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Shtukas and the Taylor expansion of
L-functions (II)

By ZHiwEl YUN and WEI ZHANG

Abstract

For arithmetic applications, we extend and refine our previously pub-
lished results to allow ramifications in a minimal way. Starting with a
possibly ramified quadratic extension F’/F of function fields over a finite
field in odd characteristic, and a finite set of places ¥ of F' that are unram-
ified in I, we define a collection of Heegner—Drinfeld cycles on the moduli
stack of PGL2-Shtukas with r-modifications and Iwahori level structures at
places of 3. For a cuspidal automorphic representation 7w of PGL2(Ar) with
square-free level X, and r € Z>¢ whose parity matches the root number of
T, we prove a series of identities between

(1) the product of the central derivatives of the normalized L-functions

1 _ 1
@ (1Y pr—a) 1
z (”’2)"g <”®’7’2)’

where 7 is the quadratic idele class character attached to F'/F, and 0 <
a<r;

(2) the self intersection number of a linear combination of Heegner—Drinfeld
cycles.

In particular, we can now obtain global L-functions with odd vanishing
orders. These identities are function-field analogues of the formulae of
Waldspurger and Gross—Zagier for higher derivatives of L-functions.
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1. Introduction

1.1. Main results. Let X be a smooth projective and geometrically con-
nected curve over a finite field k = I, of characteristic p # 2. Let F' = k(X)
be the function field of X and Ar be the ring of adeles of F'. Let G = PGLs.
Let 7 be a cuspidal automorphic representation of G(Ar). Let X’ be another
smooth projective and geometrically connected curve over k together with a
double cover v : X' — X.

In [10], under the assumption that both 7 and v are everywhere unram-
ified, we proved an analogue of the formulae of Waldspurger [9] and Gross—
Zagier [4] for higher order central derivatives of the base change L-function
L(mpr,s). Our formula reads

(L1.1) 2(log q)l’cz)((i, Ad, l)g(r)(mw’ %) - ([Sht%]”’ [Shtl%]ﬂ)

Here r > 0 is an even integer. This formula relates the r-th central derivative

Sht/’

of a certain normalization! .#(mpr,s) of the L-function of the base change
7pr to the self-intersection number of a certain algebraic cycle [Sht/], on the
moduli stack of G-Shtukas Sht/, with  modifications. The cycles [Sht], are
analogous to the Heegner points on modular curves.

In this paper, we generalize the formula (1.1) to the case where the double
cover v is allowed to be ramified and the automorphic representation 7 is
allowed to have square-free level. Moreover, we refine the formula (1.1) to give
a geometric expression of derivatives of the form .Z (a) (77, %) RAY) (m ®n, %)
Below we set up some notation for the statement of our main results.

1.1.1. Ramifications of the automorphic representation. Let 3 be a finite
set of closed points of X. Let m be a cuspidal automorphic representation of
G(A) that is unramified away from ¥ and, locally at each x € X, isomorphic
to an unramified twist of the Steinberg representation.

Let R be the ramification locus of the double cover v, and let p = deg R.
Then the genus ¢’ of X’ and the genus g of X are related by ¢/ — 1 =
2(9g — 1) + p/2. Let n = npyp : F*\AL — {£1} be the idele class character
corresponding to the extension F'/F.

In [10], the definition of .Z (7, s) included the denominator L(7, Ad, 1); in the current
paper, we separate L(mw, Ad, 1) from (75, s).
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SHTUKAS AND THE TAYLOR EXPANSION (II) 395
We assume

The sets R and % are disjoint.

The normalized L-functions

<z (77, s+ %) = 297N/, (77, s+ %) ;

1 1
Z <7r ®mn,s+ 5) = g2+ N/2)s <7r ®mn,s+ 5)

are either even or odd functions in s depending on the root numbers of 7= and
7 ® 1. We define a normalized L-function in two variables

1 1
"%F//F(ﬂ'781’82) ::$<W731+32+§)$<(F®n,81 _82+§)

so that its specialization to s; = s,s2 = 0 gives the normalized base change
L-function £ (7pr, s + %) Then Zp ) (T, 51, 52) satisfies a function equation

Ly jp (1,51, 80) = (=1)"F) Ly (71, —51, —52),
where (—1)"("#") is the root number for the base change 7z, and
r(mp) = #{x eX ‘ x is inert in X/}.

For ri,r_ € Z>o, we define

. r 8 T+ 8 T—
3}17}77 )(7'('> = (asl> (852> DE/ﬂFI/F(Tr,Sl,SQ)

s1=52=0

From the functional equation of L/ p(7, 51, s2), we see that ,5,”}(,7,“7;_)(%) =0

unless

r++r_ =r(mp) mod 2.

1.1.2. The moduli of Shtukas with Iwahori level structure. On the geo-
metric side, we will consider the moduli stack of G-Shtukas with Iwahori level
structures. The points with Iwahori level structure come in two kinds: those
resembling the finite primes dividing the level N for a modular curve Xo(V)
and those resembling the Archimedean place. In fact, starting with a finite
subset ¥ C |X| together with a disjoint union decomposition ¥ = 3, L ¥
and a non-negative integer r such that r = #X., mod 2, we will define in
Sections 3.2.1 and 3.2.8 a moduli stack Shty;(%; ¥) equipped with a map

G Shtr(3; ) — X X G,

where G = [[sex., Speck(x). Then Shty(X; Xo) is a smooth 2r-dimensional
Deligne-Mumford (DM for short) stack locally of finite type over k (see Propo-
sition 3.9). We will also consider the base change

Sht(y(3; Yoo ) := Shtg (35 Bae) X (xrxen) (X7 x &),
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396 ZHIWEI YUN and WEI ZHANG

where &, = [[wex; Speck(z’) and ¥, = v 1(Za). If we base change
Shti(X; Xeo) to k, it decomposes as
Sht$h(2; Yoo) ® k = [ [ Shth(35€),
3

where § = (£{4)xexr runs over the choices of a k-point &, over each 2/ € ¥/_.
We fix such a &.

There is an action of the spherical Hecke algebra %”g = Que|x|-n
on the cohomology groups H(Sht¢:(3; €), Qy), which is infinite-dimensional in
the middle degree. We have an Eisenstein ideal 7w C ,%”ég defined in the
same way as in [10, §4.1]. We prove a spectral decomposition similar to the
unramified case.

THEOREM 1.1. There is a canonical decomposition of ,%”Gz-modules
(1.2) HZ" (Sht{s (55 €), Qp) = (GBV’ m) & V' (E)ms,

where

e m runs over a finite set of maximal ideals of %”GE that do not contain the
Fisenstein ideal, and V'(§)m is the generalized eigenspace of the %”Gz—action
on H2"(Sht[5(2;€),Qy) corresponding to m. Moreover, V(&) is finite-
dimensional over Q.

o V'(&)mis is a finitely generated ijZ—module on which the action of %”GE
factors through %”GE/I]C]’}S for some m > 0.

Using the cup product, we have a perfect pairing
(1.3) () ')Shtg(z;g) SV (Em X V() — Q.

1.1.3. The Heegner—Drinfeld cycle. We make the following assumptions,
which are analogous to the Heegner hypothesis:

(1.4) all places in Xy are split in X';

(1.5) all places in Yo are inert in X'.

By considering rank one Shtukas on X', we obtain a moduli stack Sht%(uoo .
3/.) that depends on the data g € {£1}" and pe € {£1}><. The stack
Sht%(uoo - X/ ) is a finite étale cover of X" x &/ _.

To map Sht%(,u,Oo -XL) to Sht¢s(E; Xoc) we need an extra choice 17, which
is a section to the two-to-one map E/f = v 1(Xf) = Xf. Altogether we have
chosen an element
(1.6) p=( ifs froo) € Try 1= {F1}7 X Sect(T/Tf) x {£1}7>.

From this choice we have a map (cf. Section 4.2.2)

0" : Shtf (oo - £) — Sht (5 B ).
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SHTUKAS AND THE TAYLOR EXPANSION (II) 397

Base-changing to k and taking the £-component, we get a map
o
0" Sht7 (1too - §) — Sht(; (55 ).

We define the Heegner—Drinfeld cycle to be the algebraic cycle with proper
support

ZH(€) += 0L, [Shi7 (100 - €)] € Chieyr(SWE(S:))o-
Its cycle class in cohomology is denoted by
Z1(€) = cl(21(€)) € HY' (Shth(%;€), Qo).
1.1.4. Main result. Our main theorem is the following.
THEOREM 1.2 (Main result, first formulation). Let 7 be a cuspidal auto-

morphic representation of G(Ar) ramified at a finite set of places ¥. Assume

e for each x € X, m, is isomorphic to an unramified twist of the Steinberg
representation;
e the ramification locus R of the double cover v : X' — X is disjoint from X.

We decompose ¥ as Xy U X in a unique way so that the conditions (1.4) and
(1.5) hold. Let r be a non-negative integer such that

r=#X mod 2.
Let p,p/ € T 5. Let
re={1<i<r|m=p}, r-={1<i<r|wm#u}

Then

wx|a?> Ne (TR N) rir o N (guiey g
(1.7) o log L Ad )2 (M) = (229 25 (©)) gyyrr ey
Here,

o |wx|=q 2972,

o c_(m®n) € {£1} is the product of the Atkin—Lehner eigenvalues of m @ n
at x € X_(u, p'), where X_(p, ') C X is defined in (4.6).

e The automorphic representation 7 gives a character Ay of %”g that does not
factor through the Eisenstein ideal; we denote by V'(§), the direct summand
in (1.2) corresponding to the mazimal ideal m; = ker(\;) and let ZH (&) be
the projection of Z*(§) to V'(§)x.

o The pairing (-, -)snis(sie) on the right side of (1.7) is (1.3).

The Galois involution for the double cover X'/X induces an action of
(Z/27Z)" on X', hence on Sht{(3;€) by acting only on the X'"-factor. Let
o; € (Z/2Z)" be the element with only the i-th coordinate non-trivial. For
0 <7y <r, we define an idempotent in the group algebra Q[(Z/2Z)"] by

71

4o, & 1o
57"1:1_[ —;a,, H 202.

i=1 j=ri+1
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398 ZHIWEI YUN and WEI ZHANG

THEOREM 1.3 (Main result, second formulation). Keep the same assump-
tions as Theorem 1.2. Let 0 < 11 < r be an integer, and let p € %, 5. Then

/2—N
2 nd) 20 (o)

2
= (67«1 Z#(f): €ry Z#(§)>shtg(2;£)'

|wx|q”
2(—logq)"L(m,Ad, 1)

In the special case r; = r, we may further reformulate the theorem as
follows.

COROLLARY 1.4. Keep the same assumptions as Theorem 1.2. Let YF(§)
€ H%"(Sht(%;€),Qy) be the class of the push-forward of ZH(€) to Shtl(Z;€) =
Sht(;(X:Xe) X & Then YE(E) depends only on (v, jif, fis), and

27wy |g?> N (r)( 1) ( 1)_ o
CrosarLimAdn” \3) 2 (men3) = (O O) g e

Remark 1.5. Consider the case where Y., consists of a single place oo,

r=1,and pu = y/. In this case the moduli stack Sht};(Z; Yoo) over X is closely
related to the moduli space of elliptic modules originally defined by Drinfeld
[2] (see the discussion in Section 3.2.3), the latter being a perfect analogue of
a semistable integral model for modular curves Xo(N). In this special case,
Theorem 1.2 reads

wx|g?/>N 1

_ o Y (e " / ‘
21qu . L(W,Ad, l)g (ﬂ'F ; 2) (ZW(g)’ZW(é))Shté(E;g)

This is a direct analogue of the Gross-Zagier formula for modular curves [4].
We understand that D. Ulmer has an unpublished proof of a formula similar
o0 (1.8). The method of our proof is quite different from that in [4] in that we
do not need to explicitly compute either side of the formula.

(1.8)

1.2. What is new. We highlight both the new results and new techniques
in this paper compared to the unramified case treated in [10].

1.2.1. First we compare our results with our previous ones in [10]. The-
orems 1.2 and 1.3 have much wider applicability than the ones in [10]. In
particular, for a non-isotrivial elliptic curve E over F' with semistable reduc-
tions, its L-function L(FE,s) is the automorphic L-function L(w,s + 1/2) for
some 7 satisfying the conditions of our theorems. Therefore, our results in this
paper give a geometric interpretation of Taylor coefficients of L-functions of
semistable elliptic curves over function fields. For potential applications to the
arithmetic of elliptic curves, see the discussion in Section 1.3.

In addition, in this paper we study the intersection of different Heegner—
Drinfeld cycles by varying the discrete datum u. As a result we get products
of derivatives of .Z(m,s) and £ (7w @ n, s), as opposed to just the derivatives
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SHTUKAS AND THE TAYLOR EXPANSION (II) 399

of their product Z(mpr,s). So Theorems 1.2 and 1.3 are new even in the
unramified case.

1.2.2. Next we comment on the proof. To prove Theorem 1.2, we follow
the general strategy of relative trace formulae comparison as in [10]. In this
paper, we have tried to avoid repeating similar arguments from [10] and only
write new arguments in detail. Here are some highlights of the new techniques
compared to the unramified case.

The key identity between relative traces takes the form

(L) (L)

s1=52=0

— (Z”(E), [ Z“/(f»smg(x;s) ’

where f € #FYF and f' € C.(G(A)) is a “matching function,” and where
Ny = deg ¥4 (p, 1) (see (4.5) and (4.6)). In the unramified case, we simply
took f/ = f. At places x € 3, the corresponding factors of f" are not surprising:
they are essentially characteristic functions of the Iwahori. However, it is not
obvious what to put at places x € R (where R is the ramification locus of
F’/F). This is one of the main difficulties of this work.

In Section 2.4.1 we give a somewhat surprising formula for the test func-
tion hY) to be put at x € R in f’. The discovery of the function h} was guided
by the geometric interpretation of orbital integrals. We wanted a moduli space
N that looked like the counterpart of My (see Definition 5.1) for a split qua-
dratic extension F' x F but somehow remembered the ramification locus R.
Once we realized the correct candidate for Ny (see Definition 6.1), the formula
for hY) fell out quite naturally as counting points on Ny. From the spectral
calculation, we get another characterization of hS' (see Section 2.4.2), which
justifies its canonicity from a different perspective. The idea should be appli-
cable to other situations of relative trace formulae where one needs explicit
ramified test functions. We hope to return to this topic in the future.

The presence of Iwahori structures makes the geometry of the horocycles
in ShtZ(3; ¥oo) much more complicated than in the unramified case, which
explains the length of Section 3.4. The study of the horocycles is needed in
order to establish a cohomological spectral decomposition. Also, the proof of
the key finiteness results leading to the cohomological spectral decomposition in
Section 3.5 uses a new strategy: we introduce “almost isomorphisms” between
ind-perverse sheaves (i.e., we work with a quotient category of ind-perverse
sheaves). Compared to our approach in [10], this strategy is more robust in
showing qualitative results for spaces of infinite type and should work for the
cohomological spectral decomposition for higher rank groups.

1.3. Potential arithmetic applications.
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400 ZHIWEI YUN and WEI ZHANG

1.3.1. Determinant of the Frobenius eigenspace. Let m be a cuspidal au-
tomorphic representation of G(A) as in Theorem 1.2. By the global Langlands
correspondence proved by Drinfeld [3], there is a rank two irreducible Q,-local
system p, attached to m over an open subset of X. Our convention is that
det(pr) = Qy(—1); in particular, p, is pure of weight 1. Let ji.p, be the mid-
dle extension of p, to the complete curve X. The base change mps corresponds
to the local system v*p, on an open subset of X’, and we denote by jj,v*px
its middle extension to X’. Let

W, =H X' @k, jl,v*pr).

This is a Q-vector space with the geometric Frobenius automorphism Fr of
weight 2. The L-function L(wpr, s) is related to v*p, by

L(mpr,s — %) = det (1 —q °Fr ‘ W;r) .

Let IIf,: Shti(X) = X" x &4 be the projection map. It is expected that
under the %Gz—action, the Ar-isotypical component of the complex RHTG,!@K
on X" X G4 takes the form

(19)  (RIE Qe =7 @ (Jupal -1 B R jupa=1] ) B ( Bues.. o, ),

r times

where K = [],¢x G(Oz) X [1zes Iwz, and pr ; is the restriction of p, to Spec F,
and I, < Gal(F3°P/F,) is the inertial group at z. Pulling back to X" x &/,
(1.9) implies that the generalized eigenspace V'({)r := V'(§)ker(n,) in (1.2)
should take the form

V/(f)w = 7TK & W7,r®r & Ew,éa

where /. ¢ is the geometric stalk of K ex pfgfx at £. Note that both 7% and
L ¢ are one-dimensional since 7 is an unramified twist of the Steinberg repre-
sentation at x € 3.

Then the cohomology class of the Heegner—Drinfeld cycle gives rise to
an element in Z¥(§) € 7% ® W/ ® £,¢. It can be shown that ZK(€) is
an eigenvector for the operator id ® Fr®” ®id, with eigenvalue ¢". Our main
result (Theorem 1.2) together with the super-positivity proved in [10, Th. B.2]
shows that ZF (&) does not vanish when r > ord,_; /5 L(7sv, s), provided that
L(mp, s) is not a constant (i.e., 2(4g — 4+ N + p) > 0).

Partly motivated by the standard conjecture about Frobenius semi-
simplicity, we propose

CONJECTURE 1.6. Let r = ords_; /9 L(7Fr,s) (i.e., v is the dimension of
the generalized eigenspace of Fr on W, with eigenvalue q) and pn € T, 5. Then
the class ZF(€) belongs to w5 @ A" (W;Fr:q) QU g
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SHTUKAS AND THE TAYLOR EXPANSION (II) 401

In particular, for the eigenvalue q, the generalized eigenspace of the Fr-
action on W, coincides with the eigenspace, and ZF(§) gives a basis of the line
K o AT (W;Fr:q> ® EW{‘

In a forthcoming work, the authors plan to prove the following (assuming
that (1.9) holds):

(i) If ro > 0 is the smallest integer r such that Z¥ # 0 for some p € {£1}",
then dim W/=% = ry and the class ZX(£) gives a basis of the line 7% ®
A (WIF=1) 6 0,

(ii) ords—y/o L(wpr,s) = 1 if and only if dim W!Fr=a = 1. Moreover, if
ordg_1 /o L(mpr, s) = 3, then dim W=7 = 3.

1.3.2. Elliptic curves. Let E be a non-isotrivial semistable elliptic curve
over F. Attached to E is a cuspidal automorphic representation 7 of G(Ar)
such that pr = Vy(E)* ®q, Q, as representations of Gal(F*°?/F). In partic-
ular, L(E,s) = L(r,s — 3), and L(Ep/,s) = L(mp,s — 3). Moreover, after
choosing a semistable model £ over X', we may identify W/ with a subquo-
tient of HQ(E’ ® k,Qy), and we think of it as the f-adic Selmer group of E.
The function-field analogue of the conjecture of Birch and Swinnerton-Dyer,
as formulated by Artin and Tate [7], predicts that the g-eigenspace of Fr on W,
is the same as the generalized eigenspace and is spanned by classes of sections
of £’. The expected result (ii) above would imply that if ords—y L(Ep:, s) = 3,
then the g-eigenspace of Fr on W/ is the same as the generalized eigenspace.

While it is difficult to construct algebraic cycles on £ spanning W/=4,
it may be easier to construct a basis of the line A"(W/F=%). Conjecture 1.6
proposes a candidate generator for A"(W.F=%) namely, the cycle Z¥(£). It is
not clear though how to relate the ambient space of Z# (&), namely Sht(3; &),
to powers of &£,

1.4. Notation.

1.4.1. Function field notation. Throughout this paper, we fix a finite field
k = IF, of characteristic p # 2. We fix a smooth, projective and geometrically
connected curve X over k. Let F' = k(X)) be the function field of X. Let | X]|
denote the set of closed points of X.

For x € | X]|, let O, (resp. Fy) denote the completed local ring of X at x
(resp. the fraction field of O,). Let m, C O, be the maximal ideal. We
typically denote a uniformizer of O, by w,. Let Ar denote the ring of adeles
of F, and let O = [[,¢|x| Oz Let k(z) denote the residue field of O, and let

de = [k(z) 1 k], ¢ = q% = #k(x).

Let v, : FY — Z be the valuation normalized by v,(w,) = 1.

This content downloaded from
18.9.61.111 on Wed, 06 Mar 2019 00:12:44 UTC
All use subject to https://about.jstor.org/terms



402 ZHIWEI YUN and WEI ZHANG

We will also consider a double covering v : X’ — X where X’ is also a
smooth, projective and geometrically connected curve X over k. The function
field of X’ is denoted by F’. Other notation for X extend to their counterparts
for X'.

1.4.2. Group-theoretic notation. Except for in Sections 3.1 and 3.2, the
letter G always denotes the algebraic group PGLy over k. Let A C G be the
diagonal torus. For x € |X]|, the standard Iwahori subgroup Iw, of G(F},) is
the image of the following subgroup of GL2(QO,):

ce mz} .

~ a b
Iwm{{c d

For an algebraic group H over F', we denote

S GLQ(OI)

[H] := H(F)\H(A).

1.4.3. Algebro-geometric notation. Most of the algebraic stacks that ap-
pear in this paper are over the finite field & (with exceptions of affine Q-
schemes appearing in Theorem 3.41), and the product S x S’ (without sub-
script) of such stacks S and S’ is always understood to be the fiber product of
S and S’ over Speck.

For any stack S over k, Frg : S — S denotes the k-linear Frobenius that
raises functions to the g-th power.

For an S-point z : S — X, we denote by I'y, C X x S the graph of =,
which is a Cartier divisor of X x §.

We fix a prime / different from p, and we fix an algebraic closure Q, of Q.
The étale cohomology groups in this paper are with Q or Q, coefficients.

Acknowledgement. The authors would like to thank Benedict Gross for
useful discussions and encouragement. They also thank an anonymous referee
for useful suggestions on the presentation.

2. The analytic side: relative trace formula

We extend the results in [10, §§2, 4] on Jacquet’s relative trace formula
(RTF) [5] to our current setting. Since most arguments in [10] extend with-
out any difficulty, we will not repeat them, but simply indicate the necessary
changes.

A new phenomenon is that we need to choose a new test function at the
places where F'/F is ramified. This is done in Section 2.4 and is the most
non-obvious point of the analytic part of this paper.

By convention, the automorphic representations we consider in this section
are on C-vector spaces.
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SHTUKAS AND THE TAYLOR EXPANSION (II) 403

2.1. Jacquet’s RTF. For f € C(G(A)), we consider the automorphic
kernel function

(2.1) Kr(g1,92) = Y [flg1'v92), 91,92 € G(A).
YEG(F)

Let A C G be the diagonal torus. We define a distribution given by a regular-
ized integral, for (sq,s2) € C2,

reg

(22)  Isis) = [ Kl bl el () dh dhe
[Alx[A]

Here the measure on [A] = A(F)\A(A) is induced from the Haar measure on
A(A) such that vol(A(Q)) = 1.

The regularization is the same as in [10, §§2.2-2.5], i.e., as the limit of
the integral over a certain sequence of increasing bounded subsets that cover
[A] x [A]. Moreover, we define a two-variable orbital integral

J(v, f,51,82) = / F(hy ' yho)|haha|®t |k /ha|®2n(hg) dhy dhs.
A(A)XA(A)

Recall the function inv : G(F) — PY(F) — {1} defined in [10, (2.1)]. When
u = inv(y) € PL(F)\ {0,1, 00}, the integral J(v, f, s1,s2) is absolutely conver-
gent. When u = inv(y) € {0, 00}, the integral defining J(v, f, s1, s2) requires
regularization as in [10, §2.5], and the proof in loc. cit. goes through in our
two-variable setting.

Now J(f,s1,s2) and J(v, £, s1,s2) are in C[g**1, ¢™%2]; i.e., each of them is
a finite sum of the form

Z Any ng qn131+n252; Any no e C.
(n1,n2)€Z?
We have an expansion of J(f, s1, s2) into a sum of orbital integrals
(23) J(f,Sl,Sz) = Z J(’Y,f,Sl,Sz)-
YEA(P\G(F)/A(F)
We also define
(2.4)

J(u, f,51,82) = > Iy, f,81,82), weP(F)—{1}.
YEA(F)\G(F)/A(F), inv(v)=u

2.2. The Eisenstein ideal. For z € | X]|, let

be the spherical Hecke algebra of G(F,). For a finite set S of closed points
of X , define 7 = ®,¢|x|—s#- In [10, §4.1] we defined the Eisenstein ideal
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404 ZHIWEI YUN and WEI ZHANG

Tgis C H¢ for the full spherical Hecke algebra 7 = ®,¢ x| as the kernel
of the composition of ring homomorphisms

apis: A 22 Q[Div(X)] — Q[Picy (k).

Here the first map Sat is the tensor product of Satake transforms 7, —
Ql[ts,t;']. We restrict the homomorphism to the subalgebra J#~

b A5 3 QIDiv(X — §)] — Q[Picy (k)]

and define
Igisz = Ker (af;is : ,%”GS — Q[Picx(k)]) :
Recall from [10, 4.1.2] that the image of ags, hence that of ag, lies in

Q[Picx (k)]*Pic for an involution tpic on Q[Picx(k)]. We have the following
analogue of [10, Lemma 4.2] with the same proof.

LEMMA 2.1. The map a3y, : H#7 — Q[Picx (k)]‘Fic is surjective.
We have a generalization of [10, Th. 4.3].

THEOREM 2.2. Let f5 € Ig., and let fs € CZ(G(Ag)) be left invariant
under the Twahori Twg = [[yesIws. Then for f = fs ® 9 € CX(G(A)), we
have

Ky = Kfcusp + Kysp-
Here Ky cusp (resp. Kggp) 4s the projection of K¢ to the cuspidal spectrum (resp.
residual spectrum, i.e., one-dimensional representations); see [10, §4.2].

Proof. We indicate how to the modify the proof of [10, Th. 4.3]. Let
S = [To¢s G(Oz), and let K = Kg - K*® be a compact open subgroup of
G(A) such that Kg C Iwg and that f is bi-K-invariant. The analogue of
equation [10, (4.9)] now reads
(2.5)

log q
211

K gisy (7, 9) Z / 1 s (F)barr 88) B, b i, X)E(y, b3, 1, X) du

where {¢q} is an orthonormal basis of VXK . Since f is left invariant under the
Iwahori Iwg x K9, (pxu(f)@a, Ps) = 0 unless the Iwg x K*S-average of ¢g is
non-zero; i.e., (py,u(f)da,$g) = 0 unless V;WSXKS = 0, which happens if and
only if x is everywhere unramified. When x is everywhere unramified, we have

(Pxsu(F)bar 88) = Xut1/2(aBis (f°)) (pyu(fs ® 1xs)ba, d3).-

In particular, if f° lies in the Eisenstein ideal, then ags(f°) = 0, and hence
the integrand in (2.5) vanishes. This completes the proof. O

2.3. The spherical character: global and local.
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SHTUKAS AND THE TAYLOR EXPANSION (II) 405

2.3.1. Global spherical characters and period integral. We first recall from
[10, §4.3] the global spherical character. Let m be a cuspidal automorphic
representation of G(A), endowed with the natural Hermitian form given by
the Petersson inner product: (¢, ¢') for ¢, ¢' € .

For a character x : F*\A* — C*, the (A, x)-period integral for ¢ € 7 is
defined as

(2.6) Pos) = || o(h)x(h)|h|"dh.

We simply write Z(¢,s) if x = 1 is trivial. The global spherical character
(relative to (A x A,1 x 7)) associated to 7 is a distribution on G(A) defined
by

P (1 ()9, 51+ 52) P (9, 51 — 52)
(27) Jﬂ(fasvs)zz ! )
R (6.9)

where the sum runs over an orthogonal basis {¢} of m. This expression is

f e CE(G(A)),

independent of the choice of the measure on G(A) as long as we use the same
measure to define the operator m(f) and the Petersson inner product. The
function J.(f, s1,52) defines an element in C[g**1, ¢™*2].

Using Theorem 2.2, the same argument of [10, Lemma 4.4] proves the
following lemma.

LEMMA 2.3. Let f be the same as in Theorem 2.2. Then
J(fa S1, 82) — Z Jﬂ(f? 51, 52)7
™

where the sum runs over all cuspidal automorphic representations m of G(A)
and the summand J(f,s) is zero for all but finitely many 7.

2.3.2. Local spherical characters. We now recall the factorization of the
global spherical character (2.7) into a product of local spherical characters. For
unexplained notation and convention, we refer to the proof of [10, Prop. 4.5].

Let ¢ : F\A — C* be a non-trivial character, and let 1), be its restriction
to F,. For the discussion of the local spherical characters, we will use Tam-
agawa measures on various groups, which differ from our earlier convention.
Strictly speaking, as in loc. cit., the measure on A(A) = A is not the Tam-
agawa measure, but rather an unnormalized (decomposable) one [],¢|x| d*ts
where d*t, = Cw(l)% for the self-dual measure dt, (with respect to ¢,). In
particular, we have vol(O) = 1 when v, is unramified (i.e., the conductor of
Py is Og). A similar remark applies to the measure G(A); cf. [10, p.804].

We consider the Whittaker model of 7, with respect to the character v,
denoted by Wy, (7). For ¢ = ®ucix¢x € ™ = ®;€|X‘7Tm, the 1)-Whittaker
coefficient Wy decomposes as a product ®,¢|x|Wa, where W, € Wy, (7). We
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406 ZHIWEI YUN and WEI ZHANG

define a normalized linear functional

1 a
A (W, 1o, ) = / W, o(a)|al’ d*a.
v or eyl ML AR YOI

We define a local (invariant) inner product 6% on the Whittaker model W, (m,)

N A (K T

Now we define the local spherical character as
Jﬂ'z(fl‘? 817 82)

(2'8) — Z )‘Eﬁ<7rf(f$)Wl7 1g,81 + 82))‘EU(W1'; Ny S1 — 32)

i

where the sum runs over an orthogonal basis {W;} of Wy, (7). By the product
decomposition of the period integrals (2.6) and the Petersson inner product (cf.
the proof of [10, Prop. 4.5]), the global spherical character decomposes into a
product of local ones (cf. [10, (4.16)]):

(2.9)
Jx(f, s1,52)

_ L(W,81+82+1)L(7T®77,81—Sg—i—l)
= x| 2/‘3(77 Ad, 1) = 1 Inelfersn,52).
’ ’ z€| X|

We note that the factor |wx|™! is due to the fact that in our earlier defini-
tion (2.2) of J(f, s1,s2), the measure on A(A) gives vol(A(Q)) = 1, while the
(unnormalized) Tamagawa measure gives vol(A(Q)) = |wx|"/2.

2.4. Local test functions. Our test function f € C°(G(A)) will be a pure
tensor f = ®u¢|x|fz, Where f, € S is in the spherical Hecke algebra for = ¢
¥ U R. Below we define the local components f, for x € R (in Sections 2.4.1-
2.4.2) and for x € ¥ (in Section 2.4.3).

For any place = € |X|, let p, : GLa(Fy) — G(Fy) be the projection. The
fibers of p, are torsors under F,* and are equipped with F,‘-invariant measures
such that any O} -orbit has volume 1. Let p; . : C2°(GLo(Fy)) = C(G(Fy))
be the map defined by integration along the fibers of p, with the above-defined
measure.

2.4.1. The function hS. For a € O, we denote by @ its image in k(z).
For any n € Z, let Mat2(Oyx)y, (det)=n be the set of 2-by-2 matrices M with
entries in O, such that v, (det(M)) = n.

At x € R, the character 7790‘05 factors through the unique non-trivial
character 7, : k(z)* — {£1}. We also denote by 7, : k(z) — {0,£1} its
extension by zero to the whole k(z).
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SHTUKAS AND THE TAYLOR EXPANSION (II) 407

When z € R, let hY € C®(GLy(F,)) be the function supported on
Mat2(01)vz(det):1 given by

1 _ . .o
(210)  F9((ay)) = | 2 [Lijeqay(1 tnf(aij)) if a;; 6_05 vi,j €{1,2},
Hi,je{1,2}(1 + 77, (@ij)) otherwise.
Define
hi = pashy € CF(G(Fy)).

We give an interpretation of the formula (2.10) as counting the num-
ber of certain “square-roots” of (a;;). Let Z, be the set of pairs of matrices
([axraaz] [ast a32]) € Mata(O,) x Mata(k(z)) such that
(1) for 1 <i,5 <2, afj = @;j, the image of a;; in k(x);

(2) det(aij) = 0;
(3) vg(det(asj)) = 1.

LEMMA 2.4. Let p, : E; — Mato(O,) be the projection to the first factor
(aij). We have

(2.11) BS =y sz,

Proof. Let (a;j) € Mata(Oz)y, (det)=1 be such that all a;; are squares. Then
its preimage in Zp , consists of (a;;) € Mata(k(x)) where a;; is a square root of
@5, such that det(a;;) = 0. If all a;; are units, among the [; ;(1 + 7,(@;)) =
2% = 16 choices of (a;j), only half of them satisfy det(a;;) = 0. Hence the
preimage of such (a;;) in =, consists of eight elements. If at least one of a;; is
non-unit, then the condition v,(det(a;;)) = 1 implies det(c;;) = 0. Therefore,
the preimage of such (a;;) € Mata(Oy)y, (det)=1 0 Zz has cardinality given by
[Ti; (1 +7,(a@sj)), as desired by (2.10). O

2.4.2. The function f5. We introduce another test function, closely re-
lated to hS, which will be useful in the calculation of its action on representa-
tions.

For z € R, let fJ be the function supported on Mat2(Oz )y, (det)=1 given
by the formula

Me(@11a12) if a11,a12 € OF,
J?E((aij)) = {7, (@21a22) if ag1, a2 € OF,
0 otherwise.

Note that the first two cases above are not mutually exclusive, but when
all a;; € OF, we have 7, (a11@12) = 7, (@21G22) because the rank of (a;;) €

Matg(k(z)) is one.
We then define

o =Py € CXZ(G(Fy)).
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LEMMA 2.5. The function f;:m is characterized up to a scalar by the fol-
lowing three properties:

(1) its support is contained in Mata(Oz)y, (det)=1;

(2) it is left invariant under GLa(Oy);

(3) under the action of the diagonal torus Z((’)z) by right multiplication, it is
an eigenfunction with eigencharacter diag(a, d) — 7, (a/d).

Furthermore, we have

(2.12) =3 7u-1

u€k(x)* Wz

GLQ(Ox)[l v ] )

Proof. Let F be the space C-valued functions satisfying the above condi-
tions. The coset space GL2(O)\Mata(Oy)y, (det)=1 has representatives given
by

1 wu
{0 wz}, u € k(z).
We have a bijection GL2(Oy)\Mata(Oy)y, (dety=1 = P'(k(x)) = k(z) U {oo} by
sending [woz (1)] to oo and [(1) ;jz] to u. The right multiplication of Z((’)x) on

GL2(0;)\Mat2(Ox)y, (det)=1 factors through A(O.) — A(k(z)), and diag(a, d)
acts as u — (d/@) - u (u € PY(k(x))). Therefore, F is isomorphic to the
7,-¢cigenspace of A(k(z)) on C(P'(k(z))) under right translation. The latter
space is one-dimensional and is spanned by f;, : u +— 7, (u) for v € k(x)* and
zero for u = 0 or co. Hence dim¢ F = 1.

The right-hand side of the expression (2.12) is the function in F corre-

sponding to f,, therefore it is a constant multiple of wa But both sides take
11

0w, ], so they must be equal. This proves the lemma. O

value 1 at [

We compare the test functions A5 and f5.

LEMMA 2.6. The difference h — f5) is a sum of two functions, one is
invariant under the right translation by A(O,), and the other is n-eigen under
the left translation by A(Oy).

Proof. The function EE can be written as

~ 1
hy = ®o — 5Py,

where both @ and ®; are supported on Mata(Oy )y, (det)=1:

o((aij)) = [ (1+7m.(ay))

i,j€{1,2}
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and

[l JE{1, 2}(1 + nx(al])) if aij € O; Vi, j € {17 2}’
0 otherwise.

®1((aij)) = {

For any subset S C {(1,1),(1,2),(2,1),(2,2)}, define the following func-
tions supported on Mata(Oy )., (det)=1

SOS azg H 72 ( al]
(i,7)€S
~ inesNe(@ij) if a;; € OX Vi, 5 € {1,2},
515((%’;‘)) . = H( ,])Gsn ( ]) J ‘ x { }
0 otherwise.
Then
o => dos, P1=) dus,
S S
and hence
- - 1 -
(2.13) hy = d0,s— =Y 01s.
S 2 S

On the other hand, let Si. = {(1,1),(1,2)} (entries in the first row) and
Sy = {(2,1),(2,2)} (entries in the second row). From the definition of fZ, we
have

~ ~ 1 ~ ~
(214) fxD = 60,51* + (50,52* -5 (61751* + 61,52*) .

In fact, the only non-obvious part of the equality is when all four entries are
units, in which cases all four functions (50 S1as 50 Soxs 51 .51, and (51 .S, take the
70
f

same value. Comparing (2.13) and (2.14), we see that k2 — 2 is a linear

combination of dg s and d; g for S in one of the three cases
(1) |S] is odd;

(2) S is either a column, or contains every entry;

(3) S is one of the two diagonals.

Therefore, hY) — 2 is a linear combination of do,5 = px*5~075 and 01 5 = px*5~175
for S in one of the above three cases.

In case (1), 5075 and 51,5 are eigenfunctions under the translation by scalar
matrices in O} with non-trivial eigenvalue 7,, and therefore dp s = 61 5 = 0.

In case (2), 5~075 and 5~175 are right invariant under ;lv((’)r) Therefore, 0,5
and d1 g are right invariant under A(O,).

In case (3), 5075 and 5~175 are eigen under the left translation by A(O,)
with respect to the character diag(a, d) — 1,(a/d), and hence ¢y s and 6 g are
ng-eigen under the left translation by A(O,).

Combining these calculations, we have proved the lemma. O
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2.4.3. We fix a decomposition
(2.15) Y=X,uX_.

Let N1 = degX4. Later such a decomposition will come from a pair pu, ' €
Ty (see (4.5), (4.6)).
For each z € ¥, we define a subset J, C G(O,) by

(2.16) ] ]
* ok
{gEG(OI)LQE 0 modmx}zlwx ifzedX,,
*
J, = -
* %
{gEG((’)x)|g: 0 modmx}:lwz-w ifreX_.
*

Here w = [,1 1} is the Weyl element. The local component f, of our test

function f at z € ¥ will be the characteristic function of J,.

2.5. Calculations of local spherical characters. In this subsection we com-
pute the local distributions Jr, (fz, s1, s2) for certain pairs (7, fz). We always
assume that the additive character v, is unramified. It follows that our mea-
sure d*t, = Cx(l)%ﬁ on A(Fy) = F)f gives vol(O)) = 1.

2.5.1. The case x € R and m; unramified. We consider the test function
introduced in Section 2.4.2:

fx = J?E ’ f T = f 3‘7:’ .
We need an equivalent expression of the local spherical character (2.8):

Ao (Wi, 1, 51+ 52) M, (70 (FY ) Wi, 71y 51 — 8
(217) T, (fs,s1,82) = Z i 1 2)hg;( (S IWis e, 51 2)

)

where

£ (9): = falg™).
A similar definition applies to the test function f, on GLy(F,). By (2.12), we
have

u€k(z)> W

| L.’

LEMMA 2.7. Let m, be unramified and K, = G(O,). Let Wy € Wy, (1) Ke
be the unique element such that Wy(12) = 1. Then

(£ Wo q a , D _ {Vol(Kx)nx(—a)-qala/26(77x,1/2,wx if ve(a) = —1,

0 otherwise.
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Here the local e-factor for the quadratic character n, is given by

€Mar 1/2,92) = a7 % Y mu(dw)a(d'w),

u€k(x)*
where o’ € F) is any element with vy(a') = —1.

Proof. Let [a [3} € SL2(C) (i.e., af = 1) be the Satake parameter of .
By Casselman—Shalika formula, we have

W({wg D_ q;n/2%g”“’ n>0,
‘ 1 0, n < 0.

On the other hand, we have

<{ 1 u
T

Wy

It follows that

wx(wa)qu “ D

— vol(K,) <§) nx<u>¢x<—ua>> w (| = ]).

By the support of Wy, the second factor in the right-hand side vanishes if
vg(a) < —2. Since 1), is unramified, the first factor in the right-hand side

vanishes if vz(a) > 0. When v, (a) = —1, we have
w0 |) =volt) < > nw<u>wm<—au>>
u€k(x)>

:VOI(Kx)nﬂc(_a)< Z nx(—au)iﬁx(—au))

u€k(x)>
- VOI(Kx)nx(_a) : lec/ze(nzy 1/27 1/}1’)
This completes the proof. O

PROPOSITION 2.8. Let 7, be unramified, and let F)./F, be ramified. Then

Jr, (h3, 51, 52) = I, (f3), 51, 52)

= Vol(G(O0))Ga(2) - e (~L)e(a 1/2, ) - g2 7H2,
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Proof. We use the formula (2.17) for the local spherical character evalu-
ated at f, = f-). Now we note that f) is right invariant under K, = G(O,).
Therefore, we may simplify the sum into one term involving only the spherical
vector Wy € Wy, (m,)%= (normalized so that Wy(12) = 1):

X (Wo, 1, 514 s2) M (w(fY)Wo, e, 51— 52)

(2.18) Jry (fzy51,82) =
b 6% (Wo, Wo)

Since 7, is unramified, we have
(2.19) AE(Wo,1,8) = 1.
The quadratic character 7, is ramified and hence
L7y ® N,y s) = 1.
Using this and Lemma 2.7, we get
(220) N (me(FY)Wo, s ) = Vol (K ne(—1)ay e (e, 1/2, 402 - 4.
Again since 7, is unramified (and 1, unramified), we have
(2.21) 0L (Wo, Wo) =1 —q;2 = (u(2) .

Plugging (2.19), (2.20) and (2.21) into (2.18), we get the desired formula for
Jﬂz(fE? 51, 32)-

To show J,, (A, 51, 82) = Jr, (f, 51, 52), by Lemma 2.6, it suffices to show
that Jr, (f, s1,s2) =0 when f is either

(1) invariant under right translation by A(Q,), or
(2) ng-eigen under left translation by A(O,).

In the first case, fV is invariant under the left translation by A(O.). The
desired vanishing follows from the formula (2.17), and the fact that the linear
functional \%(—,ns,s) of 7, is n,-eigen under A(O,). In the second case, the
desired vanishing follows from the formula (2.8), and the fact that the linear
functional \i(—,1,s) of 7, is invariant under A(O,). O

2.5.2. The case x € X and 7, a twisted Steinberg. Let St be the Steinberg
representation of G(Fy).

PROPOSITION 2.9. Let m, = St,, = St ®x be an unramified twist of Stein-
berg representation, where x is an unramified quadratic character of F,*. Then
we have

(2.22) Jro (L, 51, 52) = vol(G(O2))C(2) - a3
(223) T, (Itwy o, 51, 52) = vOl(G(O2))Ca(2) - €(mp @ 1, 1/2,90,) g5 527,
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Proof. We first prove (2.22). By (2.8), the local spherical character eval-
uated at f = 11y, simplifies into one term
)\EE(W(b 17 s1+ SQ)AES (W07 Nxy S1 — 82)
0% (Wo, Wo)

where W) is any non-zero element in the line Wy, (Sty)™"=. We normalized Wy
so that Wy(12) = 1. Then explicitly we have

w((e )= s

For any unramified character ' : F,* — C*, we have

(2.25) M (Wo, X', s) = 1.

(2.24)  Jr, (11w, s1, s2) = vol(Iwy)

I

We compute the inner product 0%(Wy, Wp). First we note

RN A

For m, = St,, the local L-factor is
L(my X Tgy8) = (L= q; )7 (1 —q;°)
It follows that the normalized inner product is
0% (Wo, Wo) = 1 —q; .
Finally we note
vol(Iw,) = (1 + g) ~* vol(G(Oy)).
Hence
(2:26) vol(Iwg) 0% (Wo, Wo) ™" = vol(G(02))Ga(2)a; -

Plugging (2.25), (2.26) into (2.24), we get (2.22).
Now we prove (2.23). By definition, we have

o]]'/rz(llwz-wu 51752)
Z )‘hx(ﬂ-ﬁ(llwx'w)wi’ 17 51+ 32)>‘Ec (Wza n,s1 — 52)

{W;} eauc(Wia Wz)
-y N (e (L, )70 (W) Wi, 1, 81+ 52) NS (70 (w) 700 (W) Wi, 7, 51 — 2)

o 0 (e (w) Wi, 700 (w) W)
Note that {m(w)W;} is another orthogonal basis for Wy, (Sty); therefore, we
may rename it by {W;} and rewrite the above as

N (T (1w, Wi, 1, 81 + 82) AL (70 (w) Wi, 1, 51 — 52

wa(lIww-w731732) - Z b ( )
{Wi} HCC(VI/’L'a Wz)

9
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which again simplifies into one single term corresponding to the unique Wy €

Wi, (Sty ) We with Wo(12) = 1:

(2.27)

AL (Wo, 1, 51+ s2) A} <7Tx<w)W07 Ny S1 — 82)
03 (Wo, Wo)

Jﬂ'z (1Iwz-w7 S1, 52) = VO](IWI)

We have an explicit formula

(Mmmm(v J)ZW%{AgD:{ﬁfﬂw% Zgi:;

Using this we can calculate

(2.28) o (e (W) Wo, iz, 8) = —(X10) (w02) 45
Plugging (2.26), (2.25) and (2.28) into (2.27), we get
(2.29) Jro (Lw,ow, 81, 82) = — VOI(G(Om))Cm(Z)(an)(wz)q;r@il-

Finally recall the e-factor for the twisted Steinberg 7, ® 1, = St ®xn:, and
recall that the unramified ¢, is the Atkin—Lehner eigenvalue

6(7['33 & Nz, 1/27 %) = 5(St QXM s 1/27 %) = _(an)(w:c)‘
Using this we can rewrite (2.29) in the form of (2.23). O

2.6. The global spherical character for our test functions.

2.6.1. Assumptions on w. Let m = ®;€|X‘7rx be a cuspidal automorphic
representation of G(A) that is ramified exactly at the set ¥. Assume that m,
is isomorphic to an unramified twist of the Steinberg representation at each
T € X.

Recall that R C | X| is the ramification locus of the double cover v : X' — X.
Assume YN R = . Let ¥ = X7 U Y be the decomposition determined by
the conditions (1.4) and (1.5).

The degrees of the L-functions L(w, s) and L(w ®n, s) as a polynomials of

—5 are

q
degL(m,s) =49 —4+ N, degL(r®mn,s)=4g9—4+2p+ N.
We set

-’%F’/F(Tﬁ s1, 82) — q(2g—2+N/2)(51+82)+(29—2+p+N/2)(51—52)

L(7T781+52+%)L<(7T®77,81 —82+%)
% L(m, Ad, 1)
L(?T,S1 + s9 + %)L((W@W,sl —SQ+%>
L(m,Ad, 1) '

_ |WX|—251qp(s1—sg)qNs1
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SHTUKAS AND THE TAYLOR EXPANSION (II) 415

Then we have
D%F//F(TF, S1, 82) = (—1)#E°°$F//F(7T, —S1, —32).

Indeed, the sign that appears above is the root number of the base change
L-function L(7pv, s), which is the parity of the number of places in F’ at which
the base change of 7, is the Steinberg representation. If x € X, then x is split
in F’/, and its contribution to the root number is always +1; if z € X, then
x is inert in F”, the base change of 7, is always the Steinberg representation,
and hence it contributes —1 to the root number.

Recall that in (2.15) we have a decomposition ¥ = 3, U X_ (right now
arbitrary). We set

e_(mren): = H €(me @My, 1/2).
TEX_
Note that this is the Atkin—Lehner eigenvalue at the set of places ¥ _.
For each f € #F we define

(2.30) P =f® <® h?) ® <® 1Jz> € C(G(A)).

TER TEX
ProproSITION 2.10. Let w be a cuspidal automorphic representation of

G(A) satisfying the conditions in Section 2.6.1. Let Ay : 3T — C be the
homomorphism associated to w. Then for f € %”GEUR, we have

1
qNﬂLSl_FN*SZJﬂ-(fEi, S1, 82) = 5)\7|—(f) c € (7'(' & 77) : |wX|qp/2_N$F’/F(7Ta S1, 82)‘

Proof. We choose a non-trivial ¢ : F\A — C*. Such a character 1) comes
from a non-zero rational differential form ¢ on X, so that the conductor of v,
is m;)f”(c), where v, (c) is the order of ¢ at x. We choose such a ¢ so that ¢ has

no zeros or poles at ¥ U R, so that v, is unramified at z € X U R.
When x ¢ ¥ U R, f, is in the spherical Hecke algebra .7, and therefore

A2(Wo, 1,51 + 52) A3 (Wo, 12, 51 — 52)

Jrs (f:cu 51, 52) = Ar, (f:c) VOI(G(OI)) Hh (WO WO)

for Wy € Wy, (,)%(©=) normalized by Wo(12) = 1. By the same proof as [10,
Lemma 4.6], we obtain

M (Wo, 1, 81 + 52) A5 (Wo, 1, 51 — 52)

= n,(c c;251+1/2 - 2).
o (Wo. Wo) nz(c)]c] Ce(2)

Therefore

(2‘31) u]]rrw (fl‘? S1, 52) = VOI(G(Ox))Cx(Q) ) nm(c)‘c’:;281+1/2)‘7rw (fx)
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416 ZHIWEI YUN and WEI ZHANG

Now we use the calculation of local spherical characters at x € YU R given
in Propositions 2.8 and 2.9 together with (2.31), and we plug them into (2.9)
to obtain

Jn(f7%, 51, 82) = |wx| ' Co1CoCs, Cx_Chr

(2.32) y L(7T,81—|—82+§)L<(7T®’I7,81—82—1—%)
2L(m,Ad, 1) ’
where
Cuat = ] vol(G(Or))G:(2) = vol(G(0))¢p(2) = lwx [P,
x€|X|
(233)  Co=Ae(f) [ mele)lely/?2
x%RUZ
= Ae(Plwx 7720 T nalo)
¢ RUY
Co, =[] ezt =a",
TEX 4
CE_ = H (77:0 ®775(;, 1/2 T,Z)x) s1—sa—l (7‘[‘ ®77)qN*(sl_32)_N7’
reX_
(234) CR = H 771. 771.’1/2 w ) 51— 52+1/2
z€ER
=g/ R e, 1/2,00).
z€R

Here, in (2.33) we used that c is a differential form with no zeros or poles along
Y UR; in (2.34) we have used [[pernz(—1) = n(—1) = 1 since n,(—1) is trivial
for x ¢ R. Taking the product and using (2.32), we get

T (f7*, 51, 52)

_} —2s1 ,p(s1—s2)+p/2, ,—N N_(s1—s2)
(2.35) — gon(Plexle-(r@n) - Cy-lwx[g qq

L(W781+52+%)L((w®n,31—52—1—%)
8 L(m, Ad 1) )

where

Cn: H nacal/2 1#@ H 773:

zeR ¢ RUT
We claim that C,, = 1. In fact, for ¢ R we have
E(Uza 1/2’ djﬂﬁ) = 771(0)
It follows that
C77 = 6(777 1/27 1/])
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SHTUKAS AND THE TAYLOR EXPANSION (II) 417

Recall that €(n, s) = €(n, 5,9) = [Ioe|x| €Nz, 5, ¥z) is the e-factor in the func-

tional equation L(n,s) = €(n,s)L(n,1 — s). It follows from the expression
L(n,s) = %;/7((;)) that €(n,1/2) = 1. This proves C;,, = 1. Comparing the other
terms in (2.35) and in the definition of L5 p (7, s1,52), we get

1
Ta(f% 51,52) = SAn(f)e- (m @ o la? N gV 170N L (51, 59),

N+81+N_

Multiplying both sides by ¢ 52 the proposition follows. ([

3. Shtukas with Iwahori level structures

In this section we will define various moduli stacks of Shtukas with Iwa-
hori level structure and “supersingular legs” at co. We study the geometric
properties of such moduli stacks and establish the spectral decomposition of
their cohomology under the action of the Hecke algebra.

3.1. Bundles with Iwahori level structures. Let n be a positive integer.
Let G = PGL,. Let ¥ C |X| be finite set of closed points of X.

Definition 3.1. Let Bun,(X) be the moduli stack whose S-points is the
groupoid of

A (5, {& <—%1’)}1§j§n—1,x62> ;

where
e £ is a rank n vector bundle over X x S;
o for each x € ¥, {& (—%$)}1§j§n—1, form a chain of coherent subsheaves of
& such that
1 2 n—1
EDE (——a:) ¢ (—Eaz) D---D¢& (— - x) D&(—x) =€ ®oy Ox(—2x)

n

and that the quotient £ (—%ZL‘) /€ (—%m) is scheme theoretically supported
at {x} x S = Speck(z) x S and is locally free of rank one on {z} x S.

The Picard stack Picx acts on Bun,(X) by tensoring on both & and the
E(—2z)’s. We define

Bung(X) := Bun,(X)/ Picx .
3.1.1. Fractional twists. Let £ = (£;{€(—12)}ex) € Bun,(X)(S). For

n
D= Z Cr T

z€|X|

any rational divisor

on X satisfying

1
(3.1) ¢y € —Z forx € X, ¢, € Z otherwise,
n
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418 ZHIWEI YUN and WEI ZHANG

we may define a vector bundle £(D) in the following way. There is a unique
way to write D = Dg — Dy where Dy € Div(X) and Dy = Y ,ex 2 for
integers 0 < i, <n — 1. We define £(—D;) C £ to be the kernel of the sum of

projections
£ @eje(-a).
TzEX n
Then we define £(D) = £(—D1)®x Ox(Dy). It is easy to check that £E(D+D")
= (£(D))(D’) whenever both D and D’ satisfy (3.1).

3.1.2. Variant of fractional twists. Now suppose ¥ is decomposed into a
disjoint union of two subsets

(3.2) Y =3 [[Zf-
Let
G = H Speck(x) (product over k).

TEX o
We now consider the base change

Bun,(¥) x 6.

An S-point of G is a collection {z(V},ex . where z(M) : S — Spec k(z)
< X for each z € Y. It will be convenient to introduce () for all integers i
inductively such that

(3.3) 2@ = 20D o Frg: § 25 g 2, Speck(z) = X, i€Z.

Clearly we have z() = £(+42) where d, = [k(z) : k].
For each z € ¥, we have a canonical point

xM': &y —> Speck(z) — X

given by projection to the a-factor. We define x() as in (3.3) with S replaced
by Gs. Then the graph I' ) of x(® is a divisor in X x S,. We abuse the
notation to abbreviate I', ;) by x(® . Then we have a decomposition

da
{z} X G = Speck(z) X Soo = Hx(i).
i=1

Now let {z(M},cx.. be an S-point of Go.. Then the graphs of () (z €
Yoo, 1 < i < dy) are divisors in X x S pulled back from the divisors x(®)
on X x 6. For £ € Bun,(2)(S), the quotient £/E(—Lx) then splits as a
direct sum @?il QZ(] ) where Ql(j ) is supported on I' ;) (with rank 7). We define
E(—12) to be the kernel

& (—ia:(j)) := ker (5 — E&/E (—%1‘) —» ng)) .

n
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SHTUKAS AND THE TAYLOR EXPANSION (II) 419

In other words, {€(—£2\))}1<;<,—1 give an Iwahori level structure of £ at 2.
With these definitions, for £ € Bun,(X)(S), the construction in Section 3.1.1
then allows us to make sense of £(D), where D is a divisor on X x S, of the
form

(3.4) D= Z Wx0) 4 Z cx({x} X 6x),
2€300,1<j<dx 2€|X|—Soo
where

L1
i) ez for 7 € Yoo, 1 < j < dy,

T

— 3

cr € =7 for x € ¥y,
n
Cx €7 otherwise.

More precisely, we can uniquely write D = Dy — D1, where Dy € Div(X X S,)
has Z-coefficients and D; is of the form

(
D, = > J)‘i‘z ({2} x 6),

TES o 1< <dy cen;
and the coefficients Z““ (for z € $og) and & (for z € Sy) arein {1, 2 ... 21},
We define £(—D») to be the kernel of the sum of the projections

(@, oe( £))a(ger( 1)

Finally let £(D) := E(—Dy) ROx xS0g Oxxs..(Do).

Definition 3.2. Let D be a Q-divisor of X x &, satisfying the conditions
as in (3.4). The Atkin-Lehner automorphisms for Bun, () and Bung(X) are
maps

AL(D) : Bun, (X) X 64 — Bun, (%),
AL(D) : Bung(X) x 65 — Bung(X)

sending £ = (&; {5(—%1’)}9062, {zW}ses..) to

£1(D) = (D) HED — L({a} x &) haes)
which makes sense by the discussion in Section 3.1.2.

The maps AL(D) and AL(D) are analogous to the Atkin-Lehner auto-
morphisms on the modular curves, hence their name. From the definition we
see that AL(D) depends only on Dy, mod Z.
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420 ZHIWEI YUN and WEI ZHANG

3.1.3. Let r > 0 be an integer, and let p = (u1,..., ) € {£1}". We
define the Hecke stack with Iwahori level structures.

Definition 3.3. Let Hka(Z) be the stack whose S-points is the groupoid
of the following data:
e a sequence of S-points S;L = (&;{&(—%m)}xeg) € Bun,(X)(S) for i =
0,1,...,7;
e morphisms z; : S — X for ¢ =1,...,r, with graphs I';;, C X x S
e isomorphisms of vector bundles

(3.5) fi: Ei—l‘XXSszi = gi|X><S*ina 1=1,2,...,7.

These data are required to satisfy the following conditions:

(1) If u; = 1, then f; extends to an injective map &_; — & whose cokernel
is an invertible sheaf on the graph I';,. Moreover, f; sends Ei,l(—%x) to
Ei(—Zx)forallz e X and 1 <j<n-—1

(2) If py = —1, then fi_1 extends to an injective map & — &;_1 whose cokernel
is an invertible sheaf on the graph I';,. Moreover, fi_1 sends Si(—%x) to

Eii(—Zx)forallz € ¥and 1 <j<n-—1

We have a morphism ﬂ%k : Hk%(Z) — X7 recording the points z1, ..., z,
in the above definition. For 0 < i < r, let

i : HKa(X) — Bun, ()

be the morphism recording the i-th point El-T € Bun,(X%).
There is an action of Picx on Hk%(Z) by tensoring. We form the quotient

HkE () = Hkp(X)/ Picx
with maps recording EZ-T
pi Hk%(Z) — Bung(¥), ¢=0,...,r

PROPOSITION 3.4.

(1) For0 <i<r, the morphism p; : Hki(X) — Bun,(X) is smooth of relative
dimension .

(2) For0 < i <r, the morphism (p;, ﬂ'%k) : HK5(2) — Bun, (X) x X7 is smooth
of relative dimension r(n — 1) when restricted to Bun,(X) x (X — X)".

(3) For 0 < i < r, the morphism (ﬁi,ﬂ'%k) : HK4(2) — Bun,(2) x X7 is flat
of relative dimension r(n — 1).

(4) The statements of (1)~(3) hold when Hk5(X) is replaced with Hk%(E) and
Bun, (%) is replaced with Bung(X).

Proof. We first make some reductions. Once (1)—(3) are proved, (4) follows
by dividing out by Picx. By the iterative nature of Hk%(E), it is enough to
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SHTUKAS AND THE TAYLOR EXPANSION (II) 421

treat the case r = 1. We consider the case p = 1 and 7 = 1; the other cases can
be treated similarly. We also base change the situation to k without changing
notation (i.e., X now means X, ¥ means %(k), and the products are over k,
etc). Moreover, if z € ¥ and ¥¥ = ¥ — {z}, we observe that over X — X¥
there is an isomorphism HkY ()| x s 2 (Hks({z})|x—5¢) X Buny ({2}) Bunia (%)
such that the projection p; is the projection to the second factor. Therefore,
to show the statements over X — X%, it suffices to show the same statements
for ¥ = {z}. Since the X — X" cover X as z runs over X, we reduce to the case

where X is a singleton {z}. In other words, we are concerned with the map
(p1, miy) = HkL ({z}) — Bun,({z}) x X.

(2) Since Hk}l({x})]X,{I} = (Hk}l\x,{x}) X Bun, Buny,({z}), we have a
Cartesian diagram

Pilx—{a}

Hky, ({2})|x— {2y — Bung({z}) x (X — {z})

L,

Hk! & Bun, x X.

Since the bottom horizontal map Hk,ll — Bun,, x X is the projectivization of
the universal bundle over Bun,, x X, it is smooth of relative dimension n — 1.
Therefore, the same is true for the top horizontal map.

(1) and (3). Let S = Spec R, where R is a local k-algebra. Let &' €
Bun, ({z})(S). For an S-scheme S', the S’-points of the fiber p;'(ET) are
F' € Bun, ({z})(5’) such that for each 0 < i <n—1, F(—Liz) C £(—Lx) with
quotients an invertible sheaf supported on the graph of some map y : S" — X.
Such F(—~1z) are classified by the projectivization P(€(—Lz)) over X x S.
The fiber p; '(ET) is then a closed subscheme of

36 wxes P (2 (- 12)) s B (£ ().

n

We will write down defining equations of this closed subscheme. Let U, C X
be an open affine neighborhood of x, and let t € O(U,) be a coordinate at x.
Shrinking U, we may assume ¢ only vanishes at z. Since we know (2) already,
to show (1) and (3), it is enough to show the corresponding statements over U,.

After étale localizing S, we may assume that £ is trivialized on U, x S.
Thus we fix a trivialization ¢ : €|y, x5 — OF. « 5 S0 that

(36)L<5<—2x)

where the first ¢ summands are tOp, «s and the last n — ¢ are Oy, xs. Us-
ing the decomposition (3.6), we may canonically identify P(€(—Lz))|y, xs =
PP~ x U, x S. Let S’ = Spec R', where R’ is a local R-algebra. Then an

U S) - ZL/OUIXS ®--- EBtOUzXS EBOUZXS@ e EBOUEX57
z X
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422 ZHIWEI YUN and WEI ZHANG

R’ point in p~1(EM)|y, x5 may be expressed using homogeneous coordinates

o = [af,....a}),) € PPTUR) for i = 0,...,n— 1 (Whi(éh) v S )

and a point y € U, (R). The superscripts and subscrlpts of a;  are understood

© _ g ") etc.
The condition F (—Ex) C F(—=12) means that the following diagram
can be completed into a commutative diagram by a choice of A € R':

as elements in Z/nZ, so a;

0 ”
\
J/Ti_l::diag(l,...,t(y),...,l) DY

. 0
ai—1)
R R,

E(—Lx) R™

3

evy

where the middle vertical map 7,_; is the diagonal matrix with t(y) € R’
on the (i,7)-entry and 1 elsewhere on the diagonal (so 7;_1(a®~1) multiplies

(Z 1) by t(y) and leaves the other coordinates unchanged). This gives the
closed condition

(3.7) 7i—1(a~1) is in the line spanned by a(.

We study the special fiber of p; over (€7, z). Fix a k-point of Ff € ﬁl_l(ST)
over y = z with coordinates a¥) = [a(()l), . ,afz) 1),i € Z/nZ. Let [e;] € Pt
be the coordinate line where only the i-th coordinate can be non-zero. Define

I={iez/nZ|a" = [¢;]}.

It is easy to see from condition (3.7) that I # @. The points in I cut the
cyclically ordered set Z/nZ into intervals. (Think about the n-th roots of
unity on the unit circle.) For neighboring i1,i2 € I, we have an interval (iy, is]
(excluding i; and containing io and not containing any other elements in I).
When I is a singleton i1, we understand (i1,4;] to be the whole Z/nZ. These
intervals give a partition of Z/nZ. By (3.7), the homogeneous coordinates

[ag), ce il) | for F(—Lz) satisfy
if 7 is in the interval (i1, 2], then agi)

Moreover, by the definition of I, agi)

= 0 unless j € [i,i2].

is non-zero when i € I. The relation (3.7)
implies that whenever i € (i1, where i1,i9 € I are neighbors, ag)
Zero.

Now we give equations defining p; '(£") near the point Ff. Let ald =

[a$,...,at" ],

is non-

,0 < i < n—1 be the coordinates of such an R’ Valued pomt

that specializes to F1. For an interval (i1, is] and i € (iy,4s], since a 7& 0, al2

(4)

is interval in R', therefore we may assume a;," = 1 for i € (i1, i2]. We now use
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the following affine coordinates: for any interval (i1, 2] formed by neighboring
elements 71,12 € I, we consider
(i1)

12

(3.8) ol L al

il e @iy and a

There are n such variables. Condition (3.7) implies that
(3.9) IT o = t(w).

1€l
where i; runs over I and i is its immediate successor. It turns out that
the other coordinates can be uniquely determined by the ones in (3.8) using
condition (3.7) and that (3.9) is the only relation implied by (3.7). From this
description we conclude that étale locally near FT, 7 (E)|y, is isomorphic

1

to A% with the map p;*(£7)|v, T U, xS Al corresponding to A% —
Al given by the product of a subset of coordinates. Therefore, (1) and (3)
follow. O

3.2. Shtukas with Iwahori level structures.

3.2.1. Moduli of rank n Shtukas with Iwahori level structures. Let p €
{£1}". Fix a Q-divisor Dy, on X x &, supported at X, X G4 of the form

N . 1
(3.10) D= Y Dx0 De-=z
T€Xoo,1<i<d, n

We assume that p satisfies the following condition:

(3.11) ZW = Z nel?) = ndeg Dy
i=1

€ 00,1<i<d,

Definition 3.5. We define the stack Sht%(E; D) by the Cartesian diagram

Shty(2; Doo)

(3.12) J
(id,Fr)

Bun, (¥) ———— Bun,(2) x Bun,(X).

HK4() x Gog

J{(Eg,ﬁ;(Dm)O(ﬁr xidg, ))

Concretely, for a k-scheme S, an S-point of Sht%(E; Dy,) consists of the
following data:

for each 0 <1 < r, a point EiT = (&; {Ei(—%x)}meg) € Bun, (X)(9);

for each = € Yo, a morphism =) : S — Spec k(z);

for each 1 < i <7, a morphism z; : S — X;

maps f1,..., fr as in the definition of Hk%(Z);

an isomorphism ¢ : & = ("&)(Ds) (first pullback by Frobenius, then

fractional twist by D) respecting the Iwahori level structures at all x € X.
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By definition, we have a morphism recording x; and {x(l)}zegm in the
definition above:

(3.13) I, ¢ Shtf(S; Dog) — X" x G

LEMMA 3.6. Let Do be a Q-divisor of the form (3.10). Then up to canon-
ical 1somorphisms, Sht%(E; Do) depends only on the sum Y 1<i<q, cg(f) for each
T E Vo

Proof. Let D, = sex.. (S1<i<a, cgf))x(l). It suffices to give a canonical
isomorphism « : Sht?(X; Do) = Sht#(3; DL). Let (Ej;xi;{x(l)};L) be an
S-point of Sht#(X; Doo). For 0 < i <r, let

£l <_ 3 cg@xm).

2<5<j' <dx
One checks that ¢« induces an isomorphism ¢/ : F = T]-"g (D). Define
a(€lswii faVhi0) = (Fhiai (O},
which is easily seen to be an isomorphism. O

3.2.2. The case r = 0. When r = 0, Sht?(3; $,) is zero dimensional. We
describe the groupoid of k-points of ShtZ (X; X,). For any ¢ : &, — k (which
amounts to choosing a k-point (1) over each z € Yoo), let Sht?(3;€) be the
fiber of Sht? (¥; Yu) over &.

Let B be the central simple algebra over F of dimension n?, which is split
at points away from ¥, and has Hasse invariant inv,(B) = Y 1<;<q, cg) for

T € Yoo. Since Y ,en . Di1<i<d, D=0 by (3.11), such a central simple algebra
B exists. Let B* denote the algebraic group over F' of the multiplicative group
of units in B. For x € ¥, let K, C B*(F}) be a minimal parahoric subgroup
(so for x € ¥y, K, is an Iwahori subgroup of B*(F,) = GL,(F;)). For
x € |X — X, let K; be a maximal parahoric of B*(Fy) = GL,(F;) such that
almost all of them come from an integral model of B over X. Then we have
an isomorphism of groupoids

Sht,; (3:€) (k) = B*(F)\B*(Ar)/ [] K-
z€|X|
3.2.3. The case r =1 and Drinfeld modules. We consider the special case
where r = 1, u = —1, X consists of a single point co, and Dy, = _%Foo(l).
In this case the stack Sht#(3; D) is closely related to the moduli stack
DrMod,,(Xf) of Drinfeld A = T'(X — {oo}, Ox)-modules with Iwahori level
structure at . In fact, in [1, Th. 3.1.4] it is shown that DrMod,,(3) can be

identified with the open and closed substack of Shtf; (3; Deo)|x — {0} consisting
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SHTUKAS AND THE TAYLOR EXPANSION (II) 425

of those (5;r ;... ) where & has degree n(g—1)+1. This implies an isomorphism
over X — {oo}:

DrMod,, (2)/ Pick (k) 2 Sht}(5; Doo)| x— foo} -

3.2.4. Relation with the usual Shtukas. We explain how Shta(X; Do) is
related to the Shtukas in the sense of [8]. Let ¥oo = {y1,...,ys} and d; =
[k(y:) : k]. Let 7' =7+ Y54 d;. For each ¢ € 1Z, we have a unique coweight
u(c) = (a1, ...,a,) € Z" of GL;, such that };a; = nc and a, < ap—1 < ... <
a; < ap + 1. (In other words, p(c) is a minuscule coweight.) Let Dy, take the
form (3.10). Let

H/ = (:U’lv s 7:“’%”(01211 )v s 7#(63(;?1))’/1’(052))7
(e, (), ple)).

This is an 7’-tuple of minuscule dominant coweights of GL,. We consider

the stack Shts (X) of rank n Shtukas with modification types given by p’ and
Iwahori level structure at 3: it is given by the Cartesian diagram

Sht (£) ——  HKY (%)

J J (Po,py)
(id,Fr)

Bun, (X) — Bun, (%) x Bun, (%),

’

where Hk% (X) is defined similarly as Hki(X). There is a natural map mq :
Shtk (2) = X"'. We have a map

!
ex,, X X G — X"

given by sending

(xlw . 'axTvygl)a cee 7y§1))

to
d
(a;lv B 7377172/%1), c. 7y§ 1)7y§1)7. . -aygdS))~

LEMMA 3.7. There is a canonical closed embedding € : Shti(3; Doo) <

Shtk (X) making the following diagram commutative:

Sht(S; Do) — s Sht (%)

el /,L,
Hn,DoQ o

[S5788
X' X Gpg —=—5 X7
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426 ZHIWEI YUN and WEI ZHANG

Proof. The map ¢ is defined by sending (Ej,fi,L) € ShtZ(Z D) over
(ml,...,xr,yg),...,ygl)) € X" x G4 to the following point (.FT

L) over

es. (x1,... ,xr,yg), e ,ygl)). We define

gl ifo<i <

- h
(7€) (Doe — Y4y ey,
ifi=r+j1,1 <ji <dy
. h ) (h
]:T _ ( gg)(D il 16?(41)y§ ) - %2 1 C§J2)y§ ))7

.

if i =7r+dy+ 72,1 < g2 < d;

(Té’o)(Zh =js+1 Cys)yg )),
ifi=r4+di+- - +ds—1+7s,1 < js < ds.

The map f is & & (Té’g)(Doo) -- (TSS)(DOO - c@(}l)yl), and the other maps
7,1/ are the obvious ones. The above equation for F; f gives a closed condi-
tion on Sht%l( Y) w1thout changing automorphisms, realizing Shty(3; Do) as
a closed substack of Shtn (2). O

3.2.5. Sht@(Z;Doo) and its geometric properties. The groupoid Picx (k)
acts on Shty(3; Dao) by tensoring. We define the quotient (see [10, 5.2.1] for
the explanation why the quotient makes sense as a stack)

Shtg (23 Doo) = Shtii(S; Dac)/ Picx (k).

We have a Cartesian diagram

Shtgs (%; Do) HEE () X 6o

(3.14) lwo
(id,Fr)

Bung(¥) ————— Bung(X) x Bung(X).

l(PmAL(—Dm)O(erid@oo))

The map H%’ Do, in (3.13) induces a map
(3.15) 106 .. = (TG Ta00)  Shtg (8 Do) — X' X g

Since the action AL(Ds) on Bung(X) depends only on Dy, mod Z, com-
bined with Lemma 3.6 we conclude that

LeEMMA 3.8. The moduli stack Shté(E;Doo) depends only on the image
of Dos in Div(2s0) @z (L12/7).

PROPOSITION 3.9.
(1) The stack Sht%(E; Do) is a smooth DM stack of dimension rn.
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(2) The morphism H%,Doo is separated and is smooth of relative dimension
r(n—1) over (X —X)" X 6

Proof. To show the smoothness statements in (1) and (2), we adapt the
argument of [6, Prop. 2.11] and apply [6, Lemme 2.13] to the diagram (3.14).
Without giving all the details, the same argument of [6, Prop. 2.11] shows
that after an étale base change, the fibration p, : Hk%(i]) — Bung(X) can be
trivialized. Therefore, the same is true for ¢, := AL(—Dx) o (pr x idg_,) :
Hk%(E) X G — Bung(X) because AL(—Dy) is étale. Then [6, Lemme 2.13]
applied to the diagram (3.14) implies that Sht%(i]; D) is étale locally isomor-
phic to a fiber of ¢,. More precisely, for a fixed choice of £ € Bung(X)(k) (for
example the trivial bundle with any Iwahori level structure at ), there exists
an étale covering {U;} of Sht%(E; Dy.) together with étale maps U; — ¢~ *(E1)
over X" x G4

Since p, is smooth of relative dimension rn by Proposition 3.4(1), so is
¢- and hence ¢ !(ET) is smooth over k of dimension rn. This implies that
Sht%(i]; Dy) is smooth of dimension rn.

By Proposition 3.4(2), pr_l(é’T)kX_z)r is smooth of relative of dimension
r(n—1) over (X —X)". Therefore, the same is true for q;l(ST)](X_Z)Txgw. By
the discussion in the first paragraph, this implies that Sht%(Z; Doo)(x—5) xG
is smooth over (X — X)" x G4 of relative dimension r(n — 1).

We now show that Sht%(E; Dy) is DM. By Lemma 3.7, Sht%(E; Do) is a

closed substack of Shtg, () := Sht% (X)/ Picx (k). The map Shtg, (X) — Shtg,
(forgettlng the level structure) is clearly representable. By [8, Prop. 2.16(a)],

ShtG is DM, hence so are ShtG( ) and its closed substack ShtG(E D).

Finally we show H@ D, is separated. The map ShtG X" s separated, as
can be seen from the same argument following [10 Th. 5.4]. ThlS implies that

ShtG (2) = X" xS is also separated as ShtG( )— ShtG is proper. Since
Shta(i]; Dy) is a closed substack of Shta( ) Ha D.. 18 also separated. O

3.2.6. The base-change situation. Now let X’ be another smooth, projec-
tive curve over k with a map v : X’ — X satisfying

(3.16) The map v is unramified over 3.
Let
&, = H Spec k(2).
e'er—1(So0)
Then we have a natural map induced by v
(3.17) VX x Gl — X7 x G

Define the base change of Sht%(E; Dyo):
Shtes (55 Doo) i= Shtes (%5 Do) X (xrxe.) (X x L),
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PROPOSITION 3.10. Under the assumption (3.16), the stack Shtlg(E; D)
is a smooth DM stack of dimension rn.

Proof. Only the smoothness of Sht/Gﬁ(E; D) requires an argument. Let
Hk/g(E) = Hk%(E) X x+ X'". As in the proof of Proposition 3.9(1), we reduce
to showing that p/. : Hk/GH(Z) — Bung(X) is smooth of relative dimension rn.
As in the proof of Proposition 3.4, it suffices to treat the case where r = 1 and
p=1

Let R’ be the ramification locus of v. Then Hk5 ()| x—p — HK&(Z)
is étale. Hence by Proposition 3.4(1), p} : Hk/g(z) — Bung(X) is smooth of
relative dimension n when restricted to Hk/Gﬁ(E)] x/—r’- On the other hand, let
Y = v~1(X). By Proposition 3.4(2),

(p1, 7i) : HKG (D) x—s — Bung(E) x (X — %)

is smooth of relative dimension n— 1 By base change along v|y/_ sy : X' =3 —
X — X, we see that Hk%(E)|X/_E/ — Bung(X) x (X’ —¥’) is smooth of relative
dimension n — 1, hence p} is smooth of relative dimension n when restricted to
Hk/GB(Z)\X/_g/. By assumption (3.16), R’ NY¥ = &, hence X' — %" and X' — R’
cover X', and we conclude that p} is smooth of relative dimension n, which
finishes the proof. O

3.2.7. Atkin—Lehner for Sht%(Z;DOO). For z € 3, fractional twisting by
1z gives an automorphism of Bun,(X) and HK4(Z). By the diagram (3.12),
we have an induced automorphism on Sht%(E; D),

ESht,r - Shth(3: Dog) — Shte(X: Doo),

sending (SZ»T, Ziy...) to (EZ-T(—%QU), Z;,...). This also induces an automorphism
on Sht%(E; Doo):

ALgp s : Sht%(Z; Do) — Sht%(E; D).

3.2.8. The case n = 2 and a specific choice of Ds. We specialize to the
case n = 2 and hence G = PGLjy. Let Z be the group of Z-valued divisors
on X X Go supported on Yoo X S, which is the union of the graphs of x(
for # € oo and 1 < i < dy. Let 1%u = 3Z ®7 Poo. Then Shtg(%; Duo) is
defined for Dy, € 3% satisfying (3.11) for n = 2. As in [10, Lemma 5.5], one
can show that Hk%(E) is canonically independent of 4. In this case we denote

HKZ () by HKL(X). This implies
LEMMA 3.11. For fixed r and Do € %900, and for any two p, p' € {£1}"

satisfying the same condition (3.11), there is a canonical isomorphism of stacks
Sht(2; Doo) 22 Sht (3 Dog) over X7
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Lemma 3.8 implies that Sht%(Z; D) depends only on the image of D
in Div(Xs) ® 5Z/Z. We consider the following specific choice of Dyo:

pY =Y 1 o
IEEEOOQ

Definition 3.12. Assume r satisfies the parity condition
(3.18) r=#Ys mod 2.
Let = (pu1, ..., pur) € {£1}". For any Do € 5% such that
(3.19) Dy = Dg})) mod Y., and Zui = 2deg Do,
i=1
we define
Sht}: (¥; Soo) := Shtia(%; D).

By Lemmas 3.11 and 3.8, this is independent of the choice of p and D
satisfying condition (3.19), justifying the notation.

We remark that the parity condition (3.18) guarantees that for any p €
{£1}7, the Do € 3P satisfying (3.19) exists.
We denote AL(—D&}))) simply by

(3.20) ALG o := AL(=DY)) : Bung(2) x Go — Bung(L).
Then the diagram (3.14) becomes

Sht? (3 o) HKY(2) X Goc

(3.21) lwo
(i, Fr)
Bung(¥) ——— Bung(X) x Bung(X).

l(pO:ALG,ooo(eridGOo))

For D, satisfying (3.19), we denote the morphism Hé p., in (3.15) by
I = (76, TG 00) = Sht(2; X)) — X' X 6.

3.3. Hecke symmetry. For the rest of the paper, we will use G to denote
PGL32. We will focus on the the stack Shty(3;Xs) for r and Yo satisfying
the parity condition (3.18).

3.3.1. Hecke correspondence. For z € |X — X|, let ., be the spherical
Hecke algebra

Let 75 = ®pe|x—x|Hz. Then A3 has a Q-basis {hp} indexed by effective
divisors D € Divt(X — X), where hp is defined in [10, §3.1].
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Let D be an effective divisor on X — . For p € {£1}" and Dy =

Sres.. czx) as in Definition 3.12, we define a stack Shtg(Z; Doo; hp) whose
S-points classify the following data:

e two objects (5;[,fi,b,...) and (Sﬁ, 1, .00) of Shtg(Z;Doo)(S) that map
to the same S-point of (z1,...,z,, {z(V}) € (X7 x 65)(S);

e for each i = 0,1,...,7, an embedding of coherent sheaves ¢; : & — &/
compatible with the Iwahori level structures, such that det(p;) : det(&;) —
det(&]) has divisor D x S C X x S, and such that the following diagram is

commutative:

f e P e (D)

(3.22) on lwl Jw J%
fi fs

g -t L e e Do).

Let Shtg(X;Xoc;hp) = Shtg(E;Doo;hD)/PicX(k:), which is independent of
the choice of (1, Do) as it is for Sht(3; 3o ). Then Shte(X; Xoo; hp) can be
viewed as a self-correspondence of Shty;(3; X)) over X" x G,

(3.23) ShtZ (5 Sas) 4 SBEL (33 Sos h) —2—s St (33 S ),

where the maps p and 7 record the first and the second row of (3.22).

LEMMA 3.13. Let D be an effective divisor on X — 3.

(1) The two maps .7 Sht(3; Xoo; hp) — Sht(X; X)) are representable
and proper.

(2) The restrictions of p and P over (X — D) are finite étale.

(3) The fibers of II:(hp) : Sht(X; Xoo; hp) = X" X & all have dimension r.

Proof. (1) For a rank two vector bundle £ over X x S, let Quotgxs/s(ﬁ)
be the S-scheme classifying quotients £ — Q, flat over S and with divisor D.
(Namely, for every geometric point s € S, QJs is a torsion sheaf on X x s with
length ny at x x s for any x € | X|, where n, is the coefficient of x in D.) Then
Quo‘c)%X s/ 5(€) is a closed subscheme of the Quot-scheme of £, hence projective
over S. The fiber of J over any point (Sﬁ,xi, 1) € Shti(3;X)(S) is a
closed subscheme of Quotgxs/s(é'{) stuot)’%Xs/S(é’é) X XSQuot)'%Xs/S(S{G),
hence projective over S. This shows that ? are representable and proper. The
argument for ? is similar.

(2) When (Sj, xi, fi,t) € Sht;(3;¥x)(S) and z; are disjoint from D
(which is assumed to be disjoint from X), the restriction £|pxg carries a Frobe-
nius structure ¢|pxs : £|pxs — "E|pxs and hence descends to a G p-torsor £p
over S, with Gp = ReskOD G the Weil restriction. Recording this G p-torsor
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defines a map

Let Lp be the moduli stack whose S-points are triples (Fp,Fp,¢D), where
Fp, Fp, are lisse sheaves over S that are locally free Op-modules of rank two,
and ¢p : Fp — ]-"b is an Op-linear map whose cokernel at each geometric
point of S has divisor D. (That is, if D = Y, n,x, then the cokernel as an
Op-module has length n, when localized at x.) Let Lp = Lp/BO}, where
BOJ acts by simultaneously tensoring. The stack Lp itself is the quotient of
a finite discrete scheme over k by a finite group, hence is finite étale over k,
and it has two maps to BGp recording Fp and Fp,,

T 7
]BGDE LD ? BGD)

which are also finite étale.

There is a natural map

wp : Sht(3; Eoo§hD)|(X—D)7“ — Lp.

In fact, each point (S;r,q:i,...,gﬁ, oy pi) € Sht(2; X0 hp)(S) gives a pair
of Gp-torsors Ep and £}, over S. If we lift & and &/ to rank two vector bundles
on X x S, then &p and &}, have associated O%z—torsors Fp and F}, over S,
well defined up to simultaneous twisting by Ojj-torsors on S. The ¢; then
induces an Op-linear map ¢p : Ep — £, whose cokernel has divisor D.

When the points x; are disjoint from D, knowing the top row (or the bot-
tom row) of (3.22) and any of the vertical arrows recovers the whole diagram.
Any vertical arrow ¢; : & — &/ is in turn determined by &; (or &) together
with its image in Lp. Therefore, the whole diagram is uniquely determined
by the top row (or the bottom row) and its image in Lp. Moreover, since D
is disjoint from X, the level structures of the top row determines that of the
bottom row, and vice versa. This shows the two squares below are Cartesian:

T 5o 7

T

BGp Lp BGp.

This implies that both &7 and ? are finite étale, because the maps 7 and 7
are.

(3) The argument is similar to that of [10, Lemma 5.9], so we only give a
sketch.

Fix a geometric point = (z1,...,z,) € X". We will show that the fiber
Sht(X; ¥oo; hp)z has dimension . We introduce the moduli stack Hp(X)
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classifying (€T, &", ) up to the action of Picy, where £, € Buny(X) and
¢ : & — &' is an injective map with divisor D. Let Hk}y (%) classify diagrams

goff;l%glf'ilg...ffi%gr
(3.24) ls@o Jcm l@r
f/ f/ 7/‘
5673»5173»---fff+57{

satisfying the same conditions as the diagram (3.22) without the last column,
modulo simultaneous tensoring by Picx. We have a Cartesian diagram

Sht¢; (25 Yoo; hp)y —————— Hky p(¥)s

J{ J((povpr)
(id,AL g, o0 0FT)
HD(E) X 600 e — HD(Z) X HD(E).

Here ALy : Hp(X) x 65 — Hp(X) is given by applying ALg ~ to both
ET and £, The stacks Hp(¥) and Hky p(¥) will turn out to be fibers of the
stacks Hy(¥) and Hkly 4(¥) over D € Xy, to be introduced in Section 5.2.1.

We introduce the analog HE)(E) of the Hp p introduced in [10, 6.4.4],
which is an open substack of Hp(X) where ¢ does not land in £'(—z) for any
x € D. We claim that the map HhD(E) — Bung(X) sending (&1, &7, ¢) to &'
is smooth. Indeed, its fiber over £f € Bung(X)(S) is Res5 ™ (Ppxs(Epys));
the restriction of scalars of the projectivization of the rank two bundle £}, ¢
over D x S. (The ¥-level structure on £ is automatically inherited from &',
since D is disjoint from ¥.) In particular, HHD(E) is smooth over k.

Similarly we introduce the open substack Heru p(X)e C Hky p(X): by

requiring each column of (3.24) to be in HHD(E). We define the open substack
Shtgu(Z; Yoo; hp)z C Shtg (5 Xoo; hp)g to fit into a Cartesian diagram

Sht( (8; Xooi hp)y ———— HKF 5 (2),

l l(PO,Pr)

id,ALf oo oFr
HY(X) x G AR o) HE(X) x H ().

As in [10, 6.4.4], it suffices to show that dim Shtgu(E;Zoo;hD)g =r. Asin
the case without level structures, p, : Hk’;qh p(X)z — HE)(E) is an étale locally
trivial fibration. Using a slight variant of [6, Lemme 2.13], Shtgu(E; Yoo;hp)g is
étale locally isomorphic to a fiber of p,.. It remains to show that the geometric
fibers of p, have dimension r. The iterative nature of Hk}lh p(X)z allows us to
reduce to the case r = 1.

This content downloaded from
18.9.61.111 on Wed, 06 Mar 2019 00:12:44 UTC
All use subject to https://about.jstor.org/terms



SHTUKAS AND THE TAYLOR EXPANSION (II) 433

First consider the case x1 ¢ D. Then the diagram (3.24) is determined
by its top row and the last column, which means that the fibers of p; are the
same as the fibers of p1 : Hk; ()., — Bung(X), which are 1-dimensional by
Proposition 3.4(3).

Next consider the case 1 € D. Since ¥ is disjoint from D, the Iwahori
level structures along ¥ of £ and &] uniquely determine the Iwahori level
structures along 3 of all bundles in the diagram (3.24). Thus the fibers of p;
are the same as the fibers of p; : ijlgh Dz HE) (the version without level

structure); this latter map was denoted Hle,Dy2 — Hp p in [10, 6.4.4], and in
the last paragraph of [10, 6.4.4] it was shown that its fibers are 1-dimensional.
We are done. O

3.3.2. Hecke symmetry on the Chow group. Using the dimension calcu-
lation in Lemma 3.13, the same argument as in [10, Prop 5.10] proves the
following result.

ProroOSITION 3.14. The assignment
hp = (B % T)u[Shtg (55 Zoos hp)]
extends linearly to a ring homomorphism
H — Chy, (Sht (35 X00) X ShtZ (25 Xa0))g-

In particular, we get an action of %”g on the Chow group of proper cycles
Che,« (Shtg(5; Xoo) )o-

3.3.3. Hecke symmetry on cohomology. We shall define an action of %”GZ
on HX(Shtf:(3; $o) ® k, Qy) following the strategy in [10, 7.1.4]. For this we
need a presentation of Sht¢;(X; X ) as an increasing union of open substacks of
finite type. Here we are satisfied with a minimal version of such a presentation,
and we postpone a more refined version to Section 3.4. For N > 0, we define
SNSht to be the open substack of Shtf,(2;Yw,) consisting of those (SZT; o)
where inst(Ey) < N. Since the forgetful map Sht¢(3; ¥o) — Bung recording
&o is of finite type, SV Sht is of finite type over k. As N increases, Shtf:(¥; o)
is the union of the increasing sequence of open substacks <VSht.

With the finite-type open substacks <V Sht, we can copy the construction
of [10, 7.1.4] by first defining the action of hp as a map Rr<n1Q; = Rr<n/1Qy
(where <y : SNSht — X7 x By) for N’ — N > deg D, and then pass to
cohomology and pass to inductive limits. Using the dimension calculation in
Lemma 3.13(3), the same argument as in [10, Prop. 7.1] shows

PROPOSITION 3.15. The assignment hp — C(hp), extended linearly, de-
fines an action of #5 @ Qg on Hi(Shty(3; Xo0) @ k, Qy) for each i € Z.
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The following two results are analogues of [10, Lemmas 5.12, 7.2, and 7.3],
with the same proofs.

LEMMA 3.16. Let f € %”GE Then the action of f on the Chow group
Che(Shtf (35 2o0))g (resp. on the cohomology HZ" (Shtf:(X; Yeo) @ &, Qo) (7))
is self-adjoint with respect to the intersection pairing (resp. cup product pair-
ing).

LEMMA 3.17. The cycle class map

cl 1 Chei(Shth(3; Boo))g — HI2(Sht7 (25 Xoo) @ k, Q) (21 — i)

s equivariant under the %g—actions for all i.

3.3.4. The base-change situation. Consider another curve X’ as in Sec-
tion 3.2.6. Let

Sht/s (%5 Tao) = Sht (5 Do) X (xrwen) (X7 % &),

We may define the Hecke correspondence Shté:(3; Xoo; hp) for Shtéh(32; 3o as
the base change of Shtg;(X; Xso) from X7 x G4 to X7 x &, . The smoothness
of Sht(X; Xs) proved in Proposition 3.10 allows us to apply the formalism of
correspondences acting on Chow groups; see [10, A.1.6]. The same argument
as in [10, Prop. 5.10] gives an analogue of Proposition 3.14: there is an action
of S on the Chow group of proper cycles Ch, . (Sht{:(3; ¥e))g, where hp
acts via the fundamental class of Shtg:(3; Yoo hp).

Similarly, with the smoothness of Sht(s(3; ¥ ) proved in Proposition 3.10,
analogues of Proposition 3.15 and Lemmas 3.16 and 3.17 make sense and con-
tinue to hold true for Sht{:(X; X)) in place of Sht{(3; Xoo).

Remark 3.18. Besides the action of %”GE, the Atkin—Lehner involutions
ALgpt , for z € I (see Section 3.2.7) also act on Shtg; (3; Xo) and Sht (X; Boo).
Therefore, they induce involutions on the Chow groups and cohomology groups
of Shtf;(¥;¥e) and Shté:(E;Xe), which we still denote by ALgp,. These
involutions commute with the action of %”GE

3.4. Horocycles. This subsection studies the geometry of Shty(%;¥)
“near infinity.” It serves as technical preparation for the proof of the spec-
tral decomposition in the next subsection.

To alleviate notation in this subsection we introduce the notation

Sht := Sht’s (X Xoo) @ .

3.4.1. Index of instability. Let us first introduce the notion of instability
for points in Buny(X). For a rank two bundle £ on X, inst(€) € Z is defined
as in [10, §7.1.1]: it is the maximum of 2deg £ — deg & when L runs over line
subbundles of €. For a geometric point T = (€, {€(—32) }sex) € Buna(X)(K),
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SHTUKAS AND THE TAYLOR EXPANSION (II) 435

we have a bundle £(3 D) for any divisor D C X supported in £(K). We call £
purely unstable if inst(£(3D)) > 0 for all D < ¥(K). Note that the condition
inst(€(3D)) > 0 depends only on the class of D modulo 2; i.e., we may think
of D as an element in Z/2Z[3(K)], the free Z/2Z-module with basis given by
Y(K). Define

inst(€) := min {inst(é’(%D)); D € 7/2Z[S(K)]}
Both the notion of pure instability and the number inst(£') depends only on
the image of €7 in Bung(%).

Suppose F € Bung(K) is unstable, with maximal line bundle £ and quo-
tient M := F/L. For any effective divisor D', we denote by F _.p/ the resulting
rank two bundle by pushing out the exact sequence 0 - £L - F - M — 0
along £ < L(D’). Similarly let "p/F be the pullback of the same exact se-
quence along M(—D') — M. Note that we have a canonical isomorphism
Fap = ("TpF)(D'), which means that F.p and " prF have the same image
in Bung.

LEMMA 3.19. Let K be an algebraically closed field containing k, and let
ET € Bung(X)(K) be purely unstable.
(1) There is a unique D € Z/2Z[%(K)] such that inst(€T) =inst(£(3D)). (Note
that £(3D) is a well-defined point of Bung(X) when D € Z/2Z[S(K)].)
(2) The point EV is uniquely determined by E(3D) (D as in (1)) in the follow-
ing way: for any effective divisor D" supported on 3S(K), 5(%D + %D’) =
E(3D)apr. Moreover, we have
1 1
(3.25) inst(E (5D + §D’)) = inst(ET) + |D'],
where |D'| = #{x € X(K)|z has non-zero coefficient in D'}.

Proof. We prove all statements simultaneously. Let D € Z/27Z[¥(K)]
be some divisor such that inst(€T) = inst(£(3D)). (We do not assume D is
unique for now.) Write 7 = £(3D). For any z € £(K), we have inst(F(z)) =
inst(F) £+ 1. Since F achieves the minimal index of instability, we must have
inst(F(32)) = inst(F) + 1. This means that F(3x) = F,. For any effective
D' supported on X(K) and multiplicity-free, F(3D’) is the union of F(5z) for

z € D', and we get F(3D') = F.p/. This implies that
1
(3.26) inst(}"(iD’)) = inst(F) + deg D" = inst(F) + |D’ mod 2|.

Since the set of points {F(3D')}pr<x(x), as points of Bung(E), is exactly
{E(3D")} pr<si(K)» e see that inst(E(3D’)) achieves its minimum exactly when
D" = D and nowhere else. The equality (3.25) follows from (3.26). O
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By the above lemma, for a purely unstable £f € Bung(X)(K), we may
define an invariant

K(EN) = (D, inst(EN)) € Z/2Z[%(K)] X Zo,
where D € Z/2Z[E(K)] is the unique element such that inst(£7) =inst(£(3D)).

3.4.2. Strata in Bung(X). For N > 0, we also denote by YBung the
locally closed substack of Bung whose geometric points are exactly those &
with inst(£) = N.

For any field K containing k, we have a canonical bijection X (k) = % (K).
For k € Z/2Z[X(k)] x Z=g, there is a locally closed substack “Bung(X) C
Bung(¥) ® k whose geometric points are exactly those geometric points Et
with x(ET) = k (under the identification X (k) = X(K)).

We define a partial order on Z/2Z[%(k)] x Z by saying that x = (D, N) <
k' = (D', N’) if and only if

N' —-N>|D-D|.

For k = (D, N) € Z/2Z[%(k)]|x Z0, let <*Bung(¥) C Bung(X)®k be the open
substack consisting of €7 such that for any D’ € Z/2Z[%(k)], inst(E(3D")) <
N + |D' — D|. We see that *Bung(X) € =*'Bung(X) if and only if k < &/
Moreover, “Bung(X) is closed in <*Bung(X), with open complement denoted
by <"Bung(X).

COROLLARY 3.20 (of Lemma 3.19). For k = (D, N) € Z/2Z[% (k)] X Z~o,
the map EV — E(LD) gives an isomorphism of k-stacks

*Bung(¥) = YBung ® k.

3.4.3. Elementary modifications. In this section we study how the invari-
ant k£ changes under an elementary modification of bundles. Recall the stack
Hkl(X) classifying (€1, F1, 9, ¢) modulo tensoring with line bundles, where
ET FI € Buny(X) and ¢ : € < F is an injective map compatible with ITwahori
structures whose cokernel is an invertible sheaf on the graph of y : S — X.
Recording y gives a map iy, : Hk&(2) — X.

For two elements k = (D, N),x’ = (D', N') € Z/2Z[%(k)] X Z=¢, we define

‘KZ— H,‘ = ‘D —D/’ —+ ‘N—N” c ZZO
with |D — D’| defined in Lemma 3.19(3).

LEMMA 3.21. Suppose (ET,FT,y, o) € Hkh(X)(K) (where K is an alge-
braically closed field, EY, F' are lifted to Buny(X)(K), ¢ : € < F and y is the
support of coker(y)), and suppose EY and F1 are both purely unstable. Write
k() = (D, N), k(FT) = (D', N").

(1) [#(ET) = R(FN) = 1.
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(2) If N = N', then D and D’ differ at a unique point x € 3(K), and we
have y = x. The points ' and F' are uniquely determined by the triple
(E(3D),F(3D'), ), where « is an isomorphism of G-bundles

1 1
a: 5(§D)_nw = (§D’)_|x.

(3) If N=N'—1, then D = D', and E" and F' are determined by the single
bundle E(3D) in the following way:
o &V is determined by E(3D) as in Lemma 3.19(2);
e F(3D) = E(3D)uy, and F' is determined by F(3D) again by
Lemma 3.19(2).
(4) If N = N’ +1, then D = D', and £ and F' are determined by the single
bundle ]:(%D) in the following way:
o F' is determined by F(3D) as in Lemma 3.19(2);
. 5(%D) = ry(}'(%D)), and EV is determined by 5(%D) again by
Lemma 3.19(2).

Proof. For any D" € Z/2Z[%(k)], we have inst(£(3D")) = inst(F(3D"))
+ 1, and therefore N — N’ € {0,1, —1}.

When N — N’ = —1, £(3D) achieves the minimal index of instability
among all the bundles {£(3D"), F(3D")} prez oz (i)~ Since inst(F(3D)) =
inst(€(3D)) £ 1, we must have inst(F(3D)) = N + 1, therefore inst(F(3D))
= N’ and D' = D. The same argument as Lemma 3.19(2) shows that F(1D)
is determined by £(3D). This proves (3).

The analysis of the case N — N’ =1 is similar, which takes care of (4).

Finally consider the case N = N’. Since inst(F(3D)) = inst(£(3D)) £ 1
and inst(F(3D)) > N’ = N = inst(€(3D)), we must have inst(F ( D)) =
N +1. On the other hand, we have inst(F(3D’)) = N’ = N by definition. By
Lemma 3.19(3), we have |D — D'| = (N +1) — N = 1; that is, D" and D differ
by one point x € ¥(K). We show that y must be equal to z. Suppose not.
Consider the bundle G = F(3D) (represented by a rank two bundle on Xg)
with subsheaves

1 1 1 1 1
g (—53/) =E (fD) and G (—§x> = F (fD — ix) .
Then G' := (G,G(—3y),G(—3x)) defines a point in Buny({z,y})(K). Note
that inst(G(—5y)) = N by deﬁn1t10n and

a(6(-10) ({2 12)) - () .

also inst(G) = N + 1 and inst(G(—3z — 3y)) = inst(€(3D — 32)) = N + 1.
It follows that G' is purely unstable. This contradicts Lemma 3.19(1) be-
cause both G(—4z) and G(—3y) achieve the minimal index of instability. This
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contradiction proves y = x. The isomorphism « comes from the fact that
G(—3y)sz = G = G(—3x)1,. The triple (£(3D), F(1D'), ) first determines
ET and FT by Lemma 3.19(2). Now we represent D and D’ by multiplicity-free
effective divisors on X(K). When D' = D + z, the map « then determines the
injective map 1 : £(—1D) < F(—1D’),,, which then gives

0 E=E (—%D)w YF (—%D’)JHD —F (—%D/)JD, ~ F.

When D' = D — z, the map «a gives the injective map 1) : 5(—%D)J$ —
F(—3D’), which then gives
1 1 1
(Y2l E=¢& <—§D)JD = (8 <—§D>J1¢>JD/ i) .7:(—§DI>JD/ = F.
Part (2) is proved.
All three cases above satisfy |(E") — k(FT)| = 1, which verifies (1). O

For k = (D, N) and k' = (D', N') in Z/2Z[%(k)] X Zo, let %+ Hks(2) be
the locally closed substack of Hk}(X) ® k whose geometric points are exactly
those (Y, F1,y, ) such that k() = k and x(F) = &/

COROLLARY 3.22 (of Lemma 3.21).

(1) The stack "~ Hk}(X) is empty unless |k — /| = 1.
(2) When N = N’ and D and D' differ only at x € %(k), the map miy maps

“’“/Hle(E) to a single point x, and there is an isomorphism

PR HEG(E) > (VBung X viipgn, Y Bung) ® F,

with both maps VBung — Y1 Bung given by (—)i.. The above isomor-
phism is given by

&N Fx,0) —s (5 (%D) ,.F(%D’) ,a)

as in Lemma 3.21(2).
(3) When N =N'—1 and D = D', we have an isomorphism

PR kG (2) = (VBung x X) @k

given by (ET, F1,y,0) = (E(3D),y).
(4) When N = N'+1 and D = D', we have an isomorphism

M HkG(S) - (VBung x X) @k
given by (T, F1,y, ¢) — (F(%D’),y).

Definition 3.23. Let k = (ko,K1,...,Kr) be a sequence of elements in
Z.)27[%(k)] x Z~o.
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(1) The horocycle of type & of Sht is the locally closed substack £Sht C Sht
whose geometric points are exactly those (c’i’;r ;...) € Sht such that each Sj
is purely unstable with /{(5}) =k, fori=0,1,...,7.

(2) The truncation up to k of Sht is the open substack of Sht consisting of
(&]:...) such that & € <FBung(%) for all 0 < i < 7.

Then £Sht is closed in =£Sht, and we denote its open complement by

<ESht.

3.4.4. The index set for horocycles. Above we defined horocycles for any
r-tuple of elements x in Z/2Z[3(k)] x Z~o. However, for many such r, £Sht
turns out to be empty.

LEMMA 3.24. Let k = (Ko, K1,--.,kr) be a sequence of elements in
7.)27[%(k)] x Z~o.

If ESht is non-empty, then

(1) for eachi=1,...,r, |ki_1 — Ki| = 1;

(2) if we write k; = (D;, N;), then Ng = N,, and Fr(Dy) (applying the arith-
metic Frobenius to each point appearing Dy) and D, differ at exactly one

k-point above each place of ¥ and nowhere else.

Proof. Suppose (5;, ...) € 5Sht is a geometric point over {z(M},ex_ €
Soo. Then |ki—1 — ki| = 1 by Corollary 3.22(1). The isomorphism &, =
("€0) (3 Tres, zM)) implies No = N, and Fr(Dp) + Y 4ex. 2V = D, mod 2,
which implies the second condition.

O

Definition 3.25. Let &, be the set of kK = (ko,k1,...,Kr), Where each
ki € ZJ2Z[%(k)] x Z, satisfying the two conditions in Lemma 3.24. (For
technical reasons we do not impose x; > 0 in the definition of &;.)

From the definition and Lemma 3.24 we see that

Sht = | J =%Sht.
KER,

The partial order on Z/2Z[%(k)] X Z~o extends to one on K,: we say that
(Koy -y Bir) < (Kpy- .-, K,) if and only if k; < k] for all 0 < ¢ < r. Then it is
easy to check that, for k, k' € &, £Sht C <£'Sht if and only if k < &'.

For k € R, and N € Z, we write kK > N if N;j(k) > N for all 0 < i < r.

(Here N;(k) denotes the Zso-part of the i-th component of k.)

3.4.5. I(k) and X (k). For & = (Ko, ...,kr) € R with k; = (D;, N;), we
define the subset I(k) C {1,2,...,7} as

I(@) = {1 § ) S T|Ni_1 75 Nz}
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Fori e {1,2,...,r}—I(k), there is a unique point = € (k) such that D;_; and
D; differ at z. We denote this point x by x;(k). Also, by the second condition
on k above, the difference between D, and Fr(Dy) consists of a k-point z(}) (k)
over each x € Y.

For i € I(k), we have N; = N;_1 £ 1. Since N, = Ny, we see that #I(k)
is even.

We define X (k) C (X" x S4) ® k to be the coordinate subspace

X (k) = {(z1,..., 20, {zW}ses )|z = xi(8) for all i ¢ I(k);
2 = 2 (k) for all z € T}

The projection to the I(k)-coordinates gives an isomorphism

X(r) = X0 o F.

Viewing Z/27[¥%] as a subgroup of Z/2Z[%(k)] by X 3 = +— 25 T

ST—x
there is an action of Z/2Z[%] on Z/2Z[%(k)] by translation. This induces
a diagonal action of Z/2Z[X] on K, by acting only on the divisor parts of
each k;. For K,k € R, we say k ~ k' if the divisor parts of k and k' are in
the same 7 /27Z[%]-orbit (no other condition on the Z-factors). This defines an
equivalence relation on K,. Let [&,] be the quotient

8] = R/~
The following lemma is a direct calculation.
LEMMA 3.26. The map
X(-) : & — {subschemes of (X" X G ) @ k}
k— X (k)
factors through [R,] and induces an injective map
X () : [R] = {subschemes of (X" x &) @ k}.

By the above lemma, for o € [R;], we may write

for X (k) and I(k), where k is any element in the orbit o.

COROLLARY 3.27 (of Lemma 3.21 and Corollary 3.22). For k € K, and
& > 0, the restriction of the map II, : Sht — X" x &, to £Sht has image in
X (k). We denote the resulting map by

T - “Sht — X (k).
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3.4.6. Geometry of horocycles. For any N > 0, we have a map
A : YBung — Pic¥

sending € to the line bundle A(€) = L& M ™! of degree N on X, where £ C €
is the maximal line subbundle and M =& /L.

Now if kK € R and k > 0, for (EZT,) € £Sht, we have a sequence of
line bundles A; := A(&;(3D;)) by the above construction applied to & (3D;) €
NiBung (recall k; = (D;, N;), so &(3D;) has the smallest index of instability
among all fractional twists of &). By Lemma 3.21, these line bundles are
related by canonical isomorphisms:

Ay if N; = N;_1,
A=A () it Nj=N;_1+1,
Aifl(—l‘i) if NZ = Nifl — 1.

Finally A, =2 "Ag. Thus A = (Ag,...,A,) together with the above isomor-
phisms give a point in Shtjlv(ﬁ), the moduli of rank one Shtukas (Lo, L1, ..., L)
over X with deg(£;) = N;. (When N;_; = N;, we have an isomorphism £;_;
= L;.) This gives a morphism

g : 5Sht — St & @ &

through which the canonical map I}, : £Shtf,(%; Be) — X (k) = X0 @ &
factors.

LEMMA 3.28. Suppose k € R, and £ > max{2g —2,0}. Then the map ¢
is smooth of relative dimension r — #I(r)/2. The geometric fibers of q,. are
isomorphic to [Ggf#j(ﬁ)/Q/Z]
GZ—#I(E)/2

for some finite étale group scheme Z acting on

via a homomorphism Z — Gz_#l(ﬁ)/?

Proof. The argument is similar to [10, Lemma 7.5], so we only sketch the
difference with the situation without level structures. We define £Hkg(X) C
HK/,(X) @ k to be the locally closed substack where x(&]) = k; for 0 < i < r.
Then ZHKY, () is the iterated fiber product of #i-t%Hkk5(X). By definition,
we have a Cartesian diagram

ESht;(X; Xoo) —————— EHkp(2)
(3.27) lpo J(po,ALG,ooOPr)
(id,Fr )
f0Bung (L) —— “Bung(X) x 0 Bung(¥),

where the map Fr ;- f0Bung(X) — F0)Bung(X) is the restriction of the
k-linear Frobenius Fr xidy : Bung(X) ® k — Bung(X) ® k to the stratum
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%0Bung(X). Using Corollary 3.20, we may replace the bottom row by
(id, Fr xidy) : NoBung @ k — (MBung ® k) Xz (MBung ® k).

The diagram (3.27) now reads

ESht (3; Sog ) SHKL ()

(3.28) J{ho J(ho,hr)
(id,Fr xidy)

NoBung @ k ————— (NBung @ k) x (NBung ® k),
k

where h; : #HkZ(X) — YMiBung ® k is the composition of p; with the isomor-
phism *Bung(X) = YiBung ® k in Corollary 3.20.

Let S be a k-algebra. Fix an S-point y = (y1,...,yr) € X (&), and denote
by “Hkg(X), the fiber over y. Let YBung s be the base change of VBung
from Speck to S.

For 1 <i<r,let

M,; = min{Ni,l,Ni} + 1.

Then using the description of #~1%iHkk(X) in Corollary 3.22, we get an iso-
morphism
ﬁHkTé(Z)2 = NOBunQS XMlBunG,s M BunG’S XM?BunG,S NQBUHG,S

(3.29)
X oo XM?"Bungyg NTBunG7s,

where the maps NileunG,S — MiBunG,S and NiBunG,S — MiBunG,S are
either the identity map or the pushout _,.

There is a map Apy, : 2HkG(X), — Pic%?s X Picgfs, which is induced
by the map A : MBung — Pic}’ on each factor in (3.29). Now we fix an
S-point A = (Ap, Aq,...,A,) € Shtiv(ﬁ)(S) over y, namely, deg A; = N; and
A; = A1 ((N; — Ni—1)y;) for 1 <i <r. Let E; C NiBunG,g be the preimage
of A; € Pichi(S) under A (so E; is an S-stack). Since N; > max{2g — 2,0}, we
have that E; = BH; is the classifying space of the vector bundle H; = pg.4;
over S (where ps : X x S — S). Similarly, we let C; C iBungs be the
preimage of the following line bundle under A:

Ai(yi) if N = Niqq,
A; =< A if Nij=N;_1+1,
JAVER] if N;j = N;_1 — 1.

We have C; = BJ; for the vector bundle J; = pg.A} over S. The canonical
embeddings A;_1,4A; — A! induce embeddings H;—1 — J; and H; — J;,
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hence maps F;_1 — C; and E; — C; for 1 <i <r. By (3.29), the preimage of
A under AHk,g is
EO Xcl El XCQ s X, ET7

which is isomorphic to the stack over S,

Hq H» Hr—l
H()\Jl X JQ X oo X JT/HT,

which is the quotient of J; x - -+ x J,. (product over S) by the action of Hy on
J1, the diagonal action of H; on J; and Jo, ..., the diagonal action of H; on
J; and Jit1, ..., and the action of H, on J,.

Using the Cartesian diagram (3.28), we get

1 ~ H; Hy Hy—1
G (A) = (J1 X Jo X -+ X Jp)/Ho,

where the action of Hy is by translation on J; and on J,., via composing with
the relative Frobenius Frg /g : Ho — H, and the H,-translation on J,. This
presentation shows that g, !(A) is smooth over S. Hence g is smooth.

To calculate the relative dimension of ¢x, we take S = Spec K to be a
geometric point, and

T r—1
dimg;'(A) =) dim J; — ) dim H;.
B i=1 i=0
Since
dim J; — dim H;_; = dimH°(Xf, A}) — dim H (X, A; 1)
o 1 if Nz = Ni—l or Nz = Ni—l - 1,
)0 N =N+ 1,
we see that
dimqﬁ_l(é) =r—#{1<i<7r|N;=N;—1 — 1} =r —#I(r)/2.
This proves the dimension part of the statement. The rest of the argument

is the same as the last part of the proof of [10, Lemma 7.5], using the fact
that the translation of Hy on J; induces a free action on the vector space

H1 H2 Hr—l

J1XJ2X~--XJT. |

COROLLARY 3.29 (of Lemma 3.28). Suppose k € R and k>max{2g—2,0}.
Let W{V(ﬁ) : Sht]lv(ﬁ) ® k — X (k) be the projection. Then we have a canonical
isomorphism

Rrr, Q= RO Q20 + #1(6)](—r + #1()/2).

In particular, Rm,1Qp is a local system shifted in degree 2r — #1(k), and
(3.30) Py == R \Qu[2r](r) € D*(X (), Q)

is a perverse sheaf on X (k) with full support and pure of weight 0.

This content downloaded from
18.9.61.111 on Wed, 06 Mar 2019 00:12:44 UTC
All use subject to https://about.jstor.org/terms



444 ZHIWEI YUN and WEI ZHANG

3.4.7. When is Sht(X; X)) of finite type? Let

R = {r € & |r > max{2g - 2,0}},
*Shty = U, _qa"Sht.
Then #Sht consists of (5;; ...) where all inst(EiT) > max{2g — 2,0}, therefore
it is a closed substack of Sht. Let *Sht = Sht — #Sht be its open complement.

LEMMA 3.30. The substack "Sht is of finite type over k.

Proof. Let (8;,) be a geometric point of "Sht. Then for some i,
inst(c‘:;ro) < max{2g — 2,0}, hence inst(&;,) < max{2g — 2,0} + degX. Since
&o is related to &, by at most r steps of elementary modifications, we have
inst(&y) < 7+ max{2g — 2,0} +deg ¥ =: ¢ for any 7. Then "Sht is contained in
the preimage of <“Bung under the map Py Sht — Bung (recording only &).
Since P, s of finite type and <‘Bung is of finite type over k, so is *Sht. O

COROLLARY 3.31 (of Lemmas 3.30 and 3.28). The stack Shtg(3;X) is
of finite type over k if and only if r < #X .

Proof. If r <#X., then the set &, is empty. In fact, if k= (ko, ..., k) € Ry,
then the first condition defining &, implies |D, — Dy| < r (D; is the divisor part
of k;), while the second condition implies that for each x € X, Dy and D,
must differ at a geometric point above z, hence | D, — Dy| > #3,. Therefore,
Sht = "Sht, which is of finite type over k& by Lemma 3.30. This implies that
Sht is of finite type over k.

Conversely, if r > #X., then the set & is infinite as can be seen in the
following way. Write Yoo = {z1,...,2n}, and fix xf;l) € X (k) above each z;.
Let Dy =0, D; ::L‘gl)—l—--~+x£1) for1<i<m,and Dy, = Dppy1 =+ = D,.
Then take Ng = --- = N, and N; = N;_; £ 1 for m < j < r such that
N, = N, and N; > max{2g — 2,0} for all 0 < i < r. (There are infinitely
many such sequences (N;).) Let x; = (D;, N;), then & = (k1,...,5,) € R
For each k € ﬁﬁ , &Sht is non-empty by Lemma 3.28. Therefore, Sht is not of
finite type over k in this case. ([l

3.5. Cohomological spectral decomposition. In this subsection, we continue
to use the abbreviations Sht, £Sht as in Section 3.4. Let

V = HZ"(Sht, Q,)(r).
Since Sht is the union of open substacks <£Sht for £ € &, we have by definition

V= lim HZ(5*Sht,Q)(r).
KER, k>0
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For k € R,k > 0, let m<,, : SESht — (X" x G4) ® k be the restriction of
ITf;. Let
K<y = Rae, ) Qu[2r](r) € DY((X" x &o0) ®@ , Q).

For 0 < k < k' € &, the open inclusion <EGht < <A'Sht induces a map
b+ K<w — K<

3.5.1. Ind-perverse sheaves. The perverse sheaves {pHiKSE}EegT form an
inductive system indexed by the directed set &,. Consider the inductive limit

PH'K = limPH' K<, € indPerv((X” x Goo) ® k, Q).

Here the right side is the category of ind-objects in the abelian category
Perv((X" x Go) ® k, Qg) of perverse constructible sheaves on (X" x &) @ k,
which is again an abelian category. Note that the notation PH'K comes as a
whole, as we are not defining K as the inductive limit of K<, but only defining
the ind-perverse sheaves PH'K .

Definition 3.32. Let ¢ : P — P’ be a morphism in indPerv((X" x Go) ®
ke, Qo).

(1) We say ¢ is an mc-isomorphism (mc for modulo constructibles) if the kernel
and cokernel of ¢ are in the essential image of the natural embedding
Perv((X" X Goo) ® k, Q) — indPerv((X" x &) @ k, Qp).

(2) We say ¢ is mc-zero if its image is in the essential image of the natural
embedding Perv((X" X 6) ® k, Q¢) — indPerv((X" x G) ® k, Q).

Likewise we have the notion of an mc-commutative square of ind-perverse
sheaves; i.e., the appropriate difference of the compositions is mc-zero. Con-
catenation of mc-commutative squares is still mc-commutative.

LEMMA 3.33. Let 0 < & < k' € R.. Then the map L ON the perverse
cohomology sheaves

pHibﬁ,ﬁ’ : pHiKSﬁ ’ pHiKSﬁ/

is ingective for i = 0, surjective for i = 1 and an isomorphism for i # 0, 1.
In particular, PH'K is eventually stable when i # 0. (That is, the natural
map PH' K<, — PH'K is an isomorphism for sufficiently large k.)

Proof. Let (&£1Sht = <£'Sht — <£Sht, which is a union of horocycles £ Sht
for £” < K’ but £” £ k. The horocycles form a stratification of <K'Sht — SESht,
Let (. : (wAISht — (X7 x G4) ® k be the projection. Then Kew) =
R (e, 51,1 Qe[27](7) is the cone of ¢y ./, and it is a successive extension of P
(see (3.30)), viewed as a complex on (X" X &) @k. By Corollary 3.29, Py is a
perverse sheaf; therefore, so is K, /. The long exact sequence for the perverse
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cohomology sheaves attached to the triangle K<, — K< — Ky ] = K<g[l]
then gives the desired statements. ([

3.5.2. Hecke symmetry on ind-perverse sheaves. A variant of the construc-
tion in Section 3.3.3 gives an J#>-action on PH'K for any i € Z. Namely,
for each effective divisor D on X — ¥, the fundamental cycle of the Hecke
correspondence Sht¢(X; Xoo; hp) (as a cohomological correspondence between
constant sheaves on truncated Shtg(X; X)) induces a map K<, — K<, for
k' — k > d. Passing to perverse cohomology sheaves and passing to inductive
limits, we get a map in indPerv((X" X Gu) ® k, Qp):

PH(hp) : PH'K — PH'K.

The same argument as [10, Prop. 7.1], using the dimension calculation in
Lemma 3.13(3), shows that the assignment hp — PH'(hp), extended linearly,
gives an action of %”GZ on PH'K.

3.5.3. The constant term map. Recall the closed substack #Sht of Sht and
its open complement "Sht from Section 3.4.7. Let 7, : "Sht — (X" x &) @ k
and K, = R, Qu[2r](r) € D*((X" X &) ® k, Qy).

We have a stratification of #Sht by locally closed substacks £Sht. There-
fore, we may similarly define pHiKﬁ as the inductive limit of the perverse
sheaves 1”HiKﬁ§ﬁ as k runs over R, where Kj <, is the direct image complex
of #Sht N =£Sht — (X" x G4) @ k.

LEMMA 3.34.

(1) The restriction map associated to the closed inclusion *Sht < Sht induces
an mc-isomorphism of ind-perverse sheaves

PH'K — PHYK;.

(2) We have PH'Ky = 0 for all i # 0. Moreover, there is a canonical isomor-
phism of perverse sheaves on (X" x o) @ k:

PHOK; = @, gt Pa-

Proof. (1) By definition, we have °Sht C <£Sht for & large enough, with
the complement U_ 'Sht. This gives a distinguished triangle K, —

K
'efh <k
K< — Ky <, —. The long exact sequence of perverse cohomology sheaves

gives
PH'K, — PH°K<,, — PH°K; <, — PH'K,,.
Taking inductive limit we get an exact sequence
'H'K, — PH°K — PH'K; — PH'K,.

By Lemma 3.30, *Sht is a DM stack of finite type over k, hence K, is con-
structible, and the middle map above is an mc-isomorphism.
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To show (2), it suffices to give a canonical isomorphism (again k is large
enough so that *Sht C <£Sht)
P

~Y
Ku,gﬁ = ®n’6ﬁ§.,n’<n [y

compatible with the transition maps when x grows. Since K} <, is a successive
extension of P, for K € R?n and £’ < K, we have a canonical decomposition
according support

K < = ®ocin,) (Kt <)o

where we recall from Lemma 3.26 that the support of P, is determined by
the image of k in [R,], and different classes in [®,] give different supports.
Each (Kj <), is then a successive extension of those Py where £’ € & No
and £’ < k. Hence (Kj<x)o is a local system on X (o) shifted in degree
—dim X (o) = —#I(0). Let n, be a geometric generic point of X (o). It
suffices to give a canonical decomposition of the stalks at 7,:

(3.31) (Kt <x)oln, = @ﬁfeﬁima,ﬁ'gﬁpﬁ"no'

Now
Kﬁ,ﬁﬁ‘na = Hzr_#l(a)(ﬁShtna N SEShtnUa Qe)(r)
and
#Sht,, N =ESht,, = Uy<, Sht,, .
If E/Sht% # &, we must have X (k') D X(o), hence dimEISht% =r—
#I1(k')/2 < r—#I(0)/2 with equality if and only if &’ € 0. Hence dim #Sht,,, N

S&Sht,,, < r—#1I(0)/2, with top-dimensional components given by E/Sh‘c% for
those &' € ﬁﬁ No and k' < k. This implies a canonical isomorphism

H2r = #1()(*Sht,,, N <ESht,, , Q)(r) = & H2r = #1()(£'Sht,,, , Q) (r),

K efinow <w

which is exactly (3.31). O

Combining the two maps in the above lemma, we get a canonical map of
ind-perverse sheaves that is an mc-isomorphism

(3.32) v:PH°K — D, et P

This can be called the cohomological constant term operator.

Remark 3.35. Compared to the treatment in [10, §7.3.1], we do not need
the generic fibers of the horocycles to be closed in Sht. In fact the horocycle
£Sht is not necessarily closed when restricted to the generic point of X (k); for
example, this fails when X (k) is a point.
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3.5.4. Constant term intertwines with Satake. Recall from Corollary 3.29
that whenever k € Rﬂ, we have an isomorphism

Py = R\ Qu[~#1 () (- #1(5)/2).

The map W{V(ﬁ) : Shtiv(@) ®k — X (k) is a Pic% (k)-torsor.

Now for any k € K, (without assuming k£ > 0), the stack Sht]lv(ﬁ) is always
defined, and W{V(ﬁ) : Shtiv(ﬁ) ® k — X (k) is a Picx(k)-torsor. Moreover, the
union

[T suel™) @k — X(x)
K ER+D
is a Picx (k)-torsor, extending the Pic% (k)-torsor structure on each component
of the left-hand side. Here we write k + Z for Z-orbit of k in K,, and Z acts
by translating the degree parts of k € K, simultaneously. (Note that X (k) is
unchanged under the Z-action.) The Picx(k)-action then gives an action on
the ind-perverse sheaf

Dz Qol—#1(5))(—#1(5) /2).

Summing over all Z-orbits of &, we get a canonical Picx (k)-action on

Opes, Ry D Qu[—#I (5)](—#1 (1) /2).

For any u € Picx(k), restricting the source to @, cqt Pr and projecting the

target to @ Py, the u-action gives a map

KERL
a(u) : @ﬁeﬁﬁpﬁ — @ﬁeﬁﬁpﬁ'

However, this no longer gives an action of Picx (k). Instead, it is an mc-action:
for u,v € Picx(k), the endomorphism a(uv) — a(u)a(v) of Dt Pr 1s zero on
P, for k large enough, hence a mc-zero map. This mc-action extends to an
me-action of Q[Picy (k)] on D,.cqt P, Which we also denote by a.

Recall the ring homomorphism

apis : AE 22 4 = QDiv(X — ¥)] — Q[Picx (k)].

LEMMA 3.36. For any f € %”GE, we have an mc-commutative diagram

g — D ppog

| |
a(agis(f))

E—— .
Opent P pest P

In particular, if f € Tgis, then the action PHO(f) : PH'K — PHYK is mc-zero.
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Proof. Since {hy} | X_x| generate %”GE as an algebra, it suffices to check
the lemma for f = hy. (We are also using the fact that u — o(u) is an
mc-action of Qy[Picx (k)] on @EeﬁgPﬁ.) Let dy, = [k(y) : k]. We will show
that v o PHO(f) and a(agis(f)) oy : PH'K — GBFLG@Pﬁ agree on the factors
P, whenever £ > max{2g — 2,0} 4+ d,. Since we are checking whether two
maps PH'K — P, agree, and since P, is a perverse sheaf all of whose simple
constituents have full support on X (k), it suffices to check at a geometric
generic point 1 of X (k).

Since agis(hy) = low) + g 1o(—y), We see that agis(hy) Py has a Pg-
component only when £’ > max{2g — 2,0} and £’ € k + Z. In particular, £’ €
A%, Thus we only need to check that the following diagram is commutative:

h
HZ #1069 (gt ) v HY ~#1®) (Sht,)
(3.33) J"Yn J{’Ymn
HO Sh N(E/) (aEis(hy))Q HO Sh N (k)
Dpest wenszHe(Shtyy ") ————— H(Sht, ;).

Here the £’ component of ~, is the composition (where the first one is induced
by the closed embedding of the closure of ﬁ/Shtn)

Yo' Hc (*)(Shln) — Hc (&) (EIS}HW)
~ p12r—#I(K) (K ht ~ 110 ] IN &

The proof of (3.33) is similar to that of [10, Lemma 7.8]. The key point is that
if we restrict the Hecke correspondence Sht(h )y,

Sht, 2 Sht(hy)y — "+ Sht,,

over the horocycle £Sht, via <§nv then it decomposes into two pieces, one
mapping isomorphically to £ 9% Sht,, via ?n, and the other one is a finite étale
cover of £tdy Sht,, of degree g% via 771- We omit details. O

3.5.5. Key finiteness results. For i € Z, let

Ve = (X" x 6oc) @k, P<iK <)

Then we have natural maps
"'—)V§,1 —>V§0—>V§1 — - — V]

which are not necessarily injective. Since the action of f comes from a co-
homological correspondence, the same cohomological correspondence also acts
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on each V<; making the above maps equivariant under the action of %”GZ We
also have an %g—module map

Vi — H (X" x 6o0) @ k,PH'K).
LEmMA 3.37.

(1) The kernel and the cokernel of V<o — V are finite-dimensional.
(2) The kernel and the cokernel of V<o — HY((X" x Gs) ®@ k,PHK) are
finite-dimensional.

Proof. (1) Since PH'K = 0 for i large, V<; = V for i sufficiently large.
Similarly, V; = 0 for ¢ sufficiently small. Therefore, it suffices to show that
V<i/V<i—1 (namely, modulo the image of V<;_1) is finite-dimensional for ¢ # 0.

The triangle P7<; 1K<, — P1<; K<, — pHiKSE[—i] — 0 induces an injec-
tive map

H(P1<iK <o) [HY (Pr<io1 K<) — HT' (X7 x 6o) @ k,PH K <0).
Taking inductive limit over k, we have an injection

Veif/Veio = I H (X7 % 6o0) @ k,PH' K <o)
(3.34) 5 |
=H (X" x 6) ® k,PH'K).

(We use that lim commutes with taking cokernel.) By Lemma 3.33, the right
side stabilizes as {PH'K<,} stabilizes for i # 0 and hence is finite-dimensional.
Therefore, for i # 0, V<;/V<;_1 is finite-dimensional. In particular, V<_; is
finite-dimensional.

(2) The injection (3.34) is still valid for ¢ = 0, and it can be extended to
an exact sequence

0 — Veo/Ve1 — HY((X" x 6) ® k,PHK)
— Im H' (X" X 6o0) ® k,Pr<_1 Kp).

By Lemma 3.33, Pr<_1 K, is eventually stable (in fact a constant inductive
system), hence the last term above is finite-dimensional. Since V<_; is also
finite-dimensional, Vg — HY((X" x G4) ® k,PHK) has finite-dimensional
kernel and the cokernel. O

COROLLARY 3.38 (of Lemmas 3.36 and 3.37). If f € Ig;s, then the image of
the Hecke action f:V —V (defined in Proposition 3.15) is finite-dimensional.

Proof. By Lemma 3.37(1), it suffices to show that the f-action on V<o has
finite rank. By Lemma 3.37(2), it suffices to show that PH°(f) : PH'K — PH°K
induces a finite-rank map after applying HO((X" x &) ® k, —). However, by
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Lemma 3.36, PHY(f) is mc-zero since agis(f) = 0, and the conclusion fol-
lows. ([

PROPOSITION 3.39. For any place y € | X| — X, V is a finitely generated
Hy @ Qp-module.

Proof. By Lemma 3.37, it suffices to show that HO((X x &) ® k,PHK)
is a finitely generated .77 ® Qg-module.

The ind-perverse sheaf PHY K has an increasing filtration given by PHYK <k
(by Lemma 3.33) with associated graded P,. Let F<y(PHK) C PH°K be the
sum of PH'K <, for k € &% and kK < Nd,. Then {F<y(*PH°K)} gives an
increasing filtration on PH° K. The map + in (3.32) induces

cari(y) : Gry (PHYK) — @ P,

KERL KSNdy,k4(N—1)dy," &
which is an isomorphism for large N, by Lemma 3.34.

Now hy sends F<n(PHYK) to F<y+1(PHYK). By Lemma 3.36, for N large
enough, the induced map

Cr&(hy) : Gri (PHYK) — Grk,  (PHOK)
is the same as the action of 1, € Picx (k)

(3.35) o Pr— @

Low) : @ﬁeﬁﬂmﬁéNdy,ﬁjé(N—l) ﬁeﬁﬁyﬁé(NJrl)dy@iNdyPﬁ'

Since 1¢y,) maps Py isomorphically to P4, (3.35) is an isomorphism. There-
fore, Grh(hy) is an isomorphism for large N.

Next we apply HY((X" x 64) ® k, —) to F<n(PH°K) and PHK, which
we abbreviate as HY(F< y(PHYK)) and H*(PHYK). Note that each F<y(PHK)
has a Weil structure, H*(F<y?HK) is a Frobenius module and we can talk
about its weight. We have an exact sequence

H(CGr, (PHYK)) — HY(F<ny_1(PH'K))

(3.36) o (FSN(pHOK)) N Hl(Gr]IG(pHOK)).

Since Gri (PHK) is a sum of P, it is pure of weight 0 by Corollary 3.29.
Therefore, H?(Gr); (PH°K)) is pure of weight 0 and H!(Gr (PH°K)) is pure of
weight 1. For weight reasons, (3.36) gives a long exact sequence

(3.37) HY(F<y_1(PHK)) — H°(F<n(PHK)) — H°(Grk (PHYK))
(3.38)  — WeoH (F<y_1(PHK)) — W<oH' (F<y(PH°K)) — 0,
where W<o(—) means the sub Frobenius-module of weight < 0. The surjec-
tivity of (3.38) implies W<oH!(F<n(PHK)) is eventually stable for N large,

and hence the last arrow in (3.37) is surjective for N large. As Grk(hy) is
an isomorphism for large N, it induces an isomorphism H°(Grk (PH°K)) &
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H°(Grd 1 (PH°K)) for large N. This implies that for large N, the image of
HO(F<n(PHYK)) in HO(PHK) generates it as an %, ® Qg-module. O

Let %ZE be the image of the ring homomorphism
A @ Qp — Endg, (V) x Qu[Picx (k)]
given by the product of the action map on V' and a%is.

COROLLARY 3.40 (of Proposition 3.39).

(1) %ZE s a finitely generated Qg-algebra of Krull dimension one.
(2) V is finitely generated as a %?-module.

Proof. Part (2) is an obvious consequence of Proposition 3.39. The proof
of part (1) is the same as [10, Lemma 7.13(2)]. O

THEOREM 3.41 (Cohomological spectral decomposition).

1) There is a decomposition of the reduced scheme o Spec%” mnto a disjoint
14 )
UnIoN

25\ Te
Spec(%@ ) d = ZEiS,Q[ H ZOE’@,

where Zgisg, = Spec Qy[Picx (k)]"Fc and ZOE,Z consists of a finite set of
closed points.
(2) There is a unique decomposition

V=W & Vi

mnto %g@@g—submodules, such that Supp(Vgis) C Zgis,g,, and Supp(Vp) =
Z3y.
(3) The subspace Vy is finite dimensional over Q.

Proof. (1) By Lemma 2.1, af;, induces a closed embedding Zgisg, <
Spec %EE. We are going to show that the complement of Zg;s g, in Spec %@E
is a finite set of closed points.

Let Zgis be the image of g in %EE. Then by Corollary 3.40, %?
is noetherian and hence Zgis is finitely generated, say by fi,...,fny. By
Corollary 3.38, each f; - V is finite-dimensional, therefore so is Zgis - V =
fi- V44 fy- V. Now let Z) C Spec(>)*? be the support of the finite-
dimensional %?—module Tgis - V. Hence Zy is a finite set of closed points.
The same argument as that of [10, Th. 7.14] shows that Spec(7>)"¢ is the
union of Zgis g, and Z). Finally we let nge be the complement of Zgis g, in
Spec(7; ).

The argument for (2) and (3) is the same as that of [10, Th. 7.14]. O
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3.5.6. The base-change situation. Consider the situation as in Section 3.2.6.
We argue that the analogue of Theorem 3.41 holds for Sht{:(X;X) in place
of Shtg;(3;X). Let

V! = H? (Sht5(2; Too) @ K, Qp)(r).

Then V' is also a %Gz—module; see the discussion in Section 3.3.4. The re-
sults in this subsection for the %”Gz—module V' have obvious analogues for
V' because most of these results are consequences of finiteness results on
PH'K and similar results formally hold for its pullback to X" x &’ . There
is one place in the proof of Proposition 3.39 where we used purity argu-
ment for the cohomology H*((X” x Go) ® k, P;), which continues to hold for
H*((X'" x &.,) ® k,'"*P,). Therefore, all results in this subsection hold for
V' in place of V. In particular, Theorem 1.1 holds.

4. The Heegner—Drinfeld cycles

In this section we define Heegner—Drinfeld cycles in the ramified case. All
the notation appearing on the geometric side of our main Theorem 1.2 will be
explained in this section.

4.1. T-Shtukas.

4.1.1. The double cover. Let X’ be another smooth, projective and geo-
metrically connected curve over k, and let v : X’ — X be a finite morphism
of degree 2. Let R' C X’ be the (reduced) ramification locus of v, and let
R C X be its image under v. Then v induces an isomorphism R’ = R. Let
o : X' — X' be the non-trivial involution over X.

We always assume that conditions (1.4) and (1.5) hold. In particular, they
imply that

RNYX=02.
Let
Yo =v(Z) C |X.
Then v : ¥ — Y is a bijection. For 2 € X, we denote its preimage in X/
by z’. Set
&, = H Spec k(z').

z'eXl

An S-point of & is {2’D}esy , where 2’ : S — Speck(z’) — X
We introduce the notation 2/ for all i € Z as before.

4.1.2. Hecke stack for T-bundles. Let

Buny = Picyx/ / Picx .
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As a special case of [10, Def. 5.1], for p € {£1}", we have the Hecke stack
Hk% s classifying a chain of r + 1 line bundles on X,

fi f ,
ﬁo*jﬁﬁlffﬁ--'*iéﬁr,

with modification type of f/ given by p;. Then Hk% v = Picxs x X", where
the projection to Picx records Lo, and the projection to X" records the locus
of modification of f; : £;_1 --+ L;. We define

I I .
Hk7 := HkT y// Picx
together with maps recording £;
p%i : Hk% —» Bunp, ¢=0,...,7.

4.1.3. T-Shtukas. For 2/ € ¥ and i € Z, we have a map

x'0) . &' — Speck(z') L Speck(z’) = X', 1 <i < dy = 2dy,

where the first map is the projection to the z’-factor and the last one is the
natural embedding. Again we denote the graph of x'®) (as a divisor on X’ x
&) by the same notation x'(.

Let 2., be the group of Z-valued divisors on X’ x & supported on
¥ x &/, which is the union of the graphs of X' for 2/ € o1 <i<dy.
For any D/ € 2/ as above, we have morphisms

/A\E(Déo) : Picxs X6go — Picyy,
AL(D.,) : Buny x & — Bunr,
(L Dpes ) — L0 Y T,

o' €XL,,1<i<d,,
Suppose p € {£1}" and D], € Z, satisty
r .
(4.1) ZW =deg D, = Z cfcz/).
i=1 2/ €X 1<i<d,

We then apply the definition of Sht%(E;Doo) to the case n = 1, the curve
being X', and ¥ and Y are both replaced by X/ . Denote the resulting
moduli stack by Sht%X, (D).
The groupoid Picx (k) acts on Sht% (D%, by tensoring all the line bun-
dles in the data with the pullback of K € Picx (k) to X’. We define
Sht7(Dl,) = Shtf ./ (DL,)/ Picx (k).
We have a morphism

M7« Shtg(DL) — X' x &L,
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SHTUKAS AND THE TAYLOR EXPANSION (II) 455
From the definition we have a Cartesian diagram
Sht/ (D) — HkF, x &/
(4.2) JMT’O l@;o,AL(—D;o)o(p;Txide,fw )
(id,Fr)
Buny ———— Bunp x Bunry.

From the diagram we get the following statement.

LEMMA 4.1. The moduli stack Sht%(Dgo) depends only on the image of
Dl in DL /v* Deo.

The following alternative description of Sht%(D(’)o) follows easily from the
definitions.

LEMMA 4.2. We have a Cartesian diagram

Sht%(D(’)o) T, Bunp

7
e
T,D(x)l w JA
O:D,

X' x &L, —— Bunr,
where X : L — L~ ® 7L is the Lang map for Buny and a%, sends

(1’/17 e ,x;; {l”(l)}z'ezgx,)

to the image of the line bundle

OX’ <Z Mzrx; — Z CS)Fﬂ(i))
i=1

2/ el 1<i<d,,
i Bunp.

COROLLARY 4.3 (of Lemma 4.2). The morphism H% pr s a torsor under

the (finite discrete) groupoid Bunr(k). In particular, Sht%(D’

o) is a smooth
and proper DM stack over k of dimension r.

4.1.4. Specific choice of D.,. For each pioo = (fiz)zex., € {£1}7=, define
the following element in 2

0o Db = Z X'V e 9.
[ IS
Definition 4.4. Fix r satisfying the parity condition (3.18). Let p € {£1}",
oo € {£1}¥=. For any D € 2 satisfying D/ = i - ¥, mod v*Zs, and
(4.1), define
Shtf(fto - ¥ := Shtf( D).
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456 ZHIWEI YUN and WEI ZHANG

The notation is justified because the right side above depends only on s by
Lemma 4.1. We denote the projection H% . for such D/ by

107, ¢ Sht7(pee - D) — X7 x &,

Remark 4.5. Whenever r satisfies the parity condition (3.18), for any
(1, ploo) € {£1}" x {£1}¥ e, the divisor D’ € 2., satisfying the conditions in
Definition 4.4 always exists. Therefore, Sht%(,uoo - ¥/ ) is always defined (and
non-empty).

The following lemma is a direct consequence of the diagram (4.2).

LEMMA 4.6. The following diagram is Cartesian:

St (oo - 3 HIG x &l

(4.3) l l(p%oxidego ALL L, o(pF, xidgs )
(id,Fr)

Buny x 6., — (Buny x &) x (Buny x &),
where AL%#M 18 the map
(44) AL}, = (AL(—po - Bl), Fre, ) : Buny x & — Bung x &

4.1.5. Relation to T-Shtukas in [10]. For (u, tec) € {1} x {£1}5, let
[ = (@, —too). Then Shtf is defined as in [10, §5.4] (the loc. cit. also applies to a
ramified cover X’/ X), with a map 7% : Sht?, — X" x X' . Let &/ «— X'¥=

be the product of the natural embeddings Spec k(z’) < X’ for each z € X .
From the definitions, we see that Sht%(uoo - X7) fits into a Cartesian diagram

Shth (s - ) Shtk

n ~
J(HTM&OO Jﬂ—;"

X x &Ly X7 x X Feo,

4.2. The Heegner—Drinfeld cycles. In this subsection we will define a map
from Sht%(,uoo - 37) to Shtr(X; o) depending on an auxiliary choice.

Recall that condition (1.4) is assumed. Let ¥/,=v~1(Zy). Let Sect(X';/Xy¢)
be the set of sections of the two-to-one map ¥’ — ;. Then Sect(X} /%) is

a torsor under {£1}*/. The auxiliary choice we need is an element py €
Sect (X /Xr).

4.2.1. The map Qgin. Let ps = (pf, poo) € Sect( /f/zf) X {il}x‘x’- We
define a map

5#2

Bun

: Picy: x&. — Buny(2).
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SHTUKAS AND THE TAYLOR EXPANSION (II) 457

To an S-point (£, {x’(l)}x/eg&)) of Picxs xS., we assign the following S-point
of Buny(X):

T = (€, {5(—%93)}162),
where

o £ =vg, L, where vg =v xidg: X' x S = X x S;
e for z € Xy, denote the value of iy at x by p, € v=1(z) — then (—5x) =
Vs (L(—pa));
o for x € Y,
1 Vs (L(=Tpay = Tpney — - = Lpntan ), e =1,
Vs (L(—T paz+1) — Dpndory — -+ = Tprean))),  pa = —1.
Note here that for x € ¥, the divisors I',;a) + T2 + -+ + 'y, and
I oe+y + Upraoroy + -+ + I'pyea,) in the above formulae are “half” of the
divisor {z'} x S C X' x S.
Dividing by Picx we get a morphism
65% : Buny x &, — Bung(X).

The next lemma is a direct calculation.

LEMMA 4.7. Let pus, = (jif, fioo). The following diagram is commutative:

ALE,
Buny x 6/, ————— Buny x &/
w w
(QBEH’V‘X’)J J{eBEYI
AL

Bung(X) x Goo — = Bung (%),
where Voo : 6L — S is the map induced from v.
4.2.2. Heegner—Drinfeld cycle. We define
Ty = {£1}" x Sect(X} /%) x {1} %=,
For pu = (p, pif, ptoo) € Tr 3, we have a map

ot HkG x &L, — HKL,(D)

by applying 645, (where us = (i, fioo)) to each member of the chain {£; }o<i<,

classified by Hk%. By construction we have p; o 0y, = 65> o (p%z X idgr_) :
Hk% X 6L, — Bung(X) for 1 <i <.

Now compare the Cartesian diagrams (4.3) and (3.21). Each corner of the
diagram (4.3) except the upper left corner maps to the corresponding corner

of (3.21) by Opun and 64}, ; Lemma 4.7 says that the corresponding maps in
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458 ZHIWEI YUN and WEI ZHANG

the two diagrams are intertwined. Therefore, we get a morphism between the
upper left corners since both diagrams are Cartesian:

0" : St (poo - X)) — ShtF (55 D).

We have a commutative diagram

Shtb (1100 - X) s Sht! (5 Yoo

n .
J/HT:/—LOO JHE

(V" Voo)

X"x 6, — X" x 6,
which induces a morphism
0" - Shti (e - £) — Sht/ (55 Boo) := Shtf (55 Bao) X xrxen, (X7 X &),
Since Sht%(,uOO -3/ ) is proper over k of dimension r by Corollary 4.3, its
image in Shtg(3; X ) defines an element in the Chow group of proper cycles.

Definition 4.8. The Heegner—Drinfeld cycle of type p = (i, jty, pioc) € Tr 5
is the class

ZH = 0 [Sht7: (oo - Tho)] € Chey (Sht(Z5 Do) g

Definition 4.9. Let p, i/ € T, 5. Define a linear functional 4+ on %”GE by

1
I (f) = < H dw’) (zn f *Z“/>Shtg(z;zw) €Q. fey.

x'exl,

Here we are using the %g—action on Che,(Sht&(3; X)) defined in Sec-
tion 3.3.4.

4.3. Symmetry among Heegner-Drinfeld cycles. Let p = (p, piy, pioo) €
%, 5. We study how Z# changes when we vary u.

4.3.1. Changing p. As in [10, §5.4.6], for two choices p, ' € {£1}", there

is a canonical isomorphism ¢, , : Sht;ﬁp(,uoo X)) Sht% (oo - XL.) preserving
the T-bundle £; and the projection to &,. However, ¢, ,» does not preserve

the projections H% . and H% froo” Instead, we have a commutative diagram

e(p,p") ’
St/ (ftos - £og) —————— Sht7 (tos - £
JH;“U‘OO JH;,’HOO
’ / o (g xid ’ /
X7 x 6 X7 x 6,
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SHTUKAS AND THE TAYLOR EXPANSION (II) 459

where the involution o(p, ') : X'™ — X" sends a point (z),...,x;) to the
point (zf,...,2!) where, for 1 <i <r,

o
2 = 1}; if Hi = ,UJ;a
(2 .
o(el) i i
Letting p/ = (i, puf, fioo), it is easy to check that ¢(pu, p') intertwines the map
0" and O+ .

4.3.2. Changing py. Let py = {pi;}eex, € Sect(X/Xf) be another ele-
ment. Consider the following divisor on X'

D(pp, i) = >
TEXf,UaF Yy

We have an automorphism
1y . K / © /
L(Mfuuf) t Sht7 (oo - Xoe) — Shtz (Koo * X5

sending (Lg; z;; {z'MW}) to (Li(=D (g, 1y)); is {2'M}). Letting

1= (s 1, phoo)

direct calculation shows that the following diagram is commutative:

(g ')
Shtf (t1oc - £) —————+ Shtf (o - £

ALgne (1f 1)

Sht}, (5; Bog) — > Sht’(3; Lo,

where ALgnt(f1f, py) is the composition of ALgps, . (see Section 3.2.7) for z € X
such that p, # ul,.

4.3.3. Changing peo. Let pl, € {£1}*= be another element. Consider
the following divisor on X' x &._:

po=1 =1 Ho==1,n5p=1

where both sums are over x € ¥,. Define an isomorphism
HJtoos 1he) t SO (j1oo - £ho) — St (sl - L)
sending (Lg; zi; {z'W}) to (Li(—D(poo, pihy)); zi; {z'M}). Letting

o=, f, )
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460 ZHIWEI YUN and WEI ZHANG
direct calculation shows that the following diagram is commutative:

Shf e - ) — 1

lgu

Sht (35 o)

Sht/r (1, - £

leu’

AL TR
Sht (Moo 160 ) Shtg(E;Em),

where ALght (foo, f1h) 1S the composition of ALgp, for x € ¥ such that
[z F My

4.3.4. The action of A,.5x. We observe that T,y is a torsor under the
group 2,5 = (Z/QZ){LQ"“’T}HE. We denote the action of a € 2,.5; on T, 57 by
a-(—).

We also have an action of 2.5, on Shtfi(3;Yo,) defined as follows. The
factor of Z/27 indexed by 1 < i < r acts on the i-th factor of X’ by Galois
involution over X. For x € ¥, the non-trivial element in the factor of Z/27Z
indexed by z acts by the involution ALgy , defined in Section 3.2.7 on the
Sht¢ (X; Xoo)-factor and identity on X" x &, . We denote this action by

Q[T,Z >a+—— ALSht/,a‘

The following lemma summarizes the calculations in Sections 4.3.1, 4.3.2
and 4.3.3.

LEMMA 4.10. For any p € T, x and a € U, 5, the following diagram is
commutative:

St (100 - Do) — 2 Shtg ((a - poc) - )

le/,u, lelwu
ALgyr

Sht/(3; Xo0) - Shtf(2; Lo ).

Here the upper horizontal arrow is the composition of v(p, H’),L(uf,,u’f) and
ooy 1) deﬁned in Sections 4.3.1, 4.3.2 and 4.3.3. In particular, we have

= AL o (Z29M), Vpe%, a5
Let H= (H? Nfaﬂoo)a/j’ = (H 7,U/f,,Uzgo) € TT,Z‘ Let

Ap, ') :={1 < < rlp; # pi},
(4.5) S (p, i) =1z € Blpua # 11z} C X,
(4.6) Sq(p, ) i={x € Blpe = pth} = T — S (1, ).

COROLLARY 4.11 (of Lemma 4.10). Let pu,p' € T, 5. Then I+ depends
only on the sets A(u, p') and X_(u, ).
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Proof. Let a(u, f') € Ay 5 be the unique element such that a(u, ') - = g’
Then A(u, p') and X_(p, p1') determines a(u, ¢') and vice versa. Therefore, we
only need to show that I**" depends only on alp, 1').

Suppose u, ¢/ and i, @’ satisfy a(p, ') = a(@,p’). We will show that
ik — Tk Since %,x is a torsor under 2, s, there is a unique b € 2, »; such
that i = b-p, i’ = b-p'. Since ALgyy, commutes with the action of any
f € A5, we have

(21, f % 2") = (AL (29), ALG0 o (f % 27))

= (AL ,(29), f * ALght,7b(Z“')>.

By Lemma 4.10, we have

-~

ALY o(29) = 20, ALY, (27) = 2V
Therefore, we get
(2H, fx2H) = (2", [ % 2");
Le., Imi' (f) = T (f) for all f € JET. O
We will see later (in Theorem 5.6) that in fact I*#' only depends on
Y (p, 1) and the cardinality of A(p, p').

4.3.5. Heegner—Drinfeld cycles over k. Fix a k-point ¢ € &’ (k). Con-
cretely this means a collection of field embeddings

6 = (gx’)x’eEgoa gx’ : k(~r/) — k.

Then ¢ also determines a k-point of G, by the projection & — S, which
we still denote by €. We denote

Sht (35 ) :=Shtg (5 Xeo) Xex &5
Sht;(3; €) 1= Sht (23 Beo) Xer, € = Shtg(5;€) xxr X7,
Sht (pos - €) = Sht7: (oo - ho) Xe, &-

Then we have maps

Sht4 (oo - €)

7 w
05/ X

Sht¢:(2; €) Shtg (3; ).

Definition 4.12. The Heegner-Drinfeld cycle of type p = (p, fif, foo) €
T, 5 over £ is the class

Z1(€) == O, [Sht/ (110 - €)] € Che,r (SHEE(3:€))g-
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462 ZHIWEI YUN and WEI ZHANG

By definition, the pullback of Z# to Sht:(¥; Y) @ k is the disjoint union
of ZH(§) for various & € & (k).

COROLLARY 4.13 (of Lemma 4.10). For pp = (u, jif, fioo) € Tpx and a €
A s, we have

ZH() = ALgyy o(Z97(€))-

LEMMA 4.14. For any € € &/ (k), any pu, 1/ € T,5 and any f € A5, we
have an identity

(4.7) H“’“,(f) = (2M(&), f * Zw(f))smg(zg)-

In particular, by Corollary 4.11, the right side depends only on the sets A(p, i)
and X_(p, p').

Proof. Since Sht%(X; Yo ) ®k is the disjoint union of Sht/5(3; £) for a total
of [[wes:, du different choices of &, it suffices to show that the right side of
(4.7) is independent of the choice of £&. To compare a general £ to &, we may
reduce to the case where ¢’ € &' (k) is obtained by changing &,/ to Fr(&,/) for
a unique 2’ € ¥/, and keeping the other coordinates.

Consider the isomorphism

g SBtE (oo + $h) — ShtF: (1o - T
sending
(Lis 22D Ay DY ey )
to
(Li(—paa’ M) al; 2’ {y/ D} yesy yrsar).
Direct calculation shows that the following diagram is commutative:

Shtg: (f1oc - Tho) ————— ShtF: (1o - )

(4.8) Je’# M
ALY

St/ (5; Sog) —————+ Sht/4(3; Loo),

where ALS,) sends
(5 252D {y' DY e yrrar)
to

1
(€] (—52 M)l e’ {y W yesy yror):

(Here (1 is the image of 2/().) The diagram (4.8) implies that
(ALY 24() = 2(©).
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Therefore, using that AL(xl,) commutes with the 7> -action, we have

(29(9), f+ 2" () smpme) = (ALY) (2 ())f*(AL”) 2 snez (o)
(ALY (2(€)), (ALD)*(f % 2 (€))sminse)
(2H(€), f * (§I)>Shtg(2§/ O

5. The moduli stack M, and intersection numbers

The goal of this subsection is to give a Lefschetz-type formula for the
intersection number I (hp); see Theorem 5.6. This is parallel to [10, §6] in
the unramified case.

Recall that X' and R’ are the preimages of ¥ and R under v. We introduce
the notation

U=X-Y—-R,

U=X"-%-FR
Our construction below will rely on variants of the Picard stack with an extra
choice of a square root along the divisor R, which naturally appears in the

geometric class field theory of X with ramification along R. We refer to Ap-
pendix A for the definitions and properties of such variants of the Picard stack.

5.1. Definition of My and statement of the formula. Let d be an integer.
We shall define an analog of the moduli stacks My and Ay in [10, §6.1] for the
possibly ramified double cover v : X’ — X.

5.1.1. The stack M. For any divisor D of X disjoint from R, Ox (D)
has a canonical lift Ox (D)! = (Ox(D),Og, 1) € Pic}éﬁ(k) and a canonical lift
Ox(D) = (0Ox(D), O, 1,1) € Pic V().

Suppose we are given a decomposition

S=%, U
Let
p=degR=degR'; N =deg; Ni=degX.

Definition 5.1. Let My = M4(3+) be the moduli stack whose S-points

consist of tuples (Z,J,«, 3, 7), where

e 7 is a line bundle on X’ x S with fiber-wise degree d + p — N_, and « is a
section of Z.

e 7 is a line bundle on X’ x S with fiber-wise degree d + p — N4, and 3 is a
section of J.
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464 ZHIWEI YUN and WEI ZHANG

e 7 is an isomorphism ngx(I) ®O0x(2_ )5S Nmﬁx(j) ® Ox (X)), as
S-points of Picﬁ’“p . Concretely, j is a collection of isomorphisms
(5.1)  gNm: Nmyx(Z) ®@ Ox(3-) — Nmyr/x(J) @ Ox(34),
9z Llwxs — Tlwxs VYV €R
such that the following diagram is commutative for all = € R:

2
7%

I®2|a:’><S ~ j®2‘x’><5
(52) zJ/ ZJ/
]Nm'rXS
Nmy//x (Z)|exs ——=— Nmxs/x (T )|zxs-

Here the vertical maps are the tautological isomorphisms.
These data are required to satisfy the following conditions:
(1) al,~1(s,)xs is nowhere vanishing.

(2) Bl,-1(n_)xs is nowhere vanishing.
(3) For each = € R, we have
Je(alarcs) = Blarxs:

Moreover, Nm(«) — Nm(f) vanishes only to the first order along R x S.
(4) This condition is non-void only when ¥ = @ and R = &; for each geometric
point s € S, the restriction (Nm(a) — Nm(f))|x s is not identically zero.

From the definition we have an open embedding
. 3/ v/
(53) Ld - Md — Xd+pr_ XPiC)\?E;\/E’(LFP Xd+pr+7

where the fiber product is taken over
—~VER;VR

—~ “VR ~ Algi, N .
) v NG +p—N_ . VR;VR,d+p—N_
Va1 Xgyp-N_ — Xd-s-p—N, —— Picy
RO0x(S_ . .
x(2-) Plc)\éﬁ,\/ﬁ,d—s—p
and
VB Xj\/ﬁ;\/ﬁ
—~ “~VR ~ d+p—N. . \/7\/7 _
. v VR =Ny R;VR,d+p—Ny
Vg : Xd+pr+ —_— Xd+p—N+ — Picy

ROx (T . :
x(24) PlC)\éﬁ,\/ﬁ,dﬁ-p'

TIVRVR . .
Here the Abel-Jacobi maps AJ;CP\_/]; . are defined in Section A.1.5.

Remark 5.2. When ¥ = @ and R = &, there is a slight difference between
the current definition of My and the one in [10]. In [10], we only require that
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alx/xs and ] x7«xs are not both zero for any geometric point s € S; here we im-
pose a stronger open condition that Nm(«) —Nm(/3) is non-zero on X x s for any
geometric point s € S. Therefore, the current version of M, is the one denoted
by Mdo in [10]. A similar remark applies to the space A4 to be defined below.

5.1.2. The base Ay.

Definition 5.3. Let A; = Ay(X+) be the moduli stack whose S-points
consist of tuples

(A) ®R7 L, a, b7 ﬁR)?
where

o (A,Op,) € Pic}éﬁ’dﬂ’(S) — namely, A is a line bundle on X x S of fiber-
wise degree d + p, O a line bundle over R x S and ¢ an isomorphism
@®2 = A‘RXS 5

e ¢ and b are sections of A;

e Up is a section of Op.

These data are required to satisfy the following conditions:

(1) a|lg_xs =0, and a|x, x5 is nowhere vanishing.

(2) blp, xs =0, and b|s_x g is nowhere vanishing.

(3) alrxs = t(95?) = blpxs. Moreover, a — b vanishes only to the first order

along R x S.
(4) This condition is only non-void when ¥ = @ and R = &; for every geo-
metric point s of S, (a — b)|xxs # 0.

The assignment (A, Og,t,a,b,9r) — (A(=X_),0Or,t,a,9r) gives a map
.Ad — )A(ﬁ)_Ni.
Similarly, the assignment (A, Og,¢,a,b,95) — (A(=X4),OR,t,b,9r) gives a
map
vVR
Ag — Xd+p—N+'
Combining these maps, we get an open embedding

—~

. vVR VR
(54) Wy 'Ad(_>Xd+p7N_ XPic)\éﬁ;\/ﬁ’d+p XderfN_p

where the the fiber product is formed using the Abel-Jacobi maps

—~VR;VR .
L. XVR Adatp-N_ pieVEVRdtp-N- BOx(2), o VEVRdtp
atAgyp-N_ T+ FlCx — Flcy )
—~~+VR;VR
Al o
. ¥R dtrNi . VRVRd+p—Ni ®Ox(E4) . VRVR,d+p
Z/b.Xder_N+ — Picy ———— Picy .
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5.1.3. The base AZ. Later we will need to use another base space .A'fi.

Definition 5.4. Let A’ = A%(X+) be the moduli stack whose S-points
consist of tuples (A, a,b) where

e A is a line bundle on X x S of fiber-wise degree d + p,
e g and b are sections of A,

such that the same conditions (1)—(4) hold as in Definition 5.3.
Similar to the case of Ay, we have an open embedding
(5.5) W Ay = Xy N X predto Xatp-n,.
By [10, §3.2.3], AZ is a scheme over k. Later it will be technically more con-
venient to apply the Lefschetz trace formula to the base scheme .AZ instead of

the stack Ag.
There is a forgetful map

Q: A — .A(bi
that corresponds to the forgetful maps )/(\ﬁ)_ Ny )/(\der, N, under the em-

beddings (5.4) and (5.5).
We have a morphism
0 .AZ — Uy
sending (A, a,b) to the divisor of a — b as a non-zero section of A(—R), the
latter having degree d. The conditions (1), (2) and (3) in Definition 5.3 imply
that the divisor of @ — b does not meet X or R.
For D to be an effective divisor on U of degree d, let

(5.6) A =67Y(D) c A
5.1.4. Geometric properties of My. We have a morphism
fa: Mg — Ay

defined by applying 7V to both X: drp—n_ and X dp— ~, - In other words, we
have a commutative diagram

My—— X\{Hp—N, X

(5.7) lfd

C YVR vVR
Ad Xisp-n_ % o PicYTEVRATe Xdtp-ny

1Z

‘ X/
Va,Pic)\éﬁ’\/ﬁ’d+p,u5 d+p—N4

“VR “VR
lyd+pN Xyd+p7N+

We denote by fg the composition
£ Mg 25 A, S A

The following is a generalization of [10, Prop 6.1] to the ramified situation.
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SHTUKAS AND THE TAYLOR EXPANSION (II) 467

PROPOSITION 5.5.

(1) Whend > 29 —1+ N =49 — 3+ p+ N, the stack My is a smooth DM
stack pure of dimension m =2d+p— N — g+ 1.

(2) The diagram (5.7) is Cartesian.

(3) The morphisms fq and ffl are proper.

(4) When d > 3g — 2+ N, the morphism fq is small; it is generically finite,
and for any n > 0, {a € Ag|dim f;*(a) > n} has codimension > 2n + 1
n Ag.

(5) The stack Mg admits a finite flat presentation in the sense of [10, Def. A.1].

Proof. (1) To show that M is smooth DM, it suffices to show that both
of following stacks are smooth DM:

. ,
(5.8) Xatp-N_ Xua,Pic}fﬁ”/ﬁ’d“w Koo

/ v/
(5.9) Xipp—N_ X o VR/Rdto Vs Xayp-N,.
X )

Va,Pic

Let Qf}/, be the moduli stack of pairs (L', 9g), where L' € Picxs and Jg

is a section of L'|g. Then Qf}l, = Picx Xp \ﬁPlc}( ‘F. In particular, the

norm map QX, — PIC\F RVE | is smooth and relative DM.

For any geometric point s and line bundle £ on X’ x s of degree n >
2¢'+p—1, the restriction map HY(X' x s,L£) — HO(R’ X s E|R/XS) is surjective
with kernel dimension n— ¢’ +1— p. This implies X/, X! — QY % is a vector bundle
of rank n — ¢’ +1 — p, whenever n > 2¢’ — 1+ p, in which case X{l itself is also
smooth.

Ifd>2¢g—14+N >2¢—1+ Ny, thend+p— Ny >2¢ —1+ p, the map
vg - Xd+p N, QX, — Plc\ﬁ\r is then smooth and relative DM by the
above discussion, and therefore the fiber product (5.9) is smooth over its first
factor X&+p—N,- Since X(’i+p_N7 is a scheme smooth over k, the fiber product
(5.9) is smooth DM over k. The argument for (5.8) is the same.

For the dimension, we have

dim/\/ld:dimX\é+p_N7 + dim)/(\c'l+p_N+ — dimPic}éﬁ’\/ﬁ
=d+p—N_)+(d+p—Ny)=(9-1+p)

Condition (2) follows directly by comparing the four conditions in Definition 5.1
and in Definition 5.3.

(3) Since Q is proper, it suffices to show that fy is proper. By (2), it
suffices to show that ﬁr\/ﬁ : )?7’1 — X\T\L/ﬁ is proper for any n > 0. We consider
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468 ZHIWEI YUN and WEI ZHANG

the factorization of the usual norm map

VR VR
o VR o VR
Dp: X Uy XVR 2L X

The same argument of [10, Prop. 6.1(4)] shows that 7, is proper. On the
other hand, @T‘l/ﬁ is separated because it is obtained by base change from
the separated map [2] : [Resit A'/ResZ G,,] — [Reslt A'/Res G,,]; see the
diagram (A.1). Therefore, ﬁg/ﬁ is proper.

(4) Over AS == (XYE_\ X R Tdts XYR_n.)NAg, fqis finite. The
X

complement Ag — Ag is the disjoint union of Agzo and AZZD corresponding to
the locus @ = 0 or b = 0. Note that A3™" = & unless ¥y = @ and A" = o
unless ¥>_ = @.

We first analyze the fibers over A%=" when ¥_ = @. The coarse mod-
uli space of A% is U, (by taking div(a) — R; note that ¥ = ;). Hence
dim A%=0 = d, and codim4,(A%") =d — g+ 1+ p — N. The restriction of f;
to AZZO is, up to passing to coarse moduli spaces, given by the norm map with
respect to the double cover U' — U,

. d+p—N.
U(; XPiC\/E’der PICX,p e Ug.
X

From this we see that the fiber dimension of f; over AZZO is the same as that

of the norm map Picyx: — Pic}{ﬁ, which is ¢’ — g.

Similar argument shows that when ¥, = &, codim4,(A%%) =d — g+
14 p— N and the fiber dimension of f; over A?I:O is still ¢’ — g. In either case,
since d > 3g — 2+ N, we have

d—g+1+p-N2>2g—-1+p=2(g —g) +1,

which checks the smallness of fj.

(5) We need to show that there is a finite flat map ¥ — My from an
algebraic space Y of finite type over k. As in [10, proof of Prop. 6.1(1)],
by introducing a rigidification at some closed point y € U’, we may define a
schematic map

Mg — J}i;p x Prymy//x,

where J* is the Picard scheme of X’ of degree d + p, and Prymy, x =

ker(Nmﬁ x 1 Pic% — Pic}éﬁ’o). Since J;l;,rp is a scheme and Prymy//x is a
global finite quotient of an abelian variety, J;i;,rp X Prymy/,x admits a finite

flat presentation; therefore, the same is true for M. O

5.1.5. The incidence correspondences. To state the formula for ]I“’“/(hp),
we need to introduce two self-correspondences of M;. We define H to be the
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SHTUKAS AND THE TAYLOR EXPANSION (II) 469

substack of My x X’ consisting of those (Z, 7, «, 3,7, 2") such that 8 vanishes
on I'yy. We have the natural projection
Ty Hy — My
recording (Z, J, «, 3,7). We also have another projection
Tyt He — My
sending (Z,J,a, B, 3,2") to (Z,TJ (Lo — L), B, 7). This makes sense since

twisting by Ox/(I'yr — I'yr) does not affect the image under Nmﬁ and

the fact that 8 can be viewed as a section of J(I'y,s — I';/) since it vanishes
along 'y, Via (WJF, 7+), we view H, as a self-correspondence of My. We
have a commutative diagram

Hy

N
(5.10) Mg Mg
i

PN
Aqg

Similarly, we define H_ to be the substack of My x X’ consisting of
those (Z,J,«, 3,7,2") such that « vanishes on I'yy. We view H_ as a self-
correspondence of M, over Ay,

=t

(5.11) a d
N
Ad7
where
<7_(I,j,a,,8,j,$/) = (ij7a767.])
and

7T, T,0,8,3.2') = (ZCoar = T), T, 0, ,)-
Let Ag = (XC}{EJ_]\L Xpic){ﬁﬁXﬁ—M)mAd be the locus where a, b # 0.2

Let /\/lfi> C My be the preimage of Ag. Let ’Hﬁ and H be the restriction of
Hy and H_ to .Ag.

*The definition of AY is different from the one in [10].
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470 ZHIWEI YUN and WEI ZHANG
Consider the incidence correspondence

!
Id+p—N+

(5.12) / \

/ /
Xd“l‘p_NJr Xd—i—p—NJr'

<_
Here Iy, n, = {(D,2) € X3, n, x X'[2' € D}, i (D,2') = D and
- / / /
i (D,2')=D+o(z') — 2.

By definition, over ./\/lg, ’Hﬁ is obtained from the incidence correspondence
Ic/l+p—N+ by applying X(’Hp_]\L xPiC;ﬁﬁ;\/ﬁ (—) and then restricting to Ag. Sim-
ilarly, 2 is obtained from the incidence correspondence I}, p—N_ by applying
(—) X pioVRWE X1 p-n, and then restricting to .Ag (cf. [10, Lemma 6.3]).

X

From this description, we see that dim ’Hi = dim ./\/lfi> =2d4+p—N—g+1.

Let ﬂi be the closure of Hi, and let [ﬁi] denote its cycle class as an element in

H2B(1\2/[d +p—N—g+1)(H+). Then [ﬂi} is a cohomological correspondence between

the constant sheaf on My and itself, which then induces an endomorphism of

R f4,Qy:

fd,!mi] ‘R fa)Qr — Rfq)Qp.
Taking direct image under Q : A; — AZ, we get an endomorphism

S HS)  Rf5Qe — R Q.
For a € A’(k), let (ff“[gi])a be the action of fgvl[ﬁﬁ] on the geometric stalk
(Rfa,Q¢)a-

5.1.6. The formula. For the rest of the section, we fix a pair
= g, froo)s ' = (s ply, poy) € T,
We let
Y= E'F(Hnu’/)’ Y= E—(,U’uu/)

be defined as in (4.5) and (4.6). Thus My = M4(X4) is defined. We also let
(5.13) re={1<i<rlp=piy; - ={1<i< vl # pi}
The following is the main theorem of this section, parallel to [10, Th. 6.5].

THEOREM 5.6. Suppose D 1is an effective divisor on U of degree d >
max{2¢' — 1+ N,2g}. Under the above notation, we have

(5.14) 1 (hp) = > Tr (DG © (A o Fra, (Rf3,Q0)a)
aEAE(k)

where Fr, is the geometric Frobenius at a.
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SHTUKAS AND THE TAYLOR EXPANSION (II) 471

5.1.7. Outline of the proof. The rest of the section is devoted to the proof
of Theorem 5.6. The proof consists of three steps

I. Introduce a moduli stack Mg (ps, p1;) and a Hecke correspondence Hk’f\/[“ ;l
for Ma(ps, p5;)-
This step is done in Section 5.2. We also introduce certain auxiliary

spaces that form the “master diagram” (5.18). Later we will apply the
octahedron lemma [10, Th. A.10] to this diagram.

IT. Relate Mg(ps, pi%;) and Mg; relate Hk*/(’/l“; and a composition of H.
This is done in Section 5.3. This step is significantly more complicated

than the unramified case treated in [10]. It amounts to showing that My
is a descent of My(uyx, p5;) from &, to Speck.

IT1. Show that I** (hp) can be expressed as the intersection number of a cycle

class supported on Hk/\f' ;l and the graph of Frobenius of Mg(us, u%),
and rewrite this intersection number into a trace as in the right-hand

side of (5.14).

This step is done in Section 5.4. The argument is quite similar to the
proof of [10, Th. 6.6], together with a standard application of a version
of the Lefschetz trace formula reviewed in [10, Prop A.12].

5.2. Auziliary moduli stacks.
5.2.1. The stack Hyq(X).
Definition 5.7.

(1) Let Hy(X) be the moduli stack whose S-points consist of triples (ET, £, ¢),
where
o ET=(&;{E(—L2)}) and &' = (&5 {€'(—12)}) are S-points of Buny(X)
such that deg(&’|x xs) —deg(E]xxs) = d for all geometric points s € S;
e ¢ : & — &' is a map of coherent sheaves that is injective when re-
stricted to X x s for all geometric points s € S and maps 5(—%;1:) to
E'(—iz) for all z € 3
e the restriction ¢[(xR)xg is an isomorphism.
(2) We define

Hy(X) = Hy(X)/ Picy,
where Picy acts by tensoring on £ and £f simultaneously.

We have a map

pii = (Ou.p) : Ha(E) — Bung(X)?
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472 ZHIWEI YUN and WEI ZHANG

recording £ and £'f. We also have a map
(5.15) S: Hd(E) — Ud

recording the vanishing divisor of det(y) as a section of det(€)~! @ det(&’).
We also have an Atkin—Lehner operator

(5.16) AL oo : Hy(S) X Goe — Hy(S)

defined by applying AL o (see (3.20)) to both £ and &', and keeping ¢.
5.2.2. The Hecke correspondence for Hy(X).
Definition 5.8. Let p € {£1}".

(1) Let I/ﬁ%’d(E) 3 be the moduli stack of ({gj}ggigr, {gﬁ}ogigr, {xi}lgigr)
together with a diagram

I

507798177+ + &
(5.17) [o o B
50,{1 51*{2 . ,Jzég/
where

e cach & and &/ are underlying rank two vector bundles of points Sf , 6';
of Buns(X);
e the upper and lower rows form objects in Hks (%) with modifications
at {ziti<i<r € X7
e the vertical maps ¢; are such that (EJ, EZ i) € ﬁd(z).
(2) Let

HKY; 4() = Hk}; 4()/ Picx,
where Picx acts on I/LIvk% 4(2) by simultaneously tensoring on all EZ-T and Sf.

The notation for Hk}; ;(X) is justified because one can check, as in the

case of Hk%(E), that fﬁ{%yd(z)/ Picy is canonically independent of p.
We have projections

PH; : Hk?[,d(z) — Hd(E), 1= 0, o, T

recording the i-th column of the diagram (5.17). We also have projections
recording the upper and lower rows of the diagram (5.17):

7. 7): HkY; 4(2) — Hkg(2)2

3In [10], the analogue of Iﬁ%,d@) was denoted by fﬁ{%,d.
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Let
Hk/;_},d(z:) = Hk%,d(z) X xr X/T,
Hk{:(X) == Hk () x xr X
The maps py; and ¢’ induce maps

PH,i

p}{i: HK), (z) o HKY o(5) P Hy(S), i=0,....r,
=07 J(2) — Hk””(z)
5.2.3. The master diagmm. Recall pp = (p, ps), 1’ = (W', py) € Tz We

consider the following diagram in which each square is commutative:

(5.18)

© ' G*Lk xidg q de
(Hk7 x Hk7 e B NN G(2)E. <7Hk dD)er
l(pTOXpTIOXIdG/ ,aT) J(p’éyo,ac) (le,o’O‘H)J(
6##
(Bund)sy, x (Bund)e,, — Bung(X)? x Bung(5)? % Hy(S) x Hy(S)

X6

(idFr)T B (id,Fr)T (id,Fr)T
0"“1/"‘/

(Bun?)e_ e Bung(%)? i Hy(%).

Here we use subscript &/ to denote the product With S’ over k. The map
GBun Bun? x &, — Bung(X)? is given by 04% x QBun, using a common copy
of &/ ; here Hﬁf/ : HK x Hk’r_ﬁ x &, — Hk{(XZ)? is similarly defined using
6" and 6l" .

Let us explain the three maps ar,ac and ayg that appear as the second
components of the vertical maps connecting the first and the second rows.

e The map ag is the composition

/ p ><p Xid g/ AL
173 123 T,r T,r S THoo !,
HKG x HKG x &, 17" %, Bup2 x &, — 2", Bup2 x &,

where ALz, . is defined as
(5.19)
ALT,Moo,MQX, ([’1’ 'CQ’ {1"/(1)})

(e (- X ) e (- e ) e ).
FASDIFY T€Y 0o

Hence on the & -factor, ar is the Frobenius morphism.
e The map o is the composition

pg »XVoo AL (2)

HK(2)? x 6l —"— Bung(2)? x o ——= Bung(2)?,
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where AL(GQ’)OO is ALg o on both copies of Bung(X) using a common copy
of 6.
e The map oy is the composition

pl].ITXVoo

.
HK 4(3) x 6L 22 Hy(5) X Gae —2% Hy(3).

5.2.4. We define Sht% 4(3;¥o) to be the fiber product of the third col-
umn of (5.18); i.e., the following diagram is Cartesian:

Shtﬂd(E; Yoo) — Hk/ﬁ’d(Z) x &L,

(5.20) J J@'H,o,am
(id,Fr)
Hy(Y) ———— Hy(¥) x Hy(2).

Then the fiber product of the three columns are

(5.21)

o'nxom’
)

Sht?7(fioo - Xho) X1, Shte: (sl - S Sht5(3; Beo) Xer. Sht(2; Seo)

— Sht'F 4(3; Xoo).

Recall the map s : Hy(X) — Uy from (5.15). The Hecke correspondence
HkY; 4(X) preserves the map s while the Frobenius map on Hy(X) covers the
Frobenius map of Uy. Therefore, from the definition of Sht7 ;(3;¥s), we
get canonical decomposition of it indexed by k-points of Uy, i.e., effective
divisors of degree d on U. As in [10, Lemma 6.12], one shows that the piece
indexed by D € Uy(k) is exactly the Hecke correspondence Sht{:(%;Yoo; hp)
for Sht(3; Xs). In other words, we have a decomposition

(5.22) Sht 4(3;8s0) = [ Shté(E; Seci hp)-
DGUd(k)

5.2.5. The stack Mg(us, ps;) and its Hecke correspondence. Now we con-
sider the fiber product of the three rows of the master diagram (5.18).

Definition 5.9. Let Mg4(us, i) be the fiber product of the bottom row
of (5.18); i.e., we have the following Cartesian diagram:

Ma(ps, py) — Ha(%)
5.23 bt
(5.23) | » | |

Bun x &, —= Bung ()2

Our notation suggests that My(ps, 15;) depends only on ps and pf;. This
is indeed the case, because 65" depends only on us; and pk..

From the definition of Mg(us, uf), the Atkin—Lehner automorphisms
ALg,co (see (3.20)), ALy o (see (5.16)) and ALz, . (see (5.19)) together
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with Lemma 4.7 induce an Atkin-Lehner automorphism for Mg(us, pk;):

AL oo - Ma(ps, ps) — Ma(ps, i)

Definition 5.10. Let Hkﬁ;l”:i be the fiber product of the top row of (5.18).
Equivalently, we have the following Cartesian diagram:

HK/L, HK, (5

(5.24) l , J?

HIG x HkG x &l ———— Hk(X)2.

Comparing the diagrams (5.23) and (5.24), we get projections
Py s HIGE ) — Ma(ps, py),  i=0,...,7
as the fiber product of p’f}i X p‘%/l X idgr_ and p’HJ over p’GQZ We also let

M = ALM,OO OPM,r: Hk'lj\;lp:d — Md(/,bz,,ulz).

The fiber products of the three rows of (5.18) now read

HK
J/(pM,O»aM)

(5.25) Malps, 1) x Ma(ps, i) -

(id,Fr)T

Ma(ps, ps)
5.2.6. The stack Sht‘/‘\’/ffd.

Definition 5.11. Let Shtj;t“:i be the fiber product of the maps in (5.25);
i.e., we have a Cartesian diagram

! i’
Sht M.d Hk M.d

(5.26) J
(id,Fr)

Ma(ps, pg) —— Ma(ps, wg) x Ma(ps, py)-

J(pm,o,am)
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By the diagram (5.18), Sht‘j\’/ff:i is also the fiber product of the maps in
(5.21); i.e., the following diagram is also Cartesian:
(5.27)

Sht)\f.q Sht’ 4(3; Yoo)

l |

SR (foo - Tho) Xe, S (s - Tho) 5 SBEE(% Do) Xy, ShEE(T: oc).

According to the decomposition (5.22), we get a corresponding decompo-

it st
sition of ShtM’d7

(5.28) shthi'y = [ Shthf'p,
DeUy(k)
where Sht‘/‘\’/fle is the preimage of Sht#;(3; Xoo; hp) C Sht 4(3; Xoo) under the

upper horizontal map in (5.27). We have a Cartesian diagram
(5.29)

Sht‘j\’,(‘fD Shtf:(3; Xeo; hp)

l L(?C?’)

St (100 - ) e Shts (sl - 3 ) 08 Sht5(5; Do) % e ShtS(D: o).
Here the maps o/, 7" : Sht/5(3; oo; hp) — Sht’(2; £oo) are the base changes
of the maps p and 7 in (3.23).

5.3. Relation between Mg and Mg(us, p1%;). In this subsection, we relate
M(ps, i) to the moduli stack My that was defined earlier. For this, we first

give an alternative description of Mgy(uy, p15;) in the style of the definition of
My in [10, §6.1.1].

5.3.1. Some preparation. Let S be any scheme, and let £ and £’ be two
line bundles over X’ x S. We denote by Hg/(L, L) be the set of pairs («, 3),
where
(5.30) a:L— L(R) =L ®o, Ox(R),
(5.31) B:o*L — L'(R)
such that their restrictions to R’ x S satisfy
(5.32) a|rixs = Blrixs-

Note that £ and ¢*£ are the same when restricted to R’ x S, hence the above

equality makes sense.
Recall vg =v xidg: X' xS — X x S.
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LEMMA 5.12. There is a canonical bijection
Homx xs(vs«L, VS’*,C/) s Hp/(L, L)

such that, if ¢ : v L — vs L' corresponds to (o, ) under this bijection, we
have

(5.33) det(¢) = Nm(a) — Nm(5)
as sections of det(vg. L)™' @ det(vs.L') = Nmy//x (L)' ® Nm ./ x (L').

Proof. By adjunction a map ¢ : vg.L — vg.L' is equivalent to a map
I L'. Note that vevs L = Oxr Qo L= (Ox/ R0y Oxr) X0/ L,
whose Ox/-module structure is given by the first factor of Ox.

We have an injective map j: Ox ®o, Ox» = Ox» @ Oxs sending a @ b —
ab+ ao(b). By a local calculation at points in R’ we see that the image of ; is
Ox' @pr Oxr :=ker(Oxr @ Ox &*;Z)—) Op) (the difference of two restriction
maps i* : Ox» — Opr). Therefore, vivs.L = (Ox Or Ox/) ®o,, L =

Lop o L = ker(L ® oL 7P
a map

Lrxs). Hence the map ¢ is equivalent to

Vi LOp oL — L.

Since L(—R') ® c*L(—R') C L &g 0*L, the map 1) restricts to a map
L(-RY®o*L(—R') — L

or

Lbo*L— L(R).
We then define the two components of above map to be a and —f3. Condi-
tion (5.32) is equivalent to that the map a ® (=3) : LD o*L — L'(R’), when
restricted to £ ® g 0*L, lands in L.

If ¢ corresponds to («,3), we may pullback ¢ to X’ so it becomes the
map L ®r 0*L — L ®r o*L' given by the matrix

a  —p
—o*B3 o*a |’
Therefore, det(¢) = Nm(a) — Nm(p). O

5.3.2. Alternative description of Mg(uyx, 5). We define .//\/lvd(uz,u’z) by
the Cartesian diagram

Md(NEnU/Z) fId(E)

pond
~ 7 PH
9#7#

Picyxs x Picys xS, —2 Buny(X) x Buny(%).
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Sl - L s
Here 0" is given by 0&2 x 05" | using a common copy of &, and py

sends (E1,E, ) € Hy(2)(S) to (EF,T) € (Buny(E)(S))2. Comparing with
Definition 5.9, we have

Ma(ps, 1) = Ma(ps, i)/ Picx .

For 2/ € ¥/ and 2/ : § — Speck(z) LN X', recall that we inductively
defined 2'U) using 2/ = 2/U~1 o Frg for j > 2. We have a morphism

@4_ : 62)0 — X§V+
that sends {z/(V},ex € GL(S) to the following divisor of X’ x S of de-
gree N;:
D ({«'M = Y pxS

TEX MMy
N Z Ty + T + -+ T ) if pl, =1,
TEX oMYt (Fx’(derl) + Fx’(dz+2) +ot Fx’@‘iz)) if N; = -1

Similarly, we define
D_:6, — Xy
by sending {z'(V},exy € & (S) to the following divisor of X’ x S of de-
gree N_:

O (W)= Y xS

a:EEfﬂE,
N Z T +T e + -+ T ) if pi =1,
TEXNE_ (Fz’(dz+1) + Fz’(dz+2) + F:p’@dz)) if NZE = -1

Now we can state the alternative description of Mg (ps, p%;).

LEMMA 5.13. For a scheme S, Mg(ps, 1s)(S) is canonically equivalent

to the groupoid of tuples (L, L', a, B3, {xl(l)}m/egéo), where

o L and L' are line bundles on X' xS such that deg(L'|x/«s)—deg(L|x/xs) = d

for all geometric points s € S

e a: L= L(R), p:0"L— L(R).

These data are required to satisfy the following conditions:

(1) alp_(mmy) =0, and af,-1(s,)xs is an isomorphism.

(2) Blo, (fwmy =0, and Bl,-1(=_yxs is an isomorphism.

(3) alrixs = Blrxs. Moreover, Nm(a) — Nm(f), viewed as a section of
Nmy/x(£)"' @ Nmy/ x (L), is nowhere vanishing along R x S.

(4) This is non-void only when ¥ = @ and R = @: for every geometric point
s of S, Nm(«a) — Nm(f) is not identically zero on X X s.
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SHTUKAS AND THE TAYLOR EXPANSION (II) 479

Proof. By definition, S-points of /Wd(ug, ps,) consist of tuples
(‘C7 £/7 @, {wl(l)}z’ezgo),

where

e L and £’ are line bundles on X’ x S such that deg(L'|x«s) —deg(L|xxs) = d
for all geometric points s € S}

e v :vg. L — vg, L' is an injective map when restricted to X x s for every
geometric point s € S — moreover, ¢ is an isomorphism along (XU R) x S;

o for each 2/ € ¥/, 2/ is a map S — Spec k(z') LNS'E

These data are required to satisfy the following condition. We have two
S-points of Buny(X):

ST = ggﬁn(£7 {x,(l)}xlezfm)?
£ =82 (£ {2V} pesy).

Then ¢ : € = vg L — & = vg L' should respect the level structures of Al
and &'1.

By Lemma 5.12, the map ¢ : vg.L — vg.L' becomes a pair o : L —
L'(R') and B : o*L — L'(R') satisfying a|rxs = B|rxs. Since ¢|rxgs is an
isomorphism, formula (5.33) implies that Nm(a) —Nm(/) is nowhere vanishing
along R x S, hence condition (3) in the statement of the lemma is verified.
Condition (4) also follows from (5.33) and the condition on ¢ above.

Since ¢ respects the Iwahori level structures of vg,£L and V57*£/ , it sends
Vs (L(—pz)) to v« (L' (—pl)) for all x € Xy. (Recall p, is the value of s at
x.) Alocal calculation shows that « should vanish along p/, xS for those x € 3¢
such that p, # p,, and 3 should vanish along p/, x S for those « € 3 such that
te = b, A similar local calculation at x € ¥, implies the vanishing of « and
[ along the corresponding parts of ©_ and D .. For example, if pu, = ., =1,
then ¢ should send vg.(L(—T ) — = Tan))) to vsu(L'(=T ) — -+ —
' /4,))), which implies that § vanishes along I" ;) +T 2 +- - -+ sa,). These
verify the vanishing parts of conditions (1) and (2).

Finally, since ¢|nxg is an isomorphism, det(p) = Nm(a) — Nm(p) is
nowhere vanishing on ¥ x S. Since Nm(a)|s_xs = 0 and Nm(8)|x, xs = 0 by
the vanishing parts of (1) and (2), Nm(a)|s, x5 and Nm(f)|s_xs are nowhere
vanishing. These verify the non-vanishing parts of conditions (1) and (2). We
have verified all the desired conditions for (£, £/, a, B, {2V} sy ). O

Using the description of Mg(ps, p5;) given in Lemma 5.13, we can describe
its Atkin—Lehner automorphism ALa « as follows.

LEMMA 5.14. Let (£,L, o, 3, {w’(l)}mxeg{)o) be an S-point ofﬂd(uz,,u’z)
as described in Lemma 5.13. We use the same notation to denote its image in
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Ma(ps, pis,). Then

ALpoo(L, L, B, {2’ D pesy ) = (ﬁ (— > ,ua;Fx/(w),

CL‘EEOO

E’ (_ Z IU’CCF;L'/(U — Z ,U/xrxl(dz+1)> 70/76/7 {37/(2)}1:’622,0> .

Here, o/ is induced from o using the fact that a|n_ = 0 and B is induced from
B using the fact that B|p, = 0.

The proof is by tracking the definitions and we omit it.

The next result clarifies the relation between My and My(us, ).

PROPOSITION 5.15. There is a canonical isomorphism over &,
(5.34) Em o Mg x B My(us, p15),
such that

(1) the automorphism id x Fre: on the left corresponds to the automorphism
AL 00 on the right;
(2) the following diagram is commutative:

Fr xid

Mg xS ———— My x &

ZJEM EJEM
AL7Y oFr

M, 00
Mg(ps, py,) ———— Ma(ps, ps,).

Proof. We first define a map

. / ! v/ 3/ /
1 s Ma(ps, i) — Ma X 6o C (Xgyp- N Xp, vEVRats Xitp-N,) X oo
X

Using the description of points of Md(ug,u’z) in Lemma 5.13, we have a
morphism

lo t Md(:uEMU'/Z) — X\éi-i-p—N,
sending (£, L', a, B, {z'M} yresy_) to the line bundle L1 & £'(R' —D_({z'M}))
and its section given by «. Similarly we have a morphism

151 Malps, k) — Xiy, N,
sending (£, L', o, B, {l‘l(l)}xlezgo) to the line bundle

"L @ LR~ D4 ({z'V}))

and its section given by 3. We have a canonical isomorphism v, 014 = vg01g
using a|p = B|rr. The map 14 is given by (2q,13) and the natural projection to
Sl.. It is easy to see that the image of ¢4 lies in the open substack My x &/ .
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Next we construct the desired map = as in (5.34). Start with a point
(T,7,0,5,3) € Ma($), and let {z'D}veer € &o(S). Let Dy =D ({z'V})
(a divisor of degree Ny on X’ x S with image ¥y x S in X x S), and let Z' =
Z(D-) and J' := J(D4). The isomorphism j then gives an Nm)\é,E;X(I’) =

Nm}?,ﬁ/x(j’) € Pic%ﬁ’Hp(S), or a trivialization of Nmﬁx (T'® ' ® J') as an

S-point of Pic}éﬁ’dﬂ . The exact sequence (A.11) then implies, upon localizing

S in the étale topology, that there exists a line bundle £ € Picx/(S) together
with an isomorphism 7 : £7'®0*£ =2 T'® J'~!, and such a pair (£, 7) is unique
up to tensoring with Picx (S) (upon further localizing S). Let £ = L&T'(—R').
Then « can be viewed as a section of £7! ® £'(R’), or a map £ — L'(R’) that
vanishes along D_. Since J' 2T’ ® LR o*L7' 2 o* L7t ® L/(R'), B can be
viewed as a section of 0*£L~! ® L/(R'), or a map ¢*£ — L'(R’) that vanishes
along D,. Moreover, the equality a|rxs = B|r/xs is built into the definition
of Mg. This way we get an S-point (£, L', a, B, {z'M}) of My(us, %) using
the description of Mgy(us, ps) given in Lemma 5.13.

It is easy to see that =, is inverse to 14. Therefore, =4 is an isomorphism.
This finishes the construction of the isomorphism = 4.

Now property (1) follows from Lemma 5.14 by a direct calculation.

To check property (2), observe that the total Frobenius morphisms Fr x Fr
on Mgy x & and Fr on M (ps, p%;) correspond to each other under = .
On the other hand, by (1), id x Fr on M, x & corresponds to AL
on Mg(ps, pts). Therefore, Fr xid = (id x Fr™!) o (Fr x Fr) on My x &/
corresponds to AL/_V}’Oo o Fr on Mg(us, puk,). O

5.3.3. Comparison of Hecke correspondences for My(ps., ps;) and for M.
We have already defined two self-correspondences H and H_ of M, in Sec-
tion 5.1.5. For A = (A\1,...,\) € {£1}", let

He Ni=1,
Hy, =¢ F
Ho, Ni=-1.

Let <71,7@ : Hy, — My be the two projections. Then define Hy to be the
composition of Hy, as follows:

Ha=Ho XF1Ma, 52 Has XYMy, 53 KT Ma T Ha,-

We apply this construction to A = pup’ = (paph, ..., prpr.). Then we have
(r + 1) projections

Vi + Hpuw — My, 1=0,1,...,7.
PROPOSITION 5.16. There is a canonical isomorphism over &,

(5.35) B Hyw x 6o — HEL,
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such that the following diagram is commutative for i =0,1,...,7:

/ En o’
Hﬂ/ X 600 —_— Hk./\/l,d

Vi Xid@{x}l JPM@

Mg x &L —= Malps, ).

Proof. By the iterative nature of Hk/\{' Id, it suffices to prove the case r = 1.
(At this point we may drop the assumption r = #X,, mod 2 because every-
thing makes sense without this condition, before passing to Shtukas.) We
distinguish two cases.

Case 1: py=p). We treat only the case u; =} = 1; the other case is simi-
lar. In this case, HK/({' ;(S) classifies the following data up to the action of Picx:

e A map z} : S — X' with graph Ly

e For cach 2/ € ¥/, an S-point /") : § — Spec k(') 2 X,
e Line bundles £y and £{, on X’ x S such that deg(Ly|xxs) —deg(Lo|xxs) = d
for all geometric points s € S. Let

Ly :EU(Fx’l)v ‘C/l :['E)(Fx’l)

e A map ¢ : vg. L1 — vg. L] that restricts to a map ¢ : vg«Lo — vg L.
Moreover, for i = 0 and 1, we require the tuple (£;, £}, i, {'M}) to give a
point of My(us, p5;). In other words,

— ; preserves the level structures of vg.L; and vg.L] given in Sec-
tion 4.2.1;

— ; is injective when restricted to X x s for every geometric point s € S
and

— ¢il(zURr)xs 1s an isomorphism.

Using Lemma 5.13, we may replace the data ¢; above by a pair of maps («;, ;),

where «; : L; — LI(R'), B; : 0*L; — L;(R') satisfying certain conditions. Let

Dy =9.({2’MW}). Then a;|p_ = 0 and B|p; = 0. Denote by

ol L — LR — D),
B0 L; — Li(R — Dy)
the maps induced by «; and 3;.

The relation between ¢y and ¢ implies that the following two diagrams
are commutative:

Lo© Ly Lo (Fx’l )

(5.36) lag Jaﬁ
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G*£0C—> U*ﬁl _ (U*ﬁo)(rg(xll))
(5.37) Jﬁg lﬁi
Lo(R — Dy)—— LY(R — Dy) == LH(R' — Dy +T'y).

The diagram (5.36) simply says that aa is determined by ag (no condition

on ag, hence no condition on «ag). The diagram (5.37) imposes a non-trivial
condition on Bg, as claimed below.

CLAIM. 58 vanishes along I ;).

Proof of Claim. The argument for this claim is more complicated than the
argument in [10, Lemma 6.3] because of the ramification of v. To prove the
claim, it suffices to argue for the similar statement for the restriction of ﬁg to
(X" — R') x S and to the formal completions Spec O, xS for each 2’ € R’

Computing the divisors of the maps in the first square of (5.37), we get
(5.38) div(B83) + Ty = div(B]) + Togar).

Restricting both sides to (X' — R') x S, and observing that I, and I'; (.1 are
disjoint when restricted to (X’ — R') x S, we see that Logary N (X'—R')xS)
is contained in div(8}) N (X’ — R') x ).

Now we consider the restriction of the diagram (5.37) to the formal com-
pletion Spec O,/ XS at any 2’ € R'. Since Dy is disjoint from R, after restrict-
ing to Spec O, XS we may identify 3; and BE. We may assume S is affine,
and by extending k we may assume k(z') = k. Choose a uniformizer w at
' such that o(w) = —w, then Spec O, xS = Spec Og|[w]]. After trivializing
Li, LL(R') near o’ x S, we may assume f; = f{ = w — a for some a € Og,
ag = a1 € Og[[w]]. The diagram (5.37) implies the equation in Og|[[w]],

fi-Bo=0"f1- B,

where fy, 81 € Og[[w]]. This equation is the same as
(5.39) (w—a)bo(w) = (—@ — a) ().
Recall that we also have the condition S;|p/xs = i|g/xs for i = 0,1, which
implies that 8y(0) = ap(0) = a1(0) = £1(0), or fi(w) = wy(w) + Bo(w) for
some v € Og[[w]]. Combining this with (5.39) we get

200 (@) = (~ — a)w(@).
Since w is not a zero divisor, we conclude that fy(w) = —(w+a)y(w)/2, hence
@ + a divides Sy(w). This implies that I'; (1) N (Spec O % 8) is contained in

div(Bo) N (Spec Oy xS) = div(ﬁg) N (Spec O, xS). The proof of the claim is
complete. O
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On the other hand, the condition that ﬁg vanishes along Loy is sufficient
for the existence of §; making (5.37) commutative. Therefore, in this case,
Hk/\#" is the incidence correspondence for the divisor of 8% in Mg(us, u,)
under the description of Lemma 5.13. This gives the isomorphism =y :
HMM' X 61)0 = Hk//(;l'u .

Case 2. uj # pf. Let us consider only the case p; = 1,4 = —1. We only
indicate the modifications from the previous case. In this case, £1 = Lo(I'y,)
but £i = Lo(—Ty;). We may change £ to Ly(I'g(sr)) (Which has the same
image as £o(—I';¢) in Buny) so that deg L} — deg £y = d still holds. The
diagrams (5.36) and (5.37) now become

L€ Ly Lo(Ly)
(5.40) Jaﬁ Jai
Ly(R — D) L4 (R — D_) == L{(R' — D_ + Ty(y)),
0* Lo 0" L1 == (0"L0) T5(a))
(5.41) Jﬂé lﬁf
LHR = Dy)—— LY(R = Dy) == L{(R = Dy +Tyur)).

Now (5.41) imposes no condition on g, but (5.40) gives
diV(OzE)) + Fg(mll) = div(aq) + Fxll.

An analog of the claim in Case 1 says that ag must vanish along I';r. There-

fore, in this case, Hk)\}' " is the incidence correspondence for the divisor of of
in Mg(ps, %) under the description of Lemma 5.13. This gives the isomor-
phism =y. O

5.4. Proof of Theorem 5.6.

5.4.1. Geometric facts. We first collect some geometric facts about the
stacks involved in the constructions in Section 5.2.

PRrRoPOSITION 5.17.

(1) The stack Bung(X) is smooth of pure dimension 3(g — 1) + N.

(2) The stack Hki(X) is smooth of pure dimension 3(g — 1) + N + 2r.

(3) The stack Buny is smooth, DM and proper over k of pure dimension g’ — g
=g—1+ % p.

(4) The stack Hk% is smooth, DM and proper over k of pure dimension g — 1
+ %p +r.

This content downloaded from
18.9.61.111 on Wed, 06 Mar 2019 00:12:44 UTC
All use subject to https://about.jstor.org/terms



SHTUKAS AND THE TAYLOR EXPANSION (II) 485

(5) The morphisms pg, pr : Ha(X) — Bung(X) are representable and smooth
of pure relative dimension 2d. In particular, Hy(X) is a smooth algebraic
stack over k of pure dimension 2d +3(g — 1) + N.

(6) The stack Hkyy 4(%) has dimension 2d + 2r 4+ 3(g — 1) + N.

(7) For d > 2¢' — 1+ N, My(ps, p%) is a smooth and separated DM stack
pure of dimension m =2d+p— N — g+ 1.

(8) Let D be an effective divisor on U. The stack Sht“M‘fD s proper over k.

Proof. (1), (3) and (4) are standard facts. (2) follows from Proposi-
tion 3.4(4).

(5) Recall the stack Hy defined in [10, §6.3.2], with two maps 9.7 to
Bung. We have an open embedding Hy(X) — Bung(X) Xpuy,,. 4 Ha because
once the Y-level structure of £ is chosen, it induces a unique X-level structure
on &’ via ¢ (which is assumed to be an isomorphism near X). Since <ﬁ :Hy —
Bung is smooth of relative dimension 2d by [10, Lemma 6.8(1)], so is its base
change pz. A similar argument works for pg.

(6) Asin [10, §6.3.4], we have a map Hk}; 4(%) — Bung(X)xUgx X". (The
first factor records Eg, the second records the divisor of det(yp) and the third
records z;.) The same argument as [10, Lemma 6.10] shows that all geometric
fibers of this map have dimension d + r. (Note that the horizontal maps are
allowed to vanish at points in X, but this does not complicate the argument
because the vertical maps do not vanish at %.) Therefore, dim Hkly 4(¥) =
d+r+d+r+dimBung(X) =2d+2r+3(g—1) + N.

(7) By Proposition 5.15, Mg(pus, ps;) = Mg x &, . Therefore, the re-
quired geometric properties of My (uys, %) follow from those of M, proved in
Proposition 5.5(1).

(8) Consider the Cartesian diagram (5.29). Since Shtg(3; X)) is sepa-
rated over & by Proposition 3.9 and p’ : Sht/5(%; Loo; hp) — Sht/ (2 Soo)
is proper by Lemma 3.13(1), the map

(?/7 ?l) : Shtg(z; Yoo; hp) — Sht/CTT'(E§ Eoo) X6, Sht/GT<E; Z:oo)
is proper. This implies that

Sht/gt', — Shtf: (100 - Th) X e, Shtf (b, - Bho)

is proper. Since Sht%(uoo -3 ) and Sht% (ul, - X.) are proper over k by
Corollary 4.3, so is Sht’j\;l’f /D. O

PROPOSITION 5.18. Suppose D is an effective divisor on U of degree d >
max{2¢' — 1+ N,2g}. Then the diagram (5.18) satisfies all the conditions for
applying the Octahedron Lemma [10, Th. A.10].
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Proof. We refer to [10, Th. A.10] for the statement of the conditions.

Condition (1): We need to show the smoothness of all members in the
diagram (5.18) except for Hk% ;(3). This is done in Proposition 5.17.

Condition (2): We need to check that

Ma(pis, 1), Ma(ps, 1), ShET (ftoo - £ho) X e, Shts (1l - Th,)
and
ShtICTT'(E; 2oo) X6, Shtg‘(z; Z:oo)
are smooth of the expected dimensions. These facts follow from Proposi-
tion 5.17(7), Corollary 4.3 and Proposition 3.9.

Condition (3): We need to show that the diagrams (5.24) and (5.20) satisfy
either the conditions in [10, §A.2.8], or the conditions in [10, §A.2.10].

We first show that (5.24) satisfies the conditions in [10, §A.2.8]. We claim
that Hkﬁ/l” :1 is a DM stack that admits a finite flat presentation. By Proposi-
tion 5.15, My(us, ) = My x 6. ,. By Proposition 5.5(5), M, is DM and
admits a finite flat presentation; therefore, the same is true for My(ps, p5;).
Since the map pap : Hk“/\’/l’f;l — My(ps, p%) is schematic, the same is true
for Mg(ps, p5;). It remains to check that 91‘3’15/ can be factored into a regu-
lar local immersion and a smooth relative DM map. It suffices to show the
same thing for 64, : Hk% x &L, — HkE(X) (and the same result applies to
u' as well). The argument is similar to that in [10, Lemma 6.11(1)], and we
only give a sketch here. We may enlarge the set ¥ to & C | X — R| such that
degg > p/2. By enlarging the base field k, we may assume that all points
in v71(3) are defined over k. Choose a section of v™1(X) — ¥ extending
the existing section gy, and call this section p Using Y we have a map
o, : HkZ. — HKZ(S). Since the projection HK(3) — HK(X) is smooth and
schematic, it suffices to show that éﬁk : Hk% = Buny x X" — HKA(D) is a
regular local embedding. To check this, we calculate the tangent map of gﬁk
at a geometric point b = (£, z],...,z.) € Bunp(K) x X'"(K). Or rather we
calculate the relative tangent map with respect to the projections to X'". We
base change to K without changing notation. The relative tangent complex
of Hk% at b is H(X, Ox//Ox)[1]. The relative tangent complex of HK/(2) at
ot (b) is H* (X, AdZ>(1,L£))[1], where AdZ*(1,.L) = End®>(1,L)/Ox, and
EndZ (v, L) is the endomorphism sheaf of the chain v,£ — v, (L(xh)) — -
preserving the level structures at Y. The tangent map of gﬁk is induced by

a natural embedding e : 1,0x//Ox < AdZ> (1,L). A calculation similar to
Lemma 5.12 gives

End2 > (1,L) C 12(Ox(R)) @p va(0* L @ L(R — 5)),
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where 3 = o(3'). Therefore, we have

AdZ > (1, L) C (1 (Ox/(R))/Ox) G va(c* L7 @ L(R — ")),
under which e corresponds to the embedding of v,.Ox//Ox into the first factor.
One checks that the projection coker(e) — v, (c* £~ @ L(R' —%")) is injective.
The latter having degree p/2 —deg X < 0, we have H?(X, coker(e)) = 0, which
implies that the tangent map of gﬁk is injective.

Next we show that (5.20) satisfies the conditions in [10, §A.2.10]. The
argument is similar to that of [10, Lemma 6.14(1)], using the smoothness of
Hy(X) proved in Proposition 5.17(5).

Condition (4): We need to show that (5.26) and (5.27) both satisfy the

conditions in [10, §A.2.8]. Again the argument is completely similar to the
corresponding argument in the proof of [10, Th. 6.6]. We omit details here. [

5.4.2. The cycle €. Using the dimension calculations in Proposition 5.17(6),
(4) and (2), we have

dim HI; 4(5)+dim(Hkb x HKS x &) —2 dim HK3() = m = 2d+p—N—g+1.
Therefore, the Cartesian diagram (5.24) defines a cycle
(5.42) ¢ = (04" [ ()] € Chy (HKRY).
LEMMA 5.19. Assume d > max{2¢' — 1+ N,2g+ N}. Let
¢* € Chu(Hyyw x &)
be the pullback of ¢ under the isomorp;ism Zy. Then when restricted over

AS, ¢t coincides with the fundamental class of Hyp * Gl

Proof. We have a map Hkjy 4(3) — Ug x X" similar to the one defined in
[10, §6.3.4]. Let (Ugx X")° be the open subset consisting of (D, x1, ..., z,) such

Ir,0

that each z; is disjoint from the support of D. Let Hk . d(E) be the preimage
of (Ug x X™)°. Similarly, let Hk’j\;{f;’o be the preimage of (Uy x X™)° in Hkﬁ;{fld,
which corresponds under Z4 to an open subset of the form Hfm’ x &.

We have a map HkYy 4(2) — Hk(;(2) Xpung () Ha(2) by considering the
top row and left column of the diagram (5.17). When restricted to (Ug x X")°,
this map is an isomorphism. Therefore, Hk;fd(Z), and hence Hk/HT’;l(Z) is
smooth of dimension 3(g — 1) + N + 2r + 2d. Restricting the diagram (5.24) to
(Ua x X7)°, Hiiit! ;l’o is the intersection of smooth stacks with the expected di-

mension dim HK;%(%) +dim (Hk7 x Hkf. x &/, ) —dim Hk;(%) = m. Therefore,
( is the fundamental class when restricted to ijL\/l” ;= ’Hfﬂ, x &L.

It remains to show that dim(?—[&/ — Hfﬂ’) < dim Hliu" The maps H&, —
/\/lsl> — Ag are finite surjective. On the other hand, as in [10, §6.4.3], the
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488 ZHIWEI YUN and WEI ZHANG

image of H/?u’ —H,,,, in Ag lies in the closed substack C4 consisting of those
(A, OR,1,a,b,95) where div(a) and div(b) (both are divisors of degree d 4 p
on X) have one point in common that lies in U. Therefore, it suffices to

show that dimCy < dim A3 = m. Now Cy is contained in the image of a map
VR VR VR VR :

Ux(Xgip-N_—1 XPiCﬁM/EXCH-p—NJr—l) = Xdip-nN_ Xpic)\éﬁ;\/ﬁXd+p—N+' Using

d > 2g+ N we may calculate the dimension of Xc‘l/fpr_ 1 xPiCﬁ;@X£7N+71

by Riemann-Roch, from which we conclude again that dimCy; < m — 1. This
completes the proof. O

5.4.3. Consider the cycle

(id, Fr g, '¢ € Cho(Sht/f%).

uz,u’g))
This is well defined because M (s, p%;) is smooth DM by Proposition 5.17(7),
and hence (id, Fr) is a regular local immersion. Let

(. F gy i)' € Chio(Shitys')

be its D-component. Since Sht“/\’,[’f /D is proper by Proposition 5.17(8), it makes
sense to take degrees of 0-cycles on it. Hence we define

(¢, T(Fr g s )0 1= deg((id, Fr gy g i) O € Q-

THEOREM 5.20. Suppose D is an effective divisor on U of degree d >
max{2g’' — 1+ N,2g}. We have

(5.43) ( 11 dgy) 1 (hp) = (¢ T (FY Ay (s i) ) D-

z’'eXl

Proof. From the definition of Heegner—Drinfeld cycles, it is easy to see
using the diagram (5.29) that

(5.44) ( 11 dx/> I (hp) = deg (0" x 6")'[Sht{5 (3 See; hp)]) -
r’'eXl

On the other hand, applying the Octahedron Lemma [10, Th. A.10] to
(5.18), we get that

(0" x 6" (id, Fry, () [HK 4(5) x &L
(5.45) = (id, Fr pgy ) (O % idey ) [HI 4(X) x &L ]
= (id, Fr pgy gy ))'C € Cho(Sht'pf")).
If we can show that

(5.46) (id, Fr g7, () [HK 4(2) x SL] = [Sht 4(; Loo)],
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SHTUKAS AND THE TAYLOR EXPANSION (II) 489

then extracting the D-components of (5.45) and (5.46) identifies
(6" x ") [Sht (3 (Z; Soo; hp))]

with the cycle ((id, Fr g, s, ))!C )p. Taking degrees then identifies the right
side of (5.44) with the right side of (5.43), and we are done. Therefore, it
remains to show (5.46). The argument is similar to [10, Lemma 6.14(2)]. Let
Sht'f; (3 $oe) C Sht 4(%; Xeo) be the preimage of (Ug x X7)°. By (5.22),
Shtg’;;(E; Yoo) is the disjoint union over D € Uy(k) of

(Shtg(E, Eoo; hD)|(X_D)7‘ Xxr X",

By Lemma 3.13(2), Sht¢;(3; Xeo; hp)|(x—p)r is smooth of dimension 27, which
is the expected dimension from the diagram (5.20). Therefore, the restriction
of (id, Fer(E))![Hk’ﬁ,d(E) x G ] to Sht/ﬁ’zl(Z;Eoo) is the fundamental class.
By Lemma 3.13(3), Sht(X; ¥oo; hp) has the same dimension as its restriction
over (X — D)", hence dimShtlanj(E;Eoo) = Sht' 4(3; Xoo), therefore (5.46)
holds as cycles on the whole of Shtf; ;(3; ¥ ). This finishes the proof. g

5.4.4. Proof of Theorem 5.6. Now we can deduce Theorem 5.6 from The-
orem 5.20.

Consider the diagram (5.26). Moving the Atkin—Lehner automorphism of
M(ps, p%) from the vertical arrow to the horizontal arrow, we get another
Cartesian diagram:

pspt! ot
Sht M Hk'\f

(5.47) J
(id, AL oF)

Ma(ps, py) ———— Ma(ps, ps) x Ma(ps, py).

l(PM,oJJM )

From this we get
(5.48) (i, Fr g (g i)' C = (i, ALYL o 0 F)'C € Cho(Sht/yf",).
Define Sy, by the Cartesian diagram

S » My

(5.49) l l(pa,o,m,n
(id,Fr)
./\/ld E— ./\/ld X ./\/ld.
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Using the isomorphisms =, and =4 established in Propositions 5.15 and
5.16, (5.47) is isomorphic to the Cartesian diagram

/ /
Su“/ X 600 H%/ X GOO

(5.50)

J J/(PH,OXidgéomH,rXidggo )
| (idFra, xidgy ) / /
My x Sl — S5 My x &) x (Mg x &),

Here we are using Proposition 5.15(2) to identify ALJ_\/}’Oo o Fr on Mg(ps, p15;)
with Fra, Xide, on Mg x S... In particular, we get an isomorphism

= . 1o o
=S S&/ x 6, — Shth.

Recall that ¢* € Chy,(H,,,s x &L,) is the transport of ¢ under the isomor-
phism Z4,. Then we have

(5.51) (id, ALy { o Fr)'¢ = (id, Frq, xidey, )'¢* € Cho(Suw x &)

By Lemma 5.19, ¢! is the fundamental cycle of M, x 6L, when restricted
to Ag. By Proposition 5.5(4), the complement of M?x A /\/ld<> in Mg x4, Mg
has dimension strictly smaller than dim M. (The condition d > 2¢' =1+ N =
49 — 3+ p+ N implies d > 3g — 2 + N.) Therefore, we may replace ¢t with
the fundamental cycle of the closure of H,,| as X S.,, and the intersection

number on the right-hand side of (5.51) does not change. We denote the latter
by ﬁ:f#/ x &/ . Combining (5.48) and (5.51), we get

(id, Fra, xider_)'¢?
= (id, FI'Md Xidggo)![ﬁgﬂ/ X 6/00]

= ((id, Fra,)'THS

%/]) X [6/00] S Chg(S%/ X Ggo)

Taking the degree of the D-component, we get

(¢ DB g i) D = Aeg(S) - ([Hy ], T (Fran,)) -

Using Theorem 5.20, we get

-1
nu,u’(hD)=< 11 dm’) (G P (Bt i) ) D

r'eXl,

-1
:< II dx/> deg(G;o)-<[ﬁfl],F(Fer)>D

z'exly

([} D(Frag,)) -
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It remains to calculate <[ﬁ3#/],F(Fr My))p- Note that H,, is a self-

correspondence of My over Ag. By the discussion in [10, §A.4E}, the map
b

Sy — Ma f—d> Az lands in the rational points A';l(k‘), hence we have a decom-

position
uu/ - H Sw
aE.Ab( )

Under the isomorphism Z 4, this gives a refinement of the decomposition
(5.28), namely,

Sht'yt  ¢———— I1,e (k) Sy (@) X Sl

The fundamental cycle [ﬁzﬂ] gives a cohomological correspondence be-
tween the constant sheaf on My and itself. It induces an endomorphism of the
complex R fq1Qy:

fa)H, ] Rf4:Qr — Rfy,Qy.

Taking direct image under €2, we also get an endomorphism of R f;yl(@g

fd'[ ] Rfdu@eHRfdv@é

Applying the Lefschetz trace formula [10, Prop. A.12] to the diagram (5.49)
(which is stated for S being a scheme, so we apply it to the map ffl rather than
fa), we get that

27 27
(552)  (Huh TEa o = Y Tr(fo[H ] o Fra, (Rf3Qe)a).
aGAE(k)
Since M,y is the composition of ri times Hy and r— times H_, the

cohomological correspondence [ﬁo /

] 18 equal to the composition of r times

[ﬁﬁ] and r_ times [ﬁ?] over .Ag. By Proposition 5.5(4), the complement of
/\/lfl> X 40 /\/lg in My x4, Mg has dimension strictly smaller than dim Myg;
d

therefore, [ﬁﬁﬂ

induce the same endomorphism on fa, Qe . This implies

a0 = ()™ o (fasH2))~ € End(Rf1,Q0).
Taking direct image under €2, we get

o) = (FuHD)™ o (15,2~ € End(Rf, Q).

This combined with (5.52) gives (5.14). The proof of Theorem 5.6 is now
complete.

/| and the composition of r; times ﬁo and r_ times ﬁ?
+ -
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6. The moduli stack N, and orbital integrals

In this section we introduce another moduli stack ANy, similar to M,.
The point-counting on Ny is closely related to orbital integrals appearing in
Jacquet’s RTF we set up in Section 2 for our specific test functions.

6.1. Definition of Ny.

6.1.1.  Our moduli space Ny depends on the ramification set R with de-
gree p, a fixed finite set % and a decomposition

N=Y,UY_, Niy=deg¥,.

In our application, such a decomposition comes from a pair p,p’ € %, 5, for
which we take X1 = X4 (u, /') as in (4.5) and (4.6). We are also assuming that
YNR=0o.

Let d > 0 be an integer. Let Q4 be the set of quadruples

d = (dn,dr2,da1, d) € L2,

satisfying di1 4+ dogs = di2 + do21 = d + p.

Definition 6.1. Let d € Q4. Let ﬁd = NQ(Zi) be the stack whose S-points
consist of

(‘627 ‘Cgv Ellha £/2h> P, ¢R)a
where

e For i = 1,2, EE = (L, Kir,ti) and E;n = (L, Kip 1) € Pic}{ﬁ(S), such
that for any geometric point s € S, deg(L}|xxs) — deg(Lj|xxs) = di; for
i,7 € {1,2}.

e pis an Oxyg-linear map £1 ® Lo — L] ® L. We write it as a matrix

_ | P11 ¥12
Y21 P22

where ¢;; 1 L; — L.
e Y is an Opyg-linear map K1 r ® Ko g — K} 5 & KL 5. Again we write ¢r
as a matrix

Vr = { Y11,R V12,R

| YR Yor

with Qﬂij,R : ICj,R — K;,R'

These data are required to satisfy the following conditions:
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SHTUKAS AND THE TAYLOR EXPANSION (II) 493

(0) The following diagram is commutative for 1 <4, j < 2:

®2
ij, R

®2 1R2
ICj,R ICz’,R

(6.1) L Y

©ijlRx s
Lilrxs kit L rxs-

(1) w22|5_x5 = 0; p11|n, x5 and @ao|x, x5 are nowhere vanishing.

(2) w21ln,xs = 0; Y12|n_xs and a1|x_xs are nowhere vanishing.

(3) det(yr) = 0. Moreover, det(y) vanishes only to the first order along Rx S.
(By (6.1) and det(¢g) = 0, det(y¢) does vanish along R x S.)

(4) This condition is only non-void when ¥ = @ and R = @: det(y) is not
identically zero on X x s for any geometric point s of S.

(5) For each geometric point s € S, the following conditions hold. If di; <
doo — N_, then g011|X><5 % 0; if di1 > doo — N_, then 9022|X><s £ 0. If

dig < do21 — N4, then (/712’X><s 7& 0; if dig > do1 — N4, then 8021‘X><s 75 0.
There is an action of Pic}éR on /A\/; by twisting each L'E and Egu simultane-

ously (i = 1,2). Let Ny be the quotient
Ny = /\N/Q/ Pic%ﬁ
Let Ny be the disjoint union
Ni= T Ne
deQq

6.1.2. Next we give an alternative description of Ny in the style of [10
§3], which makes its similarity with M, more transparent.
Let (£, 25, L7 L% 0, ¢¥r) € Ny(S). For i,j € {1,2}, define

L=L" oLl = (L8 0 L, KSR @ K oot @ 14).

We have EEj € Pic%ﬁ(S). By the diagram (6.1), (Elj-j, ©ij, Vij r) defines a point
in XY7(3).
For (i,7) = (1,1) or (1,2), we thus have a morphism j;; : Ny — X\C}{jﬁ

sending the data (L Eh C ’Qu, o, Yr) € Na(S) to (EE-j, ©ij, VijR) € X\C\lf(S).
The condition ¢a1|x, x5 =0 allows us to view 91 as a section of Lo1 (=3 ),

which has degree do; — N4 and extends to a point Egl (-X4) € Pic}éﬁ(S) using

the original o1 p = K¥ 7' @ Kb and o' @ i (because YL NR=0). We
then define a morphism jo1 : Ny — Xc}g w, sending (E Eg, [, 2 , 0, R) to

(£gl(—2+), ©21,%21,). Similarly we can define jo2 : Ng — )?(}g;—N,- We have
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constructed a morphism

Ja= (i)ijeqay  Na— XYEx XYR 0 x XY XYE

+

In the above construction, we have canonical isomorphisms £11 ® Log =
L12 ® Lo and Ki1,r ® Koo g = K12 r ® Ko1,r, which give a canonical isomor-
phism
(6.2) £l @ Lh, 2 £l @ Ll € Picl ().

Moreover, the condition that det(yr)=0 implies that 111 rt22 r =112, RY21,R-
Therefore, the isomorphism (6.2) extends to an isomorphism

(£11 ® Ly, Y11,RY22,R) = (LS5 ® L3, V12, RY21,R) € PIC\F RVR, Rdtr(g).

Therefore, jq4 lifts to a morphism

(6.3) Jd : Na — (X‘F X X(}é; ) XPiC)\éﬁ;\/ﬁ,dﬂ; (X\F Xc\zg N+)

Here the fiber product is formed using the following maps:

gy VR YRR

o~ o~ d d. N_ X : ) . N

Xﬁ % XC}/E_N 11 22— PICX\/R7\/E,d11 « Plc%ﬁ,\/ﬁ,dgz N
11 22 _

(d.80x(8-)), picy iV du

x PIC\F R;VR,dao mult ic)\éﬁ;\/ﬁ,d-l-p
(where mult is the multiplication map for Plcf \F) and
ﬁ\ﬁ R;VR ﬁ\ﬁf
Xf % Xc\lé? ( dig dg N+) Pic%ﬁ;\/ﬁ’dl2 « Pi Cf\/»dgl N4

(id,®0x (S+)) picVEVRdiz VRV Rdy mult, . VRVRd+p
——————% Picy Picy :

X Picy
6.1.3. We have a morphism to the base (cf. Section 5.1.2)
ga: Ng — Ag = Ag(2+)
sending (Ei,ﬁg,ﬁ'u 2,g0, YR) to (A,OR,t,a,b,9R), where
A=LP' e LY @ L) ® L),
Or =K{R' @ KSR ©K) g ® Kb g, i

is the obvious product of t1t9 and (jih, a = pr1922, b = @12p91, Ip =
Y11,RY22, R = Y12,RY21,R- We also have the composition

g
g&ongd:NiiAd%Abd.

PROPOSITION 6.2. Letd € ¥4. Then

(1) the morphism 34 in (6.3) is an open embedding, and Ny is geometrically
connected;
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(2) ifd > 49 — 3+ p + N, then Ny is a smooth DM stack of dimension
2d+p—g—N+1=m;
(3) the following diagram is commutative:

Ja — _ _
Ng— (Xc\if X Xc\lf—N) xPiC@;\/ﬁvdﬂ (Xﬁ x XyF )

a da1-nN,
—~VE —~VER
(6.4) lgd J{add xadd
wa TVR TVR
. wd .
Ad Xd+pr_ Xpicgﬁ;\/ﬁ,dw Xd+pr+’

(4) the morphisms gq and gz are proper.

Proof. The proofs of (1) and (3) are similar to their counterparts in [10,
Prop 3.1].

(2) We first show that Ny is a DM stack. By conditions (4) and (5) of
Definition 6.1, at most one of ¢;; can be identically zero, so Ny is covered by
four open substacks Uy, 4,5 € {1,2}, in which only ¢;; is allowed to be zero.
(In fact, two of these will be empty by condition (5).) We will show that Uy
is a DM stack, and the argument for other U;; is similar. Since Uj; is open in

Vi = (X< xR ) X e (xyFxxy® ),

d11 d217N+

VR VR VR
XdQQ—N_ X Xd12 . ‘XFCIQI—NJr
is schematic. By Lemma A.4(2), X;L/E is DM for any n, therefore V;1, hence
U11 is also DM.

We now prove the smoothness of Nd in the case di1 < dos — N_ and

it suffices to show V71 is DM. The projection Vi1 —

dy2 < d21 — N4; the other cases are similar. In this case the image of 74 lies in
the open substack

vR . ¥VR ) ( vR  ¥VR )
(an XXd22—N7 Xpic)\éﬁﬂ/ﬁ Xd12 X do1-ny ) °

Since d12+ (do1 — N) =d+p— N > 2(2g — 1+ p) — 1 by assumption on d, and
dia < do1 — Ny, we have do; — Ny > 2g — 1+ p. Similarly, we have dgg — N_ >

29 — 1 + p. Therefore, the Abel-Jacobi maps )?g— N~ Picﬁ;\/ﬁ’dm_N’
and X\C}gﬁ N, Pi(:}éﬁ;\/ﬁ’d{‘”_]v+ are affine space bundles by Riemann-Roch,

hence smooth. It therefore suffices to show the smoothness of
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We have the evaluation maps (by recording the square root line along R and
its section)

ev[ X‘F — [ResF A/ ResE G,
ev}\g PIC\F ‘F — [Res? A/ Resl* G,
which are both smooth, by Lemma A.4. To simplify notation, we write
[Resl A'/ResE G,,] = [AY/G )R
Then the fiber product of these maps give a smooth map
vy 1 @ — ([AY/Glr X [AY/GinlR) X(a1/6, 1 (A1 /Gl g X [A/Gn] R).

Let Cg := Resf A2 X Resf? Al Resff A% with the two maps Resf A2 — Resft A!

both given by (u,v) +— wv. Then the target of ev‘Q/R can be written as

[Cr/Rest G3 ], where the torus G2, is the subtorus of G2, consisting of (u,v, s,t)
such that uv = st. After base change to k, we have C rE S = 1l R(F) C,., where
C, C A4 is the cone defined by uv — st = 0. Note that C; = Cy, — {(0,0,0,0)}

is smooth over k. The product [] veR(k )C’ defines a smooth open subset

C% C Cr. We claim that the image of ev‘QF lies in [C%/ResfG?,]. For
otherwise, there would be a point (L;, ..., ¢,1¥r) € Ny(k) and some x € R(k)
such that v;; r (hence ¢;;) vanishes at z for all i,j € {1,2}, implying that
det(y) vanished twice at x and contradicting condition (3). Therefore, the
image of er‘F lies in the smooth locus of [Cr/Resf G2 ], showing that Q is
itself smooth over k. This implies that Ny is smooth over k. The dimension
calculation is similar to Proposition 5.5(1) for dim My, and we omit it here.

(4) Since Q is proper, it suffices to show that gg is proper. As in the proof

—+VR
of [10, Prop. 3.1(3)], it suffices to show that the restriction of add, 4,

(6.6) XYP s XYR — X7,

is proper for any dy,ds > 0. Since X\F — Xn is ﬁmte (hence proper) the
properness of (6.6) follows from the properness of addd1 4 ¢ X, X Xg, —
Xd1+d2, which was shown in the proof of [10, Prop. 3.1(3)]. O

6.2. Relation with orbital integrals.

6.2.1. The rank one local system. Recall the double cover v : X' — X
from Section 4.1.1. Let o : X’ — X’ be the non-trivial involution over X.
The direct image sheaf v.Qy has a decomposition v,.Qy = Q; & Lx//x into
o eigenspaces of eigenvalue 1 and —1. Then Lx/ x|x_r is a local system of
rank one with geometric monodromy of order 2 around each k-point of the
ramification locus R.
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Starting with L = Lx//x, in Section A.2.2 we construct a rank one local

system LI on Pic%ﬁ whose corresponding trace function is the quadratic idele

—~vVR ~
class character 7 = ngr/p (Proposition A.12). Via pullback along AJC\ZF : XL}/E

— Pic%ﬁ’d, it gives a rank one local system Ed on )?C‘/E for each d € Z extending

the local system Ly on X C}/E defined in Lemma A.7.
For d € Qg, we define a local system Lg on Ny by

Lq=35(La;, QX Ly, Q).
6.2.2. Recall that, for each f € S>3 by (2.30) we have defined

fPE=f <® hE) ® <® 1%) € C(G(A)).

TzeER TEX

Let D be an effective divisor on U = X — ¥ — R of degree d. In [10,
§3.1] we have defined a spherical Hecke function hp € %”GEUR. Therefore, the
element h%i € C(G(A)) is defined.

For u € PL(F) — {1} and h € C°(G(A)), let
(67) J(’LL, h7 81752) = Z J(’Y’h731752)'

YEA(PN\G(F)/A(F),inv(y)=u

Note that when u ¢ {0, 1,00}, the right-hand side of (6.7) has only one term;
when u = 0 or oo, the right-hand side of (6.7) has three terms (cf. [10, 3.3.2]).

Recall the space A%, defined in (5.6). Then we have a map

invp : A (k) — PY(F) — {1}

sending (A, a,b) to the rational function b/a € P1(F). As in [10, 3.3.2], the
map invp is injective.

THEOREM 6.3. Let D be an effective divisor on U = X —X—R of degree d.
Let u € PY(F) — {1}.
(1) If u is not in the image of invp : A% (k) < PY(F) — {1}, then

.,]](u, hgi, S1, 82) = 0.

(2) If u ¢ {0,1,00} and u = invp(a) for a € Al (k) (which is then unique),

then
(6.8) J(u byt s1,80) = Y qPhemd=pst@dn—d=rlsa y(Fy, (R}, La)a).

deQq

(3) Assumed > 4g—3+p+N. Ifu=0 or oo, and u = invp(a) fora € A} (k)

(which is then unique), then (6.8) still holds.

The proof of this theorem will occupy the rest of this subsection. From
now on, we fix an effective divisor D on U of degree d.
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6.2.3. The set %D;. Recall from Section A.1.6 the definition of (O)\X/E,

which maps to O* and hence acts on A* by translation. Define a groupoid
- VR A X x
DivV®(X) = A /@\/ﬁ'
There are natural maps

AJVE(R) : DivVR(X) — FX\* 0% = PicY"(k),
w:DivVE(X) — AX/O* = Div(X).

We denote an element in Div\/R(X ) by EP and denote its image in Div(X) by
E. We denote the multiplication in DivVZ(X) by +. For Ef € DivVE(X), the
line bundle Ox(—FE), when restricted to R, carries a canonical square root,

which we denote by Ox(—FE") o7 (an invertible Og-module). The character

n = Npr/p on Pic}éﬁ

pullback. _
Let ¥ € GLa(F). Let Xp 5 be the groupoid of (Ei, Eg, Eih, E;u, YR), where

(k) can also be viewed as a character on Div\/E(X) by

o B Ef € DivVE(X) for i =1,2.

o Yr : Ox(—E}) 5 ® Ox(~ES) /m — 015(—5;“)@ @ Ox(—EY) 5 is an
11,R 12,R].

Og-linear map. Write ©¥r as a matrix {1/121 A

These data are required to satisfy the following conditions:

(0) The rational map 7 : O% --» 0% given by the matrix 7 induces an every-
where defined map

©: Ox(—El) S5 OX(—EQ) — Ox(—Ei) D Ox(—Eé)
We write ¢ as a matrix [ﬁ;} G ] Moreover, zpfm = @;jlr for 1 <i,j <2.
(1) @22 vanishes along ¥_.
(2) 21 vanishes along .
(3) det(p) has divisor D + R.

Define the groupoid
Xpz = Xp=/DivVE(X)

with the action of Div‘/E(X ) given by simultaneous translation on EE and E;h.
We may identify X, 5 with the sub groupoid of X DA where Eéu is equal to the
VR(X).

identity element in Div

This content downloaded from
18.9.61.111 on Wed, 06 Mar 2019 00:12:44 UTC
All use subject to https://about.jstor.org/terms
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LEMMA 6.4. We have

(6.9)
J(77 h?)i781732) = Z
1 —deg(E1—E2+FE,—FE/, - — ' —E}
X —m g( 1 2+ 1 2)31 deg( E1+E2+E1 E2)32 Eh _Eu .
#Aut(A)q q n(Eq 2)

Proof. Let A C GL, be the diagonal torus, and let Z C GL3 be the center.

Let
i (g ()
TER TEX ‘

Here hp € HGL, 1s as defined in [10, proof of Prop 3.2], and J. C GL2(0O,)
is defined by the same formulae as J, (see (2.16)), with G replaced by GLa.
Then we have hgi = pjlgi, where p, : C2°(GLg) — C°(G(A)) is the tensor
product of p, .. This allows us to convert the integral J(v, h%i, s1, 82) into an
integral on GLo, i.e.,

J(’Y,hD ,81,82)
= o RRCTADlat)alt) [ alt) falt)P(alt) dtd.

A(Z(A)\(A(A)xA(A))

Here o : A — G, is the positive root {tol t(” > t1/te, and the measure on

A% is such that vol(@*) = 1. We may identify A(Z)\A x A with G3, such
that ({ o tQ} {té [H) corresponds to (t1,t2,t]) € G2,, and we rewrite the above
integral as

J(’YahD 551582)

(6.10) S ) .
= /(AX)3 hDi([ 3 (1)]7{0 tgb|t1t2 Y bty M [P (taty ) dty diadt]

For z € | X|, define a set Zp , as follows:

o for x € R, let Zp , = =, defined in Section 2.4.1;

e forzecX Ep, = jx;

o forx € [X[-R—X, Ep; = Mata(Os), (det)=n, » Where ng is the coefficient
of x in D.

Let Zp = [[z¢|x| =p,o- Then there is a projection map
2 Ep — Mata(0)giv(det) =D+ R-

We have

(6.11) B = s

D"
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In fact, this can be checked place by place. The assertion is trivial when = ¢ R,
and it follows from Lemma 2.4 when = € R.
By (6.11), we may rewrite (6.10) as

(6.12)
J(v, bt 51, 59)

/ 1
= Jops Hu ([ 0]7[ 3o ]) [ty T oty P2 (i ty ) dty dtadt .
Here 7' (g) = @ if g ¢ Mat2(0)div(det)—D+R-
Note that the integrand in (6.12) is invariant under translating each of
the variables by (O)\X/E, therefore we may turn J(v, h%i, s1, 82) into an integra-

tion over Div‘/E(X )3. To do this, we first write the integrand as a function

on Div‘/E(X)?’. Denote the images of ¢1,t2,t} and t) = 1 in Div“/E(X) by

EE, Eg, Eih and Eéh = 0. One checks that the set u‘l([ /01 Oh[ 0 tO }) is in nat-

ural bijection with the fiber of A : Xp~ — DivVE(X)* over (Y, B}, EY, EY),
or equivalently the fiber of A : Xp , — Div‘/E(X )3. Moreover, we have
til = g7 Bt =g 4, Qe {1,2).
Hence the integrand in (6.12) descends to the following function on Div\/ﬁ(X )3
(with EJ = 0):
(6.13) Alx, q—deg(El—E2+E;—Eg)slq—deg(—E1+E2+E1_E§)szn(EE _ Eg).
° Y

To finish the argument we need some general remarks about integrating
a function over a groupoid:

(i) If G is a groupoid with finite automorphisms, and if f is a function on G
with finite support, then define

L= s F)

geg

(ii) The integration above is compatible with push-forward of functions. If
¢ : G — G’ is a map of groupoids with finite automorphisms, and if f is a
function with finite support on G’, then

/ng/glw!f,

where (¢1f)(9") = J,-1(y) flo-1(g), Where 0~ 1(g") is the fiber groupoid of
@ over ¢'.

(iii) Suppose we have a topological group H with Haar measure dh and a
homomorphism ¢ : H; — H from a compact topological group Hi such
that the image of ¢ is open and ¢ has finite kernel. Then the groupoid
G = H/H; has discrete topology with finite automorphism groups equal
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to ker(y). For a function f on H invariant under right translation by
»(Hy), we have

(6.14) [ smdn = vol(p(m), awker(e) - [ T,
H H/H,
where f is the pullback of the descent of f from H/¢(H;) to H/Hj.
Apply (iii) above to H = (A*)? and H; = (@%)3 with the natural map
Hy — (0%)3 — H. Note that the kernel and the cokernel of the map (O)\X/E —

0 have the same finite cardinality 2#%. Since vol(0*) = 1 under the Haar

measure on A*, the constant factor on the right side of (6.14) is 1 in this case.

Therefore, by (6.14), (6.12) can be written as the integration over Div\/E(X)?’

of the function (6.13). Applying (ii) above to A : Xp, — Div‘/E(X)3, we

further turn the integration over Div\/E(X )3 into an integration over Xp -,

J(v, ht, 51, 50)

(6.15) _/3€ q—deg(El—E2+E1—Eé)slq—deg(—E1+E2+Eg—Eg)32n(Eh Eg),
D,y

= 1 -

where (Ef, Eg, Eih, E;h) is the image of a variable point of Xp 4 in
DivVE(X)*/DivVE(X).

Now the formula (6.9) follows from (6.15) by the definition in (i). O

6.2.4. Proof of Theorem 6.3 for u ¢ {0,1,00}. For u ¢ {0,1,00}, let
F(u) = H ﬂ, which represents the unique A(F') double coset in GLa(F') with
invariant u. We define a map

A xD;,;(u) —>Nd(k),
(Ef, B, B, By op) — (L1, £3. LF. L5 .. 0R),
where EE (resp. Eéu) is the image of —EE (resp. —E;u) under
ATVE(E) : DivVE(X) — PicYE(k);
the definition of ¢ is contained in the definition of ES D5 If A is in the image of
A, then a := g&(A) € A% (k) and invp(a) = u. In particular, if u is not in the
image of invp, then xDﬁ(u) = & hence J(u, h%i,sl, s2) = 0 by Lemma 6.4.

Now we assume u = invp(a) for some (unique) a € A% (k). Let Ny, =

g&’fl(a) and Ny q = [[4eq, Nao- Then we can write
A :{Dﬁ(u) — Nd,a(k‘).

Let us define an inverse to . Let (ﬁa,...,ﬁg,w,wm € Ngq(k). Since the
(ﬁq, ce ﬁ';) are up to simultaneous tensoring with Pic}éﬁ(k), we may fix £/2h
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to be Oy, the identity object in Pic}éﬁ(k). Since invp(a) = u # 0,00, the
maps ;; are all non-zero. Then @21 : L1 — Ox = L5 allows us to write
L1 = Ox(—E)) for an effective divisor E;. The lifting Ehl of L1 gives a canon-
ical lifting Ei € Div\/R(X) of Eq, so that AJ\/E(k)(—Ef) = Eli canonically.
Similarly, using @20 we get Eg € Div‘/E(X ) whose inverse represents 53. Using
11 and Ei, we further get Eih € Div‘/E(X ) whose inverse represents E’lh. Then
(Eg, Eg,Eih, 0,%r) (0 denotes the identity in Div\/E(X)) gives an element in
X D) It is easy to check that this assignment is inverse to A, hence A is an
isomorphism of groupoids.
Under A\, we have

(6.16) — deg(E1 — Fy + Ei — Eé) =dy9 —doy = 2d12 —d — p,
(617) — deg(—E1 + FEo + E£ — Eé) =djy — dao =2d11 — d — p,
(6.18) n(E] — E5) = n(L51)n(L55) = n(L5)n(Lh),

where L'Ej = EE@_I ® Egu and deg L;; = d;j. Therefore, we may rewrite (6.9)
as

J(y(uw), 5t 51, 52)
1
- 2 # Aut(A)

A:(EE 73L/2h 7<P7¢R)€Nd,a (k)

gt Gy (£ )y (£

By Proposition A.12, the trace function given by LY is the character 1 on
Pic}?ﬁ(k). The formula (6.8) then follows from the Lefschetz trace formula for
Frobenius:

1
Z # Aut(A)

A:(£§?7El2u’sp)wR)€Né,a(k)

6.2.5. Proof of Theorem 6.3 for u = 0. There are three A(F') double cosets

with invariant 0:
_[ro 11 J10
o1 ™T o] T 11|

We first consider the case when X = &. Then ag = (Ox(D + R), 1,0) €

~

A% (k) is the unique point satisfying invp(ag) = 0 = u. Let Qq C Z* be the
set defined similarly as (04 except we drop the condition that d;; > 0. For any

n(L3)1(Ly) = Tr(Fra, (Rg), La)a)-

de @d, we define //\/2 in the same way as N except that we drop condition (5)
in Definition 6.1, but requiring at most one of ¢;; is zero. We still have a
map § : Ng — Aq — A% and we denote the fiber over ag by Nga,. Let
Nd.ao Niao- We have a decomposition Ny, = N, I a0 U N4, where

,a0’

- Hdeéd
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—

//\/\Jao consists of those (Eli, .. ,E'Qh,gp,@l)R) such that @91 = 0,12 # 0;

consists of those (cﬁ, e 75/2117 ®,¥R) such that @12 = 0,21 # 0.

The same argument as in Section 6.2.4 gives canonical isomorphisms of
groupoids Ay : Xp ., — ./\//\'Ci10 (k). Using the isomorphism Ay, (6.16), (6.17)
and (6.18), Lemma 6.4 implies

d’ao

(6.19)
J(n-‘ra hgia S1, 82)
1
- 2 #Aut(A)

A= (L], L oR)ENS (k)

_ Z q(2d12 —d—p)s1+(2d11—d—p)s2

q(2d12—d—p)s1+(2d11—d—P)SZU(Lgl)n(ﬁig)

deQq
x ) (£} ().
, N #Aut(A) 11 12
A:(Li,...,ﬁ;,ap,wR)e/\/’;ao(k)
Similarly,
J(n,,h%,sl,@)
— Z q(2d12—d—p)51+(2d11—d—p)52
(6.20) deQq
1
- b h
X Z #Aut(A)U(ﬁm)n(ﬁm)'

A=(LY e £ o b R)EN ., (R)
On the other hand, by the Lefschetz trace formula for Frobenius, we have

S g2t - Ty, (R L

deQq
1
— (2d12—d—p)s1+(2d11—d—p)s2 f b
Z q Z L Aut(A) Aut(A)n(ﬁn)”(ﬁu)
deQq A=(ﬁli7'“)€Ng,a0(k)
_ Z q(2d12—d—P)81+(2d11—d—p)82
deQq
Y )Y e n(Ch)
# Aut(A) TR — #Aut(A) TR
Ae/\@ao(k) AEN o (k)

Here N, fao is defined as //\\/;ijfao N Ngao- By condition (5) in Definition 6.1, we
have Na?ag = @ if dio < do; — N and NdJraO = @ if dio > do1 — N. Therefore,
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the above formula equals

(6.21)

E 1
(2d12—d—p)s1+(2d11—d—p)s2 L [:h ;
9 Z n(L11)n(Ls)
dE€Qqydra<dar —N AENT, (k) # Aut(A)

d,aq
(2d12—d—p)s1+(2d11—d—p)s2 1 £h ﬁh
+ Z q Z #Aut(A)n( 21)N(L32)-
d€Qq,di2>d21—N AENG . (k)

Comparing the sum of the right-hand sides of (6.19) and (6.20) with the
expression(6.21), the only difference is the range of d in the summation; how-
ever, many d’s do not contribute as the following lemma shows.

LEMMA 6.5. Let d € Qy.

(1) If d12 > 2g -1 + p, then

> #Alllt(A)n(Chll)U(ﬁhm) =0.

A= (L], L R EN] (k)

(2) If doy — Ny > 29— 1+ p, then

1 h By _
2 FRamCanLh) =0
A:(ﬁhl,...,ﬁ2n7@7¢R)€N(;a0(k)

(3) We have

(los

Proof. (1) Let (Xﬁ X XC};E)DJFR be the fiber over D + R of the map

pINE
ahD a51752> =0.

VE VR addVE R @i,
XY xR 2 VR e X

We have an isomorphism

(6.22) N = (XYEx XYR  Vpir x X)R
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by recording (L%, @i, vij.r) for (i,5) = (1,1),(2,2) and (1,2). (Then £} is
determined uniquely and @91 = 0.) Using this isomorphism we can write

1 b b
Z R #Aut(A)U(£11)U(£12)
A=(L5 o L5 o) ENT, (K)
1
- R T
(6.23) N wz r Faw@) "
=]y )EXETXXTT y Jp+r(k)

X Z #Ault(A”)n(E%)'

A=(L 5 )EX YT (k)

Since dy2 > 2g—1+p, the fibers of the map AJYZ(k) : X F(k) — Picy ™2 ()
VR,d12 (k‘)

have the same cardinality. Since the character 7 is non-trivial on Picy
the last sum in (6.23) vanishes.
The proof of (2) is similar to (1), using the isomorphism
N VR VR VR
Nd@o — (an X XdQQ—Nf)D_'_R X Xdzl—N+
instead of (6.22).
(3) The restriction of the character (¢,t") — |tt'|5t|t/ /t|52n(t) on the stabi-
lizer of 1 under A(A) x A(A) (the diagonal A(A)) is non-trivial, therefore the
integral vanishes. O

By Lemma 6.5(3), we have
(624) J(Ov hgivsla 82) = J(n-l-v hgivslu 82) + J(n—a hgiasla 82)7

which is calculated in (6.19) and (6.20). Using Lemma 6.5(1), we may restrict
the summation in the right-hand side of (6.19) to those d € /Q\d such that
0 < djz <29—2+4+p (d12 > 0 for otherwise //\\/dfao = &). Since d > 49g—3+ N +p,
we have di2 + (d21 — Ny) > 2(2g — 2+ p) + 1. Therefore, we may alternatively
restrict the summation in the right-hand side of (6.19) to those d € Q4 such
that dyo < d21 — N4. Therefore, the right-hand side of (6.19) matches the first
term in the right-hand side of (6.21). Similarly, the right-hand side of (6.20)
matches the second term in the right-hand side of (6.21). We thus get (6.8)
by combining (6.24), (6.19), (6.20) and (6.21).

Finally, we consider the case ¥_ # @. Then w is not in the image of invp.
In this case, Xp n, = @, hence J(n4, h%i,sl, s2) = 0 by Lemma 6.4. Together
with Lemma 6.5(3), we get J(0, hgi, s1,52) = 0.
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6.2.6. Proof of Theorem 6.3 for u = oo. There are three A(F') double
cosets with invariant co:

0 1 11 0 1
W=l o ™MW= 1 g W71 1 |-

The argument is the same as in the case © = 0, which we do not repeat.

7. Proof of the main theorem
7.1. Comparison of sheaves.

7.1.1. The perverse sheaf K4. Let d > 0 be an integer, and consider the
direct image complex Vﬁ@g under yﬁ : X, — XL}/E defined in (A.10). Let

X, C Xy be the open locus of multiplicity-free divisors, and let XL}/E’O (resp.

X%) be its preimage in X ﬁ (resp. X}). Restricting VC}/E to Xﬁ’o
finite étale Galois cover X/ — Xﬁ’o with Galois group T'y = (Z/2Z)% x Sy.
(Note that VC}/E is still étale when the multiplicity-free divisor meets R, as
X — Xl\/ﬁ is étale.) Asin [10, §8.1.1], for 0 < i < d, we consider the following

representation pg; = Ind?j(i)(%i) of T'g, where T'y(i) = (Z/27Z)% x (S; x Sq_3), Xi

we get a

is the character on (Z/2Z)% that is non-trivial on the first i factors and trivial
on the rest, and x; is the extension of x; to I'y(4) that is trivial on S; x Sy_;.
As we noted towards the end of the proof of [10, Prop 8.2], there is a canonical
isomorphism of I'j-representations:

d
(7.1) Indgj(l) >~ D pa.
1=0

xYRe (

Then p; gives rise to a local system L(pq;) on which is smooth

over k). Let jg : Xﬁ’o — X\g/ﬁ be the inclusion. Let
Kai = jaw(L(pai)ld])[—d]

be the middle extension perverse sheaf on )/(\(}/E.
We first study the direct image complex of f; : My — Ay. By Proposi-
tion 5.5, for d > 2¢' — 1+ N, dim Mgz =m = Ajy.

PROPOSITION 7.1. Letd > 2¢' — 1+ N.

(1) The complex Rfq1Qelm] is a perverse sheaf on Aq, and it is the middle
extension of its restriction to any non-empty open subset of Ag.
(2) We have a canonical isomorphism

d+p—N, d+P—N+
(7.2) Rfg Q= P P (Kirpn_iRWKiypn, j)la,-
=0 j=0
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Here we are identifying Aq with an open substack ofX(}/;p N X o YRRt

(}_Cp N, using (5.4).

Proof. (1) We observe that the base Ay is irreducible (because both maps
v, and v, are vector bundles when d > 2g — 1+ N). By Proposition 5.5(1),
M, is smooth and equidimensional. By Proposition 5.5(3)(4), fq is proper
and small. Therefore, RfyQ[m| is a middle extension perverse sheaf from
any non-empty open subset of Ay.

(2) In fact this part holds under a weaker condition d > 3g — 2+ N. By
Proposition 5.5(2) and the Kiinneth formula, we have

RfnQe = ROYE  (QRERIYE \ Qp)la,.
Therefore, it suffices to show that for d' > 2¢’ — g = 3g — 2 + p (note that
d+p— Ny >39—2+p),

d/
RoYQ = @ K.

We claim that ﬁf : Ac’l, — )/(\ VR is small when d’ > 2¢' — g. In fact, the only

positive dimensional fibers are over the zero section Plc\ﬁd — X ‘F, which

has codimension d’ — g + 1 (prov1ded that d’ > g — 1). The restriction of ﬁﬁ
over PIC\F R4 i5 the norm map Pic4 X/ — PIC\F Rd , whose fibers have dimension

g —g. Since d > 2¢' — g, we have d' — g + 1 2 2(¢" — g) + 1, which implies
that 2% 7 is small.
VR

Since the source of 7)™ is smooth and geometrically connected of dimen-

VR

sion d’, and since Uy is proper, Rﬁﬁ@g[d] is a middle extension perverse

sheaf from its restriction to X VR0 . The rest of the argument is the same as
[10, Prop. 8.2], using (7.1). O

Recall from Section 5.1.5 that we have endomorphisms fg [gi] and fq, [ﬁ?]
of Rfq1Q.
PROPOSITION 7.2. Suppose d > 29’ — 1+ N. Then the action of fdJ[ﬂﬁ]

(resp. fd7![ﬁ<_>] ) preserves each direct summand in the decomposition (7.2) and
acts on the summand (Kqq,—n_ ;X Kqy,— N, j)|a, by the scalar d+p— Ny —2j
(resp. d+p — N_ —2i).

Proof. By Proposition 7.1(1), any endomorphism of the middle extension
perverse sheaf Rf;Q (up to a shift) is determined by its restriction to any
non-empty open subset of A;. Therefore, it suffices to prove the same state-
ments over .Ag, over which Hﬁ (resp. H?) is the pullback of the incidence
correspondence I, Hp— N, (resp. I, o ~_); see Section 5.1.5. The rest of the
argument is the same as [10, Prop. 8.3]. O
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Now we turn to the direct image complex of gq : Ng — Ag4. By Proposi-
tion 6.2, when d > 2¢’ — 1+ N and Ny # &, dim Ny = dim Ay = m

PROPOSITION 7.3. Letd>2¢' — 1+ N and d € Qg.

(1) The complex Rgq1Lq[m] is a perverse sheaf on Aq, and it is the middle
extension of its restriction to any non-empty open subset of Ag.
(2) We have a canonical isomorphism

(7‘3) Rgd,!Li = (Kd‘f‘P—Nf,dll X Kd+p—N+,d12)‘Ad'

Proof. (1) As in the proof of [10, Prop. 8.5, gq is not small; however, by
Proposition 6.2(2) and (4), we know that Rgg41L4[m] is Verdier self-dual. Since
gq is finite over Ag, Rgq1Lq[m] is a middle extension perverse sheaf on Ag.
To prove Ryggq,Lg4[m] is a middle extension perverse sheaf on the whole Ay, we
only need to show that the restriction Rgq1Lg4[m]|s.4, lies in strictly negative
perverse degrees, where 0.4, = Ag — Ado.

We have Ag = A% L AZZO. (See notation in the proof of Proposi-
tion 5.5(4).) Below we will show that Rgg1Lg[m)]| Ap=0 lies in negative perverse

degrees, and the argument for Ag:(} is similar.
When dio < d2; — N4, we have a Cartesian diagram

—1/ 4b=0 vV VR VR . VR, d21—Ny
gd (Ad ) (Xdll X Xd22 ) XPiC)\éﬁ;\/ﬁ’d-ﬂ) (Xdl2 X PICX )
VR
Jgd ladddn’dm_]\, xh
b=0 \/ vV d-‘rp N+
A Xdtp-N_ %p oy FvTdte Picy

where the map h is the composition

AJYVExid
VR VRdo1—N, M v VR,da1—N. It . VR,d+p—N
Xd1 x Pie} "® Tt —2 P 1cXR’d12 x Picy, ™' 255 Picy o= Nt
We have

Rgq1Ld| gp=0 = (Raddc\l/uﬁ,dgg—N_,!(Ldll X Q¢) X Rh(Lgy, X @z)) | ap=o-

The first factor Raddgl/lﬁ dp— N 1(Layy B Qp) is concentrated in degree 0 since
addgl/f don— N is finite. The second factor is the constant sheaf on Plcf dtp=N+

with geometric stalk isomorphic to H*(X‘F ® k, Lg,,). By Lemma A.6,

HY (XY R @&, Lay,)
always lies in degrees

< dimH' (XYF @k, L) = dimH:(X — R) @&, L) =29 — 2+ p.
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Therefore, Rgq,1L4| Ab=0 lies in degrees < 2g — 2 + p. Since codim 4 d(.AZZO) =
d+p— N4 —g+1 (see the proof of Proposition 5.5(4)), which is > (2g—24p)+1
(for this we only need the weaker condition d > 3g—2+ N), we conclude that
Rgq1Lq[m]| Ap=0 lies in cohomological degrees strictly less than — dim A%,
hence in strictly negative perverse degrees.

When dy2 > do; — N4, the argument is similar. The role of the map h is
now played by

idx AJYR

. dy1 —N

h PlCXR’dl2 XXc}/EfN $> Plc)\( ,d12 « Pic v ,da1— N4
21—N4

1t . R,d+p—N.
LN Plc}(’ TN

Using the isomorphism

d VR, d+p—N.
v = (N, pry) : P1c\/> 12 Xﬁ N, AN Picy =N+ XXt?lgF—NJr’

the map h/y~! becomes the projection to the first factor of

VR, d+p—N. VR
Picy "m0 X XN,
By Proposition A.11, mult*Lijp Ny = Lglig @ ngii ~,- Therefore, we have
(771)*([/6112 D Qf) = LdP_lfp_NJr X Lgm = LdPrp_N+ X LlefN_‘_, and hence
hg(Ldm X Qf) = ngfpr+ ® H*(Xc\lg N4 @k Ld21 N+)

Then we use Lemma A.6 again to conclude that Rgg1Lg[m]| Ao lies in strictly
negative perverse degrees.

(2) By (1), we only need to check (7.3) over the open subset Ag. By
Proposition 6.2(3), the diagram (6.4) is Cartesian over Ad , and we have

Rgd,!l@ug = (addﬁdgg—N,,!(Ld11 X Q) X add(ﬁdzl—]\ﬁ,,!(Lde X @Z)) |A;>-

Here add;’/jﬁ is the addition map (A.2). Therefore, it suffices to show that for
any ,7 > 0, there is a canonical isomorphism over X;Jg ,
(7.4) addﬁ(l/z X Qg) = Ki+j,i|X\/§ .

itj

Now both sides are middle extension perverse sheaves (because addg/f is finite
surjective with smooth irreducible source). The isomorphism (7.4) then follows
from the same isomorphism between the restrictions of both sides to (X —R)?, ;;
the latter was proved in [10, Prop. 8.5]. O
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510 ZHIWEI YUN and WEI ZHANG

7.2. Comparison of traces. For p,p’ € %, 5, recall the definition of ry
from (5.13). For f € 57, with f=* defined in (2.30), let

I (f) = <8651 ) (ai) R (R )

THEOREM 7.4. Suppose D is an effective divisor on U of degree d >
max{2¢' — 14+ N,2g}. Then

(7.5) (—logq)~"I"* (hp) = T (hp).
Proof. By Theorem 6.3, we have

s1=s2=0

b —d— —d—
N+81+N782J(hDi ): Z q(2d12 d—p+Ny)s1+(2d11—d—p+N_)s2

deQq

X Z Tr(Fra,(Rgg’!Li)a).
aE.AbD(k)

q » S1, 52

Using Rg&j,Ld = RO Rg41 L4, we have

S Te(Fre, (RjuL)) = 3 o Te(Frz, (Rgas La)s).

aeAr (k) aean 7AW@

Here Ap C A is the preimage of .,433. Using Proposition 7.3, we can rewrite
the above as
1
> i O Ky B Ky o))
aeAp (k)

Therefore, we get

N+51+N_52J(h%:t

q , 51, 52)

d+p—N_ d+p—N4
_ Z Z q(2j—d—p+N+)sl+(2i—d—p+N,)52

=0 j=0
1
XY e T (Kavp-n i B Kaypony j)7)-
- # Aut(a)
a€Ap (k)

Taking derivatives, we get

(7.6)
d+p—N_ d+p—Ny

(logq) "I"* (hp)= Y. 3 (2j—d—p+Ny)+(2i—d—p+N_)"~
i=0 §=0

1
> #Aut(@)

EGAD(]C

Tr(FrE, (Kd—i-p—N_,i X Kd+p—N+,j)E)'
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SHTUKAS AND THE TAYLOR EXPANSION (II) 511

On the other hand, by Theorem 5.6, we have
]I“’“/(hD)
= > T (DG o (D © Fra, (RF5,Q0)a)
ac A, (k)
_ Z 1 _
N # Aut(a)

EE.AD (k’)

Tr ((fd,!mﬁ})? o (fd,![ﬁ?bgf o Fry, (Rfd,!(@e)’g) :

By Propositions 7.1 and 7.2, for a € A,4(k), we have

Tr ((fdyl[ﬁﬁ]){ o (fd,![ﬁ?})?g o Frz, (Rfd,!QE)g)
d4p—N_ d4p—Ny
= Y > (d+p—Ny—2j)"(d+p— N_—2i)"
i=0 =0

X Tr (Frz, (Kagp-nN_i W Kayp-n, j)z) -

Therefore
d+p—N_ d+p—Ny
P (hp)= > > (d+p—Ny—2§)*(d+p— N —2i)~
i=0 =0

(7.7) ,
P | # Aui(@)

EEAD(k

Tr (Frg, (Kapp-n_i W Kaypn, 5)3) -

Comparing (7.6) and (7.7), we get (7.5). The extra sign (—1)" in (7.5) comes
from the fact that

(d+p—Ny—25)*(d+p—N_—2i)~
=(-1D)"2j—d—p+Ny)*(2i—d—p+N_)—-. O

7.2.1. Fix ¢ € &' (k). Let V'(&) = H* (Shtf5(3;€) ® k, Q) (r). By the
discussion in Section 3.5.6, the finiteness results proved in Section 3.5.5 for the
cohomology of Shtg(X; X)) as a %Gz-module are also valid for V', hence for
its summand V’(§).

Let

K= H G(O,) x H Tw,.
¢y TEL
Denote by A(K) the space of compactly supported, Q-valued functions on the
double coset G(F)\G(A)/K. The moduli stack Sht% (%) is exactly the discrete
groupoid G(F)\G(A)/K. Therefore, A(K) ® Qy is identified with

HY(Shtg; (%) @ k, Q).

Corollary 3.40 implies that the image of the action map 5 — End(A(K)) is
a finitely generated Q-algebra with Krull dimension one. Theorem 3.41 allows
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512 ZHIWEI YUN and WEI ZHANG

us to write
AK) © Qp = A(K)gis ® Q; @ (Dreng @, A )x)-

Here TIx(Qy) is the set of cuspidal automorphic representations (with Q-
coefficients) of G(A) with level K. Each 7 determines a character A\, : S+
— Qy. By strong multiplicity one for G, the character A, determined 7. There-
fore, we may identify ITx;(Q,) as a subset of Spec 7> ® Q.

Let

A = Tm( A ©Q — Endg, (V!(€)) x Endo, (A(K) Q) x Qy[Picx (k)]'7).

Then by Corollary 3.40, %722 is again a finitely generated QQs-algebra with Krull
dimension one.

THEOREM 7.5. Let p,p' € {£1}". Then for all f € H#, we have the
identity
(=logq) "JHH (f) =T (f).
The proof is the same as that of [10, Th. 9.2], using the finiteness property
of #* and [10, Lemma 9.1].

7.3. Conclusion of the proofs.

7.3.1. Proof of Theorem 1.2. Both I*# (k) and J** (h) depend only on
the image of h in %”E.
Let ) = Spec %”ZE. By Theorem 3.41, we have a decomposition

Ved = Zgiso, [ Yo,

where )) is a finite set of closed points. Under this decomposition, we have a
corresponding decomposition of jﬁz,

(7.8) K = A s X Ao,

such that Spec %’?Eﬁffd = Zgis,0, and Spec %%red = ). We have a decompo-

sition
V'(€)@Q,=V'(€)ris ® Q & (@meyo(@)vl(f)m),

where Supp(V'(§)gis) C Zris,0, and V/(§)m is the generalized eigenspace of
V'(€) ® Q, under the character m of %E. Under this decomposition, let Zf(€)
be the projection of Z*(&) € V'(£) (the cycle class of 6 [Sht%(uoo -&)]) to the
direct summand V'(§)m.

Let h € %’ZEO, viewed as (0, h) € %’? under the decomposition (7.8). Since
the %Gz—action on V'(€) is self-adjoint with respect to the cup product pairing,
we have

(7.9) I (h) = > (ZR(€),hx ZE (€)).
meVo(Qp)
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SHTUKAS AND THE TAYLOR EXPANSION (II) 513

On the other hand, we have

(7.10)
It (h)
S () (L) s
7€l (Qyp) ! 2 s1=02=0

By the discussion in Section 7.2.1, IIx(Q,) can be viewed as a subset of
Yo(Qy). Now let 7 be as in the statement of Theorem 1.2. Let h = e, be the
idempotent in ,%”ZEO ® Qy corresponding to 7 € I (Q,) C Vo(Qy). In (7.9) and
(7.10) we plug in h = er, and we get

I (ex) = (Z5(€), 24 (€)),

T (eq) = (838)” ((985)’" (¢Ne N2 (B sy, )

s1=82=0

Applying Theorem 7.5 to e,
8 T4 8 T—
—lo —r <7> <7) N+81+N_82J hzi,s .S
(~loza) " (5-) (35, (q (W%, 51, 9)) o

= (25(8), Z7(£))-
By Proposition 2.10, the left side above is the left side of (1.7). The proof of
Theorem 1.2 is complete.

7.3.2. Proof of Theorem 1.3. Make a change of variables t; = s1 + s9,
tg = 51 — 82. We have

<i)” <i>r_” _1 <i n i)” <i _ i)r_”
oty Oto o 0s1 089 0s1 089

1 o r—#I o #I
_ 1 I L) <7> (7> '
27 Z ( 1) 0s1 0s9

I1c{1,2,..,r}
Therefore,
) (W 1) plr=r) (7r®n 1)
9 2 ? 2
o) () 1 ;
<8t1 o (L (m t1 + 2) (m@n,t2 + 2)) R

_ 1 Y (— 1)

I1c{1,2,..,r}
o \"# g \#
% <831) (382) L p(m, 81, 82)

For I C {1,2,...,r}, let o7 € {£1}" be the element that is —1 on the i-th
coordinate if ¢« € I and 1 elsewhere. We may view o7 as an element in 2, x.

s1=52=0
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Let p € %, ». By Theorem 1.2,

N o9 \H#
<8sl) <852> L (T, 51, 82)

s1=82=0

= (27(6), 23"7(8)) = (25 (&), 01 - Z(€))

where the second equality follows from Lemma 4.10. Therefore

<n>( 1) (r—n)( 1)
A m, = | & 7r®77,2

2
1
=— Y (-nFUnInthem ) (Zme) op - ZE(9))
Ic{1,2,...,r}
1
—(Z#(ﬁ), > 2 (—1>#“”{““"~"“}>af~Z#<§>>
I1c{1,2,...,r}

i=1 j=r1

- (Z;:(@, 1157 115~ -Z#(&)) = (Z8(0).5r, - Z(0)).

Since &,, is an idempotent in Q[(Z/2Z)"] that is self-adjoint with respect to
the intersection pairing on Shtg(¥;€), we have

(25 )y - Z5(8)) = (ery - Z5 (), 6ry - Z1(E)) -

The theorem is proved.

Appendix A. Picard stack with ramifications

In this appendix we record some constructions in the geometric class field
theory with ramifications of order two, which will be used in the descriptions
of the moduli spaces in Sections 5 and 6.

A.1. The Picard stack and Abel-Jacobi map with ramifications. Let R C
X be a reduced finite subscheme.

Definition A.1. Let Pic%ﬁ be the functor on k-schemes whose S-valued
points is the groupoid of triples £f = (£, Kg, ), where

e [ is a line bundle over X x S;
e K is a line bundle over R x S
° IC%2 5 L|grxs is an isomorphism of line bundles over R x S.

We have a decomposition Pic}{ﬁ = Ugez Pic}éﬁ’d, where Pic)‘éﬁ’d is the

subfunctor defined by imposing that deg(Ls) = d for each geometric point
seSs.
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SHTUKAS AND THE TAYLOR EXPANSION (II) 515

A.1.1. We present Pic}éﬁ as a quotient stack. Let Picx r be the moduli

stack classifying (£, ), where L is a line bundle over X and ~ is a trivialization
of Lr. The Weil restriction Res¥ G,, acts on Pic x,r by changing the trivial-
ization 7, whose quotient is naturally isomorphic to Picx. From the definition

VB

of Pic XR we see there is a natural isomorphism of stacks
PiCXR = [PiC)QR /[2] Resk,R Gm]

Here the quotient is obtained by making Res,f Gy, act on Picx g via the square
of the usual action, and the notation / 2] is to emphasize the square action.
When R = &, ReskR Gy = Speck by convention, and the above discussion is
still valid.

The forgetful map (£, Kg,t) — L gives a morphism of stacks

Pic}éE — Picy,

which is a ReskR Lo-gerbe.

A.1.2. Variant of Pic%ﬁ. We will also need the following variant of Pic%ﬁ.
Let Pic}?ﬁ;\/ﬁ be the stack whose S-points consist of (L, Kg,t, ar), where
(L,Kg,1) € Pic}éﬁ(S) and apg is a section of Kr. Then we have

_ (2], Resf G
PicY"V R = Picxp  x  ResfAlL

Here the action of Resi2 Gy, on Picx g is the square action and its action on
Res Al is by dilation.

Definition A.2. For each integer d > 0, let X\ﬁ be the k-stack whose
S-points is the groupoid of tuples (£, a, ag), where

o L0=(L,KR,1) GPic}éﬁ’d(S) — in particular, ¢ is an isomorphism IC%2 = Lr;

e q is a global section of L;

e ap is a section of K such that L(Oz%z) = apg, where ap is the restriction of
ar to R x S.

We let X C}/ﬁ cX C}/E be the open substack defined by requiring that a is non-
zero along the geometric fiber X x {s} for all geometric points s € S.

A.1.3. Forgetting the square roots (Kg,t,ar) we get a morphism to the
stack X, defined in [10, §3.2.1]:
(:Dc\l/ﬁ : j(\c\i/ﬁ — X\d.

Over a geometric point (£,a € I'(Xk, L)) € Xq(K), the fiber of @C\l/ﬁ is a
product [Ter(x) Pz, where P, = Spec K if a(z) # 0, and P, = [Spec K /2 k]
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VR VR
g to X,

if a(z) = 0. In particular, the restriction of @

wyP: XxYE — X,

realizes X4 as the coarse moduli scheme of XC}/E. When d = 1, Xl‘/ﬁ is the
DM curve with coarse moduli space X and automorphic group po along R.

Definition A.3. For an open subset U C X, we define UC}/R to be the

subset of XC}/E that is the preimage of Uy under the map w&/ﬁ.

We have another description of X\C}/ﬁ as follows. Evaluating a section of a
line bundle along R gives a morphism

evl i X; — [Resft A/ Resf Gl
From the construction of )/(\C}/E we get a Cartesian diagram

/\f eV(\i/ﬁ
XYR % [Resff A/ Res G,

(A1) Fﬁ ) lm

X, EEACI, [Resf A'/ ResE G,y,].

Here the vertical map [2] is the square map on both ReskR Al and ReskR G-

LEMMA A 4.

(1) The map ev} is smooth when restricted to Xg.
(2) XC}/E s @ smooth DM stack over k.

Proof. (1) We may argue by base changing to k. We have

[Resft A'/ Resf! Gy & H [Al/G,,],
z€R(k)
and the map ev?E R e | [A'/G,,] is the product of the evaluation

maps ev, for z € R(k). The following general statement follows from an easy
calculation of tangent spaces.

CLAIM. Let Z be a smooth and irreducible k-scheme and f; : Z — [AY/G,,]
be a collection of morphisms, 1 <1i < n. Assume the image of each f; does not
lie entirely in [{0}/G,,], so the scheme-theoretic preimage of [{0}/G,,] under
fi is a divisor D; C Z. Let f : Z — [["1[AY/G,,] =2 [A"/G?] be the fiber
product of the fi’s. Then f is a smooth morphism if and only if the divisors
D1, ..., D, are smooth and intersect transversely.

We apply this claim to Z = X, and the maps ev, for + € R(k). The
divisor D, in this case is the locus in X, classifying those degree d divisors
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D of X containing z. For a subset I C R(k), the intersection Dy = Nyer D,
is the locus classifying those degree d divisors D of X containing all points
in I. This is non-empty only if #I < d. When this is the case, we have an
isomorphism X4_4; = Dy given by D +— D + 3",y x. (The fact that this is
an isomorphism can be checked by an étale local calculation, reducing to the
case X is Al.) In particular, D; C X 4% 1s smooth of codimension #1. This
shows that the divisors {D}, R(F) 7

the map evsz is smooth when restricted to X dF

intersect transversely. By the claim above,

(2) Since ev¥|x, is smooth by part (1), so is esz/E‘X\/E by the Cartesian
d

diagram (A.1). Therefore, XC}/E is a smooth algebraic stack over k. Since the

square map [Resit A'/ Res® G,,,] — [Resf Al/ ResE G,,] is relative DM and X,

is a scheme, we see that X(}/E is a DM stack again from (A.1). O
A.1.4. The addition map. Suppose di,ds € Z>p. Then we have a map

i’ VR RVE L, RVE

adddl’dz : Xd1 X Xd2 — Xd1+d2

sending (Ei, ai, aR,l,Eg, as, aR2) to (Eli ®£g,a1 ®az,ap1 @aprz2). It restricts
to a map

R R R R
(A.2) addy®, XY x xYF — xYT,

In particular, applying this construction iteratively, we get a map (for
d>0)
R Ry\d R
(A.3) pyT s (xR — xR,
which is Sg-invariant with respect to the permutation action on the source.

A.1.5. The Abel-Jacobi map. Forgetting the sections a we get a morphism
—~VRVR = . :
K3YVE L RVR L pieyR/Rd,

We also get a map

KRR iy

by further forgetting agr. Let AJ(}/E;\/E and AJ;I/R be the restrictions of
E];/E;\/E and ﬁf to XC}/E. When R = o, AJZI/E reduces to the usual

Abel-Jacobi map.
A.1.6. Presentation of Pic}?ﬁ(k). For x € R, let
O\/E = Om Xk(x) k(a:), OX:C

U5 = O Xiyx k(@)™
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where the second projections k(x) — k(z) and k(x)* — k(z)* are the square
maps. Let @XR = [lzer (’)\X/5 X [locix—r| Ox - We have a homomorphism

@i(/ﬁ — 0* = H:cE|X| O; — A;

LEMMA A.5. There is a canonical isomorphism of Picard groupoids

(A.4) FX\A} /0% 5 PicYR (k)

sending w; ' (where @, is a uniformizer at x € | X — R|) to the point Ox(x)* =
(Ox (), OR, 1) € PicyE (k).
. .. VR e
Proof. Consider the groupoid Picy (k) classifying
(‘Cv T, {Tw}xe\Xh Kr,t,tr = {tx}zeR)a

where (£,Kpg,t) € Pic}?ﬁ(k), Ty Llspec 7 = F' is a trivialization of £ at the
generic point, and 7, : L|speco, = O is a trivialization of £ in the formal
neighborhood of x, t, : K, = k(z) is a trivialization of K, for every z € R,
such that the following diagram is commutative:

L
ko2 =, p.

J/t;gm sz |z

k(2)%? = k(z).

Similarly, we define Picx (k) to classify part of the data (L, 75 {7z }2e|x|) @S

above. The forgetful map Picy (k) — Picx (k) is an equivalence; the choices
of the extra data (Kg,t,7r) are unique up to a unique isomorphism.
We have an isomorphism Picx (k) = A sending (£, 7y, {Tz}seix|) to

(w07, 1):ce\ x| € A*. Therefore, we get a canonical isomorphism

a: AN ﬁi\cf(l{).
It is easy to see that for 2 € | X — R|, a(w; ') has image Ox(z)? in Pic%ﬁ(k).
X

There is an action of F* on ﬁi\cX k) by changing 7,. For z € | X — R|,

—VR
there is an action of O on Pic)\(ﬁ(k) by changing 7,. For x € R, there is
—VR
an action of O\X/:E = O Xp@)x k(z)* on Pic)\(ﬁ(k) by changing 7, and t,
—VR
compatibly. Therefore, we get an action of F* x @\X/ﬁ on Pic){(k). The
isomorphism « is equivariant with respect to these actions. The forgetful map

ﬁl\cf(l@) — Pic}éﬁ(k) is a torsor for the action of F'* X (O)\X/E. Therefore, o

induces the equivalence (A.4). O
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A.2. Geometric class field theory. In this subsection, we fix L to be a rank
one Qg-local system on X l\/ﬁ. Since X f/R is a smooth DM curve with coarse
moduli space X and automorphic group pe along R, such a local system is the
same datum as a rank one Q-local system on X — R with monodromy of order
at most 2 at the x € R.

Starting from L, we will give a canonical construction of local systems Ly

on Xc}/ﬁ for d > 0 and show that it descends to Pic}?ﬁ’d. In the case R = @,
such a construction goes back to Deligne.

A.2.1. The local system Lg. Consider the Sy-invariant map p&/ﬁ in (A.3).

VR Xd

The complex pj is a middle extension perverse sheaf on Xg‘l/E (i.e., it

is the middle extension of a local system from a dense open subset of Xﬁ)
VR
d

stack. Therefore, the Sy-invariant part

because pY ' is a finite map from a smooth and geometrically connected DM

Ly = (pyFLE?)5

is also a middle extension perverse sheaf on XC}/E.

LEMMA A.6. Suppose the local system L is geometrically non-trivial. Then

A (HI(X{/E ®k, L)) . i=d,
0, i#d.

Proof. By construction, the graded vector space H*(X (}/E ® k, Lq) is the

Sg-invariants of the graded vector space H* (X f/ﬁ, L)®4. (Here Sy acts by per-
muting the factors with the Koszul sign convention.) Since L is geometrically

non-trivial, H*(X f/ﬁ, L) is concentrated in degree 1. Hence H*(XC}/R ®k,Lq)
is concentrated in degree d and is equal to A% (Hl (Xl‘/ﬁ ®k, L)) in that de-
gree. (]

H(XYR @k, Ly) = {

LEMMA A.7. The perverse sheaf Ly is a local system of rank one on X(}/R.

Proof. Since L is a middle extension perverse sheaf on XC‘I/E, to show it is
a local system of rank one, it suffices to check the stalks of L at any geometric

point of X(}/R is one-dimensional. Consider a geometric point (£, a,ar) €

XC‘I/E with div(a) = D. By factorizing the situation according to the points

in D, we reduce to show that for € R(k), Lq has one-dimensional stalk at

the geometric point doz € X &/E(E). The point dz has automorphism ps, and

the restriction of pt\i/ﬁ to the preimage of this orbifold point is

Paz © [Pt/ p2)® — [pt/ o)
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induced by the multiplication map m : u$ — up. The restriction of L to
© = [pt/pa) € XY'R

p2 on Q. Therefore, pg, 1 LB is the K4 = ker(m : ud — p2)-coinvariants on
L&d

T
stalk of L, at dx is one-dimensional. O

is given by either the trivial or the sign representation of

which is L% itself since Ky always acts trivially on it. Therefore, the

LEMMA A.8. For di,do > 0, there is a canonical isomorphism of local
systems on XC}{E X Xf,

VR x ~
Qdy,dy + addd]_,d2 L, +d, = La, W La,,

which is commutative and associative in the obvious sense.
Proof. Let d = dy + dy. Since both add} 5" Ly and Lg, & Ly, are local
systems, it suffices to give such an isomorphism over a dense open substack

of X&{E X Xf. Let U = X — R. Let Uj C XC}/E be the open subscheme

consisting of multiplicity-free divisors on U. Let (Ug, x Ug,)° C X, C}{R X Xf

be the preimage of Uj under addﬁQ.
The monodromy representation of the local system L|y is given by a ho-
momorphism
x:mU) — {£1}.
For any n € Z>g, there is a canonical homomorphism

on :m(Uy) — m(U)" xSy,

given by the branched S,-cover U™ — U,,.
The monodromy representation of the local system Lg, X Lg, ](U 4y xUay)° is

given by
1 (Uay x Ugy)®) B2 2 (U9 ) x 1 (US,)
(A.5) PG (U 4 Sg,) % (1 (U)% %4 Sg,)

— 1 (U)4 x (Sgy % Sgy) 2wy,

The last map is x on all the 7 (U)-factors and trivial on Sy, x Sg,.
On the other hand, the local system addf}hd2 Ld|U§ is given by the character

X)X 1
(A6)  m((Us x Ug)®) 0= 1 (U5) 24 my (U) 0 §g 2, gy,

Observe that (A.5) and (A.6) are the same homomorphisms. This gives the
desired isomorphism «g, 4, We leave the verification of the commutativity
and associativity properties of ay, 4, as an exercise. g

LEMMA A.9. For d > p + max{2g — 1,1}, the local system Ly on XL}/E

descends to Picﬁ’d via the map AJ;I/R.
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Proof. The case R = @ is well known; we treat only the case R # @.
When d > 2g—1+4p, by Riemann-Roch, AJ ;l/ﬁ is a locally trivial fibration,
and therefore it suffices to show that the restriction of L, to geometric fibers
of AJ&/E are trivial.
VR,d

Fix a geometric point £f = (£, Kp,t) € Pick "*(K) for some algebraically
closed field K. We base change the situation from k to K without changing
notation. The fiber of AJ&/E over L1 is

M =H(X, L)° Xgo(g £, H(R, KR),

where H°(X, £)° = H°(X, £) — {0}, and the map H°(R,Kgr) — H(R, LR) is
the square map via ¢. The torus G,, acts on M by weight 2 on H°(X, £) and
weight 1 on H*(R, Kg). Then the map M — XC‘I/E factors through the quotient
[M/Gm]. The triviality of La|as/g,,) follows from the claim below.

CLAIM. [M/G,,] is simply-connected.

It remains to prove the claim. Choosing a basis for H°(R, Lg) and extend-
ing it to HY(X, £), we may identify M with a punctured affine space A™ — {0},
and the action of G, has weights 2 (on the first n — p coordinates) and 1 (on
the last p coordinates). Since n =d — g+ 1 > p+ 1, the weight 2 appears at
least once.

Suppose Y — [M/G,,] is a finite étale map with Y connected. Con-
sider the map 7 : P"™ 1 — [M/G,,] given by [T1,...,Zn—p,Y1s---,Yp]
[22,... 22 pr Ylsee ,Yp)- Then 7 is a branched Galois cover with Galois group
ps P Since P71 is simply-connected, m lifts to © : P*~! — Y. Therefore,
the function field K(Y) C K(P" ') corresponds to a subgroup I' C u5 * so
that Y is the normalization of [M/G,,] in Spec K(Y). We consider the open
subset M°, where the last coordinate y, # 0; then M°/G,, = A" Let Y©
be the preimage of M°/G,, in Y, and let (P"~1)° =2 A"~! be the preimage in
P"~!. Then Y° is the GIT quotient of (P"~1)° by I'. If I' # u5 ”, then there
is a non-empty subset I C {1,...,n— p} such that I is contained in the kernel
of e : uy ¥ — ps given by ef(g;) = ¢; if i € I and 1 is i ¢ I. In this case,
x1 = [[ier zi is fixed by I, hence z1 € O(Y°). However, z1 ¢ O(M°/G,,) (only
1? € O(M°/Gy,)). This implies that Y° — M°/G,, is ramified along the divi-
sor z; = 0 in Y°, a contradiction. Therefore, I' = p5 ” and Y = [M/G,,]. O

A.2.2. Construction of LdPiC for all d € Z. Let LdPiC be the descent of Ly

to Pic%ﬁ’d when d > p + max{2¢g — 1,1}. Next we extend the local systems
{LY} to all components of Pic}éﬁ.
Fix any integer d. For any divisor D = Y ,¢|x_g 7z - © € Div(X — R)

of degree d’, we have a canonical line Lp = ®L®"+. Tensoring with Ox (D)"
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522 ZHIWEI YUN and WEI ZHANG

the canonical lift of Ox (D) to Pic‘/ﬁ defines an isomorphism ¢p : Pic\/ﬁ’d —
X X

Pic}éﬁ’dﬂy. If d +d > max{2g — 1,1} + p, then Ldpjfd, is already defined, and

we define L5 to be the local system t’dePfd, ® L5 on Pic}éﬁ’d. We claim

that LdPiC thus defined is canonically independent of the choice of D, as long as
the degree d’' of D satisfies d’ > max{2g—1,1}+ p—d. To show this, it suffices
to show that for any n,n’ > max{2g—1,1} + p (so that LF'® and LF}¢ are both
defined as the descent of L, and L,/) and any D € Div"’ (X — R), there is
a canonical isomorphism t*DLE}C =~ [P ® Lp as local systems on Pic)‘éﬁ’n. It
is easy to reduce to the case D effective. Since AJn‘/E has connected geometric
fibers, it is enough to give such an isomorphism after pulling back to X,\Z/E;

i.e., we need to give a canonical isomorphism of local systems on X,\Z/E,

where Tp : XT\L/E —- X T\L{ﬁ is the addition by D. Such an isomorphism is given
by Lemma A.8 by taking restricting o, ,/—p to X}/E x {D}.

We have therefore defined a canonical local system LdPiC on Piczl/ﬁ for each

d€Z. Let LTI be the local system on Pic@ whose restriction to Piczi/ﬁ is LdP ic,

LEMMA A.10. For d > 0, we have a canonical isomorphism of local sys-
tems on X(}/R

ATYR LR~ 1,
Proof. Let D be a divisor on X — R of degree d’ > max{2g— 1,1} +p—d.

By construction we have LdPiC = t}‘)Ldefd/ ® L%fl. Pulling back both sides to
X(}/E, and noting AJC@, olp=tpo AJ(}/E, we get

AJYPRe LR = AJYRety, e, © L8 = THAJY RS Lhe, @ LG
=TpLara ® LG,

which is canonically isomorphic to Lg by (A.7). O

PROPOSITION A.11. The local system LY is a character sheaf on Pic%ﬁ.

More precisely, this means the following:

1) There is a canonical trivialization ¢ : L¥|, = Q,, where e is the origin o
l

Pic}?ﬁ.

(2) There is a canonical isomorphism of local systems on Pic}éﬁ X Pic%ﬁ7
,U . mult*LPiC ~ LPiC IZ LPiC,

where mult : Pic}éﬁ X Pic%ﬁ — Pic}éﬁ 1s the multiplication map.
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(3) The isomorphism u is commutative and associative in the obvious sense,

VB

and its restrictions to {e} x Pic}™ and Pic%ﬁ x{e} are the identity maps

on LY (after using ¢ to trivialize LF|,).

Proof. By construction, L[, = LdPiC\O(D)h @ LYt = Lylp @ L1 for
any effective divisor D € Div(X — R) of large degree d. (We are viewing D as
a k-point of (X — R)4 C X(}/R, so Lg|p means the stalk of Ly at this k-point
D.) If we write D = > xe|X—R| Na - T, then by construction we have a canonical
isomorphism Lg|p = ®,¢ x_g/LE" = Lp, which gives a trivialization ¢p :
LP€|, = Q,. We leave it as an exercise to check that ¢p is independent of the
choice of D.

Now we construct the isomorphism u, i.e., a system of isomorphisms

. * Pic ~ 71 Pic Pic
Hdy,dy - mUItdl,dzLd1+d2 - Ldl X Ld2

for all di,dy € Z. When dy,dy > p+ max{2g — 1,1}, LS;C and LY . come by

- di+da
R .
dy+d, Das connected geometric fibers,

it suffices to give g4, 4, after pulling back both sides to Xﬁ dp» I which case
the desired isomorphism is given by g, 4, constructed in Lemma A.8.

For general dy, ds, let D1, Dy € Div(X — R) with degrees deg D; = n; such
that n; + d; > p + max{2g — 1,1} for i = 1,2. Then by construction,

descent from Lg4, and Lg,14,. Since AJ

Pi Pic ~ Pi Pi —1 -1
(A.8) L R Ly = (th, Ly ny ¥ b, LasSn,) ® (LT @ LY.
On the other hand, LY, =t . 1 La, dysni+ny ® LS |, hence

* Pic ~ * * ®—1
multy, 4, L, G a, = multy, 4,th, 1 p, Ly +dz+ni+ne © Lp, 4 p,

1%

(Ag) ((tDl X tDQ )*multjll +n1,d2+no Ldl +da+ni+n2 )

® LY LY.

Comparing the right-hand sides of (A.8) and (A.9), the desired isomorphism
Hd; d, is induced from the already-constructed fig, 4n, do+n,- Again we leave it
as an exercise to check that (4, 4, is independent of the choices of D1, Do, and
it satisfies commutativity, associativity, and compatibility with ¢. O

A.3. Ramified double cover. Let v: X’ — X be a double cover with ram-
ification locus R C X, where X' is also a smooth projective and geometrically
connected curve over k. Let o : X’ — X’ be the non-trivial involution over X.
Let R' € X’ be the reduced preimage of R, then v induces an isomorphism
R 5 R.

A.3.1. The norm map on Picard. Let ip : R — X be the inclusion. We
consider the étale sheaf G,, r on R as an étale sheaf on X via ig .. There is a
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restriction map G, x — Gy, g. Consider the following étale sheaf on X:

R
G?’V\/L:X = szx XG'{YL,R?[2} Gm7R’

where the map G,, r — Gy, g is the square map. By construction, Pic}éﬁ is

the moduli stack of Gﬁ—torsors over X.

We have the sheaf homomorphism induced by the norm map Nm : v4,G,, x-
— Gy, x and the restriction map rg : .Gy, x1 — V4G r = Gy g. Comput-
ing with local coordinates at R, we see that the composition v,G,, x RN
Gm,x &, Gm,r (the latter rr is given by restriction) is the square of the

restriction map rg/. Therefore, (Nm, rp/) induces a sheaf homomorphism

M)@X : V*Gm,X’ — Gw@?

which is easily seen to be surjective by local calculation at R. The map Mﬁ x
on sheaves induces a morphism of Picard stacks

Nm)‘é,ﬁ/ + : Picys — PicyF,

which lifts the usual norm map Nmy,x : Picxs — Picx.

A.3.2. The norm map on symmetric powers. There is also a natural lifting
of the norm map v, : X, — Xg:

(A.10) oy X — XYE.

In fact, for (£/,a’) € X % (S), where £’ is a line bundle over X'x .S and a’ a global
section of L', £ = Nmy/,x(£L') is a line bundle over X x S, and a = Nm(a’)
is a section of £. We have a canonical isomorphism ¢ : (£'|pxs)%? = (L' ®
0* LN rixs = Llrxs. Under ¢, d'|g«s gives a square root of the restriction
a|lrxs. We then send (L';a’) to (L, L |gixs,t,a,d |rixs) € )?(}/E(S).

By construction, we have a commutative diagram

> SVE
—>
X/, X))
— —~AVR
Alg JAJC\ZF
NmVE
X'/ X VR

PiCXI 4)P1CX s

where X,\]; is the Abel-Jacobi map for X'.

A.3.3. Descent of line bundles. A local calculation shows that the image
of 1 —o : Gy, x+ — Gy, x7 is equal to the kernel of Nim)‘é,ﬁ/ - Therefore, we
have an exact sequence of étale sheaves on X:

Nm\/ﬁ
1—G Gmxt =% 4G xr —25 GYE. 1
m,X — Vsllom x1 —— Vil X7 mx L
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Taking the corresponding Picard stacks we get an exact sequence of Picard

stacks:
. NmYR
(A.11) 1 —s Picy 25 Picyxs % Picyxs —25 PieY® — 1.

A.3.4. The local system L. The direct image sheaf v,Q, has a decom-
position 1,Q; = Q, ® Lx:/x into o-eigensheaves with eigenvalues 1 and —1.
Then Ly x|x—r is a Qg-local system of rank one with monodromy in {+1}
ramified exactly along R. Let L be the local system on X f/ﬁ corresponding to

Ly /x®Qy)|x_gr. Associated to L is a local system L' on PicY® constructed
/ ¢ X

in Section A.2.
Let F' = k(X'), a quadratic extension of F unramified away from R. By
class field theory, F’/F gives rise to an ideéle class character

For the notation @XR, see Section A.1.6.

PRrROPOSITION A.12. Under the sheaf-to-function correspondence, the func-
tion on Pic}éﬁ(kz) giwven by LY is the idéle class character nprp under the
isomorphism (A.4).

Proof. Let [ : Pic%ﬁ(k‘) — @Z be the function attached to LY. By
Proposition A.11, fr, is a group homomorphism. We know that ng,p is char-
acterized by the property that for a uniformizer w, at € | X — R,

1 if x is split in F’,

—1 if x is inert in F".

np (@, ') = {

Now x is split (resp. inert) in F” if and only if Tr(Fr,, L) = 1 (resp. Tr(Fry, L;)
= —1). Therefore
1y __
npp(@, ) = Tr(Frg, Ly).
We only need to check that fi, enjoys the same property as np//p. Since @,
X (k)
X

1

corresponds to O(z)? € Pic under (A.4), we need to show

Tr(Fro(ys L lo@)s) = Tr(Fre, L) Vo € |X — R|.

Let d = d,. By Lemma A.10, Lgic pulls back to Lz on XC‘I/E; viewing x as a
divisor of degree d on X — R (and denoted [z]), it maps to O(z)! via AJ(}/E,
hence the left side above is equal to Tr(Fry, Lgl[,)). Therefore, it suffices to show
(Al?) TI‘(FI‘k, Ld’[ﬂ) = TI'(FI‘x, Lm)

By the construction of L4, there is an isomorphism Lgj, = L®? such that
the Fri-action on Ld][m] corresponds to the automorphism /1 ® /o ® - - - ® £g —
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lo®---@Lg@Fry(¢1) on LE. This shows (A.12) and finishes the proof of the
proposition. U
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