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1. Introduction
1.1. Cherednik algebras and their representations

Double affine Hecke algebras were introduced by Cherednik to prove Macdonald con-
jectures [8]. Etingof and Ginzburg [14] introduced the graded Cherednik algebra $8" and
rational Cherednik algebra $** which are the degenerations of the corresponding double
affine Hecke algebras. Here v € C is the central charge. We will recall the definitions of
these algebras in §1.2.5 and in §4.1-4.2 with more details.

The papers [11] and [2] initiated the study of the representation theory of these alge-
bras. In [11], the category O for $7**-modules was introduced. It consists of $ **-modules
with locally nilpotent action of the subalgebra Sym(a). An irreducible representation 7
of the finite Weyl group W naturally gives rise to an $!**-modules 9, (7) via induction
from the subalgebra Sym(a*) x W. It is shown in [11] that the simple quotients £,(7)
of M, (7) exhaust all simple modules in the category O.

The study of representation theory of £2* continued in [2] where the classification of
all finite-dimensional simple modules in type A was accomplished. Besides type A the
classification of finite-dimensional representations remains a challenge. In type B it is
known how many finite-dimensional $**-modules there are (see [31]) and more generally
a combinatorial formula for the characters of the simple modules in the category O
is proved in [23,32] and [36] for the classical root systems. With an exception of Hj
(see [1]), outside of the classical types neither classification of the finite-dimensional
representations nor character formula for the simple modules are known. However, it
is completely understood when the polynomial representation 9, (triv) of a Cherednik
algebra has a finite dimensional quotient (see [13] for an algebraic solution and [35] for
a geometric one): this happens if and only if £, (triv) is finite-dimensional, if and only if
v € Qs¢ and its denominator is a regular elliptic number of W (see Definition 3.2.6).

In this paper we do not attempt a classification of irreducible finite-dimensional mod-
ules but rather provide a geometric construction of some families of finite-dimensional
representations of £ and H*. In all the examples we checked, our construction seems
to give all finite-dimensional irreducible modules of $*. In particular, we obtain a ge-
ometric construction of the finite-dimensional simple module £, (triv) and a geometric
interpretation of the grading and the Frobenius structure on £, (triv). Our construction
also allows us to derive a formula for the dimension of £, (triv).

We remark that the geometric construction for simple modules of 2" was first system-
atically carried out by Varagnolo and Vasserot in [35] using the equivariant K-theory
of homogeneous affine Springer fibers. They then constructed simple modules of 7t
by a purely algebraic degeneration process. Our methods are related but different from
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those of [35]. We realize $&'-modules on the equivariant cohomology of homogeneous
affine Springer fibers, which is technically simpler. Our realization of $!**-modules is
also geometric: we construct a filtration (called the perverse filtration, see §8.3) on the
cohomology of homogeneous affine Springer fibers coming from the global geometry of
Hitchin fibration and construct an action of f,)f,at on the associated graded of the perverse
filtration. Therefore the geometry of Hitchin fibration is a new ingredient in our con-
struction compared to the approach in [35]. Our construction works thanks to the deep
geometric results about Hitchin fibration proved by Ngo [26] along the way of proving
the fundamental lemma, and the global Springer theory developed by one of the authors
(Z.Y.) in his thesis [37] and [38].

1.2. Main results

All varieties are over C in this paper. When talking about (equivariant) cohomology of
varieties, we mean the singular cohomology of their underlying complex analytic spaces
with Q-coefficients.

To simplify notation, in this introduction we let G be an almost simple, connected
and simply-connected reductive group over C, and let G = G ®¢ F' where F' = C((t)) is
the field of formal Laurent series in one variable t. In the main body of the paper we shall
work with quasi-split groups over F' and drop the simple-connectedness condition. Let
T C G be a fixed maximal torus with Lie algebra t, Weyl group W and root system ®.
Let a = X4 (T) ® Q and a* = X*(T) ® Q.

We shall introduce one by one the algebraic and geometric objects that are involved
in the statement of our main results.

1.2.1. Homogeneous elements

Let g be the Lie algebra of G and let ¢ = g/ G be the GIT quotient, which is isomorphic
to an affine space A" (r is the rank of G). There is a canonical weighted action of G,, on
¢ induced from the dilation action on g. An element a € ¢(F)™ is homogeneous of slope
v =d/m (in lowest terms) if

s?-a(t) = a(s™t), for any s € C*.

Here we write coordinates of a as formal Laurent series in ¢, and s?- (—) is the weighted
action of s?. The slopes v above are not arbitrary: their denominators m are exactly the
regular numbers of the Weyl group W (i.e., orders of regular elements in W in the sense
of Springer [33]). A rational number v is called an elliptic slope if its denominator is an
elliptic regular number of W, see Definition 3.2.6. Let ¢(F)™ be the set of homogeneous
elements of slope v. This is an open subset of an affine space over C.

1.2.2. Homogeneous affine Springer fibers
For any v € g(F)™ one can define a closed subvariety Sp,, of the affine flag variety F1 of
G called the affine Springer fiber [22]. It classifies Iwahori subalgebras of g containing ~.
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For a € ¢(F');, we let Sp, denote Sp., where v = (a), and & is the Kostant section
k: ¢(F) < g(F). Because of the homogeneity of a, there is an action of a one-dimensional
torus G,,(v) on the affine Springer fiber Sp,. When v is elliptic, Sp, is a projective

scheme.

1.2.8. Notation on G,,(v)-equivariant cohomology

For a variety Y equipped with an action of the one-dimensional torus G,,(v), its
equivariant cohomology Hg, (V) = Ham(y)(Y, Q) is a graded module over the graded
polynomial ring Hf, ,(pt) = Q[e], where € € H%;W(y)(pt) = X*(Gy (v))®2Q corresponds
to m times the canonical generator of X*(G,,(v)).

We shall also consider localized and specialized equivariant cohomology. By localized
equivariant cohomology we mean Ham(u)(Y)[e_l} =Hg ) (Y) ®qq Qle, €~ 1. When Y
is of finite type, this is a free Q[e, e~ !]-module of finite rank. The specialized equivariant
cohomology is

He—1(Y) :=Hg () (Y)/(e = 1).

This is a vector space over Q whose dimension is the same as the Qle, e !]-rank of

H(Em(u)‘(Y)[e_l]. There is a cohomological filtration on H.—1(Y) given by H=' (V) =
Im(HZ' (V) = Hemr (V).

Similarly, we define the localized and specialized equivariant cohomology with compact
support HY ¢ ) (Y) [e71] and H —1(Y).

1.2.4. Symmetry on the cohomology of homogeneous affine Springer fibers

Let a € ¢(F)5. There is a diagonalizable group S, (a subgroup of the centralizer of
v = k(a) in G) acting on Sp,.

When v is elliptic, there is also an action of a braid group B, = m1(c(F)',a) on
H.—1(Sp,) coming from the monodromy of the family of affine Springer fibers over ¢(F)?.
Together there is an action of S, x B, on He—1(Sp,).

1.2.5. Cherednik algebras

We shall consider two versions of Cherednik algebras, the graded (aka trigonometric)
version $& and the rational version $'. Both of them are free modules over Q[e]. For
simplicity we only consider their specializations 55%;:1 and sar;};l (specializing € to 1)

in this introduction. The algebra $%'

v,e=12

as a vector space, can be written as a tensor
product of subalgebras

97 = Sym(a”) @ Q[Wagl,

where W = X, (T) x W is the affine Weyl group (note that we assumed G was simply-
connected). The most essential commutation relation in 5’)%72:1 is given by

si-§— "¢ s = —v(€,qf),



606 A. Oblomkov, Z. Yun / Advances in Mathematics 292 (2016) 601-706

for each affine simple reflection s; € W, (corresponding to the simple affine coroot o)
and £ € a*. Here a should be thought of as part of the “Kac-Moody torus” axy;, and
the action of W,g on a* should be understood in this way.

The graded algebra ™' is also a tensor product of subalgebras

HM_) = Sym(a*) ® Sym(a) @ Q[W]

with the most essential commutation relation given by

[Uaﬁ] = <£an> - g <Z<§7OZV><O‘77]>T&> 7v§ S a*ﬂ? ca.

acd

For the graded Cherednik algebra we prove

Theorem 1.2.6. Let v > 0 be a slope and a € ¢(F)}S.

(1) There is an action of 5’3%;:1 on the compactly supported equivariant cohomology
Hc,e:1<spa)‘

(2) If v is elliptic, then S, x B, acts on He—1(Sp,) and the action commutes with the

action of $,._,. Moreover, the image of the restriction map He=1(F1) — He=1(Sp,)

SaxBa SaxBa g5 g quotient of the

is the invariant part He—1(Sp,) , realizing He—1(Sp,)

polynomial representation of Y)%fezl.

(3) If v is elliptic, then He—y(Sp,)**P is an irreducible 5 _,-module.

In the main body of the paper we prove (1) and (2) also for quasi-split groups G.
Part (1) above appears as Corollary 7.1.6 to Theorem 7.1.5; part (2) is proved in Theo-
rem 5.5.1(2) and Lemma 7.2.2; part (3) appears as Corollary 8.2.4, which is a consequence
of the next theorem.

For the rational Cherednik algebra we prove

Theorem 1.2.7. Let v > 0 be an elliptic slope and a € ¢(F). Then on Ham(y)(Spa)Sa
there is a geometrically defined filtration PgiH(Em(V)(Spa)S“ (called the perverse filtra-
tion, coming from the global geometry of the Hitchin fibration), stable under the action
of B,, such that

(1) There is a graded action of $%_, on GrlH,._1(Sp,)% commuting with the action
of Bg.
(2) The H2_,-module GrTH.,(Sp,)5«*B= is isomorphic to the finite-dimensional ir-

,€
SaXB

reducible spherical module £, (triv). Moreover, GrH.—,(Sp,) @ carries a Frobe-

nius algebra structure induced from the cup product.

In the main body of the paper, we also prove a weaker version of the above result when
G is quasi-split but non-split, and conjecture that the above result should hold in this
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generality, see Proposition 8.2.2, Theorem 8.2.3 and Conjecture 8.2.5. The conjecture in
the quasi-split case is supported by examples in §9. The perverse filtration is constructed
in §8.3; part (1) above is proved in §8.5; part (2) is proved in §8.6.

We also give a formula for the dimension of the irreducible spherical module £, (triv).
Let W, C W,g be the finite subgroup of the affine Weyl group that stabilizes the
point vpV in the standard apartment ag of G. Taking the linear part of W, iden-
tifies it with a subgroup of the finite Weyl group W of G which acts on a*. Let
Hw, = Sym(a*)/Sym(a*)}"” where Sym(a*)""" is the ideal generated by the homo-
geneous W, -invariant elements of positive degree. To an element w € W, we attach the
element \? € Hyy, defined as

A= [ @ (1.1)
a(vpY)=v
w7 (@)<0

where @ € a* is finite part of the affine root a. Let Ann(A\¥Y) C Hy, be the ideal
annihilating A\

Theorem 1.2.8. Let v > 0 be an elliptic slope. Then the dimension of the spherical

irreducible module of Y)f}ﬁzl is given by

dim &, (triv) = > dim Hyw, /Ann(A). (1.2)

WEW, \Wag

This theorem follows from the combination of Theorem 1.2.7(2) and Theorem 5.5.10.
In practice, the calculation of dim £, (triv) can be made more effective. If v = d/m in
lowest terms, we have £4/,, (triv) = d" £y, (triv) where r is the rank of G. To calculate
£1/m (triv), the right side of (1.2) only involves very few w lying in certain bounded clans
(see §5.5.4) which are easy to determine. In §9, we compute dim £, (triv) by hand for low
rank groups, and use computer to generate tables of dimensions for exceptional groups
(see §9.10).

1.8. Organization of the paper

The paper consists of three parts.

The Algebra part provides basic setup of the groups and algebras involved in the
main results. The materials in §2 and §4 are standard in the situation of split G, but we
set things up to treat the quasi-split cases uniformly. The key notion of homogeneous
elements in a loop algebra is introduced in §3.1, and we relate it to more familiar no-
tions in Lie theory such as graded Lie algebras, regular elements in Weyl groups and
Moy—Prasad filtration.

The Geometry part studies the geometric and homological properties of homogeneous
affine Springer fibers (§5) and homogeneous Hitchin fibers (§6). The main new result in



608 A. Oblomkov, Z. Yun / Advances in Mathematics 292 (2016) 601-706

§5 is a formula for the dimension of the monodromy-invariant part of the cohomology of
homogeneous affine Springer fibers (Theorem 5.5.10). Although our main results can be
stated without referring to Hitchin fibers, the proof of Theorem 1.2.7 uses the relation
between affine Springer fibers and Hitchin fibers, and uses the global geometry of Hitchin
fibration in an essential way. In §6 we prove basic geometric properties of Hitchin moduli
spaces over a weighted projective line, which is needed in order to establish a clean
comparison result with homogeneous affine Springer fibers (Proposition 6.6.3).

The Representations part then connects the Algebra part and the Geometry part to-
gether. In §7, we construct representations of the graded Cherednik algebra $H&" on the
equivariant cohomology of homogeneous affine Springer fibers and Hitchin fibers. The
construction is a straightforward modification of what has been done in [37]. In §8, we
construct representations of the rational Cherednik algebra $?* on the associated graded
pieces of the equivariant cohomology of homogeneous affine Springer fibers and Hitchin
fibers. The key step in the construction is to define a filtration on these cohomology
groups such that when passing to the associated graded, the action of & induces an
action of H*. We propose two filtrations, an algebraic one (called the Chern filtration,
see §8.1) which works for quasi-split G but is only defined on the quotient of the polyno-
mial representation of $™* and a geometric one (called the perverse filtration, see §3.3)
using deep geometric input from Hitchin fibration (such as the support theorem proved
by Ngb [26]), which currently only works for split groups G. These filtrations coincide
on spaces where they are both defined, and the final construction of the $***-module
structure and the proof of its properties (such as irreducibility) uses both of them. We
also prove a duality theorem (Corollary 8.7.4) for the $*-modules constructed from
homogeneous affine Springer fibers for Langlands dual groups G and GV.

In the final section §9, we compute all examples where the F-rank of G is at most
two. The relevant Hessenberg varieties appear to have close relationship with classical
projective geometry such as pencils of quadrics. The fact that the dimensions of their co-
homology add up to the correct number (a sum of dimensions of irreducible $***-modules
people computed earlier) in each single example is a miracle to us. Using computer we
also give tables of dimensions of £, (triv) for exceptional groups, and make conjectures
about the dimension for certain classical groups.

Part 1. Algebra

2. Group-theoretic preliminaries

In this section, we collect the basic definitions and properties of quasi-split reductive
groups over F' = C((¢)). All results here are either well-known or variants of well-known
ones. The reader is invited to come back to this section for clarification of notation.
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2.1. The group G

Let G be an almost simple reductive group over C. We fix a pinning 1 = (T,B,---)
of G, where T is a maximal torus of G and B is a Borel subgroup containing T. This
determines a based root system ¢ C X*(T) and a based coroot system ¢¥ C X.(T). Let
AutT(G) be the group of pinned automorphisms of G, which is naturally isomorphic to
Out(G). The Lie algebra of G is denoted by g. For a C-algebra R, we sometimes denote
g @ R by g(R).

Fix 0 : pte < Out(G) = Aut’(G) an injective homomorphism. We have e = 1 or e = 2
(type A, D or Eg) or e = 3 (type Dy).

Let H be the neutral component of G*<°. Let A be the neutral component of THe°.
Then A is a maximal torus of H and X, (A) = X, (T)*e.

Notation: we use boldfaced (or blackboard) letters to denote the absolute data at-
tached to the group G and the usual letters for the relative data attached to either H or
(G, 0). For example,

e r =rank G =dimT while » = rank H = dim A.

o The absolute root system ¢ = ®(G, T); the relative root system ® = &(G, A) (which
is not necessarily reduced).

o The absolute Weyl group W = Ng(T)/T and the relative one W = Ny (A)/A = Whe,

We also introduce the group W = W % p, where p,. acts on W via 6.
2.2. The group G over F

2.2.1. The field F

Let F = C((t)), the field of formal Laurent series with coefficients in C. Let O = C[[t]]
be the valuation ring in F. For each integer n > 1, let F, be the extension C((t'/™))
of F. Then F, = Up>1F, is an algebraic closure of F, with Gal(F,,/F) is identified
with the projective limit Z(l) =lim_ fi,.

Let v € Q. The Galois action of 2(1) on t¥ € F, gives a character which we denote
by ¢ — ¢”. This character only depends on the class of v in Q/Z. Concretely, if v = a/b

natural [a]
— HUp — [hb-

in lowest terms with b > 0, then the corresponding character is Z(l)
2.2.2. The quasi-split group G

The homomorphism 6 gives a descent datum of the constant group G ®¢ F. from F,
to F'. We denote the resulting group scheme over F' by G. Explicitly, for any F-algebra R,
G(R)={9€ G(R)®F F. : ((g) = 0(¢)(g) for all ¢ € u.}, where ((g) means the action
on F, via the Galois action. In other words, G = (Resk* (G ®c F.))**, with . acting
simultaneously on F, through Galois action and on G through 6 composed with the
inversion on Out(G). The torus A := A ®¢ F of G is a maximal split torus of G. The
torus T gives rise to a maximal torus 7 = (Resk (T ®@¢ F.))"* of G.
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2.2.3. Integral models

We need an integral model of G over Op. First consider Gy = (Resgf; (G®c OF,))He
(the action of p. is the same as in the case of G above). This is a group scheme over
Spec O whose generic fiber is isomorphic to G. The special fiber of G; has reductive
quotient equal to G*<, which may or may not be connected. Let G C G be the fiberwise
neutral component, which is a smooth group scheme over Op with generic fiber G. In
fact, G is a special parahoric subgroup of G. We can similarly define an Op-model T
for T. Namely, we first define T; = (Resg? (T®cOF,))H=, then take T to be the fiberwise
neutral component of T;.

The Lie algebra of G is denoted g. We have g(Op) = {X (t'/¢) € g®F, : 0(¢) X (t¥/¢) =
X (¢t'/¢) for all ¢ € pe}. This is a Lie algebra over Op. For an Op-algebra R, we use
g(R) to mean g ®p,. R.

2.3. Invariant quotient

Let ¢ =t /W = g/ G be the invariant quotient of g. There is a G-invariant morphism
X : g — ¢. As an affine scheme over C, ¢ is isomorphic to an affine space with coordinate
functions given by the fundamental invariants polynomials f1,--- , f on g.

Define ¢ = (Resgf (c ®c OF,))*e, where p. acts on both ¢ (via ) and on Op, (via
the inverse of the usual Galois action on F.). We have a morphism y : g — ¢ over Op,
which is induced from x ® Op, : g ®c O, = ¢ ®c OF,.

It is convenient to choose the fundamental invariants f1,--- , fi so that each of them
is an eigenvector under the pinned action of .. Let ¢; € {0,1,--- ,e — 1} be the unique
number such that p. acts on f; via the et power of the tautological character of ..
Using the fundamental invariants, we may write

r

«(Or) = P t/°Op. (2.1)

i=1

We use ¢ to denote the generic fiber of ¢, which is the same as (Reske (c @c F,))#.
Let ¢™ C ¢ be the complement of the discriminant divisor. Since ¢'® is invariant under
Out(G), we can define ¢’ := (Resk (¢ @c F.))"*, which is an open subscheme of cp.
We denote the F-points of ¢}2 by ¢(F)™.

2.8.1. Ellipticity

The composition t ® F, — ¢ ® F., — ¢ is a branched W’-cover that is étale over ¢'3.
Let a € ¢(F)"™, viewed as a morphism Spec F' — ¢%, then it induces a homomorphism
II, : Gal(Fs/F) 2 Z(1) — W' (up to conjugacy). A point a € ¢(F)™ is called elliptic if
e (Z(1) = g, Equivalently, if we fix a topological generator ¢ € 2(1), then a is elliptic if
tHa(0) = (.
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2.3.2. Kostant section

Let s C g be the Kostant section defined using the pinning of G. Recall if
(e,2pV,[) is the principal sly-triple of g, then s = e + gf. Since e,[ are invariant un-
der pinned automorphisms of G, the isomorphism x|s : 3 — ¢ is pe-equivariant. Let
5= (Resgf (s®Op,))He C g. Then the characteristic map y restricts to an isomorphism
X|s : 5 = ¢. The inverse of x|, is denoted by

kicSsC g,
and is called the Kostant section for g.
2.4. Regular centralizers

We define regular elements in g as the open subset g*°® = g N g"°8(Op. ). This defines
an open subscheme g**® C g over Op.

Let I over g be the universal centralizer group scheme. Consider the group scheme I,
over s and view it as a group scheme over ¢ via x|s. We denote this group scheme over ¢
by J, and call it the regular centralizer group scheme of g.

Lemma 2.4.1. There is a canonical morphism ¢ : x*J — I which is the identity when
restricted to gr°s.

Proof. Let J' and I’ be the regular centralizer and the universal centralizer group
schemes over g ®c OF.. Let X' : g ® Or, — ¢ ® Op, be the invariant quotient map.
Then it is shown in [25] that there is a canonical morphism / : x*J’ — I’ which
restricts to the identity on g"*® ®¢ OF,.

There are obvious maps I — I := Resg@)oF“ (I'YFe and J < Jp = Rest®re (J)He.
The morphism ¢ induces ¢1 : x*J; — I, which is the identity on g'®¢. Consider the
composition

5J : X*Jl — Il ﬁ—1> Gl.

By definition, I = 8;*(G) C I1; J = 8;'(G) C J;. Therefore ¢, restricts to a morphism
t: x*J — I which is the identity on g™*&. O

There is an alternative description of J in the style of [10]. Consider the group scheme
Jt = (Res%@)OFC ((Txt)®Op )" Then J is an open subgroup of J# given by removing
components over the discriminant locus of ¢ as well as over the special fiber of ¢. We
omit the details here.

We need a strengthening of Lemma 2.4.1. For each Iwahori I (viewed as a group
scheme over Op) of G(F'), we can define the corresponding universal centralizer It over
Lie I. Tt consists of pairs (g,7) € I x Lie I such that Ad(g)y = ~. There is a natural
inclusion It < I|pie 1- Let x1 : Lie I < g — ¢ be the restriction of x to Lie I.
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Lemma 2.4.2. There is a canonical morphism 1 : xiJ — It which is such that the
composition xiJ — It < I|Lic 1 is the restriction of ¢ to Lie I.

Proof. The argument for Lemma 2.4.1 applies here with the following modifications.
We only need to produce a canonical map ¢y, : xpJ’ — Ij,. This follows from [37,
Lemma 2.3.1]. O

2.5. The affine root system

2.5.1. The loop group and parahoric subgroups

The group G(F) can be viewed as a the C-points of a group ind-scheme LG over C.
For any C-algebra R, LG(R) is defined to be G(R((t))). We shall abuse the notation and
write G(F) for LG if it is clear from the context that G(F') denotes a group ind-scheme
over C. Parahoric subgroups P of G(F) are the Op-points of certain smooth models of
G over Op (the Bruhat-Tits group schemes). Later we will also considered P as group
schemes (of infinite type) over C, whose R-points are P(R][[t]]).

2.5.2. The Kac-Moody group

Attached to G there is an affine Kac—Moody group which is a group ind-scheme
over C. First there is a central extension 1 — G — G°* — G(F) — 1, where
G&™ is a one-dimensional torus. The central extension G is constructed as in [37,
6.2.2]: a C-point of G is a pair (g,7) where g € G(F') and 7 is a trivialization of the
determinant line det(Ad(g)g : g). The affine Kac-Moody group is the semidirect product
Grum = G x Gt where GIot9 acts as usual on G (F) and as the identity on GE¢™.

We have the torus Axy = G&E" xAfogt’[e] C Gk (recall A is the neutral component
of THe). Let a := X,(A) ®z Q and axm = X (Axm) ®z Q, and let a* and aj,, be the
dual vector spaces.

Let 6 /e and Aap, be the generators of X*(Giﬁt’[e]) and X*(GSe") respectively. Dually, let
ed and K,y be the generators of X, (Gfﬁt’[e]) and X, (GS$") respectively. The imaginary
roots of Gy are %Zc; —{0}.t

2.5.8. Affine simple roots

A = {ay, -+ ,a.} are the simple roots of the reductive group H with respect to A,
which are in bijection with the p.-orbits on the simple roots of G with respect to T. Let
B € ® be the highest weight of the action of A on g; (the eigenspace of g on which .
acts via the tautological character). When e = 1, § is the highest root of G. When e > 1
and G is not of type As,, 3 is the dominant short root in the relative root system ®;
when G is of type ?As,, § is the longest dominant root in ®, which is twice a shortest

! This is different from Kac’s convention in [20], where he defines ¢ to be the generator of positive imaginary
roots.
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root. We introduce the Dynkin labeling {ag = 1,a; - -+ ,a,} such that

K
8= Z ;0.
i=1

The 0-twisted Cozeter number attached to (G, 0) is

he =e€ Z a;.
i=0
Let
apg=9d/e—p.
Then A,g = {ag,a1, -+ ,a,} is the set of affine simple roots of the Kac-Moody
group Gkm. The set of affine roots of Gy will be denoted by ®.g, which is a sub-

set of X*(Gro¥y @ X*(A).2

2.5.4. Affine simple coroots
Let 8Y € ®V be the coroot attached to §. Let aj = 1 if G is not of type %A, and

ay = 2 otherwise. We introduce the dual labeling {ay,ay --- ,a)} such that
T
agBY = Zaiva;/. (2.2)
i=1

The 0-twisted dual Coxeter number is defined as
hi =Y a. (2.3)
i=0

Note that hy is always equal to the dual Coxeter number of G. Let

v _ 2hy

o = —+Kean — . (2.4)
g
Then AYy = {ag,ay, -, } is the set of affine simple coroots of Gknm. The set of affine

coroots of Gkm will be denoted by @), which is a subset of X, (G&™) @ X,.(A) C akwm.

2 When G is of type 2 A,,,, our convention here is different from that in [20]. Kac takes ag to be the shortest

node in the Dynkin diagram of type 2 A, while we take ao to be the longest one. In Kac’s convention ag = 2
and ag = 1, while in our convention ag = 1 and a(\]/ = 2.
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2.5.5. The affine Weyl group

First we have the extended affine Weyl group W defined as follows. Recall the maximal
torus T C G is given an Op-structure T. Then W := N¢(T)/T. Since W = Ng(T)/T,
we have a canonical short exact sequence

1—>X*(T)H6%W—>W—>1 (2.5)

in which the first term is canonically isomorphic to T'(F)/T(Op).

Let 2 be the apartment in the building of G attached to T. This is a torsor under
a®qg R. The group W/X, (T) e tors acts on A, and X, (T),, /X (T),, tors acts as transla-
tions. This defines an embedding

L X* (T)Me /X* (T)/Ae,tors — a.

Each real affine root of Gku is viewed as an affine function on 2A. The zero sets of
the real affine roots gives a stratification of 2 into facets. Each facet § gives rise to a
parahoric P C G(F) containing T and vice versa. The special parahoric G determines
a facet §¢ which is a point. We often use this point to identify 2 with a ®g R. Since W
can also be identified with Ng(T)/T, we may identify W with a reflection subgroup of
W fixing the vertex §g. This way we can write W = X, (T)p, x W.

The complement of the affine root hyperplanes is a disjoint union of alcoves, which are
in bijection with Iwahori subgroups containing T. The choice of the standard Iwahori I
determines the standard alcove §1 adjacent to §a. The standard parahorics corresponds
bijectively to the facets in the closure of §1. The affine roots whose zero set is tangent
to §1 and whose gradient is pointing towards §t are called affine simple roots.

The affine Weyl group W,g attached to G is the subgroup of W generated by reflec-
tions across the affine root hyperplanes. Equivalently, W,g is generated by the simple
reflections corresponding to elements in A,g. We have a similar short exact sequence

1> A Weg > W — 1,

for some sublattice A C X, (T),,. Let Q := X, (T),./A. When e = 1, Q is the fundamental
group of G, and A is the coroot lattice of G. In general, we have an exact sequence

1—>Waﬁ—>f/[7—>9—>1.

Let Qg be the stabilizer of §1 under W, then Q5 — Q is an isomorphism via the projection
W — Q. Therefore we may write W = W,g x Q. We may identify Qp with Ng(I)/I.

2.5.6. The invariant symmetric bilinear form
Let

B(-, ) : Xo(T) x X+(T) = Z
(@,y) = Y (o, z){a,y)

aEp
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be the Killing form on X, (T) (we are summing over all roots of G). Restricting to X, (A)
we get a W-invariant symmetric bilinear form on X, (A) and hence on a. As an element
of Sym?(a)", we have

B:Za@)a.

We define a symmetric bilinear form Bk on aky extending B:
B =B+ ® Acan + Acan ® 6. (2.6)
In other words, we have

BKM((?, a) = 0’ BKM(KCELH’ a) = 07 BKM(87 a) = BKM(KCanv Kcan) = Ov
BKM(ay Kcan) = BKM(Kcan; 8) = 17 BKM|a =B.

Lemma 2.5.7. The symmetric bilinear form Bgy on agm @S W -inwariant.

Proof. Tt is well-known that a W-invariant extension of B exists and takes the form
B+ ¢(d ® Acan + Acan ® 9) for some constant c¢. The sp-invariance forces

_ayB(BY,BY)
- 4ehy '

We only need to show that ¢ = 1. When e = 1, 8 the highest root of G and we have
the well-known formula B(3Y,38Y) = 4hY, hence ¢ = 1. When ¢ > 1 and G is not of
type 2Agy, B is the sum of e mutually orthogonal coroots v, fori=0,---,e—1 (which
form an orbit under the action of p.). Each B(v,’,~,’) = 4hy (since G is simply-laced).
Hence B(3Y, 3Y) = 4ehy and ¢ = 1. Finally, when G is of type 2 Ay, BY is a coroot of G,
hence B(3Y,Y) = 4h) and againc=1. O

Lemma 2.5.8. Suppose @ € ker(W — W) with (@) = A € a. Then the action of @ on
axn s given by

Vs =5 (2.7)
YE=E+ (E,N), for £ € a”; (2.8)
wAcan == Acan - >\* - %B()\, /\)57 (29)

where \* € a* is defined by (\*,y) = B(\,y). Dually, the action of W on axy s given by
E)Kcan = Kecan;
“n=1n+B(\n)Kean, forn € ;
= 1
0= 0= A= 3B\ Kean:
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Proof. We only give the proof of the first three equalities and the last three are obtained
by duality. Equation (2.7) is clear since ¢ is invariant under all s; and Q. For £ € a*, we
have Y€ € £ + Q4. We can define a pairing

f:X(T),, xa* = Q
(@,€) = ("€ - €) /.

It is easy to check that f is bilinear and W-invariant (W acts diagonally on X, (T),, xa*).
Therefore f = ¢(&, «(w)) for some constant ¢ € Q. Taking the special element w = rgs
(B is used to define g, see §2.5.3). One easily calculates that ((w) = 13 and Ve =
&+ 1(¢, BY)6. Therefore for this @ we have f(w,&) = (¢,1(w)) and the constant ¢ = 1.
ThlS proves (2.8).

Finally, for 4(@) = A, “Acan takes the form Acan + @(A) + ¢(A)§ for a linear function
¢ : X,(T),, — a* and a quadratic function ¢ : X,(T),, — Q. On the other hand,
By is invariant under W. Using proven formulas (2.7) and (2.8) one can calculate
¥ Bgy. Comparing with Biyr we conclude that ¢(\) = =D aepls Ao = —A* and
q(A\) = —3B(\, A). This proves (2.9). The dual statements are immediate corollaries of
what we already proved. 0O

3. Homogeneous elements in the loop Lie algebra

In this section, we shall systematically study homogeneous elements (or rather con-
jugacy classes) in the loop Lie algebra g(F'). Homogeneous conjugacy classes are those
which are stable under a one-dimensional torus that is a mixture of “loop rotation” and
dilation. The main result is a classification theorem for homogeneous conjugacy classes
in terms of any one of the three well-studied objects in representation theory: regular
elements in a Weyl group; periodic gradings on g and Moy-Prasad filtrations on g(F).
Out treatment here is strongly influenced by the work of Gross, Levy, Reeder and Yu
(see [30] and [29]).

3.1. Definition and basic properties

3.1.1. Two tori acting on ¢(Fs)

rot,[

0 acts on F,, by scaling t'/" (the notation Gy, is

The one dimensional torus G,
to emphasize the dependence on n; when n = 1 we write Gy M as GY). Let Gifl’t =
lim G, "] where the transition maps are given by [(] : Gl — GIo"). This can be
v1ewed as the universal cover of GI%'. We have a natural isomorphism X* (Gmt) =Q,
with X*(Gmt[ ]) identified with 2Z C Q. The actions of Gt on F, passes to the
limit to give an action of @ﬁgt on F, and on g(Fs). We have an exact sequence

~

1—Z(1) = G — G — 1.
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On the other hand, the one-dimensional torus G&i! acts on g(Fy,) by dilation: G3i! 5
A: X = AX for X € g(Fy). The dilation action induces the dilation action of G on
c(Fs) with weights dy,--- , dp.

Thus we get an action of G x G4 on both g(Fae) and ¢(Fa) such that x : g(Faso) —
c(Fs) is ((A}fgt x Gdil_equivariant. At finite level, we have an action of Groblel G on
g(F.) and ¢(F.) (but not an action of G'* x G4l on g(F) or ¢(F) if e > 1).

For a rational number v € QQ, we define a subtorus @m(u) C @ﬁt x G as follows.
The character group of @m(v) is identified with the quotient of X*(@ﬁzt xGih =QeazZ
defined using the exact sequence

OeZ%Q@Z%X*(@m(V))AO.

In particular, the image of G, (v) in Gt G4l is the one-dimensional subtorus whose
cocharacter lattice is a lattice in Z2 of slope —nuv.

Definition 3.1.2. Let v € Q.

(1) An element a € ¢™(Fy,) is called homogeneous of slope v if a is fixed under Gy, (v).
Let ¢(F): denote the set of all homogeneous elements of slope v.

(2) A regular semisimple element v € g(F) is called homogeneous of slope v if x(v) €
™ (Fuo) is.

We denote the Galois action of Z(1) on ¢(Fx) (without the twisting by 6) by ¢ : a —
¢ qa1 a. The dilation action of s € G, on ¢ will be denoted by a — s -4j1 a.

Lemma 3.1.3. Let v € Q.
(1) If a € ¢"(Fx) is homogeneous of slope v, then for any ¢ € 2(1) we have
Crgara=¢" i a. (3.1)

(2) An element a € ¢™(Fy,) is homogeneous of slope v if and only if f;(a) = c;t*% for
somec, € C,i=1,---,r.

(3) A regular semisimple element v € g(Fu) is homogeneous of slope v if and only if it
is G(F)-conjugate to an element of the form Xt where X € U's.

Proof. (1) and (2) are direct calculation.

(3) The “if” direction is clear. Now suppose a regular semisimple element v € g(F) is
homogeneous of slope v. Then x(+y) is as described in Part (1) and there exists X € t"5(C)
such that x(Xt”) = a. Both Xt” and 7 are regular semisimple elements in g(F) with
the same invariants, they are G(F )-conjugate to each other because Fi, is algebraically
closed. O
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3.2. Homogeneous elements, principal gradings and regular elements in the Weyl group

In this section we shall give two ways to classify homogeneous elements in ¢(F')": one
using principal gradings on the Lie algebra g and the other using regular homomorphisms
into the Weyl group W’.

3.2.1. Periodic gradings on g
A periodic grading on the Lie algebra g is a homomorphism

U : Z(1) — Aut(g)

that factors through some finite quotient. The group of characters of 2(1) is Q/Z. We
may decompose g according to characters of Z(1)

9= P o (3:2)

£€Q/z2

The order of such a grading is the minimal positive integer m such that ¥ factors
through p,,,. The grading U is adapted to 6 if the composition p,,, — Aut(g) — Out(g)
is the same as fi, m/d, Lhe LN Out(g). Periodic gradings have been studied in depth by

the Vinberg school.

Definition 3.2.2. Let £ € Q/Z. The principal grading of slope £ is the following periodic
grading adapted to 6:

Ue : Z(1) = G* % p. C Aut(g)
¢ ¢ (). (3.3)

Here ¢ € p. is the image of ¢ in p; Cgpv is the image of ¢ under the composition
Z(1) & ©* £ T24(C) (we have viewed Q/Z as the dual of Z(1)).

3.2.3. Regular homomorphisms into W’

Reformulating the original definition of Springer slightly, we introduce the notion of
regular homomorphisms into the group W'.

Let IT : Z(1) — W’ be a homomorphism over s, i.e., the composition Z(1) ELN
W’ — p, is the tautological projection. Composing with the reflection action of W’ on t,
we get an action of 2(1) on t. We thus get a decomposition of t into eigenspaces according
to characters of Z(1)

b= P Ee. (3.4)

£€Q/z2

The order of such a II is the minimal positive integer m such that II factors through i, .
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Definition 3.2.4 (Springer). Let 11 : Z(1) — W’ be a homomorphism over j,. Then II
is called @-regular if for some { € Q/Z, b contains a regular element. The eigenvalues
¢ € Q/Z such that te Nt™ # & are called the regular eigenvalues of II.

Let o be a generator of p,.. Let IT : Z(l) — W’ be a 6-regular homomorphism. Let ¢
be a topological generator of Z(1), with II({) = wo € Wo C W’'. Then wo is a regular
element in Wo in the sense of Springer [33, paragraph after Theorem 6.4].

Theorem 3.2.5. Let v € Q. We denote its image in Q/Z by U. Then there are natural
bijections between the following sets

((F)p < g /GY"° > Reg(W')5/W, (3.5)
where

o ¢(F) is the set of homogeneous elements of slope v (see Definition 3.1.2);

o gy is the U-piece of the principal grading Uy of slope U (see Definition 3.2.2) and
GY7° the neutral component of its centralizer in G; g& = g N g™;

o Reg(W')y is the set of pairs (II, X) where II : Z(l) — W is a 0-regular homo-
morphism (over p.) and X € t = bty Nt (here by is the U-piece of U under the
action of 2(1) via I1). The Weyl group W acts on Reg(W')z by simultaneous conju-
gation.

Moreover, under the above bijections, the order of the principal grading V5 in (2) and
the order of the homomorphism II in (3) are both equal to lem(myq,e), where my is the
denominator of v in lowest terms.

Proof. We shall define maps

C(F)FS

v

o3 GV & Reg(W')y,/W

Then check their cyclic composition give identity maps.

The map ¢1. To a € ¢(F):* we will associate an element Y € gy. Let v = k(a) € s(F).
We write v as a formal Laurent series v(¢'/¢) in t'/¢ with coefficients in g. Recall s -q5; a
denotes the dilation action on ¢, which has positive weights (dy,--- ,dy). The Kostant
section k : ¢ = s C g satisfies

k(s a1 a) = sAd(s_pv)f-@(a), s € Gp,a€c. (3.6)
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We also denote the Galois action of ¢ € Z(1) on g(Fu) (without -twisting) by ¢ -Gal (—).
Using (3.1), we have

¢ Gal 7 = K(C -Gl @) = K(C7 -an a) = C"A(CT Jk(a) = CPAA(CTP )y (3.T)

Since v € g, we have ¢ -ga1 v = 0(¢)(7), therefore

Ad(C”*)B(C)y = 7. (3.8)

In other words, v € gy ® F,. Homogeneity of a implies that + lies in g ® C[t'/¢,t=1/¢],
so that it makes sense to specialize ¢ to 1. We assign the element Y = (1) € g5 to a.
The map ¢o. We define a more general map

{(¥,Y) : ¥ is a periodic grading adapted to 6,Y € g=}/G*! — Reg(W');/W. (3.9)

Here the notation gy means the V-eigenspace with respect to the periodic grading W.
Suppose we are given a pair (¥,Y). Since Y is an eigenvector under the action of 2(1)
on g via Uy, the Cartan subalgebra gy (centralizer of Y in g) is normalized by Z(1).
Choose g € G* such that Ad(g)gy = t, we get a homomorphism

Hg D — NGadx'ue (gy) = NGadxue (U:) - W,
Since Y € g, the element X, = Ad(g)Y € t then belongs to t%. Changing the choice
of g amounts to changing the pair (II,, X,) by W-conjugacy. If we change (¥,Y") by
G*-conjugacy, the resulting (II, X) also changes by W-conjugacy. The map ¢, is ob-
tained by applying this construction to the pair (U3, Y € g=).

The map ¢s. Let I1 : Z(1) — W’ be 6-regular and let X € . We define a = y(Xt¥)
which is homogeneous of slope v but a priori only an element in ¢'¥(Fy). We need to
check that a € ¢(F)™, i.e., for any ¢ € 2(1) = Gal(Fw/F), ¢ -qal (Xt) is W-conjugate
to 0(¢)(X)t” (recall ( is the image of ¢ in j.). Since X € by, we have II(¢)(X) = (¥ X,
therefore

¢-gar (X17) = ¢V Xt7 = THO) (X =TT HOQ)(X).

Since the homomorphism II is over ., H(()Z_l € W, hence the right side above is
W-conjugate to 8(¢)(X)t”. This shows a € ¢(F)*.

The composition ¢3 o ¢ o ¢ is the identity. This amounts to the fact that
x(k(a(1))t") = a. By Lemma 3.1.3, we have a = (¢;t*%)’_, in terms of fundamental
invariants. Then f;(rk(a(1))t") = t*% f;(k(a(1))) = c;t¥%, as desired.

The composition ¢ o @3 o ¢ is the identity. Start from (U3, Y € @=¥). Note that
€ € gp. It is shown in [28, Theorem 3.5(ii)] that there is an analog of Kostant section for
the action of G¥7° on g;. The Kostant section in this situation is given by e + gz N g'.
Therefore, up to conjugation by G¥7°, we may assume that ¥ € e + gy N g’. After
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applying the maps ¢3 o @2, the resulting homogeneous element a = x(Y't"). Applying
¢1 again, we get the same principal grading U3 and the element k(a(1)) lying in the
Kostant section. Therefore x(a(1)) =Y because Y already lies in the Kostant section.
The composition ¢ o ¢ o ¢3 is the identity. We may describe the composition ¢ o ¢
more directly. We take II = I1,. Also by Lemma 3.1.3(3), a is conjugate to Xt" for some
X €t well-defined up to W-conjugation. Since a = x(Xt") lies in ¢(F'), it is invariant
under the Galois action of Z(l) The argument in the construction of the map ¢3 then
shows that X € by. This defines the map a +— (II, X') which is inverse to the map ¢s.
Now we have checked that the three sets in (3.5) are in natural bijection to each other.
Finally we calculate the order m(¥) of ¥. We show the following divisibility relations

m(P) | lem(mq,e), m(II) | m(¥),lem(my,e) | m(II)

which then imply that m(IT) = m(¥) = lem(my, e).

The first relation m(¥) | lem(mg,e) follows from (3.3), where we see that the inner
part { — ¢ —vr’ ¢ G has order divisible by m1 and the outer part has order e and they
commute with each other.

The second relation m(II) | m(¥) follows directly from the construction of the map ¢s.

The last relation lem(mq, e) | m(II): e | m(II) because I is over p; my | m(II) because
IT has eigenvectors with eigenvalue 7. We have finished the proof of the theorem. 0O

Definition 3.2.6.

(1) (Extending [33, p. 174].) A natural number m; is a 8-reqular number (resp. elliptic
0-regular number) for W’ if there is a f-regular (resp. elliptic f-regular) homomor-
phism 1T : 2(1) — W’ which has a regular eigenvector of order m;.

(2) A rational number v is a 0-admissible slope (resp. elliptic 0-admissible slope) if the
denominator of v (in lowest terms) is a f-regular number (resp. elliptic #-regular

number).

When 6 is clear from the context, we simply say “(elliptic) regular numbers” and “(el-
liptic) slopes”.

Example 3.2.7. (1) The twisted Coxeter number hg of (G, 6) (see also §2.5.3) is an elliptic
f-regular number because the twisted Coxeter conjugacy class is f-regular and elliptic
of order hg.

(2) Let e = 1 or 2 be the order of the opposition o € Out(G) (o acts as —wg under
the reflection representation). Let 6 : u. — Out(G) denote the unique homomorphism
sending —1 to o if e = 2. Then 2 is an elliptic #-regular number because the element
Z(1) = py — W' (sending —1 € pg to woo € W’) is elliptic and f-regular of order 2.
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As a consequence of Theorem 3.2.5, we get the following property for -regular ho-
momorphisms. The statement (1) below was proved by Springer in [33, Theorem 6.4(iv)]
by different methods, and the other statements are implicitly checked in [33].

Corollary 3.2.8 (Springer). Recall that we assumed G to be almost simple.”

(1) If two O-regular homomorphisms into W' over u. have regular eigenvalues of the
same order, then they are W-conjugate to each other.

(2) LetII: Z(l) — W be a O-regular homomorphism. Then all reqular eigenvalues of IT
have the same order.

(3) Sending a 0-regular homomorphism to the order of its regular eigenvalues (well-
defined by (2) above) gives a bijection

{0-regular homomorphisms into W'} /W <« {0-reqular numbers}. (3.10)
Proof. (1) Let IIy, I, : Z(1) — W’ be 6-regular homomorphisms over j, with regular
eigenvalues & and & respectively. Assume & and & have the same order (as elements
in Q/Z), and we would like to show that IT; and IIy are conjugate under W. Since the
reflection representation of W’ on t is defined over Q, all eigenspaces of ¢ under IT; whose
eigenvalues have the same order are permuted by Aut(C/Q). Therefore we may assume
& = & and denote it by &. Let X; be a regular eigenvector for II; with eigenvalue &,
i=1,2.

Applying the bijection gg°/Cgaa (Ve) <> Reg(W')e /W in Theorem 3.2.5, (I, X;) cor-
responds to Y; € g’ (up to Cgaa(¥¢)) for i = 1,2. Applying the map ¢, in the proof of
Theorem 3.2.5, the construction Y +— II is independent of the choice of Y € g¢° (because
II varies locally constantly with Y and g¢® is connected), therefore IT; (which corresponds
to Y1) and IIy (which corresponds to Y3) are W-conjugate.

(2) Since G is almost simple, e = 1,2 or 3. Suppose II has two regular eigenvalues
of orders m; < mg. By Theorem 3.2.5, we have lem(mq,e) = lem(mz, e) (both equal to
the order of II). The only possibility is when e > 1, ged(my,e) = 1 and mg = em;. Let
I be the composition Z(1) % Z(1) 2L, W, then IT is f-regular of order e, with two
different regular eigenvalues one of which is 1. Note that 0 : pe — W’ itself is a f-regular
homomorphism of order e with regular eigenvalue 1. By (1) above, I is W-conjugate
to 6. However, we shall check case-by-case that 6 does not admit regular eigenvalues
other than 1, hence getting a contradiction. When e = 2, §(—1) acts as —wq on t, where
wo € W is the longest element. Therefore the nontrivial eigenspace of § on t is t"“°, hence
does not contain regular elements. When e = 3, G is of type Dy, then one node in the
Dynkin diagram is fixed by 6, and a nontrivial eigenspace of # on t must be killed by
the corresponding simple root, hence cannot contain any regular elements either.

(3) is an immediate consequence of (1) and (2). O

3 Statements (2) and (3) in this Corollary fail if G is not almost simple and e > 1: a regular homomorphism
can have regular eigenvalues of different orders.
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3.2.9. Normal form of an admissible slope

Given a f-admissible slope v, we first write it as ¥ = d;/m; in lowest terms, where
my is a f-regular number. Using the map (3.10), we get a #-regular homomorphism
II: piy, = W of order m (up to conjugacy). We know from Theorem 3.2.5 that m =
lem(my, e). Therefore we may write v = d/m for some integer d. This is called the normal
form of v.

3.83. Homogeneous elements and Moy—Prasad filtration
Let v = d/m > 0 be a §-admissible slope in the normal form.

3.3.1. The torus G, (v)
Let G,,(v) be the one-dimensional subtorus defined by the homomorphism

G (v) = G = (G*(F) x Grovley x Gdlt (3.11)

s (sd”v,sm7 579, (3.12)

Now G4 acts on G(F) with G4 acting trivially, we have an action of G,,(v) on G(F).
Explicitly it is given by

s g(t1) i= Ad(s% ) (g(s™/ 41/ ¢)). (3.13)

The action of G,,(v) on G(F') induces an action on its Lie algebra g(F'), and gives a
decomposition of g into weight spaces (which are C-vector spaces). For x € %Z, we let
g(F), be the weight space with weight maz under G,,(v). We have

—

3(F) = B, 8P

where @ means t-adic completion. To identify these weight spaces, we need a bit of
Moy—Prasad theory.

3.8.2. Moy—Prasad filtration

Let 2 be the apartment for G(F') corresponding to T'(F') = T(F,)*<. The parahoric
G gives a special vertex of 2, which allows us to identify 2 with X, (T)%°. The point
vpY € A defines a Moy—Prasad filtration g(F),,v. >» C g(F) indexed by rational numbers
T € %Z. The Op-submodule g(F'),,v >, is the t-adic completion of the span of affine
root spaces corresponding to a € ®,g such that a(vp¥) > x. In particular, g(F),,v >0 is
the Lie algebra of the parahoric subgroup P, corresponding to the facet containing vp".
Let L, be the Levi factor of P, that contains A. The root system of L, consists of those
affine roots a such that a(vp¥) = 0. Each g(F),,v >, is an L,-module.
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Suppose a € ¢(F), and v = x(a). We write v as a formal power series (¢'/¢) in ¢!/¢
with coefficients in g. Using (3.6), we get

Ad(s% )y (s™/ et/ o) = gty (t1/€). (3.14)
Therefore, v € g(F),. In other words, the Kostant section gives a section
k:o(F), = g(F),.
Lemma 3.3.3.

(1) For each x € L7, we have

—

9(F)upv 50 = @1,ng(F)m/. (3.15)

(2) Let g = Dee Lz/28¢ be the decomposition corresponding to the principal periodic
grading W4 of slope U in (3.3). Then there is a canonical isomorphism g(F), = oz,
where T =x mod m € ~7/7.

(3) The fized point subgroup L, = G(F)®» ") is a reductive group over C, and it con-
tains L, as the neutral component.

(4) The group L, is canonically isomorphic to the centralizer GY7 of the principal grad-
ing Uy (see (3.3)) in G.

Proof. (1) Direct calculation shows that G,,(v) acts on the affine root space correspond-
ing to a € ®,5 U {0} by weight ma(vp"). Since each step of the Moy—Prasad filtration
is a sum of affine root spaces, the statement follows.

(2) The space g(F), is a sum of affine root spaces. For each a € ®,5U{0}, we identify
the corresponding affine root space with gg, where @ € ® U {0} is the linear part of «.
These isomorphisms sum up to give g(F), — gy

(3) We have Lie L, = g(F)o = Lie G(F)®=®) by identifying the affine roots. There-
fore L, C G(F)®"*) as the neutral component. We must also show that G(F)®®)
only has finitely many components. In fact, G(F)®*) normalizes Pupv >0 by (1), hence
it normalizes P,. Let f’,, be the normalizer of P, in G(F), then lNDV/Pl, is can be iden-
tified with the stabilizer of the facet §p, under W which is a finite group. Therefore
G(F)¢=" /L, c P,/P, is a finite group, and G(F)®=*) only has finitely many com-
ponents.

(4) By embedding G into a matrix group, it is easy to see that G(F,)®=®) c
G(C[t'/¢,t=1/¢]). Therefore we may view an element g € G(F)®(*) as a morphism
of varieties ¢ : G,, — G. The coordinate on the source G,, is ¢t'/¢. The fact that
g € G(F) = G(F,)*e says that g is pe-equivariant: with the multiplication action on
the source G, and the action via @ on the target. The G,,(v)-equivariance of g is same
as saying that g is G,,-equivariant: s € G,, acts on the source G,, by multiplication
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by s™/¢ and acts on the target G by Ad(s‘d”v). Giving such a map g is equivalent to
knowing the value ¢g(1) € G satisfying two conditions

* 9(n) = 0(n)g(1),¥n € pe;
e g(¢™e) = Ad(¢™% )g(1),YC € pim.

The two conditions are consistent if and only if #(¢C™/¢)g(1) = Ad(¢% " )g(1), or in
other words, ¢g(1) is invariant under the action of W3 defined in (3.3). Therefore the
evaluation at ¢t'/¢ = 1 gives an isomorphism of reductive groups EV = G(F )Gm(”) =
G(C[tY/e, e Ve rebm) 5 G¥». O

Lemma 3.3.4. Let v and v/ be 0-admissible slopes with the same denominators in lowest
terms. Then there are isomorphisms L, L, and 9(F), = g(F), compatible with the
action of L, and L,,. One can make these isomorphisms canonical except when G is of
type 2Dy and the order of v is divisible by 3.

Proof. Let v = dy/m; and v/ = d}/m; in lowest terms. It suffices to treat the case
d} = 1. By Lemma 3.3.3, it suffices to construct compatible isomorphisms between G¥~
and GY, and between their grading pieces g and gy. In fact, we will show that in
most cases these isomorphisms are equalities as subgroups of G and subspaces of g.

First assume either e = 1 or et my. In this case GY7° Cc H = GM=° and gr C Lie H.
Working with H instead of G we may assume e = 1. We let m = m; and d = d;. In this
case the action Uy : u,, — Aut(G) is simply the composition ¥y o [d] (pre-composite
with the d-th power map on fi,,,). Since d is prime to m we get GY7 = G¥» and gy = gp.

Next assume e = 2 and 2|m;. Again we write m = m; and d = d;. In this case d must
be odd, and again W3 = Uy o [d]. Therefore the same conclusion as above holds.

Finally we treat the case e = 3 and 3|m;. Again we write m = m; and d = d;. In this
case d must be prime to 3. The above argument allows us to replace Uz by U’ := Uz o[d].
In other words we are comparing the two gradings ¥y : ( — Ad((d”v)H(Cm/e) and U’ :
¢~ Ad(¢%)0(¢4m/¢). When d =1 mod 3 then ¥/ = U, and the conclusion follows. If
d =2 mod 3, then for a primitive ¢ € y,, with 8(¢C"™/¢) = o € Aut'(G), the two actions
U5(¢) = Ad(¢% Yo and W/ (¢) = Ad(¢ " )o2. However, the pinned automorphism group
Aut’(G) of G (of type D) is isomorphic to S3. Choose an involution 7 € Aut'(G) = Ss.
Then conjugation by 7 interchanges o and o2, and the action of 7 (as with all pinned
automorphisms) commutes with Ad((dpv ). Therefore the automorphism 7 of G identifies
GY” with G¥Y» = GY', and identifies gy with gz. The proof is complete. O

With the Moy—Prasad grading, we can describe the centralizer G-, more explicitly.
Lemma 3.3.5. Let GEY be the Néron model of G, that is of finite type over Op. Then

(1) Gi((’)p) C P, -G(F)®W) which is contained in the normalizer of P,,.
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(2) Let §a = z,,,, be the centralizer of v in Z,,. The inclusion §a — GE/((QF) identifies
S, with the Levi factor of the pro-algebraic group va((’)p).

(3) Let II : piy, — W’ be the O-regular homomorphism corresponding to the 0-regular
number m by Corollary 3.2.8, then g@ o T (km),

(4) Let Sq := L, ~ be the centralizer of vy in L,. Then §G/Sa is canonically a subgroup
of Q. Assume further that v is elliptic. Then there is an exact sequence

I%Saﬁga%flﬁl.

Proof. (1) We first show that Lie G?Y(OF) C 9(F)upv,>0 = Lie P,. In other words, the
weights of the G, (v)-action on Lie GE{ (OF) are non-negative. This can be checked after
extending F' to F,,, with the action of G,,(v) on G(F,,) given by G,,(v) > s : g(t'/™)
Ad(s?%")g(st*/™). Inside g(F,), we may conjugate v to Xt (X € ), and G',’y((’)pm)

T(OF,, ), for which is statement is obvious.

We may write va((’)p) canonically as the GE;‘" . G?red, where va"“ is its the pro-
unipotent radical and va’red the Levi factor, which is a diagonalizable group over C.
The above argument shows that the neutral component of GEY((’)F) is contained in P,,
hence GE;* c P, and fo’mdvo C L,. It remains to show Gbr"d C G(F)Gm(’“). Now G:“’d
is a diagonalizable group on which G,,(v) acts, the action must be trivial because the
automorphism group of a diagonalizable group is discrete, therefore GEfEd C G(F )Gm(”).

(3) Recall how we assigned the f-regular homomorphism II : p,, — W’ to v(1) € gz
in the proof of Theorem 3.2.5. Since v(1) € @', the centralizer T' = Cg(v(1)) is a
maximal torus and the principal grading ¥ : p,, — G® x j, normalizes it. Therefore
¥ induces a homomorphism II : fin, — Ngaay,, (T')/T" = W’. By Lemma 3.3.3(4), the
group Sy = L,,7 is the centralizer in G of both the grading ¥ and the element (1),
therefore S, = Cg(y(1))¥ = TMm) o2 TH(km)

(2) We have already shown that Gb red — G(F)&n() = L, therefore G" red
L, vy = = S,. Since S, is also dlagonahzable in (3), hence reductive, we have Gb red =S,

(4) The quotient S /S is a subgroup of L v/ L, = PV/PV, therefore a subgroup of Q. It
remains to show that S, /Sa = Q. Since v is elliptic, S, = T#m is finite, therefore it suffices
to show that [Sa : Su] = #Q. Let G*° — G be the simply-connected cover with kernel Z.
Define S5¢ and §ZC as the counterpart of S, and S, for G*¢, then in fact S5¢ = §ZC since
) is trivial for G%°. We also have S5¢/Z#e = S,. Let w € W’ be the image of a generator
of iy, under II, then S5¢ = T and S, = T* by (3). Since w acts elliptically on t, we
have $5¢ = #S, = det(1 — w|X,(T)). Therefore [S, : So] = [S5¢ : S,] = #ZF. Since
#Q = #21 we have [S, : So] = #€, hence S,/S, = Q. O

3.8.6. Cartan subspace and the little Weyl group

Let v be a #-admissible slope which corresponds to a #-regular homomorphism IT :
tm — W, Let b5 C L be the eigenspace with eigenvalue 7 = v mod Z as in (3.4). We
call by a Cartan subspace for the slope v. The subspace by ® t¥ C g(F,) then consists
of homogeneous elements of slope v and the homomorphism IT shows that their image
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under the invariant quotient map g(F,,) — ¢(Fy,) in fact lies in ¢(F’),. We therefore get
a map ¥ — ¢(F)!, which is an étale cover with Galois group W(II,7), the little Weyl
group attached to (II,7). This notion is equivalent to the notion of little Weyl groups
attached to gradings on Lie algebras reviewed in [30, §6]. The group p.,, acts on W
via IT and the conjugation action of W’ on W. The fixed point subgroup WH(#m) acts
on by. Combining [30, Lemma 19] and [28, Theorem 4.7] (see also [30, Proposition 20],
applicable here since II arises from a principal grading according to Theorem 3.2.5),; we
conclude that W (II,7) = W),

3.8.7. Family of regular centralizers over ¢(F):®

Let v > 0 be a #-admissible slope so that ¢(F')}’ C ¢(Or). Recall we have the regular
centralizer group scheme J over ¢ defined in §2.4. For each a € ¢(Op) let J, be the
group scheme over Op defined by the pullback of J along a : Spec Op — ¢. We would
like to define a commutative group scheme P, over ¢(F)™ whose fiber over a is P, :=
Ja(F)/Ja(OF).

We use the notation from §3.3.6. We first work over t. Every point in U gives a
lifting @ : Spec OF,, — b of a : Spec O — ¢. The alternative construction of the regular
centralizers given in [10] then shows that each J; is canonically isomorphic to the same
group scheme T over Spec O, such that it is a subgroup scheme of T ® O, with the
same generic fiber. Moreover J carries a descent datum from Spec OF,, to Spec Op, or
simply an action of p,, that is compatible with its Galois action on Of, . We then have
two group ind-schemes over ¥, one is 2 x T(F,,)"(#n) and the other is its subgroup
scheme B} x j((’) r,,)#m) . The desired group ind-scheme P,, when pulled back to
should be the quotient of these two. Using the action of WH(#m) to descend the two
group ind-schemes from t= to ¢(F), we get the group scheme over ¢(F)

WH(I"m) -
P, =ty x (’]I‘(Fm)n(”m)/q]](oFm)H(um)) _

v

3.8.8. The group schemes S and S

The results in Lemma 3.3.5 can be stated in families. The group scheme J2(Op) :=
Wwi(em)
B x  T(Op, )"Hm) over ¢F) is the family of Op-points of the Néron models of

v

the centralizers be for v = k(a),a € ¢(F)X. The group scheme S over ¢(F)™, defined as

the family of stabilizers under L,, is canonically isomorphic to the Levi factor of J%(OF).

Therefore, Lemma 3.3.5(3) gives an isomorphism of group schemes over ¢(F)

- 'WH(HWL) I
S x THEm),

By Lemma 3.3.5(4), there is a canonical homomorphism of group schemes S — Qx ¢(F).

Let S C S be the kernel of this homomorphism. Then S is also a smooth affine group
scheme over ¢(F)? whose fiber over a is the group S, defined in Lemma 3.3.5(4).
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4. Graded and rational Cherednik algebras

In this section, we recall the definition of two versions of Cherednik algebras, and
collect some basic facts about their structure and representation theory.

4.1. The graded Cherednik algebra
We first recall the definition of $8" = $8" (G, ). As a Q-vector space,
H¥ = Sym(X"(Gii)g & ajr) @ QW]
Let u be the generator of X*(Gdil), then we may also write
9% = Qlu, 3] © Sym(a”) © QAcan] © QW)
The grading is given by

deg(w) = 0,V € W
deg(u) = deg(&) = 2,V¢ € ai

The algebra structure of $" is determined by

(GC-1) u is central;

(GC-2) Q[AW/] and Sym/(aj,,) are subalgebras;

(GC-3) For each affine simple reflection s; € Wag (corresponding to the affine simple
root ;) and £ € ajy,

si€ — "5 = (&, o Ju;
(GC-4) For any w € Qy and £ € ajqy,
wé =“Ew.

4.1.1. Central charge

We know w is central. From the relations (GC-3) and (GC-4), we see that § € ajy; is
also central. B

Using the W-invariance of Bxwum € Sme(aKM)W7 we see that Bgy is also a central
element in £H8".

Let

95 = 9%/ (u+vi).

This is the graded Cherednik algebra with central charge v. We shall write € for the image
of § = —u/v in H'.
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4.1.2. Specialize € to 1

Let $%'._; be the specialization &' /(e — 1). This is the trigonometric Cherednik
algebra in the literature. The grading on $8" only induces a filtration after specialization:
we define f)ffié C f),’i:l to be the image of the degree < i part of $8, and call this

v

the cohomological filtration.
4.2. The rational Cherednik algebra

4.2.1. Parameters
We shall define a function:

c:®/W —{1,2,3}.

Here @ is the relative root system ®(G, A) on which W acts by permutation. Recall
¢ = ®(G,T) is the absolute root system and we have a projection ¢ — ®. For a € P, let
Co, be the cardinality of the preimage of o under the projection ¢ — ®.

We also give the value of ¢ explicitly in the various cases. If e = 1, ¢ is the constant
function 1. If e > 1, then the relative root system ® is not necessarily reduced. In any
case, we can speak about the longest roots (when G is of type 2 A,,,, there are three root
lengths). We have

1 « is longest;
Co =
e otherwise.

4.2.2. Rational Cherednik algebra
The bigraded rational Cherednik algebra $™' = §'(G, ) is, as a vector space, a
tensor product

9™ = Q[6, u] ® Sym(a) ® Sym(a*) @ Q[W] @ Q[Acan)-

The bigrading is given by

(o9
N
|

(0) = deg(u) = (2,0);
(Acan) = (2,2);
deg(n) = (0,-1) Vneg
) =21 V¢ea
deg(w) = (0,0) Yw e W,

The first and second component of the grading are called the cohomological grading and
the perverse grading. The algebra structure is given by
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(RC-1) w and ¢ are central; Ac,, commutes with a* and W;

(RC-2) Sym(a), Sym(a*) and Q[W] are subalgebras;

(RC-3) For n € 0,& € a* and w € W, we have wn = “nw, w§ = “Sw;
(RC-4) For n € a,& € a*, we have

[7,€] = (&, md + % (Z ca<€,av><a,n>m> u

acd

where r, € W is the reflection associated to the root a and ¢, is the constant
defined in §4.2.1;

(RC-5) For n € a, we have [, Acan] = —1* € a*, where 7 — n* is the isomorphism
a = a* induced by the Killing form B.

4.2.8. The sly-triple

Let {&;}, {n:} be dual orthonormal bases of a* and a with respect to B, so that n} = &;.
Consider the following triple (e, b, [) in $yrat

1w, 1
S 2 _ _CB:

1
h=3 > G+ mi&i);

1
f= 3 ZZ: 77?.
Direct calculation also shows
[h, €] =0&,[h,n] = —dn for all £ € a*, X\ € a. (4.1)
From this one easily see that {e,h, [} is an almost slo-triple:
[h, e] = 20e, [h, ] = —26F, [e, ] = oh.
In other words, (e/d,h/d,6/9) is an slo-triple.

4.2.4. Central charge
The element Bk defined in (2.6) can be viewed as an element in $™* of bidegree
(4,2). The W-invariance of Bk implies that it is a central element of $™*. Let

N = §/ (u + v§, Bgu)-

This is the graded Cherednik algebra with central charge v. We again use € to denote the
image of § = —u/v.
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4.2.5. Specializing € to 1

Let $;%_, be the specialization $*/(e — 1). This is the rational Cherednik al-
=1
rat,<m __
v,e=1 -

gebra in the literature. Now the perverse grading induces a grading on
while the cohomological grading only induces a cohomological filtration: $

Im(Di<p,jezH™ (4, 5) = D).
4.8. Relation between H% and $H*2*

Proposition 4.3.1. Let (M, F<;M) be an object in a filtered Q-linear triangulated cate-
gory C. Assume there is a graded action of $H8 on M (i.e., a graded algebra homomor-
phism 98 — Endg(M)) in such a way that

e &,u and W preserve the filtration;

o w—1 sends F<;M to F<;_1 M for all w € X.(T),, = ker(W — W);
o & sends F<;M to (F<;+1M)[2] for all £ € a*;

o Acan sends F<;M to (F<;12)M][2].

Then there is a unique bigraded action of H™* on GrfM such that

e The d,u and W actions on GrfM are induced from that of ,u and W viewed as
elements in HB°;

o Forn € Xo(T),, /Xu(T) o tors C @ C N2, its action Gri M — Grf_ M is induced
from w —1 € H®, where w is any lifting of n to X, (T),, ;

o For&ca* C 9™, its effect Grf M — (Grr,,M)[2] is induced from & € H¥';

o The effect of Acan : Gr} M — (Grf o M)([2] is induced from Acan € H8'.

Proof. We first check that the action of X, (T),./X.(T),, tors 0n Gri M given above
is well-defined, and extends to an action of Sym(a). From the assumptions we see
that X,(T),, acts on M unipotently, therefore its torsion part acts trivially. From
this we see that the action of w — 1 for w € X,(T),, only depends on its image
in X, (T),, /Xu(T),, tors C a. Moreover, for wy,ws € X,(T),,, we have whwe — 1 =
(w1 —1)(wg — 1)+ (w1 — 1) + (wWy — 1). Passing to associated graded, the induced map of
W1 Wy — 1 on Grl' M — Gr!” | M is the same as the one induced by (@, — 1) + (@ — 1).
Therefore the map X.(T),, /X.(T),. tors — Hom(Gr; M, Grf | M) is additive. We may
extend this map to a by linearity and get an action of Sym(a) on Grf M.

With this checked, the action of $™* is uniquely determined on the generators. We
need to check that the relations (RC-1)—(RC-5) hold. The relations (RC-1), (RC-2) and
the first half of (RC-3) are obvious.

Let w = 4,84, - - - 8;,,w be a reduced word for an element w € W, where s;; are affine
simple reflections and w € . By the relation (GC-3) for 8", we have
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ﬂ}—f _ i]f’[l\}' _ (Sil . Simwé- o Sil"'sim“’f)wu
m

— . P . v S7 sl w . DY .
- E Siq Slj—1<aij’ itt " §>81j+1 Sy, WU

<
—

m
\%
< 5 7£>5i1 e sij_lsij+1 ct S, WU,

<.
—

w_lsi

where ) = miial € @y is an affine real coroot.

At this point we can check the second half of (RC-3). For w = w € W, the right side
above belongs to Q[W]u as a map M — M|[2]. Passing to the associated graded we get
the second half of (RC-3).

Next we check (RC-4). For this we assume w € X,(T),, and its image in a is 7. Let

1

By = Fim S a;; € @a. Then the reflection rg, € Wag has the form

rg; = (w_lsim T 8ij+1)8ij (Sij+1 T Simw)

:(w

Siyt e Sij)sij (sij+1 e simw)
el ) . L. g
=W S8iy cSi;_y Sigyy  Sip W

Moreover, since s;,8;, « - - 8;,,w is reduced, {f1, -, Bm} is the set of positive real affine
roots in ®,g such that “S < 0. Therefore

we—Tm=w » (& B")rpu. (4.2)

B8>0,3<0

Let 7 : Q[W] — Q[W] be induced from the projection W — W. Eventually, we only care
about the effect of @Zﬂ>07mﬁ<0<ﬂ\/7§>r5 on Grf M, which only depends on its image
under 7. For £ € a, we have V¢ = £ + (£,71)d by Lemma 2.5.8. Therefore (4.2) implies

m([@ —1,8)) = 7((“¢ — @) + (@ — &)
=Emi+ > (&B )rsu. (4.3)

£>0,%5<0

Here we have written every affine real root 8 uniquely as 3 = 5 + nd where 5 € ®. The
possible n’s are:

« if 3 is not a longest root in ®, then n € %Z;
« if G is not of type >As, and 3 is a long root, then n € Z;

o if G is of type %Ay, and B is a longest root (twice a short root), then n € % + Z.

Such n are called S-admissible.
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Fix B € ®, let
O() := {affine real roots 3 = 3 + nd such that 3 > 0,%8 < 0}.

Thus the summation on the right side of (4.3) becomes

S (e, BY#O(B)rzu. (4.4)

Bed

If 3 > 0, then ©(B) is in bijection with B-admissible n such that 0 < n < (B,n). If

(B,m) > 0, there are CE<B, n) such admissible n’s (note we always have (3,1) € L7Z),

hence #0(B) = CE(B, n). If {B,m) < 0 then ©(3) = @. Similarly analysis appliefi to
O(—p) shows that if (3,1) > 0 then O(—f) = @; if (B,1) <0, #O(=p) = c_5(-5,n).
In summary, exactly one of the pair roots o € {£(} contribute to the sum (4.4), and
O(«) is always equal to ¢, {a,n). Hence (4.4) becomes

% Z cal€ Yo, n)rau.

acd

Plugging into (4.3) we get (RC-4).
Finally we check (RC-5). Again let w € X,(T),, with image n € a. For { = Acan, we
have “Acan = Acan — 0* — %B(n, n)d. Therefore,

[ﬂj - ]-» Acan] = (@Acan - TDAcanﬁj) + (TDAcan - Acan)ﬂj

. L1 N L1
€ QWlu + (=" = 5B(n,md)(w — 1) —n* — 5B(1,m)3.
Except for the term —n*, the other terms on the right side above send F<; M to F<;M|[2].
Therefore the induced map [@—1, Acan] : Gr; M — Gr}; M[2] is the same as —n*, which
verifies (RC-5). O

4.4. Algebraic representation theory of rational Cherednik algebras

The theory of category O for rational Cherednik algebras was developed in [17]. The

rat
v,e=1

category O consists of £ modules with locally nilpotent action of Sym(a). The

projective generators of the category are constructed as follows. For any irreducible
representation 7 € Irr(W), view it as a module over Sym(a) x W on which a acts by

rat
zero. Define 9, (7) to be the induction Indg}l”r’;(:;)xwr In particular 9, (triv) can be

identified with the polynomial ring Sym(a*) as vector spaces. The quotient of 9, (1)
by the sum of all proper submodules is an irreducible representation £,(7), see [12,
Corollary 11.5]. The kernel of the quotient map can be identified with the kernel of a

rat

natural pairing. Indeed, consider the anti-involution § on $;7¢_; determined by

(i) =i, S(yi) = x4, S(w)zw_l, we W.
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A pairing J : 9 x M — Q is called contravariant if is satisfies

Jr(vh,u) = J; (v, §(h)u), for all v € M, u € M and h € HP_ . (4.5)
Theorem 4.4.1. (See [12, Lemma 11.6].) There is a unique bilinear contravariant pairing
Jr M, (7%) x M, (1) = Q that extends the natural pairing between T and 7*. Moreover
L,(r) =M, (7)/ ker(J;).

Let V[j] be an h-eigenspace corresponding eigenvalue j where b is from the sly-triple
{e,h,F}. If V is a finite-dimensional then its graded dimension dim, (V) := Tr(¢"|V) is
a Laurent polynomial in ¢. From the representation theory of sly we see that dimg (V)
is palindromic: dimy (V') = dimg(V)|4=1/4. In the case £,(7) is a finite dimensional rep-
resentation, one can compute the action of h on the lowest weight space and conclude
that deg,(£,(7)) = ¥(Xace Cara)lr — 37, see [15, §3.7]. In particular, if £, (triv) is

finite-dimensional, then its graded dimension has the highest g-degree among all finite-

rat

dimensional irreducible representations of H.*_;.

Corollary 4.4.2. (See [15, Proposition 3.37].) Suppose V' is a finite-dimensional quotient
of M, (1) then in the Grothendieck group of the category O we have a decomposition

V] =[&(T)] + > Mz o[£ (0)];

o.deg, (£, (#)<D
where mre > 0 and D = deg,(£,(7)).

For an example of the situation when m, , # 0 see [2, §6.4].

4.4.8. Frobenius algebra structure

The module £, (triv) is quotient of the polynomial ring 9, (triv) & Sym(a*) by a
graded ideal, hence has a graded commutative ring structure. Suppose £, (triv) is fi-
nite dimensional, then N := deg, (£, (triv)) = 5(X,cq a) — 57 = 5(vhg — 1), and
the h-eigenspace with the largest eigenvalue N is one dimensional. Let ¢ : £, (triv) —
£, (triv)y be the projection onto the top eigenspace of h. Choosing a basis of £, (triv)y,
we may view £ as a linear functional on £, (triv). By [12, Theorem 11.12] and [2, Propo-
sition 1.20], the functional ¢ provides a Frobenius algebra structure for this ring £, (triv).
Conversely, a finite dimensional quotient of 9, (triv) is a Frobenius algebra if and only if
it is £, (triv). In §8.6 we will provide a geometric interpretation of the Frobenius algebra
structure on £, (triv).

The representations £, (triv) are called spherical. In the case of Cherednik algebras
with equal parameters (i.e., § = 1), the classification of the finite-dimensional irreducible
spherical representations is completed in [35]. In particular, it is shown in [35] that
£, (triv) is finite-dimensional if and only if v = d/m, (d,m) = 1 and m is a regular
elliptic number for W. See also [13] for the treatment of the case of unequal parameters.
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Part 2. Geometry
5. Homogeneous affine Springer fibers

In this section, we study the geometric and homological properties of homogeneous
affine Springer fibers for the quasi-split group G.

5.1. The affine flag variety

In this subsection we review some basic facts about the affine flag varieties. The choice
of the Borel B C G gives an Iwahori I C G(F). A parahoric subgroup P C G(F) is called
standard if it contains I. Let P be the a standard parahoric subgroup of G(F'). The affine
partial flag variety of G(F) of type P is the fppf quotient Flp = G(F)/P, where we view
G(F) as an ind-scheme over C and P as a group scheme of infinite type over C, see
§2.5.1. When P =1, Fl; is the affine flag variety, and is simply denoted by F1.

5.1.1. Line bundles on Fl
Alternatively, we may write F1 as Gxm /Ikm, where Iy = GSE® x I x G;‘it’[e]. There is
a surjection Ixy — Ak, realizing Ak as the reductive quotient of Iy, For each € €

X*(Akm), viewed as a homomorphism Ixy — Akm LR G, we get a Ggy-equivariant

T,
(via left action on F1) line bundle £(§) = Gkm "X Al over F1. This construction defines

a homomorphism
X* (AKM) — PiCGKM (Fl) (51)
sending & to L(£).

Remark 5.1.2. When £ = 6 € aj;,,, the Axy-equivariant line bundle £(6) over F1 is the
et power of the pull back of the tautological line bundle via [Agy\F1] — [Gﬁgt’[e]\pt].

5.1.3. Determinant line bundles

We also have a class of line bundles on FI given by the determinant construction.
Each Flp carries a determinant line bundle detp whose fiber at gP is relative determinant
det(Ad(g)Lie P : Lie P) of the Op-lattices Ad(g)Lie P and Lie P in g(F'). The line bundle
detp carries a P Gigt’[e]—equivariant structure (which acts on Flp by left translation
and loop rotation). In fact, for h € P x G and ¢gP € Flp, the fiber of detp at hgP
is det(Ad(hg) - Lie P : Lie P) = det(Ad(hg)Lie P : Ad(h)Lie P) (because Ad(h)Lie P =
Lie P), the latter can be identified with det(Ad(g)Lie P : Lie P) by the adjoint action
of h. Let mp : F1 — Flp be the projection. Since all P contain I, the line bundles 7} detp

rot, [e]

on Fl all carry I x Gy, " -equivariant structures.
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The line bundle dete on Flg is what we used to define the central extension G(F)%".

By construction, we have a G x Giﬁt’[e]—equivariant isomorphism of lines bundles on F1

radete = L(Acan)-

For a parahoric P, 7} detp ® det; * has fiber at gI equal to det(Ad(g)(Lie P/Lie I)) ®
det(Lie P/Lie I))~'. Let 2pp € aj; be the sum of positive roots of Lp, then I x

Giﬁt’[e]—equivariantly, we have

mpdetp = dety ® L(—2pp) ® OING:?,[C] (2pp), (5.2)
where Op crot(e) (2pp) means the trivial line bundle on which I % Giﬁt’[e] acts via the
character 2pp. Comparing (5.2) for P and for G we get

rgdetg = mpdetp ® L(—2pg + 2pp) ® (’)MG:SM[E] (—2pp + 2pc)- (5.3)

5.1.4. Curves on Fl

For each affine simple root o;, 7 = 0, - - - ,r, we have the corresponding homomorphism
SLy — G(F) (view G(F') as the loop group) and hence an embedding P! < FI. The cycle
class of this P! defines an element C; € Hy(F1,Z,)(—1). We thus get a homomorphism
from the affine coroot lattice

Z9Y; = Spang{ay, -+, o)} — Ha(F1, Z). (5.4)

Proposition 5.1.5. The homomorphisms (5.4) and (5.1) preserve the pairing between
X.(Akm) and X*(Axm) and the degree pairing between line bundles and curve classes
up to a sign. In other words, for any & € X*(Akm) and i =0,1,--- 7, we have

(€ o) = — deg(L(€)[C3). (5:5)

Proof. For £ = §, both sides of (5.5) are zero (since £(4) is a trivial line bundle). For
¢ e X*(A) and (¢, a)) = 0, the character £ : A — G, extends to a character Lp, — G,,,
therefore £(&) is the pullback of a line bundle on Flp,, and hence deg(L(§)|C;) = 0
because C; is a fiber of the projection F1 — Flp,. If £ = «a;, then ({, ) = 2 and
deg(L(w;)|C;) = —2 by an easy calculation on the flag variety of the SLo associated
with the root «;. The above discussion shows that (5.5) holds whenever £ € X*(A) @
X* (G ).

It remains to show that (5.5) holds for & = Acan. Applying (5.3) to P = P;, we have

deg(rgdetg|C;) = deg(mp,detp,|C;) + deg(L(ai — 2pa)|Cy)
= —(ai — 2pa, o) = =2+ 2{pa, o). (5.6)
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Here we have used that deg(mp detp,|C;) = 0 because C; is a fiber of mp,, and we also
use the proven identity (5.5) in the case £ = o; —2pg € X* (A)@X*(Gﬁt’[e]). When ¢ # 0,
(pG, @) =1 hence the right side of (5.6) is zero, which is also equal to (Acan, ;). For
i =0, we have (pg, o) = —(pa,BY) = —(hy —ay)/ay =1 — hy/ay by the definition
of ay and hy (see (2.2) and (2.3)). Therefore the right side of (5.6) is —2h) /ay. On the
other hand, the definition of oy in (2.4) makes sure that (Acan, o) = 2h) /ay, therefore
(5.5) also holds for £ = Acan and ¢ = 0. The proof is now complete. O

By the construction in §5.1.1, each line bundle £(£) carries a canonical Aky-equivar-
iant structure. Let 7(§) € HE  (F1) denote the Agy-equivariant Chern class of £(€).
This extends to a graded ring homomorphism

r: Sym® (ajy) — Hi% (F1).

On the other hand, we have another such ring homomorphism coming from the
Axv-equivariant cohomology of a point

¢ : Sym®(ajy) = H2® (pt) — H2® (F1).

Axm AxmMm

The next result will be used in construction of the graded Cherednik algebra action
on the cohomology of affine Springer fibers in §7.1.

Lemma 5.1.6. We have r(Bxwm) = ¢(Bxm) in HE  (FI).

Axm

Proof. By equivariant formality of Fl, we can check this identity by restricting to the
Axy-fixed points of Fl, namely the points wl for w € W. We have r()|g1 = ¢(w€) €

HXKM (pt). Since Bgm is W-invariant, we have r(Bkwm)|gs1 = ¢(WBkm) = £(BxMm) €
Hj . (pt). This means r(Bxw) — ¢(Bkwm) restricts to zero at every fixed point, hence
T(BKM) = {(Bkm) in HXKM (F). O

5.2. Affine Springer fibers

Kazhdan and Lusztig [22] defined the notion of the affine Springer fiber in the affine
flag variety for split groups. Many basic results on affine Springer fibers can be easily
generalized to quasi-split groups G.

Definition 5.2.1. (See Kazhdan and Lusztig [22].) Let v € g(F') be regular semisimple.
The affine Springer fiber of v of type P is the reduced closed subvariety Spp , C Flp
consisting of cosets gP such that Ad(g~!)y € Lie P. When P = I, we drop I from the
notion and simply write Sp,.

We have a natural projection 7p - : Sp, — Spp ,. The fiber of mp , at gP € Spp ,
is the usual Springer fiber of the image of Ad(g~!)y € Lie P in Ip = Lie Lp for the
group Lp. In particular, mp , is surjective.
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When G is split, it is shown in [22] that Sp,, is a possibly infinite union of projective
varieties of bounded dimension. Moreover, Sp, is of finite type if v is elliptic. The next
lemma generalizes this to the quasi-split case and to general parahorics P.

5.2.2. The centralizer of v

Let G, be the centralizer of v in G. This is a torus over F' and G (F) acts on Spp
by its left translation action on Flp. Let A, C G, be the maximal subtorus that is split
over F. Using the uniformizer ¢ of F', we have an embedding X, (A4,) < A, (F) — G, (F).
We denote the image of this embedding by A,. Then A, is a free abelian group of finite
rank (equal to the split rank of G.,) that acts on Spp .

Lemma 5.2.3. Let v € g(F) be regular semisimple, and let P be a standard parahoric
subgroup of G(F).

(1) There exists a projective subscheme Z C Spp ., such that Spp_, = A, - Z. In partic-
ular, Spp ., is a possibly infinite union of projective schemes of bounded dimension.
(2) If v € g"(F) is elliptic, then Spp ., is a projective scheme.

Proof. We note that (2) follows from (1) since when ~ is elliptic, A, is trivial hence
A, =0.

To prove (1), it suffices to consider the case P = I since the projection 7p  : Sp., —
Spp - is surjective. Let Spfy be the affine Springer fiber defined using F, in place of F'.
There is a natural pe-action on Sp’, and Sp,, is a closed subset of Sp¥'c. We use G, A/,
and A/, to denote the counterparts of G, A, and A, when the field F is extended to Fe.
Then pe naturally acts on A’, and we have a natural embedding A, C (A’))#< with finite
index.

We shall apply Kazhdan and Lusztig’s results from [22] to Spi/ since G is split over F.
By Kazhdan and Lusztig [22, Prop. 2.1], there exists a projective subscheme Z' C Spi/
such that Spﬁy = Al - Z'. By enlarging Z’ we may assume that Z' is stable under p. and
is still a projective scheme.

Let S C Al be the set of A € A/ such that AZ' N Z’ # @. Since Z' is of finite type, S
is a finite set. We claim that Spl C (o —id)~1(S) - Z’. In fact, let A - z be a p.-fixed
point of Sp;, where A € A, and z € Z'. Fix a generator o € .. Then o()) -o(2) = A~ 2
which implies that (o(\) — X) - 0(2) = z hence o(\) — A € S, i.e., A € (o0 —id)71(9).

Finally, since A, C (A/)** has finite index, the quotient (¢ — id)~'(S)/A, is a
finite set. Choose coset representatives {A1, -, Ay} of (0 —id)"'(S)/A,. Let Z =
(Ui Ai - Z") N Sp.,, which is a closed subscheme of Fl of finite type hence projective.
Since Sp'* C (0 —id)~!(5)-Z" = A, - (U2, Ai - Z'). We conclude that Sp, = A, -Z. O

5.2.4. Symmetry on affine Springer fibers
Let v € ¢g"(F) with a = x(v) € ¢(Op). Let a = x(v) be viewed as a morphism
Spec O — ¢. We define J, := a*J where J is the regular centralizer group scheme
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defined in Section 2.4. There is a canonical isomorphism j, : J, p = G- over F. The
group scheme J, gives a smooth model of G, over Op. Let P, = Jo(F)/Jo(OF), viewed
as a fppf quotient in the category of group ind-schemes over C. As an ind-scheme over C,
P, is the moduli space of J,-torsors over Spec O together with a trivialization over
Spec F.

Lemma 5.2.5. The action of G(F') on Spp ., factors through P,.

Proof. We first prove the statement for P = I. The proof is the same as the argument
in [26, p. 42]. Let us give the reason on the level of C-points. Let j, : J,(F) = G (F)
be the canonical isomorphism. To show that J,(OF) acts trivially on Sp,, it suffices to
show that for any g € G(F) such that Ad(g~!)y € Lie I, and any z € J,(OF), we have
jy(@)gL = g1, or Ad(g~1)j,(z) € I. Let § = Ad(g~')7 € Lie I. Then by Lemma 2.4.2, the
canonical isomorphism js = Ad(g™") o j, : Jo(F) = G5(F) = Ad(g~')G,(F) extends
to J, — It over Op. Therefore, js sends J,(Op) to Gs(F) N1, ie., js(z) € I, or
Ad(g)jy (2) € L.

For general P, the morphism Sp, — Spp ., is surjective. Therefore, the fact that
Ja(OF) acts trivially on Sp,, implies that it also acts trivially on Spp . O

We may introduce an open subset Sprc(f7 consisting of those gG € Spg ., such

that Ad(g)~%(y) € g"&. The following result can be proved in a similar way as [26,
Lemme 3.3.1], using Lemma 2.4.1.

Lemma 5.2.6. The open subset Spga is a torsor under P,.

5.8. Homogeneous affine Springer fibers

Let a € ¢(F)}’ be homogeneous of slope v > 0, and let v = k(a) € g. We will study
the affine Springer fiber Spp ... We denote Spp ., by Spp ,. We call such affine Springer
fibers homogeneous. Applying the dimension formula (A.1) to this situation, we have

Corollary 5.3.1.
(1) The dimension of the homogeneous affine Springer fiber is given by
~ 1 i 1)
dim Spp , = §(V#¢ —r+ dim ) (5.7)
where 11 : p,, = W’ is the 0-reqular homomorphism with a regular eigenvalue U as

in Theorem 3.2.5. Recall r = rank H is the F-rank of G.
(2) If a is moreover elliptic, then

dim Spp , = (hev — 1)r/2. (5.8)

Here we recall hg is the twisted Cozeter number of (G,0).
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Proof. (1) By Lemma 3.1.3(3), we may choose 4/ in formula (A.1) to be Xt” for some
X € U's. Therefore val(a(y')) = v for any root o € ¢. Plugging this into (A.1) we get
(5.7). Note that the homomorphism II, is W-conjugate to II.

(2) By ellipticity, t'(#m) = 0. We also have #¢ = hyr in the twisted situation. 0O

5.83.2. Families of homogeneous affine Springer fibers

We may put homogeneous affine Springer fibers of a given slope in families. Recall
the Kostant section gives an embedding « : ¢(F), < g(F),, which can also be viewed
as a section of the GIT quotient of the L,-action on g(F'),. Let

P Spp,, = 9(F);

be the family of affine Springer fibers (in Flp) over g(F)!*. This morphism is clearly
L,-equivariant. Let

qpP,v - SpP,u - C(F)Ir/s

be the restriction of é\f)Pyu via the Kostant section x. For a € ¢(F);’, Spp , is simply the
fiber of g, at a.

5.8.8. Symmetry on homogeneous affine Springer fibers

Recall the one-dimensional torus G,(v) € G* := (G*4(F) x Gﬁgt’[e]) x G from
§3.3.1. The group (G*4(F) x Gﬁgt’[e]) x Gdil acts on Flp (where G*I(F) acts by left
translation). By (3.14), G, (v) fixes s(a), and therefore acts on Spp ,. In §3.3.7 we

rs

have defined a group ind-scheme P, over ¢(F);’ whose fibers are P, that acts on Spp ,

v
by Lemma 5.2.5. The torus G,,(v) also acts on P,. Therefore we have an action of

P, x Gy, (v) on Spp .

5.8.4. Fized points of the G,,(v)-action on the affine flag variety
Recall from §3.3.2 that v determines a parahoric subgroup P, C G(F) with Levi
factor L,. Let W, C W be the Weyl group of L, with respect to A.

Lemma 5.3.5. The fized points of the G,,(v)-action on Flp given in (3.13) are exactly
Lz L, wP /P, where w runs over representatives of all double cosets W,\W /Wp.

Proof. The affine Bruhat decomposition expresses Flp as a disjoint union of P, wP /P,
where w runs over the double coset WV\W/ Wp. Each P,wP can further be written as
P:m x L, wP /P, where Pj@ C P} = ker(P, — L,) is the product of finitely many
affine root subgroups. By the discussion in §3.3.2, the torus G,,(v) acts on affine root
subgroups in P} with positive weights and fixes L, pointwise. Therefore the G,, (v)-fixed
points contained in P, wP /P are exactly L,wP/P. 0O
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Remark 5.3.6. In the special case when vp" lies in the interior of an alcove, P, is an
Iwahori subgroup and L, = A. In this case, the G, (v)-fixed points on Flp are discrete.

5.4. Hessenberg paving

In [18], when e = 1, it is shown that for a class of elements v € g™ (F') called equival-
ued, the corresponding affine Springer fiber admits a paving by affine space bundles over
Hessenberg varieties that are smooth and projective, and in particular they have pure co-
homology. Homogeneous elements are equivalued, therefore they admit pavings by affine
space bundles over Hessenberg varieties. We shall indicate briefly how the Hessenberg
paving extends to the quasi-split case for homogeneous affine Springer fibers.

5.4.1. Hessenberg varieties

Let L be a reductive group over C and V be a linear representation of L. Let P C L
be a parabolic subgroup and V™ C V be a P-stable subspace. For v € V, we define the
Hessenberg variety Hess,(L/P,V 2 V) to be the following subvariety of the partial flag
variety L/P:

Hess,(L/P,V O VT)={gP € L/P: g 'v e VT}.

Observe that Staby (v) acts on Hess,(L/P,V D VT). As v varies in V, the Hessenberg
varieties form a projective family

Hess(L/P,V D V') = V.

Let P be a standard parahoric. For each @ € W, let g(F)%V = g(F), NAd(w)Lie P,
which is stable under the parabolic L, N Ad(w)P of L,. For v € g(F),, we may define
the Hessenberg variety

Hessgﬁ := Hess, (L, /L, N Ad(w)P, g(F), D g(F)gl,)

as a closed subvariety of the partial flag variety f@g,y :=1L,/L,NAd(w)P of L,. It only

depends on the class of w in W,,\W/ Wp. As v varies in g(F'), the Hessenberg varieties
form a projective family

— W

i, : Hessp , — g(F),. (5.9)
Similarly, let
ﬂg’l, : Hessg’u —¢(F),

be the pullback of the map (5.9) via the Kostant section k.
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When P =1, we often drop the P from subscripts. For v € g(F),, Hessgﬁ is just the
fiber of %g)u; for a € ¢(F),, we shall denote the fiber of 7 over a by Hessp ,. In the

case P =1, Hessf is a closed subvariety of the flag variety f¢% of L,,.
Theorem 5.4.2 (Goresky—-Kottwitz—MacPherson). Let v > 0 be an admissible slope.
(1) The G, (v)-fized points of é\f)p’,/ is the disjoint union

T Gm(v) — W
Spey, = L] Hessp,[oryy
BEW, \W /Wp
2) For a € ¢(F)}, the homogeneous affine Springer fiber Sp admits a pavement
v P.a
by intersecting with P, -orbits indexed by w € W,\W /Wp, and each intersection
(P,wP/P) N Spp , is an affine space bundle over Hessp , , which contracts to

Hessp ,, , under the G, (v)-action.

(3) The projective morphism %E{N’V : IJIE_S/S;V — g(F), is smooth over g(F)
(4) The cohomology of Spp , (a € ¢(F);}) is pure.

rs
v

Proof. (1) and (2) follows from Lemma 5.3.5. (3) By definition, Ijl—égsgm is the zero loci of
L,NAd(@)P N
the family of sections of the vector bundle V := L, X g(F),/g(F)¥ give by the

elements in gy = g(F),. For v € g, the corresponding section is transversal to the zero
section of the vector bundle V and therefore 7% is proper and smooth over g(F). For
details see [18, §2.5]. The smoothness of the Hessenberg varieties in question is proved as
in [18], using the fact that (1) is a “good vector” in gz under the L,-action. (4) follows
from (1) and (2). O

Example 5.4.3. Suppose vp” lies in the interior of an alcove. Then Spp - admits a pave-
ment by affine spaces (by intersecting with Schubert cells in Flp). In particular, if the
denominator of v is equal to the f-twisted Coxeter number hgy, then Spp , admits a
pavement by affine spaces.

Next we draw some consequences from the existence of a Hessenberg paving on ho-
mogeneous affine Springer fibers.

Corollary 5.4.4. Let v > 0 be elliptic and a € ¢(F)'F. Then the restriction map

H: /Spp,) — €  H(Hessp,) @ Qle] (5.10)
GEW,\W /Wp

is an isomorphism after inverting € (or equivalently specializing € to 1). Note that only
finitely many terms on the right hand side are nonzero, by the ellipticity of ~y.
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Proof. Since a is elliptic, Spp , is of finite type by Lemma 5.2.3. Since the cohomol-
ogy of Spp , is pure by Theorem 5.4.2(4), it is G,,(v)-equivariantly formal, hence the
localization theorem applies. O

Corollary 5.4.5. Let v > 0 be an admissible slope.

(1) The complexes 77314*@ and 71'%7”7*@, when restricted to g(F): and ¢(F)® respec-
tively, are direct sums of shifted semisimple local systems.
(2) Suppose v is elliptic. Then the complexes gp . +Q and gp,, Q are direct sums of

shifted semisimple local systems.

Proof. To save notation, we only prove the case P =1.

(1) By Theorem 5.4.2(3), %}f*@b(p)rys is a direct sum of shifted local systems. By
proper base change, ﬂgj* is the pullback of %E*Q to ¢(F),, hence also a direct sum of
shifted local systems. The semisimplicity of these local systems follows from the decom-
position theorem.

(2) We give the argument for ¢, .Q, and the argument for g, .Q is the same. The em-
bedding LigHess? < Sp, induces a morphism ¢, ,Q — 72.Qle(py= in D&m(u)(c(F)f,s).
Note that the G,, (v)-action on ¢(F), is trivial. Further push-forward to D?(c¢(F):¥) and
taking cohomology sheaves we obtain ¢* : @iRé}m(V)quy*Q — Q] ® (@iRiﬂf*Qh(F)er)
between sheaves in Q[e]-modules on ¢(F)T. By Corollary 5.4.4, .* becomes an isomor-
phism after inverting e. By (1), both Riﬂ’fj*(@h( Fyrs are local systems, therefore so are
Ré;m(y)q%*@. By the purity of the fibers of g, from Theorem 5.4.2(3), @inGm(V)qV’*Q is
non-canonically isomorphic to Q[e] ® (#;Rq, .Q), therefore Rg, .Q is also a local sys-
tem. Semisimplicity of local systems again follows from the decomposition theorem. O

5.4.6. Symmetries on the cohomology of Hessenberg varieties

Let a € ¢(F)IF. We consider two symmetries on Hi(Hesslw;’a).

First, recall that S, (resp. S,) is the stabilizer of v = x(a) under L, (resp. L,). Since
S, acts on Hess%a7 m0(S,) acts on Hi(Hessg’a).

On the other hand, let

B, :=m(c(F), a).
Here 7 means the topological fundamental group. The notation suggests that it is a
braid group. In fact, it is the braid group attached to the little Weyl group WH(#m)
introduced in §3.3.6. By Lemma 5.4.5(1), Hi(Hessga) is the stalk of a local system on
¢(F). Therefore Hi(Hessg’,a) also carries an action of B,.

Now we combine the two actions. By the description of S given in §3.3.8, the group
of connected components ﬂo(ga) also form a local system of finite abelian groups over
¢(F)™s, which we denote by 7 (S/¢(F)™). In particular, mo(S,) carries an action of B,.
We form the semidirect product Wo(ga) X B, using this action. Again by the description
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of S in §3.3.8, we may identify §a with TH(#m) and the action of B, on 7T0(§a) factors
through its quotient B, — W1 (#m) which acts on TH#m) . Similarly, by the description
of S given in §3.3.8, m(S/c(F)) = ker(mo(S/c(F)X) — Q) is also a local system over
¢(F)', hence its fiber 7 (.S,,) carries an action of B,, and we have a subgroup 7 (S,) % B,

of 7T0(Sa) X Ba.
We summarize the above discussion as

Lemma 5.4.7. Let For a € ¢(F)™.

(1) For eachw € WU\W/WP, there is a natural action of mo(S,) X B, on the cohomology
H*(Hessp ).
(2) Ifv > 0 is elliptic, then ﬂo(ga) x B, = S, x B, also naturally acts on He=1(Spp ,)-

Proof. (1) follows from the discussion in §5.4.6.

(2) When v is elliptic, S, is a finite group hence (S, ) = S,. Since S, acts on SPp 4
it also acts on He=1(Spp ,). On the other hand, by Corollary 5.4.4, He=1(Spp ,) is the
direct sum of Hezl(Hessgya) for w € W, \W /Wp. Therefore B, acts on He=1(Spp4) by
acting on each direct summand H6:1(Hessg’a). It is easy to see that they together give

an action of S, x B, on He=1(Spp,). O
5.5. Cohomology of homogeneous affine Springer fibers

In this subsection we will give a combinatorial formula for computing part of the
cohomology of homogeneous affine Springer fibers. We will use the notation introduced
in §1.2.3 on G, (v)-equivariant cohomology with the equivariant parameter e specialized
to 1.

Theorem 5.5.1. Let v > 0 be a §-admissible slope and a € ¢(F)5.

(1) Let fﬁgy be the partial flag variety L, /L, N Ad(w)P of L,. The image of the re-
striction map

H*(f5,) — H* (Hessp ,) (5.11)

is exactly the mo(S,) X Bg-invariant part of the target.
(2) Suppose further that v is elliptic, then the image of the restriction map

Hezl(Flp) — Hezl(SpP’a)
is exactly the S, X Bg-invariant part of the target.

Proof. Again we only prove the P =T case to save notation. (2) is a consequence of (1)
by Corollary 5.4.4. Therefore it suffices to prove (1).
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<.

(1) By the decomposition theorem, we may fix a decomposition %E*(@ = @, K
where K; is a shifted simple perverse sheaf. Also note that H*(fe0) = H* (ﬁégsj,u) =

H*(g(F),, ®K;) since the family I-/Iggszj contracts to its central fiber. We may rewrite
(5.11) as

@H*(Q(F)l,, K;) — @ Ki o(a)- (5.12)

By Corollary 5.4.5, each K;[q(p): is a shifted local system. Therefore the restriction map
H*(g(F)y, Ki) — K; x(a) is nonzero if and only if K;|q(pys is a shifted constant sheaf, in
which case it is an isomorphism.
Restricting to the Kostant section, K; gives rise to a shifted local system K on ¢(F)®
v v

equipped with an action of the group scheme mo(S/c(F')i) over ¢(F)}*, whose stalk at
a carries an action of mo(S,) % B,. The decomposition H*(Hess,,,) = @©;K;

i.a Tespects
the m(S,) x By-action. The representation K7 , is trivial if and only if K is a shifted
constant sheaf on ¢(F);’ with the trivial mo(S/c(F);’)-action, if and only if Ki|gp):s is
a shifted constant sheaf L, -equivariantly because [¢(F)5/S] = [g(F)¥/L,]. Since L, is
connected, there is only one L,-equivariant structure on the constant sheaf on g(F)r,
hence K , is trivial as a mo(Sa) X By-module if and only if K;|q(pyrs is a shifted constant
sheaf. Combined with the argument in the previous paragraph, we see that the image of
(5.12) can be identified with the sum of those K , which are trivial mo(S,) % B,-modules,

i.e., the m(S,) X Bg-invariants of H* (Hessﬁa). O

Remark 5.5.2. The finite abelian group {2 acts on F1 and permutes its connected compo-
nents simply transitively. Let F1° be the neutral component of F1. Then Theorem 5.5.1(2)
implies that when v > 0 is elliptic, there is a natural surjective map

Heo1(F13) & Heoy (Flp)® — He_y (Spp )™ (5% B

In fact, this follows from the exact sequence in Lemma 3.3.5(4) and taking Q-invariants
to the statement of Theorem 5.5.1(2).

In Section 9 we shall compute explicitly the action of S, x B, on H*(Hess?) in all
the cases where GG has rank two and v elliptic. In particular, we will see that the action
of the braid group B, does not necessarily factor through the little Weyl group WH#m),
The examples also show that the part of Hg, (V)(Spa)sa that is not invariant under B,
may contain odd degree classes.

Example 5.5.3. We consider the case G = SL3 (e = 1) and v = d/3 for a positive
integer d prime to 3. The regular homomorphism pz — W = S3 contains the Coxeter
elements in the image, and L, = T. The space g(F'), is spanned by the affine root spaces

of {a1,a2,—a3 — as + dd}. The open subset g(F):® consists of those v with nonzero
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component in each of the three affine root spaces. For a € ¢(F)%, the variety Hessa@ is
nonempty if and only if g(F'), C Ad(w)Lie I, in which case it is a point. Clearly S, x B,
acts trivially on H* (Hess’f). The condition that HessaqD is nonempty is equivalent to the
condition that the alcove of Ad(w)I is contained in the triangle defined by

(aq,x) > 0,{ag,z) >0, {01 + ag,z) < d. (5.13)
There are d? alcoves in this area. We conclude that
dim H*(Sp,,) = dim H*(Sp,, )%+ * P+ = d2.

Below we will define the analog of the triangle (5.13) in general, and see that the homo-
geneity of dim H*(Sp,) in d is a general phenomenon.

5.5.4. Clans

In notations of the §3.3.2, the building 2 contains the point vpY. The walls of the
apartment 2l that pass through vp¥ are the reflection hyperplanes of the Weyl group
W, C W of the group L, (the Levi factor of the parahoric P, corresponding to the facet
containing vp"), and these correspond to the affine roots « such that a(vp¥) = 0.

The affine roots that appear in the graded piece g(F'), are those satisfying the equation
a(vpY) = v. The reflection hyperplanes of these affine roots are called v-walls, and they
are oriented with a normal vector pointing to vpV.

In [35] connected components of 2 — | J(v-walls) are called clans. A clan is a union of
alcoves WA where A is the fundamental alcove. Fach alcove wA contributes a Hessenberg
variety Hess? = Hess, (L, /L, N Ad(@)I, g(F), D g(F)?). This variety only depends on
the coset of @ in W, \W. Thus we only need to study clans in the dominant chamber of
W, which is a cone with the vertex vp".

Lemma 5.5.5. If the alcoves WA and w'A are in the same clan, then there is canonical
isomorphism Hessg’ = Hessf/ over g(F),. Moreover, if Hessg’ is nonempty for some
a € ¢(F), then its codimension in the partial flag variety f€° is equal to the number of
v-walls that separate the alcove WA from vp.

Proof. Indeed, we have identities L, N Ad(@)I = L, N Ad(@')I and g(F)? = g(F)?" by

v

identifying the affine root spaces appearing on both sides of the equalities.
_ L,NAd(@)T
Since Hess, is the zero locus of a generic section of the vector bundle L, X
(g(F),/g(F)?), we have dim Hess” = dim(L, /L, N Ad(w)I) — dim(g(F), /g(F)?). Now
observe that g(F),/g(F)? is the direct sum of affine roots spaces of those a such that

a(vpY) = v and a(wA®) < 0 (A° is the interior of A). O

Remark 5.5.6. The expected dimension of the Hessf can be calculated by the above
lemma. If the expected dimension is negative then the corresponding Hessenberg variety
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is empty. The converse is not true: there are w such that dim(L,/L, N Ad(w)I) >
dim(g(F),/g(F)?) yet Hess is still empty for all a € ¢(F)™

Corollary 5.5.7. For v > 0 elliptic and a € ¢(F)®, if Hess is monempty, then WA lies
in a bounded clan.

Proof. Since Sp, is of finite type when ~ is elliptic by Lemma 5.2.3, there can be only
finitely many nonzero terms on the right side of (5.10). If WA lay in an unbounded clan,
the same Hess! would be appear infinitely many times on the right side of (5.10) by
Lemma 5.5.5, which is a contradiction. O

The following proposition reduces the dimension calculation to the case v = 1/m.

Proposition 5.5.8. (See also [35, Proposition 3.4.1, Corollary 3.4.2].) Let v =d;/mq > 0
be an elliptic slope in lowest terms. For a € ¢(F)¥ and b € (F)?®

- we have an

1/mq?
isomorphism S, X B, = S, X By, and an isomorphism

He=1(Sp,) = Hee1 (Spy) ®4 (5.14)

compatible with the actions of §a X B, = §b X By. Here r is the F-rank of the G. In
particular,

dim H—; (Sp, )P« = d} dim H.—, (Sp,)***P>. (5.15)

Proof. Let v/ = 1/m;. Recall from Lemma 3.3.4 we have an isomorphism of pairs
(L,,9(F),) = (L, g(F),/). This gives an isomorphism ¢(F);7 = ¢(F'); together with an
1somorph1sm between their stabilizer group schemes S. Therefore we get an isomorphism
S X B, = Sb X By, well-defined up to conjugation by either B, or By.

The apartment 2 together with v-walls is the dj-fold scale (with the center at the
origin corresponding to the special parahoric G) of the same apartment 2 with v/-walls.
In particular we have a bijection between the v-clans and the v/-clans.

~

For wA in a v-clan and @A in the corresponding v’-clan, the isomorphism g(F), =
g(F),, in Lemma 3.3.4 restricts to an isomorphism g(F)¥ = g(F)E’,I. Also the iso-
morphism L, = L,/ there induces an isomorphism f¢%? = fﬁf/. Therefore we have a
L, & Ly-equivariant isomorphism Hess? Hessf,/ over g(F), = g(F), . This induces
an isomorphism of L, & L,-equivariant local systems R'7%, Q| ()= = Ri%,’:%,,*@ o(F)s -
Taking stalks at a and b we get a non-canonical isomorphism H*(Hessf) = H* (Hessf)
equivariant under S, x B, = S, X By.

Applying Corollary 5.4.4 to Sp, and Spy, the contribution of Hessenberg varieties to
H.-1(Sp,) in a v-clan is d" times the contribution of Hessenberg varieties to H.—1(Spy)
in a /-clan because the ratio between sizes of the clans is df. The isomorphism (5.14)
follows. O
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5.5.9. Cohomology of Hessenberg varieties

When v is elliptic, the equality (5.15) reduced the calculation of dim H.—(Sp,,)*Ba
to the case where the slope is v = 1/my (my is a regular elliptic number). Corol-
lary 5.4.4 reduces the calculation to the calculation of dim H*(Hess®)S**B« for @ in
various 1/mq-clans. We will give a formula for this dimension.

It is well-known that the cohomology ring of the flag variety f¢% of L, is

Hw, = Sym(a*)/(Sym(a*)"¥")

where (Sym(a*)_‘f") denotes the ideal generated by the positive degree W, -invariants on
Sym(a*). Let

AT = II @ € Sym(a*)

a(vpV)=v,w—1a<0

where o € ®,¢ runs over the affine roots satisfying the conditions specified under the
product symbol, and @ € ® denote the finite part of a.

More generally, fix a standard parahoric subgroup P C G and let Wp C W,g be the
Weyl group of its Levi factor. The group L, N Ad(w)Lie P is a parabolic subgroup of
L, that contains the maximal torus A. Let W“’ C W, be the Weyl group of the Levi
factor of L, N Ad(w)Lie P. Note that W;;“I = {1} for all w. The cohomology ring of the

partial flag variety f¢3 » = L,/(L, N Ad(w)Lie P) of L, can be identified with ”HWV
For @ € W, we define )\P’V € Sym(a*) to be the product [][@ where a runs over affine
roots of such that a(vp¥) = v and w'a € @5 — ®(Lp) (where ®(Lp) C Puq is the
root system of Lp with respect to A). Such affine roots are permuted by ng,w so that
%, € Sym(a )WIQV, and we can talk about the image of iéi , in Hgyg”

Theorem 5.5.10. Let P be a standard parahoric subgroup of G, and v > 0 be a
0-admissible slope (not necessarily elliptic), and let a € ¢(F)i®

(1) The restriction map H*(fﬁg,y) = HVVKfU — H*(Hessg,a)”O(Sa)xB“ induces an iso-

morphism of Q-algebras

H (HessZ )™ (597 Bs — 2P /Ann (AT, )

u)

where Ann(A\p ) C H " is the ideal annihilating )\g’y
(2) Ifv is ellzptzc, then there 1s a Q-algebra isomorphism

Heoi(Spp )57 = €D HyP /Am(AE,).

BEW,\W /Wp
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Here the sum is over double coset representatives (right multiplication by Wp does
not change the summand but left multiplication by W,, changes it).
(3) If v = di/my in lowest terms and is elliptic, then

. Sux B, . ] WE 1 /m
dim He_1 (Spp ) %" 5o = df > dim(AR 1y, - Hy' /). (5.16)
GEW )/, \W /Wp
. w _ W@
Here \g 1/my -HWT/’I/’“ denotes the image of multiplication by AJ 1/my 0T ’}-[Wf/’l/ml
) my ’ mi

L,NAd(@)Lic P _
Proof. (1) Let £ = L, X (9(F),/a(F)p ) be the vector bundle over YV =

ffg’y. Let n be its rank and ¢, (€) € HQ"(fZg’V) be its top Chern class. The Hessenberg
variety Z = Hessg,u is the zero locus of a section of £ which is transversal to the
zero section. Let ¢ : Z < Y be the closed embedding. Then we have an isomorphism
i'Q[2n] = Q. The composition

Qv 2 i.Qz S ii'Qz[2n] 25 Qy[2n]

is given by the cup product with ¢, (€). Moreover, the natural maps « and [ are Verdier
dual to each other. Taking cohomology, and taking mo(S,) X B,-invariants we get

k
Uen(€) : HH(Y) 255 HF(Z)mo(S)xBa 22y ghean(y), (5.17)

where 8% and o are adjoints of each other under Poincaré duality. Since o*

is surjective
by Theorem 5.5.1(1), ¥ must be injective by duality. Since the composition of the maps

in (5.17) is the cup product with ¢, (€), we conclude that
H*(Z)70(5)*Be = H*(Y') /Ann(c, (€)) = Im(c, (€) UH*(Y)) € H2"(Y).

To identify ¢, (£) with AB ,, we first consider the case P = I. In this case £ is a
successive extension of L,-equivariant line bundles £(@) on f¢¥ attached to characters
L, N Ad(@)Lie T - A 2 G,, where @ runs over the weights of A on g(F),/a(F)?
(counted with multiplicities). The nonzero weights of A on g(F),/g(F)¥ are given by
the finite parts of affine roots a such that a(vp¥) = v and w1 < 0. Therefore ¢, () =
[Tei(£(@)) corresponds to the image of AY = [[@ € Sym(a*) in the quotient Hyy, .

For general P, we pullback € to a vector bundle £ the flag variety f¢% and use the
above argument to show that c,(£’) is the image of AR, in Hy,. Since the pullback
map H*(f@g,y) — H*(f£Y) is injective, ¢, (&) is also the image of /\g)y.

(2) follows from (1) and Corollary 5.4.4.

(3) follows from (2) and Proposition 5.5.8, together with the fact that Hgfu”

. ~ ww
w ~ W . P,1/mq
Ann( P,u) ~ /\P’l/m1 HWl/ml . O
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By Theorem 8.2.3 and Corollary 8.2.4 that we will prove later, the formula (5.16)
(for P =1, and at least for G split) also gives the dimension of the irreducible spherical
representations of the graded and rational Cherednik algebras with central charge v.

6. Homogeneous Hitchin fibers

In this section, we study the geometric properties of global analogs of homogeneous
affine Springer fibers, namely homogeneous Hitchin fibers. The connection between affine
Springer fibers and Hitchin fibers was discovered by B.C. Ngo [25]. We will need a
generalization of Hitchin moduli stacks, namely we need to consider the moduli stack of
Higgs bundles over an orbifold curve (the weighted projective line) with structure group
a quasi-split group scheme over the curve.

6.1. Weighted projective line

Fix a natural number m such that e|m.

Let G,, act on A% by weights (m, 1). Let X be the quotient stack [(A2—{(0,0)})/G].
This is an orbifold (Deligne-Mumford stack) with coarse moduli space a weighted pro-
jective line P(m,1). We denote a point in X by its weighted homogeneous coordinates
[€,7m], i.e., by exhibiting a preimage of it in A% — {(0,0)}. The point 0 = [0,1] € X
does not have nontrivial automorphisms the point oo = [1,0] € X has automorphism
group fim,.

Let X’ be the similar quotient with weights (m/e,1). We denote the weighted ho-
mogeneous coordinates of X’ by [¢',n/]. Let # : X’ — X be the natural morphism
€', 7] — [£¢,n], which is a branched pe-cover. The only branch point is 0, whose
preimage consists only one point 0’ € X’. The preimage of co in X’ is denoted by oo/,
which has automorphism i, /e-

The Picard group of X is a free abelian group which we identify with %Z. This defines
a degree map

deg : Pic(X) & —7Z,

3=

whose inverse is denoted by v — Ox(v). For deg L > 0, the global sections of £ is
identified with C[£, 7], deg £, homogeneous polynomials in &, n of total weight m deg L.

Each line bundle £ on X also admits a trivialization on U = X — {oo}: it is given by

m deg L

the rational section 7 of £ which is non-vanishing on U. Such a trivialization is

unique up to a scalar.
Similarly, the Picard group of X’ is identified with #
edeg L.

The one-dimensional torus GI°* acts on X via GI' 5 ¢ : [&,n] — [t&,n]. We will fix a

m
Got-equivariant structure on each line bundles £ on X such that the action of egls

7Z and we have degn*L =
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on the stalk £(0) is trivial. Concretely, if degL > 0, the G.o*-action on I'(X, L) =
Cl&, Nl deg £ is given by Gir?t 3 s: f(&§m) = f(s&m). R R

For a closed point z € X(C) — {oo} (which is not stacky), we use O, and K, to
denote the completed local ring and its field of fractions at x. The notation IA(OO still
makes sense, and we often identify with F'.

The orbifold X’ contains an open subscheme U’ = X’ —{oco’} = Al. On the other hand
V' = X’—{0'} is isomorphic to V’/um/e where V’/ 2 Al. Denote the preimage of oo’ in %
by oc’. Similarly, the orbifold X is covered by U = X — {oo} and V = X — {0} = V' /jupn.

To summarize, we have a diagram

Vi D!
l/“m/e J/
0'¢ U'c X' % 200"/ tmse
N
0¢ UcC X oV 00/ tim

The dualizing sheaf wy is obtained by gluing the dualizing sheaves wy and wy, the
latter being the descent of the dualizing sheaf wy;,. We may identify wx with the graded
C[¢, n]-submodule M of C[¢, n]d¢ & C[¢, n]dn given by the kernel of the map fd¢+ gdn —
m&f + ng. Therefore M is the free C[, n]-module generated by nd{ — mé&dn. Hence
degwyx = —1/m — 1.

6.2. The moduli of G-torsors

6.2.1. The group scheme G
We define a group scheme G over X by gluing Gy and Gy. The group scheme Gy is
defined as the fiberwise neutral component of (Resg,(G x U'))#e  where p, acts on both

U’ and on G via  composed with the inverse of Out(G). The group scheme Gy = G v ,
where p. acts on G via 6§ and on V' via multiplication on coordinates. Both Gy |yny and
Gv|unv are canonically isomorphic to the group scheme (Resg/mm‘y,((@ x (U NV)))He,
therefore we can glue Gy and Gy together to get a group scheme G over X. Upon choosing
an isomorphism @0 > Op, we may identify g|spec 5, With G, as group schemes over Op.

Alternatively, we may view G as glued from G x V and G (viewed as a group scheme
over Op = @0) along Spec I?O. This point of view allows us to define a group scheme Gp
for any parahoric P C G(F). In fact, Gp is the group scheme over X defined by gluing
G x V and P (viewed as a group scheme over (50 = Op) along Spec I/(\'O.

The Lie algebra Lie G is the vector bundle over X obtained by gluing g (over @0 =Op)

and g XV We may similarly define Lie Gp.
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We may also define a global version cx of ¢. This is obtained by gluing ¢ (over

~ He ~
Spec Oy = Spec OF) and ¢y :=c¢ x V' together.

6.2.2. The moduli of G-torsors over X

A G-torsor over X is the following data (Ey, &y, 7). Here &y is a Gy-torsor over U;
Evy is a py-equivariant G-torsor over 1% (the pm-action on G is given by the natural
surjection i, — pe followed by 6 and the inversion of Out(G)). Note that Ev|yny
descends to a Gyny-torsor Stbmv over UNV. Finally 7 is an isomorphism of Gy -torsors
T €U|UOV :> EIbJﬁV'

In particular, a vector bundle V over X is the data (Vy, Vy,7) where Vy is a vector
bundle over U, Vy is a py,,-equivariant vector bundle on % (which descends to V[bmv
over UNV) and 7 is an isomorphism Vy|yny — V(bmv.

Alternatively, a G-torsor is also a triple (&, v, 7) where & is a G-torsor over Spec (50,
Ev is a py-equivariant G-torsor over V' and 7 is an isomorphism between the two over
Spec [A(O.

For a parahoric P C G(F), we may define the notion of a G-torsor over X with P-level
structure at 0: this simply means a Gp-torsor over X. Concretely, it is a triple (£g, v, T)
where & is a P-torsor over Spec (50 and the rest of the data is the same as in the triple
for a G-torsor.

We denote by Bung the moduli stack of G-torsors over X. For a parahoric P C G(F),
let Bunp denote the moduli stack of G-torsor over X with P-level structure at 0; in
particular, Bung = Bung.

6.3. The Hitchin moduli stack
Fix a line bundle £ on X. Let £’ = n*L.

6.3.1. G-Higgs bundles and their moduli
We define a G-Higgs bundle over X walued in L to be a pair (€,¢), where & =
(Eu,Ev, 1) is a G-torsor over X and ¢ is a global section of the vector bundle Ad(€) ® £

over X. Here Ad(§) = &€ >g< Lie G is the adjoint bundle of €. Let M™Mi® be the moduli
stack of G-Higgs bundles over X valued in L.

For a parahoric subgroup P C G(F'), we may define the notion of a G-Higgs bundle
valued in £ with P-level structure at 0. This is a pair (£, ) where £ is a Gp-torsor

over X, and ¢ € I'(X,Adp () ® L), where Adp(E) =€ g; Lie Gp is the adjoint vector
bundle for the Gp-torsor £. The moduli stack of G-Higgs bundles valued in £ with P-level
structure at 0 is denoted by Mp. In particular, for P = G, we have MM = Mqg. When
P =1, we often omit the subscript I and write My as M.

We may also replace the triple (X,G, L) by (X',G x X', L), and define the moduli
stack Mp, for £L'-valued G-Higgs bundles on X’ with P’-structure at 0. Here P’ can be
any parahoric subgroup of G(F,.). Suppose we choose P’ to be a standard parahoric of
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G(F.) that is invariant under the action of y. on G(F,), then it corresponds to a unique
standard parahoric P C G(F). Moreover, Mp, carries a natural p.-action. We have a

natural morphism Mp — Mps.

6.3.2. Hitchin base
Recall we have defined a global space of invariant polynomials ¢x over X. The weighted

action of Gf,il on ¢ induces an action on c¢x. We can then twist ¢x by £ to obtain
dil

ce = p(L) X x cx. Here p(—) is the total space of the G,,-torsor associated to a
line bundle. The Hitchin base A for the triple (X, G, £) is the scheme of sections of the
fibration ¢, — X.

We may also understand A using the curve X’ and global sections of £ on it. Let A’
be the Hitchin base for the triple (X', G, £’). The fundamental invariants fi,--- , f,. give
an isomorphism

T

A= @HO(X/7£/di) = @C[ﬁl,ﬁ]dim deg L+ (61)
i=1

=1

The fibration czr — X' is pe-equivariant, hence p. acts on the space of sections, i.e., A’.
The Hitchin base A can be identified with the p.-fixed subscheme of A’, consisting of
lie-equivariant sections a : X’ — c¢,/. Using the description in (6.1) and (2.1), we have

A= @ flsic[& n]m(di deg L—e;/e)*

i=1

6.3.3. The cameral curve

Let AY C A be the locus where a : X — ¢, generically lies in the regular semisimple
locus. Fix an element a € A", we can define a branched W’-cover 7, : X! — X called
the cameral curve. In fact, a determines a p.-equivariant section o’ : X’ — ¢,. Then X/
is defined as the Cartesian product

X! ——= Ty (6.2)

<,

a
X/ — Cpr

The morphism 7, : X/, — X is the composition wox’,. The p.-equivariance of o’ allows us

to define a W-action on X/, extending the W-action coming from the Cartesian diagram
(6.2), and 7, is a branched W’-cover.

6.3.4. The elliptic locus
For a € A", the restriction of the cameral curve to the generic point of X gives a
homomorphism TI,, : Gal(K/K) — W’ defined up to conjugacy, where K is the function
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field of X. The point a is called elliptic if the II,(Gal(K /K))-invariants on t is zero. The
elliptic locus of .AY forms an open subscheme A°!.

6.3.5. The Hitchin fibration
For each parahoric P of G(F), we can define the Hitchin fibration

fp : MP — A.
To define this, we first define the Hitchin fibration fp, : Mp, — A’ where the level
P’ is the pe-invariant parahoric of G(F.) corresponding to P. For (&/,¢') € Mp,,
[ is the collection of invariants f;(¢) € T'(X', £'%) for 4 = 1,--- ,r. This morphism is

pe-equivariant. Therefore we can define fp as the composition

fo s Mp — Mg T2 ame — 4,
We denote the restriction of fp to AY by fp.

6.3.6. Picard stack action

For a € A(C), we can define the regular centralizer group scheme J, over X. In fact,
we define J, v over V as the ji,,-descent from the regular centralizer group scheme jfl
over V' (with respect to the section V/ — V/ — ¢,/). In Section 2.4, the local definition
of the regular centralizer allows to define J, over Spec 60- Finally we glue J, v and
Ja,spcc B0 together along Spec IA(O.

Alternatively, we may define a universal version Jx — cx as follows. This is glued

~ e ~
from Jy over ¢ (over Spec Op) and J x V' along Spec Ky, here J is the universal regular
Gdil

centralizer over ¢. Let Jz = Jx X x p(L), then we have J; — ¢,. For a € A(C) viewed
as a section X — ¢,, J, may also be defined using the Cartesian diagram

Jo — Jz (6.3)

-

XH-C£

Having defined J,, we define P, to be the moduli stack of J,-torsors over X. Here,
a J,-torsor means a triple (QU,QV, 7) where Qp is a Jg|y-torsor over U; Qy is a
m-equivariant J -torsor over V giving rise to a J, |Um/ torsor QUnV over U NV via
descent; 7 is an isomorphism of J,|yny-torsors Qu|uay — QUmV

We also have a local analog of P,. For z € X — {0}, we define P, , to be the moduli
space of J,-torsors over Spec (9 together with a trivialization over Spec K This is a
group ind-scheme over C. We have P, ,(C) = Ju( K,)/Ja(Oy).

For x = 0, let ag be the restriction of a to Spec (50 = Spec Op (fixing a trivialization
of L over Spec (50). Then P, is the same as the P,; defined in Section 2.4.
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For = o0, P, o classifies p,,-equivariant j[l—torsors over the formal neighborhood
Spec O/ of 50’ together with a p-invariant trivialization over Spec K. Identifying
Os with OF,, (in a p,-equivariant way), we have P,.oo = (Jo(F)/Ja(OF,, ). Note
that it is important that we take invariants after taking quotients.

Many properties of the usual Hitchin moduli stacks generalize to the orbifold setting.

Proposition 6.3.7. Suppose deg L > 0. Then

(1) The moduli stack My = Mp| 4o is a smooth Artin stack. Its restriction over A°!
is a Deligne—Mumford stack.
(2) The morphism fg': Mp| gen — A is proper.

Proof. The give the proofs for the Hitchin moduli stack M = My without Iwahori level
structure. The general case is similar.
(1) A C-point of M is a pair (£, ) where £ is a Gr-torsor and ¢ € I'(X, Adi(£) ® £).

The tangent space of M at (€,¢p) is H(X,K) where K is the two term complex

Ady(€) tod, Adp(€) ® L placed in degrees —1 and 0. By a variant of Biswas and

Ramanan [7], the obstruction to infinitesimal deformation of the Higgs bundle (€, ¢) lies
in H' (X, K). By duality, H}(X, K) is dual to H*(X, K" ® wy), where KV is the two term

complex Ady(£) @ L1 e, ——— Ady(€), placed in degrees 0 and 1. Let K’ = H(KY @ L)

be the kernel of Ady(€) 2% Adg(€) @ £. Then HO(X,KY @ w) = HOK' @ £ @ w).
The argument of [26, 4.11.2] shows that K’ is a subsheaf of Lie J2, where a = f(&, )
(argue over U and V separately).

We can still describe Lie J? using the cameral curve (see §6.3.3) as for usual Hitchin
fibers. Let X be the normalization of the cameral curve X!, and let 7, : X” — X
be the projection. Then Lie J = WZy*(OXéb @ )W'. Therefore HO(X,KY @ wx) <
HO(X,Lie J! @ L' @wx) = HOU(X”, t@m2* (L' @wx))V'. Since deg(L™! ® wx) <
degwyx < 0, we have HY(X” L ® n2*(L~! ® wx)) = 0, hence the vanishing of the ob-
struction.

We have Aut(€,¢) c HO(X,J?) = HO(X” T)"'. Choose a component X of X!
whose stabilizer we denote by W!. Then W is the image of II,, : Gal(K /K) — W’ up to
conjugacy. We have HO(X” T)"' = TWi. When a is elliptic, Wi = ¢la(Gal(K/K)) — ¢,
hence T%= is finite, and therefore Aut(&, o) is finite (and certainly reduced), and M| 4en
is Deligne-Mumford.

(2) Let X’ = P! and let p : X’ — X be the morphism given by [¢,7] — [€™,17].
Any G-Higgs bundle on X with P-level structure at 0 pullbacks to a G-Higgs bundle
on X’ with certain Q-level structure at 0’ = [0,1] € X’ (where Q C G(F) is a para-
horic stable under . whose p-invariants give P up to a finite index), equipped with a
Im-equivariant structure. Note that pu,, also acts on G and Q by pinned automorphisms
via its quotient .. Let MQ be the moduli stack of G-Higgs bundles (twisted by the line
bundle p*L) over X' with a Q-levels structure at 0’. There is an action of b ON ./\/lQ
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The pullback map gives a morphism Mp — Mé compatible with the isomorphism
Hitchin bases A = A'wm (where A’ is the Hitchin base for G-Higgs bundles over X’
with respect to the line bundle p*£). Restricting the p,,-equivariant structure of a point
(&,p) € MQ to 0/, we get a cohomology class [€]o € H'(pm, Lq) (where Lq is the
reductive quotient of Q on which p,, acts via the quotient p.). A local calculation of
shows that (£, ¢) comes from a Higgs bundle on X with P-level structure via pullback if
and only if [€] is the trivial class. Therefore Mp can be identified with the fiber of the
trivial class under the map ./Wg” — H'(tm, Lq), hence a closed substack of ./Wg" For
the morphism leém| aen — AL one can adapt the argument in [16, 11.4] to show it is

en, it is also proper over A, O

proper. Because Mp| 4en is a closed substack of M’é
6.4. Homogeneous points in the Hitchin base

The GLo¥“ action on X’ induces an action on the parabolic Hitchin stack M’ =
M(X',G, L") as well as the Hitchin base A’. Recall £ is equipped with the Gr*-equivar-
iant structure, which induces a Gfﬁt’[e]—equivariant structure on £’. For any integer n,
we may identify HO(X’, £/®") with C[¢, n]nm deg £, with t € Gi¥ acting as f(&/,n) >
f(tE,n).

On the other hand, let G&i! be the one-dimensional torus which acts on M’ by dilation
of the Higgs fields, and it also acts on A’ with weights dy,--- ,d.

Similarly, there is an action of Gl G4 on both M and A such that the Hitchin
fibration f: M — Ais Grotlel x Gl equivariant. The action of Grotlel xGdlon A = AHe
is the restriction of its action on A’.

Recall we defined a torus Gy, (v) C Gt x G4i! in Section 3.1, and its image G, (v) in
Gt G (see §5.3.3).

Definition 6.4.1. A nonzero element a € A’ is called homogeneous of slope v, if it is fixed
by Gm(v) C Gl x Gl

Lemma 6.4.2. Let v € QN [0,deg £]. A point a € A'Y is homogeneous of slope v if and
only if it is of the form

r

r
Z Cigleydin(deg L-vymd: € @ (C[§/7 n]dim deg L

i=1 i=1

for some ¢; € C. Note that the i-th term is nonzero only if evd; € 7.
If v < 0 or v > deg L, then there is no homogeneous element in A’ of slope v.

Proof. We only need to note that G,,(v) fixes the monomial £77n° in the i*! factor of A’
if and only if j/d; = ev. O
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Let AY (resp. A,) denote the subscheme of homogeneous elements in A” (resp. A)
of slope v. We denote the restriction of the Hitchin fibration fp to Ay by

Q Q
fou: Mg, = AY.

Fixing a Gr'-equivariant trivialization of £ over U, for any a € A we may view
algpee 77, @ an element in ¢(F)™ (upon identifying F' with Ko). This defines a map
eo: A, = o(F), (6.4)

sending Ay to c¢(F)%. In particular, if Ay) # @, then v is a f-admissible slope (see
Definition 3.2.6).

6.4.3. Symmetry on homogeneous Hitchin fibers

By construction, J, fits into the Cartesian diagram (6.3). Note that the projection
Je — ¢ is Gl
X — ¢¢ is G, (v)-equivariant, where G,,(v) acts on X via the projection G,,(v) —

x Gdl-equivariant. Since a is homogeneous of slope v, the section

Gt Got. Therefore J, also admits an action of G, (v) making J, — X equivariant
@

v

under G, (v). Therefore G,,(v) also acts on P,. As a varies in A, we get a Picard
stack P, over A,? whose fiber over a is P,. The group stack P, x G,,(v) acts on the

family ./\/lgy.
6.5. The case L = Ox(v)

Fix a positive -admissible slope v = d/m written in the normal form (see §3.2.9). We
use m to define the weighted projective line X = P(m, 1). From now on, we will concen-
trate on the special case where £ = Ox(v), and we fix a GI2*-equivariant trivialization
of Ly. Let I : py, — W be the #-regular homomorphism of order m.

The following lemma follows directly from Lemma 6.4.2.

Lemma 6.5.1. The map e in (6.4) is an isomorphism. Moreover, with one choice of an
isomorphism G, (v) = Gy, the action of Gy, (v) on A is contracting to A, .

Proposition 6.5.2. For a € AY we have
1
dim M, = dim P, = 5 (v#0g — 7 — dim Eiikm)), (6.5)

Proof. By considering the regular locus of Mg 4, which is a torsor under P,, we may
reduce to the calculation of dim P,.

We first work with the curve X’ instead of X, over which we consider the constant
group G x X’ and the regular centralizer group scheme J/ therein. In [26, 4.13.2], Ngb
gives a formula for Lie J! (as a vector bundle over X')
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Lie J, ¢/ ® L.

Here £’ = n*L. By construction, we have Lie J, = (mLie J!)*e. On the other hand we
have dim P, = —x(X, Lie J,), therefore we have

dim P, = —x(X, 7. (¢} @ L)He).

By projection formula,

(et @ L) = (¢f @ L@ e Oxr)He @OX —d;v+v —¢;/e).
i=1

Recall that ¢; € {0,1,---,e — 1} is the unique number such that g, acts on the ‘P
fundamental invariant f; via the " power of the tautological character (see §2.3). The
Riemann—Roch formula for X says that for any line bundle £” on X we have

X(X, L") = [deg £"] + 1

Then

dlmPa—Z (X, Ox(—div + v — %))

r

_Z v(d; — 1) e]—l_Z[u(d—l)Jr—fi].

m
=1

The integers {d; — 1,--- ,d. — 1} are the exponents of the W-action on t. By [33,
Theorem 6.4(v)], the action of p,, on t via II decomposes b into r lines where i,
acts through the characters ¢ — ¢¥(di—D+ei/e j — 1 ... p. Therefore if we write t =
®jecz/mzt; according to this action of y,,. Therefore,

T

> (wldi—1) + %) —[v(d; — 1) + % - %] = i % dim ;. (6.6)

Since the Killing form restricts to a perfect pairing between t; and t_;, we see that

o 1 dim t + dim g (em)
- L dim, = 5 3" dimb; + dimby = S0 . (6.7)
=1 j#0

On the other hand, applying the same reasoning as above to the p.-action on t via 6 (in
place of the u,-action on t), we conclude that

e;  dimb — dim t9(e)

i=1
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Plugging (6.7) and (6.8) into (6.6), we get

N o T T
dim P, =Y “[v(d; — 1) + ; ]

; m
=1

s dimt — dim t?®¢)  dimt + dim t1em)
=vY (di—1)+ 5 - 5
=1

1
= 5 (v#Pc — 7 — dim G N
Remark 6.5.3. Comparing (6.5) with (5.7), we get
dim Sp, — dim M, = dim t#*~,

which is consistent with Proposition 6.6.3 below: M, is a disjoint union of copies of
[Sp,/Sa] and S, = THm.,

6.6. Homogeneous Hitchin fibers and homogeneous affine Springer fibers

In this subsection, we would like to link the family of homogeneous affine Springer
fibers Spp ,, and the family of homogeneous Hitchin fibers Mp , over AY . through a
formula analogous to the product formula in [26, Proposition 4.15.1].

6.6.1. Kostant section over V
Leta € AS. We would like to construct a Gy -Higgs bundle (Ey, ¢y ) with invariant ay,
the restriction of a to V. For this we need to make an extra assumption

The cocharacter dp" € X, (A*) lifts to X, (A). (6.9)

Over V, L represents a line bundle over V' with a m-equivariant structure. Such a
Um-equivariant line bundle is classified up to isomorphism by a class in H!(jt,, G,) =
Hom(fm,Gy) = Z/mZ. The class of L]y is d mod m, which means there is a
Mm-equivariant isomorphism L], XV x Al with lm acting on the Al-factor via dtP
power.

The point ay can be viewed as a pu,,-equivariant morphism ay : vV = ¢, where fi,,
acts on V' as usual, and ¢ € i, actson ¢ € cby ¢ : ¢ — ¢4-0(¢"™/¢)(c) (here - denotes the
weighted action of G,, on ¢ with weights {d;,--- ,d,}). Consider the trivial Gy -torsor
EWY = Gy over V. A Higgs field on EY'Y is a map b : V' — g together with a 1-cocycle
€: pm — G (with g, acts on G via ¢ — 0(¢™/€)), such that for any ¢ € fi,

b(Cv) = ¢ Ad((C))O(C™*)b(v). (6.10)

We take b to be the composition
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bV e S s

Under the assumption (6.9), let A € X, (A) lift dp", and we take €(¢) = ¢~*. Then (6.10)
holds by (3.6) and the fact that x commutes with pinned automorphisms. We denote
the Gy -Higgs bundle corresponding to b by (EFY, ¢4 ).

We would like to equip (EFY, p{,) with a G,,(v)-equivariant structure. By (3.6), we
have

k(@ (s™n)) = k(s @ () = s*Ad(s™ %) k(@ (2))), sEGm,zeV’. (6.11)

Fix a lifting A € X,(A) of dp", the above formula shows that left translation by s* on
the trivial Gy-torsor extends to an isomorphism of Gy -Higgs bundles s*(EH1Y, %) =
(EWY, 5108, hence giving (EYY, p%) a Gy, (v)-equivariant structure.

The above construction clearly works in families as a moves over the base Ay .
We therefore get a family of Gy-Higgs bundles (EF1Y x AY pv) over AY carrying a
Gy (v)-equivariant structure.

6.6.2. The local-to-global morphism
We would like to define a morphism

Be.v : Spp, = Mp,, (6.12)

over AY respecting the symmetries on the affine Springer fibers and the Hitchin fibers. By
Lemma 6.5.1, a point a € AY corresponds to a point in ¢(F)™ by restricting to the formal
neighborhood of 0, which we still denote by a. Every point gP € Spp , gives a P-Higgs
bundle (£, o) over Spec Oy: & = P is the trivial P-torsor and o = Ad(g~!)(k(a)) €
& 1; Lie P and Ad(g) is an isomorphism (€0, ¢0)lgpec 7, 5 (G, k(a)). Since the restric-
tion of (£, %) on Spec Ky is (G, k(a)), Ad(g) glues (o, ) with (£, 0% ) along
Spec IA(O and we get a morphism Sp, : Spp, — Mp . This construction works in
families over Ay and gives the desired morphism fp ,,.

In §5.3.3 we have defined an action of the group ind-scheme P, x G,,(v) on Spp ,
over ¢(F)™. In §6.4.3 we have defined an action of P, x G,,(v) on Mp, over A .

By the construction of P, and P,, there is a G,,(v)-equivariant homomorphism over
(F)p = AT

P, =P, (6.13)

such that Bp , is equivariant with respect to the P,-action on Spp ,, and the P,-action on
/\/lg,y via (6.13). Moreover, the morphism fp , is also equivariant under G,,(v) by the
construction of the G,, (v)-equivariant structure on (Gy, ¢y ). In summary, the morphism
Bp. is equivariant under the P, x G,,(v)-action on Spp , and the P, x G,(v)-action
on Mg,y.
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Recall from Section 5.3.2 the family of homogeneous affine Springer fibers Spp ,, over

rs
v

¢(F)'* with the action of the group scheme S over ¢(F)

Proposition 6.6.3. Let v > 0 be a 0-admissible slope. Fiz a lifting X\ € X, (A) of dp".

(1) There is a surjective morphism ngu = Mplg9 = H'(tm,T) whose fibers are

homeomorphic to [Spp ,/S].

(2) If moreover v is elliptic, then we have a homeomorphism over ¢(F)* = AY

[SpP,V/g] = Mg,u (614)

which is fiberwise equivariant under the actions of P, X G, (v) and P, x G, (v).
Moreover, P, has connected fibers.

Proof. To save notation, we only treat the case P = I. The general case is the same.
(1) The local-global morphism fSp , together with its equivariance with respect to P,
gives a morphism of stacks

P, ~
Sp, X P, 5 MY, (6.15)

We claim that this is a homeomorphism. To check this, we only need to work fiberwise,
therefore we fix a € AY. The product formula [37, 2.4.2] holds in the case where X is
a Deligne-Mumford curve. Note that the point oo does not contribute to the product
formula: since v = d/m, by Lemma 6.4.2, we see that ay, viewed a p.-equivariant map
V' — ¢, lies entirely in ¢'®. The equivariance under G,,(v) is already observed in §6.6.2.

It remains to examine how far the morphism (6.13) is from being an isomorphism.
For a € Ay, we have the regular centralizer group scheme .J, over X. Since a is regular
semisimple over V', J, v is a torus over V. When a varies over AY . the torus Jy over
AY x V is the automorphism group scheme of (Gy, ©).

The morphism (6.13) over a is obtained by gluing a J,-torsor over Spec @0 with the
trivial J, y-torsor over V. As in §3.3.6, the morphism V' — [¢*%/p.] can also be lifted to

Vi =2

where by C U is the Cartan space defined in §3.3.6. The regular centralizer J, v can be
calculated using this lifting as in §3.3.7, i.e.,

~ fim
Ja,V =V x Ta
where ji,, acts on T via the homomorphism IT : 1,,, < W’ and the action of W on T. In

particular, J, y-torsors over V are the same as p,,-equivariant T-torsors over V'. Any
T-torsor over V' =2 Al is trivial, and the p,,-equivariant structure on the trivial T-torsor
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amounts to a class in H!(y4,,, T) (obtained by looking at the j,, action on the fiber of the
torsor at oo’ ). This class gives the homomorphism P, — H*(p, T). If a J,-torsor over
X has the trivial class in H!(p,,, T), then it comes from gluing a J,-torsor over Spec (50
with the trivial J, v-torsor, and hence in the image of P,. The kernel of P, — P, is the
automorphism group of such a J,-torsor, which is TH(#m) = §a. Therefore we have an
exact sequence of stacks

15— P, =P, = H (i, T) = 1, (6.16)

where the first map is S, — GEY(OF)/JG(OF) C P, (see Lemma 3.3.5). This sequence
together with (6.15) gives the first statement of the proposition.

(2) When a is elliptic, H(t,,, T) = 0 by Tate-complex calculation (or part (2) of the
proof of Proposition 6.3.7). Therefore the second statement follows.

Finally we need to show that P, is connected when a is elliptic. In this case, J,
is an anisotropic torus over F', hence P, is a quotient of J,(F) = G:fed(oF) whose
reductive quotient is ga by Lemma 3.3.5(4). Therefore §a — P, induces a surjection
on component groups, hence P, is connected by the exact sequence (6.16). O

Example 6.6.4. We give an example when G = PGLy. We may take v = where

1
0
d > 0 is an odd integer, and let a = x(), which is homogeneous of slope v = d/2. The
affine Grassmannian Flg = G(F")/G(OF) as well as the affine Springer fiber Spg ,
have two components (that are permuted by Qi = 7Z/27Z). The regular centralizer
group scheme J, is simply the centralizer of v in G = G(Op). We have J,(F) =

{(tdx y) sz,y € F, 2% — tdy? #0} JF*. The inclusion S, = T+ = {+1} — J,(F)
yx

01
sends —1 to the class of 0 modulo scalar matrices (which is the unique element

of order two in J,(F)). The left multiplication action of S, on Spg,, permutes the two
components. Therefore Spg ,/ S, can be identified with one component of SPGa-

One the other hand, we shall describe the geometric structure of Mg 4, where a =
—¢% € T(X,0(d/2)?) = A. A point of Mg, is the quotient M, /Pic(X). Here M,
classifies equivalent classes of pairs (V, ¢) where V is a vector bundle of rank two on X,
@V — V(d/2) satisfying p? = ¢%id as a map V — V(d). The action of N’ € Pic(X) on
M, sends (V, ) to (N @ V,idy @ ¢).

Any vector bundle on X is a direct sum of line bundles. By tensoring with Pic(X),
we may assume V = O & O(n/2) for n € Z>o. The map ¢ : O & O(n/2) — O(d/2) &
Ty

O((n 4+ d)/2) can be written as a matrix , where © € C[¢,n]a, ¥ € C[€,n]d—n,

z € Cl¢,n)asn and 22 + yz = £9. This equation forces n to be odd, for otherwise all
x,y, z will be divisible by n. Also 1 < n < d. Let S,, be the space of such matrices. Once



A. Oblomkov, Z. Yun / Advances in Mathematics 292 (2016) 601-706 663

we fix z, there is a finite number of choices for y and z up to scalar, hence dim .S,, =
1+ dimC[¢,n]q = (d+ 3)/2. Let H, = Aut(O @ O(n/2))/G,,, which acts on S, by

z 0
conjugation. Every matrix in H,, can be represented uniquely by 1 with x € C*,
Y

y € C[¢,n]n. Therefore dim H,, = (n + 3)/2. By our discussion above, M, admits a
stratification U, _, . oqqSn/Hn with dim S,,/H, = (d —n)/2. The top dimensional
stratum is S) /Hy, which has dimension (d —1)/2. One can check for small values of d
that S; is irreducible, therefore M, only has one top-dimensional component.

Remark 6.6.5. If we consider G = SLy instead of PGLs, and take the same a as in
Example 6.6.4, the affine Springer fiber Spg , is isomorphic to a connected component
of its PGLg counterpart. However, the Hitchin fiber M@ , in this case is empty! In fact,
suppose (V, ¢) € Ma.q, then V = O(—n/2) & O(n/2) for some integer n > 0, and ¢ can
Ty
z —x

be written as a matrix , where z € C[¢,n]4, v € Cl¢,n]a—2n, 2 € C[&,N]dt+2n

and 22 + yz = £%. Since d is odd and ¢ has degree 2, the degrees of 22 and yz in & are
both strictly smaller than d, and 22 + yz = £¢ has no solution. This does not contradict
Proposition 6.6.3 because in this case the assumption (6.9) fails.

Part 3. Representations
7. Geometric modules of the graded Cherednik algebra

In this section, we construct an action of the graded Cherednik algebra with central
charge v on the G,,(v)-equivariant cohomology of both homogeneous affine Springer
fibers and homogeneous Hitchin fibers.

Since affine Springer fibers and Hitchin fibers are only locally of finite type, we make
some remarks on the definition of their (co)homology. Let f: M — S be a morphism of
Deligne-Mumford stacks over C. Suppose M can be written as a union of locally closed
substacks M = U;c; M; (for some filtered set I) such that each f; : M; — S is of finite
type. In this case fiDys/s is defined to be an ind-object lim, f; /Dy, /s of D(S). If M;
are open in M, we may define fiQ to be the ind-object I_H_)nl fi1Q. When S = Spec C
we denote fiDy; by H.(M) and denote fiQ by H:(M) (when defined), which are usual
graded vector spaces. Similar notation applies to the equivariant situation. For details,
see [39, Appendix A]. Affine Springer fibers and Hitchin fibration both can be covered by
finite-type open substacks, and the above notion makes sense. In the following we shall
work with compactly supported cohomology, although similar statements for homology
also hold with the same proof.
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7.1. The H& -action on the cohomology of homogeneous affine Springer fibers

Recall the family of homogeneous affine Springer fibers ¢, : Sp, — ¢(F)I*. We will
construct an action of H&" on the ind-complex Q. We will construct the actions of
ajn, Si and g separately, and then check these actions satisfy the relations in $%'.

Construction 7.1.1. The action of € is via m times the generator of X*(G,,(v)), viewed
as an element in Hém(y)(pt).

Construction 7.1.2. We shall construct the action of aj,,. In §5.1.1 we have assigned for
each £ € X*(Aknm) a line bundle £(£) on F1 carrying a canonical Ggy-equivariant struc-
ture. By (3.13), the action of G,,(v) on F1 is obtained by restricting the left translation
action of Gy on Fl via the homomorphism G,,(v) < A x Gfgt’[e] C GkwMm given by
the cocharacter dp¥ + md. Therefore, each L£(€) carries a canonical G,,(v)-equivariant
structure. The action of £ on ¢,)Q is given by the cup product with the equivariant
Chern class c?’"(”)(ﬁ(g)) 24 Q — ¢, Q[2](1).

Construction 7.1.3. We shall construct the action of a simple reflection s; on ¢,,Q,
following Lusztig [24]. Before doing this we need some more notation. For a standard
parahoric P, let Lp be its Levi factor and let 7z, : P — Lp be the projection. Let
Ip = Lie Lp. Let 7, : Lie P — [p be the projection map on the level of Lie algebras.

There is an evaluation map evp : Spp ., — [lp/Lp] given by gP — 7, (Ad(g")Y)
mod Lp. Let bk, (resp. BL) be the image of Lie I (resp. I) under the projection 7y,
(resp. mrp ), which is a Borel subalgebra of Ip (resp. Borel subgroup of Lp). We also
have an evaluation map evp : Sp, — [bh/Bp] given by gI — m(, (Ad(g~')y) mod Bp.
The two evaluation maps fit into a Cartesian diagram

I
P

Sp, — = [bL/Bb] (7.1)

lﬂp,u \LP[P

Spp, — [Ip/Lp]

The morphism py, is in fact the Grothendieck simultaneous resolution of Ip (quotient
by the adjoint action of Lp). Let P; be the standard parahoric whose Levi factor L; has
root system +a;. Applying proper base change to the Cartesian diagram (7.1), we get
an isomorphism in the equivariant derived category Dé’;m(y) (Spp, )

p1,:Q = evppy, Q.

By the Springer theory for the reductive Lie algebra [;, the complex py, .Q € D%i([i)
admits an action of an involution s;. Therefore ¢,/ Q = gp, . 1evpTP,, «Q also admits an
action of s;.
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Construction 7.1.4. We construct the action of Q5 on Sp, commuting with the
G (v)-action, which then induces an action on ¢,,/Q. In fact, for each w € Q1 = Ng(I)/1,
pick a representative w € G. Then right multiplication by w : gI — gl is an automor-
phism on F1 which preserves the family Sp, fiberwise. This automorphism is independent
of the choice of w in the coset of w, and defines an action of {21 on Sp,,.

Theorem 7.1.5. Constructions 7.1.1-7.1.4 define an action of $H& on ¢.1Q €
D&HL(V)(C(F),Y/S). Moreover, the element € € H5 acts as m times the equivariant pa-
rameter from Hém(y) (pt); the action of Bxm on ¢, 1Q is through the multiplication by
VB(p¥,p¥)e* € H (,(pt).

Proof. First, we check (GC-2): the Constructions 7.1.3 and 7.1.4 give an action of W on
¢y,1Q. This is done in the same way as in [39], using the diagram (7.1).

Next, we check (GC-3) for £ € a*. Using the diagram (7.1) for P = P, we reduce to
a calculation for groups of semisimple rank one, and can be checked in the same way as
in [37].

Next, we check (GC-3) for £ = Acan. The idea is similar to that of [37, §6.5]. Recall
from §5.1.3 that each Flp carries a determinant line bundle detp. In view of (5.3), we
define

Ap = Acan + 2pa — 2pp + (vp¥ + 0, 2pp — 2pg)e.

Then we have L(Ap) = mp detp as Gy, (v)-equivariant line bundles. Since we have already
checked that (GC-3) for £ € a* @ Qe, by the linearity of the relation (GC-3), it suffices
to check for each affine simple reflection s; and the particular element A; := Ap, that

SiAi - SiAiSi = <Ai, 04;/>’LL (72)
By Proposition 5.1.5,
(i) = — deg(£(A)|C:) = — deg(mp detp, |c,) = 0,

hence the right side of (7.2) is zero. This also implies that **A; = A;. On the other hand,
from the construction of the s; action in (7.1.3), cupping with any class pulled back
from Spp, ,, (and in particular c(f'""(”) (detp,)) commutes with the action of s; on g,1Q.
Therefore we have s;A; = A;s; = **A;, and (7.2) is proved. This finishes the verification
for (GC-3).

We check (GC-4). Using the construction of £(§) in Construction 7.1.2, the desired
relation follows from the commutation relation between Ny, (Ixm) and Ak

Finally, we show that By € Sym?®(ajy)"V C 98" acts as v2B(pY, p¥)e? € Hém(u) (pt).
By Lemma 5.1.6, we know that the action of By on ¢,,1Q is the same as the cup product
with the image of Bxy under the restriction map Hj _ (pt) — Hém(u) (pt). By (3.13),

the embedding G,,(v) < Ak is given by the cocharacter dp¥ + md = m(vp¥ + 9).
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Therefore, the action of Bxy on q,,Q is via By (vpY +0,vpY +0)e = v°B(pY, p¥)e? €
He, o) (pt)- O

Taking stalks at a € ¢(F)™, we get the following corollary.

Corollary 7.1.6. For a € ¢(F)™, there is a graded action of H2°/(Bxn — v2B(pY, p¥)e?)
on H* G”L(V)(Spa) that commutes with the action of mo(Sy) X By. Specializing to € = 1,

there is an action of H%'._; on He=1(Sp,), commuting with the action of mo(Sa) x B,
and compatible with the cohomological filtrations on Y);g,fe:l and He =1 (Sp,).

7.2. The polynomial representation of $H5"

In this subsection, we shall show that the equivariant cohomology of the whole affine
flag variety F1 gives a geometric model for the polynomial representation of $®".

The construction of the $H8"-action on the equivariant cohomology of homogeneous
affine Springer fibers in §7.1 in fact works line by line for F1 as well. We thus get

Proposition 7.2.1. Suppose v > 0 is an elliptic slope. There is an action of H8"/(Bxm —
v2B(pY, p¥)e?) on HE},,L(V)(FI) such that the restriction map Hg, (V)(Fl) —Hg ) (Sp,) =
HY ¢ (1) (Spa) is O -equivariant for any a € ¢(F)}.

m

Let 5 = 98 /(Bku — v2B(pY, p¥)e?). The connected components of Fl is indexed
by Q1. Let FI° be the “neutral” component (containing the coset I). The class 1 €
H%m(y)(Flo) is invariant under Wag. We therefore get a natural map of $%'-modules

—gr

9, *
Ind@[d@@[wag] (Qle]) — HGm(V)(Fl). (7.3)
The induced module on the left side is called the polynomial representation of Eir.

Lemma 7.2.2. The map (7.3) is an isomorphism after inverting € (or equivalently, it is
an isomorphism after specializing € to 1).

Proof. We abuse notation to use a to mean ag. Ignoring the $-module structure,
the left side of (7.3) is isomorphic to Q[e] ® Sym(a*) ® Q[Q]. Since Q1 permutes the
components of Fl simply-transitively, it suffices to show that Q[e,e ] ® Sym(a*) —
HEM(V)(FIO)[e’l] is an isomorphism, where F1° is the identity component of Fl. This

map is induced from the map a* — Hém(u) (F1) by sending ¢ € X*(A) to the equivariant

Chern class c(lg’"(y) (L(&)). Since we only consider one component of Fl, we may assume

G is simply-connected and hence FI is connected.
ot le) (F1). We have Hszyst,[c] (pt) = Q] ®

We first recall the ring structure of HZX
Sym(a*). The equivariant Chern classes of the line bundles £(§) for £ € X*(A) give a
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map of H*

Gl . (pt)-algebras

H g () @ Sym(a’) 2 Q8] @ Sym(a™) @ Sym(a’) = H7_ .1 (FL).

Let fi,---, f» be the generators of the invariant ring Sym(a*)"V, then £(f;) — r(f;) are
divisible by ¢ in Hj; gronle
dibtinguibh the left and right copies of Sym(a*)). Write ¢(f;) — r(f;) = de; for a unique

2d; —
e; € HA Gmf . (F1). Then we have a HZxGiﬁ,“[e]

. (F1). (Here we follow the notation preceding Lemma 5.1.6 to
(pt)-algebra isomorphism

H) grovia (F1) = QP]@Sym(a”)@Sym(a®)@Qler, - -, e, ]/ (€(fi) =r(fi) —bei;i = 1,--- ;7).

If we invert §, the generators e; become redundant, and we get an isomorphism of

HZX@:;W] (pt)[0~!]-module

B o (00071 @ Sym(a) S5 HY o (F071). (7.4)

AXGm,

Restricting to the subtorus G,,(v) C A x Gfgt’[e], we get an algebra homomorphism
Hz Grot [e]
to GIS). Base change (7.4) using this algebra homomorphism, we get an isomorphism

(pt)[0~Y — H(am(y)(pt)[e_l] (because G,,(v) has a nontrivial projection

HE, o) (0t)[e ] ® Sym(a”) = Hg () (F)[e]. O
7.8. The global sheaf-theoretic action of H8"

In [37, Construction 6.1.4], we defined an action of the graded Cherednik algebra
H8 on the derived image of the constant sheaf along the parabolic Hitchin fibration.
In this subsection, we will extend this construction to the bituation where the curve is

rot,[

the weighted projective line X and we shall keep track of the Gy, '“ x Gdil-equivariant
structures.

We first describe the actions of the generators u, d, a*, Acan, $; and Qy of H&" act on fiQ,
(A9).

viewed as an ind-object in the equivariant derived category D, (o] o
Gm " xGdil

Construction 7.3.1. The equivariant cohomology H(’é,.otY[ele . (pt) acts on every object

in the category D ot (AY). In particular, every element in X*(Giﬁt’[e] x Gdil) ¢

xGdil
Héﬁtﬁ[ele%I (pt) gives a map AQ — AQ[2)(1). This gives the action of § € X*(Gio")

and u € X*(G4i).

Construction 7.3.2. The action of £ € X*(Agm). Let Buny be the moduli stack of
Gr-torsors over X. As in [37], we may write Buny as a fppf quotient Bun/Iky, where Bun
classifies (£,t, 7, a): £ is a G-torsor over X t is a coordinate at 0 € X which is a constant
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multiple of the canonical coordinate £/n™; 7 is a trivialization of £ |SpeC 5, and a is a

trivialization of det RI'(X, Ad(£)). The moduli space Bun admits a right action of Gkm.
Therefore it makes sense to quotient by Ixy. Hence, for each £ € X*(Akn), we have a

rot,[e . . . — 1 £ .
Gmt’[ ]—equwarlant line bundle £(¢) = Bun "7 AT over Bunjy. Pulling back to M, we
get a GIotlel GYlequivariant line bundle over M which we still denote by £(¢). The

m

action of £ on fiQ is the cup product with the equivariant Chern class of L¢:

Grot.lel y qdil

fi(Uey (Le)) - 1HQ — AHQ[2](1). (7.5)

Remark 7.3.3. The line bundle £(§) constructed above is the trivial line bundle over M
on which Gfﬁt’[e] X Gf,ill act via the character §. Therefore, the actions of § constructed
in Constructions 7.3.1 and 7.3.2 are the same.

Remark 7.3.4. When & = Acan € X*(AkwMm), the fiber of the line bundle £(Acan) at
(&1, ) € M is the determinant line det RT'(X, Ad(Eg)), where Eg is the G-torsor induced
from the Gr-torsor &. Since the cotangent complex of Bung at £ is given by the dual of
RI'(X,Ad(£))[1], we see that L(Acan) is the pull back of the canonical bundle wgyn, of
Bung.

Construction 7.3.5. The construction of the action of s; is based on the evaluation dia-
gram (cf. [37, Diagram (4.6)]). The maps evh and evp are the evaluation of Higgs fields
at 0.

M P68y (7.6)

lﬂ'}) lplp

Mp F [p/Lp)]

Here the evaluation maps uses the Giﬁt’[e]-equivariant trivialization of £|SpeC By The

rotilel Gdil-equivariant (the action of G on Ip and

morphisms evp and evp are G
bL, are via the inverse of the scaling action). The rest of the construction is the same
as Construction 7.1.3 for affine Springer fibers. The fo{t’[e] x Gdl-equivariance of the

diagram ensures that the s;-action takes place in Dé’mwe] deﬂ(A@)'

Construction 7.3.6. There is an action of Qy on M. In fact, writing Buny as B/LB/IKM,
we see that Q1 = Ng,,, (Ixm) acts from the right. This action preserves the formation
of T'(X,Adr(€)), and hence lifts to an action of €y on M. This action commutes with
action of GIS"¥) x G4l and preserves the Hitchin fibration. Therefore this action induces

m
an action of Q5 on fiQ in the category Df;,ggh[e (AO).

]XG%I



A. Oblomkov, Z. Yun / Advances in Mathematics 292 (2016) 601-706 669

Theorem 7.3.7.

(1) Constructions 7.3.1-7.3.6 define an action of $H® on the ind-complex fiQ in
b o

Dngtq[eleﬁl(A )

(2) Restricting the above construction to AY defines an action of $H8 on the ind-

complezes f,1Q in D&m(v) (AY). This action factors through HE.

Proof. The proof of (1) is almost the same as Theorem 7.1.5. The only difference is
that the determinant line bundle detp in the proof there should be replaced by its
global analogue: the line bundle detpu,, over Bunp whose fiber over the Gp-torsor &£
is det RT(X, Adp(€)). For (2) we only need to check that both 6/m and —u/d act as
the canonical equivariant parameter in Hém(y)(pt). This is true because the embedding

Gm(v) — Gl GI is given by the cocharacter (m/e, —d). O
7.4. Local-global compatibility

We have constructed actions of $&" on both the equivariant cohomology of homoge-
neous affine Springer fibers and homogeneous Hitchin fibers in the previous subsections.
The two fibers are related by the local-global morphism (6.12), and the two actions are
compatible in the following sense.

Proposition 7.4.1. Let v > 0 be an admissible slope and assume (6.9) holds. The mor-

rs

phism of ind-complezes over AY = ¢(F)™
JraQ = ¢,Q (7.7)

induced by the local-global morphism Py in (6.12) is a morphism of HE -modules. If v is
elliptic, the morphism (7.7) identifies f, 1 Q with the S-invariants of q,1Q.

Proof. We only need to check that the actions of €,a* Acan,s; and Qp in both
HE  (,)(Ma) and HE, ) (Sp,) are respected by the map (7.7).

The action of € in both cases are via m times the equivariant parameter in Hém(u) (pt).
The action of s; is defined by the diagrams (7.1) and (7.6). The required statement follows
from the commutative of the diagram

I3 eVp
Sp, ———= M, [bL/BL)]

\Lﬂ'p l‘ﬂ'P,u lp[p

B ev
Spp,, —= Mp, —— [Ip/Lp)]

The rest of the argument requires a study of the local-global morphism
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B : F1 — Bung (7.8)

which we define now. Recall we can write Buny = Bun /Ixm, and Bun admits a right ac-
tion by Gy . The trivial Gr-torsor together with the standard trivialization on Spec (507
the standard local coordinate at 0 and a choice of a trivialization of det RT'(X, Lie G)
gives a point pt — Bun. Taking the Gkp-orbit gives Gy — B/lﬂl, and, passing to the
quotient by Ixym we get 5 : F1 — Bunj. Concretely, 5(gI) is the G-torsor obtained by glu-
ing the trivial I-torsor over Spec (50 and the trivial Gy -torsor over V' via the isomorphism
G(F)=1I(F) = Gy (F) = G(F) given by left multiplication by g. From this description,
we see that (§ is invariant under the left translation by the automorphism group of the
trivial Gy -torsor, namely G(Oy) = G(Oy,)*™. Hence 3 descends to a morphism

B : G(Oy)\FI — Bunj.

The morphism S is clearly Giﬁt’[e]—equivariant. Since A C G(Oy), B descends to
A\F1 — Bunj. Since the G,,(v)-action on F1 is given by the embedding dp¥ + md €
A x G% we conclude that 3 is in fact G (v)-equivariant, where G,,(v) acts on Fl
via (3.13) and acts on Buny through its projection to Gig"l). Since the construction of
Br,q in Section 6.6.2 is by gluing with the trivial G-torsor over V, we have a commutative

diagram

B
Spy HI' Ml/

L,

Fl ——— Bung

For £ € X*(Akm), the action of £ in both cases are via the Chern class £(£) on Fl
and Lpun(§) on Bung. By the definition of the morphism 3, we have 8*Lpun(§) = L(€)
in a G, (v)-equivariant way (note that the definition of a base point pt € Bun involves a
choice of the determinant line det RT'(X, Lie G), which is unique up to a scalar, therefore
the isomorphism 5*Lpun(Acan) = L(Acan) depends on this choice, and is canonical only
up to a scalar). This implies that (7.7) respects the -action.

Finally the morphism [y is equivariant under 1 by construction. Therefore the

Qr-action is also respected by (7.7). O

Remark 7.4.2. When v is elliptic, by Proposition 7.4.1 and Theorem 7.1.5, Bk acts on
Jv1Q as v?B(pY, p¥)e*. We expect the same to be true without the assuming v is elliptic.

8. Geometric modules of the rational Cherednik algebra

In this section, we fix a #-admissible elliptic slope v > 0. We will construct an ac-
tion of the rational Cherednik algebra $!** on a modification of the G,,(v)-equivariant



A. Oblomkov, Z. Yun / Advances in Mathematics 292 (2016) 601-706 671

cohomology of homogeneous affine Springer fibers. When G is split, we will show that
such a construction gives the irreducible spherical module £, (triv) of $[*_; using the
geometry of homogeneous Hitchin fibers.

One notational change is that we will identify ga with wo(ga), because when m is an
elliptic number, ga is itself a finite abelian group.

In §8.1-8.2, we work in the generality of quasi-split groups as in §2.2.2. From §8.3 we

will assume that e = 1, i.e., G is split over F.
8.1. The polynomial representation of H2

Let F1° be the neutral component of the affine flag variety of G (which is the same
as the affine fiber variety of the simply-connected cover of G). Lemma 7.2.2 gives a
canonical algebra isomorphism

Qle, e @g Sym(a”) = Hg () (F1°)[e '] (8.1)
given be sending & € X*(A) to the G,,(v)-equivariant Chern classes of £(§).

Definition 8.1.1. The Chern filtration C<;H, (F1°)[e7!] on HE o) (F1°)[e71] is the
image of polynomials of degree < i (in a*) under the map (8.1). The Chern filtration
C<iHg () (FI°) of HE ) (F1°) is defined as the saturation of the Chern filtration on
Hy o) (1)), e, oy () (FI°) = HE () (FI9) 0 Oy, () (FI)[e ).

Proposition 8.1.2.

(1) There is a bigraded action of HI* on Ger(Em(y)(Flo),
(2) There is a map of H:**-modules

Hre Cyrx o

IndQ[€]®Sym(a)®Q[W] (Qle]) = GriyHg () (F1°), (8.2)
that is an isomorphism after inverting e.

(3) Let N = ir(hgv — 1), which is the dimension of Sp, for any a € ¢(F)™ (see
Corollary 5.3.1(2)). The operator b in the almost sly-triple defined in §4.2.3 acts by
(i — N)e on Gr{Hy, ) (F1°).

Proof. Since F1° is the affine flag variety of the simply-connected cover of G, and that
2 is invariant under isogeny of G, we may assume that G is simply-connected.

(1) We already have an action of $8/(Bxm — v°B(p", p¥)e?) on HE () (F1) from
Proposition 7.2.1. To define the H™*-action on Gr*PH(Em(V) (F1), we only need to check
the conditions in Proposition 4.3.1 are satisfied.

Using (GC-4) and (GC-5) we see that for w € W with image w € W and ¢ € a*,
w€ — éw € QJu,d]. By induction on n, we see that for f(§) € Sym"(a*), wf(§) —
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F(°)® € Q[u,8] ® Sym=""'(a*). In particular, for @ in the lattice part of W (so
w = 1), the commutator [@, f(&)] lies in Q[u,d] ® Sym="""(a*). Let 1 € H%m(y)(Fl) be
the unit class. Then (w —id) - f(§)-1=wf(§) -1 - f(w-1¢€ C’Sn_lHam(V)(Fl).

An element £ € a* sends C<,, to C<,41 by definition. Finally the action of €Acan,
a multiple of Bxm — B, sends C<,, to C<pyo (because deg B = 2 and Bgwm acts as
a multiple of €2). Since the Chern filtration on HE () (F1) is given by saturating the
degree filtration on Ham(y) (F)[e™Y], Acan also sends C<pn to C<pqo. This checks all the
condition in Proposition 4.3.1 and finishes the proof.

(2) follows from the isomorphism (8.1).

(3) We only need to show that h acts on 1 € H%m(u)(Fl) C GrgHém(V)(Fl) by
multiplication by —Ne. Let {§} and {n;} be dual bases of a* and a respectively.
Since 7; -1 = 0, we have h-1 = 33 & -1+ n& -1 = 53,m&] -1 =
LS 60 m) — & e o il 0¥)(m) - 1 = Le(r — 13, cpca) - 1. Since c, is
defined as the cardinality of the preimages of ¢ — ®, the above is further equal to
Te(r—v#¢)-1=1e(r—vhor)-1=—-Ne-1. O

8.2. The $H*3 -action on the cohomology of homogeneous affine Springer fibers

Let a € ¢(F)}?. Recall from Theorem 5.5.1 and Remark 5.5.2 that we have the restric-

tion map

L: : H:Ik}m (v) (Flo) = H(Em(u) (FI)Q - H&k}m(y)(spa)saNBa
which is surjective after inverting e.

Definition 8.2.1. The Chern filtration CSiHEm(V)(Spa)g‘”“Ba[6*1} on HF X

(Sp,)%+*Bae~1] is the image of CgiHam(V)(Flo)[e_l] under (. The Chern filtration
CSiH[{}m(y)(Spa)ga *Ba on Hz‘;m(y)(Spa)ga *Ba ig the saturation of the Chern filtration on

HE, (1) (SPa) %" Fe ],

The same argument of Proposition 8.1.2(1) gives the following result.

Proposition 8.2.2. Let a € ¢(F)™. There is a bigraded action of H** on Gri’:H(Em(V) X

Sp SaxBa guch that the map Gr¢u : Gr9H* FI°) — Gr¢H* Sp,, )%« Ba s g
a * “a * G (V) * G (V) a
map of H*-modules (which is surjective after inverting e).

The main result of this section is the following theorem.

Theorem 8.2.3. Assume G is split (i.e., e =1) and let a € c(F)T.
(1) There is a geometrically defined filtration PSiHEm(V)(Spa)ga on Ham(y)(Spa)ga, sta-

ble under the Bg-action and extending the Chern filtration on H(E7n(y)(Spa)SaNBa’
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such that the bigraded $H**-action on GerEm(U)(Spa)ga”Ba extends to
Gr*PHam(y)(Spa)ga and commutes with the B,-action.

(2) Specializing € to 1, the $H5*_ -module GereZl(Spa)ga”Ba is isomorphic to the ir-

v,e=1"
rat

reducible finite-dimensional spherical module £, (triv) of 9% _;.

We have an immediate corollary.

Corollary 8.2.4. Assume G is split and simply-connected, and let a € ¢(F):. Then the
ﬁ%fe:rmOdUl@ H.—1(Sp,)%**Ba is also irreducible.

Proof. By [35, Proposition 2.3.1 (b)] the dimensions of the finite dimensional irre-

ducible spherical modules for % __, and $;*_, are equal. Thus by Theorem 8.2.3(2),

gr

»,e—1-module.

Hc—1(Sp,)%>Pa has the same dimension as the spherical irreducible $
On the other hand f_)ffe:l—module He—1(Sp,)%*Pae is a quotient of the polynomial
representation of $7' _;. Since the analog of Corollary 4.4.2 holds for $7 _; by [35,
Proposition 2.3.1(a)], we conclude that H—; (Sp, ) * 5= is the irreducible spherical mod-

ule for H&" m|

v,e=1"

The proof of Theorem 8.2.3 occupies §8.3-8.6. It uses the geometry of Hitchin fibra-
tion, especially a variant of Ngd’s support theorem in an essential way. Currently we are
unable to generalize certain technical results needed in this global geometric argument
to the quasi-split groups. However, the quasi-split examples in §9 suggest the following
conjecture.

Conjecture 8.2.5. The statements of Theorem 8.2.3 hold for quasi-split groups G (in the
generality of §2.2.2).

Example 8.2.6. When v = d/hg with (d, hg) = 1 (recall hy is the twisted Coxeter number
of (G,0)), we may compute the dimension of H.—1(Sp,) using Proposition 5.5.8. In the
case v = 1/hy there is only one bounded clan and it consists of a single alcove. Therefore
for v =d/hy, dim H.—1(Sp,) = d" for any a € ¢(F)5. It is easy to see directly that S, X B,

acts trivially on He—1 (Sp,). On the other hand, the irreducible ﬁia/';%e:l—module £, (triv)

also has dimension d", see [2, Theorem 1.11]. Therefore Gr*CHezl(Spa) >~ £, (triv) as

rat
ve=1

bra. Therefore, we have checked Conjecture 8.2.5 in the case the denominator of v is the

-modules. Moreover, [2, Proposition 1.20] shows that £, (triv) is a Frobenius alge-
twisted Coxeter number.

Combining Theorem 8.2.3 with Theorem 5.5.10(3) we get a dimension formula for
£, (triv) as in (1.2). More generally, we have

Corollary 8.2.7. Let G be split and v = d/m > 0 be an elliptic slope in lowest terms (which
is also the normal form since e = 1). Then for any standard parahoric subgroup P of G,
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we have

dim &, (triv)"" =d” YT dimOB 1, M, ).
WEW,\W /Wp

8.3. The perverse filtration

For the rest of the section we assume G is split.

For the construction of the rational Cherednik algebra action, we need to consider
the version of Hitchin moduli stacks in which we also allow the point of the parahoric
reduction to move on X. Indeed, this is the version considered in the papers [37] and [38].
We use Mp iy to denote the moduli stack classifying (z, &, ¢) where z € U, (€,¢) an
L-valued G-Higgs bundle over X with P-reduction at z. For details of the construction,
see [37].

The Hitchin fibration now reads fpy : Mpy — A x U, which sends (z,&,¢) to
(f1(@),- -+, fr(®), ). In the sequel we shall exclusively work over the open subset AY xU,
so we abuse the notation to denote the restriction of fp 7 to AY x U again by fpy.
Let fen be the restriction of fp i to A x U. Again, when P = I, we suppress it from
subscripts.

Construction 8.3.1. The construction of [37, Construction 6.1.4], as recalled in §7.3, gives
an action of $% on fy,Q as an ind-complex D?(AY x U). We would like to upgrade
this into an action in the equivariant derived category DGrotx Gl (A x U). In fact, the
constructions given in [37] gives the action of s;, Q1 and % (']I‘KM) also in the GI°' x
Gl getting. Only the action of u needs a little extra care. In [37] we make u act as the
Chern class of £ (pull-back along A x X — X). Now we are working with U instead of X,
so the GI¢*-equivariant Chern class of L]y is trivial (since we have fixed the equivariant
structure of £ so this holds). Instead, u should act as the equivariant parameter of G4l

as in Construction 7.3.1. Also note that § acts by the equivariant parameter of G'°*, and
ot

Acan acts by the pullback of the equivariant Chern class c?"‘ (WBung )-
The same argument as in Theorem 7.3.7 shows that

Theorem 8.3.2. Construction 8.5.1 gives an action of H®" on the ind-compler fy . Q in
the equivariant derived category Dé’;mxgd“ (AY x U).

Let fe“ Q = fu.Q|genyy. According to the action of X, (T) C W C %, we may
decompose fy.Q into generalized eigen-complexes (see [38, §2.2])

ell Q @ ell

KQT@)

where k runs over finite order elements in ’/H\‘(Q) = Hom(X,(T),Q*).
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Definition 8.3.3.

1) The stable part (fSQ)g of f& Q is the direct summand (£ Q). Equivalently, it
( b U\ U,* U,x q y

is the maximal direct summand of f{jl’l*(@ on which X, (T) acts unipotently.
(2) For a € A%, the stable part H(Em(y)(/\/la)stD of Ham(u)(MG) is the stalk of (ff,“. )st

at (a,0). This is also the maximal direct summand of Hg, ) (Ma) on which X, (T)

m

acts unipotently.

For the Hitchin moduli stack without Iwahori level structures, the stable part is first
defined by Ngd [25] as the geometric incarnation of stable orbital integrals, hence the
namesake. Ngd’s original definition uses the action of 7o(P,) instead of X, (T), and is in
fact equivalent to our definition because of the following lemma.

Lemma 8.3.4. The stable part H(Em(u)(/\/la)st is also the direct summand of Ham(u) (M)
on which 7o(P,) acts trivially.

Proof. In [39, Theorem 1.5], we have shown that the action of Q[X,(T)]" on H*(M,)
factors through the action of m9(P,) via a canonical algebra homomorphism

QX (T)]" — Q[mo(Pa)]. (8.3)

The proof works as well in the G,,,(v)-equivariant situation. On the level of spectra, (8.3)

gives a natural morphism ¢ : 7T0/(7)\a) T /W (where ﬂo/(P\a) is the diagonalizable group
Spec Q[mo(P,)]). Let

H:(F}m(u) (Ma) = @ Hém(y) (Ma)x

keT

be the decomposition of Hg, (M,) into generalized eigenspaces under the X, (T)-ac-
tion. We also let

HG, . )y Ma) = @ HE, ) (Ma)y

—

PEmo(Pa)

be the decomposition according to the action of my(P,), which is a finite abelian group
since + is elliptic. Then the global main result of [39] in our situation says that for any
W-orbit E C T (viewed as a point in T / W), we have

@Hg}m(z/)(Ma)ﬁ = H(E,m(y)(Ma)Lfl(E)- (8.4)

KEE

It is shown in [26] that ¢ can be lifted to an embedding of groups 7T0/(73\a) < T. Therefore,
the preimage ~%(1) is set-theoretically supported at 1 € mo(P,). Applying (8.4) to
E=1¢eT /W we get the desired statement. O
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Corollary 8.3.5. For a € AY and a elliptic, we have HE o) (Ma)st = HE o) (M,).

Proof. By Proposition 6.6.3(2), P, is connected. Therefore the equality follows from
Lemma 8.3.4. O

8.3.6. The perverse filtration
The perverse ¢-structure on DGrothdﬂ (A x U) gives the truncations P7<( fCll )st

of the complex ( fU’! )st- We shift the degrees of the truncation by setting

P<z(fell )st := PT<itdim(AxU) (ff}l,ll@)st

Let Gr} (fo 1Q)s; be the associated graded of this filtration. In other words,
P (fhQ)u = (pHi—i-dim(AxU)(flc}l’llQ)st) [—i — dim(A x U)].

Our convention makes sure that Grf ( fe“@)st is a shifted perverse sheaf in perverse
degree i 4+ dim(A°" x U), and that Gr? (fell )st = 0 unless 0 < i < 2dim f&.

The Deligne-Mumford stack Me“ is smooth and the morphism fell is proper. The
decomposition theorem implies that there is a non-canonical isomorphism

2 dim fgi

@ (fell ) (f-ell )

=0

The above decomposition in fact holds in the equivariant derived category
Df}mtx(@d,l (Aeu x U). This is a consequence of the decomposition theorem for proper
InOI‘phlSInS between Artin stacks with affine stabilizers, proved by S. Sun in [34, Theo-
rems 1.2, 3.15].

A key property of Gri ( fe“ )st is the following support theorem. Recall we have the
evaluation map A x U — ¢ (using the trivialization of £ over U). Let (A x U)™ be the
preimage of ¢"*

Theorem 8.3.7. The support of each simple constituent of the shifted perverse sheaf
(fell )st is the whole A x U.

The proof of this support theorem is the same as [38, Corollary 2.2.4], which is based
n [38, Theorem 2.1.1], provided the codimension estimate codimAs;s holds (see [26]).
We give detailed argument for this codimension estimate in Appendix B.

Let a € A°! be homogeneous of slope v. The inclusion 4,0 : {(a,0)} < A" x U is
Gy (v)-equivariant, therefore the stalk iZ‘mO)(ff}ljllQ)st € Df}m(v) (pt) calculates the part
HE, (V)(./\/la)st of the G, (v)-equivariant cohomology of M, on which X, (T") acts unipo-
tently Moreover, the natural map P<;( fen st — ( fen )st induces a map on stalks
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i{0,0) P<i(fE1Q)st = 10,0y (fE1Q)se = BE, () (Ma)st (8.5)

which is also a direct summand since P<;( f;}l}l(@)st = ( fgl)ll(@)st is.
8.4. The global sheaf-theoretic action of H3

A bigraded action of ™' on Gr ( fe” )st is a bigraded algebra homomorphism

erat N @End2j @G cll ( )

JEZ i€Z

where the grading of the RHS is given by assigning

Hom(Gry, (f11Q)st, Gr/, (f81Q)st[241())

the bidegree (j,i2 — i1). We shall construct such an action by first specifying the actions
of the generators of H¢,

Construction 8.4.1. The action of v and § are given by the equivariant parameters of
Gdil and GIoF respectively, viewed as maps Grl (fe“ )st — GrY (fell )st[2](1).

Construction 8.4.2. The action of the finite Weyl group W. Since W acts on fu«Q, the
stable part ( fe“Q)st is therefore stable under the finite Weyl group W C W. Passing to
the associated graded pieces under the perverse filtration, we get an action of W on each

(fell )

Construction 8.4.3. The action of X, (T). By [38, 3.2.1], the action of A € X,(T) on

(f Q) is the identity. Note that [38, 3.2.1] is applicable here because of the validity
of Th( orem 8.3.7 in our situation. Therefore A —id sends P<1(fe11 )st t0 P<;— 1(fe“ )st-
The action of X\ € X, (T") on Gr? (fe“(@)st is given by

Arat 1= A —id : Gr} (f1Q)st — Gl (f£1Q)s.

Construction 8.4.4. The action of X*(T). Let £(£) be the tautological line bundle on My
indexed by ¢ € X*(T'). As in [38, 3.2.2], we consider the map

(Uer (£(9))st : (FQ)st — L Q Z2ECD, fell Qla](1) - (fehQ)se

where the first and the last arrow are the natural inclusion and projection of the direct
summand (f§1Q)s of fLQ. By [38, Lemma 3.2.3], the map (Uey (L) induces the zero
map Cr/ (fe“(@)st — Grl+2(fe“ )st[2](1). Again, [38, 3.2.1] is applicable here because
of the validity of Theorem 8.3.7 in our situation. Therefore it sends P<;(ff'Q)st to
P<ip1(fE1Q)s[2](1), and hence induces
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rat = Grf(ucl(ﬁ(f)))st : Grzp(f(ejl,l! )st — Grzl'jrl(f(ejl,l! )se[2](1).

This is the action of £ € X*(T).

rot
Construction 8.4.5. The action of A¢a, is given by the cup product with c?m (WBung ),
viewed as a map Grf( [‘}{I!Q)St — Grﬁ_Q(f[‘}{l! )st[2](1)-
Applying Proposition 4.3.1 to ( f[ej{l!Q)St with the perverse filtration, we get
Theorem 8.4.6. Constructions 8.4.1-8.4.5 defines a bigraded action of $H™' on
Grf(fﬁl}! )st in the equivariant derived category D%med“ (AL x U) (in the sense as in
the beginning of this subsection,).

8.4.7. The homogeneous case

Now let v > 0 be an elliptic slope, then AY < A°l. By Corollary 8.3.5, the stalks
of f,1Q along AY are always stable in the sense of Definition 8.3.3. In other words,
fo1Q = i5(f'Q)st, where i, : AY < Al is the inclusion. We define the perverse
filtration on f,,Q by

Pe;if1Q =iy, P<;(f1Q)ss.

For a € AY, we have an induced perverse filtration P<HE () (M) on Hg (, (Ma) by
taking the stalk of P<;f, 1Q at a.

Corollary 8.4.8. Let v > 0 be an elliptic slope. There is a bigraded action of H2* on the
graded complex Gr*Pfl,,IQ on AY (in the sense as in the beginning of this subsection). In
particular, for a € Ay, there is a bigraded action of H™ on Ger(Em(y)(Ma)~

Proof. Most parts follow directly from Theorem 8.4.6 by restricting to AY. The only
thing we need to check is that the degree (4,2)-element Bk gives the zero map
Grf(f%g(@)st — GrﬁQ(fl,ng)St. From Remark 7.4.2 we know that By € 98" acts on
f.1Q as a multiple of €2. Since €? preserves the perverse filtration, Bk gives the zero

map Gr{ (£, Qs = Crlln(fr Qs O
8.5. Proof of Theorem 8.2.3(1)

First note that if we change G to a group isogenous to it, neither $** nor (qu’!Q)g
change (the latter uses the fact that Sq surjects onto €, proved in Lemma 3.3.5(4)).
Therefore, to prove Theorem 8.2.3, it suffices to prove it for any group isogenous to G.
Therefore, we may assume that Assumption (6.9) holds for G (for example, we may take
G to be adjoint).

Recall v > 0 is elliptic and a € ¢(F). As in §6.6, we use the line bundle £ = Ox (v)
to define the Hitchin moduli stack M and the Hitchin fibration f : M — A. In this
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case ¢(F)® = AY and the Hitchin fiber M, is defined. By Proposition 6.6.3(2) (which
is applicable since (6.9) holds), we have a canonical isomorphism between complexes on
o(F)p =AY

fu,!@ :> (%,!@)5- (86)

Taking stalks at a € ¢(F)}® we get

HE () (Ma) = HE () (Ma)st = g (,)(Sp,)%. (8.7)
Definition 8.5.1. Let v > 0 be an elliptic admissible slope and a € ¢(F).

(1) The perverse filtration Pg(qy,;(@)g is the transport of the perverse filtration P<; f, 1Q
under the isomorphism (8.6). -

(2) The perverse filtration PgiHam(V)(Spa)Sa is the filtration on Hg, ,(Sp,) given by
talking the stalk at a of Pgi(qy,g(@)g. This is also the transport of P<;Hp (M)

under the isomorphism (8.7).

Lemma 8.5.2. For a € ¢(F)}? and all i, PgiHam(y)(Spa)ga is stable under the action of

v

the braid group Bi.

Proof. By the decomposition theorem, each P<; f,,1Q is a direct summand of f,,Q, there-
fore Pgi(qy,y(@)s is a direct summand of g,,1Q. By Corollary 5.4.5(2), ¢, Q is a direct sum
of shifted semisimple local systems on ¢(F)', therefore so is P<;(q,1Q). Taking stalk
at a then gives the action of B, = m1(c(F)!, a) on each degree PSiHém(V)(Spa)Sa. O

Corollary 8.4.8 and (8.7) then imply

Corollary 8.5.3. Let v > 0 be an elliptic slope and a € ¢(F)®=. Then there is a bigraded
action of HI* on Ger(&m(v)(SpG)Su commuting with the action of By.

To finish the proof of Theorem 8.2.3(1), it remains to show that the perverse filtration
coincides with the Chern filtration on Hg | (V)(Spa)SMB“ and the actions of $** also
coincide there.

Proposition 8.5.4. Let a € ¢(F)}.

(1) The Chern filtration (Definition 8.2.1) and the perverse filtration (Definition 8.5.1)
on H(Em(u) (Spa)SaxB

2) The H™-module structures defined on Gr¢H* Sp Sax Ba in Proposition 8.2.2
v * Gm(u) a
and on Geram(V)(Spa)gaxB” (Corollary 8.5.3) are the same under the identifica-
tion of the two filtrations.

a coincide.
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Proof. (1) Let h = 230 &i(wi— 1)+ (w;—1)&;, w; € X (T*°) is a basis (viewed as elements
in Wag), and {&;} is the dual basis for a*. This is a lifting of h € $}** into H2". Let M =
H—1(Sp,)%+>*Ba. We only need to show that both C<;M and P<;M are the direct sum of
generalized eigenspaces of h with eigenvalues < i — N, where N = dim Sp, = %r(yh —1).

For C<;M, this follows from Proposition 8.1.2(3). For P<;, since GrfM is an
9;%_ -modules, the action of h on Grl’M is i — N’ for some integer N’. We can de-
termine N’ by computing the action of b on the class 1 € Gréj M. The same calculation
in Proposition 8.1.2(3) shows that N’ = N, and therefore P<;,M is also the direct sum
of generalized eigenspaces of h with eigenvalues < i — N.

(2) follows from the uniqueness part of Proposition 4.3.1. O

8.6. Frobenius algebra structure and proof of Theorem 8.2.5(2)

Definition 8.6.1. A Frobenius Q-algebra is a finite-dimensional Q-algebra A equipped
with a perfect pairing (-,-)4 : A® A — Q such that (ab,c)a = (a,bc) for all a,b,c € A.
The pairing is necessarily given by (a, b) 4 = £(ab) for some Q-linear map £: A — Q.

Let N = dimSp, = 4r(vh — 1). The finite flat commutative Q[e]-algebra
HEM(V)(Spa)S“ is equipped with a Q[e]-linear quotient map £ : Ham(u)(Spa)S“ —
GrgNHam(V)(Spa)S"'. Now GrgNHam(V)(Spa)Sa is a free Q[¢]-module of rank one on
which B, also acts trivially. We fix a generator [Sp,]®(*) € GrfNHém(y) (Sp,)®«, hence

identifies GrgNH(Em(V)(Spa)ga with Q[e]. Specializing € = 1, we get a linear map

0:H._1(Sp,)% — GrPyHe_1(Sp,)% = Q.

Clearly Gerezl(Spa)ga*‘Ba has an algebra structure induced from the cup product.
By Proposition 8.5.4(1), GrlH._;(Sp, )% P+ also carries an algebra structure induced
by the cup product. Projecting to Grly gives a linear function on GrlH,—;(Sp,, )% *Be
that we also denote by /.

SaXB

Lemma 8.6.2. The pairing (z,y) := £(zy) on GrlH._,(Sp,) @ satisfies the following

relations:

(x,y) = (@, &y), Y€ € a*; (nz,y) = —(z,my),Vn € a and (wz,wy) = (z,y),Yw € W.

Proof. We need to show that three equations defining the contravariance are satisfied.
The first equality is immediate since both sides are the degree 2N part of {xy.

SaxBa ig generated by the images of the

For the second equality, since Gerezl(Spa)
Chern polynomials, it suffices to prove it for = z1---2;- 1 and y = y1 -~ yan—i41 - 1,
where x;,y; € a* and 1 means the generator in Gry He—; (Sp,)%*P«. Since zy -1 = 0

and 7 - 1 = 0 for degree reasons, we have
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2N—i+1
le “wjalm gl wy + Z zy1 - Yi—1 [, Y1y yen—iv1 = 0.

Now the first sum is (nz)y and the second is x(ny). Therefore (nz)y + x(ny) = 0, and
the second equality holds.

The last equality follows from the fact that W acts trivially on the one-dimensional
space GrayH— 1(Spa)s In fact, GriyHc—1(Sp, )" is spanned by eV -1, and W commutes
withe. O

Proposition 8.6.3. Let v be elliptic and a € ¢(F);

(1) The algebra He— 1(Spa) @ is a Frobenius algebra under the linear map .
(2) The algebra Gr; Hezl(Spa)S aXBa s q Frobenius algebra under the same linear map.

Proof. As in the first paragraph of §8.5, we may assume that (6.9) holds for G and apply
the local-global isomorphism in Proposition 6.6.3.

(1) We switch to the global point of view and prove that H.—;(M,) is a Frobenius
algebra. Let D be the dualizing complex of My, and D’ be the dualizing complex of
A x U. Let i : AY x {0} — A°" x U be the inclusion of the fixed point locus of the
Gy (v)-action. We have a commutative diagram coming from the functoriality of Verdier
duality pairings ho and h (note f&' is proper)

eHID)®z 7" e“(@—>zzﬂ) =Dy

th

ell ]D) ® fell Q D’

This implies that the composition 7' fe“ D®i* felQ — 4 (fell ]D)®fe” Q) 4% ' = D 49
is the Verdier duality pairing hg. We have another commutative diagram

ell D ® i* ell @ it ( ell D ® fell @) ih i!D/ (88)

l .

ellD®Z* ell@ i ( ellD®fellQ) i"h D

where the first row is the duality pairing hy and all vertical maps are induced from
the natural transformation i* — *. By Lemma 8.6.4 below, inverting ¢ (or specializing
€ = 1) makes all vertical maps isomorphisms. In particular, the second row above is also
a Verdier duality pairing after inverting e. Choosing a fundamental class of My allows
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us to identify D with Q[2dim M](dim My ). Then the second row above, up to a shift,
factors through the cup product

£0nQ® £0uQ % £,.0 5 Q[-2N](-N) (8.9)

for some map ¢ : fu..Q EN Q[-2N](—=N). Since Q[—2N](—N) lies in perverse degree
dim AY 4+ 2N while Peif, Q= i*Pijf“Q lies in perverse degrees < dim.AY + 7,
the map ¢ has to factor through the projection to GJréD ~fv,«Q, which is isomorphic to
Q[-2N](=N) (note that the whole complex f, .Q is stable). Therefore, taking stalk at
a € AY, and specializing to € = 1, the pairing (8.9) is exactly the pairing (u,v) — £(uUv)
we defined on H.—; (Sp,)®+. Since the second row of (8.8) is a duality pairing after setting
e = 1, and all the complexes involved there are direct sums of shifted local systems
over AY, taking stalk at a also gives a perfect pairing on H.—;(M,) = H.—;(Sp,)"".
This proves (1).

(2) Taking B,-invariants on H._1(Sp,

)ga and restricting the pairing there we still
get a perfect pairing since B, acts semisimply on H€:1(Spa)sj by Corollary 5.4.5, and
acts trivially on GrayH.—;(Sp, ). Therefore V = H._; (Sp, )% * P« is also a Frobenius
algebra under £. The pairing on V' gives an isomorphism ¢ : V' — V* that sends P<;V
to (P<an—1-4V)*. Verdier self-duality of He—;(Sp,)°*, when restricted to B,, gives the
dimension equality dim P<;V = dim V —dim P<gon_1_; = dim(P<ay_1-;V)*. Therefore
¢ restricts to an isomorphism P<;V = (PSQN,l,iV)J- for all ¢. Taking associated graded
we conclude that the pairing is also perfect on Grl’ V. This proves (2). O

Lemma 8.6.4. Let i : AY x {0} — A x U be the inclusion of the fived point locus of the
G (v)-action. Suppose F € Dé’;m(y)(Ae“ x U) then the natural map i'F — i*F, viewed
as a map in the Qe]-linear category Dé’}m(y)(Af,?) (where G, (v) acts trivially), becomes
an isomorphism after inverting e.

Proof. By Lemma 6.5.1, the action of G,,(r) on A x U is contracting to the fixed
point locus A, x {0}. The contraction map c4 : A x U — A, x {0} sends (a,z) to
limg,, (1)5s—0 5 (a,z). Let Bx U C A x U be the preimage of AY x {0} under c4. Let
c: BxU — AY be the restriction of ¢4, and still denote the inclusion AY x {0} < Bx U
by i. Then it suffices to show that i'(F|sxr) — i*(F|sxv) becomes an isomorphism after
inverting e.

Now let F' € Dé’;m(y)(l? x U) and consider the map i'F — i*F. Since F is
Gy (v)-equivariant, we have i' F 2 ¢ F, and the natural map i'F' — i* F' can be identified
with the composition i'F o F — ¢ii*F = i*F. The cone of the map ¢ F — ¢, i*F is
c1j17* F[1] where j is the open inclusion of the complement of AY xU. Since G,,,(v) acts on
BxU —AY x {0} with finite stabilizers, the complex (coj) F’ € Dé’;m(y) (AY) is e-torsion
for any constructible G,,(v)-equivariant complex F’ on B x U — Ay x {0}. Therefore
after inverting €, ¢/ F — ¢1i,i*F becomes an isomorphism, hence so is i'F — i*F. 0O
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Remark 8.6.5. The usual cohomology groups H*(Spa)ga and Ger*(Spa)gmBa are not
necessarily Frobenius algebras under /¢, as one can see from the example G = PGLy and
v=3/2.

Proof of Theorem 8.2.3(2). (Compare [2, Proposition 1.20].) The sl;-triple action on
the finite-dimensional vector space GrlH._;(Sp,)°**P« integrates to an action of
01
-10
GrPH.—1(Sp,)%*B: — Q defined by J(a,b) := £(a - F(b)). Let M, (triv) = He (FI°)
be the polynomial representation of $*2'_, and let J be the pullback of J to M, (triv).

v,e=1

SLy. Let F = ( ) € SL, and consider the pairing J : GerEZl(Spa)ga”Ba X

By Lemma 8.6.2, this pairing is contravariant in the sense of [12, Section 11.3], hence
coincides with the pairing on 90, (triv) constructed in [I12] up to a scalar. Since
J factors through the perfect pairing J on GrP He—1(Sp,)%*Pa, we conclude that
GrlH,(Sp,)%*B = £, (triv) by [12, Lemma 11.6]. O

8.7. Langlands duality and Fourier transform

In this subsection we show that the cohomology of homogeneous affine Springer fibers
for the group G and its Langlands dual GV are in a certain sense Fourier transform of
each other. The results in this subsection will not be used elsewhere in this paper.

8.7.1. Fourier transform on $*¢

Let $™40 ¢ §rat be the subalgebra generated by w, d, W, a and a*. In other words, we
suppress Acan from the generators. The relations (RC-1) through (RC-4) still hold. In the
following we will consider the rational Cherednik algebras for both G and its Langlands
dual GY. We denote them by $5* D and ﬁrat respectively. For n € a, let us use ng
(resp. ngv) to denote the corresponding element in g 5 (resp. ﬁg\tj

define &g and £gv for £ € a*. Then the relation (RC-4) for ﬁgvt D reads

). Similarly we

leov mav] = (€05 + <Z calé, 0¥} o, A)ra> ",

acd

rat,[]

There is an isomorphism tg_gv : Sﬁgt it Ny called the Fourier transform. It is

determined by
uru, = 0,w— wlw e W) ng — —nev(A € a),és — &ev (€ € a).

The minus sign put in front of ngv makes sure that (RC-4) for ﬁrat g equivalent to
(RC-4) for HrtH.

For Langlands dual groups G and GV, we may identify their Cartan subalgebras
t =tV using the Killing form, and hence their invariant quotients ¢ = ¢V. We define the
parabolic Hitchin moduli stacks M and MY for G and GV using the same curve X and
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the same line bundle £ = Ox(d). Under the identification ¢ = ¢”, the Hitchin bases in
the two situations are the same, which we still denote by A.

Similarly we have the version where the point of Borel reduction varies in U. We
denote the parabolic Hitchin fibrations for G and GV by

fuo My = AxU; f M — AxU.

Let fell and fg’eu be the restrictions of fe!' and fV-*!' over A x U.
We have a G, (v)-equivariant version of the main result of [38].

Proposition 8.7.2. (See [38].) There is a canonical isomorphism of shifted perverse
sheaves in Dé’}mthd“ (A x U):

Di v Gl (f811Q)s = Griy (£ Q) [2N — 2i)(N — i)

which intertwines the action o "~ an v rough the Fourier transform ig_gv .
hich intertwines the action of 25 and ST through the Fourier ¢
Here v =0,1,--- ;2N and N is the relative dimension of fﬁ“ and f[\]/’en.

Proof. To save notation, we write®
o (P pell ) o (1P Vel
Ki = GI‘Z- ( 5,!Q)St’ Ll = Gri ( U,* Q)st'

In [38], where we worked without GI°* x Gdil-equivariance, we have defined the isomor-
phism D&_ﬂgv : K; = Loy _i(N — i) and proved that D&_ﬂgv intertwines the action of
ng and —ngv for € a. The proof there extends to the G x Gdil-equivariant setting
as well. It is also easy to verify that D ;v commutes with the action of u,§ and W. It
remains to show that Df . intertwines g with {gv. Switching the roles of G and GV,
it suffices to show that Df. _, intertwines ngv with ng for all 4.

Consider the following diagram

Di_ev DIV
K; - Lon_i[2N — 2i](N — 1) - K; (8.10)
\L neG \L —nNgVv l ne
D ey Dy S

Lon_i41[2N —2i +2|(N —i+1) Ky
Tracing through the definition of Df_,;. in [38], we find that the composition
DV oDE_gv i Ki 5 Loy —i[2N — 2i|(N —i) > K,

4 Note the difference from notations in [38], where K% and L? are perverse sheaves; here K; and L; are
shifted perverse sheaves in perverse degree ¢ + dim(A x U).
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is not the identity but the multiplication by (—1)%. Therefore the outer square of diagram
(8.10) commutes up to —1. Since the left square is commutative, the right square also
commutes up to —1. This means that Dé]y;’G intertwines ngv with 7ng. This finishes the
proof. O

8.7.8. Homogeneous affine Springer fiber for the dual group

Let v > 0 be an elliptic slope for G and hence for GV. Identifying ¢(F'), and ¢V (F),
using a Killing form on t. This also allows us to identify the braid group B, without its
counterpart for GV. Let a € ¢(F)™. Let Sp, be the homogeneous affine Springer fiber
for GV associated with " (a) (where k¥ : ¢V — gV is the Kostant section for g¥). The
counterpart of S, for GV is denoted by gg Applying the Proposition 8.7.2 to the stalk
at (a,0) € AY x U, and using the isomorphism (8.7), we get

Corollary 8.7.4. Let N = dim Sp,. There is a canonical isomorphism for 0 < i < 2N,
j=0

P 5. ~ P NPT VA5V
D&LGV,a : Gr; H%;,,"L(V)<Spa) - Gr2N7iHé}‘,m((y) Z)(Spa> “

that is equivariant under B,, such that the sum of these isomorphisms (for various i,7j)

intertwines the actions of 5’){;‘?’5} and f)f(fvt’y through the Fourier transform tg_gv -

9. Examples

For quasi-split groups G of rank two, the Cherednik algebra $**! is the one attached to
a dihedral Weyl group with possibly unequal parameters. We will review the algebraic
representation theory of such Cherednik algebras in §9.1. After that, for each almost
simple, simply-connected quasi-split group G over F' of rank at most two, we study
the cohomology of its homogeneous affine Springer fibers and the relevant Hessenberg
varieties of various slopes v = 1/mq, where m; is a #-regular elliptic number.

The general slopes v = dj/my can be reduced to the case v = 1/my by Propo-
sition 5.5.8. The case m; = hg, the twisted Coxeter number, is treat for all G in
Example 8.2.6. Therefore we only look at cases where my is not the twisted Coxeter
number. For each v = 1/my, we describe the L,-module g(F'), in terms of simple linear
algebra such as quadratic forms, cubic forms, etc. Following the discussion in §5.5.4, we
will show in pictures how to decompose the apartment 2 into clans, and describe the
Hessenberg varieties Hess? (v € ¢(F)™) corresponding to each bounded clan. These Hes-
senberg varieties turn out to be familiar objects in classical projective geometry. Finally

)SaxBa

we compute the dimension of H*(Sp, , and verify that it is consistent with the

dimension of irreducible $2¢

_1-modules known from the algebraic theory.
In the final subsection we give computational and conjectural results on the dimension

of £, (triv) in general.
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9.1. Algebraic theory

The Weyl groups of rank two quasisplit simple groups are dihedral groups Iz(d) of
order 2d for d = 3,4 or 6. The representation theory of the rational Cherednik algebras
of dihedral type was studied by Chmutova in [9]. Below we use the classification of the
finite-dimensional representations from [9] and for convenience of reader we explain how
to match our notations for the Cherednik algebras with the notations from [9].

We shall concentrate on the case d is even because d = 3 only appears in the case
of type Ay and m is the Coxeter number. The group Is(d) acts on R?> = C and the
set S of reflections in the group I5(d) consists of elements s;, 1 < j < d, s;(2) = w’z,
w = exp(2mi/d), = = x + iy. The dihedral group I»(d) acts on S with two orbits:
S1 = {s2j+1},52 = {s2;}. The algebra $}*'; (I>(d)) over R is generated by the elements
g € I5(d) and z,y € C defined by the relation:

wrw™ ' = w(z), wyw ' =wly), [T,y =1- Zk’ Z {ag, z){y,a))s.  (9.1)
i=1 sES;

The group I(d) has four one-dimensional representations Xe, ., defined by xe, ., (s) = €
if s € S;. Results of Chmutova [9, Theorem 3.2.3] provide formulae for the dimensions
of the simple modules £, (X, ,)- Below we decompose the cohomology of the affine

rat (

Springer fibers into D ks 2(d))-isotypical components and compare the dimensions of

these components with the results of [9].
9.2. Type Ay, my =2

The only regular elliptic number besides the twisted Coxeter number m; = 6 is
my = 2. Let v = 1/2. Let G = SL(V) where V is a 3-dimensional vector space C
equipped with a quadratic form gg. Denote the associated symmetric bilinear form by
(,-). The vector space V@cC((t/?)) is equipped with a C((t/?))-valued Hermitian form
h(z + Y2y, 2z + t12w) = (z,2) — t(y, w) +t/2(y, 2) — Y2 (z, w), for z,y, z,w € V &¢ F.
Let G be the special unitary group SU(V ®c C((t'/?)), h).

9.2.1. L, and g(F),
Let a be the simple root of H = G?. The real affine roots of G(F) are:

to+7Z5/2, +2a+6/2 + L4

We have L, = PGLy with roots +(a — §/2). The affine roots appearing in g(F), are
a, —a+0, 2a — §/2, —2a + 36/2 and 6/2. We write L, = PGL(U) for a 2-dimensional
vector space U, then g(F), = Sym*(UV) @ det(U)®2. To each v € g(F)™, viewed as

a binary quartic form, one can attach a curve C, of genus one as the double cover of
P! = P(U) ramified above the four zeros of . The pair (L,,g(F),) has been used by
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Fig. 1. The apartment 2 for 2A,, v = 1/2. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

Bhargava and Shankar to compute the average size of 2-Selmer groups of elliptic curves
over Q, see [5] and [19].

9.2.2. The Hessenberg varieties

Fig. 1 shows the apartment for 245 with the alcoves marked with the expected di-
mensions of the Hessenberg varieties. We use gray to mark the fundamental alcove and
the red numbers to mark the alcoves that represent the W, -orbits. The 1-dimensional
Hessenberg variety is P(U) = PL. The 0-dimensional Hessenberg variety consists of four
points which are zeros of the binary quartic form -y, or equivalently the Weierstrass points
of C,. One can identify the stabilizer S, with J(C,)[2] where J(C) is the Jacobian of C,.
Then S, acts simply transitively on the 0-dimensional Hessenberg variety.

9.2.3. Irreducible modules

From the above discussion we conclude that for a € ¢(F),

He1(Sp,)** = Heet (Sp,) %" P = H*(P') & H* (pt)

is 3-dimensional. On the other hand, $;'_, in this case is isomorphic to the rational
Cherednik algebra of type A with parameter 3/2, which has a unique finite-dimensional
irreducible module £, (triv), and dim £, (triv) = 3. Hence Gr¢H._, (Sp, )% = £, (triv).

9.8. Type Co, m =2

In type C5, the only regular elliptic number besides the Coxeter number m = 4 is
m = 2. Let v = 1/2 (Fig. 2). Let G be the split group Sp(V,w) over C, where (V,w) is a
symplectic vector space over C of dimension four. Let G = G ®¢ F.

9.3.1. L, and g(F),
The real affine roots of G(F') are:

+2¢; + Z5, +e; & eg + Z6.
The roots of L, are (e; + ea — §). The affine roots appearing in g(F), are:
2€1 — 5, €1 — €3, —2€3+ 5, 2¢5, €3 — €1+ 5, —2€1 + 296.

The Levi factor L, can be identified with GL(U) where V. = U®U" is a decomposition
of V into two Lagrangian subspaces. As an L,-representation, g(F), = Sym?*(U) @
Symz(U V), i.e., the space of pairs of quadratic forms q; and g2 on U and U" respectively.
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Fig. 2. The apartment 2 for Ca, v = 1/2.

Choose a basis ej,es for U and let f; and fo be the dual basis for UY. Up to
L,-conjugation an element v € g(F)™ takes the form q; = f2 + f2 and g2 = A€ + \ye3
for some A, A2 € C*, A\ # Aa. The centralizer group S, of the regular element v is
1o X p2, and it acts by changing signs of the basis vectors of U and U".

9.3.2. The Hessenberg varieties

The picture with v-wall is given above and it indicates that there are only three classes
in WV\W such that the corresponding Hessenberg variety is non-empty.

The one-dimensional Hessenberg variety is P(U) = P!, the flag variety of L,. There are
two kinds of zero-dimensional Hessenberg varieties, each consisting of lines ¢ C U which
are isotropic with respect to one of the forms ¢; and ¢o. In either case the zero-dimensional
Hessenberg variety consists of two points that are permuted transitively by S,.

9.3.8. Irreducible modules

From the above discussion we conclude that for a € ¢(F)i?

H?_,(Sp,)° = H!_,(Sp,)" P+ = H*(P') @ H* (pt) @ H* (pt)

has dimension 4. On the other hand, by [9, Theorem 3.2.3(vi)], the algebra
5‘?21 /2(12(4)) has a unique finite-dimensional representation £, (triv) and it is of di-

mension 4. Hence GrZH._;(Sp,)% = £, (triv).
9.4. Type Az, my =2

Besides the twisted Coxeter number m; = 6, the only regular elliptic number in this
case is my = 2. Let v = 1/2. Let G = SL(V') where V is a 4-dimensional vector space C
equipped with a quadratic form gg. As in the case of type 245, we have the associated
symmetric bilinear form (-,-), which extends to a Hermitian form h on V ®@c¢ C((t*/?)).
Let G be the special unitary group SU(V ®c C((t'/2)), h).
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Fig. 3. The apartment 2 for Az, v = 1/2.

9.4.1. L, and g(F),
The real affine roots of G(F) are:

% + 26, tei ey +725/2, i=1,2,

and vpY = (3/4,1/4) under the coordinates (g, €2).
The roots of L, are +(e; + €2 — ) and +(e3 — €2 — §/2). The affine roots in g(F), are:

52, +(2—35/2)+5/2, +(2es—05/2)+5/2,
i(€1+62—5)+5/2, :|:(61—€2—5/2)+5/2.

The group L, may be identified with SO(V, qp), and g(F'), may be identified with the
vector space of self-adjoint traceless endomorphisms of V' with respect to (-, ).

Choose an orthonormal basis ej,--- ,e4 for V, we may take the Cartan subspace s
to consist of diagonal matrices diag(a, aq, as,as) with respect to this basis, with small
Weyl group Sy acting by permutations of a;. The regular semisimple locus §™ consists of
the diagonal matrices with distinct eigenvalues. For v € §™, the group S, C w3 consists
of diagonal elements of determinant 1.

9.4.2. The Hessenberg varieties

Fig. 3 contains marking by the expected dimensions of the Hessenberg varieties and
the fundamental alcove is shaded grey. There are four alcoves with nonnegative expected
dimension in the dominant chamber with respect to W,,, and study the relevant Hessen-
berg varieties below.

Thus the two-dimensional Hessenberg variety is the flag variety of L,, hence isomor-
phic to P! x P!, Indeed, the flag variety of L, consisting of flags 0 C Vi C V3 = Vit C V,
hence is isomorphic to the quadric @1 C P(V') defined by (v,v) = 0, which is isomorphic
to P! x PL. The space of isotropic 2-planes V5 C V consists of two one-dimensional fam-
ilies of rulings of the quadric Q; = P! x PL. For each flag 0 C V; C V3 = Vi C V, there
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are exactly two isotropic 2-planes V5 satisfying V3 C Vo C V3, one from each ruling. We
denote the two isotropic 2-planes by V3 and V.

The one-dimensional Hessenberg variety parametrizes flags 0 C V3 C V3 = V- C V
such that (V7)) C V5. A nonzero isotropic vector v € V; determines a flag V; =
(v) C (v)t = V3, and the condition v(V;) C V3 is equivalent to saying that (v,yv) = 0.
Define another quadric @ C P(V) to be the locus (v, yv) = 0, then the one-dimensional
Hessenberg variety is isomorphic to the intersection of two quadrics 3, := Q1 N Q~ C
P(V'), which is a curve of genus one.

There are two kinds of zero-dimensional Hessenberg varieties each consisting of flags
satisfying the condition vV; C V3 or vV; C V3'. The union of these two zero-dimensional
varieties is the intersection of three quadrics (v,v) = (v,yv) = (yv,vv) = 0, which
consists of eight points. However only four of these points belong to each zero-dimensional
Hessenberg variety. In fact, let 71 and 72 be the projections ¥, C Q1 = P! x P! — P!
onto either factor P'. Then the four ramification points of 7; constitute one Hessenberg
variety and the four ramification points of mo constitute the other.

9.4.3. The genus one curve

The curve X, is closely related to another curve C, which we now define. Consider
the pencil of quadrics spanned by @1 and @~. Each non-singular member of the pencil
contains two rulings, we can then form the moduli space of rulings in this pencil which
gives a double cover C., — P! ramified at the points where the quadric is singular (there
are 4 such points). The curve C, has genus one. It is equipped with an involution &
over P!,

There is a map a : Cy x ¥y — 3, defined as follows. A point on ¢ € C is a quadric
Q' in the pencil together with a ruling on @’. Choosing p € X,. On the ruling of Q' there
is a unique projective line £ passing through p. The pair p € £ corresponds to a line and
plane V; C Vo C V both isotropic under @’. Since V5 contains exactly two lines that are
isotropic for the whole pencil, let V{ be the other line. The map a then sends (¢, p) to
the point V{ € 3,. It is easy to see that for fixed ¢ € Cy, a(c, —) is an automorphism
of ¥, (with inverse given by o(c)). Therefore 3, is isomorphic to C,, but not canonically
S0.

The action of S, on ¥, factors through the quotient S, := S, /A(uz2) where A(us)
is the subgroup of scalar matrices in L,. We claim that the action of gv on X, is fixed
point free. In fact, the fixed point locus of an involution from S, on P(V') consists of the
union of two lines {z; = z; = 0} U {7; = x; = 0}, where {1,2,3,4} = {i,4,i,5}. The
condition that ay,-- - , a4 are distinct implies that the intersection of ¥, with these lines
is empty. The Jacobian J(X,) of ¥, is an elliptic curve and ¥, = Pic'(3,) is a torsor

under J(X,). Since S, acts freely on ¥, it can only acts via translation by J(Z)[2],

b2
and we have a natural isomorphism S, = J(X,)[2] & J(C,)[2]. In particular, S, acts

trivially on H*(X,).
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Since the ramification points of both projections m,ms : ¥, — P! are torsors under
J(3,)[2] and S, acts on X, via an isomorphism S, & J(X,)[2], it acts simply transitively
on each of the zero dimensional Hessenberg varieties.

rs

As a varies over ¢(F)™, we get a family of genus one curves 7¢ : C' — ¢(F)™ whose
fiber over a is C, := C, for v = k(a). We have local systems R7¢Q on ¢(F)™ for

rs
v

i=0,1,2. Clearly R°7¢Q and R27¢Q are trivial local systems. As a varies over ¢(F),
the ramification locus of C, — P! runs over all possible configuration of 4 distinct ordered
points on A!, as we have already seen as v runs over §. Therefore the braid group B,
acts on H'(C,) = H'(3,(4)) via a surjective homomorphism B, — I'(2) = ker(SLy(Z) —
SLy(Z/27)). In particular, R'7¢Q is an irreducible local system over ¢(F)r.

9.4.4. Irreducible modules

From the above discussion we get that for a € ¢(F),

He—1(Sp,)% = H*(P! x P') @ H*(C,) ® H*(pt) ® H*(pt).

Only the direct summands H!(C,,) form an irreducible nontrivial local system as a varies,
and the other direct summands vary in a constant local system. Therefore

He:l(spa>sa = He:l(spa)sax}Ba S Hl(CU«)'

We have dim H.—;(Sp, )P+ = 8. By [9, Theorem 3.2.3], the simple modules £, (triv)
and £, (x4-) are the only finite dimensional irreducible representations of jﬁﬁa{ /2(I2 4)),
and they have dimensions 8 and 1 respectively. Hence Gr@H._; (Sp,)5*B= = &, (triv)
as .65?{/2([2(4))—m0dules. We expect to have an action of H7%] ,(I2(4)) on Gr’H*(Sp,,) %
(for some filtration P<; on H.—1(Sp,)°* extending the Chern filtration) commuting with
the action of B,. If this is true, the multiplicity space of the irreducible local system
R!'7¢Q should be the 1-dimensional module £,(x4_), and we should have an isomor-

phism of 1ﬁ*{/?(lg(él)) X Bg-modules

GrPH*(Sp,)5% = &, (triv) @ £, (x+_) @ H(C).
9.5. Type Ay, mq =2

Besides the Coxeter case m; = 10, the only regular elliptic number in this case is
my = 2. Let v = 1/2. As in the case of type 243, we fix a five dimensional quadratic
space (V, qo) over C, define G = SL(V) and G = SU(V ®@¢ C((t'/?)), h) for the Hermitian
form h on V ®¢ C((t'/?)) extending qo.

9.5.1. The pair L, and g(F),
The real affine roots of G(F') are

:|:6i+5Z/2, :|:61 :|:€2+6Z/2, :|:261+(5/2—|—(5Z, Z:LQ
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Fig. 4. The apartment 2 for 2A,, v = 1/2. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

and vpY = (1,1/2). The roots of L, are:
:|:(61—(5), :|:(€2—5/2), :|:(61—62—6/2), i(€1+62—35/2).
The affine roots appearing in g(F'), are:

5/2, (e —0)+8/2, L(es—08/2)+3/2, L(er + e —38/2) +5/2,
ey — e —0/2) + /2, (21 —20)+6/2, (23— 6) +6/2.

In Fig. 4 the fundamental alcove is shaded gray and alcoves are labeled by the expected
dimensions of the corresponding Hessenberg varieties. The v-walls are blue and the walls
of the Weyl group W, are red.

The group L, = SO(V,qo) and g(F)!* consists of the traceless self-adjoint endo-
morphisms of V. Choose an orthonormal basis ey, -+ ,e5 of V', and a Cartan subspace
5 C g(F)™ can be chosen to consist of the diagonal matrices under this basis. The small
Weyl group is S5. The regular semisimple locus s"° consists of diagonal matrices with
distinct eigenvalues. For v € §™, the centralizer S, C w5 consists of diagonal matrices

inlL,.

9.5.2. The Hessenberg varieties

The four-dimensional Hessenberg variety is the flag variety of SO(V, qy) consisting of
flags 0 C Vi C Vo C V3 CVyCV with Vi = Vi, Vo = Vit

The three-dimensional Hessenberg variety Hessz is defined by the condition vV C Vj.
The point V3 € P(V) then lies on the intersection of two quadrics Q1 : (v,v) = 0
and Q4 : (v,yv) = 0. The fibers of Hessf)’y — Q1 NQ, =: ¥, are isomorphic to P!,
which parametrizes choices of an isotropic line V5 /Vy C V- /V;, where V- /V; is a three
dimension space with a symmetric bilinear pairing induced from the restriction of (-, -)

to Vit
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The two-dimensional Hessenberg variety Hessi is defined by the condition vV, C V3
which is equivalent to the condition vVo C Vj. The projection 7 : Hessi — 3, (by
remembering V; only) is a 2-to-1 branched cover. The fiber of 7 over V; = (v1) consists
of isotropic lines (v2) = Va/Vi C Vit /V4 such that (yv2,v1) = 0. In other words, the fiber
of  at (v1) is the intersection of the projective line (vq, yv1) = 0 (where (v3) € P(ViE/V7))
with the conic (ve,v9) = 0 (again (ve) € P(ViE/V1)).

There two alcoves in the fundamental chamber of W, with expected dimension of
the Hessenberg variety equal to 1. The alcove that has one red side corresponds to
Lline harametrizing flags satisfying {yVo C V3} which is
equivalent to the vanishing of the restriction of the symmetric bilinear forms (-,-) and
(-,7-) on V,. That is Hess};li"e is a P! fibration over the finite set of lines in X.,. There
are 16 lines in 3.

the Hessenberg variety Hess)

The alcove that has no red sides corresponds to the Hessenberg variety Hess,ly’br
parametrizing flags satisfying V3 C Va. Therefore Hess1 br

the double cover Hess?Y — Y. In fact, B, consists of ﬂags such that V4 = (v1) such

that the projective line ]P’Span(vl,'yvl) is the tangent line to the conic @, C P(Vi:/V1)

is the branch locus By of

defined by the restriction of (-, -), and that happens if and only if (yv1,vyv;) = 0. On the
other hand, B, is an intersection of three quadrics @1, Q~ and @2, and the adjunction
formula implies that the genus of B, is 5.

Finally the zero dimensional Hessenberg varieties Hessg parametrizes flags satisfying
vV1 C V4 and vV, C V3. It consists of 16 points corresponding to the 16 lines on the
surface X,.

9.5.3. The Kummer surface

The surface X, is a del Pezzo surface anti-canonically embedded in P*. Since B, is
the intersection of 3, with another quadric, we have B, ~ —2Ky, as divisor classes
on Y. Therefore, HessfY is a surface with trivial canonical class and Euler characteristics
2x(Z4) —x(By) = 24, ie., Hessi is a K3 surface. Below we shall see that this K3 surface
comes from the well-known construction of Kummer K3 surfaces from a torsor of the
Jacobian of a genus two curve C,. Our presentation is strongly influenced by [4].

Let V = V & C and introduce two quadrics in ]P’(V) given by Q1 : (v,v) = 0 (this is
degenerate) and Q'y . (v,yv)+a2 = 0 where (v,a) € V. Let C, — P! be the double cover
ramified at the singular locus of the pencil of quadrics spanned by él and @7 together
with oo (there are 6 singular points). Then C, classifies ruhngs on this pencil, and is a
curve of genus two. The involution ¢ = idy & (—1) : V — V fixes each member of the
pencil, and induces the hyperelliptic involution on C,.

Let F, be the Fano variety of projective lines in the base locus iv = @1 N @7. This
is a torsor under J(C.,). The involution o acts on F, compatible with the inversion on
J(C,). The fixed point locus FY consists of 16 points which corresponding to the 16
lines in ¥, = §7 NPWV).

The moduli space of isotropic planes Vo C V under (-, ) is isomorphic to P? (a partial
flag variety of SO(V)). Let P, C P3 be the subvariety classifying those V2 on which (-,~-)
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is degenerate. This is a singular quartic with 16 ordinary double points corresponding
to the 16 projective lines in X, (i.e., those V5 that are also isotropic under (-,v-)). We
have the following diagram

2
Hess] £,

Here f sends a flag V3 C Vo C --- C V to V5. The morphism f is birational with
16 exceptional divisors (= P!) over the 16 singular points on P,. The map g sends a
projective line, corresponding to a plane Vo C V to the plane V5 := Im(‘~/2 = V). It is
easy to see that g realizes P, as the GIT quotient F’,/o. Therefore Hess?/ is the Kummer
K3 surface coming from the J(C.,)-torsor F, together with the involution o.

The group S, acts on the Hessenberg varieties by the diagonal matrices with entries &1
and of determinant 1. Hence ¥, /S, = P? and H*(Hess:o’y)sv = H*(P')@H*(P?). Similarly,
B.,/S, = P!, and hence H*(Hess#’br)s7 = H*(P!). There is a natural identification
S, = J(C,)[2] and the action of S, on F, is via the translation by J(C)[2]. Therefore
S, permutes the lines on ¥, (i.e., ) simply transitively, hence it permutes simply
transitively the connected components of Hess#’lme and Hessg, giving H* (Hessiy*li”e)sv o
H*(P!) and H*(Hessg)SW = H*(pt). For the same reason, S., permutes the 16 exceptional
divisors of f : Hessi — P, simply transitively, and its action on H*(P,) = H*(F,)?
is trivial (because it extends to an action of the connected group J(C,)). Therefore
H*(Hess?y)sw =~ H?(P!) @ H*(F,)°. Choosing an isomorphism J(C,) = F,, we may
identify o with the inversion on J(C,), therefore H*(F,)? = &;-92.4 A* H}(C,).

Let 7€ : C — ¢(F)™ be the family of genus two curves C, := x(a)- Using the
Ss-cover § — ¢(F'),, we may identify ¢(F')}® with the space of monic polynomials f(z)
of degree 5 in C[z] with distinct roots, and 7 the family of curves 42 = f(x). By [21,
Theorem 10.1.18.3] (in fact its obvious characteristic zero analog), the monodromy of
R'7¢Q is Zariski dense. The upshot of the above discussion is that A2R!'7¢Q can be
decomposed as a direct sum of irreducible local systems Q(—1) @ (A2R 7' Q) prim Where
Q(—1) restricts to the polarization class in A2H*(C,) for each a and (A2R*7Q)prim is

its complement under the cup product.

9.5.4. Irreducible modules

From the above discussion we get for all a € ¢(F)}?

v

H—1(Sp,)% = H*(f¢,) ®@ H*(P?) @ H*(P') @ H*(P') @ (®izo.24 A" H(C,))

@ H*(P') ® H*(P') @ H* (pt)®*.
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Adding up dimensions we get dim H*(Sp,)% = 30. By the above discussion, only the
5-dimensional spaces (A?H'(C})))prim form an irreducible local system, and other pieces
are invariant under B,. We have

He_1(Sp,)%® = Hee1(Spy) %P @ (A2HY(C.))) prim,

hence dim He—1(Sp, )% P« = 30 — 5 = 25.

On the other hand [9, Theorem 3.2.3] implies that the algebra f)i‘““g/Q( 2(4)) has only
two finite dimensional irreducible representations £, (triv) and £,(x_4), the first one
of dimension 25 and the last one is one-dimensional. Therefore Gr¢H,_; (Sp,, )% * B =
£, (triv). We expect that ﬁ‘iag/z( 5(4)) acts on Gr'H.—;(Sp,)% (for some filtration P<;
on H.—(Sp, )% extending the Chern filtration), commuting with B,, such that we would

have an isomorphism of £} /2 (I2(4)) x Bg-modules

Gerezl(Spa)Sa = L, (triv) ® L, (x—+) ® (/\QHl(Ca)))prim'
9.6. Type G2, m =3

For type G4, the only regular elliptic numbers besides the Coxeter number m = 6 are
m = 3 and m = 2. We first consider the case m = 3 and v = 1/3.

9.6.1. L, and g(F),
Let oy (resp. a2) be the long (resp. short) simple root of G2. Thus real affine roots of
G(F) are

+oy + 726, tas+ 75, +(og 4+ o) +7Z6, +(ag + 2az) + 76,
:l:(Oél +3OLQ) +Z(§, :t(QOél +3042) +Z5,

and p¥ = 5ay + 3a2
We have vp¥ = 7041 + ay. The roots of L, are (o + 2a2 — d) and the affine roots
appearing in g(F), a

a1 +3as — 90, a, —a;—ay+d, —2a;—3as+26, a.

The group L, is isomorphic to GLy, and g(F), = Sym®(VY)@det(V)@det(V), where
V is the standard representation of GLy. An element v € g(F)!® can be written as a pair
(v',~") where +' is a nondegenerate binary cubic form on V and 7" € det(V) is nonzero.

9.6.2. The Hessenberg varieties

In Fig. 5 we mark the alcoves with the expected dimensions of the Hessenberg varieties.
We use green numbers for the alcoves with empty Hessenberg varieties despite having
non-negative expected dimension. The one-dimensional Hessenberg variety is P! = P(V).
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Fig. 5. The apartment 2 for Ga, v = 1/3. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

The zero-dimensional Hessenberg varieties consist of three points in P(V) corresponding
to the three zeros of 7/, and they are permuted simply transitively by the stabilizer
S’Y = H3.

9.6.3. Irreducible modules

From the above discussion we conclude that for a € ¢(F),

He1(Sp,)° = Hee1(Sp, )% Pe = H*(P') @ H* (pt)®?

has dimension 4. On the other hand, by [9, Theorem 3.2.3(i)], ;7% 1/3(12(6)) has only

one finite dimensional irreducible representation £, (triv), and it is of dimension 4. Hence
GrlH.—(Sp,)% = £, (triv).

9.7. Type G2, m =2
Next we consider the case v = 1/2. We keep the notation from §9.6.1.
9.7.1. L, and g(F),

We have vp¥ = SaY + 3. The roots of L, are +(a; 4+ az —6) and +(a; + 3az — 26)
and the affine roots appearing in g(F’), are:

(a1 —6/2)+6/2, £(az—6/2)+6/2, =£(a1+2as—35/2)+§/2,
+(20q + 3as — 5(5/2) + 5/2.

The group L, is SLa X SLa/A(usg) and g(F), is V® Sym3(W) where V and W are the
standard representations of the first and the second copy of SLy in L,.
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Fig. 6. The apartment 2 for Ga, v = 1/2.

9.7.2. The Hessenberg varieties

The two-dimensional Hessenberg variety is f¢, = P! x P!. The regular element ~y
defines form F, on V ® W of the homogeneous bidegree (1,3). The one-dimensional
Hessenberg variety Hessi consists of pairs (L, M) of one-dimensional subspaces of V, W
which are isotropic with respect to F.,. Other words the Hessenberg variety is P! realized
as the smooth (3,1) curve in P! x P*.

The zero-dimensional Hessenberg varieties corresponding to the alcoves in three alcove
cluster are the branch points of the degree 3 projection from Hess,ly to second P! in P!,
The degree 3 map from P! has four branch points and there are permuted by the stabilizer
S, = u3. Finally, the clan with only one alcove corresponds to the empty Hessenberg
variety even though we expect a zero-dimensional variety. We use green numbers to mark
these alcoves (Fig. 6).

9.7.8. Irreducible modules

From the above discussion we conclude that for a € ¢(F)*

He—1(Sp,)%* = He—1(Sp,)°** B = H* (P! x P') @ H*(P') @ H*(pt)®?

has dimension 9. On the other hand [9, Theorem 3.2.3(vi)| states that 9, | ,(I2(6)) has
only one finite dimensional irreducible representation £, (triv), and it is of dimension 9.
Hence GerEZl(Spa)Sa > ¢, (triv).

9.8. Type 3Dy, my =6

Besides the twisted Coxeter number m; = 12, the regular elliptic numbers are m; = 6
and my = 3. We first consider the case m; = 6 and v = 1/6.

9.8.1. L, and g(F),
The finite part of the affine root system 3D, is the Gy root system. The real affine
roots of 3D, are:
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Fig. 7. The apartment 2 for Dy, v = 1/6.

+ay + Z9, :|:042+Z(5/3, :l:(OZl +a2)+Z6/3, +(a +2a2)+Z5/3,
+(ay +3a2) + 26, +(2a1 + 3as) + Z4,

and p¥ = 50y + 3ay.

The roots of L, are (a1 + a2 — 0/3) and the affine roots appearing in g(F), are
a9, —a2+5/3, 041—1—2052—(5/3, —(a1+2a2)+26/3, —(2a1+3a2)+6, .

The group L, is GLy and g(F), = V @ Sym*(V") @ det(V) where V is the standard
representation of GLy. The element v = (v1,72) € V @ Sym®*(VY) @ det(V) is regular
semisimple if and only if the zeros of the linear form -; and the binary cubic form s
are distinct points on P!. In this case, the stabilizer S, is trivial.

9.8.2. The Hessenberg varieties

The dimensions of the Hessenberg varieties appearing in this case are marked in Fig. 7.
The one-dimensional Hessenberg variety is P* = P(V'). The zero-dimensional Hessenberg
varieties are of two types. The first type is the zero locus of 71 (one point) and the second
is the zero locus of 5 (three points). Each type occurs only once in Sp,-

rs

5 and considering the corresponding Hessenberg varieties for

As a runs over ¢(F)
v = k(a), B, permutes the three points of the zero-dimensional Hessenberg variety of
second type transitively. Thus the local system &;R’q, .Q is the sum of local system of
two types: the trivial one and an irreducible local system M of rank two (with monodromy

S3 acting as the standard 2-dimensional representation on its fibers).

9.8.3. Irreducible modules

By the above discussion, we have that for a € ¢(F):®

He:l(Spa) = He:l(SPa)Sa = He:l(spa)saxBa 53] Mav

where
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He1(Sp, )% Pe = H*(P') @ H* (pt)®?

has dimension 4. By [9, Theorem 3.2.3], ’5%71/6(12(6)) has only two finite dimen-
sional irreducible representations: the 4-dimensional £, (triv) and the 1-dimensional
£, (x4—). Thus Gr&H._; (Sp,)%*Pa = &, (triv). We expect that 91 6(12(6)) acts on
Gerezl(Spa) (for some filtration P<; on H.—:(Sp, )" extending the Chern filtration),

such that we would have an isomorphism of 55?‘?2’1/6 (I2(6)) x Bg-modules:

GrPH._1(Sp,) = £, (triv) ® £, (x4_) ® M,.
9.9. Type 3D4, m; =3
Next we consider the case m; = 3 and let v = 1/3. We keep the notation from §9.8.1.

9.9.1. L, and g(F),
The roots of L, are

:l:(()éz*(S/vg), :|:(Oé1+052725/3), :|:(Oé1+20&275).
The affine roots that appear in g(F), are

(S/g7 aq, (&3] +3O[27(5, 720&1730(2%’25, :I:(oz2—5/3)+5/3,
:|:(051+O[2—2(5/3)+5/3, :t(a1+2a2—5)+5/3

The group L, = PGL3 and g(F), = Sym®*(VY) @ det(V) where V is the standard
representation of GLg.

9.9.2. The Hessenberg varieties

Fig. 8 presents the picture of the apartment with alcoves marked by the expected
dimensions.

The three dimensional Hessenberg variety is the flag variety f¢, of L, , which classifies
pairs p € £ C P(V') where / is a projective line in P(V') and p is a point on £.

Each v € g(F)® C Sym*(VV) @ det(V), viewed as a ternary cubic form, defines a
smooth planar curve of genus one C,, C P(V'). The two-dimensional Hessenberg variety
Hessf classifies triples p € £ C P(V) where p € C,. We conclude that Hessg’ is a
P'-bundle over C,.

The one dimensional Hessenberg varieties Hessg’ classify those p € £ C P(V) where ¢
is tangent to C at p. Thus Hessiy” is isomorphic to the curve C,.

The zero dimensional Hessenberg varieties Hess ' classify those p € £ C P(V') where p
is a flex point of C, (there are 9 of them) and ¢ is the tangent line to C at p.

The action of PGL(V) on Sym®(VY) @ det(V) is used by Bhargava and Shanker to

calculate the average size of the 3-Selmer groups of elliptic curves over Q, see [6] and
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Fig. 8. The apartment 2 for Dy, v = 1/3.

also [19] for details. In particular, it is known that when v € g(F)!?, the stabilizer group
S, acts on C by translation by 3-torsion elements of the elliptic curve J(C,). Hence
S, acts transitively on the zero-dimensional Hessenberg varieties and trivially on the
cohomology of the Hessenberg varieties of positive dimension.

9.9.3. Irreducible modules
From the above discussion we conclude that for a € ¢(F)?,

He_1(Sp,)® = H*(f6,) © H*(C,) ® H' (P') © H*(C,)®? @ H' (pt)

Here C, = Cly(,) form a family of curves 7¢ : C — ¢(F)¥. In particular the lo-
cal system @;(R’q,.Q)% over ¢(F)I* is a sum of irreducible local systems of two
types: the trivial one and R'7¢Q. The multiplicity space of the trivial local system
is the 16-dimensional irreducible representation £, (triv) of £* 5(/2(6)). The multi-
plicity space of R'7¢Q is 4-dimensional. On the other hand, by [9, Theorem 3.2.3],

the algebra ﬁa{ /3(12(6)) has only two irreducible finite-dimensional representation: the

16-dimensional £, (triv) and the 4-dimensional £,(x_). Thus Gr&H._;(Sp, )5 *Be =
Su(triv). We expect ﬁia{/g( 2(6)) acts on GrPH._1(Sp,)5 (for some filtration P<; on

H.—1(Sp, )" extending the Chern filtration), such that we would have an isomorphism
of ﬁia{/g( 2(6)) X Bg-modules

GrlHe_1 (Sp,)5 = £, (triv) ® £, (x4-) @ H'(C).
9.10. Dimensions of £, (triv): tables and conjectures
For a simple root system R, let £,(R) be the irreducible spherical representation

£, (triv) of $;%_, attached to the root system R. Using the formula (1.2) and computer
we have calculated the dimension of £,(R) in the following cases.
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m dim 21/m(Eg)

m dimﬂl/m’(le)

8 6 12 1 18 1 20 54
6 20 9 8 14 9 15 576
4 96 6 92 6 3894 12 3380
3 256 3 4152 2 ? 10 14769
2 1620 8 62640

<6 ?

Computations also suggest the following conjecture.

Conjecture 9.10.1.

(1) 14,20 dim &; /9, (Dap)z™ = (1 — 4z)~3/2.
(2) 143, odim & /9, (Cop)z™ = (1 — da)~3/2(1 + /1 — 4z)?/4.
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Appendix A. Dimension of affine Springer fibers for quasi-split groups

We keep the notation from §2 and §5. The dimension of affine Springer fibers for split
groups over F' = C((t)) were conjectured by Kazhdan and Lusztig [22] and proved by
Bezrukavnikov [3]. In this appendix we generalize this formula to quasi-split groups G
in the generality considered in §2.2.2.

Proposition A.1. The ind-scheme Spp ., is equidimensional. Its dimension is given by

1 ~
dim Spp. ., = 5(Z val(a(y')) — r + dim a2, (A1)
aEd

Here v/ € U(Fy) is conjugate to ~, I, : Z(l) — W is defined in §2.5.1 (for a = x(v)),
val : FX — Q is normalized so that val(t) = 1 and recall that ¢ is the root system of G
respect to T.

Proof. Kazhdan and Lusztig [22] prove that when e = 1, Sp,, is equidimensional and
has the same dimension as Spg .. The proof there generalizes to the quasi-split case
and other parahorics P. It remains to calculate the dimension of Spg .,. According to
Lemma 5.2.6, it suffices to calculate the dimension of P, = J,(F)/J,(OF). Let J’ be
the finite-type Neron model of J, over Op. We may take v = r(a), then Lie J’ is an
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Op-lattice gz C g(F) containing g,(Or). We need to calculate dim P,, which is the
same as dim J2(Op)/J,(OF) = [gbv : gy]. Here, for two Op-lattice A; and Ay in an
F-vector space, the notation [A; : As] means dimg A1/A; N Ag — dime Ay /A1 N As.

We use the strategy in [3] by considering the F-valued Killing form (-,-) on g (F)
(given as the restriction of the Fi-valued Killing form on g(F.), which is induced from
the Killing form on g). For an Op-lattice L in g, (F') we denote its dual under the Killing
form by LY = {z € gy(F)|(z, L) C Op}, another Op-lattice in g, (F). Similar notation
applies to lattices in g(F'). We have

g, CgCg oy
Therefore

(0¥ :g,] — [03" : 7]
> .

dim P, = [g} : g,] = (A2)

We first calculate [g? b,V g“,’y] Let m be the order of the homomorphism II,, then
g7 is conjugate to [t((’)Fm)“m inside G(F,,) (where p,, is identified with the image of
II, : Z(1) — W’). Calculating the Killing form on t(Op, )", we see that

(07" : g2] = dim b/t (A.3)

Next we calculate [gY : g,]. Note that p(F) := [, g(F)] is the orthogonal complement
of gy(F') in g(F') under the Killing form. We have

0y /0, =" /(g, ©p(F)NgY). (A4)

We observe that the quotient

g’/ (ay(F) g’ & [v,0"]) (A-5)
is the cokernel of the endomorphism [y, —] of g"/g,(F) N g", hence
(0¥ 0,(F) N 8" & [1,6"]] = val det([y, ~][a(F)/gy(F)) = 3 val(a
aEd

Comparing the quotient in (A.5) with the right side of (A.4), the difference between their
lengths is the difference between [g,(F) Ng" : g,] and [p(F)Ng" : [v,g"]]. Hence

07 1 9,) =D _val(a(y) + [9,(F) Ng" : g4 — [p(F) Ng" : [1,8"]]. (A.6)
acd

We need to calculate the two extra terms in the above formula. Write g = ®7_ 0@1
under the action of .. Then g = go(Or) @ tY/°g. 1(OF) @ --- @t~ 1)/691((’)F), =
90(OF) ® t Vg (Op)®---® t_(e_l)/ege_l((’)p). We have a filtration
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g = g(o) C g(l) C g(z) cC---C g(e_l) — g\/

such that g /gt~ =¢=i/eg; i =1,--- ;e — 1. Let g(z) =g, (F) N g®. The map [y, -]
preserves each g(¥ and induces the map [70, —] : g; — g; on the associated graded. Here
4o is the image of v mod ¢ in h = g#c. We consider the exact sequence 0 — g(i=1 —
g — t~i/eg; — 0 and its endomorphism given by [v,—]. The snake lemma then gives
an exact sequence

0= gl =g =t ker([y0, —]lo:) = 0V /[7, 8" V] = g9 /[y, (A7)
Claim. Fori=0,---,e — 1, the lattice [y, ] is saturated in g(*).

Proof of Claim. To show that the image of the map [y, —] : g — g is saturated,
it suffices to show that the kernel of its reduction modulo ¢ has dimension at most r
(because it is at least r, the F-dimension of the kernel of [y, —] on g(F')). The filtration
tg® c tgttD ... ctg¥ c g .- c g is stable under [y—,]. It induces a filtration
on g /tg® = g @, C with associated graded g = ©_1g;, on which the action [y, ]
becomes [, —]. Since 7 lies in the Kostant section of g by construction, it is regular,
and hence dimker([yo, —]|g) = r. Since the kernel dimension does not decrease when
passing to the associated graded, ker([y, —]|g'” ®o, C) < r. This proves the claim. 0O

Since [, gV] is saturated in gV, hence [p(F)Ng" : [y,g"]] = 0. Also, by the Claim, the
last arrow in (A.7) is injective, and the first three terms form a short exact sequence.
We thus get a filtration of g,(F) Ng¥/g, = gSf 1 / ggo) with associated graded equal
to ©¢Z{t~"*ker([y0, —]|g;). The dimension of the latter is dimker([yo, —]| ©{=] g;) =
dim ker([yo, —]|g) — dim ker([vg, —]|h) = r — r, again by the regularity of vy. Therefore

lg(F)NgY:g,] =dimt/tt = r —r. These facts and (A.6) imply that

97 g4 = Z val(a +r—r (A.8)
a€gp

Plugging (A.8) and (A.3) into (A.2), we get the desired dimension formula (A.1). O
Appendix B. Codimension estimate on the Hitchin base

We work in the following generality. Let X be an irreducible smooth Deligne-Mumford
curve over an algebraically closed field k, of which the weighted projective line in §6.1 is
an example. Let G be a semisimple group. Let £ be a line bundle on X. We define MHit
to be the moduli stack of £-valued G-Higgs bundles over X, and let f : M™t — A be
the Hitchin fibration.

Recall from [26] that we have an upper semi-continuous function § : A — Z>o which
measures how far (in terms of dimensions) P, is from an abelian variety. Let As C A be
the locally closed subscheme consisting of a € A with §(a) = §. The goal of this section
is to show
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Proposition B.1. Suppose char(k) = 0 and deg £ > degwyx (where wx is the canonical
bundle of X ). Then codim4As > 4.

The argument 