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Abstract

We construct special cycles on the moduli stack of hermitian shtukas. We prove an
identity between (1) the r central derivative of non-singular Fourier coefficients of
a normalized Siegel-Eisenstein series, and (2) the degree of special cycles of “virtual
dimension 0” on the moduli stack of hermitian shtukas with » legs. This may be
viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the
additional feature of encompassing all higher derivatives of the Eisenstein series.

Keywords Special cycle - Shtuka - Hitchin moduli - Springer theory - Arithmetic
Siegel-Weil - Local density

Contents
I Introduction. . . . . . . . . . . . 570
Part 1. The analyticside . . . . . . . ... . ... ... .. ... .. ..... 577
2 Fourier coefficients of Eisenstein series . . . . . ... ... ........ 577
3 Springer theory for torsion coherent sheaves . . . . . . ... ... ..... 586
4 Springer theory for Hermitian torsion sheaves . . . . ... ... ... ... 593
5 Geometrization of local densities . . . . .. ... .............. 606
Part 2. The geometricside . . .. .. ... ... ... ... ... ....... 613
6 Moduli of Hermitian shtukas . . . .. ... ... ... ... ........ 613
>< T. Feng
fengt@berkeley.edu
Z. Yun
zyun@mit.edu
W. Zhang

weizhang @mit.edu

1 Department of Mathematics, University of California, 970 Evans Hall, Berkeley, CA 94720,
USA

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, MA 02139, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-023-01228-y&domain=pdf
mailto:fengt@berkeley.edu
mailto:zyun@mit.edu
mailto:weizhang@mit.edu

570 T.Feng et al.

7 Special cycles: basic properties . . . . ... ... oo 617
8 Hitchin-type moduli spaces . . . . .. ... ... ... . ... ....... 626
9 Special cyclesof corankone . . . ... ... ... .. L. 634
10 Comparison of twocycleclasses . . . ... .. ... ... .. ....... 640
11 Local intersection number and trace formula . . . . . ... ... ... ... 654
Part 3. The comparison . . . ... ... ... ... ... ... . ... ... 661
12 Matchingof sheaves . . . . . .. ... ... ... ... ..., 661
Acknowledgements . . . . . ... ... e 666
References . . . . . . . . . . . L 667

1 Introduction

The classical Siegel-Weil formula ([22, 26]) relates the special values of Siegel—
Eisenstein series on the symplectic group (resp. the unitary group) to theta functions,
which are generating series of representation numbers of quadratic (resp. Hermitian)
forms over number fields. In particular, by exploiting the factorization of the non-
singular Fourier coefficients into a product of local terms, one arrives at Siegel’s
formula for representation numbers of global quadratic or Hermitian forms in terms
of local representation densities.

In [11] Kudla began to study an arithmetic version of the Siegel-Weil formula
and he discovered a relation between an “arithmetic theta function” — a generating
series of arithmetic cycles on an integral model of a Shimura curve—and the first
central derivative of a Siegel-Eisenstein series on Sp,. In a series of papers, Kudla
and Rapoport developed this paradigm by defining the non-singular terms of a gen-
erating series of special cycles on suitable integral models of Shimura varieties for
SO(n — 1,2) with n <4 and for all U(n — 1, 1). Of particular relevance to our paper,
in [12, 13] Kudla and Rapoport defined the sought-after special cycles on integral
models of unitary Shimura varieties, now known as Kudla—Rapoport cycles, and con-
jectured a relationship to the non-singular Fourier coefficients of the central derivative
of the Siegel-Fisenstein series. Their conjecture has been recently proved by Li and
one of us [18]; we also refer to the introduction of [18] for a more detailed account
of recent advances in some other related directions (see also [19] for the orthogo-
nal analog). With the Kudla—Rapoport conjecture proved in [18] and its archimedean
counterpart proved by Liu [20] and independently by Garcia and Sankaran [6] as
some of the key ingredients, Li and Liu [16, 17] have recently proved an arithmetic
Rallis inner product formula relating the height pairing of the generating series to the
first derivative of L-functions for unitary groups, from which they deduced cases of
Beilinson-Bloch conjecture for certain high rank motives.

In this paper we study a function field analogue of the arithmetic Siegel-Weil
formula, for unitary groups. In particular, we will construct special cycles on the
moduli space of hermitian shtukas with arbitrary number of legs. Then we formulate
and prove the analogue of the Kudla-Rapoport conjecture for derivatives of arbitrary
order at the center of the Siegel-Eisenstein series, relating the non-singular Fourier
coefficients of such higher derivatives to the degrees of special cycles. We remark
that the proofs here follow a completely different strategy than in [18].
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Higher Siegel-Weil: non-singular terms 571

In the sequel [4], we will construct the complete generating series of special cycles
(including singular terms) and give evidence for their modularity.

1.1 Statement of main result

To formulate the result, let X be a smooth, proper and geometrically connected curve
over k = F, of characteristic p # 2, and v: X" — X be an étale double cover, with
the non-trivial automorphism denoted o € Aut(X’/X). Let F be the function field of
X and let F’ be the ring of rational functions on X’ (we allow X’ = X [] X). In §6
we recall the definition of the moduli stack Sht}, (n) Parametrizing rank n “Hermitian
shtukas” with r legs. Roughly speaking it classifies chains of vector bundles with
Hermitian structures

Fo--+F| -+ - F2"F (1.1)

related by elementary modifications. It admits a fibration Shtj, m (X", and will
play the role of Shimura varieties in the function field context.

1.1.1 Special cycles

Drawing inspiration from the construction of Kudla-Rapoport cycles on unitary
Shimura varieties [13], we introduce in §7 certain stacks Z(’S(a) over Sht@(n) in-

dexed by &, a vector bundle of rank m with 1 <m <n on X’, and a Hermitian mapl
a: &— o*EY where £Y := Hom(&, wy) is the Serre dual of £. They classify Hermi-
tian shtukas as in (1.1) together with compatible maps £ — F; such that a is induced
from the Hermitian form on Fy.

If £ is a line bundle on X', Z¢(a) is an analogue of Kudla-Rapoport divisors
although they have dimension r less than Sht}, )" In general, Z¢(a) are analogs of
special cycles for function fields.

We will be particularly interested in the case m =n and a: £ — o*&" is injec-
tive (by this we shall always mean as a map of coherent sheaves). In this case, the
“virtual dimension” of Z¢(a) is 0. However, as is already seen in the number field
context [13], the literal dimension of Z¢ (a) is often significantly larger; this problem
is exacerbated as r increases. Nevertheless, under the assumption thata: £ — o*£Y
is injective (as a map of coherent sheaves), we are able to construct an appropriate
“virtual fundamental cycle” [Z¢(a)] € Cho(Z¢(a))q. Interestingly, it turns out that
there are some new difficulties present in this construction that do not appear in the
Shimura variety setting. For a injective, it turns out that Z¢ (a) is proper over Fy, so
that [Z¢ (a)] has a well-defined degree deg[Z¢(a)] € Q.

1.1.2 The main result
Let E(g,s, ®) be the Siegel-Eisenstein series for the standard split F’/F-skew-

Hermitian space of dimension 2n, with respect to the unramified standard section ®.
For a rank n vector bundle £ on X’ as above, E(g, s, ®) admits a Fourier expansion

A map of vector bundles of the form a: € — ¢*&Y is Hermitian if o*a" = a.
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572 T.Feng et al.

with respect to £ indexed by Hermitian maps a: £ — o*&Y. We let Ea m(),s, ®)
be the a™ Fourier coefficient multiplied by certain normalization factors, explained
precisely in (12.1).

In our normalization, s = 0 is the center of the functional equation for Ea m(&),
s, ®). Our main theorem relates the Taylor expansion at this central point to the de-
grees of special cycle classes.

Theorem 1.1 Letn > 1 andr > 0. Let € be a rank n vector bundle on X' and a: €& —
0*EY be an injective Hermitian map. Then we have

1 d\’
(logq)" <$>

where d = —deg(€) + ndegwy = —x (X', £).

_ (@"Eam®.5.9) =deglZp@), (12)

1.1.3 Initial comments on the proof

We stress that (1.2) holds for all r, regardless of the order of vanishing of
Ea (m(&), s, ®) ats = 0. This is a distinguishing novelty of Theorem 1.1 compared to
all other works on the Seigel-Weil or arithmetic Siegel-Weil formula. The first results
of this nature, giving motivic interpretations of Taylor coefficients of automorphic
L-functions even “beyond the leading term”, were proved in [28, 29] for PGL;. Our
results here are the first higher derivative formulas to be proved for groups of arbi-
trary rank. Our proof shares some common ingredients with these earlier works, but
also has a number of interesting new ones. For example, a key discovery for us was
a connection between the Fourier coefficients of Siegel-Eisenstein series and certain
perverse sheaves arising from Springer theory. Another key realization was that the
special cycles are governed by certain variants of the Hitchin fibration, whose ge-
ometry can also be described in terms of Springer theory. In particular, the geometry
behind Theorem 1.1 is much more complicated than that in [28, 29] as soon as n > 2.
An overview of the proof will be given in §1.2.

Another feature of the proof of Theorem 1.1 is that it is completely uniform in
r, and in particular unites the “Siegel-Weil formula” and “arithmetic Siegel-Weil
formula” in the same framework. For this reason, we propose to call (1.2) a higher
Siegel-Weil formula. This formula will serve as the first step to establish a higher
order derivative version of the aforementioned recent work of Li and Liu [16, 17] over
function fields, which would give a geometric interpretation of higher derivatives of
Langlands L-functions.

Remark 1.2 When r = 0, the coarse moduli space of Shtj, ) is just the discrete set
of points which form the domain of everywhere unramified automorphic forms for
U (n). In that case, Theorem 1.1 specializes to (the non-singular Fourier coefficients
of) the classical Siegel-Weil formula, which can be found in [26].

One should imagine that when r = 1, Sht@( n — X " is analogous to (the integral
model of) a unitary Shimura variety. Now, under the technical assumptions of the
present paper (namely the everywhere unramifiedness assumptions) this space is al-
ways empty, corresponding to the fact that the sign of the functional equation for
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Higher Siegel-Weil: non-singular terms 573

the Siegel-FEisenstein series is +1 (so that all odd order derivatives vanish). How-
ever, with a mild modification of the setup, the same methods may be used to prove
variants of Theorem 1.1 in which the sign of the functional equation is —1. More
precisely, in this paper we consider rank n vector bundles on X’ with a Hermitian
pairing valued in the canonical bundle wy’ = v*wy; if we replace wy here by a line
bundle on X which is not a norm from X’, then the sign of the functional equation is
—1 when n is odd. The precise formulation is in [4, §9]. We mention also the work
[25] over function fields, which should be thought of as being similar to the special
case of Theorem 1.1 forr =1andn =1.

When r > 1, no analogue of the spaces Sht;; (n) 1s presently known in the number
field setting. Consequently, we do not know how to formulate an analogue of the
main result for number fields.

1.1.4 Construction of virtual fundamental cycles

For a vector bundle £ of rank m on X’ and a Hermitian map a: £ — o*&V, the
dimension of Z¢(a) differs from its “virtual dimension”, which is r(n — m). The
situation gets worse if a is singular (i.e., not injective, in analogy to the terminology
of [13]). For example, when a = 0, Z¢(0) contains Sht;](n) as a substack. It is a
nontrivial task to define a cycle class [Z{(a)] in the expected dimension r(n — m).

Our companion paper [4] proposes two solutions to this problem, one using clas-
sical intersection theory and the other using derived algebraic geometry. There,
we construct cycle classes [Z¢(a)] for all £ of rank < n and possibly singular
a: & — o*EY. Moreover, we assemble them into generating series valued in the
Chow groups of Shtb(n) and conjecture it to be automorphic, in analogy to known
results over number fields [2], which fall under the umbrella of the Kudla program.

In this paper, we use a more elementary method to define the O-cycle [Z¢(a)] in
the case m = n and a injective. First, we prove that when £ is a line bundle and
a: L — o*LY is an injective Hermitian map, Z-(a) has the expected dimension
(cf. Proposition 7.9 and Remark 7.10). Next, when £ = @!_, L; is a direct sum of
line bundles, the class [Zg (a)] € ChO(Zg (a))q can be defined as (the restriction to
Zg (a) of) the intersection product of Zzi (a;;) for the diagonal entries a;; of a; this is
similar to the number field case. However, compared to the number field case, a new
difficulty arises since £ is not necessarily a direct sum of line bundles. We overcome
this difficulty in §7.9 by introducing the notion of a good framing for £ to reduce to
the case of a sum of line bundles. A nontrivial task is to verify that the cycle class
[Z¢(a)] is independent of the choice of the good framing, which occupies much of
the sections §8—§10.

1.2 Method of proof

To summarize, we prove Theorem 1.1 by constructing two perverse sheaves that en-
code the two sides of (1.2) in the sense of sheaf-function correspondence, and then
identifying these two perverse sheaves using a Hermitian variant of Springer theory,
which labels these perverse sheaves by representations of the appropriate Weyl group.
In this way, Theorem 1.1 is eventually unraveled into an elementary identity between
representations of the Weyl group for type B/C.
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574 T.Feng et al.

On the geometric side, the connection between special cycles and Springer the-
ory comes via the geometry of a moduli stack that resembles the Hitchin moduli
space. On the other side, the connection between the Fourier coefficients of Siegel-
Eisenstein series and Springer theory goes through local density formulas of Cho-
Yamauchi.

Let us briefly explain the connection between the higher Siegel-Weil formula and
the Hitchin moduli stack and Hermitian Springer theory, and defer details to the later
paragraphs. The degree of the special cycle that appear on the right side of (1.2) is
essentially an intersection number of cycles on Shtj, )" The ambient space Sht@(n)
can itself be realized an intersection of a Hecke correspondence with the graph of
a Frobenius endomorphism. We use this to “unfold” all the intersections, and then
redo them in a different order, performing the linear intersections (i.e., those not
involving the Frobenius map) first, and leaving the Frobenius semi-linear intersection
till the last step (cf. (10.15) — (10.19)). In this process, a Hitchin-type moduli stack
My appears naturally as we perform linear intersections (cf. (10.18)). The degree
of the special cycle [Z¢(a)] can be expressed as a weighted counting of k-points
on the fiber of a map f; : My — Ay (analogue of Hitchin fibration) over the point
(€,a) € Ay(k), where (€, a) are as in the statement of Theorem 1.1.

The cokernel Q = coker(a) is a torsion sheaf on X’ with a Hermitian structure
inherited from a. This motivates the introduction of the moduli stack Hermy, (X’/ X)
that parametrizes torsion coherent sheaves on X’ of length 2d together with a Hermi-
tian structure, so that Q is a k-point of Hermy, (X'/ X) (where 2d = dim; I'(X’, Q)).
We show that the fiber of f; : My — Ay over (€, a) depends only on Q = coker(a),
therefore the degree of [Zg (a)] depends only on the k-point Q of Hermp, (X'/ X).

On the other hand, the Eisenstein series side of (1.2) can be written as a product
of local terms — representation density functions for Hermitian lattices. These den-
sity functions again only depend on the torsion sheaf Q together with its Hermitian
structure, i.e., a k-point in Hermpy (X'/ X).

Therefore we reduce to proving that two quantities attached to a k-point in
Hermy;(X'/ X) are equal. A key realization is that both quantities are of motivic
nature: they come by the sheaf-to-function correspondence from two (graded, vir-
tual) perverse sheaves on Hermy,(X'/X). This is where Hermitian Springer theory
enters. Classically, starting with a reductive Lie algebra g, Springer theory outputs a
perverse sheaf Sprg on g, defined as the direct image complex of the Grothendieck-
Springer resolution 774 : § — g, together with an action of the Weyl group W. In our
setting, Hermy, (X’/ X) will play the role of g. In §4, we construct a perverse sheaf
Sprgjrm on Hermyy(X’/ X) together with an action of Wy = (Z/2Z)? x S, analo-
gous to the Springer sheaf. If Hermy; (X’/ X) is replaced by Coh, (X), the moduli of
torsion coherent sheaves on X of length d, such a Springer sheaf was constructed by
Laumon [15]. The Springer sheaf on Cohy(X) (resp. Hermyy(X’/ X)) can be viewed
as a global version of the Springer sheaf for gl; (resp. 024). The perverse sheaves
on Hermyy(X’/X) that govern both sides of (1.2) will be constructed from direct
summands of the Hermitian Springer sheaf Sprgjrm.

Thus, the proof of Theorem 1.1 is completed in three steps:
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Higher Siegel-Weil: non-singular terms 575

(1) Construct a graded perverse sheaf on Hermy, (X'/ X)

d
Eis __ Eis
Ki* = DK
i=0

whose Frobenius trace at Q is related to the LHS of (1.2). More precisely,

d

E.(m(€),s, ®) = ZTr(FrQ, (KEH g 2.
i=0

(2) Construct a graded perverse sheaf on Hermpy (X' / X)

d
Int __ Int
kit =P K
i=0

whose Frobenius trace at Q is relate to the RHS of (1.2). More precisely,

d

deg[Z5 (@)=Y Tr(Frg, (Ki")g) - (d —2i)". (1.3)
i=0

(3) Prove that
JCEs = clne (1.4)
as graded perverse sheaves on Hermp, (X'/ X).

These three steps correspond to the three parts of the paper. We elaborate on the
main ideas involved in each step.

1.2.1 Step (1)

After a standard procedure expressing the nonsingular Fourier coefficients of Eisen-
stein series in terms of local density of Hermitian lattices, we use the formula of
Cho and Yamauchi [3] for these densities (more precisely, the unitary variant de-
veloped in [18]). We also need an extension of their formula in the split case (The-
orem 2.3). The formula of Cho and Yamauchi depends only on the Hermitian tor-
sion sheaf Q = coker(a), which gives the hope that the local density, as a function
on the set of Hermitian torsion sheaves, comes from a sheaf on Hermy,(X'/X) via
Grothendieck’s sheaf-to-function dictionary. We do this by developing an analog of
Springer theory over Hermpy (X'/ X) (§3-§4).

The key observation here is that the term in the Cho—Yamauchi formula resembles
the Frobenius trace function for a certain linear combination of Springer sheaves for
gl or Coh,(X), except for some signs. To match the signs exactly we consider an
analogous linear combination of Springer sheaves on Hermy,(X’/ X), and we com-
pare the Frobenius actions on the cohomology of Springer fibers over Coh,(X) and
over Hermpy(X'/ X), see §4.5 and §4.6.
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576 T.Feng et al.

1.2.2 Step (2)

This step consists of three substeps.

o First, we define special cycles for nonsingular a (§6-§7). When £ is a direct sum
of line bundles £;, we define, following Kudla and Rapoport, [Z ;: (a)] as the inter-
section of cycle classes [ZZ,- (a;i)], which, despite not being divisors in our set-
ting, always have the “expected” dimension (more precisely, codimension r in
Shty, (n))- The definition of [Z¢ (a)] for general vector bundles £ requires choosing
a “good framing” on &, i.e., an injective map from a direct sum of line bundles
&' =@]_|L; — & satisfying certain conditions. In any case, the RHS of (1.2) is
an intersection number of cycles on Shtj, )

e The well-definedness of [Zg (a)] is proved in the second substep (§8-§10), which
also gives a different definition of these cycle classes without any choices. The idea
is similar to the one used in [28], namely by exchanging the order of intersection,
we perform “linear intersections” first to form Hitchin-type moduli stacks (denoted
M, making sense over any base field), and in the last step we perform a shtuka-
type construction by intersecting with the graph of Frobenius.

o In the last substep (§11) we use the Lefschetz trace formula to express the degree
of [Z¢(a)], formulated using the Hitchin-type moduli stack M, as the trace of
Frobenius composed with the »™ power of an endomorphism C on the direct im-
age complex Rf,Q, of the Hitchin map f : My — Aqy. Now, the “Hitchin base”
Ay has a canonical smooth map to Hermp,(X’/X), and it turns out that R f*G(
together with its endomorphism C descends through this map to a perverse sheaf
IC:lm on Hermy, (X’/ X) with an endomorphism C. The decomposition of ng‘t into
graded pieces ICId‘f‘l. is according to the eigenvalues of the C-action, which are of
the form (d — 2i). Combining these facts we get (1.3).

1.2.3 Step (3)

Both ICSiS and ICfl,nt are linear combinations of isotypical summands of Spr?jrm under
the action of W,. The isomorphism (1.4) then comes from an isomorphism of two
graded virtual representations of W, which we verify directly.

1.3 Notation

Throughout this paper, kK = F is a finite field of odd characteristic p. Let £ # p be

a prime. Let ¥ : k — 6; be a nontrivial character. For a stack ) over k, we write
Fr or Fry, for its g-power Frobenius endomorphism. We will use Frob or Frob,, for
geometric Frobenius at an F,-point y.

Let X denote a smooth curve over k. With the exception of §3 and §4, X is as-
sumed to be projective and geometrically connected. Let wy be the line bundle of
1-forms on X.

Let F = k(X) denote the function field of X. Let | X| be the set of closed points of
X.Forv € |X]|, let O, be the completed local ring of X at v with fraction field F, and
residue field k. Let A = A denote the ring of adeles of F, and O = [[,¢|x| Ov. Let
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Higher Siegel-Weil: non-singular terms 577

deg(v) = [ky : k], and g, = g9 = #k,. A uniformizer of O, is typically denoted
wy. Let |- |, 1 Ff — qUZ be the absolute value such that |@,|, = qv_l. Let |- |F:
A% — gZ be the absolute value that is | - |, on FX.

Let X’ be another smooth curve over k and v : X’ — X be a finite map of degree 2
that is generically étale. We denote by o the non-trivial automorphism of X’ over X.
With the exception of §4.1 and §4.2, v is assumed to be étale. We emphasize that the
case X' = X || X is allowed. Let F’ be the ring of rational functions on X’, which is
either a quadratic extension of F or F x F. We let k’ be the ring of constants in F’.
The notations wy, | X'|, F),, Oy, ky, Apr, |- v, | - |/, g and deg(v’) (for v’ € [ X'|)
are defined similarly as their counterparts for X. Additionally, for v € | X|, we use O:,
to denote the completion of Oy along v~1(v), and define F! to be its total ring of
fractions.

For a vector bundle £ on X', let £¥ = Hom(&, wx-) be its Serre dual. For a torsion
sheaf 7 on X/, let TV = Ext' (T, wy’).

When X (hence X’) is projective, let Bungy,, (resp. BunGL;) be the moduli stack
of rank n vector bundles over X (resp. X’). Let g be the genus of X and g’ be the
arithmetic genus of X’. Note that whenever v is étale, we have g’ =2g — 1.

For an algebraic stack ), Ch()) denotes its rationalized Chow group and
Db (Y, Q,) its bounded derived category of constructible Q,-sheaves.

Part 1. The analytic side
2 Fourier coefficients of Eisenstein series

In this section we will define the Siegel-Eisenstein series featuring into our main
theorem, and explain how to express their non-singular Fourier coefficients in terms
of local density polynomials, which will be geometrized in later sections.

2.1 Siegel-Eisenstein series

For any one-dimensional F-vector space L, let Herm,, (F, L) be the F-vector space
of F'/F-Hermitian forms A : F'" x F'" — L @ F’ (with respect to the involution
1®oc on L ®p F'). For any F-algebra R, Herm,, (R, L) := Herm,, (F, L) ® R is the
set of L ® p R’-valued R’/R-Hermitian forms on R'", where R' = R @ F’. When
L = F we write Herm,,(F) = Herm,,(F, F) and Herm,,(R) = Herm,,(F) ®r R for
any F-algebra R.

Let W be the standard split F’/F-skew-Hermitian space of dimension 2n. Let
H, =U(W). Write A := Ay for the ring of adeles of F. Let P,(A) = M,(A)N, (A)
be the standard Siegel parabolic subgroup of H, (A), where

o 0

M, (A) = {m(a) = (0 z&—1> ‘a € GLn(AF’)} )

N,(A) = {n(ﬂ) = (1(; ﬁ) B eHerm,,(AF)}_
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578 T.Feng et al.

Letn: Ay /F* — C* be the quadratic character associated to F’/F by class field
theory. Fix y : A;,/F’X — C* a character such that X|A; = n". We may view x
as a character on M, (A) by x(m(«)) = x(det(x)) and extend it to P,(A) trivially
on N,(A). Define the degenerate principal series to be the unnormalized smooth
induction

Hy, (A y 2
In(s. ) =Indp" ) (-1 15"7%), seC.

For a standard section ®(—, s) € I,,(s, x), define the associated Siegel-Eisenstein

series

E@g.s.®)= Y  ®(yg.s). geH,A),
Y EP(F)\Hp(F)

which converges for M (s) > 0 and admits meromorphic continuation to s € C. Notice
that E(g, s, ) depends on the choice of .

Remark 2.1 In this paper, we will choose x to be unramified everywhere. To see that
such y exists, observe that since C* is injective (in the category of abelian groups),
it suffices to check that " is trivial on ker(Pic(X) — Pic(X")). If X’/ X is the triv-
ial double cover or the double cover corresponding to F > /F,, then this kernel is
trivial so the result is immediate. Otherwise, the cover is geometrically non-trivial.
Since char(k) # 2, the kernel consists of the 2-torsion line bundle whose class in
HY (X, uo) agrees with n € H'(X, Z/27Z) under the isomorphism p, = Z/2Z. If n is
even then there is nothing to check; if n is odd then the desired vanishing property
amounts (when char(k) 5 2) to the alternating property of the cup product pairing
H! (XF,. 2/22) % H! (Xg, - Z/2Z) — Z,/2, which follows from the graded commu-
tativity of the cup product and the fact that the geometric Z,-cohomology of curves
in characteristic # 2 is torsion-free.

As justified by Remark 2.1, we may choose x to be everywhere unramified. Then
I, (s, x) is unramified and we fix ®(—,s) € I,(s, x) as the unique K = H,(O)-
invariant section normalized by

@ (124, 5) = 1.

Similarly we normalize ®, € I,,(s, x,) for every v € | X| and we then have a factor-
ization ® = @),¢|x| Pv-

2.2 Fourier expansion

Let wr be the generic fiber of the canonical bundle of X, and A,,, = A ® wr. The
sum of the residues induces a pairing A, x Ar — k induces a pairing

(-, ) : Herm,, (A, wr) x Herm, (A) — k

given by (T, b) = Res(—Tr(Th)). Composing this pairing with the fixed non-
trivial additive character ¥ : k — C* exhibits Herm, (A, wr) as the Pontryagin

@ Springer



Higher Siegel-Weil: non-singular terms 579

dual of Herm, (A). Moreover, it exhibits Herm, (F, wr) as the Pontryagin dual of
Herm, (F)\ Herm, (A) = N, (F)\N, (A). The global residue pairing is the sum of lo-
cal residue pairings (-, -), : Herm,, (Fy, wf,) x Herm, (F,,) — k defined by (T, b), =
tre, sk Resy (—Tr(T'h)).

We have a Fourier expansion

E@gs, ®= Y  Er(gs o),
T eHerm,, (F,oF)
where
Er(g,s, ®)=/ E(n(b)g,s, ®)yo((T, b))dn(D),
Nyp(F)\Np(A)

and the Haar measure dn(b) is normalized such that N, (F)\N,(A) has volume 1.
For any o € M, (A) we have

Er(m(e)g. s, ®) = x(det@) ' [det(@)| o " Ergra(g.5.®). (2.1

Suppose T is nonsingular, meaning that for one (equivalently, any) choice of triv-
ialization of wr it has non-vanishing determinant, for a factorizable ® = ®v elX| o,
we have a factorization of the Fourier coefficient into a product (cf. [11, §4])

)
Er(g.s, ®) = lox|7" 2] Wr.o(gu.s. @), 2.2)
v
where the local (generalized) Whittaker function is defined by

W1, (8v, s, o) 2/ @, (w,, 'n(b)gv, $)Yo((T, b)y) dyn(b),

Nu(Fy)
(0 1,
(%)

and has analytic continuation to s € C. Here the local Haar measure dyn(b) is the one

2
such that the volume of N, (O,) is 1. The factor |a)X|;" /2 is the ratio between the
global measure dn and the product of the local measures [ [, dyn.
Note that for o« € M,,(F,),

Wro(m(@), 5, ®y) = x (@det@) ™ [det@)| " Wiarao(ls, @) (23)

We define the regular part of the Eisenstein series to be

E™(g,5,®)= Y Er(g.s @) (2.4)

T eHerm,, (F,oF)
rank T=n
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2.3 Local densities for Hermitian lattices

The local density for Hermitian lattices in the non-split case has been studied in [18,
§3] following the strategy of Cho—Yamauchi [3]. Here we recall the result of [18] and
extend the results to the split case.

From now on until §2.5, let F be a non-archimedean local field of characteristic
not equal to 2 (but possibly with residue characteristic 2). Let F’ be either an unram-
ified quadratic field extension or the split quadratic F-algebra F’ = F x F. Denote
by OpF (resp. Op) the ring of integers in F (resp. F’). In the split case we have
Op =0Of x Of. Let n =np/p : F* — {£1} be the quadratic character attached to
F'/F by class field theory. Let z be a uniformizer of F, k the residue field, g = #k.

Let L, M be two Hermitian O -lattices. In the split case, the datum of a Her-
mitian O -lattice L is a pair (L1, L) of Of-lattices together with an O g-bilinear
pairing

(,): Ly xLy— Op

that is perfect after base change to F. We will define LY = (LY, L)) where LY =
{xe L1 ®o, F:(x,Ly) C Of} and similarly for L.

Let Rep,, ; be the scheme of integral representations of M by L, an Of-scheme
such that for any Or-algebra R,

RepM’L(R) =Herm(L ®p, R, M 0, R),

where Herm denotes the set of Hermitian R-module homomorphisms. In the split
case, if we write L and M in terms of pairs (L1, L) and (M, M>) with their Op-
bilinear pairings, then a Hermitian module homomorphism consists of a pair of R-
linear maps ¢; : L; ®9, R — M; @@, R preserving the base change to R of the
Op-bilinear pairings.

The local density of integral representations of M by L is defined to be

_ #Repy 1 (O /™)
Den(M, L): =N£Too qN~dim(RepM,L)F

Note thatif L, M have Ops-rank n, m respectively and the generic fiber (Repy, ;) F #
o, thenn <m and

dim(Repy; ;) r =dimU,, —dimUy_, =n - (2m — n).
2.4 Cho-Yamauchi formula for local density

Definition 2.2 For a € Z>( we define a polynomial of degree a

a—1

m(a; 7)== [ [(1 = (@)q)'T) € ZIT].

i=0
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Note that m(a; T) depends on F'/F.
In both the non-split and the split cases, for a finite torsion Op-module 7 we
define

£(T) := length of 7 as an Op-module;
t(T) :==dim (T Q0. k). (2.5)
For an Ops-Hermitian lattice L, we define its type
t(L):=t(LY/L)

where we view the finite torsion O g-module LY /L as an O p-module.
When F’/F is non-split, for a finite torsion @ g/-module 7 we define

£'(T) :=length of T as an Op/-module;
£ (T) = dimy (T ®0,, k).
Then we have
WTY=20(T), 1(T)=2(T). (2.6)

When F’ = F x F is split, for a finite torsion O g--module 7 we may define ¢'(7) and
t'(T) by (2.6). Moreover, for O rr-Hermitian lattices L = (L1, Ly) and L' = (L, L))
such that L C L’ (meaning that L; C L) and Ly C L)), we have

€(L'/L) = €(L}/L1) + €(L/L2)
and
t'(LY/L)y=1t(Ly/L1)=t(L}/L>).
In both the split and non-split case, we define
Y(L)=1t(LY/L).
We have the following analog of Cho—Yamauchi formula [3].

Theorem 2.3 Let j > 0 be an integer. Let (1)7 be the self-dual Hermitian O pr-lattice
of rank j with Hermitian form given the identity matrix 1;. Let L be a Hermitian
Opr-lattice of rank n.

(1) We have
Den((1)"*, (1)) = [(1 = ((e)g) ™" T) E
i=1 T=n(w)q)~/

(2) There is a (unique) polynomial Den(T, L) € Z[T], called (normalized) local
Siegel series of L, such that for all j > 0,

_ Den((1)"*/, L)
Den(tn(@)a) ™. L) = 5o
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(3) We have

Den(T.L)=  » .  T*E Mm@ (L) T). 2.7
LcL'cL'VcLY

Here the sum is over Op:-lattices L' (in the F’'-Hermitian space spanned by L)
containing L on which the Hermitian form is integral.

Proof The non-split case is proved in [18, Thm. 3.5.1] and here we indicate the nec-
essary change in the split case. Now suppose F' = F x F and hence k' =k x k.
Let Ly = L ®0, k and (1)}' = (1) ®, k, which are free k’-modules with the in-
duced k’/ k-Hermitian forms. In particular, (1)}" is non-degenerate and the radical of
Ly =L ®o, k has k’-rank equal to t'(L) =t(L{/L1) =t(Ly/L>). Let Isomyym 1,
be the k-scheme of “isometric embeddings” from Ly to (1){", i.e., injective k’-linear
maps from Ly to (1)}’ preserving the Hermitian forms.
Similar to the orthogonal case [3, §3.3], we have

Den(<1>m, L) zq—dimRep((Um’L)[: Z #(L//L)_(m_n)#ISOIII([)ZI,L,{ (k)’
LcL'cL'Y

where dimRep((1)™, L) = m? — (m — n)> = 2mn — n>.

It remains to show that

n+a—1
#Isomﬂ)Z‘,Lk (k) :qmz_(m_")z ) l_[ - qi—m) (2.8)
i=0

where a = t/(L) is the k’-rank of the radical of L. Note that up-to-isomorphism, Ly
is determined by its rank and the rank of its radical. Let U,_, , be a K’/ k-Hermitian
space of rank n with radical of rank a. Let V,, = Uy, o be a (non-degenerate) k’/ k-
Hermitian space of dimension m > n. Then it is easy to see that U,,—;.s =~ Uy—4.0 ®
Up,, and

#lsomy,, v, , (k) =#Isomy, y,_, (k) -#lsomy, . v, (k). 2.9)

By (2.9) (note that #Isommzz,Lk (k) =#Isomy,, y,_, . (k)), it suffices to show (2.8) in
the two extreme cases: a =0 and a = n.

First we consider the case @ = n. Then, to give an isometric embedding from
U=Uy,=k"toV=U,o=k™ is equivalent to give an injective k-linear map
¢ : k" — k™ and then an injective k-linear map ¢ : k" — Im(¢)* C k™. There-
fore, denoting by Homyj (K", k™) the set of injective k-linear maps ¢ : k" — k', we
have

#Isomy,, v, , (k) =#Homy (k", k™) - #Homy (k" , k™ ™")
n—1 n—1
:qmn 1_[(1 _qiﬂn) . q(mfn)n 1_[(1 _ qifm+n)
i=0 i=0
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2n—1
=q2mn—n2 1_[ a _qi—m).
i=0

It remains to consider the case a = 0. Then a similar argument shows

#Isomy,, v, ,(k) =#Homy (K", k™) - #Homy (k" , k™ ™")

n—1

:qmn 1_[(1 _ qi—m) . q(m—n)n
i=0

n—1
Zqun—n2 1_[(1 _qi—m)'
i=0

This completes the proof. O

Remark 2.4 By Theorem 2.3, the polynomial Den(7', L) depends only on the induced
Hermitian form on the torsion module LY /L. Indeed, for a Hermitian torsion mod-
ule? Q we define Den(7, Q) by the formula

Den(T, Q)= » . T @m' Q) 7).
0'c(Q)Vco
Then by (2.7), we have Den(T, L) = Den(T, LY /L).

Remark 2.5 In the split case, write L = (L1, L) and L’ = (L, L)). Then the formula
reads

DenT.Ly= 30 UG L),
LicLicLy'cLy

Remark 2.6 The local Siegel series satisfies a functional equation
v 1
Den(T, L) = (n(@)T)* &/ . Den (T’ L> .

A proof in the inert case can be found in [8, Theorem 5.3]. By Theorem, 2.3 the con-
stant term of Den(7', L) is 1. It follows that the degree of the polynomial Den(7', L)
is equal to £/(LY /L). We will not use this fact in this paper. See Corollary 11.14 for
the (global) geometric analog.

2.5 Relation with local Whittaker functions

We continue to let F' be a local field. Define the local L-function

n n
. 1
Zrr) =L +2s. 0 =] ———.

sz this we mean a torsion O gs-module with an O /O g-Hermitian form.
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Lemma 2.7 Let L be a Hermitian Ops-lattice of rank n. Let T = ((x;, X)) 1<i, j<n be
the fundamental matrix of an Opr-basis {x1, ..., x,} of L, an n x n Hermitian matrix
over F. Let 0 be a generator of wo,. so that T € Herm,, (F, wr). Then

Wro(l, s, ®) =%, pyr(s)”' Den(g >, L).
Here @ is the local unramified section normalized by ®(1,,,s) = 1.

Proof Note that by Theorem 2.3
Z pryp(j) = Den((1)"2 (1y")~1.

It is known that Wry(1, s, ®) is a rational function in g*. Therefore the formula is
equivalent to

Wrg(1, j, ®) = Den((1)" "2/, L).

for all integer j > 0. In the non-split case this is essentially [13, Prop. 10.1] (cf. [18,
§3.3]), which can be easily modified to the split case. We note that Wry is the same
as Wr in loc. cit.. O

2.6 Fourier coefficients revisited

Now we return to the global situation. We need the following global L-function to
normalize the Eisenstein series

Zu(s) =[] LG +25.7").

i=1

We now consider the restriction of the regular part E™8(-, s, ®) (as a function
in g € H,(A), cf. (2.4)) to the Levi subgroup M, (A). Since the restriction is left
M, (F)-invariant and right K -invariant, it descends to a function on

Moy (F)\My (A)/ M, (D) ~ Buny, (k) ~ Bungy, (k),

via the canonical identifications. From now on we will freely switch between g =
m(a) € M, (A) and the corresponding element £ € BunGL; (k) and we will write

E™®m(€),s, ®) = E¥(m(x),s, D).

Note that the absolute value on A;, is normalized such that | det(a) | = qdeg(g). By
abuse of notation we also view y as a function on BunGL/1 (k).

Recall that £Y = Ho_mox/ (€, wx) denotes the Serre dual of £. Consider a rational
Hermitian map a : £ --» 0*&" (i.e., a is a map defined over the generic point of
X', such that o*a = a). Given a pair (£, a) as above, we shall define the Fourier
coefficient

E,(m(),s, )
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as follows. For any generic trivialization t : Epr S (F")", the pair (£, T) gives a point
a=u(&,1)e M, (A)/Mn(@) such that £ is glued from (F’)" and the lattices a, O, .
Under 7, the restriction of a at the generic point gives an wr-valued Hermitian form
on (F’)" which we denote by T = T (a, 7). Then we define

E,(m(€),s, @) :=Er@onm((&, 1)),s, P). (2.10)

If we change t to yt for some y € M, (F) = GL,(F'), then a(&, y7) = ya(£, 1)
and T(a, yt) =7 'T(a, 1)y . By (2.1), we have

ET(d,VT)(m(a(Ev V"f)), s, CD) = ET(a,r) (m(a(gv T))? s, CI))

for all y € M,,(F). Therefore E,(m(E), s, ®) is well-defined.

Now suppose a : £ < o*£" is an injective Hermitian map. Let (€,, a) denote
the Hermitian O/ -lattice (valued in wo r = OX @0y OF,) induced by a at v € | X]|.
Choosing a generator of the free OF,-module wo,. of rank one, we obtain a Hermi-
tian lattice £, (valued in OF,) and hence the density polynomial Den(7, £,) defined
by (2.7) relative to F,/F,. We define the density polynomial for (€,, a) as

Deny (T, (&, a)) :=Den(T, &,). (2.11)

It is easy to see that the result is independent of the choice of the generator of wo,; .
We then define

Den(q ™, (€,a)) = [ | Deny(q, ™, (&, a)),
ve|X|

Note that the degree of Den(g %", (£, a)) (as a polynomial of g~*) is
deg(c*EY) — deg(€) = —2deg(E) + 2ndegwy.
Theorem 2.8 Let £ be a vector bundle over X' of rank n. Then

E™(m(E),s, @) = Z E,(m(),s, ) (2.12)

a:E—a*EV

where the sum runs over all injective Hermitian maps a : € — o*EY. Moreover, we
have

E (m(£),s, P)
— X (det(£))g~der@G—n/D=3n desox & ()" Den(g ™Y, (£,a)).  (2.13)
Proof From the definitions it is clear that

E*((m().s, @)= Y E.(m(€).s. P)

a:E--s0*EV

where a runs over rational Hermitian maps £ --+ o*EY that are generically nonsin-
gular.
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Now let a : £ --+ 0*EY be such a rational nonsingular Hermitian map. We con-
tinue with the convention defining (2.10)

E,m(€),s, ®) = Er(m(a),s, P). (2.14)

By (2.2) and (2.3), and noting that the character yx is trivial on the norm of A;ﬁ,, we
have

s+n — 12
Er(m(@), s, ®) = x(det@)le| 7 " lox 72" ] Wr, (s, @), (2.15)
velX|

If the (wF,-valued) Hermitian form 7, does not have integral entries, then Wr, (1, s,
®,) =0 (since @ is invariant under N, (O,)). Therefore E7 (m(«), s, ®) is nonzero
only when T, is integral for all v, i.e., a is an everywhere regular Hermitian map
E < o*&Y. This proves (2.12).

For such a : £ = 0*£Y, by Lemma 2.7, the right side of (2.15) is

X (det(@))| det(@)| 7+ |y ]_[ ———Den(q, *, &),  (2.16)

Uele«iﬂ F/FL(S)

where, by choosing a generator of wo,, , the O -module &, is endowed with the
Hermitian form (valued in OF, ) induced by the wx-valued Hermitian form a.
By x (det(e)) = x (det(£)), | det(a)| pr = ¢%€®) and (2.11), we obtain

Den(q™>, (€,a)) = [ | Den(g, ™, (€, @) = [ | Den(g, ™, &).
ve|X| velX|

Combining these facts with (2.14), (2.15) and (2.16), we get (2.13). Il

3 Springer theory for torsion coherent sheaves

In this section we review the construction of the Springer sheaf on the moduli stack
of torsion coherent sheaves on a curve following Laumon [15]. We also compute the
Frobenius trace function of a particular summand of the Springer sheaf called the
Steinberg sheaf.

In this section let X be any smooth (not necessarily projective or connected) curve
over k =F,. For d € N, let X, be the d™ symmetric power of X.

3.1 Local geometry of Cohy

Let Cohy = Cohy(X) be the moduli stack of torsion coherent sheaves on X of length
d. For any k-scheme S, Cohy(S) is the groupoid of coherent sheaves on X x § whose
pushforward to S is locally free of rank d.

Let sff"h : Cohy — X, be the support map. Recall that for any k-scheme S,
[gl;/ GL41(S) is the groupoid of (V,T) where V is a vector bundle of rank d on
S and T is an endomorphism of V. When X = A!, we have a canonical isomorphism

Cohy(A") =[gl;/ GL4]
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given as follows. For Q € Cohg(A1)(S), I'(AL, Q) is alocally free rank d Og-module
equipped with an endomorphism given by the affine coordinate  for A!, giving an
S-point of [gl;/ GL4]; conversely, given an object (V, T') € [gl;/ GL4] we may view
V as an Og[t]-module Q (viewed as a coherent sheaf on Ag) with ¢ acting as T'.

Let U C Xgbeopenand f: U — A}(_ be an étale map. Such a pair (U, f) is called
an étale chart for Xz. It induces a map f, dCOh : Cohy(U) — Cohy (A%) sending Q to
f+Q which is compatible with the symmetric power f; : Uy — (A%)d under sg"h. Let
@d’ Al C (A%)d and ®; y C Uy be the discriminant divisors, i.e., they parametrize
divisors with multiplicities. Clearly 4 ¢ C fd_l(Qd’ Al), therefore we may write
fd_l (D ga1) =Da.u + Ry, 5 as Cartier divisors on Uy.

Lemma 3.1 Let D be an effective divisor of degree d on U. Then D € Ug\Rqy,y if
and only if for all pairs of distinct points x, y in the support of D, f(x) # f(y).

Proof Let my : UY — Uy be the quotient map by the symmetric group Sy. We
compute the divisor nd_I(SRd) 7). Consider U x 1 U. Since U is €tale over AL
k
A(U) C U x41 U is open and closed, hence we can write U x .1 U = A(U)[[R.
k

For geometric points x, y € U, (x,y) e Rifand only if x # y and f(x) = f(y).
For 1 <i <j<d,let p;j: U? — U x U be the projection to the ith and jth

coordinates. Let

Z,’j = p;l(U XAl U) = A,’j ]_[9‘{,-]-, where Aij =pi;l(A(U)),9%,-j = p;l(%)

.- —1 ~ —1 ..
By definition, ;" (D o1) = Zl§i<j§d Aij, my Dau) = lei<j5d Ajj as divi-
sors on UY. Therefore

' Rap)= Y. Ny (3.1)

I<i<j<d

From this we see, if D = x| +x3 + - - - + x4, where x; € U (k), then D ¢ Ry, rifand
only if (x1,...,x4) ¢ n;l(iﬁd’f). By (3.1), the latter happens if and only if for all
1<i<j=d, (xj,x;) ¢R, ie,either x; =x; or f(x;) # f(x}). O

Let Cohd(U)f C Cohy(U) be the preimage of Ug\PRy, r. Then Cohd(U)f is an
open substack of Coh;(X)z = Cohy(X7).

The following lemma shows that Cohy(X) is étale locally isomorphic to
Cohy(A") = [gl,/ GL4].

Lemma3.2 (1) For any étale chart (U, f) of Xz, the map deOh : Cohy(U) —
Cohy (Al); is étale when restricted to Cohg(U)/ .

(2) The stack Cohy(X)g is covered by the substacks Cohg(U )/ for various étale
charts (U, f) of Xt.
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Proof (1) Forany Q € Cohy(U)/ (k), the tangent map of £ at Q is Ext};(Q, Q) —
Extj;] (f+«9Q, f+xQ). By Lemma 3.1, different points in the support of Q map to dif-
ferent points in Al the above map is the direct sum of t, : Exto (QZ, Q,) —
EXtOA] (9, Q) over z € supp(Q). Since f is étale at each such z, T, are iso-

morphlsms, and hence f Coh j¢ gtale at Q by the Jacobian criterion.

(2) For every point Q € Cohg(X (k) we will construct an étale chart (U, f) such
that Q € Cohg(U)' (k). Let Z C X (k) be the support of Q. For z € Z, let O, be
the completed local ring of X7 at z with a uniformizer w;. The map of sheaves
r:Ox; — EBX.gzOZ/wZ2 is surjective. Let ¢ : Z — k be any injective map of sets.
Then there exists an open neighborhood U; of Z and f € O(U;) such that r(f) =
(c(2) + @;);ez. Viewing f asamap f:U; — A%, it is then étale at Z, hence étale
in an open neighborhood U C U, of Z, i.e., (U, f) is an €tale chart. Since {f(z) =
¢(2)};ez are distinct points in A%, we see that Q € Cohd(U)£ by Lemma 3.1. O

3.2 Springer theory for Coh,

Let @14()( ) be the moduli stack classifying a full flag of torsion sheaves on X
0CciCccC -CQ=0Q

where Q; has length j. Let
759 : Cohy(X) — Cohy(X)

be the forgetful map recording only Q = Q.

Lemma 3.3 (Laumon [15, Theorem 3.3.1]) The stacks éald(X) and Cohy(X) are
smooth of dimension zero, and the map nCOh is proper and small.

Proof 1t is enough to check the same statements after base change to E._We give a
quick alternative proof using Lemma 3.2: for an étale chart (U, f) (over k), we have
a diagram in which both squares are Cartesian:

Cohy(X)p <—— Coha(U)! —— Coha(Al)

Coh Coh Coh
g x J/ Td.U J/ d.Al
fCOh

d
Cohy(X)y =< Cohy(U)/ —— Cohg(A);

Here éghd( U)/ is the preimage of Cohy (U )/ in CTfhﬂU ). Since the horizontal maps
are étale and the Cohy (U )f cover Cohy (X)z by Lemma 3.2, the desired properties of

jde(;? follow from the same properties of ng‘zfl, which is the Grothendieck alteration

g, : [8ly/ GLal — [gly/ GL4]. O
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Let X3 C X4 be the open subset of multiplicity-free divisors (i.e., the complement
of ®4,x), and let Cohy (X)° (resp. Cohy (X)°) be its preimage under sf"h (resp. under
sGOM 0 7§, Then Cohy (X)® — Cohy(X)® is an Sy-torsor.

Corollary 3.4 (Laumon [15, p.320]) The complex
. p,Coh @ b oY
Spr, := R x, Q¢ € D”(Coha(X), Qp)

is a perverse sheaf on Cohg(X) that is the middle extension from its restriction to
Cohy(X)°. In particular, the natural Sq-action on Spry |con,(x)° extends to the whole

Spr,.
3.3 Springer fibers

Let Q € Cohy(X) (k) with image D in X4(k), an effective divisor of degree d. Let
Z = (supp D) (k). Let £(Z) be the set of maps y : {1,2,...,d} — Z such that
Zflzl y(i) = D. Let Bg be the fiber of 75°" over Q. Then Bg classifies complete
flags of subsheaves 0 C Q1 C Q> C -+ C Qg—1 C Q. We write H*(—) := H*(—; Qp)
for £-adic cohomology (regarded as a graded Qg-vector space). By Corollary 3.4,
H*(Bg) = (Spr,) g carries an action of Sy.

For y € ¥(Z), let Bg(y) be the open and closed subscheme of Bg defined by
the condition supp Q;/Q;—1 = y(i). Then Bg is the disjoint union of Bg(y) for
y € X(Z). Hence

H'(Bo)= @ H'(Bo()).

yex(2)

There is an action of S; on X (Z) by precomposing.

Lemma3.5 The action of w € Sq on H*(Bg) sends H*(Bg(y)) to H*(Bg(y o w1y,
forall y e ¥(Z).

Proof 1t suffices to check the statement for each simple reflection s; switching i and
i+1(<i<d-1).Let égh; (X) be the moduli stack classifying chains of torsion
coherent sheaves 0 C Q) C-+- C Q;—1 C Qj41 C --+ C Qg with Q; missing. Then
we have a factorization

7SN Cohy(X) £ Cohly(X) 2> Cohy(X).

The map p; is an étale double cover over the open dense locus C’Zih;’”(x ) where
Qi+1/9Qi—1 (which has length 2) is supported at two distinct points. The map p; is
small by Lemma 3.3, and R,Oi*ag carries an involution 5;, which induces an invo-
lution §; on Rm*R,o,-*Gl = Spr,. This action coincides with the action of s; over
Cohy(X)°, hence coincides with s; everywhere.

Let Big = rri_l (Q). By considering the support of the successive quotients, we

have a decomposition of BiQ by the orbit set X(Z)/(s;). When y € X (Z) satisfies y #
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yos;, the s;-orbit n = {y, yos;} gives an open and closed substack Big(n) - BiQ, such
that ,ol._l (Big(n)) =Bo() [[Bo(yosi),and B’Q(n) C sz;hlz’;?. Therefore in this case
the action of 5; on H* (,olf1 (B’Q(n))) comes from~the involution on Bo(y) [ [Bo(y o
s;) that interchanges the two components. Since s; = s;, this proves the statement for

s; and y such that y # y o s;. For y = y o s; the statement is vacuous. This finishes
the proof. g

Let Q, be the direct summand of Q supported at x € Z. Let dy, = dimg Q,. Then
for any y € X(Z), there is a canonical isomorphism over k

By : Bo(y) = ]—[ Bo, (3.2)

xeZ

sending (Q;) € Bg(y) to the full flag of O, given by taking the summands of Q;
supported at x.

The proof above implies the following statement that we record for future refer-
ence.

Lemma3.6 Let y,y' € X(Z) and let w € Sg be such that y o w™! = y'. Assume that
w has minimal length (in terms of the simple reflections s1, ..., Sq—1) among such el-
ements (such w is unique). Then the Springer action w : H*(Bo(y)) = H*(Bo(y))
is induced by the composition of the canonical isomorphisms By v = ,By_,l o By :

Bo(y) = Bo(y"). In particular, w sends the fundamental class of Bg(y) to the fun-
damental class of Bo(y').

Proof Let w™! =s;, -+ 8iy be areduced word for w1l Let Yj=YSi - Sij 1<j<
N.Let yo =y, and y’ = yy. Since w has minimal length among w’ € S; such that
yow' =l =y/ foreach 1 < j <N, yj_j #y; for otherwise one could delete Si

to shorten w. Since y;j = yj_1 os;; # yj—1, the proof of Lemma 3.5 shows that the
Springer action of s;; : H*(Bgo(yj-1)) = H*(Bg(y;)) is induced by the canonical

isomorphism o; = ﬁ;jl oBy; Bo(yj-1) = Bg(y;). The action w : H*(Bgo (y)) —
H*(Bo(y")), being the composition oy o - - -0 071, is then equal to ﬁyﬁl oBy : Bo(y) =
Bo(y). 0

Corollary3.7 Lety € (Z) and Sy = [ [, Sa, be the stabilizer of y under Sy. There
is an isomorphism of graded Sq-representations

H*(Bg) = Indy! H*(Bg(y)) = Indy! <® H*(Bgr)) :

X€Z
Here on the right side, each factor Su, of Sy acts on the tensor factor indexed by x

(for x € Z) via the Springer action in Corollary 3.4 on (Spry ) o, -

Proof By Lemma 3.5, H*(Bg(y o whH) = wH*(Bg(y)) for w € Sy. In particular,
H*(Bg(y)) is stable under Sy, and H*(Bg) = Indg‘y‘ H*(Bg(y)). By (3.2) and the
Kiinneth formula, we have H*(Bg(y)) = ®xezH*(Bog,).
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It remains to check that the action of Sy on H*(Bg(y)) (as the restriction of the
Sq-action on H*(Bg)) is the same as the tensor product of the Springer action of Sz,
on H*(Bg,). Since the action of Sy on X(Z) is transitive, it suffices to check this
statement for a particular y € X(Z).

Order points in Z as xi, ..., x,. Let yo € X(Z) be the unique increasing function,
i.e. such thatif i < j then the index of yo(i) is less than or equal to the index of yo(j).
Let d; =d,,. Let § = (;)1<i<, be the increasing sequence §; = dj + --- + d;. Let
Cohs(X) be the moduli stack of partial chains of torsion coherent sheaves 0 C Qs, C
-+ C Qs,_, C Q5. = Q such that Qs has length §;. The map ng‘)h then factorizes as

Cohy(X) = Cohs(X) 2 Cohy(X).

We have a Cartesian diagram

Cohy (X) [T,—, Cohy, (3.3)
75 \L nnfioh

C
Cohs(X) — [/, Cohg, (X)

where ¢ sends (Qj,) to (Qs,/Qs,_,). By proper base change we have Rms.Q, =
c*(X;_, Spry,), and the latter carries the Springer action of Sy x - X 84, = Sy,
(pulled back along c). Pushing forward along vs, this induces an action of Sy, on
RU(S*RTQ*GK = Spr,. This action coincides with the restriction of the action of Sy
because both actions come from deck transformations over Coh,;(X)°.

Now va_l(Q) contains the point Q7 € Cohs(X) where supp Qs;/Qs;_, = {x;} for
1 <i <r. This is an isolated point in v(;l(Q), and Bg(yo) = n({l(QT). Moreover,
the isomorphism (3.2) is the one given by taking the Cartesian diagram (3.3) and re-
stricting to OF € Cohg(X). The above discussion shows that the action of Sy, C Sq on
H*(Bo(y0)) C H*(Bg) is the same as the Springer action of [ [; Sz, on @, H*(Bg, )
via the isomorphism (3.2). 0

3.4 The Steinberg sheaf

Let Sty € D?(Cohg(X), 65) be the direct summand of Spr; where Sy acts through
the sign representation. We will describe its Frobenius trace function below. The re-
sult is well-known but we include a self-contained proof.

We call Q € Cohy(X)(k) semisimple if it is a direct sum of skyscraper sheaves at
closed points.

Proposition 3.8 (1) If Q € Cohy(X)(k) is not semisimple, then the stalk of Sty at Q
is zero.

(2) Let Q = @UE‘X‘k?d" € Cohy (X) (k) be semisimple. Then the stalk of Stg at Q is
1-dimensional, and the geometric Frobenius Frob acts on the stalk Sty o by the
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scalar

S(Q) l—[ ql‘}iv(dv_l)/z

vesupp Q

where €(Q) € {£1} is the sign of Frobenius permuting the geometric points in
the support of Q@ counted with multiplicities (as a multi-set of cardinality d).

Proof Let Q € Cohy(X) (k). Let Z C X (k) be the geometric points in the support of
Q and y € ¥(Z). By Corollary 3.7 and Frobenius reciprocity,

Sty o = Homyg, (sgn, Indg‘; (®H"(Bg,))) = Homg, (sgn, ®H*(Bg,))
= ®xez Homg, (sgn, H*(Bg,)) = ®xez Sty,, 0, - 34

(1) By the above factorization of St; o, it suffices to show that if O, is not
semisimple, then St; o = 0. By Lemma 3.2 we may reduce to the case X = Al and
Q is concentrated at x = 0. In this case Spr is the usual Springer sheaf on [gl,;/ GL4],
and Q corresponds to a nilpotent element e € A4 C gl,; (here .47 is the nilpotent
conein gl;). Itis well-known that Sty | s, = do[—d (d — 1)] where &y is the skyscraper
sheaf at 0 € 4. Indeed, by [1, §3.4, Corollary (b)], for any nonzero nilpotent element
e € My, the sign representation of S; does not appear in H*(B,) (B, is the Springer
fiber for e). For e = 0, the sign representation of S; only appears in the top degree
H?@=1(B,), which is one-dimensional. This implies that Sty | 4 = §o[—d(d — 1)].
In particular, Sty , = O for all nilpotent e # 0.

(2) Let Q € Cohy(X)(k) be semisimple. Let |Z| be the set of closed points
in the support of Q. The above discussion shows that Sty o = H'?(Bg.) =
H%@=D(Fl, ) where Fl,_is the flag variety for GL, . By (3.4), Sty is 1-
dimensional and is in the top degree cohomology of H*(Bg). Let

N =dimBg = de(dx —1/)2= Z deg(v)dy(dy — 1)/2

xeZ velZ|

(here d, = d; for any x|v). Let 0 # & € Sty o C @yez(z)HzN(BQ(y)). Let Fr:
Bg — Bg be the Frobenius morphism. We need to show that Fr* & = £(Q)gV&.

For y € ¥(2), let ny € HZN(BQ(y)) be the fundamental class of Bg(y). Then
Fr sends Bg(y) onto Bg(Fr(y)) (here Fr(y) means post-composing y with the
Frobenius permutation on Z), and hence Fr* ngy(,) = gV ny. On the other hand, let
w € Sy be the minimal length element such that Fr(y) = y ow™!. By Lemma 3.6, the
Springer action of w satisfies w7y = nry(y). Write & = (§y) yex(z) Where &, =cyny
for some ¢y € 6; Since w& = sgn(w)&, we see that wé&y, = sgn(w)ég(y). Since
W1y = NFr(y), W€ have ¢y = sgn(w)cry(y). Therefore

(Fr* £)y = Fr* (Ere(y)) = CRe(y) B Ee(y) = 47 cRronyy = sen(w)g™ eyny

=sgn(w)g",.
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Note that, for any choice of y and w above, sgn(w) is equal to the sign of the
Frobenius permutation of the multiset {y(i)}i1<i<q4, Which is £(Q). This implies
Fr* & = £(Q)gN & as desired. d

4 Springer theory for Hermitian torsion sheaves

In this section we extend the construction in §3 to the case of Hermitian torsion
sheaves. The main output is a perverse sheaf Spr];j”“ on the moduli stack of Her-
mitian torsion sheaves with an action of Wy := (Z/2Z)? x S;. We will compare the
stalks and Frobenius trace functions of Spri¢™ with those of Spr,.

As in §3, X is a smooth curve over k (not necessarily projective or connected).
Recall from §1.3 that v : X’ — X is a finite map of degree 2 that is assumed to
be generically étale (and X' is smooth over k). We develop the Hermitian Springer
theory in this generality. Starting from §4.3 we will assume v to be étale, which is
the case needed for proving the main theorem. Let o € Gal(X'/X) be the nontrivial

involution.
4.1 Local geometry of Herm,

We say that a map of torsion coherent sheaves a: Q — o*QV is Hermitian if c*a" =
a.Letd e N. Let

Hermy(X'/X), or simply Hermy

be the moduli stack of pairs (Q, h) where Q is a torsion coherent sheaf on X’ of
length d, and A is a Hermitian isomorphism Q 5ot QY= o*@l (Q, wyx).
We offer two other ways to think about a Hermitian torsion sheaf (Q, ). For a

torsion sheaf Q on X’ of length d, the datum of a Hermitian isomorphism 4 : Q =
0*QY is equivalent to either:

(1) a symmetric k-bilinear nondegenerate pairing
(,):VxV—->k

on V =T(X', Q) satisfying ( fv1, v2) = (v1, 0*(f)vp) for any function f on X’
regular near the support of Q, or
(2) an Oyxr-sesquilinear nondegenerate pairing

(,): 9O x Q— wp'/wyx

satisfying (v1, v2) = 0™*(vp, v1). Here wp- is the constant (and quasi-coherent)
sheaf on X’ whose local sections are the rational 1-forms on X'.

For example, to pass from (2) to (1), form cohomology and apply the trace map
H°(Q) — k. To pass from & to the pairing in (1), observe that Ext'(Q, wx) =
Hom(Q, wfr’/wx) by the long exact sequence associated to wy’ — wp — wp//wyx'.
Therefore, & is equivalent to a sesquilinear pairing @ X Q — wgs/wx’, which upon
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taking global sections and applying the residue map H(wpr/wyx/) — k gives the
pairing in (1).
We refer to h, or any of the above equivalent data, as a Hermitian structure on Q.
We have the support map

sHem  Hermy (X'/ X) — (X)))°.

Note that we have an isomorphism (X é )’ = Xy, sending a o-invariant divisor on
X’ to its descent on X. so we will also allow ourselves to view the support map as
s%{derm :Hermpy(X'/X) — X4.

Remark 4.1 When v is étale and d is odd, (X;)" = @& hence Hermy(X'/ X) = @.

In general, when v is ramified over the points R C X (E), (X &)" has a decomposi-
tion into open and closed subschemes according to the parity of the multiplicities of
the divisor at each point x € R.

Let Ai/? — A/ be the square map of affine lines.

Lemma 4.2 There is a canonical isomorphism
Hermg(Al;/A;) = [04/Oql.

Here Oy denotes the orthogonal group on a d-dimensional nondegenerate quadratic
space over k and og4 is its Lie algebra (the stack [04/04] is independent of the
quadratic form).

Proof We give the map Hermd(Ai/;/Atl) — [04/04] on S-points. For an S-point
(Q, h) of Hermy (Ai/?/All ),V = F(Al , Q) is alocally free Os-module of rank d with

a nondegenerate symmetric self-duality (-, -), i.e., an Og4-torsor over S. Moreover the
action of /7 on V satisfies (+/7v1, v2) = —(v1, 4/1v2) since o *4/t = —+/t. Therefore
J/t gives a section of the adjoint bundle of V. It is easy to check this map is an

equivalence of groupoids Hermy (Ai/;/A})(S) S [04/041(8). O

An o-equivariant étale chart of X]% is a pair (U, f), where U C Xg is an open

subset (with preimage U’ C X/E) and a regular function f : U’ — A! T that is an

i

étale map satisfying o * f = — f. Note that if v is étale, the image of f has to lie in
Aiﬁ \{0}.

A o-equivariant étale chart (U, f) of X% induces a map
fHem : Hermy(U'/U) — Hermd(Ai/?/A,l);

by sending Q to f, Q. Let Hermy(U’/U)/ be the preimages of (U D7 \RY  under

the support maps (here Ry, y C U} is defined using the map f : U’ — Ai/ZE; see
§3.1). ’

We have an analog of Lemma 3.2 in the Hermitian setting.
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Lemma4.3 (1) Let (U, f) be a o-equivariant étale chart for X]% Then the map
f;lerm is étale when restricted to Hermy (U’ / U)/ .

(2) Assume v is ramified at most one point (over k). Then the stack Hermg (X’ /X%
is covered by Hermy(U'/U)Y for various o -equivariant étale charts (U, f) of
X]’(_ In particular, Hermy (X' / X) is étale locally isomorphic to [04/04].

(3) In general, Hermy(X'/ X) is smooth of dimension 0.

Proof (1) is similar to that of Lemma 3.2(1).

(2) We only need to construct for (Q, ) € Hermy (X'/ X) k), a o -equivariant étale
chart (U, f) such that (Q, h) € Hermy(U’/U)7 . Let Z' be its support in X'; since the
Hermitian property of (Q, h) implies that Z’ is stable under o, hence is the preimage
of some Z C X (k) under v. Let £ = (V*OXI/?)U:_I, a line bundle over X. Then the

map r = (ry)zez : L — @Zezﬁz/wf is surjective. Let Zg C Z be the points over
which v is étale (so Z — Z is empty or has one point). For each z € Zy, upon choosing
7/ € Z' over z, we may identify £, with O, = k[[w,]]; changing 7’ to o (z’) changes
the identification by a sign. If z € Z — Zy, then £, = ﬁ%[[wz]]. Choose a map
c:Zy— % such that ¢(z)? are distinct for z € Z. Let f be a section of L over some
open neighborhood Uy C X7 of Z such that r,(f) = ¢(z) + @, for z € Zp under one
of the two identifications £, = O, and r,(f) = \/@; mod @, for z € Z — Zy. Then
f restricts to an étale map U’ = v~ (U) — Aiﬁ 7 for some open neighborhood U of
Z in Uy. The definition of £ implies o*(f) = —’f. Now {f(z)|z' € Z'} is the union
of {¢(z), —c(2)|z € Zp} and possibly {0} if Z — Z is nonempty, which are all distinct
points in Ai/_ — by construction. We conclude that (Q, 1) € Hermy (U’ /U ).

(3) Let R C X7 be the ramification locus of v. The case |R| <1 is treated in
(2), so we may assume |R| > 2. For x € R, let Yy = X\(R\{x}) and let Y| =
v~1(Y,). For any function § : R — Z-( such that ), ER(S(x) d we have a map
Vs = [Leer (Y, d(x))" (X/)? by adding divisors. Let 2)8 C s be the open
locus where the divisors indexed by different x € R are disjoint. It is clear that
@ § — (X)) is étale and for varying & their images cover (X/,)°. To prove the
statement it suffices to show that the base change Hermy(X'/ X )|%o is smooth of

dimension O for each §. Observe that Hermy(X'/ X )|@o is isomorphic to the restric-
8

tion of the product [] g Herms( (Y./Yy) to Q5. Since vly, : Y, — Yy is ram-

ified at one point, by (2) Hermg)(Y./Yy) is smooth of dimension 0. Therefore

Hermd(X’/X)Igo = Hermg(x)(Y;/Yx)@o is smooth of dimension 0. O
8 8

XeR

Remark 4.4 There is an obvious notion of skew-Hermitian torsion sheaves. Let
SkHm,(X’/X) be the moduli stack of skew-Hermitian torsion sheaves on (X', o)
of length d. Then d is even if SkHm,(X’/X) # &. The skew-Hermitian analog of
Lemma 4.3 says that SkHmy(X’/X) is étale locally isomorphic to [sp,/Sp,], at
least when v is étale.
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4.2 The Hermitian Springer sheaf

Let ﬁe;ﬂld (X'/X) be the moduli stack classifying (Q, #) € Hermy(X'/X) together
with a full flag

0CQIC--CQC--CQu1=9CQu=0,

where Q; has length i and Q4_; = Qf- (the orthogonal of Q; under the Hermitian
pairing @ x Q — wpr/wx). Let

e, Hermy(X'/X) — Hermy(X'/ X)

be the forgetful map. Let Hermy(X'/ X)° C Hermy(X'/X) be the preimage of the
multiplicity-free part X/ under the support map s?erm.

We recall the Grothendieck alteration for the full orthogonal group O(V, Q) for
some vector space V of dimension d over k and a nondegenerate quadratic form Q on
V. Let FI(V, Q) be the flag variety that parametrizes full isotropic flags V, = (V| C
-+ C Vg=V)in V. Note that when d is even, this is different from the flag variety
of SO(V, Q) but rather a double cover of it because there are two choices for V2
given the rest of members of a flag. Let o(V, Q) be the Lie algebra of O(V, Q). Let
9(V, Q) be the moduli space of pairs (A, V,) € o(V, Q) x FI(V, Q) such that AV; C
V; for all i. The Grothendieck alteration for O(V, Q) is the O(V, Q)-equivariant map
9(V, Q) — o(V, Q) forgetting the flag. The quotient stacks [o(V, Q)/O(V, Q)] and
[6(V, Q)/O(V, Q)] are canonical; they are independent of the quadratic form Q and
only depend on d = dim V. Therefore we also write the Grothendieck alteration as
70, : [04/0a] = [04/04].

Proposition 4.5 (1) If v is ramified at most one point, then the map n;{erm is étale

locally isomorphic to the Grothendieck alteration 7o, : [64/04] — [04/04].

(2) In general, ﬁgrﬁld (X'/X) is smooth of dimension 0 and néli{erm is a small map.

In particular, the complex
Spriem . — Rngffmaz
is the middle extension perverse sheaf of its restriction to Hermg (X' X)°.

Proof (1) The proof is similar to that of Corollary 3.4. For a o -equivariant étale chart
U, f) for X/E we have a diagram with Cartesian squares and étale horizontal maps
by Lemma 4.3

Hermy(X'/X); <— Hermy(U'/U)/ —— ﬁgr_r/nd(Aiﬁ/A})E

Tax')x vl U d.Al /Al

Herm Herm T Herm
i

ft;lerm

Hermy(X'/X)r <— Hermg(U'/U)/ —— Hermd(Aiﬁ/Atl);
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Using the isomorphism in Lemma 4.2, we identify & ;Zrﬁn /Al with the Grothendieck

alteration 7o,. Since Hermgy(U'/ U)/ cover Hermd(X /X) by Lemma 4.3(2),

Herm £ : : Herm _
Ty XX is étale locally isomorphic to nd,Af[/A,' =70,
t

(2) We use the notation from the proof of Lemma 4.3(3). We may assume |R| > 2.

For each function 8 : R — Z satisfying ), _p 8(x) =d, the base change of nHerm

along Qjao — (X/))? is a disjoint union of the restriction of

[ [ : | [ Hermsq (¥;/ Yi) — [ | Hermsoy (Y, /¥2)
X

X€R xXeR

to @? The disjoint union comes from different ways to distribute supp(Q, /9Qi—1)
among various factors in the product [, (Y] W))‘7 By (1), yr;{(erm : Herm(g(x)(Yx /
Y,) — Hermgy,) (Y] /Yy) has smooth 0- dlmensmnal source and is small for each x €
R, the same holds true for the base change of 7, Herm ¢, Q_)?. Since {@?}5 form an
étale covering of (X/)?, the same is true for nHe‘m O

4.3 The action of W,

From now on we assume that v : X — X is an étale double cover. In this case, (X} )
can be identified with X4 via v=1(D) < D. Let

= (Z/22)" x Sy

Herm

be the Weyl group for Oz4. Then 7, is a Wy-torsor over Hermy, (X'/ X)°.

Corollary 4.6 (of Proposition 4.5(1)) If v: X' — X is an étale double cover, then
there is a canonical action of Wy on Sprg?rm extending the geometric action on its
restriction to Hermpg (X'/ X)°.

Definition 4.7 (1) For any representation p of Wy, we define Spr?jrm[,o] to be the
perverse sheaf on Hermpy (X'/ X):

Sprog™[p] = (0 ® Sprag™) " € D (Hermaq (X'/ X), Q).
(2) We define the Hermitian analog of the Springer sheaf Spr as
HSpr,; := (Spe™) 222" ¢ Db (Herm,y (X'/ X), Q).

Note that the notation shifts from the subscript 2d to d. By Corollary 4.6, HSpr,
carries a canonical S;-action.

Remark 4.8 In the case v is ramified with ramification locus R C X (k), the stack
Hermyq (X'/ X)7 decomposes into the disjoint union of open and closed substacks
Hermid(X’/X)z indexed by ¢ : R — {0, 1} where the length of Q, has parity &(x)
for all x € R. Then Spr];jrm IHerms,, (x/x); carries a canonical action of Wy where

d'=d—Y gex)/2.
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4.4 The Springer fibers over Herm;,
Let (Q, h) € Hermpy(X'/ X )(k) and consider its Hermitian Springer fiber
BE™ :=my ™ (Q, h).

This is a proper scheme over k. In this subsection we prove the Hermitian analogs of
results in §3.3.

Let Z' = supp Q C X'(k). Let D' = s¥¢™(Q) € (X)) (k), which is of the form
D' = v~ (D) for some D € X4(k). Let Z = v(Z’), the support of D. Write D' =
D ez diz.

Let X(Z’') be the set of maps y' : {1,2,...,2d} — Z’ satisfying y'(2d + 1 —
i) = o (y'(i)) for all i and 21‘2:1 y'(i) = D’. Identifying W, with permutations of
{1,2,...,2d} commuting with the involution i — 2d 4 1 — i, we get an action of Wy
onZ(Z)byw:y >y ow .

Similarly let X (Z) be the set of maps y : {1,...,d} — Z such that Zflzl y(@i) =
D. Then the natural map X(Z’) — X(Z) (sending y’ to y defined by y(i) = v(y'(i)))
is a (Z/27)%-torsor.

For y' € ©(Z'), let Bgerm(y’ ) be the subscheme of Bgerm consisting of isotropic
flags Q, such that supp(Q;/Q,;—1) = y'(i) for all 1 <i < 2d. Then we have a de-
composition into open and closed subschemes

Bgerm: ]—[ Bgerm(y/).

V'eX(Z))

Accordingly we get a decomposition of cohomology

H*(Bgerm) — @ H* (Bgerm(y/)).

y'ex(Z)

Lemma 4.9 The action of w € Wy on H*(Bgerm) sends the direct summand
H* (Bgerm(y’)) to the direct summand H* (Bgerm(y’ ow™ ).

Proof 1t suffices to check the statement for each simple reflection s;, i =1,...,d.
Here,for 1 <i<d—1,5 =(,i +1)(2d —i,2d + 1 —i);fori =d, sy = (d.d +

1). For 1 <i <d, let Ife?l/nlzd be the moduli stack classifying isotropic flags that
only misses the terms Q; and Qj;—; (for i = d only misses Q;). Then we have a
factorization

ﬂzderm Hermyy 2 HermZd I Hermyy .

The map p; is an étale double cover over the open dense locus Ifgrl/n;’; where
Q;11/9i—1 (which has length 2) is supported at two distinct points. The map p;
is small, and Rp,*ﬁg carries an involution s;, which induces an involution §; on
R+ RpixQp = Ry, eerg This action coincides with the action of s; over Hermj;,
hence coincides with s; everywhere.
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Let (Q, k) € Hermyy (k), and BiQ =7 '(Q, h). We have a decomposition of BiQ
by the orbit set X (Z")/(s;). When y" € X(Z') satisfies y’ # y'oss;, the 5;-orbit of n’ =
{y’,y’ os;} gives an open closed substack B’Q(n’) C B.,, such that pfl(B‘Q(n’)) =

. O
Bo()IBo(y osi), and BlQ(n/) C Herm;d . Therefore in this case the action of

§; on H*(pfl(BiQ(n’))) comes from the involution on Bo(y") [ [ Bo ()’ o s;) that in-
terchanges the two components. Since 5; = s;, this proves the statement for s; and
y’ such that y’ # y’ o s;. For y =y’ o s; the statement is vacuous. This finishes the
proof. 0

Choose Z% € Z’ such that Z* ] [0 (Z*%) = Z'. Then for each x € Z there is a unique
x% e Z% above x. For y' € ©(Z’) with image y € X (Z), we have an isomorphism

vzey  BE™G) = B, ) =[] Be, .1

xeZ

mapping (Q;)1<i<24 to the (non-strictly increasing) flag (Q; ,r) of Q.
If y’, y” € £(Z'), the composition

yy/’y// = yz_:{y,, o VZ:,y’ : Bgerm(y/) :) Bgerm(y//)
is independent of the choice of Z*.
Lemma 4.10 Let y',y" € X(Z’) and let w € Wy be a minimal length element such
that y" =y’ o w™'. Then the Springer action w : H*(Bg’rm(y/)) — H* (Bgerm(y”))
is induced by the isomorphism y .
Proof Similar to the proof of Lemma 3.6. g

4.5 Comparing stalks of HSpr,; and Spr,

In this subsection we abbreviate Hermp,(X'/X) by Hermy,. Consider the stack
Lagr,, classifying pairs (£ C Q) where Q € Hermy,; and £ C Q is a Lagrangian

subsheaf, i.e., £ has length d and the composition £ < Q i) o*QV — o*LV is
zero. We have natural maps

!
v2d &a Vs

Hermp; <—— Lagr,; —— Cohy(X’) —— Cohy(X)

where v2¢ (L C Q) = Qand &,(L C Q) =L. Let &g = vy 0 &, : Lagr,; — Cohg(X).
Let (X)) C X/, be the open subscheme parametrizing D € X/, such that D N
5/
o(D)=.Let Lagrgd C Lagr,, be the preimage of (X ;1)0 under the map Lagr,, BN
sCoh/
Cohy (X)) X x /- It is easy to see that ¢/, restricts to an isomorphism

Lagrs, = Cohy(X)®

whose inverse is given by L~ (L C Q=L ®c*LY).
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~

Let vfd and 83 be the restrictions of vy4 and g4 to Lagrgd. Thus we view Lagrgd
Cohy (X)) as a correspondence between Hermy,; and Cohy (X)

< o
Y24 €d
Hermpy <—— Lagr2d —— Cohy(X)

Note that both vfd and 8;> are surjective. Now both Hermy; and Cohy(X) carry
Springer sheaves HSpr,; and Spr, with S;-actions. The following proposition says
that they become isomorphic after pullback to Lagrgd.

Proposition 4.11 There is a canonical Sg-equivariant isomorphism of perverse
sheaves on Lagrgd

v2d *HSpr, = sd *Spry .
Proof The map 7, Herm £actors as

T A v2d
ngfrm Hermy; — Lagr,; —> Hermy, .

— -
Let Agd : Herm,,; — Lagrgd be the restriction of A4 to Lagrgd. We have a commuta-
tive diagram

~1 <
—~ &q
Hermy, xde <~—— Herm,; —— Cohd(X e — Cohd(X) “4.2)

Herm,<$>
Td
A9 7 Con. < 7 Coh
2d X'd Td
& %
Yaa &a v

Hermpyy <——— Lagrgd —— Cohy(X)° B Cohy(X)
<&
W

Here Coh,(X')® and Cohy(X')< are the preimages of (X/) under the support map.
We have:

e The middle square is Cartesian. This is true even before restricting to the <> locus.
e Since 8:10 is an isomorphism, so is E;O.
e The rightmost square is Cartesian.

From these properties we get maps

H <&
o U2d HSpr,; — U2d Spryg ™ = v2d “Ruzgs RAaxQy — UZd szd*Rk2d*Qg

(o reY Ox __Cohgy Ok
- RA;,;, Qr=¢e, mp"Qp=¢; Spry.

To check « is an isomorphism, it suffices to check on geometric stalks. Let £ €

Cohy (X")® (k) with support Z* C X' (k). Let Q=L @ 0*L" € Hermy, (k). The sup-
portof Qis Z' = Z* | [0 (Z*), with image Z C X (k). We have (£ C Q) € Lagr$, (k),
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with image v, £ € Cohy(X) (k). The stalk of o at (£ C Q) is
aiccg)  HFBE™E2D! L 42} (L € Q) 5 H (B,,z) (4.3)

Recall Bgerm = ]_[},/EE(Z/) Bgerm(y’). Let £(Z%) C =(Z’) be the set of ¥’ such that
v (i) € Z% for 1 <i <d. Then we have a natural bijection ¥(Z) < >(Z%, y > yF.
The fiber )\2_; (L C Q) is the disjoint union L[yeZ(Z) Bgerm(yﬁ). Recall the isomor-
phism yz:z y: Bgerm(yﬁ) S By, (y) from (4.1). Using these descriptions we may
rewrite (4.3) as

d
H*(BG™) #22" — @ 520 H (BG™ (V) = @yen)H By, £ () =H* (B, 2).

It remains to show that the first map above is an isomorphism. But this follows from
the fact that (Z/2Z)? acts freely on X(Z’) with orbit representatives X (Z%), and
Lemma 4.9. This shows that « is an isomorphism.

Finally we show that « is S;-equivariant. By Proposition 4.5, ngfrm and hence
A4 1s small, R)\.2d*6[ is the middle extension from a dense open substack of Lagr, ;.
Therefore the same is true for R)»?d *Ge. Since « is an isomorphism, both U;i* HSpr,
and 53* Spr,; are middle extension perverse sheaves from a dense open substack
of Lagrgd. To check that « is Sy-equivariant it suffices to check it over the dense
open substack which is the preimage of the multiplicity-free locus Xj. Over X, all
squares in (4.2) are Cartesian, and all vertical maps are Sy-torsors. The S;-actions on
HSpr, |Herm§d and Spr; |coh, (x)e come from the vertical S;-torsors in the diagram, so
a is S4-equivariant when restricted over X . This finishes the proof. U

4.6 Comparing Frobenius traces of HSpr,; and Spr,

In this subsection we will prove a relationship between Frobenius trace functions for
HSpr, and for Spr,. Since these sheaves live on different stacks, to make sense of the
comparison we first need to identify the isomorphism classes of the k-points of these
stacks.

For a groupoid G, let |G| denote its set of isomorphism classes.

Lemma4.12 There is a canonical bijection of sets
| Hermo, (X'/ X) (k)| = | Cohg (X) (k)|
respecting the support maps to X 4(k).

Proof Let P(d) be the set of partitions of d € Z>q, and P =][,-,P(d). Let Px,
be the set of functions A : | X| — P such that A(v) is the zero partition for almost all
v € |X|. For A € Pix|, let |A| = Y, |A(v)|deg(v). Let Pjx|(d) be the subset of those
A € Pix| with |[A| =d. Let sq : P|x|(d) — X4(k) be the map sending A to the divisor
Doy IA)]v.

By taking the Jordan type of a torsion sheaf at each closed point, we get a canonical
bijection A" : | Cohy(X) (k)| = Pyx|(d). The map s$° : | Cohg(X) (k)| — X4 (k)
corresponds to sz under this bijection.
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We define a map Al;erm : |Hermpy (X'/ X) (k)| — Pix|(d) as follows. For (Q, h) €
Hermyy (X'/ X) (k) and v € | X|, let A(v) be the Jordan type of Q, (the summand Q,,
supported at v’) for any v’ € | X’| above v. When v is split in X', the two choices of v’
give the same Jordan type. The support map s?jrm | Hermpg (X' / X) (k)| — Xgq(k) is
the composition 54 o A?erm.

We claim that AF*™ is a bijection. Then ASOhﬁ] o AHem™ - | Hermyy (X'/

X) (k)| = | Cohy (X) (k)| is the desired bijection.

To prove the claim, since any torsion coherent sheaf splits as a direct sum over the
finitely many points in its support, it suffices to fix a closed point v € |X| and show
that the set of isomorphism classes | Herm,, | of Hermitian torsion sheaves supported
above v maps bijectively (by the restriction of A?erm) to P which are supported at v.

If v splits into v” and v” in | X’|, then any (Q, k) € |Herm, | has the form Q, &
0*Q, equipped with the canonical Hermitian structure. In this case we see that the
isomorphism class of (Q, &) is determined by the Jordan type of Q,/, and conversely
each Jordan type arises from some (Q, h).

If v is inert with preimage v’ € |X'|, let (@, h) € |Herm, | be of length d over
ky.Then V =T(X’, Q) is a d-dimensional Hermitian k, -vector space with a self-
adjoint nilpotent endomorphism e given by the action of a uniformizer w € O,.
Fix a d-dimensional Hermitian space (Vg4, h) over ks (unique up to isomorphism),
then the isomorphism classes of (Q, #) € |Herm, | with length d over k, is in
bijection with the adjoint orbits of the unitary group U(Vy, h)(k,) acting on the
nilpotent cone N'(Vy, h)(k,) of self-adjoint nilpotent endomorphisms of V. Be-
ing a Galois twisted version of the usual nilpotent orbits under GL,4, the orbits
N Vg, h)(ky)/U(Vy4, h)(ky) are again classified by partitions of d according the Jor-
dan types of e € N'(Vy, h)(k,) (here we use that the centralizer Cg, . (e) is connected,
and Lang’s theorem implies H! (k,, CiL,(e)) = {1}). Therefore the isomorphism
class of (Q, h) € |Herm, | is determined by the Jordan type of Q, and conversely
each Jordan type arises from a (Q, k). This shows that Agerm is a bijection. O

4.6.1 Further notations

Now let (Q, h) € Hermy, (k). We write Qf for the base change of Q over X/E’ and

adapt the notations Z’ C X'(k), Z C X (k), £(Z'), £(Z) from §4.4. Let |Z'| and |Z|
be the set of closed points contained in Z’ and Z. We have a decomposition

1z1=1zs ] [ 121

into split and inert places. For each closed point v € |Z| we choose a geometric point
x,, € Z' above v and denote its image in Z by x,.

Let Fr: X’ — X' be the Frobenius morphism. Let Z* be the following subset of
Z/

7= {F"(x;) velZ,0<i <deg(v)}.

When v splits into v’, v” in |X’|, with x]|v/, then Z ® contains all geometric points
above v’ and not any above v”. When v is inert with preimage v’ € |X’|, Z* contains
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half of the geometric points above v’ which form a chain under the Frobenius, starting
with x/. Therefore Z' = Z*] [0 (Z"). For x € Z let x* € Z* be the unique element

above x. This induces a section X (Z) = > (Z% ¢ =(Z’) which we denote Y yﬁ.

Let Q" € Cohy(X)(k) be the point corresponding to the isomorphism class of
(Q, h) under the bijection in Lemma 4.12. Then Q; = v, (Q|z1). Recall the isomor-
phism (3.2) for each y € ¥(Z)

By :BQb(y):) HBQK'

xeZ

From this and the Kiinneth formula we get an identification

H* (B () = QH (Bg).
xeZ
By [9, Corollary 2.3(1)], H*(B QZ) is concentrated in even degrees. Let H*(Bg» Nt
be the direct sum of all ®czH%* (B o ) (for varying (i,).ez) such that

Z iy, is even. “4.4)

ve|Z|;

Similarly, let H*(Bg»(y))™ be the direct sum of all QyezHYx (B Qb) such that the
quantity in (4.4) is odd. We have '

H*(Bg () = H*(Bg: (») T @ H* (Bg» ()™ 4.5
Taking direct sum over all y € X (Z) we get a decomposition
H*(Bg)) = H*(Bg») ™ @ H*(Bg:) ™. (4.6)

Note that this decomposition depends on the choice of a geometric point x, over
each inert v. By Corollary 3.7, the action of Sy C S; on H*(Bg»(y)) preserves the
decomposition (4.5) since it is the same as the tensor product of the Springer actions
on each factor H*(B o ). Therefore the decomposition (4.6) is stable under the Sg-
action. :

Now (9|, C Q) gives a geometric point of Lagrgd, which is not defined over k
if | Z|; # @. Using this geometric point in Lagrgd, Proposition 4.11 gives an isomor-
phism of := ®(QJ,;cQ) on the level of stalks (see (4.3)):

of T H* (B @20 = g (Bgy).

This isomorphism is S;-equivariant. Both sides now carry geometric Frobenius ac-
tions which we denote by Frobg and Fronb, which are not necessarily intertwined
under of because the point (Q|,: C Q) is not necessarily defined over k. The next
result gives the relation between the two Frobenius actions.

Proposition 4.13 Let 0 be the involution on H*(Bg») which is 1 on H* (BQb)+ and
—1onH*(Bgy) ™. Then under the isomorphism of, Frobg corresponds to Frob gy of.
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Proof Recall from the proof of Proposition 4.11 that ' is the composition

H B @D = () i B L @) H B o).
YeX(Z) YEX(Z)
Here Yzt yt is defined in (4.1).

Then Fr* on H* (Bgefm) maps H*(Bgefm(Fr(yﬁ))) to H* (Bgefm(yﬁ)). Note that
Fr(y®) and (Fry)* are in general different: if y(i) = Fr~!(x,) for some inert v, then
Fr(y*)(i) = o (x}) while (Fry)®(i) = x| . In other words, the only difference between
Fr(yﬁ) and (Fr y)II is the switch of all x, and o (x]) for all inert v. Therefore there is
a unique element 7, € (Z/2Z)? such that (Fry)? =Fr(y%) o Ty.

Identifying H* (B}QIerm)@/ 207 with @Byex(z)H* (Bgem‘(yn)), the geometric Frobe-
nius endomorphism Frobg on H* (Bgerm)(z/ 22)? s the direct sum of the following
compositions

HY (B™ (Fr y)#) = H* (BE™ (Fr(y%))) © H* (B (%))

where the first map is the Springer action of 7, € W, on (Sprg?rm)g.
On the other hand, let wy € W be the minimal length element such that (Fr Y=
Fr(y%) o wy. Write

Ty = WyUy, for a unique u, € Stade((Fry)ﬁ) = Stabg, (Fry) C Sy.

Note that Stabg, (Fy) =[],c, S1, where I, C {1,2,...,d} is the preimage of x un-
der y. An easy calculation shows that uy = (uy, x)xez Where uy , € Sy, is

wr, ifx=x,vel|Z|,
Uy x = ’ .
1, otherwise.

Here wy, € S, is the involution that reverses the order of 1.
We use abbreviated notation

H(y') := H*(BE™ (")), for y' € 2(2)),
C(y) :==H"(Bg(y)), for y € £(Z).

For each y € X(Z), consider the following diagram

iy Wy Fr*
H((Fry))) —— H((Fry)®) ——— HF(") — H(OH
J/ Y78 (Fry)t l Y78 (Fry)t J/ YRe(z8) Fr(y?) l Yzt 8
iy sFZHFOR) Fr*
C(Fy) — C(Fy) C(Fy) —— C(y)

4.7
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The left square is commutative by the Sy-equivariance of «* proved in Proposi-
tion 4.11 (here u, € Staby, ((Fr y)¥) C Sy). The middle upper triangle is commu-
tative by Lemma 4.10. The map §* is defined to make the lower middle triangle
commutative. The right square is clearly commutative. The composite of the upper
row is the restriction of Frg to H ((Fr y)ﬁ). Let us compute the composite of the lower
row.

The map §* is the pullback along the automorphism § of By (Fr y) that makes the
following diagram commutative

B&™ (Fr(y™))

Yzt Byt
/ l VEr(zh) Fro%)
§

Bo(Fry) <—— Bg(Fry)

Under the isomorphism Bg;y : Bgy (Fry) = [Tz B o 8 is the product of automor-
phisms & for each BQ; . If x is not of the form x = x,, for v € | Z|;, 8, is the identity.

If x = x,, for some v € |Z];, then Q,b( = Q,; and the Hermitian structure on Q gives
an isomorphism ¢ : Q5 1) = QZ;' On the other hand, Fr%&® gives an isomorphism
¢ : Qu = Qu(xy since o (xy) = Frdeg(”)(x;). Combining ¢ and ¢ we get a perfect
symmetric pairing (-, -),; on Q, itself. Then Jy sends a full flag R, of in = Qy
to Rf‘ under the pairing (-, -)/ .

By the description of u, and § above, under the isomorphism Sy, the composition
8% o uy takes the form

Oy ouy) : QH By) - QH By).

xeZ xeZ

The automorphisms 85 o u, , are the identity maps except when x = x, for some
v € |Z|;, in which case uy y = wy,. Let us compute 87 o wy, on H*(B ) for x = x,

and v € |Z[;. For this we switch to the following notation. Let V = Q,/ = Q)bcv, a
vector space of dimension m over k. We have argued that V carries a symmetric self-
duality (-, -); the action of a uniformizer at x, gives a nilpotent element e € Endg(V),
which is self-adjoint under (-, ). Let B be the flag variety of GL(V) and B, be the
Springer fiber of e. Then S,, acts on H*(13,). Let wy be the longest element in S,,.
Let § : B, — B, be the map sending a flag V, to V;-. We claim that §* o wy acts
on H? (B,) by (—1). Indeed, by [9, Corollary 2.3(2)], the restriction map H*(B) —
H*(B,) is surjective and is clearly equivariant under §* o wy, so it suffices to show that
8* o wg acts by (—1) on H? (B). Since §* o wq preserves the cup product on H*(B),
it suffices to show it acts by —1 on H2(B) (which generates all of H?*(B) under the
cup product). For 1 < j <m, let §; be the Chern class of the tautological line bundle
on B whose fiber at V, is V;/V;_;. Then H2(B) is spanned by &; for 1 < j <m.
Now we have wo(&§;) = &1 since H2(B) is the reflection representation of S,,,
and 6*&; = —&,, 11— by the definition of §. Therefore 6* o wo(§;) = —&; for all
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1 < j < m, which proves that §* o wg acts by —1 on H>(B), and hence acts by (—1)!
on H% (B) and on H% (13,).

The above argument shows that §* o u, acts by 1 on H*(Bg (Fr y)T and acts
by —1 on H*(Bg» (Fry))~. Therefore the bottom row of (4.7) is Frg» of. By the
commutativity of (4.7), Frgy of corresponds under a? to the composite of the top
row, which is Frg. This finishes the proof. g

5 Geometrization of local densities

The goal of this section is to give a sheaf-theoretic interpretation of the formula of
Cho-Yamauchi on the representation density of Hermitian lattices, see Theorem 5.3.
This will complete the geometrization of the analytic side of our proposed Siegel-
Weil formula, at least for non-singular Fourier coefficients. The technical part of the
proof of the theorem is a Frobenius trace calculation that uses properties of the Her-
mitian Springer action proved in §4.6.

5.1 Density function for torsion sheaves

Following Remark 2.4, for any Hermitian torsion sheaf (Q, k) € Hermpy(X'/ X) (k),
we may define the density polynomial Den(7', Q) using the Cho-Yamauchi formula
as follows. Let Q,, be the summand of Q supported over v € | X|, we define

Den(T, Q) := [ | Den, (1%, Q,)
velX|

where

Den,(T, Q)= .  T*Dm, T/ 7).
0CcZcItcQ,

Here I+ is the orthogonal of / under the Hermitian form on Q,, so in other words
the sum is over all subsheaves of Q, that are isotropic under s, = h|g,, and we
write m, (—) to emphasize the dependence of m(a; T) on F)/F, (see Definition 2.2).
The functions ¢, (—) and #,(—) are the functions ¢'(—) and ¢'(—) defined in §2.4 for
F!/F,.

Expanding the product into a summation, we see

Den(7.Q)= » T[] m@y@ /D7) 5.1
0CcZcZItcQ velX|

Given an injective Hermitian map a: £ < o*£", we have a Hermitian structure
on the torsion sheaf coker(a) as follows. Applying o* RHom(—, wy’) to the short
exact sequence

0>ES 0% > 00 (5.2)
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yields a short exact sequence
025 6%V — o*Ext (Q, wy) — 0. (5.3)

Since o0*a" = a, we may identify (5.2) and (5.3) and get an isomorphism 2 ¢ : Q =
o*QV. Using this, we may restate Theorem 2.8 as follows.

Theorem 5.1 Let £ be a rank n vector bundle over X' and a : £ — o*EY be an
injective Hermitian map. Then

Ea(m(g)a s, (I))

— x(det(E))g~dee©6=n/2=3n*deg@x) o & ()~ Den(qg 2, coker(a)).
5.2 Density sheaves

We will define a graded perverse sheaf on Hermyy(X’/ X) whose Frobenius trace at
Q recovers Den(T, Q). We will suppress X’/ X from the notations.
For 0 <i <d, let Herm; 24 be the stack classifying

{(Z, (Q, h)) € Coh;(X') x Hermpy : Z C Q and is isotropic under h}.

We have the following maps

Herm; 24
- =, =

(f_/ fi=(fa D

Hermyy Coh; (X’) x Hermyg—)

Here f; takes (Z,(Q,h))to (Q,h), f takesittoZ and f/ takes it to T+ /T with
the Hermitian structure induced from 4.

Recall the perverse sheaf HSpr,; on Hermy, from Definition 4.7(2). It is obtained
from the Springer sheaf on Hermy, by taking (Z/2Z)?-invariants, and HSpr,,, carries
an action of S,;.

Definition 5.2 We define the following graded virtual perverse sheaves on Hermy,.
(In the notation below, the degree of the formal variable 7' encodes the grading.)

(1) Pu(T) = @;{zo(_l)j(HSprd)(s_/xsd__,-,sgn,. MO
2) KES(T) =i, R?i,!R._;?(Ge TR Pa—i(T)).

Theorem 5.3 For any Q € Hermy, (k), we have

Den(T, Q) = Tr(Fr, K55 (T) o).
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Proof By the Grothendieck-Lefschetz trace formula, we have

d
Tr(Fr, K55 (1)) = Y > 79 L Te(Fr, Ba—i (T) 72 /7).
i=0 (Z,Q)eHerm; 24 (k)

Comparing with the expansion (5.1) for Den(7, Q), it suffices to prove, changing
notation d — i to d and IL/I to Q, that

Tr(Fr, Ba(T) @) = [ | mu(t(Q); T*EW). (54)

velX|
This will be proved in Proposition 5.7. U
The rest of the section is devoted to the proof of (5.4). The idea is to relate the

Frobenius trace to a similar Frobenius trace of a graded perverse sheaf on Coh;(X)
using results from §4.6, and then calculate the latter explicitly.

5.3 Comparison of two graded Frobenius modules
For (Q, h) € Hermy, (k), write

(Sj % Sq—j,sgn; X1)

Po(T) =Ru(T)g = EB( 1)/ (HSpry) o’ T/

Jj=0

QL

@ l)jH* BHerm)(W xWq—j.5gn; |ZI)TJ
j=0

Here sgn; is the inflation of the sign representation of S; under W; — §;. We view
PBo(T) as a Z-graded virtual Frobenius module, with the Z-grading indicated by the
power of T. Let Q” € Cohy(X)(k) be in the isomorphism class that corresponds to
(Q, h) under the bijection in Lemma 4.12. Define

d

Bo (1) =P/ Sprp) 5

Jj=0

§; xS, sgn; X1
( d—j,SgN; )T

QU

j=0

Define the Frobenius traces
Po(T) :=Tr(Fr,Bo(T)), P (T):=Tr(Fr, B (T)) € Gz[T]-

The goal is to get a relationship between Pg(T) and Py (T). Note that P (T) is a
special case of Po(T) when the double cover X’ = X U X (and Q is the direct sum
of Q" on one copy of X and Q™" on the other). We shall apply Proposition 4.13 to
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express Pg(T') in terms of Py (T'). For this we need to calculate the decomposition
of By (T') given in (4.6).

Recall notations Z, Z', ¥(Z) and X(Z') from §4.4. First we show that 5, (T)
factorizes according to the support of Q in X. Let |Z| be the set of closed points in
Z.Forv e |Z|,let le, denote the direct summand of Q" whose support is over v.

Lemma 5.4 We have a natural isomorphism of graded Fr-modules

Po (D = Q) B (D

velZ|

In particular,

Po(T) = [T Pgr (D).
velZ|

Proof Choose any y € X(Z) and let |y| be the resulting map {1,2,...,d} — |Z|.
Let S}y = Stabs, (|y]), then Sjy| = [],¢z S, where I, = ly|~!(v). Applying Corol-

lary 3.7 to Q’ and to each sz) gives an isomorphism of (S, Fr)-modules

H*(Bg) =Indg’ | @) H'By) |- (5.5)
velZ|

Here the factor S;, of S}y acts on H*(B o ) by the Springer action.

Write H, = H*(B o ) as a (Sy,, Fr)-module. Let d, = #I,,. By Mackey theory, the
(Sj x Sq—j,sgn;K1)-isotypical part of the right side of (5.5) is a direct sum over
double cosets (S; x Sg—;)\Sa/S|y|, which can be identified with the set of functions
i:|Z| = Z>0, v iy <dy, such that ZviU = j. The stabilizer of the §; x S4_ -
action on the orbit indexed by i is isomorphic to [],¢z Si, X Sa,—i, (Where the S;,
factor lies in §;, Sy, lies in S;4_;, and S;, x Sg,—;, is naturally a subgroup of
S1, = Sa,). The contribution of the summand indexed by i is

® HlSS,'U XSy —iy 52N, IEI)'
velZ|

_iv

This implies that

j i —iy»sgn; X ,
Po (T) = > (=npxh ®H1§va5dv oosemy, B | o5,

i:|Z|—>Z>0,iy<dy ve|Z|
& (S, xS X1)
~ i iv X Sdy—iySEN; i
=Q | D T = @ Py (D
Qy
velZ] \iy=0 velZ|

O
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Let Q, be the direct summand of Q supported over v. Then Q,, and Qz correspond
under the bijection in Lemma 4.12.

For any Frobenius module M with integral weights, let Gr M be the pure of
weight i part of M. This notation applies also to graded Frobemus modules by taking
Ger on each graded piece.

Proposition 5.5 Let Q € Hermpy (k).
(1) We have

Po(1) = Q) Po, (7)., Po(T) =[] P, (D). (5.6)

ve|Z| velZ|
(2) Ifv e |Z| is split in X', then
Po (T) = PQ% (T). 5.7
(3) Ifv € |Z| is inertin X', then

Po,(T) =Y (1) Tr(Fr, G} 4oy 1) B (1)) (5.8)

i
Moreover, Tr(Fr, GriW ‘BQ; (T)) =0ifi is not a multiple of 2 deg(v).

Proof We will use the notations from §4.6.1. For each y € X(Z), the summand
H*(Bg (y)) = QrezH* (Bd) is graded by multidegree i: Z — Zx¢

HZi(BQb (y)) — ®H2i(X) (BQz)

xeZ

We define H2i(BQb) as the direct sum of H2i(BQb (y)) over all y € X(Z). Then
each HZi(BQb) is stable under Sy. Accordingly, o> (T) decomposes into the di-
rect sum of ‘.]ﬂgib (T), which is by definition @?zo(— l)jHZi(BQb)(Sj xSq—j.sgn R j-
Let i, be the restriction of i to those x|v, then under the factorization isomorphism in
Lemma 5.4 we have

TEM = Q) B (D). (5.9)

velZ|

(1) Recall the involution & on H*(Bg») in Proposition 4.13. Using the above nota-
tion, we see that 6 acts on H2i(BQD) by Hveth (—1)'™) (where x, € Z is a chosen
geometric point over v, as in §4.6.1). Because of (5.9), the action of 6 on B o (T') fac-
torizes as the tensor product of the similarly-defined 6, on each ‘B > (T'). By Propo-
sition 4.13, B o(T) is the Frobenius module obtained by modlfymg the Frobenius
action on P> (T) by composing with 6. By Lemma 5.4, this modified Frobenius
structure on ‘B oy (T) is the tensor product of the similarly modified Frobenius mod-
ules ‘B b(T) which in turn are isomorphic to Bg, (T') by Proposition 4.13. This
1mphes (5 6).
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Higher Siegel-Weil: non-singular terms 611

(2) From the definition we see that if v is split, then 6, is the identity on 13 o’ (T).

Hence Po (T) = ‘ﬁga’(T) and Pg (T) = Py (T).
(3) Since the cohomology of B o is pure by [9, Corollary 2.3(3)], we see

that GrW ‘,TJQ; (T) is the sum of fﬁzl“ (T) where i, : {x € Z : x|v} — Z>( satisfies
2i,(x) = i. The action of Frobenlus sends 2’” ' (T) to 2F b (T), where F*i,
x|v

means precomposing i, with Frobenius. Therefore only constant multi-degrees (i.e.,
constant functions i,) contribute to the Frobenius trace of 13 o (T). This implies
v

Tr(Fr, Grl.W ‘BQb (T)) =0 unless i is a multiple of 2deg(v).
By the discussion above,

Pg, (T) =Tr(Frof,, B o (T)) = ZTr(FroBU,‘B(Zl 2020 (),

i>0

Since v is inert, 6, acts by (—l)i on ‘B(Qzé’%"”’%)(T), hence

v

Tr(Frofy, P2 (1)) = (=1 Tr(Er, B2 20 (1)),

On the other hand, Tr(Fr, Grz, deg(v) Y‘T‘;Q » (T)) is the sum of Tr(Fr, ‘)32'” (T)) with total

degree Y v 2i,(x) = 2i deg(v). Since only constant multi-degrees contrlbute to the
trace, we again conclude

Tr(Fr, Gy, deew) B (1)) = Tr(Fr, q3(2t 20020 ()
Combining the above identities we get (5.8). O
5.4 Calculation of Pg(T') and Po(T)

Let Q" € Cohy(X)(k) with support Z C X (k). For each v € |Z] recall 1,(Q") from
(2.5) for the local field F,.

Proposition 5.6 For Q" € Cohy(X)(k), we have

PQb(T) — 1_[ (1- Tdeg(v))(l _ qudeg(v)) o — q'f)v(Qb)*l Tdeg(v))'
velZ|

Proof We write Cohy(X) simply as Cohy in the proof. For 0 < j < d, consider the
correspondence

COhj,d
/ \
Cohy Coh; x Cohy_; .
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Here Coh; 4 classifies pairs (Q; C Q) of torsion sheaves of length j and d respec-
tively, and the map r sends (Q; C Q) to (Q;, Q/Q;). We claim that

(Sj % Sa—j,sgn; X1)

Spr, = Rp«Rr*(St; KQy). (5.10)

Indeed, consider the following diagram with Cartesian parallelogram

Cohy

S

COhjyd (fBle X éz)-i‘ld_j

Cohy Coh; x Cohy_;
C

Here mj =m i oh “etc. The composition p o Tjd="Tg= ndCOh. By the proper base
change theorem, we get

Spry; = Rp*an,d*Gz = Rp«Rr*R(m;j x ﬂd—j)*ﬁz = Rp*Rr*(Sprj X Spry_;).

This isomorphism is §; x Sy j-equivariant by checking easily over the open substack
Cohy. Taking (S; x Sg—, sgn; K1)-isotypical parts of both sides we get (5.10).
By Lemma 5.4 it remains to compute PQ) (T) for each v. Therefore we may as-

sume Q° = le). By (5.10) and the Grothendieck-Lefschetz trace formula we have

()% Sa—j,sgn; X1)

o )T/

Po (T) = Z(—l)j Tr(Fr, (Spr,)
J
= Z(—l)j Tr(Fr, Rp. Rr*(St; &@)Q;)Tf
J
= > (=D*EVI Tr(Fr, (Staeg(u)R)T*EV.
RCQ,,
dimg, (R)=j
By Proposition 3.8, (Stgeg(v)j)R 18 zero unless R = kEB j , in which case the Frobe-
nius trace is (—1)‘/(deg(")_l)q{,(171)/2. Let Q,[w] be the kernel of the action of a

uniformizer @ at v. Note V := Qi[w] has dimension ¢ = 7,(Q") over k,. Then we
only need to sum over k,-subspaces R of V. The above sum becomes

t
D (=g UTVRPTIEIRGr(j, V) (ky).
j=0
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Recall that the “g-binomial theorem” says that ql{ G=D/2y Gr(j, V)(ky) is the coef-
ficient of x/ in (1 + x)(1 + gyx)...(1 + q,’f]x). Making the change of variables
x = —T9%eW we get

t
D (=) gfUmDPTeE IR Gr(j, V) (k,)
j=0

= (1 — 7%y — qudeg(v)) (1= qlt)—leeg(v))
as desired. O

Now we are ready to prove (5.4).

Proposition 5.7 For Q € Hermyy (X'/ X) (k) with support Z, we have

(-1
Po(T) = [] mu)(Q:; 7% = T [] (- @@w)qn) 7).
velX| velZ| j=0

Proof By (5.6) it suffices to treat the case Q is supported over a single place v. Let
Q" e Cohy(X) (k) be the corresponding point. If v is split, we have Po(T) = P (T)
by (5.7), and the formula follows from Proposition 5.6.

If visinert, lett =1,(Q) =1, (Q"). From the form of Pg» (T) computed in Propo-
sition 5.6, which is valid for any extension of k, the trace of the pure weight pieces of
‘Bo» (T) are separated by different powers of gy, i.e., ¢, ! Tr(Fr, Grg‘l./ deg(v) Bor(T))

is the coefficient of ¢! in ]_[;-;B(l — qI{ Tdee)) By (5.8),

t—1

PQ(T) =) (1) Tr(Fr, Gry) gy ) B (1) = [ [ (1 = (=g)/ 795V
i j=0

which is what we want because 1 (w,) = —1 in this case. Il

Part 2. The geometric side

6 Moduli of Hermitian shtukas

In this section we introduce some of the fundamental geometric objects in our story,
in particular the moduli stacks of unitary (also called Hermitian) shtukas, which play
an analogous role to that of unitary Shimura varieties in the work of Kudla-Rapoport.
6.1 Hermitian bundles

We adopt the notation of §1.3, and in particular for the remainder of the paper en-
force the assumption that X is proper, and v: X’ — X is a finite étale double cover

(possibly trivial).
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Definition 6.1 A rank n Hermitian (also called unitary) bundle on X x S with respect
to v: X’ — X is a vector bundle F of rank n on X’ x S, equipped with an isomor-

phism h: F = o*F" such that c*h = h. We refer to h as the Hermitian structure
on F.

We denote by Buny/(,y the moduli stack of rank » unitary bundles on X, which
sends a test scheme S to the groupoid of rank n unitary bundles on X x S. The
notation is justified by the following remark.

Remark 6.2 There is an equivalence of categories between the groupoid of Hermitian
bundles on X x §, and the groupoid of G-torsors for the group scheme G = U (n)
over X defined as

{g €Resy ,xGL,: o('g" =g}

Indeed, we choose a square root co;(/ 2 of wy (which exists over k =F, by [27, p.291,

Theorem 13]). Then F; := v*a);(/,z is equipped with the canonical Hermitian structure
h:F=Ec*F = cr*}"lv, and (Fy, hy) := (F1, h1)®" is a rank n Hermitian bundle
on X whose automorphism group scheme is U (n). To a Hermitian bundle (F, k) on
X x 8, Isomy, ¢((F, X Os, h, X1d), (F, h)) (the scheme of unitary isometries) is a
right torsor for U (n) over X x S. Conversely, for a right U (n)-torsor G over X x §,

U(n)
the contracted product G x F, is a Hermitian bundle on X x S.
6.2 Hecke stacks
‘We now define some particular Hecke correspondences for Bung ).

Definition 6.3 Let r > 0 be an integer. The Hecke stack Hkb(n) has as S-points the

groupoid of the following data:

(1) x/ € X'(S) fori =1, ...,r, with graphs denoted by I',y C X’ x .

(2) A sequence of vector bundles Fy, ..., F, of rank n oln X’ x S, each equipped
with Hermitian structure h; : F; = o*]—"iv.

(3) Isomorphisms fi: Fi—i|x'xs-r, 1Tty = ./_'.ilx/xs_r‘x;_ra(x;), for 1 <i<r,
compatible with the Hermitian structures, with the following property: there ex-
ists a rank n vector bundle .7-'1.[] P and a diagram of vector bundles

o ”2\

such that coker(f; ) is locally free of rank 1 over I',/, and coker( f ) is lo-
cally free of rank 1 over Fo(x )- In particular, f; and’ f are invertible upon
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restrictionto X' x S—T', — T and the composition

o(x))

O™ £
Fi-tlx'xs-r -1, , — ]:i,l/ﬂx’xs-rx,—rm — Filx'xs-r, T,
i i

a(xi) (Xl,)

agrees with f;.

Remark 6.4 Condition (3) above is equivalent to asking for the existence of a diagram

Fi-1 Fi

—1/2

such that coker(h") is flat of length 1 over Fﬂ(x )» and coker(h;”) is flat of length 1

over I',v. In particular, 25~ and s~ are invertible upon restriction to X’ x § — F r—
F(,(x ) and the composmon

1
Fitlx'xs—r -1, ., = Fi_1plx'xs-r -1 —>]:|X/xs ry-T
13 13

a(xi) o(,\' ) (r(xl{)

agrees with f;.

Definition 6.5 (Terminology for modifications of vector bundles) Given two vector
bundles F and F’ on X’ x S, we will refer to an isomorphism between F and F’ on
the complement of a relative Cartier divisor D C X’ x § as a “modification” between
F and F', and denote such a modification by F --+ F'. Given x, y € X'(§), we say

that the modification is “lower” of length 1 at x and “upper” of length 1 at y if it is
as in Definition 6.3 (3), i.e. if there exists a diagram

J—_'b
LN
F a
such that coker(f <) is flat of length 1 over I'y, and coker(f ™) is flat of length 1

over I'y, and F --» F' agrees with the composition

(ot r~
Flx'xs—r,-rT, = F’lyrxs—r, -r, = Flx'xs-r,-r,

The condition admits a reformulation as in Remark 6.4.
6.3 Hermitian shtukas

For a vector bundle F on X’ x S, we denote by *F := (Idy x Frg)*F. If F has a

Hermitian structure h: F — o*F", then *F is equipped with the Hermitian struc-
ture */; we may suppress this notation when we speak of the “Hermitian bundle”
tF.
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Definition 6.6 Let r > 0 be an integer. We define Sht;](n) by the Cartesian diagram

! |

BunU(n) (Idi; BunU(n) X BunU(n>

A point of Sht;](n) will be called a “U (n)-shtuka”.
Concretely, the S-points of Sht?](n) are given by the groupoid of the following
data:

(1) x; € X'(S) fori =1,...,r, with graphs denoted I',y C X x S. These are called
the legs of the shtuka.
(2) A sequence of vector bundles Fy, ..., F, of rank n on X’ x S, each equipped

with a Hermitian structure h; : F; = 0*]—?.
(3) Isomorphisms f;: ‘F"—”X'XS*FXf*Fn(xf) = ‘7:1'|X’X5*Fu*1}<x{) compatible with
the Hermitian structure, which as modifications of the underlying vector bundles

on X’ x § are lower of length 1 at x/ and upper of length 1 at o (x)).
(4) Anisomorphism ¢: F, =T Fy compatible with the Hermitian structure.

Lemma 6.7 The stack Sht@(n) is empty if and only if r is odd.

Proof We first treat the case n = 1. Let Nmy/ /x : Picxy — Picx be the norm
map. Then Buny ) = Nm)_(,l/X(wX), hence it is a torsor under Prym(X’/X) =
ker(Nmy, x). Moreover, Sht@(l) fits into a Cartesian square

St} ) —— Bung F
l lLang I
(X')" —— Prym(X'/X) Fleo™F

with the bottom horizontal map sending D — O(D — o D). If X’ is geometrically
connected, then the stack Prym(X’/X) has two connected components, and by a
result of Wirtinger, explained in [21, §2], the bottom horizontal map lands in the
identity component if and only if r is even. If X’ is geometrically disconnected (i.e. it
is either X [ [ X or X/), then we have o(Prym(X'/ X);) = Z, the Lang map lands in
(therefore surjects onto, by Lang’s Theorem) the identity component, and the bottom
horizontal map hits the identity component if and only if r is even. This shows that,
in all cases, Shtj, ) is empty if and only if r is odd.

For general n, taking determinant of a hermitian shtuka gives a map Shtfj(n) —
Shty, ;). From this we see that if r is odd, then Shtj;,, is empty for any n since
Shty, (1) is empty.

On the other hand if r is even, then Sht@m is non-empty. If n > 1, from an S
point of Sht;]( 1y» We can produce an S-point of Sht@(n) by formation of direct sum
with (the base change to X x § of) a unitary bundle of rank n — 1 on X (e.g. we can
take (F,—1, hy—1) from Remark 6.2). O
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6.4 Geometric properties
Lemma 6.8 The stack Buny ) is smooth and equidimensional.
Proof The standard tangent complex argument, cf. [7, Prop. 1]. U

Lemma 6.9 (1) The projection map (pry, pr,) : Hk;](n) — (X)" x Buny ) recording
{x;} and (F, h;,) is smooth of relative dimension r(n — 1).

2) ShtE](n) is a Deligne-Mumford stack locally of finite type. The map Shtil(n) —
(XY is smooth, separated, equidimensional of relative dimension r(n — 1).

Proof The statements about Sht;, ) being locally finite type and separated are well-
known properties of moduli of G-shtukas for general G [24, Proposition 2.16 and
Theorem 2.20].3

Part (2) follows from (1) by [14, Lemma 2.13].

So it suffices to check (1). As a self-correspondence of Buny ), Hky, ) is the
r-fold composition of Hkb(n). This allows us to reduce to the case r = 1. In this
case, the map (pry, pry) : Hk}](n) — X' x Buny () exhibits Hk}](n) as a P"~!-bundle
whose fiber over (x’, Fi, 1) classifies hyperplanes in Fj 5 (,y. Indeed, a hyperplane
in F| 4y determines a lower modification at o (x’), and the upper modification at
x' is then determined from the lower modification by the Hermitian structure. This
shows that (pry, pry) is smooth, separated and equidimensional of relative dimension
(n — 1) in the case r = 1, and the general case follows. O

7 Special cycles: basic properties

In this section we define special cycles over the moduli stacks of hermitian shtukas,
and construct corresponding cycle classes. The latter task is rather subtle, as the cy-
cles are in most cases of a highly “derived” nature, with their “virtual dimension”
differing significantly from their actual dimension.

7.1 Special cycles

Definition 7.1 Let &£ be a rank m vector bundle on X'.
We define the stack Z¢ whose S-points are the groupoid of the following data:

e A U(n)-shtuka with ({x{, ..., x/}, {Fo..... F:}. {f1..... fi}. @) € Shty; ) (5).
e Maps of coherent sheaves ;: £ X Og — F; on X’ x § such that the isomorphism
¢: Fr =T Fp intertwines ¢, with T#y, and the maps #;_1, t; are intertwined by the

3See also [28, paragraph after Theorem 5.4] for a sketch of the separatedness in a similar situation, which
readily adapts here.
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modification f;: F;_1 --» F; foreachi =1,...,r, i.e. the diagram below com-
mutes.
EROg EXROg o= EROs —=— T(EXOg)
lto ltl J ltr l’to
Fo -t m 2 TR

In the sequel, when writing such diagrams we will usually just omit the “KQOg” factor
from the notation.

We will call the Z¢ (or their connected components) special cycles of corank m
(with r legs).

There is an evident map Z; — Shtb(n) projecting to the data in the first bullet
point. When rank & = 1, the Z{ are function field analogues (with multiple legs) of
the Kudla-Rapoport divisors introduced in [12, 13].

7.2 Indexing via Hermitian maps

Definition 7.2 Let A%“(k) be the k-vector space of Hermitian maps* a: €& — o*&V

such thato (@)Y =a.Let Ag (k) C .Aag“ (k) be the subset where themap a: £ — o*EY
is injective (as a map of coherent sheaves).

Let ({xi’}, {(Fil, {fil, o, {t:}) € Zg(S). By the compatibilities between the #; in the
definition of Zg, the compositions

*,V

t: h: ot
EROs > Fi —> o*F' —> 0*EV KOs (7.1)

agree for each 7, and (7.1) for i = r also agrees with the Frobenius twist of (7.1)
for i = 0. Hence (7.1) for every i gives the same map £ X Oy — £Y KX Oy, which
moreover must come by pullback from Agll(k). This defines a map Z; — Ag”(k).
Fora e Aagll(k), we denote by Z¢(a) the fiber of Z¢ over a. We have

ze= ] 2.

ae AW (k)

Definition 7.3 For a € Ag (k), let D, be the effective divisor on X such that v='(D,)
is the divisor of the Hermitian map det(a) : det(£) — o* det(€)Y.

Definition 7.4 For any a € A?g“ (k), we define:
o Zc(a)® C Zg(a) to be the open substack classifying ({xlf}, {&€ LA Fi}) with the

additional condition that all #; are injective when restricted to X~ for any geometric
point 5 of the test scheme S.

4We will later in §8.2 introduce a space A over Bung; , for which Aagn(k) is the k-rational points of
m
the fiber over £ € Bu“GL;,, (k), justifying the notation.
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o Z¢ (a)* C Z¢(a) to be the open substack classifying ({xi’}, {€ LA Fi}) with the
additional condition that all #; are non-zero when restricted to X~ for any geometric
point 5 of the test scheme S.

Note that if rank(€) = 1, then the inclusion Z¢(a)® — Z¢ (a)* is an isomorphism,
and both include isomorphically into Z¢ (a) unless a = 0.

7.3 Finiteness properties

We next establish that the projection map Z¢(a) — Shty, ) is finite, which will even-
tually allow us to construct cycle classes on Sht;](n) associated to Zg(a).

Proposition 7.5 Let £ be any vector bundle of rank m on X' and let a € .Aa“ (k). Then
the projection maps Z¢(a) — ShtU(”) and Zg(a)* — Shty, U are bothﬁmte

Proof Note that Z‘f:(a) has a closed substack where the map ¢: £ — F is 0,
which projects isomorphically to Sht;](n). The complement of this closed substack
is Zg(a)*, so it suffices to show the finiteness of Zg(a)* — Shtb(”). We will show
that it is proper and quasi-finite. First we establish the properness. It suffices to show
this locally on the target, so we pick a Harder-Narasimhan polygon P for Buny )

and consider the truncation Bunggl). Define Sht?,fn}; to be the open substack of
Shty, ) obtained as the pullback of Bunfjﬁ y Buny(,y via the tautological projec-

tion pry : Shtb(n) — Buny ) recording Fy, and Zgip(a) < Zg(a) the analogous
pullback.

We can then pick a sufficiently anti-ample vector bundle £’ of rank m on X’
and an injection (: £ < &£ so that the stack Hom(E', —)=F parametrizing {(F €
Bunlsja), t € Hom(&', F))} forms a vector bundle over Buné&), with respect to the
obvious projection map. Let @’ := (6*t¥) oa ot: & — £'V. Then we have a closed
embedding ZQSP (a) — ZQ,SP (a’) cut out by the condition that the map ¢: £ — F
factors through ¢, which fits into a commutative diagram

205" () — 2557(@)

~ |

ST

It suffices to show the open substack ZQ/SP (a’)* defined by the condition that 7y # 0

fiberwise over the test scheme is proper over ShthnI; . We can factorize this map as
the composition of two maps in the diagram below:

2L (') —— P(Hom(& <r Sht;;=l

07 0y U(n)
\ J/pr2
r,<P

Shtp; e
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where j is determined by the map Zr,<P(a’)* — P(Hom(&', —)=) sending
(Fo = ... == Fp 2T F0, (ti)j—g) = (Fo, 101 £ — Fo).

The map pr, is a projective bundle by design, so in order to establish that pr, oj
is proper it suffices to show that j is finite. Indeed, since data of all the #; is de-

termined by fo, the analogous map Z5="(a’)* — Hom(&’, —)=F x X Bunz? Shtz(fg
U(n)

is a closed embedding. The requirement 7o = "7 in the definition of Z, therefore
implies that the map j is a k*-torsor onto its image, which is a closed substack of
P(Hom(&’, —)=F). This completes the proof of properness.

It remains to show that Z¢ (a) — Sht, (n) 1S quasi-finite. Since the map is already
established to be proper, it suffices by [23, Tag 01TC] to check that the fibers over
field-valued points are finite. Let

({xh1<i<r» (Fo, ho) == (F1, h1) == ... (Fr, hy) = (" Fo, Tho)) € Shify,, ()

be such a point valued in a field . Its fiber in Zg (a)(x) consists of {t; : £ — Filo<i<r
fitting into commutative diagrams

Ex Ex E. ——— TE,.
lto ln J/tr—l l’to
.7:0 ***** > .7:1 —_— ... - > J_'.T,1 — Tfo
such that a*tiv ohjoti =a € .A?:H(K) for each i =0, ..., r. We want to show that

there are finitely many possibilities for such ; € HO(X., &Y ® F;).
The situation can be abstracted to the following semi-linear algebra problem.

Lemma 7.6 Suppose that k is any field over k, and we have finite-dimensional « -
vector spaces Vi, Vo C V with an injective Fr-semi-linear map t: Vi — V.

Vi———— W

NS

Then the set {x € V1: 1(x) = x € V} is finite.

We assume Lemma 7.6 for the moment and use it to conclude the proof of
Proposition 7.5. We apply it to the situation above with V; := Homy;/ (&, Fo),
V2 :=Homy (*&, " Fo), which are both viewed as subspaces of

V :=Homy, | &, ]-‘O(Z(x} +0ax}))

by the obvious inclusion. The map Vi — V, is the twist by t. Then Lemma 7.6
shows that there are finitely many possibilities for 7y since t(#p) = tp. The other ¢;
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are determined by 7y (if they exist) because the #; as well as the modifications F; --»
Fi+1 are all isomorphisms over an open subset of X.. g

Proof of Lemma 7.6 By replacing x with an algebraic closure, it suffices to consider
the case when « is algebraically closed. Let us call a subspace V| C V| “z-fixed”
if 7(V{) = V] C V. Since a sum of r-fixed subspaces is evidently r-fixed, there is
a well-defined largest t-fixed subspace V° C Vi. It is a sub «-vector space of Vi,
hence necessarily finite-dimensional. Since t : Vi — V; is injective, the restriction
of 7 to V{ is a Fr-semi-linear bijection. The set {x € V1: T(x) =x € V} is evidently
contained in (V°), which is an k-form of V* (because « is algebraically closed) and
therefore finite-dimensional over k. O

7.4 Variation with £

Let £, € be two vector bundles (with possibly distinct ranks) on X’ and s: &' — &
be a map of coherent sheaves. Given a: £ — o*&Y in Agll(k), let a’ = (c*sY) o
aos: & — a*(E)Y be the corresponding element in Aagl, (k). Therefore, composing

with s defines a map

251 Zh(a) > Z5(d) (1.2)
sending
£ = .. -3 y £ =—— 7€ E — . - > & el
| |1~ I
2 S T S S — y Fr — T,

The following lemma follows directly from definitions.

Lemma7.7 IfE =& @ &, and a; € Ag“ (k) for i = 1,2, then there is a canonical
isomorphism

T r ~ r
2t (@) xsiy, Ze@) = [ Zp@
ay k
a=
)
where the union runs over all Hermitian maps a : £ — o*EY whose restriction to &;

is a; (for i =1, 2). The map from the right side to the left is given by (z,,, z,,), where
i : & <> & is the inclusion.

Lemma 7.8 Under the notations of the beginning of this subsection,

(1) If s : & — & is generically surjective, then 7 : Ze(a) — Zg,(a’) is a closed
embedding.
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622 T.Feng et al.

(2) Suppose that s is generically an isomorphism (in particular £ and &' have the
same rank). Let Dy C X' be the divisor of det(s). Then the restriction of z; over
(X\v(Ds))"

Zg (@l C 2 @),y

is open and closed. Here we write Zg(a)|(x\v(p,)y for the preimage of (X\
v(Dy))" under the leg map Z¢(a) — Sht@(n) — X" X",

Proof (1) Let g=¢ /ker(s) - &, equipped with the induced Hermitian map
a: & > a*(?)v. Then s* factors as Z(a) 5, Z%, (@) C Z%,(a’), the latter being
evidently a closed embedding. Therefore it suffices to show z5 is a closed embedding.
We thus reduce to the case s is generically an isomorphism.

Let D be an effective divisor on X’ such that £(—D) < & > €. Let FUniv
be the universal Hermitian bundle over X’ x Buny ), and FulV its restriction to
D x Buny . Let Vp = pr,, Hom(pr} £(=D)|p, ]-'B“iv), where pry, pr, are the pro-
jections of D x Buny(,) to the two factors. Then Vp is a vector bundle of rank equal
to nrank(£) deg(D) over Bunyy). Let V; p be the pullback of Vp over Z7,(a’)
via the map pr; : Zg, (a@’) — Bunyy). Then V; p has a section v; whose value at
({x;.}, {Fiy {tj : & — F;}) € Z;,(a') is the restriction of ; to £(—D)|p — Filp.
Then t; extends to £ if and only if v; vanishes at the point ({x}}, {F;}, {t;}. This
identifies Zg(a) as the common zero locus of the sections (v;)o<i<,—1 of the vector
bundles V; p over ZL,(a’), hence closed in Z%,(a’).

(2) By (1), it remains to show the openness of z; when restricted to (X \v(Dy))".
Let U' = X'\ supp(Ds + o Dy). Let Shty, ) , be the moduli stack of Hermitian
shtukas ({xlf 1, {Fi}) of rank n with legs in U’", and trivializations of F;|p, (as
a vector bundle over Dy of rank n) compatible with the shtuka structures. Then
A Sht@(n)’DS — Sht;](n) |l is a GL, (Op,)-torsor. Let Z¢(a)p, and Z,(a") p, be
the base changes of Z¢(a) and Z¢,(a’) along A. Since Z¢,(a’)p, — Z¢,(a')|yrr is
finite étale surjective, it suffices to show that the inclusion Z¢(a)p, < Z(a’)p, is
open. Using the trivializations of J;|p,, we get an evaluation map

evp, : Z¢/(a')p, = Homp, (€'|p,, OF")
where the target is a discrete set. Then Z¢ (a) p, is the preimage of the image of

Homp, (€]p,. 0F") =% Homp, (€'|p,. OF")

under evp, . Indeed, a map £’ — F; extends to £ — F; if and only if &'|p, — Filp,
vanishes on ker(&'|p, — &|p,) (this can be checked locally using elementary di-
visors). Since the target of evp, is discrete, Zg(a) p, C Z(’g,(a/ )p, 1s open and
closed. Il
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Higher Siegel-Weil: non-singular terms 623

7.5 Corank 1 special cycles

A special role is played by the case m = 1, i.e. where £ is a line bundle on X', because
it is only in this case that we can appropriately control the dimension of the cycles
Z¢. We will write £ := £ to emphasize that it is a line bundle.

Note that in this case a € A (k) if and only if a # 0.

Proposition 7.9 We have dim Z}.(a)° <r(n — 1).

This is established later, in Proposition 9.1 (for a # 0) and Proposition 9.5 (for
a =0), as a consequence of a more refined study of the geometry of Z/.(a)°.

Remark 7.10 One can show that when a # 0, in fact Z}.(a)° is LCI of pure dimension
r(n —1). This will appear in a future paper; it relies on some ideas from [4]. This fact
will not be used in the present paper, but it may be psychologically helpful.

Definition 7.11 For a € A% (k), we define [27.(a)°] € Chy—1)(Z}(a)°) to be the
cycle class of the union of the irreducible components of Z/.(a)® with dimension
r(n — 1), throwing away the irreducible components of dimension < r(n — 1). (Ac-
cording to Remark 7.10, there are no such components to be thrown away at least
when a # 0, but we neither prove nor use this in the present paper.)

7.6 Corank n special cycles

In this paper we are mainly concerned with the case where the rank of & is m = n.
The following proposition contains basic geometric information about Z¢ (a).

Lemma7.12 Let & be a vector bundle on X' of rank n, and a € Ag (k). Then the map
Zg(a) — X'" recording the legs has image in (suppv ™' (D,))".

Proof Let ({x/}, {Fi}, {t;}) be a geometric point of Z¢(a). For each 1 <i <r, the
Hermitian map a factorizes as £ — .Fl.b_l N Fi_1 <= o*EY, we see that xlf (the

support of ]-',-,1/]-?_1/2) is in the support of 0*£Y /a(£), i.e., x| € supp v~ (Dy).
O

Proposition 7.13 Let £ be a vector bundle on X' of rank n, and a € Ag(k). Then
Zg(a) is a proper scheme over k that depends only on the torsion sheaf Q =
coker(a) = 0*EY /€ together with the Hermitian structure a on Q induced from a
(see §4.1 for the notion of Hermitian structure on a torsion sheay).

The proof involves a few ideas not yet introduced, and will be given later in §8.4.1.

The next goal is to equip the proper scheme Z¢ (a) with a 0-cycle class in its Chow
group. The “virtual dimension” of Z¢(a) is at most zero, for if £ is a direct sum of
line bundles £, & - - & Ly, then Z (a) is contained in the intersection of Z’Li (aj;) for
1 <i <r, each having codimension at least r in Sht@(n) by Proposition 7.9 (which
can be shown to be an equality, cf. Remark 7.10). However the actual dimension of
Z¢(a) can be strictly positive. Our task is to find the correct virtual fundamental class
of Z¢(a).
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624 T.Feng et al.

7.7 Intersection theory on stacks

Recall the discussion of intersection theory on Deligne-Mumford stacks from [28,
Appendix A]. Let Y be a smooth, separated, locally finite type Deligne-Mumford
stack over k of pure dimension d. Let Y7, ..., ¥, be Deligne-Mumford stacks with
maps f; : Y; — Y. Then there is an intersection product

(=) -y (=) -y -y (=): Chy (Y1) x Chj,(¥Y2) x -+ x Ch;, (Yn)
— Chjotip—dm-1) (Y1 Xy -+ Xy Yp).

For ¢; € Ch,(Y;), the intersection product ¢ -y - - - -y &, is defined as the Gysin pull-
back of the external product {1 X --- X &, € Chy (Y] x --- x Y;;) along the diagonal
map A : Y — Y", which is a regular embedding of codimension d(n — 1).

7.8 Intersection problem: the case of a direct sum of line bundles

We now formulate the cycle classes which enter into our intersection problem. We
first consider the case £ a direct sum of m line bundles on X',

g;»cl@"'@ﬁm'

Let a € Ag (k). We write a as an m x m-matrix with entries a;; € Hom(L, G*Liv).
Let

2oy ain o amm)® = Zp (@11)° Xsn

r o
m 'U(n) T Z»Cm (amm) :

In Definition 7.11 we defined a fundamental class [Z}.(a)°] € Chy—1)(Z(a)°).
Applying the intersection product construction in §7.7 for ¥ = Sht;, () (the hypothe-
ses apply by Lemma 6.9 (2)), we obtain a class

X
Shty, -

r o r °
(27, @)1 she, ) - shey,, [22,, (@mm)7]
€ Chy(n—m) (ZZI ’’’’’ Lo @, amm)°). (7.3)
Let .Af‘gu(an, ..., amm) (k) be the finite set of Hermitian maps a : £ — o*£Y (not
assumed to be injective) such that its restriction to L; is a;; for i = 1,...,m. By
Lemma 7.7, there is a map
1l
Zrﬁl (a11) XSht?j(n) e XSht’U(”) sz (@mm) = A% (@i, - -« » @mm) (k)

such that the fiber over a € Ag (k) identifies with Zg (a). Since a is injective, the
image of Zg(a) — ZZ_ (a;;) lies in ZZ (a;i)°. In particular,

Z:‘:’(a) - Zrﬁl,__”[:m (alla RN amm)o
is open and closed. Restricting (7.3) to Z¢(a) gives a cycle class
@ = (12, @)°] s

€ Chr(n—m) (Zé (@)).

r o
?](n) c.. 'Shtgf(ro [Z[:m (@mm) ]) |Zg(a)
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Higher Siegel-Weil: non-singular terms 625

Remark 7.14 Our notation suggests that ¢ 2] il (a) (as a cycle class on Z¢(a)) de-
pends, at least a priori, on the decomposition of £ into a direct sum of line bundles
Ly, ..., L. However, we will show later in Theorem 10.1 that, at least when m = n,
it only depends on &, and is equal to the cycle class [Z¢(a)] that we will define for
general rank n bundle £.

7.9 Intersection problem: m = n and £ arbitrary

To define a O-cycle [Zg (a)] for general rank n vector bundle £ on X’, we need to
make some auxiliary choice first; eventually we will show that the definition is inde-
pendent of the choice.

Definition 7.15 Let £ be a rank n vector bundle over X’ and a € Ag(k). A good
framing of (£,a) is an n-tuple (s; : L; — £)1<i<n of Oxs-linear maps from line
bundles £; € Pic(X’) satisfying:

(1) The map s = @s; : £ :=@}_, L; — & is injective.
(2) Let D; be the divisor of the nonzero map det(s) : ®_, £; — det&. Then v(Dy)
(image in X) is disjoint from D, (see Definition 7.3).

Lemma 7.16 For any rank n bundle £ on X' and a € Ag(k), there exists a good
framing for (€, a) in the sense of Definition 7.15.

Proof For notational convenience we give the argument for X’ connected; the case
X’ = X ]] X can be proved with obvious changes.

We strengthen condition (2) on s : @7_, L; — & slightly by asking v(Dy) to avoid
a prescribed divisor Dy on X, instead of D,. We prove the existence of s satisfying
this stronger condition by induction on #.

The base case n = 1 is trivial: take £ = €.

For the inductive step, start by picking any saturated line bundle £; < £. Then
En—1:=E&/Ly is a vector bundle of rank n — 1. By induction hypothesis we may pick
5: @ ,L; — &, satistying the conditions of Definition 7.15 and such that v(Dy)
avoids the given divisor Dy. Let D, ..., D, be effective divisors on X’ such that

(1) v(D2),...,v(Dy) are disjoint from v(Dy), and
(2) degL; — D; +2g' —2 <degLy fori=2,...,n.

Let £; = L.(—D;). By the inequality above we see that Ext!(£;, £1) =0, so the map
si:Li—> & 1=&/L liftstoamaps; : L; —>E,i=2,...,n.

Now we have an injection s : ;’zlﬁi <> &£ whose divisor Dy satisfies Dy = Dy +
Dy +---+ Dy. Since v(D3y), ..., v(Dy), v(Dy) are disjoint from Dy by construction,
the same is true for v(Dy). O

Corollary 7.17 If s : &' = @}_ | L; — & is a good framing, then the map (7.2) realizes
Zg¢(a) as an open and closed subscheme of Zg/(a').

Proof Closedness is proved in Lemma 7.8(1). Only the openness requires an argu-
ment. By the definition of a good framing, v(Dy) is disjoint from D,, and therefore
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626 T.Feng et al.

disjoint from all legs of all points of Z¢(a) by Lemma 7.12. Let U’ = X'\ supp(D; +
o Dy), then Z¢(a) = Z¢(a)|y/r. By Lemma 7.8(2), the inclusion

Zg(a) = Zg(@)|yr = Ze(d)|yr
is open, hence the inclusion Z‘f: (a) = ZL,(a’) is open. O

Definition-Proposition 7.18 Ler £ be a vector bundle of rank n over X' and a €
Ag(k). Let s : @!_ L; — & be a good framing of (€, a). Let

[ZE@]=¢F,p @) 25 € Cho(Z(@).

.....

Here we are using Corollary 7.17 to make sense of the restriction, as it implies that
Z¢(a) is a union of connected components of Zg, (a'). Then the cycle class [Z¢(a)]
thus defined is independent of the good framing s : &' = ®F_ | L; — &.

The independence of good framing will be proved in Theorem 10.1 after some
preparation in §8. The idea is to construct another O-cycle class on Zg (a) without
making auxiliary choices (which is done by introducing Hitchin shtukas), and show
that the two constructions agree.

By Proposition 7.13, Z¢(a) is proper over k, therefore the degree of the O-cycle
of [Z¢(a)] € Cho(Z¢ (a)) is a well-defined number in Q. The main problem we are
concerned with in this Part is to determine deg[Z¢ (a)] € Q.

8 Hitchin-type moduli spaces

In this section we introduce certain “Hitchin-type moduli stacks” which will help to
analyze the special cycles. In particular, we will be able to use these to give an alterna-
tive construction of the cycle classes associated to special divisors, that is manifestly
independent of auxiliary choices.

8.1 Hitchin stacks
Until §8.4, we fix an arbitrary positive integer m.
Definition 8.1 The Hitchin stack M®(m,n) (sometimes denoted M when m, n

are understood) has S-points the groupoid consisting of the following data.

e & arank m vector bundle on X’ x §. N

e F arank n vector bundle on X’ x S, equipped with a Hermitian map h: F —
o*FV.

e A map of underlying coherent sheaves ¢: £ — F over X' x S.

We define M (m, n) C M2 (sometimes denoted M when m, n are understood) to be

the open substack where the map ¢ base changes to an injective map on X~ for each

geometric point s — S.

Let us emphasize that both £ and (F, h) are varying in this definition. We will
usually suppress the dependence on m, n from the notation.
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8.2 Hitchin base

Definition 8.2 We define the following two versions of the Hitchin base.

(1) A" (m) (sometimes denoted A when m is understood) to be the stack whose
S-points is the groupoid of the following data:

e & arank m vector bundle on X’ x S;
e a: & — o*EY is a map of coherent sheaves on X’ x S such that o (a) = a.

(2) We define A c A% to be the open substack where a: £ — o*EV is injective
after base change to X' for every geometric point s — .

Definition 8.3 For integers 1 < m < n, we define the Hitchin fibration for MA =
M3 (m, n) to be the map f: MW — A% sending (€, (F, h), t) to the composition

! h v 0¥ sov
a:E—>F—> o *F —>o*&".

Remark 8.4 In general the Hitchin fibration does not send M (m, n) to A(m) even
when m < n. However, in the special case m = n, the Hitchin map does send M (n, n)
to A(n) because when ¢ : £ — F is generically injective, it is generically an iso-
morphism for rank reasons, hence the induced Hermitian map a on £ is generically
non-degenerate.

8.3 Hitchin shtukas
We now discuss a notion of shtukas for Hitchin stacks. Throughout, M = M (m, n).

Definition 8.5 (Hecke stacks for Hitchin spaces) For r > 0, we define Hk;vlall to be
the stack whose S-points are given by the groupoid of the following data:

(1) ({xl{}lfifrs {(]:u hi)}Ogifr) € Hk}i](n)(S)-
(2) A vector bundle £ of rank m on X’ x S.
(3) Maps t;: £ — F; fitting into the commutative diagram

& & £
Jto | I
Fo —---- L Yoo e > Fy

We define the open substack Hk' , C Hk;\/lall by the condition that £y base changes to
an injective map along every geometric point s — S (equivalently, every #; has this
property). Let pr; : HK', | — M (resp. prill: Hk;\/lall — M) be the map recording
&, Fi,hi, t)),for0<i<r.

i
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628 T.Feng et al.

Definition 8.6 (Shtukas for Hitchin stacks) For r > 0, we define Sht;vlall as the fibered
product

ShtTMall _— sz/lall
J(préu prat)

Meall (1d,Fr) Mall ¢ Aqall

and the open substack Sht'y  C Sht;w\11 as the fibered product

Sht’y, — Hk,

l J(pro-,pr,-)

PN VING Y 8.1)

Explicitly, the stack Sht;vtall parametrizes diagrams of the form below, with notation
as in Definition 8.5,

£ £ E——7¢
J{to J{h J{tr J{Tto
Fo - y Fp - Yo > Fr —— "R (8.2)

and Shty , is the open substack where 7y base changes to an injective map along every
geometric point § — S (equivalently, the same property holds for every ¢;).

In particular, £ 5 7€ is a shtuka with no legs, exhibiting £ as arising from a rank
m vector bundle on X', i.e. coming from BunGL;n (k). Note that in (8.2), £ is not fixed,
so the automorphisms of £ are present in the functor of points of ShtrMall' Therefore,
if we define
Zg =25/ (Aut(€) k)],

then Shtjwill decomposes as a disjoint union of special cycles

—r
Sht'y g = ]_[ Ze.
EeBung;, (k)

This decomposition can be refined. The compositions f o pr;: Hk;\/(all — Al al]
coincide, and they induce a map

Sht'y i = A (k).

Here A (k) is the groupoid of pairs {£,E 5 o*EYY. Let us write Aut(a) :=
Aut(€ S 0*EY) C Aut(€). Then each £ 5 o*EY defines a map a : Spec k —
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Higher Siegel-Weil: non-singular terms 629

B Aut(a) (k) — A%(k), the latter map being an open-closed inclusion, and we have
a Cartesian square

Zg(a) E— ShtTMall

| |

Spec k —2— A(k)

In particular, Z¢(a) is a finite €tale cover of an open-closed substack of Shtr‘/\/lall

isomorphic to [Z¢(a)/ Aut(a)(k)]. Similarly, restricting to the injective locus (see
Definition 7.4) we have a Cartesian square

Z5(a)° — Shty,

! lf

SpeC k L) .Aall(kj) (83)

If m =n and a € A(k), then we have Z{(a)° = Z¢(a) and we can replace A (k) by
A(k) in the above diagram (see Remark 8.4).

8.4 From vector bundles to torsion sheaves

For the rest of the section, we concentrate on the case m = n. In this case, we will
relate M = M (n, n) to the moduli stack of Hermitian torsion sheaves introduced in
§4.1. We introduce the following abbreviated notations.

Definition 8.7 Let d € Z>.

(1) Let My = M(n, n); be the open-closed substack of M = M (n, n) consisting
of (£ LN F) where d = w =—x(X,&).

(2) Let Ay = A(n)y be the open-closed substack of A = A(n) consisting of (£, a)
where d = M =—x(X",&).

By Remark 8.4, the Hitchin map for M3 = M3 (n, n) restricts to a map
fa: Mag— Ag.

When d is understood, we abbreviate f for f;.
Recall that Hermpy; = Hermy,(X'/X) is the moduli stack of length 2d torsion

coherent sheaves Q on X’ equipped with a Hermitian structure hg: Q = o*QV,
where QY := Ext! (Q, wy) such that o*hé = hg. Alternatively we may think of g
as the datum of a perfect pairing

]’l/Q : Q®OX/ (T*Q — wx/’p//wx/

where wy pr is the constant Zariski sheaf of rational differential form on X’. The
Hermitian condition is equivalent to h’Q(u, V) = a*h/Q(v, u) for local sections u, v

of Q.
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In §4.5 we have also introduced the moduli stack Lagr,; = Lagr,;(X'/ X) classi-
tying (Q, hg, L) where (Q, hg) € Hermys and £ C Q is a Lagrangian subsheaf.

There is a canonical map g : Ay — Hermyy sending (€, a) to the torsion sheaf
Q = o *&Y /& together with the Hermitian structure hg defined in §5.1.

We have a map gq : My — Lagr,; sending (€ LF ) € M, to the torsion Her-
mitian sheaf (Q = 0*£Y/E, hg) constructed above together with the Lagrangian
L=F/E.

Lemma 8.8 The maps defined above fit into a Cartesian diagram

My -2 Lagr,,

b

Ad L> Hermgd (8.4)

Proof Givena:& — o*£Y that is injective, the datum of a subsheaf £ C 0*EY /& is
the same as a coherent sheaf F such that £ C F C 6*EY. It is easy to see that L is
Lagrangian if and only if F is self-dual under the Hermitian map a. O

Corollary 8.9 The Hitchin fibration f;: Mg — Aq is proper.
Proof Apply Lemma 8.8 and the fact that vy, is proper. g

Lemma 8.10 The map vyq: Lagr,; — Hermyy is small.

€

Proof The map 7121 ™ from §4.2 factors as

T M v
milem : Hermyy =% Lagr,, —> Hermy .

Since Lyg is surjective and n;lderm is small by Proposition 4.5, we get the desired

statement. g
8.4.1 Proof of Proposition 7.13

Let Lagr(Q) be the moduli space of Lagrangian subsheaves of Q. Let Heragr(Q)
be its Hecke version, classifying points {x/}i<;<, of X’ and chains of Lagrangian
subsheaves of Q

Lo --Iio gy 2 o )

where the dashed arrow f; are modifications at x] U o' (x}), similar to those in Def-
inition 6.3. There is a natural map Zg (a) —> Heragr(Q) sending a point ({xlf hAt .

E — Fi}) of Zg (a) to the collection of (necessarily Lagrangian) subsheaves Fi=
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coker(t;) C Q =o*EY /E. This map fits into a Cartesian diagram

Ze(a) Heragr(Q)

l (Id,Fr) J’

Lagr(Q) —— Lagr(Q) x Lagr(Q)

Now both Lagr(Q) and Hkiagr( Q) are proper schemes over k, hence the same is true
for Z¢(a). The diagram also makes it clear that Z¢ (a) only depends on (Q, @).

8.5 Smoothness

Lemma 8.11 The map

Ba : My — Cohg(X') x Buny ()

sending (€ N F, h) to (coker(t), (F, h)) is smooth of relative dimension dn. In par-
ticular, My is smooth of pure dimension dn + n*(g — 1).

Proof Consider the stack M, classifying (7, F, h, s) where T € Cohy(X'), (F, h) €
Buny ;) and an Oy--linear map s : F — 7. Let g, : M/, — Cohy(X’) x Buny ) be
the natural map. Due to the vanishing of Ext!(F,T), B;; exhibits M/, as a vector
bundle over Cohy(X') x Buny,) of rank dn = dimHomy(F, 7). Now My is the
open substack of M/, where s is surjective. Therefore B4 is also smooth of relative
dimension dn. g

Proposition 8.12 The map g: Ay — Hermyg is smooth.

Proof We have a map szLdagr: Lagr,; — X/, sending (Q, hg, £) to the divisor of L.

Recall also the map s?derm : Hermpy — X4 sending (Q, ko) to the descent of the
divisor of Q to X.

Recall in §4.5 we introduced the open subset
X)) ={D'cX:D no(D)=2}CX,.

Let Lagrgd C Lagr,,; and ./\/IZ> C M, be the preimages of (Xél)<> under the maps

Lagr Lagr
Syy” and s,5° 0 g AL.

We claim that both squares in the diagram

MG —— Lagr$, —— (X,)¢

e ] |

Ay —2— Hermoy ——— Xy

are Cartesian. The left square is Cartesian by definition. Now we show that the
right square is Cartesian. Let (Q, hg) € Hermyy, D’ € (X(’i)<> lying over D =
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s{lderm(Q, hg). Since D' N o (D') = @, there is a unique Lagrangian subsheaf £ C Q
supported on the support of D', namely £ = Q|spp pr- This gives the unique point
(Q,hg,L) € Lagrgd mapping to (Q, hg) € Hermyy and D’ € (X;Z)Q.

Note that the map (X &)0 — Xy is faithfully flat: it is clearly surjective, and the
map vg : X/, — X, is a finite morphism between smooth schemes, hence flat. We will
show that MZ; — Lagrd<> is smooth. By fppf descent it then follows that 4; — Hermy
is also smooth.

Recall from §4.5 that 8;, : Lagr,; — Cohg(X’) (recording only L) restricts to an

isomorphism Lagrgd = Cohy (X')© := Cohg(X") l¢ X0 Therefore it suffices to show

that the composition Mﬁ LEIN Lagrgd i Cohg(X")® is smooth. This follows from
the smoothness of My — Cohy(X’) proved in Lemma 8.11. O

Corollary 8.13 The Hitchin fibration f: My — Ag is small. The complex Rf,Q, is
a shifted perverse sheaf that is the middle extension from any dense open substack of

Aqg.

Proof By the smoothness of g in Proposition 8.12 and the Cartesian diagram in
Lemma 8.8, the smallness of f follows from that of vy, : Lagr,; — Hermy,, which
is proved in Lemma 8.10. g

8.6 Cycle class from Hitchin shtukas

In this subsection we take m = n, so M = M(n, n) and A = A(n). Now consider the
Hitchin shtukas for My C M. Let N = dim M. By Corollary 8.13, dim Ay = N.
The Cartesian diagram (8.1) restricts to a Cartesian diagram

S, —— HK, 8.5)

\L l (prO’prr)
(1d,Fr)
Mg — My x My

We would like to define a O-cycle class on Shtj\/ld as the Gysin pullback of a cycle on
ij\/ld along the Frobenius graph of M. Although the virtual dimension of Hk;\/ld
is the same as dim My, its actual dimension may be larger. For this reason we have
to define in a roundabout way a virtual fundamental cycle on Hks\/ld of the virtual

dimension by relating it to Hk}\/ld , which we show is smooth below.

Lemma 8.14 The stack Hk}\/ld is smooth and equidimensional of the same dimension

as M.
Proof Let (x', Fo --» F1) € Hk},, . Let 7 := F , = Fo N Fy as in Definition 6.3.
The generically compatible Hermitian structures on J¢ and F7 equip this intersection

with a Hermitian structure 4° : F* < o*(F”)" whose cokernel has length 1 at x” and
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at o (x"). We call such a bundle almost Hermitian with defect at the ordered pair of
conjugate points (x’, o (x’)). Conversely, given (F > h") almost Hermitian with defect
at (x’, 0 (x’)), one can uniquely recover Fy (resp. F1) as the upper modification of
F? at x’ (resp. o (x)) inside o* (F”)V.

Let Bunij(n) be the moduli stack parametrizing (x’ € X', F°, h°) where (F°, k") is
an almost Hermitian bundle with defect at (x’, o (x”)). The discussion in the previous
paragraph shows that there is an isomorphism Hkb ) > Buni, () over X ’. Let MZ
be the moduli stack of (x/, & N F, h°) where (F°, ") is almost Hermitian with
defect at (x", o (x")), £ is a vector bundle on X’ of rank n and x (X', £) = —d, and ¢
is injective. Then we have an isomorphism Hk}\/ld = MZ.

We have a natural map

b b b
B, M, — Cohy_i(X) x Buny;

sending (x', & LN F°,h") to (coker(t), (x’, F*, h")). The same argument as Lem-
ma 8.11 shows that ,BZ exhibits MZ as an open substack in a vector bundle of rank

n(d — 1) over Cohy_1(X’) x BunZ(n). Now dim Cohy_1(X’) =0 and dimBunZ(n) =

dim Hk}](n) = dimBuny ;) +n by Lemma 6.9(1). Therefore Hk}wd = ./\/lZ is of pure
dimension dim Bung ;) +dn, which is the same as dim M, by Lemma 8.11. O

Definition 8.15 For any stack S over k we define a morphism
q)g . Sr+l N SZr+2

by the fOHnlﬂa q’g(%_O» cec é:r) = (EO? fla slﬂ %‘25 $27 cec %_r—l’ Erv é‘_r’ Fr(%‘o)) When r
is fixed in the context, we simply write ®g.

We rewrite Sht?\/‘d as the fiber product

Sht),, ———— (Hkly )" x My (8.6)

I
M)+ 5 (M2 = (M) x (My)>

Here the vertical map (pry, pr;)” sends (h1,...,h,) € (Hk}\/td)’ to (pro(h1), pry(h1),
., pro(hy), pri(h,)) € (Mg)?, while A is the diagonal map.

Definition 8.16 We define a 0O-cycle classes [Shtj\/ld] € Cho(Shtj\/ld) as the image
of the fundamental class of (Hk}\/ld)r x My (which is smooth of the same di-

mension as (My)"T! by Lemma 8.14) under the refined Gysin map along ® 1 .-
(M) — (Mg)¥+? (which is defined since M, is smooth and equidimensional
by Lemma 8.11; see [10, Theorem 2.1.12(xi)])

[Shty, 1 := (@', ) [(HK)( )" x Mgl € Cho(Sht ).
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9 Special cycles of corank one

In this section we prove geometric properties of the special cycles Zg(a) when
m =rank £ = 1 (where the number field analogues are called “Kudla-Rapoport divi-
sors”). In particular, we show that for a # 0, Zg (a) are local complete intersections
of dimension r less than Shtb(n). When a = 0, we show that Z¢ (a)* has dimension
at most dim Sht;](n) —r. These geometric properties are proved by studying stratifi-
cations introduced and analyzed in §9.1 and §9.2.

9.1 Stratification of the special cycle whenm =1

In this section we fix a line bundle £ on X; and a € A (k), ie,a:L— o*LY is
nonzero Hermitian. We now define a stratification of Z := ZZ (a)7 and estimate the
dimension of each stratum.

When n = 1, we have dim Z = 0. Indeed, Lemma 7.12 implies that there is a
0-dimensional closed subscheme D C (X’)" such that the morphism Z — Sht;j(l)
takes values in the preimage of D under the leg map Sht;, an > X "Y' This preimage
is 0-dimensional by Lemma 6.9 (2). As Z — Sht;j(l) is finite (by Proposition 7.5)
with O-dimensional image, we conclude that dim Z = 0.

Therefore in the rest of this subsection we will assume n > 2.

For each (£ Fi)o<i<r € Z(k) with legs (x))1<i<r € X'(k)",let D; (0<i <r)
be the divisor on X such that ¢; : £(D;) < F; is saturated. For each 1 <i <r, we
have one of the four cases:

0) Di=D;—y;

(+) Di=D;_1 +0(x));

(=) Di=D;_1 —x;

(£) Di=D;_1 —x. +o(x)).

Since the composition £ LR Fi LS o*F’ i) o*LY is equal to a, we see that D; +
o (D;) is a subdivisor of the divisor of a. Therefore v(D;) < D, as divisors on X (k).

9.1.1 Indexing set for strata

Consider the set © of sequences of effective divisors (D;)o<i<, on X/F satisfying

e v(D;)<D,forall0<i <r.

e Foreach 1 <i <r,thepair (D;_1, D;) falls into one of the cases (0), (+), (—), (£)
above for some x € X' (k).

e D, =T"Dy.

It is clear that ® is a finite set. This will be the index set for our stratification of Z.
9.1.2 Definition of strata

Fix Dy = (Dj)o<i<r € ®. Let Ip := {1 <i <r|D; = D;_1}. Similarly we define
I,1_ and I1 as the set of those i such that (D;_1, D;) falls into case (4), (—)
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and (+) respectively. Let Z[D,] be the substack of Zf classifying

f
(Ix]} € X'": {Fi} € HKY ) {L(Di) = Fidosi<r)
such that every ¢/ is saturated. Let
7[D.]: Z[Ds] — (X"

be the map recording those x; for i € Ip. Note that fori € I, U 1_ U I+, x! is deter-
mined by D,.

Proposition 9.1 Let n > 2.

(1) The substacks Z[D,] for Dy € ®© give a partition of Z.

(2) Each geometric fiber of w[De] has dimension < (n — 1)|11| + (n — 2)|Iy].

(3) We have dim Z[D,] < r(n — 1). The equality can only be achieved when Iy =
(1,2,...,r}, i.e., all D; are equal to the same divisor of X', which is then neces-
sarily defined over k.

Proof (1) Each geometric point of z € Z defines a (unique) point D, € © by taking
the zero divisor of #;, and then z € Z[D,] by definition.
(2) Let H[D,] be the substack of the fiber of (HK', )z over (£, a) € Aq(k) clas-

sifying data ({x/}, £ LA Fi) such that #; extends to a map 1 : L(D;) — F; which
is saturated. Note that for i € I, U I_ U Iy, xlf is determined by D,. Let M[D;]
be the substack of the fiber of M(1, n); over (£, a) € A(1,n)(k) classifying maps
t: L — F that extend to a saturated map ' : £(D;) — F. Then we have a Cartesian
diagram of stacks over k

Z[D.] H[D,] 0.1

l l (po,pr)
(Id,Fr)
M[Dy] —— M[Dg] x M[Dr].

Note since D, = T Dy, the Frobenius morphism sends M[Dg] to M[D,].
Let

[[D.]: H[De] - M[D,] x X’EIO

be the projection p, and the map recording x; fori € I 0,

Claim 9.2 The map TI[D,] is smooth and representable of relative dimension (n —
DI+| + (n —2)|1p].

5In this case, Z[D.] can be identified with the open substack EZ(DO)(G/) C ZZ(DO)(a/) (where a’ is

the map £(Dg) — o*L(Dy)" induced from a) defined by requiring all the maps ti’ : L(Dg) — F; be
saturated.
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Assuming the claim, we finish the proof of (2). Indeed, we may apply Lemma 9.3
below to the Cartesian diagram (9.1) to conclude, except that M[Dyg] is generally
not a scheme. To remedy, we may restrict to a finite type open substack M[Dy]=F ¢
M{([Dy] by bounding Harder-Narasimhan polygon of (F, /), and impose level struc-
tures on the Hermitian bundle (F, h) at a closed point x € |X| to arrive at a scheme
MI[Do]=F which is a torsor over M[Dy]=F by an algebraic group~H . Truncating
and imposing the same level structures to H[D,] gives a sche~me HIDJZP (with
legs away from x) such that H[D,]=F/H = H[D,]=". Let Z[D,]=" be defined
by a Cartesian diagram similar to (9.1), with H[D,] replaced by H[D,]=F and
M(D;] replaced by MI[D;1=F fori =0,r. We apply Lemma 9.3 to conclude that
the fibers of Z[D.]=F — X;{—I" have dimension < (n — 1)|I+]| + (n — 2)|Io|. Now

E[D.]fp/H(k) = Z[DJ=F and for varying P and x, Z[D,)=F cover Z[D,)],
hence the same dimension estimate holds for Z[D,].

It remains to prove the claim.

For r > j > 0, let H>; be the moduli stack defined similarly to #[D,] but classi-
fying saturated maps {#; : £(D;) — F;}<i<r (lying over a) only for i in the indicated
range. We can factorize [1[D,] as

[Du]: HIDu] = Hap —5 Hoy =5 - 5 Moy = MID,] x X110,

The desired smoothness and relative dimension claims would follow from the follow-
ing four statements:

(HO) If i € Iy, then I1; exhibits H>;_ as an open substack in a P"~2_bundle over
Hsi.

(H+) Ifi € I, then IT; exhibits H>;_; as an open substack in a P"~!_bundle over
Hsi.

(H—) Ifi € I_, then II; is an isomorphism.

(H+) Ifi € I, then II; is an open immersion.

‘We next establish each of these statements.
Proof of (H0). When i € Iy, D;_; = D;. We write the modification F;_1 --+ F;
as

o(a))

’
Zi
Fict == F)y )y —> Fi

9.2)

Here both arrows have cokernel of length one supported at the labelled points. Such
modifications of F; are parametrized by a hyperplane H in the fiber F;|,(,r). The

requirement that t; : £(D;) — F; should land in ]-'l.b_1 2 is equivalent to the (closed)
condition that H should contain the line given by the image of L(D;)|, (). This cuts
out a P"~2 in the space of hyperplanes H C F; lo(x/)- The further requirement that
ti—1:L(D;) —> .7-"ib_1/2 — JF;_1 be saturated is an open condition.

This argument globalizes in the evident way, exhibiting that IT; as an open sub-

stack in a P"~2-bundle. This applies similarly for the analogous arguments below for
the other cases.
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Proof of (H+). When i € I, we have D;_1 = D; — a(x{). We write the modifi-
cation of F; as in (9.2). This time the choice of the F; < J—'l.b_l P is the open subset
of those hyperplanes H € P(F;|, (/) that do not contain the image of L(D;)l,()-

The requirement that £(D;_1) = L(D; — o (x])) — ]—'l.b_l/2 — F;_1 be saturated at
x/ imposes a further open condition.

Proofof (H—). Wheni € I_, wehave D;_1 = D; + x;. We write the modification
as
o(z})

— ‘7:!171 2 <L’ ]:z
i-1/ 9.3)

Fi1
where both arrows have cokernel of length one supported at the labelled points. Now
ti 1 L(D;) — F; is required to extend to £(D; + x]) — ]—"i’:_1 /2 This determines the
upper modification F; — ]:ij—l P uniquely, which in turn determines the lower mod-
ification ]-"l.ﬁ_l/2 <« Fi—1 as well. We get a map t/_, : L(D;—1) = L(D; + x]) —
.7-"?_1 2 We claim that t,.’_l automatically lands in F;_1. Indeed, the claim is equiva-
lent to saying that under the pairing between ;| x) and F; |(,(xl{), the images of 7 (x])
and #; (o (x)) pair to zero. The latter statement is equivalent to saying that the induced
Hermitian map a; : £(D;) — o*(L(D;))" vanishes at x/. But we know that the divi-
sor of a is v*D, — D; — o (D;). Since D; | = D; + x| satisfies v(D;_1) < D, by
assumption, we see that v*D, — D; — o (D;) > x] 4 0 (x]), hence a is guaranteed to
vanish at x; and o (x;). This shows that there is a unique lifting of any point of H;
to H>;—1, hence I1; is an isomorphism.

Proof of (H%). When i € I, we have D; 4+ x/ = D;_1 + o (x]). We write the
modification as in (9.3). As in the case (H —), the requirement that ¢; : £(D;) — F;
should extend to £(D; + xlf ) —> F; #71 2 determines the modification. Then we auto-
matically get a map ;1 : L(D;_1) = L(D; + x| — o (x})) — F;_1; the requirement
that #;_1 be saturated is an open condition. Therefore I1; is an open immersion in this

case.
(3) By (2) we have

dim Z[D,] < (n — D[L[ + (n = D) lo| + [Io] = (n — D(|1+ U o) < r(n — 1).

Equality holds only if /_ and /1 are empty. However, by degree reasons we have

|11 = |I_], so in the equality case we must have I, = & as well. We conclude that

equality can only be achieved if Ip = {1, 2, ..., r}; in other words, all D; must be the

same. In particular, since D, =" Dy, this forces Dg to be defined over k. O
The Lemma below, a slight variant of [14, Lemma 2.13], was used above.

Lemma 9.3 (Variant of [14, Lemma 2.13]) Let W, Z, T be schemes of finite type over
k. Let ZD be the Frobenius twist of Z (i.e., the pullback of Z under the q-Frobenius
Spec k — Spec k). Leth = (hy, ht): W — ZW x T be smooth of relative dimension
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d,and ho: W — Z be an arbitrary map. Define V as the fibered product

V—Ww

i J(hmhl)

z 1B 70
h
Then each fiber of the composition map V — W > T has dimension <d.

Proof Restricting W over a point ¢ € T (k), we reduce to the case 7T itself is the
point Spec k. We may assume Z = Spec R where R = k[xy,...,x;]/I. Let RV =
k®; R=kl&,...,&1/1V be the base change of R under Fr,, where & = 1 ® x;.
Since h : W — Z( is smooth of relative dimension d, by Zariski localizing we
may assume W =K[&1, ..., &, Y1y, Ymaal /U, r1, ..., rm), with (;;’\—VJ "_, hav-
ing rank m (r; € %[51, ce s &L, 91, -+ o, Ym+d]). Under hog : W — Z, the coordinates
x; of Z pullback to functions ?,» on W, 1 <i <I[. We lift f; to polynomials
fi€kl&r, ... &1, Yl

By definition, V has the form

E[glv--wgla)’l»---»)’m,)’m—&-l---aym+d]
(1(1)(5)7g11"'1glvrla---srm)

where g; =&, — fl.q. In particular, V is a closed subscheme of

V = Spec

U::Spec (E[‘élv---7$lsyly~--9)’m9)’m+l-~-,)’m+a’]/(8l,~~~,gl,rl,~--s"m))~

The Jacobian matrix for the defining equations of U has the form

[ n m-+d
0gi 0gi 0gi
OE; dy; dy;
& =1 yj =1 Yj jmet | _ (1 0 0
or; o | ar | *  invertible,, x )’
0&; ay; ay;
) =1 Y7o Sl P

which evidently has rank / + m. Hence U is smooth of dimension d. Since V < U,
dimV <d. O

9.2 Thecasem =1anda =0

We keep the notations from §9.1. In this subsection we extend the discussion in §9.1
to the case a = 0. Fix a line bundle £ € Pic(X’). Recall from Definition 7.4 that
Z(0)° is the moduli stack classifying hermitian shtukas ({xlf 1, {Fi}) together with

compatible maps {£ LN Fi}) with ¢; injective (fiberwise over the test scheme S) and
the image of #; being isotropic. In this subsection, let

2= Z,(0)%.

If n =1 then Z,(0)° = &. We always assume n > 2 below.
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9.2.1 Indexing set for strata

Let Ip U I+ L I_ be a partition of {1,2,...,r} such that |I| = |I_|. We denote this
partition simply by I,. For any N € Z~, define ®(N; I,) to be the moduli space of
sequences of effective divisors (D;)o<j<, On X/E such that

(1) deg(Do) = N.

(2) For 7=0,+ or —, and i € I, the pair (D;_1, D;) belongs to the corresponding
Case (?) listed in the beginning of §9.1 (for some xlf € X/E in the case ? = + or

(3) D, =TDy.

We have a map recording the points x; fori € I, U I_:
(g, ) :D(N; 1,) — (X/E)” x (X/E)L.
Lemma 9.4 The map 7wy : O(N; I,) — (X]%)IJr is quasi-finite.

Proof For a fixed geometric point (xi’)l-d+ € (X]’(_) I+ (k), its fiber in ® (N I,) consists
of (Do, {x}ie1_) such that deg Dy < N and

Do+ Y o(x)="Do+ Y _ xj. (9.4)
iely iel_

Let v € | X’| be a closed point that intersects supp Dy. If deg(v) > N, then Dy can-
not contain all geometric points over v and hence there exists a geometric point y|v
such that y € supp ™ Dy but y ¢ supp Dg. By (9.4), y = o (x}) for some i € I . There-
fore points in Dy are either over closed points of degree < N, or in the Galois orbit
of o (x]) for some i € I. This leaves finitely many possibilities for Dy, hence for
{x}ier_ as well. O

9.2.2 Definition of strata

For a partition I = (lp, I+, 1-) of {1,2,...,r}, define Z[N; I,] to be the stack clas-
sifying

((DiYosi<rs (x{}1<i<rs (Filosi=r) € HK) oy AL 2> Filosi<r)

such that {D;} € ®(N; I,) with image {x{},-ep_, under 79 (? =+, —), and #; extends to
a saturated embedding £(D;) — F;. We have a map

TIN; L]: ZIN; L] = (X" x D(N; 1L).
The following is the analog of Proposition 9.1 when a = 0.

Proposition 9.5 Let n > 2.

(1) Forvarying N € Z=( and partitions I, of {1,2,...,r} such that |1| = |I_|, the
substacks Z[N; 1,] give a partition of Z.
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(2) The fibers of the map 7w [N; I,] have dimension < (n — 1)|1+| + (n — 2)|1p|.

(3) We have dim Z[N; I,] <r(n — 1). Moreover, when n > 3, the equality can only
be achieved when In = {1,2,...,r}, i.e., all D; are equal to the same divisor of
X' defined over k.

Proof (1) is similar to Proposition 9.1(1), except we have to argue that the strata
are only non-empty for |I;| = |I_|, and that Case (£) cannot appear for points in
Z = Z(0)°. The first statement follows from the assumption that D, = * Dy has
the same degree as Dy. For the second statement, suppose Case (£) happens for the
modification

Fici <_]:,'b_1/2_> Fi,

and let H C F;_;,, be the hyperplane that is the image of fl.b_l 2 Then H+ C
Fi_1,0(x)) 18 the line along which the upper modification 7, ,b_l N F; is performed.
Let £,/ (resp. £,(,/)) be the image of L(D;_1) — F;_1 at x; (resp. at o (x;)). Since
the image of £(D;_1) is isotropic (because a = 0), (£,/, L5 xy) = 0 under the pairing
between F;_; s and F;_y (. The condition D; 4+ x; = D; 1 + o (x]) happens only
it ¢ Hand ;= H-*. This contradicts the fact that (£,/, Lsiy) =0.

(i) is proved in the same way as Proposition 9.1(2).

(3) Applying (2) and Lemma 9.4 we get

dim Z[N; I.]= (n — D|I4| + (n — 2)|Io| + | Io| + dimD(N; I,)
< =D+ @ =Dl + |1 = —D|lp| +n|l4].

Since n > 2, we have n <2(n — 1), therefore the above is < (n — 1)(|lp| + 2|1+|) =
r(n — 1). When n > 3, we have strict inequalities n < 2(n — 1), so equality can only
be achieved when I, hence I_, are all empty. O

10 Comparison of two cycle classes
The goal in this section is to show the following theorem.

Theorem 10.1 Let £ € Bungy/ (k) and a € Ag(k). Let s : &' = @}_|L; — € be a
good framing of (€, a) in the sense of Definition 1.15. Let a’ : &' — o*(E')Y be the
Hermitian map induced from a. Then we have an equality in the Chow group

2y, @)l 2@ = [Shthy, 1122 0) € Cho(Zg (a)). (10.1)

Here the restriction on the RHS is via (8.3), noting that Z(’g(a)O = Zg(a), and the
class [Sht?vt(n n)] is as in Definition 8.16.
In particular, the cycle class [Z¢(a)] as in Definition-Proposition 7.18 is well-

defined (i.e., independent of the choice of a good framing).

Below we consider the case where X’ is geometrically connected. At the end of
this section (§10.5) we comment on how to modify the argument in the case X' =
X ][ X or X' = Xy, where k’/ k is the quadratic extension.
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10.1 Firstreductions

For a vector bundle £ on X’ let umin(€) € Q be the smallest slope that appears in the
Harder-Narasimhan filtration of £. For £ of rank n and a € Ag(k), a good framing
5:@7_|L; — & for (€, a) is called very good if it satisfies the additional condition

(3) Umin(E) > max{deg L; +2g" — 1}1<i<n.
Most of the work in this section will be devoted to proving the slightly weaker

statement below.

Theorem 10.2 Suppose X' is connected. Then the identity (10.1) holds if s : £ =
®!_ | L; = & is avery good framing of (£, a).

Lemma 10.3 Theorem 10.2 implies Theorem 10.1.

Proof Choose effective divisors D; on X’ (1 <i <n) such that v(D{ +---+ D,) is
multiplicity-free and disjoint from v=!(D,). Let E; = L;(—D;). When the D;’s have
sufficiently large degree, the resulting map

sl L@l Li—E

is a very good framing. Let a” be the induced Hermitian map ®L; — o*(®L])". By
Theorem 10.2 we have

.....

,,,,,

Let U’ be the complement of U!_,supp(D; + oD;) in X'. By construction,
U’ contains v~'(D,), therefore Zg(a)|lyrr = Zg(a) by Lemma 7.12. Let ¢ =
[ZZ[ (@;)°Nlyrr € Chr(n,])(ZZi (a;)°|yr). Similarly define ¢/ using (£}, a). Then
it suffices to show the equality

(SENCRERER &)z = ((SRYSEERES é-y/,)|2£(a) € Cho(Z%(a)), (10.2)
where the intersection products are taken over Sht, - Applying Lemma 7.8 to
each injection £ < L;, we see that ZJ. (a;;)|y/r <> Z}, (a};)|yr is open and closed.
Therefore ZJ,. (alfl.)°|U/r — Z7, (alfi,)oly/r is open. This shows that the fundamental

class ¢; is the open restriction of ¢/ to Zrﬁ,- (a};)°|yrr. The equality (10.2) then follows.
d

10.2 Auxiliary moduli spaces
Letd = (di)1<i<n € 2" and e € Z>o. Write d =) _d;.

Recall that M, C M(n, n) is the open-closed substack where x (X', £) = —e. Let
My be the moduli stack classifying ({£;}1<i<n, (F, h), {t] : L;i = F}1<i<n) Where
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e [; is aline bunde on X’ with x (X', £;) = —d; for 1 <i <n;
o (F,h) € Buny ) satisfying

WUmin(F) > max{—d; +3g" — 2}1<i<n. (10.3)
e Foreach 1 <i <n, tl.’ : L; — F is an injective map (fiberwise over the test
scheme).

We define ij\/ld to be the moduli stack classifying

({Liti<i<n, ({x;}lgigr, {(Fj, hplo<j<r) € Hk;](,,y {fi/j (L — Fib)
where £; are the same as in My, each F; satisfies the analogue of (10.3) with F

replaced by F;, and fiberwise injective maps 1/ i L; — F; are compatible with the
isomorphisms between F;_; and F; away from x;.

Lemma 10.4 The stacks My and Hk}\/ld are smooth stacks of pure dimension dn —
(n>—2n)(g — ).

Proof We first prove the statement for My. Consider the map y; : My —
[T, Pic}fiﬁg 1y Bungy(,) sending ({L;}, (F,h),{;}) to ({L;}, (F,h)). For
(F,h) e Bunyy and £; € Pic;fii+g,_l, the condition g, (F) > max{—d; + 3g’ —
2} <i<n = max{deg L; +2g¢" — 1} <;<, guarantees that Ext!(L;, F) = Hom(F, £; ®
wy’)¥ = 0. Noting that deg F = n(g’ — 1), the Riemann-Roch formula implies that
va exhibits My as an open substack of a vector bundle of rank dim Hom(®L;, F) =
—n) ;degl; =dn — n*(g’ — 1) over the base. In particular, My is smooth and
equidimensional. Since dimPic;fiH_g -1 g — 1 and dimBuny ) = n’(g — 1), we
conclude that

dim My =dn —n*(g' — 1) +n(g — 1) +n*(g — 1) =dn — (n* —2n)(g — 1).

The argument for Hk}vtd is similar. The natural map

n
1 —ditg -1 1
Hk)q, = | [Picy’ x HKy )
i=1

exhibits Hk}wd as an open substack of a vector bundle of rank dim Hom(®L;, Fo N

F1) =dn — n_(using that deg(Fo N F1) = n(g’ — 1) — 1) over the base. Here we
need the stronger inequality pimin(Fo) > max{—d; + 3g’ — 2} to guarantee pmin (Fo N
F1) > max{—d; + 3¢’ —2}. In particular, Hk}\/ld is smooth and equidimensional, and

dimHkM =dn—n—n*(g' = 1)+n(g' — 1)+ dimHky,,

=dn—n—2n*(g—1)42n(g — 1) +n+n*(g—1)=dim My,

as desired. O
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Let Mg . be the moduli stack of ({£;}1<i<n. &, F, h,s,t) where

L; € Picy: satisfies x (X', £;) = —d; fori =1, ..., n;

& € Bungy, satisfies x (X', &) = —e;

(.F, /’l) S BunU(n);

t : £ — F is an injective map;

s @®_L; — & is a very good framing for (£, a), where a = o*tY ohotis the
induced Hermitian map on £.

Note that being a very good framing requires —d; < umin(€) — (3¢’ — 2) for all i,
which imposes an open condition on £. We view Mg . as a correspondence

Mg’e
RS
My Me.

(10.4)

Here w; records ®}_, L; Tos, JF and wj records £ LN F.

We denote the Hitchin bases for Mgy, M, and My, by Ag, A, and Ay . re-
spectively. Here Ay parametrizes ({£;}1<ij<p,a’ = (a;j)) (where alfj :Lj— o*LY)
such that a’ : ®@L; — o*(®L;)V is an injective Hermitian map. The base A, classi-
fies (£, a) with a an injective Hermitian map. The base 44 . is the moduli stack of
({Lit1<i<n. &, 5,a) where (£,a) € A,, s : ®7_|L; — & is a very good framing of
(€, a) and L; € Picx with x (X', £;) = —d;. We view Ay . as a correspondence

Agde (10.5)
Ui \ui
Ag A,
‘We have Hitchin maps
fa: Ma— Aq,
fe: Me— A,

Sfde : Mae = Age.

These maps together give a map of correspondences (10.4) to (10.5). Note fy is not
necessarily proper because we have imposed an open condition on the minimal slope
of F.

Similarly we define the Hecke version Hk;vld,e of My . as the moduli stack of

(xh<i<r (€ = Fido<i<r) € ij\/le together with a very good framing s : ®L; —
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& for (€, a) with x (X', L;) = —d;. Again we view ij\/ld ,asa correspondence

HkMde

2N

HKY, HK,

Lemma 10.5 The maps w1, uy and hy are étale.

Proof We first prove that u is étale. Let (Xy—, X X.)© be the open subscheme of
divisors (D1, Dy) € X4, x X, such that D; is multiplicity-free and disjoint from
Dy let (X/,_, x X.)® be the preimage of (Xy_. x X,)¥ in X),_, < X.. We have a
map o : X;_, x X, — X sending (D}, D) to v(D1) + Dy. Let o be the restriction
of a to (X/;_, x X,)¥. By factorizing «* as the composition

add

_exId
(X, x Xe)® 225 (KXo x X0)¥ 55 Xy

we see that «“ is étale. From the definition we have a map
J= Wt g o) T Ade = Ad xx; (Xg_e X Xo)-

where j)_, : Age — X_, sends ({L;}, ®L; 2 £,a) to Div(s) (the divisor of
det(s)) and j. : Ag.e — X, sends it to D, (see Definition 7.3). The map Ag — Xy
used in the fiber product records the divisor D, of the Hermitian map a’ on
@®L;. We claim that j is an open immersion. Indeed, given ({£;},a’) € Ay and
(D}, D) € (X},_, x X.)¥ such that v(D1) + D, = Dy, by the disjointness of
Di,o(D/l) and v~1(D,), there is one and only one coherent sheaf £ such that
B®L; CECo*(DL)Y, E/® L; is supported on D}, and o*(DL;)Y /€ is supported
away from Dj. This would give a very good framing of £ if the open condition
Umin(€) > max{—d; + 3¢’ — 2}1<j<p is satisfied. This shows that j is an open im-
mersion. Since o is étale, we conclude that Ay . is étale over Ay.

To show wy is étale, we observe that Mg . = My X 4, Ag.e. Since uy is étale, so
s wy. -

Finally, Hk;v(d,e is the open substack of Hk?vrd X Ay Ag,. where the legs avoid
Div(s). Since u is étale, sois Aj. O
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10.3 Auxiliary Hitchin shtukas

We define Shtj\/[d and Shtj\/ld , as the fiber product

Sht;\/li —_— Hk;\/[i Sht-r/\/lg,e _— Hk;\/lg,g (10.6)
l l (pro.pr,) \L l (prg,pr,)
(Id,Fr) (1d,Fr)
My ——— Max Mg Mge ——= Mgex Mg

The maps w; and h; induce maps

Shty,, . (10.7)

SN
Shty, Sht'y .

The stack Shtjwd decomposes into a disjoint union of open-closed substacks indexed
d,e

by (Li), ®L; > &,a) € Ago(k)

Sht)yy, , = 11 ZL(a).
@@L —E ,a)eAy (k)

Correspondingly, the diagram (10.7) decomposes into the disjoint union indexed by
Ay (k) of diagrams of the form

Ze(a)

N
Zpp (@) Z(a)
/)@

Here Zé L @)~ c Zera L (a’) (where a’ is the Hermitian map on @L; induced from

a) is cut by the open condition fimin(F;) > max{—d; +3g" —2} forall 0 < j <r.
From this description and Corollary 7.17, we see that:

Lemma 10.6 The map u (resp. us), when restricted to each connected component of
Shtswd , is an isomorphism onto a connected component of Sht?\/ld (resp. Sht'y , ).

10.4 Zero cycles on auxiliary Hitchin shtukas

Similar to the definition of [Shtj\/[e] given in §8.6, we define 0-cycles supported on
Sht'y,~and Sht’y , as follows.
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We rewrite Sht?v(d as the fiber product

Sht)y,, — (Hk}vli)’ x Mg

l \L (pro,pry)” x A
d)Md

(MQ)H_I - (M¢)2r+2

Here ®pq, = CI);Vld and the vertical maps are defined as in Definition 8.15. By the

smoothness of Hk}\:ld and My proved in Lemma 10.4 and the dimension calculation
there, we define

[Shty,] == @)y, [(Hk)( )" x Mgl € Cho(Sht)y, ).

Similarly, using the Cartesian diagram

Shtly,, . — (HKj )" x Mg, (10.8)

\L l (prg,pry)” <A
CDMd

(Mi’e)r+l ; (Mi,e)2r+2

and the smoothness and dimension calculations of Hk}\/[d . and My . (which follow

from Lemma 10.5 and Lemma 10.4), we define
[Sht;\/td,e] = CD!Mi’e[(Hk}MM)’ X Mgl € ChO(ShtG\Ag,,e)'
Lemma 10.7 We have uT[Shtj\Ai] = [Shtr-/\/li,e] € Cho(Shtj\/tw).
Proof This is because the maps w; and A are both étale by Lemma 10.5. 0
Lemma 10.8 We have uj[Shtj\Ae] = [Sht;vtd,e] € ChO(ShtS\/lg.g)'
Proof The diagram (10.8) is obtained from (8.6) (for M replaced by M,) by base

changing termwise along the map of the following two Cartesian diagrams induced
by uz : Ag.e = Ae:

Ag (k) —— (Age) ™! A (k) ——= (A)"T!
\L \L Ar+1 l \L Ar+l
(D»Ag,e D4,
(Age) Tt —— (Ag)¥*? (AT ——= (A)¥ 2
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Note that u : Ag. — A, is smooth since it exhibits Ay . as an open substack of
a vector bundle over A, (using the condition wmin(£) > max{—d; + 3g" — 2}). We
conclude by applying Proposition 10.9 below. 0

10.4.1 Compatibility of cycle classes under Hitchin base change

To state the next result, we need some notations. Suppose we are given:

e stacks S, M and H that are locally of finite type over k and can be stratified into
locally closed substacks that are global quotient stacks;

o the stack M is smooth of pure dimension N with amap f: M — §;

eamaph:H— § x arsr M 2" (the fiber product uses the r-fold product of the

diagonal A" : §" — Szr).

Define h: H — M?% as h followed by the second projection. Form the Cartesian
square

Shty —— HxM

e

M
Mr+1 M2r+2

Let u : § — S be a smooth representable morphism of f pure relative dimension D.
Let M' =M x5 8, H = H xg ' with natural maps &’ : H' — §'" X ar g M
Let b’ : H — M'? be the resulting map. Let up; : M’ — M and up : H — H be
the natural maps. Form the Cartesian square

Shty, — H'x M’ (10.9)

[

@,
M/r+1 M’ 2r+2

Since ™! X g, §2+2 Artl §™+1 = S(k), Shty decomposes as

Shty = [ [ Shtu(s).
seS(k)

Similarly Sht};, decomposes into the disjoint union of Sht/, (s") indexed by s" € S’ (k).
Then the natural map wus : Sht); — Shty lifts to an isomorphism

Shty = Shty x sk S’ (k) = ]_[ Shtg (u(s))).
s'eS' (k)

Proposition 10.9 Let ¢ € Ch,(H) and [M] be the fundamental class of M. Then we
have

ulp Dy (¢ x [M]) = D uly (¢ x [M]) € Chy_,n (Shtyy).
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Proof Consider first the diagram where all squares are Cartesian

Sht[—[ XSYS/r - H xM —s S/r+]

l v l UM XUpm l ur !

Shty ———> HxM — S+l

N

Mr+1 M S M2r+2

Here the top vertical arrows are smooth and representable. By the compatibility of
Gysin map with flat pullback [10, Theorem 2.1.12(ix)], we have

VY, (¢ x [M]) = ®hufy (¢ x [M))
€ Chy_ N1+ (Shty X g1 87, (10.10)
Here we recall that D is the relative dimension of u. We have

Shty x g1 8" = ] Shta(s) x (8! (10.11)
seS(k)

where S, = u—1(s), which is a smooth scheme over k. Factorize usy, as the compo-
sition

Sht}; —— Shty x5 (S") —— Shty
From (10.11) we see that i is a regular embedding of codimension (r + 1) D. Now v

and usp are both smooth. Applying [10, Theorem 2.1.12(ix)] we have ug, (—) = itv*
as maps Ch,(Shtg) — Ch,(Sht),). Therefore

uly Dy (¢ x [M]) = i'v* @}, (¢ x [M]) € Ch,—,n(Shty). (10.12)

On the other hand, consider the following diagram where all squares are Carte-
sian

i
Sht, ————— Shty xg+1 8" ———— H' x M’

\L l W xA
(o] (O]

1
M/ M X go frl g2 S§/2r+2 M/2r+2

2r+2

Mr-‘rl M2r+2
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Here ®; is the base change of &g and P, is the base change of ®j;. The
outer square of the top rows give (10.9). By the transitivity of Gysin maps, we
have

DYl (C X [M]) = Dy dhuky (¢ x [M]).

Since uﬁfz is smooth representable, we have d>!2u*H(;“ x [M]) = d>!Mu}‘{(§ x [M]).

Hence
D uky (C X [M]) = @4 @ uly (¢ x [M]).

Since both ®; and i are regular embeddings of the same codimension, we have
@' (=) =i'(—) as maps Ch,(Shty x g-+15"" 1) — Ch,_(-11)p(Sht})), by [10, The-
orem 2.1.12(xi)] and [5, Theorem 6.2(c)]. Therefore

@Y1l (& X [M]) = i' @ uly (¢ x [M]) € Chy_,n (Shty). (10.13)
Combining (10.10), (10.12) and (10.13) we conclude
ul D4y (C X [M]) = i'v* @Y, (¢ x [M]) =i ®Y,uly (¢ x [M])

= @', (¢ x [M]) € Ch,_, x(Shty). 2

Lemma 10.10 Let ({Li}1<i<n.a’) € Aq(k) and &' := ®7_,L;. Then we have an
equality

[Shtyy, 122, @) =5,z @) € Cho(Z5 (@),

For the definition of ¢ (a’) see §7.8.

Proof We will apply the Octahedron Lemma [28, Theorem A.10] to a diagram of
moduli stacks in our setting. Since the Octahedron Lemma requires certain stacks in
question to be Deligne-Mumford, we need to rigidify our moduli stacks to satisfy
these requirements. This is a minor technical issue which we encourage the reader to
ignore: it is simply because the Octahedron Lemma in [28] is not stated and proved
in the most general form.

Letv € | X’|. Let P, be the moduli space (a scheme!) of line bundles on X’ together
with a trivialization of their fibers over v. Let G, = Resi” G,,. Then P, — Picys is a
G, -torsor.

Now for each moduli stacks My, Az and Hk;\./ld that involve an n-tuple of line

bundles {L;}, we write MQ , Ai and Hk;\;l o meal_l their rigidified versions where

L; € Picys is replaced by L; € P,. Note that we do not impose any compatibility
condition between the rigidifcation on £; and the rest of the structures classified by
these moduli stacks. Define Sht;\}td using the dotted version of the left one of the
Cartesian diagrams in (10.6).

Note that Mi , Ai and Hk;\'/( , are now schemes, and they are G’)-torsors over their
undotted counterparts. The dotted version of Lemma 10.4 remains valid if we add
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ndeg(v) = dim G/ to the dimensions. Also, Sht;\./ld ~ Shtj\@ XAQ(k)Ai(k). Since

/li(k) — Ay (k) is surjective, to prove the Lemmz;, it suffices to prove its dotted
version: for any ({£;},a’) € Aq(k), writing £ := @!_, L;, then there is an open and
closed embedding Z¢, (a) — Shtj\}l (using the rigifications L; of L;); then we shall
d
prove h
[Shtj\}tdﬂz,rg/(“/) = {21 ..... L, (@) e Cho(Zg, (@)). (10.14)
Fori=1,...,n, let Nd,- be the open substack of M(1,n) consisting of points
(L < F,h) where x (X', £) = —d; and jimin(F) > —d; + 3¢’ — 2. Similarly define
Hk/l\/'d,- and Shtj\/—di ; these are open substacks of Hk}w( 1n) and Sht' , (1) respectively.

Let Ndi , Hk.}\-[ be the rigidified versions of Nd; and Hk/lvd where L € Picy is re-
d; i

i

placed by £ € P,. Let w; 3Nd,- — Buny ) and ; :Hk].d — Hk!

A, Un) be the forgetful

maps.
We shall apply the Octahedron Lemma [28, Theorem A.10] to the following dia-
gram:

A [1@] xwi) )
(Hky;(,))" x Bunyy —— [, (Hky(,)" x Bung ) <—— r[;’:l((ij\.fd ) x Ng)

(pro.pr)" x A TT((pro.pry)" x &) l TT((pro.pry) xA)
A nwizwrz
Bun%}%z I, Bun%/r:’:)z I ./\./3"4r2
PBung; [T®Bung T nq)/\'/d’
A l_lwf+]
Bunjf)) ————— [[i_Bunj,, <—— [N}
(10.15)
The fiber products of the three columns are
Sht? *>A " Sht! ~— [T~ Sht" 10.16
U(n) [Tii U(n) [Tizi N (10.16)
where
E /
Shty, = 11 2z, 0[] [T z.@n]]- (10.17)
LieP,(k), ajeAr, (k)
x (X' L))=—d;

Let Mi be the moduli stack of ({£;}, &!_ L LF , h) defined similarly as Md
but without the condition that ¢’ be injective, only that t/ = |, be injective. Then
Mg My is open. Similarly define Hklm and Sht’ﬂ . Note that My is exactly

d d 4 i d
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the fiber product of

A [Tei X
Buny(y — [[i2Bunyy <— [1i2; Na. (10.18)

Similar remarks apply to Hklm . Therefore the fiber products of the three rows of
d
(10.15) are

(Hklm)’ x My (10.19)

(prg,pry) XA

The common fiber product of (10.16) and (10.19) is Sht’m , which decomposes as
d

a disjoint union over the groupoid B(k) of (ﬁi, a;i)lsisn ‘where ﬁi € Py(k) with
x (X', L;)=—d; and a; : L; — o*L injective Hermitian. For a point (L, aj)1<i<n
of B(k), we have

r . _ r / / o
Shtﬂd |(£i,a;i)15,-5,, - Zﬁl,...,ﬁn (all’ Tt ann) ’

r . r
where Shtﬂd |( Li.d),)1<i<, TEANS the pullback of Shtﬂg to Spec k along the corre-

sponding Spec k — B(k).
We check that the assumptions for applying the Octahedron Lemma are satisfied
(the numbering below refers to that in [28, Theorem A.10]).

(1) All members in the diagram (10.15) are smooth and equidimensional. This is
clear for Buny(,) and Hkb (n)- The same argument as in Lemma 10.4 proves that
Nd,- and ijl\.[ are smooth of pure dimension d;n + n®> —2n+2) (g—1+

d;
deg(v).

(2) We check that, in forming the fiber products of the middle and bottom rows
and the left and middle columns, the intersections are proper intersections with
smooth equidimensional outcomes with the expected dimension. Here we use
Lemma 6.8 and 6.9 to argue for the left and middle columns. For the rows, the
same argument as in Lemma 10.4 proves that M, and Hklm are smooth of the

- d

same dimension as /\'/lg, which is dn — (n? — 2n)(g — 1)+ nideg(v). This is the
virtual dimension for ﬂi as the fiber product of (10.18), since

n
> dimNy, — (n — 1) dimBung )

i=1
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n
=" (din+ (2 =21 +2)(g — 1) + deg() ) — n*(n = (g — 1)
i=l
=dn— (n* —2n)(g — 1) + ndeg(v).
(3) We check the fiber products of the top row and right column of (10.15) sat-

“)

isfy the conditions for [28, A.2.10]. The fiber product of the top row is also
a proper intersection: this follows from the same calculation as for the middle
and bottom rows. The fiber product of the right column is also a proper inter-
section: this uses the decomposition (10.17) and the calculation of the dimen-
sion of ZZ; (0)* in Proposition 9.5 and the dimension of ZZ,- (a;;)* in Proposi-
tion 9.1.

The only issue is that (Hklﬂd)’“ may not be a Deligne-Mumford stack,

which was part of the requirement of [28, A.2.10]. However, we argue that
this is not really an issue. The proof of the Octahedron Lemma allows the
following flexibility: since eventually we only care about the O-cycles re-
stricted to Sht;\'/td’ in the middle steps of forming the fiber products, we
may restrict to open substacks as long as the final fiber product contains
Sht;wd and only need check the relevant requirements there. Now in (10.19)

we mZIy restrict to the open substack (Hki\}[ y+l o (HklM y+1, which is a
d d

scheme.

The same remark as above shows that it suffices to check that the fiber squares
obtained from (10.16) and (10.19), after replacing My by My, each satisty the
condition [28, A.2.8]. Therefore it suffices to check

° Shtj\-/l admits a finite flat presentation in the sense of [28, Definition A.1].
d
This is true because Shtj\}l is a scheme.
d

e The diagonal map A : Shtz(n) = [T, Sht{](n) is a regular local immersion.
This is true because Shtj, ) is a smooth Deligne-Mumford stack.

r+1

e The map ® M, M — ./\'/13”2 is a regular local immersion. This is true

because Md_ is a smooth equidimensional scheme by the dotted version of
Lemma 10.4.

The conclusion of the (variant of) Octahedron Lemma says that the following two
elements in Cho(Sht’ﬂ )
d

n n
! ! 1 r y ! . ! 1 r v
chiA e, v [H(Hk X ) xNy1 and Ashe, (]_[ ), ) [H(Hk X )" x N1
1= 1=

become the same when restricted to Shtj\-/l . Further restricting to Z%, (a") we get the
d
desired identity (10.14). O
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Proof of Theorem 10.2 Restricting the equality in Lemma 10.10 to Z¢(a), which is
open and closed in Zg, (a’) by Corollary 7.17, we get

&L, @lzi = [Sht)(, 1122 @)- (10.20)
For fixed (®L; — &,a) € Ag.(k), Z;(a) can be viewed as a finite €tale cover
of an open-closed substack in Sht?\/lg’ShtS\@,e and Shtj\/le by Lemma 10.6. By
Lemma 10.7 and Lemma 10.8 we have

[Shtj\@]lzg(a) = [Shtjwd,e]lzg(a) = [Sht)y, 11 2% (a)-

Combining this with (10.20) proves the theorem. g
10.5 Proof of Theorem 10.1for X' = X [[ X or X

Here k’/ k is the quadratic extension.

In the case X’ = X | [ X, we have Buny(,) = Bungr, . We shall identify a Hermi-
tian bundle F on X’ with a pair of vector bundles (Fi, F>) equipped with an isomor-
phism 7, = F|’, each living on one copy of X. A vector bundle £ on X’ of rank n
corresponds to two rank n vector bundles (£, &), each living on one copy of X. Now
Ag (k) is the set of injective maps a : | — &£,. A good framing s : @"_, £; — & for
(€, a) now consists of line bundles £; = (L; 1, £ 2) (1 <i < n) satisfying the same
conditions in Definition 7.15; it is called very good if it satisfies the additional condi-
tions

(31) Mmin(&1) > max{deg L; 1 +2¢ — 1}1<i<n, and
(32) Umin(&2) > max{deg L; > +2¢ — 1}1<i<n-

The same argument of Lemma 10.3 shows that it suffices to prove the analogue of
Theorem 10.2, i.e., prove Theorem 10.1 for very good framings.

In both the X' = X[][ X and X’ = Xy case, we need to modify the definitions
of Mgy and Mg . as follows. In the definition of My ., we use the notion of very
good framing just defined over geometric fibers of X, — S (which are of the form
X5 [ X5). In the definition of M, we change the inequality (10.3) to two inequalities
over the geometric fibers of X'y — §

tmin(F1) > max{deg L; 1 +2¢ — 1}1<i<n,

Mmin(F2) > max{deg £; > +2g — 1}1<i<n.
The same inequalities should be imposed in the definition of Ay that appear in the
proof of Lemma 10.10. With these changes, the argument for proving Theorem 10.2

goes through.
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11 Local intersection number and trace formula
11.1 Local nature of the intersection problem

Recall from Proposition 7.13 that Z¢ (a) only depends on the Hermitian torsion sheaf
Q = coker(a). In this subsection we show that the O-cycle class [Z¢(a)] also only
depends on Q.

Recall the stacks Hermj; = Hermpy(X'/X) and Lagr,,; from §4. We have a
self-correspondence Hkiagrm of Lagr,,; over Hermy,: it classifies (Q, i, {L;}o<i<r)
where (Q, h) € Hermyy, £; C Q are Lagrangian subsheaves such that £; /(£; NL;—_1)
has length one for 1 <i < r. Define the local version Sht’Langd of Shtj\/ld by the Carte-

sian diagram

Shf e —— HK[ 0 (11.1)
l l (prgopr)
(1d,Fr)

Lagr,, —— Lagr,; x Lagr,,

We have a decomposition into open-closed substacks

= 1 %
(Q,h)eHermyg (k)

Lemma 11.1 The stack Hk!

Lagr,, 'S smooth of dimension zero.

Proof We may identify Hk{ag% with the moduli stack of (0 C L' C £ C Q, h) where

(L C Q,h) € Lagr,; and £/L' has length one. Under the local chart for Hermyy
described in Lemma 4.3, Hkiagrm becomes [p/P], where P C Oy = O(V) is the

parabolic subalgebra stabilizing a pair of subspaces L’ C L with L Lagrangian and

dim L’ = d — 1. This local description implies that Hkiangd is smooth of dimension
Zero. g

Rewriting Shtiangd as the fibered product (cf. Definition 8.15)

Shtlrdagrz(j - (Hk] )" x Lagry, (11.2)

Lagry,

l l (pro,pry)" xA

q)Lagrzd
(Lagrzd)r-H . (Langd)2r+2

we define a O-cycle class
[Shtf e 1:= @’Lagru [(Hk{ or, )" % Lagry,] € Cho(Shtf ;).
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Restricting to Z’Q we get
[ ’Q] = [Shtiangd]|Zb € ChO(Z’Q).
Recall the maps gaq : My — Lagr,,; and g : Ay — Hermy, defined in §8.4.
. t
We also have a map gy : Hks\/ld — Hkiagrh] sending ({x/}, {€ = Fi}) to (Q =
coker(a), hg, {coker(t;)}) (a is the induced Hermitian map on £). The maps gak, g1

and g exhibit the diagram (8.5) as the pullback of the diagram (11.1) via the base
change g : A; — Hermy,. In particular we have a natural map

. r r
gSht - Shth — ShtLangd .

For fixed (£, a) € Ay (k) with image Q = coker(a) € Hermyy(k), gshe restricts to an
isomorphism to the open-closed subschemes

gshilzz) : Z5(@) > 25, (11.3)
Proposition 11.2 We have an equality
[Shtj\,ld] = gé‘ht[Shtiangd] € ChO(ShtjMd). (11.4)
Proof Apply Proposition 10.9 to the diagram (11.2), the fundamental class ¢ =
[(Hkiagrzd)r x Lagr,,] and the base change map u = g : Ay — Hermy,. By Proposi-
tion 8.12, g is smooth. We then have

D'y &l (HK] ygr ) X Lagrog] = i Ppogr, [(HK{ 4o ) xLagryy] € Chy(Sht( ).

Since gy is smooth, gﬁk[(Hk]{ang)’ x Lagry,;] = [(Hk}wd)’ X Hk}\/ld]. The above

equality then becomes (11.4). d

Combined with Theorem 10.1, we get a local description of the cycle class
[Z%(a)]:

Corollary 11.3 For any (£,a) € Ay(k) with image Q = coker(a) € Hermyy(k),
[Z¢(a)] is the same as [ZrQ] under the isomorphism (11.3). In particular,

deg[ 2% (a)] = deg[ 2])].
11.2 Sheaves on Hermy,

To describe the direct image complex R £.Qp on Ay, by the Cartesian diagram (8.4),
we first need to understand R(v24)«Q, on Hermy,.

Lemma 11.4 The perverse sheaf R(v24)+Q, on Hermyy is canonically isomorphic to
(Sprgjrm)sd (see Proposition 4.5(2)). Here the Sy-action on Sprgjrm is the restriction

of the Springer W -action.
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Proof We have a Cartesian diagram

— &d

Hermyy — Cohy(X')

h

l A J/ oy
/
&4

Lagr,, . Cohy(X")
where ‘921 sends (Q,hg, L) to £ and €7 sends (@) C---C Qg C---C Q,h) to
(Q1 C--- C Qy). By proper base change
R}\.Zd*ag = 8;1* Sprd,X/ .

In particular, szd*ae carries an action of S;. Moreover, the induced Sz-action
on Sererm = R(v2q)5+RA245+Q, is the restriction of the Springer Wj-action to
S4: this can be easily checked over Hermj,, and then the statement holds over

Hermy, since Spri™ is the middle extension from its restriction to HermS, by
Proposition 4.5(2). Since (R)»zd*Qg)Sd = ed (Sprd’x/)sd = 6@, we conclude that
(Sprilerm)Sa = R(u54), (RA20+Qy) 5! = R(v24)+Qy. as desired. O

It is an elementary exercise to see that Ind?;" 1 decomposes into irreducible repre-
sentations

d
Indg’ 1=EP pi (11.5)

where p; = Indgd/zz)ws s,y 06 B, and xi = (Z/2Z)% x (S; x Sg—i) — {£1} is

the character that is nontrivial on the first i factors of (Z/2Z), trivial on the rest and

trivial on S; x S;_;. The decomposition also shows up in [28, §8.1.1].
Recall the notation Spry 5 Ferm( 51 from Definition 4.7.

Corollary 11.5 There is a canonical decomposition

R(v24)+Qq = EBSpr“‘”‘“[pi]. (11.6)

i=0
Proof By Lemma 11.4 and Frobenius reciprocity, we have
R(v24)+Qq = Homy, (Ind¢ ? 1, Spriis™) = Sprhs™[Ind s 1].
The desired decomposition then follows from (11.5). g

Definition 11.6 Define the graded perverse sheaf on Hermpy(X'/ X)
Int(T) _ @ Sererm [pl]Tl .
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The fundamental class of the self-correspondence Hkiagrzd of Lagr,; is viewed
as a cohomological correspondence of the constant sheaf on Lagr,, with itself. It
induces an endomorphism (see notation from [28, A.4.1])

(V2NHK] ygr, 17 R(020)+Qp = R(020):Qy.

Proposition 11.7 The action of (vzd)g[HkiangI] on R(UZd)*Gl preserves the decom-

position (11.6), and it acts on Sprlz'ljrm[p,-] by multiplication by (d — 2i).
Proof By Proposition 4.5(2), Sprgljrm[pi] is the middle extension from its restriction
to Herm3,, it suffices to prove the same statement on Herm3,. Let [ 0’1 cX ; x X'
be the universal divisor {(D € X/,,y € X'): y € D}. The maps pr(D, y) = D and
q(D,y) =D — y + o(y) define the incidence correspondence as in [28, proof of
Proposition 8.3],

Sht£agr2d - (Hkiagr%)r X Lager

l l(PTO»pH)TXA

, Pragr !
(Lagr2d)r+1 = (Lager)2r+2 (11.7)

lLagrz,, is the pullback

of (11.7). We therefore reduce to checking the statement for the action of [/ 4/1] on
the direct image sheaf of vy : X ;1 — X4, which is done in the proof of [28, Proposi-
tion 8.3]. O

Now over Hermj ;, the map Hermj, — XZ is smooth, and Hk

11.3 Lefschetz trace formula

We shall give a slight generalization of the Lefschetz trace formula [28, Proposition
A.12] expressing the intersection number of a cycle with the graph of Frobenius as
a trace. Instead of the graph of Frobenius, we need to intersect along @y : M" ! —
M?*+2_Consider the following situation:

e Let S be an algebraic stack locally of finite type over kK = F,. Assume S can be
stratified by locally closed substacks that are global quotients.

e Let M be a smooth equidimensional stack over k = F, of dimension N with a
proper representable map f : M — S.

e Forl1 <i<r,let (prf), pr"l) :C; > M x5 M be a self-correspondence of M over
S. Assume prf) is proper and representable.

Form the Cartesian diagram

Shte —— ([[i_;C) x M (11.8)

l J/ (prh.pri)i<i<r
@

yrl M 2
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Then Shtc decomposes as

Shtc = ]_[ Shtc (s)
seS(k)

where Shtc (s) is the fibered product of Shtc — S(k) against s € S(k). For s € S(k),
we write Shtc | for the fibered product

Shteo |S — Sht¢

| |

Spec k —*— S(k)

Then Shtc |y — Shtc(s) is a torsor for Aut(s), and in particular a finite étale cover.
Suppose we are given cycle classes

;i eChy(C;), 1<i=<r

The cycle class cl(¢;) € HZB}\\,/[(C,-, 62 (—N)) is viewed as a cohomological correspon-
dence betweeﬂ the constant sheaf on M and itself. Therefore it induces an endomor-
phism of RfQ, which we denote by ficl(¢;).

Proposition 11.8 For each s € S(k) we have
deg((Dly (g1 X -+ X & X [MD)Isne |,) = Tr(ficl(¢1) o+ -0 ficl(g,) oFry, (RAQy)y).

Proof We first prove the formula when S is a scheme of finite type. In this case M, C;
are also schemes of finite type over k. Let C = C X7 X - - - X 3y C;- be the composition
correspondence, with maps pr; : C — M for 0 <i <r. Consider the diagram where
all squares are Cartesian

Shtc c (T~ C) x M
l l (Prgs --+, Py ,PY.) J/ [T(prh.pri)x A
Mr+l ! 5 Mr+2 2 S M2r+2

pro l l (pro-pr,41)

M — MxM
(1d,Fry)

Here

@10, .- -5 &r—1,6) = (0, - - -, &, Frm (50)),
d>2($03 957357+1) = (505517511 RN éra ér?$r+l)'

We have @y = @5 0 ®y. Let £ = ®5(¢1 x §o x -+ x & x [M]) € Chy(C).

@ Springer



Higher Siegel-Weil: non-singular terms 659

On the one hand, by the transitivity of the Gysin maps,
@iy (61 X -+ X & x [M]) = @} (§) = (d, Fran)' (©). (11.9)

Applying the Lefschetz trace formula [28, Proposition A.12], we get

deg((1d, Fry)'(©)shic 1,) = Tr(ficl() o Fr, (RfiQy)s)- (11.10)

One the other hand, by a diagram chase, we see that cl(¢) is the composition of
the cohomological correspondences cl(¢;) (1 <i <r), hence ficl(¢) € End(RfiQ,)
is the composition of ficl(¢y) o ficl(&z) o --- o ficl(¢,). Combining this fact with
(11.9) and (11.10) we get the desired formula.

Now consider the general case where S is a stack locally of finite type over
k and we aim to prove the formula for s € S(k). We claim that there exists a
scheme S’ of finite type over k and a smooth map u : S — S such that u(S’'(k))
contains s. Indeed, pick any smooth map u; : S — S with S; a scheme of fi-
nite type over k, such that s is contained in the image of u. Let s; € S;(Fym)
be a point that maps to s. Let (S1/5)" be the m-fold fibered product of S; over
S, based changed to k. We equip (S;/S)" with the Fr-descent datum given by
(x1, .-y xm) > (Fr(xy,), Fr(xy), ..., Fr(x,—1)). This gives a descent of (S1/S)™ to
a scheme §’ over k equipped with a map u : S" — § which is still smooth since u
is. Now s; gives rise to a k-point s’ = (s1, Fr(s1), ..., F~!(s1)) € §’(k) such that
u(s’) =s.

Let M =M x5 8, C/ =C; x5 8" and let uc, : C; — C; be the projection. De-
fine Sht,. using the analog of the diagram (11.8) with M and C; replaced by M’ and
C!. Then Sht. = Shtc X gx)S’ (k). For s” € §'(k) such that u(s’) = s, we get an iso-
morphism Sht. |y = Shtc |s. Let ¢/ = ug. i Now we apply Proposition 10.9 to the
diagram (11.8) along the base change map u : S’ — S to get

ulp Dy (L1 X - X & X [M]) Z DY, (¢ x - x ¢, x [M]) € Chy(Sht).
Restricting to Sht. | = Shtc |; and taking degrees we get
deg(®jy (51 X ++- X & X [MD]shic |,)
= deg(®, (5] x --- x & x [MDshe, |,)- (11.11)
On the other hand, letting f': M’ — §’, by smooth base change we have

Tr(ficl(¢1) o+ o ficl(L) o Fry, (RfiQy)s)
= Tr(f,’ cl({l’) 0--+0 f,’ cl({,’) o Fry, (Rf,’@z)s/). (11.12)

Since the right sides of (11.11) and (11.12) are equal by the scheme case that is al-
ready proven, the left sides of (11.11) and (11.12) are also equal, proving the propo-
sition in general. U

Recall the graded perverse sheaf ICIdm( T) on Hermy,; from Definition 11.6.
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Corollary 11.9 Let (Q, hg) € Hermygy (k). We have

deg[ 2] = Tr([Hk] ;1" 0 Fr. (R(120)+Qp)Q)
d

= (d —2i) Tr(Fr, Spry ™[ pilQ)
i=0

1 (dY
~ (logq)" <E>

Proof The first equality is an application of Proposition 11.8 to the case S = Hermyy,

M =Lagr,,;, C; = HkI{agr and ¢; = [Hk]{agrm]. The second equality follows from

Proposition 11.7. The third ‘one is a direct calculation. U

(qu Tr(Fr, IC:}“ (q_zs) Q)) .

s=0

Combining Corollary 11.9 with Corollary 11.3 we get:

Corollary 11.10 Let (£, a) € Ay (k) with image (Q, hg) € Hermyy (k). Then we have

destzt@n = o0 (&)
O oy \as

11.4 Symmetry

_ (e mEn Kl 0).

This subsection is not used in the proof of the main theorem. The graded perverse
sheaf ICfim(T) has a palindromic symmetry that we spell out. First, the étale double
covering v : X" — X gives a local system nx/,x on X with monodromy in £1. It
induces a local system 74 on X; with monodromy in =£1: its stalk at a divisor xj +
ot xg€ Xg(k) is ®;1:1(77X//X)xi' Let

Herm .__ Herm=
=524

Ma Nd s

where s?derm : Hermpy; — X, is the support map. This is a rank-one local system on
Hermy; with monodromy in £1.
Lemma 11.11 We have a canonical isomorphism of perverse sheaves on Hermp:

Herm ~ _Herm

Spr2d [pal = ULy

Proof By Proposition 4.5(2), Sprgjrm[pd] is the middle extension of its restriction to
the open dense substack Hermj; (preimage of X ). The same is true for n, because it
is a local system and Hermy, is smooth. Therefore it suffices to check their equality
over Herm3;, over which both are obtained by pushing out the W-torsor (X rdyo _y
X5 along the character xq : Wy — {£1}. g

Lemma 11.12 There is an isomorphism of graded perverse sheaves on Hermpy

Td’CLm(T_l) o~ nIZLIj,rm ® szm(T).
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Proof The equality amounts to

Herm ~ . Herm Herm

Spryg led—il Enyg T @ Spryg Leil.

Both sides are middle extensions from Herm5,; by Proposition 4.5(2), over which
they correspond to representations pgy—; and x4 ® p; of W,. By definition,

~ W,
Xd ® pi = Xd ® IndW,.{X Wa_i (O X1).
Inserting xq|w,xw,_; = xi X xq—; to the right side above gives

Indyy?  Otalwowy; ® Oa B D) ZIndy? - (18 xg—) = pa—i.

Lemma 11.13 If (Q, hg) € Hermy, (k) is the image of some (€,a) € Aq(k), then
Tr(Fr, ngderm@) =1.

Proof 1If X'/ X is split, then n?jrm is trivial, and there is nothing to prove. Below we
assume X’/ X is nonsplit. The local system 1y on X is pulled back from a local sys-
tem npjc on Picy via the Abel-Jacobi map AJ; : Xy — Picgl{ C Picyx. The Frobenius
trace function of 7pj. is the idele class character

N r s FX\AY/OX = Picy (k) — {£1)

trivial on the image of Nmy.,x : Picy'(k) — Picx (k). Denote by detx (Q) the im-

Alg .
age of Q under Hermpy — Xy = Plcgl(. We have n?jrm@ = Npicldety (Q) as Fr-

modules. Now (Q, hg) comes from (€, a), which implies
dety (Q) =Nmy/, x(det) ' @ w¥".

By [27, p.291, Theorem 13], wy is a square in Picy(k), hence nF//F(a)g") =
1. Since np/p(Nmy/, x(detf)) = 1, we see that np, p(detx(Q)) = 1, hence
Tr(Fr, nbe™| o) = 1. O

Corollary 11.14 Let (€,a) € Ay(k) with image (Q,hg) € Hermyy(k). Then s —
g Tr(Fr, Kilm(q_zs )Q) is an even function in s. In particular, its odd order deriva-
tives at s = 0 vanish.

By Corollary 11.10, this implies deg[Z¢(a)] = 0 for r odd. However, we know
from Lemma 6.7 that Sht;,(n) = & when r is odd, which implies Z¢ (a) = @.

Part 3. The comparison
12 Matching of sheaves
12.1 Recap

Let

E,(m(E). 5, ®) = Eq(m(E), 5, ®) - x(det(£)) " glee@ =Dtz dea(wn) . gz (5
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=Den(g~ >, (£, a)) (12.1)

where the notation is as in Theorem 2.8, being a renormalization of the a™ Fourier
coefficient of E,(m(E), s, P).

We emphasize that, in keeping with §1.3, X is proper and v: X’ — X is a finite
étale double cover (possibly trivial).

Theorem 12.1 Keep the notations above. Let (€, a) € Agy(k). Then we have

. 1 d\"
sl = ()

s=0 (quga m(&), s, CD)) . (12.2)

In the previous parts, we have found sheaves on .A4; which correspond to the two
sides of (12.2), in the sense of the function-sheaf dictionary. Let us summarize the
situation.

On the analytic side, we proved a formula expressing the non-singular Fourier
coefficient of the Siegel-Eisenstein series in terms of the Frobenius trace of a graded
virtual perverse sheaf K5(7) on Hermyq (X'/ X).

Theorem 12.2 (Combination of Theorems 2.8 and 5.3) Let (£, a) € Ay(k). Then we
have

E, (m(E), s, ®) = Tr(Fr, KE(¢72) ). (12.3)

On the geometric side, in Corollary 11.10, we found a formula expressing the de-
gree of the special O-cycle in terms of ™ derivative of the Frobenius trace of another
graded perverse sheaf ICg“(T) on Hermy, (X' / X), repeated below:

L (Y
deelZe@1= g gy (ds)

12.2 Proof of the main theorem

. (q‘“‘ Tr(Fr, lcj,m(q*%‘)g)) : (12.4)

5=

Comparing (12.3) and (12.4), we see that in order to prove Theorem 12.1, it remains
to match the graded sheaves ICfim(T) and ICEIS(T) on Hermyy (X'/ X).

Proposition 12.3 We have leim(T) = ICsiS(T) as graded perverse sheaves on
Hermyy (X'/ X).

Proof Both sides can be written as Sprg‘;rm[p] for some graded virtual representation

p of W,. By definition (Definition 11.6), the sheaf lejm(T) corresponds to
d
P (T) = D Indy (G RDT
i=0

We calculate the (a priori virtual) representation of W; which corresponds under
. <~ —
Springer theory to the ICE‘S(T) from Definition 5.2. The operation R f ;R f}
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corresponds under Springer theory to Ind%_iX s, and Pg4_;(T) corresponds to
—i ; Wa_i ; "
Z?ZB(—D/ Indedo_i_j(sgnj X1)T/ (cf. Definition 4.7 for HSpr,). Hence

ICdEiS(T) corresponds to

d d—i

W o
> Indyd o | Y (=1 Indyy, o (sen; Rlg—— ) KT
i=0 j=0

After re-indexing, we have

d

i
W o .
pyces(T) = DY =1y Indg? vy, ,(1K5gA; MDT".
i=0 j=0

The desired statement then follows from the Lemma below (whose notation has been
re-indexed) by comparing each coefficient. 0

Lemma 12.4 We have the identity of virtual representations of Wy:

d
xa=Y (-1 Ind* _, (185gm,)).
j=0

Proof We will prove this by comparing traces of an arbitrary element g € W,. For
g € Wa,

Wa — _ — "
Tr(g, Indg! . (1 x 5g0))) = . /(; i )sgnj(g ). (12.5)
weWg d—j X W;j
w’lgweSd,ijj

Here, when w™!gw € S4_; x W;, we write w™'gw = (g, g") for g’ € S4_; and
g” S Wj.

Identify W, with the group of permutations of {1, ..., +d} that commute with
the involution o exchanging j <> —j for all 1 < j < d. The subgroup S;—; x W;
is the stabilizer of {1,2,...,d — j}. Therefore the coset space Wy/(Sq—; x W;)
is in natural bijection with subsets J C {%1,...,£d} such that |J| =d — j and
JN(=J)=a. Let J; be the set of J C {*1,...,+d} such that |J|=d — j, J N
(—=J) = and gJ = J.Let g’; be the permutation of g on {£1, ..., £d}\(JU(=J)).
Combining this with (12.5), we obtain

d
(=1 Tr(g, Indg? (1 x 5@ =y (—1)*VIsgace)).
j=0 JeJg

For any g € Wy, the cycle decomposition of g can be grouped into a decomposi-
tion g = g1 ... g, (unique up to reordering) where g; is one of the two forms:
e (positive bicycle) g; is a product of two disjoint cycles c;o (c;) (in particular, no
two elements appearing in ¢; are negatives of each other).
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e (negative cycle) g; is a single cycle invariant under the involution o-.

Let C; be the set of cycles of g that are part of a positive bicycle (i.e., C; contains
both ¢; and o (c;) for each positive bicycle g;). For any x € W; we denote by x C
{£1, ..., £d} the set of elements that are not fixed by x. For a cycle ¢ we let |c| be
its length. From this description we see that J € J, if and only if J is a union of ¢
for a subset of cycles c € C ;r . In other words, consider the set J, of subsets I C Cg+

such that [ is disjoint from o (1). Then we have a bijection Jg S Jg sending I € T,
to J :=Ucerc.

For I € Jg, let g} be the product of g; such that g; contains a cycle in common
with I; let g7 be the product of the remaining g;’s. The above discussion allows us to
rewrite

d

. et lel
E (=1)/ Tr(g,Ind?;"_jXWj(l X sgnj)) = E (—1)7e<C% sgn(g;/).
Jj=0 IeJ,

This sum factorizes as a product over the g; with individual factors as follows:

e For a positive bicycle g; = cjo(¢c;), the local factor is the sum of three contri-
butions, corresponding to whether ¢; € I, o(c;) € I or neither ¢; nor o(c;) is in
1. The first two cases each contribute 1. The last case leads to a contribution of
(—1)leil sgn(c;) = —1. The total contribution of the factor corresponding to a pos-
itive bicycle g; is therefore 1 +1 4 (—1) = 1.

e For each negative cycle g;, since it always appears in g7, its contribution is
(—1)!2i1/25gn(g;). Let g; be the image of g; in Sy, which is a cycle of length |g;|/2.
Then (—1)|gi‘/2sg_n(g,') = (=D&l sgn(g;) = —1. Therefore the contribution of the
factor corresponding to a negative cycle g; is —1.

Summarizing, we have found
d
) - L
> (=1 Tr(g. Indg? .y, (15g0))) = [T t|{ [] v]- aze
j=0 ' gi positive gi negative
On the other hand, we have

1, gi 18 positive;
Xd(gi) =

—1, g is negative.

Indeed, if g; = c;o (c;) is positive, then we have x,(c;) = x4(o (c;)) = 1 because both
¢; and o (c;) can be conjugated into Sy. If g; is negative, then up to conjugacy we may

assume g; is the cyclic permutation (1,2, ...,m,—1,..., —m) for some 1 <m <d.
Then g; = (1,—-1)(1,2,...,m)(—1,-2,..., —m), from which we see x4(g;) = —1.

We conclude that the right side of (12.6) is [ | x4(gi) = xa(g)- This completes the
proof. U
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12.3 Thesplitcase X' =X [[ X

We make our result more explicit in the split case X' = X | [ X.

On the analytic side in §2.1, the group H,, = GL, r and P, is the standard
parabolic corresponding to the partition (7, n), with Levi M,, >~ GL,, r x GL, r. We
then have the degenerate principal series

Hy (A s+n/2 —s—n/2
L(s) =TIndp 0 (- [ x |77, seC.

Let £ = (&1, &) € Buny, (k) ~ Bungt,, (k) x Bung,, (k), and leta : &1 — Szv be an
injective map of Ox-modules. Then by §2.6 the Siegel-Eisenstein series has a well-
defined a™ Fourier coefficient E,(m(E), s, ®) at (£, E»). By Theorem 2.8 and 5.1
we have

E,(m(€),s, ®) = 6]7(deg(5‘Hdeg(&))(“"/z)*%”2deg‘”xfn(s)*l Den(qg ™%, & /&),

where %, (s) =[]/, ¢ (i + 2s) and, for a torsion Ox-module Q, the density poly-
nomial is given by

Den(T, Q)= » 7TUmDtdmQn T m, (1,(Ty/1)); THEW),
0cZicT,cQ velX|
Here see (2.2) for m,(t,; T). The normalized Fourier coefficient (12.1) is
E,(m(E), s, ®) =Den(qg >, & /&)).
Next we come to the geometric side. We have a natural partition
xy= 1] x"
we{£1)r
The moduli of hermitian shtukas Sht;, ) defined in §6 is then partitioned into
_ Iz
Shtyey =[] Shtf,.
ne{xl}r
and there is a natural isomorphism

B Qi
Shtf ) = Shtfy, .

Here we recall that ShtéLn is the moduli of shtukas for GL,,, cf. [28], whose S-points

are given by the groupoid of the following data:

1) xie XS fori=1,...,r.

(2) Fo,...,Fn € Bungr, (S).

(3) Anelementary modification f; : F;_1 --» J; at the graph of x;, which is of upper
of length 1 if u; = +1 and of lower of length 1 if u; = —1.

(4) Anisomorphism ¢: F,. =T F.

In particular, Shtg, is empty unless > ;_; u; =0.
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For the special cycle Z¢ (cf. Definition 7.1) associated to £ = (€1, £2) above, we
have a partition

ze= |] z¢.
pe{E1}”

where an object in Z g (S) is an object as above in ShtéLn (S) together with maps

RURSC
EROs— F =& KOs, i=1,...,r, (12.7)

such that the diagram commutes

51&05 — 51&05 _ ..., —— 51‘203 —— T(&&Og)
e [ e
Fo ----- LCRNNENYY NS £ N SR LRI S SN

Leta : £ — & be amap of Ox-modules. Then Zg (a) is the open-closed subscheme
of Zg such that the common composition (12.7) is equal to a X Idpy.

For an injective a : £; — &), our §7 shows that Z"é (a) is proper over Spec k and
defines a class [Zg (a)] € Cho(Zg (a)) for each p € {£1}". Then our main Theorem
asserts

12 _ 1 i ' ds T
Z deg[Zg(a)]—i(logq)r (ds) s=0(q Ea(m(é'),s,QD)),

uel£l)y

where d = —(x (X, &1) + x (X, &)). We remark that deg[Zg(a)] is not independent
of u € {£1}", even if we restrict our attention to those w with Y 7, u; =0.
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