises

Problem 1. Let \(k \) be a field with \(\text{char}(k) \neq 2 \). For \(a, b \in k^\times \) let \(\left(\frac{a,b}{k} \right) \) denote the cyclic algebra of dimension 4 over \(k \) given by

\[
\left(\frac{a,b}{k} \right) = k\langle x, y \rangle/(x^2 - a, y^2 - b, xy + yx).
\]

1. Show that every 4-dimensional central simple algebra over \(k \) is isomorphic to \(\left(\frac{a,b}{k} \right) \) for some \(a, b \in k^\times \).
2. Show that \(\left(\frac{a,b}{k} \right) \cong M_2(k) \) if and only if \(u^2 - bv^2 = a \) has a solution \((u,v) \in k^2 \). In particular, show that \(\left(\frac{a,1-a}{k} \right) \) is isomorphic to \(M_2(k) \).
3. Let \(k(\sqrt{c}) \) be a quadratic extension of \(k \). When does \(k(\sqrt{c}) \) embed into \(\left(\frac{a,b}{k} \right) \)?
4. Show that \(\left(\frac{a,b}{k} \right) \otimes_k \left(\frac{a,c}{k} \right) \cong \left(\frac{a,bc}{k} \right) \otimes M_2(k) \). Hence in the Brauer group \(Br(k) \), the sum of the classes of \(\left(\frac{a,b}{k} \right) \) and \(\left(\frac{a,c}{k} \right) \) is the class of \(\left(\frac{a,bc}{k} \right) \).

Hint: construct a module of \(\left(\frac{a,b}{k} \right) \otimes_k \left(\frac{a,c}{k} \right) \) that is 8-dimensional over \(k \), and identify its endomorphism algebra with \(\left(\frac{a,bc}{k} \right) \).