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Abstract
We construct special cycles on the moduli stack of hermitian shtukas. We prove an
identity between (1) the r th central derivative of non-singular Fourier coefficients of
a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual
dimension 0” on the moduli stack of hermitian shtukas with r legs. This may be
viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the
additional feature of encompassing all higher derivatives of the Eisenstein series.
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1 Introduction

The classical Siegel–Weil formula ([22, 26]) relates the special values of Siegel–
Eisenstein series on the symplectic group (resp. the unitary group) to theta functions,
which are generating series of representation numbers of quadratic (resp. Hermitian)
forms over number fields. In particular, by exploiting the factorization of the non-
singular Fourier coefficients into a product of local terms, one arrives at Siegel’s
formula for representation numbers of global quadratic or Hermitian forms in terms
of local representation densities.

In [11] Kudla began to study an arithmetic version of the Siegel–Weil formula
and he discovered a relation between an “arithmetic theta function” — a generating
series of arithmetic cycles on an integral model of a Shimura curve—and the first
central derivative of a Siegel–Eisenstein series on Sp4. In a series of papers, Kudla
and Rapoport developed this paradigm by defining the non-singular terms of a gen-
erating series of special cycles on suitable integral models of Shimura varieties for
SO(n − 1, 2) with n ≤ 4 and for all U(n − 1, 1). Of particular relevance to our paper,
in [12, 13] Kudla and Rapoport defined the sought-after special cycles on integral
models of unitary Shimura varieties, now known as Kudla–Rapoport cycles, and con-
jectured a relationship to the non-singular Fourier coefficients of the central derivative
of the Siegel–Eisenstein series. Their conjecture has been recently proved by Li and
one of us [18]; we also refer to the introduction of [18] for a more detailed account
of recent advances in some other related directions (see also [19] for the orthogo-
nal analog). With the Kudla–Rapoport conjecture proved in [18] and its archimedean
counterpart proved by Liu [20] and independently by Garcia and Sankaran [6] as
some of the key ingredients, Li and Liu [16, 17] have recently proved an arithmetic
Rallis inner product formula relating the height pairing of the generating series to the
first derivative of L-functions for unitary groups, from which they deduced cases of
Beilinson–Bloch conjecture for certain high rank motives.

In this paper we study a function field analogue of the arithmetic Siegel–Weil
formula, for unitary groups. In particular, we will construct special cycles on the
moduli space of hermitian shtukas with arbitrary number of legs. Then we formulate
and prove the analogue of the Kudla-Rapoport conjecture for derivatives of arbitrary
order at the center of the Siegel–Eisenstein series, relating the non-singular Fourier
coefficients of such higher derivatives to the degrees of special cycles. We remark
that the proofs here follow a completely different strategy than in [18].
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In the sequel [4], we will construct the complete generating series of special cycles
(including singular terms) and give evidence for their modularity.

1.1 Statement of main result

To formulate the result, let X be a smooth, proper and geometrically connected curve
over k = Fq of characteristic p �= 2, and ν : X′ → X be an étale double cover, with
the non-trivial automorphism denoted σ ∈ Aut(X′/X). Let F be the function field of
X and let F ′ be the ring of rational functions on X′ (we allow X′ = X

∐
X). In §6

we recall the definition of the moduli stack ShtrU(n) parametrizing rank n “Hermitian
shtukas” with r legs. Roughly speaking it classifies chains of vector bundles with
Hermitian structures

F0 ���F1 ��� · · · ���Fr
∼= τF0 (1.1)

related by elementary modifications. It admits a fibration ShtrU(n) → (X′)r , and will
play the role of Shimura varieties in the function field context.

1.1.1 Special cycles

Drawing inspiration from the construction of Kudla-Rapoport cycles on unitary
Shimura varieties [13], we introduce in §7 certain stacks Zr

E (a) over ShtrU(n) in-

dexed by E , a vector bundle of rank m with 1 ≤ m ≤ n on X′, and a Hermitian map1

a : E → σ ∗E∨ where E∨ := Hom(E,ωX′) is the Serre dual of E . They classify Hermi-
tian shtukas as in (1.1) together with compatible maps E →Fi such that a is induced
from the Hermitian form on F0.

If E is a line bundle on X′, Zr
E (a) is an analogue of Kudla-Rapoport divisors

although they have dimension r less than ShtrU(n). In general, Zr
E (a) are analogs of

special cycles for function fields.
We will be particularly interested in the case m = n and a : E → σ ∗E∨ is injec-

tive (by this we shall always mean as a map of coherent sheaves). In this case, the
“virtual dimension” of Zr

E (a) is 0. However, as is already seen in the number field
context [13], the literal dimension of Zr

E (a) is often significantly larger; this problem
is exacerbated as r increases. Nevertheless, under the assumption that a : E → σ ∗E∨
is injective (as a map of coherent sheaves), we are able to construct an appropriate
“virtual fundamental cycle” [Zr

E (a)] ∈ Ch0(Zr
E (a))Q. Interestingly, it turns out that

there are some new difficulties present in this construction that do not appear in the
Shimura variety setting. For a injective, it turns out that Zr

E (a) is proper over Fq , so
that [Zr

E (a)] has a well-defined degree deg[Zr
E (a)] ∈ Q.

1.1.2 The main result

Let E(g, s,�) be the Siegel–Eisenstein series for the standard split F ′/F -skew-
Hermitian space of dimension 2n, with respect to the unramified standard section �.
For a rank n vector bundle E on X′ as above, E(g, s,�) admits a Fourier expansion

1A map of vector bundles of the form a : E → σ∗E∨ is Hermitian if σ∗a∨ = a.
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with respect to E indexed by Hermitian maps a : E → σ ∗E∨. We let Ẽa(m(E), s,�)

be the ath Fourier coefficient multiplied by certain normalization factors, explained
precisely in (12.1).

In our normalization, s = 0 is the center of the functional equation for Ẽa(m(E),

s,�). Our main theorem relates the Taylor expansion at this central point to the de-
grees of special cycle classes.

Theorem 1.1 Let n ≥ 1 and r ≥ 0. Let E be a rank n vector bundle on X′ and a : E →
σ ∗E∨ be an injective Hermitian map. Then we have

1

(log q)r

(
d

ds

)r ∣
∣
∣
s=0

(
qdsẼa(m(E), s,�)

)
= deg[Zr

E (a)], (1.2)

where d = −deg(E) + n degωX = −χ(X′,E).

1.1.3 Initial comments on the proof

We stress that (1.2) holds for all r , regardless of the order of vanishing of
Ẽa(m(E), s,�) at s = 0. This is a distinguishing novelty of Theorem 1.1 compared to
all other works on the Seigel-Weil or arithmetic Siegel-Weil formula. The first results
of this nature, giving motivic interpretations of Taylor coefficients of automorphic
L-functions even “beyond the leading term”, were proved in [28, 29] for PGL2. Our
results here are the first higher derivative formulas to be proved for groups of arbi-
trary rank. Our proof shares some common ingredients with these earlier works, but
also has a number of interesting new ones. For example, a key discovery for us was
a connection between the Fourier coefficients of Siegel–Eisenstein series and certain
perverse sheaves arising from Springer theory. Another key realization was that the
special cycles are governed by certain variants of the Hitchin fibration, whose ge-
ometry can also be described in terms of Springer theory. In particular, the geometry
behind Theorem 1.1 is much more complicated than that in [28, 29] as soon as n > 2.
An overview of the proof will be given in §1.2.

Another feature of the proof of Theorem 1.1 is that it is completely uniform in
r , and in particular unites the “Siegel–Weil formula” and “arithmetic Siegel–Weil
formula” in the same framework. For this reason, we propose to call (1.2) a higher
Siegel–Weil formula. This formula will serve as the first step to establish a higher
order derivative version of the aforementioned recent work of Li and Liu [16, 17] over
function fields, which would give a geometric interpretation of higher derivatives of
Langlands L-functions.

Remark 1.2 When r = 0, the coarse moduli space of ShtrU(n) is just the discrete set
of points which form the domain of everywhere unramified automorphic forms for
U(n). In that case, Theorem 1.1 specializes to (the non-singular Fourier coefficients
of) the classical Siegel–Weil formula, which can be found in [26].

One should imagine that when r = 1, ShtrU(n) → X′ is analogous to (the integral
model of) a unitary Shimura variety. Now, under the technical assumptions of the
present paper (namely the everywhere unramifiedness assumptions) this space is al-
ways empty, corresponding to the fact that the sign of the functional equation for
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the Siegel–Eisenstein series is +1 (so that all odd order derivatives vanish). How-
ever, with a mild modification of the setup, the same methods may be used to prove
variants of Theorem 1.1 in which the sign of the functional equation is −1. More
precisely, in this paper we consider rank n vector bundles on X′ with a Hermitian
pairing valued in the canonical bundle ωX′ ∼= ν∗ωX; if we replace ωX here by a line
bundle on X which is not a norm from X′, then the sign of the functional equation is
−1 when n is odd. The precise formulation is in [4, §9]. We mention also the work
[25] over function fields, which should be thought of as being similar to the special
case of Theorem 1.1 for r = 1 and n = 1.

When r > 1, no analogue of the spaces ShtrU(n) is presently known in the number
field setting. Consequently, we do not know how to formulate an analogue of the
main result for number fields.

1.1.4 Construction of virtual fundamental cycles

For a vector bundle E of rank m on X′ and a Hermitian map a : E → σ ∗E∨, the
dimension of Zr

E (a) differs from its “virtual dimension”, which is r(n − m). The
situation gets worse if a is singular (i.e., not injective, in analogy to the terminology
of [13]). For example, when a = 0, Zr

E (0) contains ShtrU(n) as a substack. It is a
nontrivial task to define a cycle class [Zr

E (a)] in the expected dimension r(n − m).
Our companion paper [4] proposes two solutions to this problem, one using clas-

sical intersection theory and the other using derived algebraic geometry. There,
we construct cycle classes [Zr

E (a)] for all E of rank ≤ n and possibly singular
a : E → σ ∗E∨. Moreover, we assemble them into generating series valued in the
Chow groups of ShtrU(n) and conjecture it to be automorphic, in analogy to known
results over number fields [2], which fall under the umbrella of the Kudla program.

In this paper, we use a more elementary method to define the 0-cycle [Zr
E (a)] in

the case m = n and a injective. First, we prove that when L is a line bundle and
a : L → σ ∗L∨ is an injective Hermitian map, Zr

L(a) has the expected dimension
(cf. Proposition 7.9 and Remark 7.10). Next, when E = ⊕n

i=1Li is a direct sum of
line bundles, the class [Zr

E (a)] ∈ Ch0(Zr
E (a))Q can be defined as (the restriction to

Zr
E (a) of) the intersection product of Zr

Li
(aii) for the diagonal entries aii of a; this is

similar to the number field case. However, compared to the number field case, a new
difficulty arises since E is not necessarily a direct sum of line bundles. We overcome
this difficulty in §7.9 by introducing the notion of a good framing for E to reduce to
the case of a sum of line bundles. A nontrivial task is to verify that the cycle class
[Zr

E (a)] is independent of the choice of the good framing, which occupies much of
the sections §8–§10.

1.2 Method of proof

To summarize, we prove Theorem 1.1 by constructing two perverse sheaves that en-
code the two sides of (1.2) in the sense of sheaf-function correspondence, and then
identifying these two perverse sheaves using a Hermitian variant of Springer theory,
which labels these perverse sheaves by representations of the appropriate Weyl group.
In this way, Theorem 1.1 is eventually unraveled into an elementary identity between
representations of the Weyl group for type B/C.
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On the geometric side, the connection between special cycles and Springer the-
ory comes via the geometry of a moduli stack that resembles the Hitchin moduli
space. On the other side, the connection between the Fourier coefficients of Siegel-
Eisenstein series and Springer theory goes through local density formulas of Cho-
Yamauchi.

Let us briefly explain the connection between the higher Siegel-Weil formula and
the Hitchin moduli stack and Hermitian Springer theory, and defer details to the later
paragraphs. The degree of the special cycle that appear on the right side of (1.2) is
essentially an intersection number of cycles on ShtrU(n). The ambient space ShtrU(n)

can itself be realized an intersection of a Hecke correspondence with the graph of
a Frobenius endomorphism. We use this to “unfold” all the intersections, and then
redo them in a different order, performing the linear intersections (i.e., those not
involving the Frobenius map) first, and leaving the Frobenius semi-linear intersection
till the last step (cf. (10.15) – (10.19)). In this process, a Hitchin-type moduli stack
Md appears naturally as we perform linear intersections (cf. (10.18)). The degree
of the special cycle [Zr

E (a)] can be expressed as a weighted counting of k-points
on the fiber of a map fd : Md → Ad (analogue of Hitchin fibration) over the point
(E, a) ∈Ad(k), where (E, a) are as in the statement of Theorem 1.1.

The cokernel Q = coker(a) is a torsion sheaf on X′ with a Hermitian structure
inherited from a. This motivates the introduction of the moduli stack Herm2d(X′/X)

that parametrizes torsion coherent sheaves on X′ of length 2d together with a Hermi-
tian structure, so that Q is a k-point of Herm2d(X′/X) (where 2d = dimk �(X′,Q)).
We show that the fiber of fd : Md → Ad over (E, a) depends only on Q = coker(a),
therefore the degree of [Zr

E (a)] depends only on the k-point Q of Herm2d(X′/X).
On the other hand, the Eisenstein series side of (1.2) can be written as a product

of local terms – representation density functions for Hermitian lattices. These den-
sity functions again only depend on the torsion sheaf Q together with its Hermitian
structure, i.e., a k-point in Herm2d(X′/X).

Therefore we reduce to proving that two quantities attached to a k-point in
Herm2d(X′/X) are equal. A key realization is that both quantities are of motivic
nature: they come by the sheaf-to-function correspondence from two (graded, vir-
tual) perverse sheaves on Herm2d(X′/X). This is where Hermitian Springer theory
enters. Classically, starting with a reductive Lie algebra g, Springer theory outputs a
perverse sheaf Sprg on g, defined as the direct image complex of the Grothendieck-
Springer resolution πg : g̃ → g, together with an action of the Weyl group W . In our
setting, Herm2d(X′/X) will play the role of g. In §4, we construct a perverse sheaf
SprHerm

2d on Herm2d(X′/X) together with an action of Wd = (Z/2Z)d
� Sd analo-

gous to the Springer sheaf. If Herm2d(X′/X) is replaced by Cohd(X), the moduli of
torsion coherent sheaves on X of length d , such a Springer sheaf was constructed by
Laumon [15]. The Springer sheaf on Cohd(X) (resp. Herm2d(X′/X)) can be viewed
as a global version of the Springer sheaf for gld (resp. o2d ). The perverse sheaves
on Herm2d(X′/X) that govern both sides of (1.2) will be constructed from direct
summands of the Hermitian Springer sheaf SprHerm

2d .
Thus, the proof of Theorem 1.1 is completed in three steps:
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(1) Construct a graded perverse sheaf on Herm2d(X′/X)

KEis
d =

d⊕

i=0

KEis
d,i

whose Frobenius trace at Q is related to the LHS of (1.2). More precisely,

Ẽa(m(E), s,�) =
d∑

i=0

Tr(FrQ, (KEis
d,i )Q)q−2is .

(2) Construct a graded perverse sheaf on Herm2d(X′/X)

KInt
d =

d⊕

i=0

KInt
d,i

whose Frobenius trace at Q is relate to the RHS of (1.2). More precisely,

deg[Zr
E (a)] =

d∑

i=0

Tr(FrQ, (KInt
d,i)Q) · (d − 2i)r . (1.3)

(3) Prove that

KEis
d

∼= KInt
d (1.4)

as graded perverse sheaves on Herm2d(X′/X).

These three steps correspond to the three parts of the paper. We elaborate on the
main ideas involved in each step.

1.2.1 Step (1)

After a standard procedure expressing the nonsingular Fourier coefficients of Eisen-
stein series in terms of local density of Hermitian lattices, we use the formula of
Cho and Yamauchi [3] for these densities (more precisely, the unitary variant de-
veloped in [18]). We also need an extension of their formula in the split case (The-
orem 2.3). The formula of Cho and Yamauchi depends only on the Hermitian tor-
sion sheaf Q = coker(a), which gives the hope that the local density, as a function
on the set of Hermitian torsion sheaves, comes from a sheaf on Herm2d(X′/X) via
Grothendieck’s sheaf-to-function dictionary. We do this by developing an analog of
Springer theory over Herm2d(X′/X) (§3-§4).

The key observation here is that the term in the Cho–Yamauchi formula resembles
the Frobenius trace function for a certain linear combination of Springer sheaves for
gld or Cohd(X), except for some signs. To match the signs exactly we consider an
analogous linear combination of Springer sheaves on Herm2d(X′/X), and we com-
pare the Frobenius actions on the cohomology of Springer fibers over Cohd(X) and
over Herm2d(X′/X), see §4.5 and §4.6.



576 T. Feng et al.

1.2.2 Step (2)

This step consists of three substeps.

• First, we define special cycles for nonsingular a (§6-§7). When E is a direct sum
of line bundles Li , we define, following Kudla and Rapoport, [Zr

E (a)] as the inter-
section of cycle classes [Zr

Li
(aii)], which, despite not being divisors in our set-

ting, always have the “expected” dimension (more precisely, codimension r in
ShtrU(n)). The definition of [Zr

E (a)] for general vector bundles E requires choosing
a “good framing” on E , i.e., an injective map from a direct sum of line bundles
E ′ = ⊕n

i=1Li ↪→ E satisfying certain conditions. In any case, the RHS of (1.2) is
an intersection number of cycles on ShtrU(n).• The well-definedness of [Zr

E (a)] is proved in the second substep (§8-§10), which
also gives a different definition of these cycle classes without any choices. The idea
is similar to the one used in [28], namely by exchanging the order of intersection,
we perform “linear intersections” first to form Hitchin-type moduli stacks (denoted
Md , making sense over any base field), and in the last step we perform a shtuka-
type construction by intersecting with the graph of Frobenius.

• In the last substep (§11) we use the Lefschetz trace formula to express the degree
of [Zr

E (a)], formulated using the Hitchin-type moduli stack Md , as the trace of
Frobenius composed with the r th power of an endomorphism C on the direct im-
age complex Rf∗Q� of the Hitchin map f : Md → Ad . Now, the “Hitchin base”
Ad has a canonical smooth map to Herm2d(X′/X), and it turns out that Rf∗Q�

together with its endomorphism C descends through this map to a perverse sheaf
KInt

d on Herm2d(X′/X) with an endomorphism C. The decomposition of KInt
d into

graded pieces KInt
d,i is according to the eigenvalues of the C-action, which are of

the form (d − 2i). Combining these facts we get (1.3).

1.2.3 Step (3)

Both KEis
d and KInt

d are linear combinations of isotypical summands of SprHerm
2d under

the action of Wd . The isomorphism (1.4) then comes from an isomorphism of two
graded virtual representations of Wd , which we verify directly.

1.3 Notation

Throughout this paper, k = Fq is a finite field of odd characteristic p. Let � �= p be

a prime. Let ψ0 : k → Q
×
� be a nontrivial character. For a stack Y over k, we write

Fr or FrY for its q-power Frobenius endomorphism. We will use Frob or Froby for
geometric Frobenius at an Fq -point y.

Let X denote a smooth curve over k. With the exception of §3 and §4, X is as-
sumed to be projective and geometrically connected. Let ωX be the line bundle of
1-forms on X.

Let F = k(X) denote the function field of X. Let |X| be the set of closed points of
X. For v ∈ |X|, let Ov be the completed local ring of X at v with fraction field Fv and
residue field kv . Let A = AF denote the ring of adèles of F , and Ô =∏v∈|X|Ov . Let
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deg(v) = [kv : k], and qv = qdeg(v) = #kv . A uniformizer of Ov is typically denoted

v . Let | · |v : F ×

v → qZ
v be the absolute value such that |
v|v = q−1

v . Let | · |F :
A

×
F → qZ be the absolute value that is | · |v on F ×

v .
Let X′ be another smooth curve over k and ν : X′ → X be a finite map of degree 2

that is generically étale. We denote by σ the non-trivial automorphism of X′ over X.
With the exception of §4.1 and §4.2, ν is assumed to be étale. We emphasize that the
case X′ = X

∐
X is allowed. Let F ′ be the ring of rational functions on X′, which is

either a quadratic extension of F or F × F . We let k′ be the ring of constants in F ′.
The notations ωX′, |X′|,F ′

v′ ,Ov′ , kv′,AF ′ , | · |v′ , | · |F ′ , qv′ and deg(v′) (for v′ ∈ |X′|)
are defined similarly as their counterparts for X. Additionally, for v ∈ |X|, we use O′

v

to denote the completion of OX′ along ν−1(v), and define F ′
v to be its total ring of

fractions.
For a vector bundle E on X′, let E∨ = Hom(E,ωX′) be its Serre dual. For a torsion

sheaf T on X′, let T ∨ = Ext1(T ,ωX′).
When X (hence X′) is projective, let BunGLn (resp. BunGL′

n
) be the moduli stack

of rank n vector bundles over X (resp. X′). Let g be the genus of X and g′ be the
arithmetic genus of X′. Note that whenever ν is étale, we have g′ = 2g − 1.

For an algebraic stack Y , Ch(Y) denotes its rationalized Chow group and
Db(Y, Q�) its bounded derived category of constructible Q�-sheaves.

Part 1. The analytic side

2 Fourier coefficients of Eisenstein series

In this section we will define the Siegel-Eisenstein series featuring into our main
theorem, and explain how to express their non-singular Fourier coefficients in terms
of local density polynomials, which will be geometrized in later sections.

2.1 Siegel–Eisenstein series

For any one-dimensional F -vector space L, let Hermn(F,L) be the F -vector space
of F ′/F -Hermitian forms h : F ′n × F ′n → L ⊗F F ′ (with respect to the involution
1⊗σ on L⊗F F ′). For any F -algebra R, Hermn(R,L) := Hermn(F,L)⊗F R is the
set of L ⊗F R′-valued R′/R-Hermitian forms on R′n, where R′ = R ⊗F F ′. When
L = F we write Hermn(F ) = Hermn(F,F ) and Hermn(R) = Hermn(F ) ⊗F R for
any F -algebra R.

Let W be the standard split F ′/F -skew-Hermitian space of dimension 2n. Let
Hn = U(W). Write A := AF for the ring of adeles of F . Let Pn(A) = Mn(A)Nn(A)

be the standard Siegel parabolic subgroup of Hn(A), where

Mn(A) =
{

m(α) =
(

α 0
0 t ᾱ−1

)

: α ∈ GLn(AF ′)

}

,

Nn(A) =
{

n(β) =
(

1n β

0 1n

)

: β ∈ Hermn(AF )

}

.
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Let η :A×
F /F × →C

× be the quadratic character associated to F ′/F by class field
theory. Fix χ : A×

F ′/F ′× → C
× a character such that χ |

A
×
F

= ηn. We may view χ

as a character on Mn(A) by χ(m(α)) = χ(det(α)) and extend it to Pn(A) trivially
on Nn(A). Define the degenerate principal series to be the unnormalized smooth
induction

In(s,χ) = IndHn(A)
Pn(A)

(χ · | · |s+n/2
F ′ ), s ∈ C.

For a standard section �(−, s) ∈ In(s,χ), define the associated Siegel–Eisenstein
series

E(g, s,�) =
∑

γ ∈Pn(F )\Hn(F )

�(γg, s), g ∈ Hn(A),

which converges for 
(s) � 0 and admits meromorphic continuation to s ∈C. Notice
that E(g, s,�) depends on the choice of χ .

Remark 2.1 In this paper, we will choose χ to be unramified everywhere. To see that
such χ exists, observe that since C× is injective (in the category of abelian groups),
it suffices to check that ηn is trivial on ker(Pic(X) → Pic(X′)). If X′/X is the triv-
ial double cover or the double cover corresponding to Fq2/Fq , then this kernel is
trivial so the result is immediate. Otherwise, the cover is geometrically non-trivial.
Since char(k) �= 2, the kernel consists of the 2-torsion line bundle whose class in
H1(X,μ2) agrees with η ∈ H 1(X, Z/2Z) under the isomorphism μ2 ∼= Z/2Z. If n is
even then there is nothing to check; if n is odd then the desired vanishing property
amounts (when char(k) �= 2) to the alternating property of the cup product pairing
H 1(XFq

, Z/2Z) × H1(XFq
, Z/2Z) → Z/2, which follows from the graded commu-

tativity of the cup product and the fact that the geometric Z2-cohomology of curves
in characteristic �= 2 is torsion-free.

As justified by Remark 2.1, we may choose χ to be everywhere unramified. Then
In(s,χ) is unramified and we fix �(−, s) ∈ In(s,χ) as the unique K = Hn(Ô)-
invariant section normalized by

�(12n, s) = 1.

Similarly we normalize �v ∈ In(s,χv) for every v ∈ |X| and we then have a factor-
ization � =⊗v∈|X| �v .

2.2 Fourier expansion

Let ωF be the generic fiber of the canonical bundle of X, and AωF
= A⊗F ωF . The

sum of the residues induces a pairing AωF
×AF → k induces a pairing

〈·, ·〉 : Hermn(A,ωF ) × Hermn(A) → k

given by 〈T ,b〉 = Res(−Tr(T b)). Composing this pairing with the fixed non-
trivial additive character ψ0 : k → C

× exhibits Hermn(A,ωF ) as the Pontryagin
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dual of Hermn(A). Moreover, it exhibits Hermn(F,ωF ) as the Pontryagin dual of
Hermn(F )\Hermn(A) = Nn(F )\Nn(A). The global residue pairing is the sum of lo-
cal residue pairings 〈·, ·〉v : Hermn(Fv,ωFv ) × Hermn(Fv) → k defined by 〈T ,b〉v =
trkv/k Resv(−Tr(T b)).

We have a Fourier expansion

E(g, s,�) =
∑

T ∈Hermn(F,ωF )

ET (g, s,�),

where

ET (g, s,�) =
∫

Nn(F )\Nn(A)

E(n(b)g, s,�)ψ0(〈T ,b〉) dn(b),

and the Haar measure dn(b) is normalized such that Nn(F )\Nn(A) has volume 1.
For any α ∈ Mn(A) we have

ET (m(α)g, s,�) = χ(det(ᾱ))−1|det(α)|−s+n/2
F ′ Et αT α(g, s,�). (2.1)

Suppose T is nonsingular, meaning that for one (equivalently, any) choice of triv-
ialization of ωF it has non-vanishing determinant, for a factorizable � =⊗v∈|X| �v

we have a factorization of the Fourier coefficient into a product (cf. [11, §4])

ET (g, s,�) = |ωX|−n2/2
F

∏

v

WT,v(gv, s,�v), (2.2)

where the local (generalized) Whittaker function is defined by

WT,v(gv, s,�v) =
∫

Nn(Fv)

�v(w−1
n n(b)gv, s)ψ0(〈T ,b〉v) dvn(b),

wn =
(

0 1n

−1n 0

)

and has analytic continuation to s ∈ C. Here the local Haar measure dvn(b) is the one

such that the volume of Nn(Ov) is 1. The factor |ωX|−n2/2
F is the ratio between the

global measure dn and the product of the local measures
∏

v dvn.
Note that for α ∈ Mn(Fv),

WT,v(m(α), s,�v) = χ(det(ᾱ))−1|det(α)|−s+n/2
F ′

v
Wt ᾱ T α,v(1, s,�v). (2.3)

We define the regular part of the Eisenstein series to be

Ereg(g, s,�) =
∑

T ∈Hermn(F,ωF )
rank T =n

ET (g, s,�). (2.4)
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2.3 Local densities for Hermitian lattices

The local density for Hermitian lattices in the non-split case has been studied in [18,
§3] following the strategy of Cho–Yamauchi [3]. Here we recall the result of [18] and
extend the results to the split case.

From now on until §2.5, let F be a non-archimedean local field of characteristic
not equal to 2 (but possibly with residue characteristic 2). Let F ′ be either an unram-
ified quadratic field extension or the split quadratic F -algebra F ′ = F × F . Denote
by OF (resp. OF ′ ) the ring of integers in F (resp. F ′). In the split case we have
OF ′ = OF ×OF . Let η = ηF ′/F : F × → {±1} be the quadratic character attached to
F ′/F by class field theory. Let 
 be a uniformizer of F , k the residue field, q = #k.

Let L,M be two Hermitian OF ′ -lattices. In the split case, the datum of a Her-
mitian OF ′ -lattice L is a pair (L1,L2) of OF -lattices together with an OF -bilinear
pairing

(·, ·) : L1 × L2 → OF

that is perfect after base change to F . We will define L∨ = (L∨
1 ,L∨

2 ) where L∨
1 =

{x ∈ L1 ⊗OF
F : (x,L2) ⊂ OF } and similarly for L∨

2 .
Let RepM,L be the scheme of integral representations of M by L, an OF -scheme

such that for any OF -algebra R,

RepM,L(R) = Herm(L ⊗OF
R,M ⊗OF

R),

where Herm denotes the set of Hermitian R-module homomorphisms. In the split
case, if we write L and M in terms of pairs (L1,L2) and (M1,M2) with their OF -
bilinear pairings, then a Hermitian module homomorphism consists of a pair of R-
linear maps φi : Li ⊗OF

R → Mi ⊗OF
R preserving the base change to R of the

OF -bilinear pairings.
The local density of integral representations of M by L is defined to be

Den(M,L) : = lim
N→+∞

# RepM,L(OF /
N)

qN ·dim(RepM,L)F
.

Note that if L,M have OF ′ -rank n,m respectively and the generic fiber (RepM,L)F �=
∅, then n ≤ m and

dim(RepM,L)F = dim Um − dim Um−n = n · (2m − n).

2.4 Cho–Yamauchi formula for local density

Definition 2.2 For a ∈ Z≥0 we define a polynomial of degree a

m(a;T ) :=
a−1∏

i=0

(1 − (η(
)q)iT ) ∈ Z[T ].
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Note that m(a;T ) depends on F ′/F .
In both the non-split and the split cases, for a finite torsion OF -module T we

define

�(T ) := length of T as an OF -module;
t (T ) := dimk(T ⊗OF

k). (2.5)

For an OF ′ -Hermitian lattice L, we define its type

t (L) := t (L∨/L)

where we view the finite torsion OF ′ -module L∨/L as an OF -module.
When F ′/F is non-split, for a finite torsion OF ′ -module T we define

�′(T ) := length of T as an OF ′ -module;
t ′(T ) := dimk′(T ⊗OF ′ k′).

Then we have

�(T ) = 2�′(T ), t (T ) = 2t ′(T ). (2.6)

When F ′ = F ×F is split, for a finite torsion OF ′ -module T we may define �′(T ) and
t ′(T ) by (2.6). Moreover, for OF ′ -Hermitian lattices L = (L1,L2) and L′ = (L′

1,L′
2)

such that L ⊂ L′ (meaning that L1 ⊂ L′
1 and L2 ⊂ L′

2), we have

�(L′/L) = �(L′
1/L1) + �(L′

2/L2)

and

t ′(L∨/L) = t (L∨
2 /L1) = t (L∨

1 /L2).

In both the split and non-split case, we define

t ′(L) = t ′(L∨/L).

We have the following analog of Cho–Yamauchi formula [3].

Theorem 2.3 Let j ≥ 0 be an integer. Let 〈1〉j be the self-dual Hermitian OF ′ -lattice
of rank j with Hermitian form given the identity matrix 1j . Let L be a Hermitian
OF ′ -lattice of rank n.

(1) We have

Den(〈1〉n+j , 〈1〉n) =
n∏

i=1

(1 − (η(
)q)−iT )

∣
∣
∣
∣
T =(η(
)q)−j

.

(2) There is a (unique) polynomial Den(T ,L) ∈ Z[T ], called (normalized) local
Siegel series of L, such that for all j ≥ 0,

Den((η(
)q)−j ,L) = Den(〈1〉n+j ,L)

Den(〈1〉n+j , 〈1〉n)
.
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(3) We have

Den(T ,L) =
∑

L⊂L′⊂L′∨⊂L∨
T 2�′(L′/L)

m(t ′(L′);T ). (2.7)

Here the sum is over OF ′ -lattices L′ (in the F ′-Hermitian space spanned by L)
containing L on which the Hermitian form is integral.

Proof The non-split case is proved in [18, Thm. 3.5.1] and here we indicate the nec-
essary change in the split case. Now suppose F ′ = F × F and hence k′ = k × k.
Let Lk = L ⊗OF

k and 〈1〉mk = 〈1〉m ⊗OF
k, which are free k′-modules with the in-

duced k′/k-Hermitian forms. In particular, 〈1〉mk is non-degenerate and the radical of
Lk = L ⊗OF

k has k′-rank equal to t ′(L) = t (L∨
1 /L1) = t (L∨

2 /L2). Let Isom〈1〉mk ,Lk

be the k-scheme of “isometric embeddings” from Lk to 〈1〉mk , i.e., injective k′-linear
maps from Lk to 〈1〉mk preserving the Hermitian forms.

Similar to the orthogonal case [3, §3.3], we have

Den(〈1〉m,L) = q−dim Rep(〈1〉m,L)F
∑

L⊂L′⊂L′∨
#(L′/L)−(m−n)# Isom〈1〉mk ,Lk

(k),

where dim Rep(〈1〉m,L)F = m2 − (m − n)2 = 2mn − n2.
It remains to show that

# Isom〈1〉mk ,Lk
(k) = qm2−(m−n)2 ·

n+a−1∏

i=0

(1 − qi−m) (2.8)

where a = t ′(L) is the k′-rank of the radical of Lk . Note that up-to-isomorphism, Lk

is determined by its rank and the rank of its radical. Let Un−a,a be a k′/k-Hermitian
space of rank n with radical of rank a. Let Vm = Um,0 be a (non-degenerate) k′/k-
Hermitian space of dimension m ≥ n. Then it is easy to see that Un−a,a � Un−a,0 ⊕
U0,a and

# IsomVm,Un−a,a (k) = # IsomVm,Un−a,0(k) · # IsomVm−(n−a),U0,a
(k). (2.9)

By (2.9) (note that # Isom〈1〉mk ,Lk
(k) = # IsomVm,Un−a,a (k)), it suffices to show (2.8) in

the two extreme cases: a = 0 and a = n.
First we consider the case a = n. Then, to give an isometric embedding from

U = U0,n = k′n to V = Um,0 = k′m is equivalent to give an injective k-linear map
φ : kn → km and then an injective k-linear map ϕ : kn → Im(φ)⊥ ⊂ km. There-
fore, denoting by Hom∗

k(kn, km) the set of injective k-linear maps φ : kn → km, we
have

# IsomVm,U0,n
(k) =# Hom∗

k(kn, km) · # Hom∗
k(kn, km−n)

=qmn

n−1∏

i=0

(1 − qi−m) · q(m−n)n

n−1∏

i=0

(1 − qi−m+n)



Higher Siegel–Weil: non-singular terms 583

=q2mn−n2
2n−1∏

i=0

(1 − qi−m).

It remains to consider the case a = 0. Then a similar argument shows

# IsomVm,Un,0(k) =# Hom∗
k(kn, km) · # Homk(k

n, km−n)

=qmn
n−1∏

i=0

(1 − qi−m) · q(m−n)n

=q2mn−n2
n−1∏

i=0

(1 − qi−m).

This completes the proof. �

Remark 2.4 By Theorem 2.3, the polynomial Den(T ,L) depends only on the induced
Hermitian form on the torsion module L∨/L. Indeed, for a Hermitian torsion mod-
ule2 Q we define Den(T ,Q) by the formula

Den(T ,Q) =
∑

Q′⊂(Q′)∨⊂Q

T 2�′(Q′)
m(t ′(Q′);T ).

Then by (2.7), we have Den(T ,L) = Den(T ,L∨/L).

Remark 2.5 In the split case, write L = (L1,L2) and L′ = (L′
1,L′

2). Then the formula
reads

Den(T ,L) =
∑

L1⊂L′
1⊂L′∨

2 ⊂L∨
2

T �(L′
1/L1)+�(L′

2/L2)
m(t (L′

2
∨
/L′

1);T ).

Remark 2.6 The local Siegel series satisfies a functional equation

Den(T ,L) = (η(
)T )�′(L∨/L) · Den

(
1

T
,L

)

.

A proof in the inert case can be found in [8, Theorem 5.3]. By Theorem, 2.3 the con-
stant term of Den(T ,L) is 1. It follows that the degree of the polynomial Den(T ,L)

is equal to �′(L∨/L). We will not use this fact in this paper. See Corollary 11.14 for
the (global) geometric analog.

2.5 Relation with local Whittaker functions

We continue to let F be a local field. Define the local L-function

Ln,F ′/F (s) :=
n∏

i=1

L(i + 2s, ηi) =
n∏

i=1

1

1 − ηi(
)q−i−2s
.

2By this we mean a torsion OF ′ -module with an OF ′/OF -Hermitian form.
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Lemma 2.7 Let L be a Hermitian OF ′ -lattice of rank n. Let T = ((xi, xj ))1≤i,j≤n be
the fundamental matrix of an OF ′ -basis {x1, . . . , xn} of L, an n×n Hermitian matrix
over F . Let θ be a generator of ωOF

so that T θ ∈ Hermn(F,ωF ). Then

WT θ(1, s,�) = Ln,F ′/F (s)−1 Den(q−2s ,L).

Here � is the local unramified section normalized by �(12n, s) = 1.

Proof Note that by Theorem 2.3

Ln,F ′/F (j) = Den(〈1〉n+2j , 〈1〉n)−1.

It is known that WT θ(1, s,�) is a rational function in qs . Therefore the formula is
equivalent to

WT θ(1, j,�) = Den(〈1〉n+2j ,L).

for all integer j ≥ 0. In the non-split case this is essentially [13, Prop. 10.1] (cf. [18,
§3.3]), which can be easily modified to the split case. We note that WT θ is the same
as WT in loc. cit.. �

2.6 Fourier coefficients revisited

Now we return to the global situation. We need the following global L-function to
normalize the Eisenstein series

Ln(s) =
n∏

i=1

L(i + 2s, ηi).

We now consider the restriction of the regular part Ereg(·, s,�) (as a function
in g ∈ Hn(A), cf. (2.4)) to the Levi subgroup Mn(A). Since the restriction is left
Mn(F)-invariant and right K-invariant, it descends to a function on

Mn(F)\Mn(A)/Mn(Ô) � BunMn(k) � BunGL′
n
(k),

via the canonical identifications. From now on we will freely switch between g =
m(α) ∈ Mn(A) and the corresponding element E ∈ BunGL′

n
(k) and we will write

Ereg(m(E), s,�) = Ereg(m(α), s,�).

Note that the absolute value on A
×
F ′ is normalized such that |det(α)|F ′ = qdeg(E). By

abuse of notation we also view χ as a function on BunGL′
1
(k).

Recall that E∨ = HomOX′ (E,ωX′) denotes the Serre dual of E . Consider a rational
Hermitian map a : E ��� σ ∗E∨ (i.e., a is a map defined over the generic point of
X′, such that σ ∗a = a). Given a pair (E, a) as above, we shall define the Fourier
coefficient

Ea(m(E), s,�)
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as follows. For any generic trivialization τ : EF ′
∼→ (F ′)n, the pair (E, τ ) gives a point

α = α(E, τ ) ∈ Mn(A)/Mn(Ô) such that E is glued from (F ′)n and the lattices αvOn
F ′

v
.

Under τ , the restriction of a at the generic point gives an ωF -valued Hermitian form
on (F ′)n which we denote by T = T (a, τ ). Then we define

Ea(m(E), s,�) := ET (a,τ)(m(α(E, τ )), s,�). (2.10)

If we change τ to γ τ for some γ ∈ Mn(F) = GLn(F ′), then α(E, γ τ ) = γ α(E, τ )

and T (a, γ τ) = t γ −1T (a, τ )γ −1. By (2.1), we have

ET (a,γ τ)(m(α(E, γ τ )), s,�) = ET (a,τ)(m(α(E, τ )), s,�)

for all γ ∈ Mn(F). Therefore Ea(m(E), s,�) is well-defined.
Now suppose a : E ↪→ σ ∗E∨ is an injective Hermitian map. Let (Ev, a) denote

the Hermitian O′
v-lattice (valued in ωOFv

:= ωX ⊗OX
OFv ) induced by a at v ∈ |X|.

Choosing a generator of the free OFv -module ωOFv
of rank one, we obtain a Hermi-

tian lattice Ev (valued in OFv ) and hence the density polynomial Den(T ,Ev) defined
by (2.7) relative to F ′

v/Fv . We define the density polynomial for (Ev, a) as

Denv(T , (Ev, a)) := Den(T ,Ev). (2.11)

It is easy to see that the result is independent of the choice of the generator of ωOFv
.

We then define

Den(q−2s , (E, a)) =
∏

v∈|X|
Denv(q−2s

v , (Ev, a)),

Note that the degree of Den(q−2s , (E, a)) (as a polynomial of q−s ) is

deg(σ ∗E∨) − deg(E) = −2 deg(E) + 2n degωX.

Theorem 2.8 Let E be a vector bundle over X′ of rank n. Then

Ereg(m(E), s,�) =
∑

a:E↪→σ ∗E∨
Ea(m(E), s,�) (2.12)

where the sum runs over all injective Hermitian maps a : E → σ ∗E∨. Moreover, we
have

Ea(m(E), s,�)

= χ(det(E))q−deg(E)(s−n/2)− 1
2 n2 degωXLn(s)−1 Den(q−2s , (E, a)). (2.13)

Proof From the definitions it is clear that

Ereg(m(E), s,�) =
∑

a:E���σ ∗E∨
Ea(m(E), s,�)

where a runs over rational Hermitian maps E ��� σ ∗E∨ that are generically nonsin-
gular.
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Now let a : E ��� σ ∗E∨ be such a rational nonsingular Hermitian map. We con-
tinue with the convention defining (2.10)

Ea(m(E), s,�) = ET (m(α), s,�). (2.14)

By (2.2) and (2.3), and noting that the character χ is trivial on the norm of A×
F ′ , we

have

ET (m(α), s,�) = χ(det(α))|α|−s+n/2
F ′ |ωX|− 1

2 n2 ∏

v∈|X|
WTv (1, s,�v). (2.15)

If the (ωFv -valued) Hermitian form Tv does not have integral entries, then WTv (1, s,

�v) = 0 (since � is invariant under Nn(Ov)). Therefore ET (m(α), s,�) is nonzero
only when Tv is integral for all v, i.e., a is an everywhere regular Hermitian map
E ↪→ σ ∗E∨. This proves (2.12).

For such a : E ↪→ σ ∗E∨, by Lemma 2.7, the right side of (2.15) is

χ(det(α))|det(α)|−s+n/2
F ′ |ωX|− 1

2 n2 ∏

v∈|X|

1

Ln,F ′
v/Fv

(s)
Den(q−2s

v ,Ev), (2.16)

where, by choosing a generator of ωOFv
, the OF ′

v
-module Ev is endowed with the

Hermitian form (valued in OFv ) induced by the ωX-valued Hermitian form a.
By χ(det(α)) = χ(det(E)), |det(α)|F ′ = qdeg(E), and (2.11), we obtain

Den(q−2s , (E, a)) =
∏

v∈|X|
Den(q−2s

v , (Ev, av)) =
∏

v∈|X|
Den(q−2s

v ,Ev).

Combining these facts with (2.14), (2.15) and (2.16), we get (2.13). �

3 Springer theory for torsion coherent sheaves

In this section we review the construction of the Springer sheaf on the moduli stack
of torsion coherent sheaves on a curve following Laumon [15]. We also compute the
Frobenius trace function of a particular summand of the Springer sheaf called the
Steinberg sheaf.

In this section let X be any smooth (not necessarily projective or connected) curve
over k = Fq . For d ∈ N, let Xd be the d th symmetric power of X.

3.1 Local geometry of Cohd

Let Cohd = Cohd(X) be the moduli stack of torsion coherent sheaves on X of length
d . For any k-scheme S, Cohd(S) is the groupoid of coherent sheaves on X ×S whose
pushforward to S is locally free of rank d .

Let sCoh
d : Cohd → Xd be the support map. Recall that for any k-scheme S,

[gld/ GLd ](S) is the groupoid of (V ,T ) where V is a vector bundle of rank d on
S and T is an endomorphism of V . When X = A1, we have a canonical isomorphism

Cohd(A1) ∼= [gld/ GLd ]
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given as follows. For Q ∈ Cohd(A1)(S), �(A1
S,Q) is a locally free rank d OS -module

equipped with an endomorphism given by the affine coordinate t for A1, giving an
S-point of [gld/ GLd ]; conversely, given an object (V ,T ) ∈ [gld/ GLd ] we may view
V as an OS[t]-module Q (viewed as a coherent sheaf on A1

S ) with t acting as T .
Let U ⊂ Xk be open and f : U → A1

k
be an étale map. Such a pair (U,f ) is called

an étale chart for Xk . It induces a map f Coh
d : Cohd(U) → Cohd(A1

k
) sending Q to

f∗Q which is compatible with the symmetric power fd : Ud → (A1
k
)d under sCoh

d . Let

Dd,A1 ⊂ (A1
k
)d and Dd,U ⊂ Ud be the discriminant divisors, i.e., they parametrize

divisors with multiplicities. Clearly Dd,U ⊂ f −1
d (Dd,A1), therefore we may write

f −1
d (Dd,A1) = Dd,U +Rd,f as Cartier divisors on Ud .

Lemma 3.1 Let D be an effective divisor of degree d on U . Then D ∈ Ud\Rd,f if
and only if for all pairs of distinct points x, y in the support of D, f (x) �= f (y).

Proof Let πd : Ud → Ud be the quotient map by the symmetric group Sd . We
compute the divisor π−1

d (Rd,f ). Consider U ×A1
k

U . Since U is étale over A1
k
,

�(U) ⊂ U ×A1 U is open and closed, hence we can write U ×A1
k

U = �(U)
∐

R.

For geometric points x, y ∈ U , (x, y) ∈ R if and only if x �= y and f (x) = f (y).
For 1 ≤ i < j ≤ d , let pij : Ud → U × U be the projection to the ith and j th

coordinates. Let

�̃ij = p−1
ij (U ×A1 U) = �ij

∐
Rij , where �ij = p−1

ij (�(U)),Rij = p−1
ij (R).

By definition, π−1
d (Dd,A1) =∑1≤i<j≤d �̃ij , π−1

d (Dd,U ) =∑1≤i<j≤d �ij as divi-

sors on Ud . Therefore

π−1
d (Rd,f ) =

∑

1≤i<j≤d

Rij . (3.1)

From this we see, if D = x1 + x2 + · · · + xd , where xi ∈ U(k), then D /∈Rd,f if and
only if (x1, . . . , xd) /∈ π−1

d (Rd,f ). By (3.1), the latter happens if and only if for all
1 ≤ i < j ≤ d , (xi, xj ) /∈R, i.e., either xi = xj or f (xi) �= f (xj ). �

Let Cohd(U)f ⊂ Cohd(U) be the preimage of Ud\Rd,f . Then Cohd(U)f is an
open substack of Cohd(X)k = Cohd(Xk).

The following lemma shows that Cohd(X) is étale locally isomorphic to
Cohd(A1) ∼= [gld/ GLd ].

Lemma 3.2 (1) For any étale chart (U,f ) of Xk , the map f Coh
d : Cohd(U) →

Cohd(A1)k is étale when restricted to Cohd(U)f .
(2) The stack Cohd(X)k is covered by the substacks Cohd(U)f for various étale

charts (U,f ) of Xk .
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Proof (1) For any Q ∈ Cohd(U)f (k), the tangent map of f Coh
d at Q is Ext∗U (Q,Q) →

Ext∗A1(f∗Q, f∗Q). By Lemma 3.1, different points in the support of Q map to dif-

ferent points in A1, the above map is the direct sum of τz : Ext∗OU,z
(Qz,Qz) →

Ext∗OA1,f (z)
(Qz,Qz) over z ∈ supp(Q). Since f is étale at each such z, τz are iso-

morphisms, and hence f Coh
d is étale at Q by the Jacobian criterion.

(2) For every point Q ∈ Cohd(X)(k) we will construct an étale chart (U,f ) such
that Q ∈ Cohd(U)f (k). Let Z ⊂ X(k) be the support of Q. For z ∈ Z, let Oz be
the completed local ring of Xk at z with a uniformizer 
z. The map of sheaves
r : OXk

→ ⊕x∈ZOz/
 2
z is surjective. Let c : Z → k be any injective map of sets.

Then there exists an open neighborhood U1 of Z and f ∈ O(U1) such that r(f ) =
(c(z) + 
z)z∈Z . Viewing f as a map f : U1 → A1

k
, it is then étale at Z, hence étale

in an open neighborhood U ⊂ U1 of Z, i.e., (U,f ) is an étale chart. Since {f (z) =
c(z)}z∈Z are distinct points in A1

k
, we see that Q ∈ Cohd(U)

f

k
by Lemma 3.1. �

3.2 Springer theory for Cohd

Let C̃ohd(X) be the moduli stack classifying a full flag of torsion sheaves on X

0 ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂Qd = Q

where Qj has length j . Let

πCoh
d,X : C̃ohd(X) → Cohd(X)

be the forgetful map recording only Q = Qd .

Lemma 3.3 (Laumon [15, Theorem 3.3.1]) The stacks C̃ohd(X) and Cohd(X) are
smooth of dimension zero, and the map πCoh

d,X is proper and small.

Proof It is enough to check the same statements after base change to k. We give a
quick alternative proof using Lemma 3.2: for an étale chart (U,f ) (over k), we have
a diagram in which both squares are Cartesian:

C̃ohd(X)k

πCoh
d,X

C̃ohd(U)f

πCoh
d,U

C̃ohd(A1)k

πCoh
d,A1

Cohd(X)k Cohd(U)f
f Coh

d

Cohd(A1)k

Here C̃ohd(U)f is the preimage of Cohd(U)f in C̃ohd(U). Since the horizontal maps
are étale and the Cohd(U)f cover Cohd(X)k by Lemma 3.2, the desired properties of
πCoh

d,X follow from the same properties of πCoh
d,A1 , which is the Grothendieck alteration

πgld
: [g̃ld/ GLd ] → [gld/ GLd ]. �
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Let X◦
d ⊂ Xd be the open subset of multiplicity-free divisors (i.e., the complement

of Dd,X), and let Cohd(X)◦ (resp. C̃ohd(X)◦) be its preimage under sCoh
d (resp. under

sCoh
d ◦ πCoh

d ). Then C̃ohd(X)◦ → Cohd(X)◦ is an Sd -torsor.

Corollary 3.4 (Laumon [15, p.320]) The complex

Sprd := RπCoh
d,X∗Q� ∈ Db(Cohd(X), Q�)

is a perverse sheaf on Cohd(X) that is the middle extension from its restriction to
Cohd(X)◦. In particular, the natural Sd -action on Sprd |Cohd (X)◦ extends to the whole
Sprd .

3.3 Springer fibers

Let Q ∈ Cohd(X)(k) with image D in Xd(k), an effective divisor of degree d . Let
Z = (suppD)(k). Let �(Z) be the set of maps y : {1, 2, . . . , d} → Z such that∑d

i=1 y(i) = D. Let BQ be the fiber of πCoh
d over Q. Then BQ classifies complete

flags of subsheaves 0 ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂Qd−1 ⊂ Q. We write H∗(−) := H∗(−;Q�)

for �-adic cohomology (regarded as a graded Q�-vector space). By Corollary 3.4,
H∗(BQ) = (Sprd)Q carries an action of Sd .

For y ∈ �(Z), let BQ(y) be the open and closed subscheme of BQ defined by
the condition suppQi/Qi−1 = y(i). Then BQ is the disjoint union of BQ(y) for
y ∈ �(Z). Hence

H∗(BQ) ∼=
⊕

y∈�(Z)

H∗(BQ(y)).

There is an action of Sd on �(Z) by precomposing.

Lemma 3.5 The action of w ∈ Sd on H∗(BQ) sends H∗(BQ(y)) to H∗(BQ(y ◦ w−1)),
for all y ∈ �(Z).

Proof It suffices to check the statement for each simple reflection si switching i and

i + 1 (1 ≤ i ≤ d − 1). Let C̃oh
i
d (X) be the moduli stack classifying chains of torsion

coherent sheaves 0 ⊂ Q1 ⊂ · · · ⊂ Qi−1 ⊂ Qi+1 ⊂ · · · ⊂ Qd with Qi missing. Then
we have a factorization

πCoh
d : C̃ohd(X)

ρi−→ C̃oh
i

d (X)
πi−→ Cohd(X).

The map ρi is an étale double cover over the open dense locus C̃oh
i,♥
d (X) where

Qi+1/Qi−1 (which has length 2) is supported at two distinct points. The map ρi is
small by Lemma 3.3, and Rρi∗Q� carries an involution s̃i , which induces an invo-
lution s̃i on Rπi∗Rρi∗Q�

∼= Sprd . This action coincides with the action of si over
Cohd(X)◦, hence coincides with si everywhere.

Let Bi
Q = π−1

i (Q). By considering the support of the successive quotients, we

have a decomposition of Bi
Q by the orbit set �(Z)/〈si〉. When y ∈ �(Z) satisfies y �=
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y ◦si , the si -orbit η = {y, y ◦si} gives an open and closed substack Bi
Q(η) ⊂ Bi

Q, such

that ρ−1
i (Bi

Q(η)) = BQ(y)
∐

BQ(y ◦si), and Bi
Q(η) ⊂ C̃oh

i,♥
2d . Therefore in this case

the action of s̃i on H∗(ρ−1
i (Bi

Q(η))) comes from the involution on BQ(y)
∐

BQ(y ◦
si) that interchanges the two components. Since s̃i = si , this proves the statement for
si and y such that y �= y ◦ si . For y = y ◦ si the statement is vacuous. This finishes
the proof. �

Let Qx be the direct summand of Q supported at x ∈ Z. Let dx = dimk Qx . Then
for any y ∈ �(Z), there is a canonical isomorphism over k

βy : BQ(y) ∼=
∏

x∈Z

BQx
(3.2)

sending (Qi ) ∈ BQ(y) to the full flag of Qx given by taking the summands of Qi

supported at x.
The proof above implies the following statement that we record for future refer-

ence.

Lemma 3.6 Let y, y′ ∈ �(Z) and let w ∈ Sd be such that y ◦ w−1 = y′. Assume that
w has minimal length (in terms of the simple reflections s1, . . . , sd−1) among such el-
ements (such w is unique). Then the Springer action w : H∗(BQ(y)) → H∗(BQ(y′))
is induced by the composition of the canonical isomorphisms βy,y′ := β−1

y′ ◦ βy :
BQ(y)

∼→ BQ(y′). In particular, w sends the fundamental class of BQ(y) to the fun-
damental class of BQ(y′).

Proof Let w−1 = si1 · · · siN be a reduced word for w−1. Let yj = ysi1 · · · sij , 1 ≤ j ≤
N . Let y0 = y, and y′ = yN . Since w has minimal length among w′ ∈ Sd such that
y ◦ w′−1 = y′, for each 1 ≤ j ≤ N , yj−1 �= yj for otherwise one could delete sij

to shorten w. Since yj = yj−1 ◦ sij �= yj−1, the proof of Lemma 3.5 shows that the
Springer action of sij : H∗(BQ(yj−1)) → H∗(BQ(yj )) is induced by the canonical

isomorphism σj = β−1
yj

◦βyj−1 : BQ(yj−1)
∼→ BQ(yj ). The action w : H∗(BQ(y)) →

H∗(BQ(y′)), being the composition σN ◦· · ·◦σ1, is then equal to β−1
y′ ◦βy : BQ(y)

∼→
BQ(y′). �

Corollary 3.7 Let y ∈ �(Z) and Sy
∼=∏x∈Z Sdx be the stabilizer of y under Sd . There

is an isomorphism of graded Sd -representations

H∗(BQ) ∼= IndSd

Sy
H∗(BQ(y)) ∼= IndSd

Sy

(
⊗

x∈Z

H∗(BQx
)

)

.

Here on the right side, each factor Sdx of Sy acts on the tensor factor indexed by x

(for x ∈ Z) via the Springer action in Corollary 3.4 on (Sprdx
)Qx

.

Proof By Lemma 3.5, H∗(BQ(y ◦ w−1)) = wH∗(BQ(y)) for w ∈ Sd . In particular,
H∗(BQ(y)) is stable under Sy , and H∗(BQ) ∼= IndSd

Sy
H∗(BQ(y)). By (3.2) and the

Künneth formula, we have H∗(BQ(y)) ∼= ⊗x∈ZH∗(BQx
).
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It remains to check that the action of Sy on H∗(BQ(y)) (as the restriction of the
Sd -action on H∗(BQ)) is the same as the tensor product of the Springer action of Sdx

on H∗(BQx
). Since the action of Sd on �(Z) is transitive, it suffices to check this

statement for a particular y ∈ �(Z).
Order points in Z as x1, . . . , xr . Let y0 ∈ �(Z) be the unique increasing function,

i.e. such that if i < j then the index of y0(i) is less than or equal to the index of y0(j).
Let di = dxi

. Let δ = (δi)1≤i≤r be the increasing sequence δi = d1 + · · · + di . Let
Cohδ(X) be the moduli stack of partial chains of torsion coherent sheaves 0 ⊂ Qδ1 ⊂
· · · ⊂Qδr−1 ⊂ Qδr = Q such that Qδi

has length δi . The map πCoh
d then factorizes as

C̃ohd(X)
πδ−→ Cohδ(X)

νδ−→ Cohd(X).

We have a Cartesian diagram

C̃ohd(X)

πδ

c̃ ∏r
i=1 C̃ohdi

∏
πCoh

di

Cohδ(X)
c ∏r

i=1 Cohdi
(X)

(3.3)

where c sends (Qδi
) to (Qδi

/Qδi−1). By proper base change we have Rπδ∗Q�
∼=

c∗(�r
i=1 Sprdi

), and the latter carries the Springer action of Sd1 × · · · × Sdr = Sy0

(pulled back along c). Pushing forward along νδ , this induces an action of Sy0 on
Rνδ∗Rπδ∗Q� = Sprd . This action coincides with the restriction of the action of Sd

because both actions come from deck transformations over Cohd(X)◦.
Now ν−1

δ (Q) contains the point Q† ∈ Cohδ(X) where suppQδi
/Qδi−1 = {xi} for

1 ≤ i ≤ r . This is an isolated point in ν−1
δ (Q), and BQ(y0) = π−1

δ (Q†). Moreover,
the isomorphism (3.2) is the one given by taking the Cartesian diagram (3.3) and re-
stricting to Q† ∈ Cohδ(X). The above discussion shows that the action of Sy0 ⊂ Sd on
H∗(BQ(y0)) ⊂ H∗(BQ) is the same as the Springer action of

∏
i Sdi

on ⊗iH∗(BQxi
)

via the isomorphism (3.2). �

3.4 The Steinberg sheaf

Let Std ∈ Db(Cohd(X), Q�) be the direct summand of Sprd where Sd acts through
the sign representation. We will describe its Frobenius trace function below. The re-
sult is well-known but we include a self-contained proof.

We call Q ∈ Cohd(X)(k) semisimple if it is a direct sum of skyscraper sheaves at
closed points.

Proposition 3.8 (1) If Q ∈ Cohd(X)(k) is not semisimple, then the stalk of Std at Q
is zero.

(2) Let Q = ⊕v∈|X|k⊕dv
v ∈ Cohd(X)(k) be semisimple. Then the stalk of Std at Q is

1-dimensional, and the geometric Frobenius Frob acts on the stalk Std,Q by the
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scalar

ε(Q)
∏

v∈suppQ
qdv(dv−1)/2

v

where ε(Q) ∈ {±1} is the sign of Frobenius permuting the geometric points in
the support of Q counted with multiplicities (as a multi-set of cardinality d).

Proof Let Q ∈ Cohd(X)(k). Let Z ⊂ X(k) be the geometric points in the support of
Q and y ∈ �(Z). By Corollary 3.7 and Frobenius reciprocity,

Std,Q ∼= HomSd
(sgn, IndSd

Sy
(⊗H∗(BQx

))) ∼= HomSy (sgn,⊗H∗(BQx
))

∼= ⊗x∈Z HomSdx
(sgn, H∗(BQx

)) ∼= ⊗x∈Z Stdx,Qx
. (3.4)

(1) By the above factorization of Std,Q, it suffices to show that if Qx is not
semisimple, then Stdx,Qx

= 0. By Lemma 3.2 we may reduce to the case X = A1 and
Q is concentrated at x = 0. In this case Spr is the usual Springer sheaf on [gld/ GLd ],
and Q corresponds to a nilpotent element e ∈ Nd ⊂ gld (here Nd is the nilpotent
cone in gld ). It is well-known that Std |Nd

∼= δ0[−d(d −1)] where δ0 is the skyscraper
sheaf at 0 ∈ Nd . Indeed, by [1, §3.4, Corollary (b)], for any nonzero nilpotent element
e ∈ Nd , the sign representation of Sd does not appear in H∗(Be) (Be is the Springer
fiber for e). For e = 0, the sign representation of Sd only appears in the top degree
Hd(d−1)(Be), which is one-dimensional. This implies that Std |N ∼= δ0[−d(d − 1)].
In particular, Std,e = 0 for all nilpotent e �= 0.

(2) Let Q ∈ Cohd(X)(k) be semisimple. Let |Z| be the set of closed points
in the support of Q. The above discussion shows that Stdx,Qx

∼= Htop(BQx
) =

Hdx(dx−1)(Fldx ) where Fldx is the flag variety for GLdx . By (3.4), Std,Q is 1-
dimensional and is in the top degree cohomology of H∗(BQ). Let

N = dimBQ =
∑

x∈Z

dx(dx − 1)/2 =
∑

v∈|Z|
deg(v)dv(dv − 1)/2

(here dv = dx for any x|v). Let 0 �= ξ ∈ Std,Q ⊂ ⊕y∈�(Z)H2N(BQ(y)). Let Fr :
BQ → BQ be the Frobenius morphism. We need to show that Fr∗ ξ = ε(Q)qNξ .

For y ∈ �(Z), let ηy ∈ H2N(BQ(y)) be the fundamental class of BQ(y). Then
Fr sends BQ(y) onto BQ(Fr(y)) (here Fr(y) means post-composing y with the
Frobenius permutation on Z), and hence Fr∗ ηFr(y) = qNηy . On the other hand, let
w ∈ Sd be the minimal length element such that Fr(y) = y ◦w−1. By Lemma 3.6, the
Springer action of w satisfies wηy = ηFr(y). Write ξ = (ξy)y∈�(Z) where ξy = cyηy

for some cy ∈ Q
×
� . Since wξ = sgn(w)ξ , we see that wξy = sgn(w)ξFr(y). Since

wηy = ηFr(y), we have cy = sgn(w)cFr(y). Therefore

(Fr∗ ξ)y = Fr∗(ξFr(y)) = cFr(y) Fr∗ ηFr(y) = qNcFr(y)ηy = sgn(w)qNcyηy

= sgn(w)qNξy.
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Note that, for any choice of y and w above, sgn(w) is equal to the sign of the
Frobenius permutation of the multiset {y(i)}1≤i≤d , which is ε(Q). This implies
Fr∗ ξ = ε(Q)qNξ as desired. �

4 Springer theory for Hermitian torsion sheaves

In this section we extend the construction in §3 to the case of Hermitian torsion
sheaves. The main output is a perverse sheaf SprHerm

2d on the moduli stack of Her-
mitian torsion sheaves with an action of Wd := (Z/2Z)d

� Sd . We will compare the
stalks and Frobenius trace functions of SprHerm

2d with those of Sprd .
As in §3, X is a smooth curve over k (not necessarily projective or connected).

Recall from §1.3 that ν : X′ → X is a finite map of degree 2 that is assumed to
be generically étale (and X′ is smooth over k). We develop the Hermitian Springer
theory in this generality. Starting from §4.3 we will assume ν to be étale, which is
the case needed for proving the main theorem. Let σ ∈ Gal(X′/X) be the nontrivial
involution.

4.1 Local geometry of Hermd

We say that a map of torsion coherent sheaves a : Q → σ ∗Q∨ is Hermitian if σ ∗a∨ =
a. Let d ∈ N. Let

Hermd(X′/X), or simply Hermd

be the moduli stack of pairs (Q, h) where Q is a torsion coherent sheaf on X′ of
length d , and h is a Hermitian isomorphism Q ∼→ σ ∗Q∨ := σ ∗Ext1(Q,ωX′).

We offer two other ways to think about a Hermitian torsion sheaf (Q, h). For a
torsion sheaf Q on X′ of length d , the datum of a Hermitian isomorphism h : Q ∼−→
σ ∗Q∨ is equivalent to either:

(1) a symmetric k-bilinear nondegenerate pairing

(·, ·) : V × V → k

on V = �(X′,Q) satisfying (f v1, v2) = (v1, σ ∗(f )v2) for any function f on X′
regular near the support of Q, or

(2) an OX′ -sesquilinear nondegenerate pairing

〈·, ·〉 :Q×Q → ωF ′/ωX′

satisfying 〈v1, v2〉 = σ ∗〈v2, v1〉. Here ωF ′ is the constant (and quasi-coherent)
sheaf on X′ whose local sections are the rational 1-forms on X′.

For example, to pass from (2) to (1), form cohomology and apply the trace map
H0(Q) → k. To pass from h to the pairing in (1), observe that Ext1(Q,ωX′) ∼=
Hom(Q,ωF ′/ωX′) by the long exact sequence associated to ωX′ → ωF ′ → ωF ′/ωX′ .
Therefore, h is equivalent to a sesquilinear pairing Q × Q → ωF ′/ωX′ , which upon
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taking global sections and applying the residue map H0(ωF ′/ωX′) → k gives the
pairing in (1).

We refer to h, or any of the above equivalent data, as a Hermitian structure on Q.
We have the support map

sHerm
d : Hermd(X′/X) → (X′

d)σ .

Note that we have an isomorphism (X′
2d)σ ∼= Xd , sending a σ -invariant divisor on

X′ to its descent on X. so we will also allow ourselves to view the support map as
sHerm

2d : Herm2d(X′/X) → Xd .

Remark 4.1 When ν is étale and d is odd, (X′
d)σ = ∅ hence Hermd(X′/X) = ∅.

In general, when ν is ramified over the points R ⊂ X(k), (X′
d)σ has a decomposi-

tion into open and closed subschemes according to the parity of the multiplicities of
the divisor at each point x ∈ R.

Let A1√
t
→ A1

t be the square map of affine lines.

Lemma 4.2 There is a canonical isomorphism

Hermd(A1√
t
/A1

t )
∼= [od/Od ].

Here Od denotes the orthogonal group on a d-dimensional nondegenerate quadratic
space over k and od is its Lie algebra (the stack [od/Od ] is independent of the
quadratic form).

Proof We give the map Hermd(A1√
t
/A1

t ) → [od/Od ] on S-points. For an S-point

(Q, h) of Hermd(A1√
t
/A1

t ), V = �(A1
S,Q) is a locally free OS -module of rank d with

a nondegenerate symmetric self-duality (·, ·), i.e., an Od -torsor over S. Moreover the
action of

√
t on V satisfies (

√
tv1, v2) = −(v1,

√
tv2) since σ ∗√t = −√

t . Therefore√
t gives a section of the adjoint bundle of V . It is easy to check this map is an

equivalence of groupoids Hermd(A1√
t
/A1

t )(S)
∼→ [od/Od ](S). �

An σ -equivariant étale chart of X′
k

is a pair (U,f ), where U ⊂ Xk is an open

subset (with preimage U ′ ⊂ X′
k
) and a regular function f : U ′ → A1√

t,k
that is an

étale map satisfying σ ∗f = −f . Note that if ν is étale, the image of f has to lie in
A1√

t,k
\{0}.

A σ -equivariant étale chart (U,f ) of X′
k

induces a map

f Herm
d : Hermd(U ′/U) → Hermd(A1√

t
/A1

t )k

by sending Q to f∗Q. Let Hermd(U ′/U)f be the preimages of (U ′
d)σ \Rσ

d,f under

the support maps (here Rd,f ⊂ U ′
d is defined using the map f : U ′ → A1√

t,k
; see

§3.1).
We have an analog of Lemma 3.2 in the Hermitian setting.
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Lemma 4.3 (1) Let (U,f ) be a σ -equivariant étale chart for X′
k
. Then the map

f Herm
d is étale when restricted to Hermd(U ′/U)f .

(2) Assume ν is ramified at most one point (over k). Then the stack Hermd(X′/X)k

is covered by Hermd(U ′/U)f for various σ -equivariant étale charts (U,f ) of
X′

k
. In particular, Hermd(X′/X) is étale locally isomorphic to [od/Od ].

(3) In general, Hermd(X′/X) is smooth of dimension 0.

Proof (1) is similar to that of Lemma 3.2(1).
(2) We only need to construct for (Q, h) ∈ Hermd(X′/X)(k), a σ -equivariant étale

chart (U,f ) such that (Q, h) ∈ Hermd(U ′/U)f . Let Z′ be its support in X′; since the
Hermitian property of (Q, h) implies that Z′ is stable under σ , hence is the preimage
of some Z ⊂ X(k) under ν. Let L = (ν∗OX′

k
)σ=−1, a line bundle over X. Then the

map r = (rz)z∈Z : L → ⊕z∈ZLz/
 2
z is surjective. Let Z0 ⊂ Z be the points over

which ν is étale (so Z−Z0 is empty or has one point). For each z ∈ Z0, upon choosing
z′ ∈ Z′ over z, we may identify Lz with Oz = k[[
z]]; changing z′ to σ(z′) changes
the identification by a sign. If z ∈ Z − Z0, then Lz

∼= √

zk[[
z]]. Choose a map

c : Z0 → k
×

such that c(z)2 are distinct for z ∈ Z. Let f be a section of L over some
open neighborhood U1 ⊂ Xk of Z such that rz(f ) = c(z) + 
z for z ∈ Z0 under one
of the two identifications Lz

∼= Oz, and rz(f ) ≡ √

z mod 
z for z ∈ Z − Z0. Then

f restricts to an étale map U ′ = ν−1(U) → A1√
t,k

for some open neighborhood U of

Z in U1. The definition of L implies σ ∗(f ) = −f . Now {f (z′)|z′ ∈ Z′} is the union
of {c(z),−c(z)|z ∈ Z0} and possibly {0} if Z −Z0 is nonempty, which are all distinct
points in A1√

t,k
by construction. We conclude that (Q, h) ∈ Hermd(U ′/U)f .

(3) Let R ⊂ Xk be the ramification locus of ν. The case |R| ≤ 1 is treated in
(2), so we may assume |R| ≥ 2. For x ∈ R, let Yx = X\(R\{x}) and let Y ′

x =
ν−1(Yx). For any function δ : R → Z≥0 such that

∑
x∈R δ(x) = d we have a map

Yδ := ∏x∈R(Y ′
x,d(x))

σ → (X′
d)σ by adding divisors. Let Y

♥
δ ⊂ Yδ be the open

locus where the divisors indexed by different x ∈ R are disjoint. It is clear that
Y

♥
δ → (X′

d)σ is étale and for varying δ their images cover (X′
d)σ . To prove the

statement it suffices to show that the base change Hermd(X′/X)|
Y

♥
δ

is smooth of

dimension 0 for each δ. Observe that Hermd(X′/X)|
Y

♥
δ

is isomorphic to the restric-

tion of the product
∏

x∈R Hermδ(x)(Y
′
x/Yx) to Y

♥
δ . Since ν|Yx : Y ′

x → Yx is ram-
ified at one point, by (2) Hermδ(x)(Y

′
x/Yx) is smooth of dimension 0. Therefore

Hermd(X′/X)|
Y

♥
δ

∼=∏x∈R Hermδ(x)(Y
′
x/Yx)|

Y
♥
δ

is smooth of dimension 0. �

Remark 4.4 There is an obvious notion of skew-Hermitian torsion sheaves. Let
SkHmd(X′/X) be the moduli stack of skew-Hermitian torsion sheaves on (X′, σ )

of length d . Then d is even if SkHmd(X′/X) �= ∅. The skew-Hermitian analog of
Lemma 4.3 says that SkHmd(X′/X) is étale locally isomorphic to [spd/ Spd ], at
least when ν is étale.
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4.2 The Hermitian Springer sheaf

Let H̃ermd(X′/X) be the moduli stack classifying (Q, h) ∈ Hermd(X′/X) together
with a full flag

0 ⊂ Q1 ⊂ · · · ⊂Qi ⊂ · · · ⊂Qd−1 = Q⊥
1 ⊂ Qd = Q,

where Qi has length i and Qd−i = Q⊥
i (the orthogonal of Qi under the Hermitian

pairing Q×Q → ωF ′/ωX′ ). Let

πHerm
d : H̃ermd(X′/X) → Hermd(X′/X)

be the forgetful map. Let Hermd(X′/X)◦ ⊂ Hermd(X′/X) be the preimage of the
multiplicity-free part X′ ◦

d under the support map sHerm
d .

We recall the Grothendieck alteration for the full orthogonal group O(V ,Q) for
some vector space V of dimension d over k and a nondegenerate quadratic form Q on
V . Let Fl(V ,Q) be the flag variety that parametrizes full isotropic flags V• = (V1 ⊂
· · · ⊂ Vd = V ) in V . Note that when d is even, this is different from the flag variety
of SO(V ,Q) but rather a double cover of it because there are two choices for Vd/2
given the rest of members of a flag. Let o(V ,Q) be the Lie algebra of O(V ,Q). Let
õ(V ,Q) be the moduli space of pairs (A,V•) ∈ o(V ,Q) × Fl(V ,Q) such that AVi ⊂
Vi for all i. The Grothendieck alteration for O(V ,Q) is the O(V ,Q)-equivariant map
õ(V ,Q) → o(V ,Q) forgetting the flag. The quotient stacks [o(V ,Q)/O(V ,Q)] and
[̃o(V ,Q)/O(V ,Q)] are canonical; they are independent of the quadratic form Q and
only depend on d = dim V . Therefore we also write the Grothendieck alteration as
πOd

: [̃od/Od ] → [od/Od ].

Proposition 4.5 (1) If ν is ramified at most one point, then the map πHerm
d is étale

locally isomorphic to the Grothendieck alteration πOd
: [̃od/Od ] → [od/Od ].

(2) In general, H̃ermd(X′/X) is smooth of dimension 0 and πHerm
d is a small map.

In particular, the complex

SprHerm
d := RπHerm

d,∗ Q�

is the middle extension perverse sheaf of its restriction to Hermd(X′/X)◦.

Proof (1) The proof is similar to that of Corollary 3.4. For a σ -equivariant étale chart
(U,f ) for X′

k
we have a diagram with Cartesian squares and étale horizontal maps

by Lemma 4.3

H̃ermd(X′/X)k

πHerm
d,X′/X

H̃ermd(U ′/U)f

πHerm
d,U ′/U

H̃ermd(A1√
t
/A1

t )k

πHerm
d,A1√

t
/A1

t

Hermd(X′/X)k Hermd(U ′/U)f
f Herm

d

Hermd(A1√
t
/A1

t )k
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Using the isomorphism in Lemma 4.2, we identify πHerm
d,A1√

t
/A1

t

with the Grothendieck

alteration πOd
. Since Hermd(U ′/U)f cover Hermd(X′/X) by Lemma 4.3(2),

πHerm
d,X′/X

is étale locally isomorphic to πHerm
d,A1√

t
/A1

t

= πOd
.

(2) We use the notation from the proof of Lemma 4.3(3). We may assume |R| ≥ 2.
For each function δ : R → Z≥0 satisfying

∑
x∈R δ(x) = d , the base change of πHerm

d

along Y
♥
δ → (X′

d)σ is a disjoint union of the restriction of

∏

x

πHerm
δ(x) :

∏

x∈R

H̃ermδ(x)(Y
′
x/Yx) →

∏

x∈R

Hermδ(x)(Y
′
x/Yx)

to Y
♥
δ . The disjoint union comes from different ways to distribute supp(Qi/Qi−1)

among various factors in the product
∏

x(Y ′
x,δ(x))

σ . By (1), πHerm
δ(x) : H̃ermδ(x)(Y

′
x/

Yx) → Hermδ(x)(Y
′
x/Yx) has smooth 0-dimensional source and is small for each x ∈

R, the same holds true for the base change of πHerm
d to Y

♥
δ . Since {Y♥

δ }δ form an
étale covering of (X′

d)σ , the same is true for πHerm
d . �

4.3 The action of Wd

From now on we assume that ν : X′ → X is an étale double cover. In this case, (X′
2d)σ

can be identified with Xd via ν−1(D) ↔ D. Let

Wd := (Z/2Z)d
� Sd

be the Weyl group for O2d . Then πHerm
2d is a Wd -torsor over Herm2d(X′/X)◦.

Corollary 4.6 (of Proposition 4.5(1)) If ν : X′ → X is an étale double cover, then
there is a canonical action of Wd on SprHerm

2d extending the geometric action on its
restriction to Herm2d(X′/X)◦.

Definition 4.7 (1) For any representation ρ of Wd , we define SprHerm
2d [ρ] to be the

perverse sheaf on Herm2d(X′/X):

SprHerm
2d [ρ] = (ρ∨ ⊗ SprHerm

2d )Wd ∈ Db(Herm2d(X′/X), Q�).

(2) We define the Hermitian analog of the Springer sheaf Spr as

HSprd := (SprHerm
2d )(Z/2Z)d ∈ Db(Herm2d(X′/X), Q�).

Note that the notation shifts from the subscript 2d to d . By Corollary 4.6, HSprd
carries a canonical Sd -action.

Remark 4.8 In the case ν is ramified with ramification locus R ⊂ X(k), the stack
Herm2d(X′/X)k decomposes into the disjoint union of open and closed substacks
Hermε

2d(X′/X)k indexed by ε : R → {0, 1} where the length of Qx has parity ε(x)

for all x ∈ R. Then SprHerm
2d |Hermε

2d (X′/X)k
carries a canonical action of Wd ′ where

d ′ = (d −∑x∈R ε(x))/2.



598 T. Feng et al.

4.4 The Springer fibers over Herm2d

Let (Q, h) ∈ Herm2d(X′/X)(k) and consider its Hermitian Springer fiber

BHerm
Q := π

Herm,−1
2d (Q, h).

This is a proper scheme over k. In this subsection we prove the Hermitian analogs of
results in §3.3.

Let Z′ = suppQ ⊂ X′(k). Let D′ = sHerm
2d (Q) ∈ (X′

2d)σ (k), which is of the form
D′ = ν−1(D) for some D ∈ Xd(k). Let Z = ν(Z′), the support of D. Write D′ =∑

z∈Z′ dzz.
Let �(Z′) be the set of maps y′ : {1, 2, . . . , 2d} → Z′ satisfying y′(2d + 1 −

i) = σ(y′(i)) for all i and
∑2d

i=1 y′(i) = D′. Identifying Wd with permutations of
{1, 2, . . . , 2d} commuting with the involution i �→ 2d + 1 − i, we get an action of Wd

on �(Z′) by w : y′ �→ y′ ◦ w−1.
Similarly let �(Z) be the set of maps y : {1, . . . , d} → Z such that

∑d
i=1 y(i) =

D. Then the natural map �(Z′) → �(Z) (sending y′ to y defined by y(i) = ν(y′(i)))
is a (Z/2Z)d -torsor.

For y′ ∈ �(Z′), let BHerm
Q (y′) be the subscheme of BHerm

Q consisting of isotropic
flags Q• such that supp(Qi/Qi−1) = y′(i) for all 1 ≤ i ≤ 2d . Then we have a de-
composition into open and closed subschemes

BHerm
Q =

∐

y′∈�(Z′)
BHerm
Q (y′).

Accordingly we get a decomposition of cohomology

H∗(BHerm
Q ) =

⊕

y′∈�(Z′)
H∗(BHerm

Q (y′)).

Lemma 4.9 The action of w ∈ Wd on H∗(BHerm
Q ) sends the direct summand

H∗(BHerm
Q (y′)) to the direct summand H∗(BHerm

Q (y′ ◦ w−1)).

Proof It suffices to check the statement for each simple reflection si , i = 1, . . . , d .
Here, for 1 ≤ i ≤ d − 1, si = (i, i + 1)(2d − i, 2d + 1 − i); for i = d , sd = (d, d +
1). For 1 ≤ i ≤ d , let H̃erm

i

2d be the moduli stack classifying isotropic flags that
only misses the terms Qi and Q2d−i (for i = d only misses Qd ). Then we have a
factorization

πHerm
2d : H̃erm2d

ρi−→ H̃erm
i

2d

πi−→ Herm2d .

The map ρi is an étale double cover over the open dense locus H̃erm
i,♥
2d where

Qi+1/Qi−1 (which has length 2) is supported at two distinct points. The map ρi

is small, and Rρi∗Q� carries an involution s̃i , which induces an involution s̃i on
Rπi∗Rρi∗Q�

∼= RπHerm
2d∗ Q�. This action coincides with the action of si over Herm◦

2d ,
hence coincides with si everywhere.
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Let (Q, h) ∈ Herm2d(k), and Bi
Q = π−1

i (Q, h). We have a decomposition of Bi
Q

by the orbit set �(Z′)/〈si〉. When y′ ∈ �(Z′) satisfies y′ �= y′ ◦ si , the si -orbit of η′ =
{y′, y′ ◦ si} gives an open closed substack Bi

Q(η′) ⊂ Bi
Q, such that ρ−1

i (Bi
Q(η′)) =

BQ(y′)
∐

BQ(y′ ◦ si), and Bi
Q(η′) ⊂ H̃erm

i,♥
2d . Therefore in this case the action of

s̃i on H∗(ρ−1
i (Bi

Q(η′))) comes from the involution on BQ(y′)
∐

BQ(y′ ◦ si) that in-
terchanges the two components. Since s̃i = si , this proves the statement for si and
y′ such that y′ �= y′ ◦ si . For y′ = y′ ◦ si the statement is vacuous. This finishes the
proof. �

Choose Z� ⊂ Z′ such that Z�
∐

σ(Z�) = Z′. Then for each x ∈ Z there is a unique
x� ∈ Z� above x. For y′ ∈ �(Z′) with image y ∈ �(Z), we have an isomorphism

γZ�,y′ : BHerm
Q (y′) ∼→ Bν∗(Q|

Z� )(y) ∼=
∏

x∈Z

BQ
x�

(4.1)

mapping (Qi )1≤i≤2d to the (non-strictly increasing) flag (Qi,x� ) of Qx� .
If y′, y′′ ∈ �(Z′), the composition

γy′,y′′ := γ −1
Z�,y′′ ◦ γZ�,y′ : BHerm

Q (y′) ∼→ BHerm
Q (y′′)

is independent of the choice of Z�.

Lemma 4.10 Let y′, y′′ ∈ �(Z′) and let w ∈ Wd be a minimal length element such
that y′′ = y′ ◦ w−1. Then the Springer action w : H∗(BHerm

Q (y′)) → H∗(BHerm
Q (y′′))

is induced by the isomorphism γy′,y′′ .

Proof Similar to the proof of Lemma 3.6. �

4.5 Comparing stalks of HSprd and Sprd

In this subsection we abbreviate Herm2d(X′/X) by Herm2d . Consider the stack
Lagr2d classifying pairs (L ⊂ Q) where Q ∈ Herm2d and L ⊂ Q is a Lagrangian

subsheaf, i.e., L has length d and the composition L ↪→ Q h−→ σ ∗Q∨ → σ ∗L∨ is
zero. We have natural maps

Herm2d Lagr2d

υ2d ε′
d

Cohd(X′)
ν∗

Cohd(X)

where υ2d(L ⊂ Q) = Q and ε′
d(L ⊂ Q) = L. Let εd = ν∗ ◦ ε′

d : Lagr2d → Cohd(X).
Let (X′

d)♦ ⊂ X′
d be the open subscheme parametrizing D ∈ X′

d such that D ∩
σ(D) = ∅. Let Lagr♦2d ⊂ Lagr2d be the preimage of (X′

d)♦ under the map Lagr2d

ε′
d−→

Cohd(X′)
sCoh
d,X′−−→ X′

d . It is easy to see that ε′
d restricts to an isomorphism

Lagr♦2d
∼= Cohd(X′)♦

whose inverse is given by L �→ (L ⊂ Q = L⊕ σ ∗L∨).
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Let υ
♦
2d and ε

♦
d be the restrictions of υ2d and εd to Lagr♦2d . Thus we view Lagr♦2d

∼=
Cohd(X′)♦ as a correspondence between Herm2d and Cohd(X)

Herm2d Lagr♦2d

υ
♦
2d ε

♦
d

Cohd(X)

Note that both υ
♦
2d and ε

♦
d are surjective. Now both Herm2d and Cohd(X) carry

Springer sheaves HSprd and Sprd with Sd -actions. The following proposition says
that they become isomorphic after pullback to Lagr♦2d .

Proposition 4.11 There is a canonical Sd -equivariant isomorphism of perverse
sheaves on Lagr♦2d

υ
♦,∗
2d HSprd ∼= ε

♦,∗
d Sprd .

Proof The map πHerm
2d factors as

πHerm
2d : H̃erm2d

λ2d−−→ Lagr2d

υ2d−−→ Herm2d .

Let λ
♦
2d : H̃erm

♦
2d → Lagr♦2d be the restriction of λ2d to Lagr♦2d . We have a commuta-

tive diagram

Herm2d ×Xd
Xd H̃erm

♦
2d

π
Herm,♦
2d

λ
♦
2d

ε̃
′♦
d

C̃ohd(X′)♦

π
Coh,♦
X′,d

ν∗
C̃ohd(X)

πCoh
d

Herm2d Lagr♦2d

ε
♦
d

υ
♦
2d ε

′♦
d

Cohd(X′)♦
ν∗

Cohd(X)

(4.2)

Here Cohd(X′)♦ and C̃ohd(X′)♦ are the preimages of (X′
d)♦ under the support map.

We have:

• The middle square is Cartesian. This is true even before restricting to the ♦ locus.
• Since ε

′♦
d is an isomorphism, so is ε̃

′♦
d .

• The rightmost square is Cartesian.

From these properties we get maps

α : υ
♦∗
2d HSprd → υ

♦∗
2d SprHerm

2d = υ
♦∗
2d Rυ2d∗Rλ2d∗Q� → υ

♦∗
2d Rυ

♦
2d∗Rλ

♦
2d∗Q�

→ Rλ
♦
2d∗Q�

∼= ε
♦∗
d πCoh

d∗ Q� = ε
♦∗
d Sprd .

To check α is an isomorphism, it suffices to check on geometric stalks. Let L ∈
Cohd(X′)♦(k) with support Z� ⊂ X′(k). Let Q = L⊕ σ ∗L∨ ∈ Herm2d(k). The sup-
port of Q is Z′ = Z�

∐
σ(Z�), with image Z ⊂ X(k). We have (L ⊂ Q) ∈ Lagr♦2d(k),
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with image ν∗L ∈ Cohd(X)(k). The stalk of α at (L ⊂ Q) is

α(L⊂Q) : H∗(BHerm
Q )(Z/2Z)d → H∗(λ−1

2d (L ⊂ Q))
∼→ H∗(Bν∗L) (4.3)

Recall BHerm
Q =∐y′∈�(Z′) BHerm

Q (y′). Let �(Z�) ⊂ �(Z′) be the set of y′ such that

y′(i) ∈ Z� for 1 ≤ i ≤ d . Then we have a natural bijection �(Z) ↔ �(Z�), y �→ y�.
The fiber λ−1

2d (L ⊂ Q) is the disjoint union
∐

y∈�(Z) BHerm
Q (y�). Recall the isomor-

phism γZ�,y� : BHerm
Q (y�)

∼→ Bν∗L(y) from (4.1). Using these descriptions we may
rewrite (4.3) as

H∗(BHerm
Q )(Z/2Z)d � ⊕y′∈�(Z�)H

∗(BHerm
Q (y′)) ∼= ⊕y∈�(Z)H

∗(Bν∗L(y)) = H∗(Bν∗L).

It remains to show that the first map above is an isomorphism. But this follows from
the fact that (Z/2Z)d acts freely on �(Z′) with orbit representatives �(Z�), and
Lemma 4.9. This shows that α is an isomorphism.

Finally we show that α is Sd -equivariant. By Proposition 4.5, πHerm
2d and hence

λ2d is small, Rλ2d∗Q� is the middle extension from a dense open substack of Lagr2d .
Therefore the same is true for Rλ

♦
2d∗Q�. Since α is an isomorphism, both υ

♦,∗
2d HSprd

and ε
♦∗
d Sprd are middle extension perverse sheaves from a dense open substack

of Lagr♦2d . To check that α is Sd -equivariant it suffices to check it over the dense
open substack which is the preimage of the multiplicity-free locus X◦

d . Over X◦
d , all

squares in (4.2) are Cartesian, and all vertical maps are Sd -torsors. The Sd -actions on
HSprd |Herm◦

2d
and Sprd |Cohd (X)◦ come from the vertical Sd -torsors in the diagram, so

α is Sd -equivariant when restricted over X◦
d . This finishes the proof. �

4.6 Comparing Frobenius traces of HSprd and Sprd

In this subsection we will prove a relationship between Frobenius trace functions for
HSprd and for Sprd . Since these sheaves live on different stacks, to make sense of the
comparison we first need to identify the isomorphism classes of the k-points of these
stacks.

For a groupoid G, let |G| denote its set of isomorphism classes.

Lemma 4.12 There is a canonical bijection of sets

|Herm2d(X′/X)(k)| ∼= |Cohd(X)(k)|
respecting the support maps to Xd(k).

Proof Let P(d) be the set of partitions of d ∈ Z≥0, and P =∐d≥0 P(d). Let P|X|
be the set of functions λ : |X| → P such that λ(v) is the zero partition for almost all
v ∈ |X|. For λ ∈ P|X|, let |λ| =∑v |λ(v)|deg(v). Let P|X|(d) be the subset of those
λ ∈ P|X| with |λ| = d . Let sd : P|X|(d) → Xd(k) be the map sending λ to the divisor∑

v |λ(v)|v.
By taking the Jordan type of a torsion sheaf at each closed point, we get a canonical

bijection �Coh
d : |Cohd(X)(k)| ∼→ P|X|(d). The map sCoh

d : |Cohd(X)(k)| → Xd(k)

corresponds to sd under this bijection.
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We define a map �Herm
d : |Herm2d(X′/X)(k)| →P|X|(d) as follows. For (Q, h) ∈

Herm2d(X′/X)(k) and v ∈ |X|, let λ(v) be the Jordan type of Qv′ (the summand Qv′
supported at v′) for any v′ ∈ |X′| above v. When v is split in X′, the two choices of v′
give the same Jordan type. The support map sHerm

2d : |Herm2d(X′/X)(k)| → Xd(k) is
the composition sd ◦ �Herm

d .

We claim that �Herm
d is a bijection. Then �

Coh,−1
d ◦ �Herm

d : |Herm2d(X′/
X)(k)| ∼→ |Cohd(X)(k)| is the desired bijection.

To prove the claim, since any torsion coherent sheaf splits as a direct sum over the
finitely many points in its support, it suffices to fix a closed point v ∈ |X| and show
that the set of isomorphism classes |Hermv | of Hermitian torsion sheaves supported
above v maps bijectively (by the restriction of �Herm

d ) to P which are supported at v.
If v splits into v′ and v′′ in |X′|, then any (Q, h) ∈ |Hermv | has the form Qv′ ⊕

σ ∗Qv′ equipped with the canonical Hermitian structure. In this case we see that the
isomorphism class of (Q, h) is determined by the Jordan type of Qv′ , and conversely
each Jordan type arises from some (Q, h).

If v is inert with preimage v′ ∈ |X′|, let (Q, h) ∈ |Hermv | be of length d over
kv′ . Then V = �(X′,Q) is a d-dimensional Hermitian kv′ -vector space with a self-
adjoint nilpotent endomorphism e given by the action of a uniformizer 
 ∈ Ov .
Fix a d-dimensional Hermitian space (Vd,h) over kv′ (unique up to isomorphism),
then the isomorphism classes of (Q, h) ∈ |Hermv | with length d over kv′ is in
bijection with the adjoint orbits of the unitary group U(Vd,h)(kv) acting on the
nilpotent cone N (Vd,h)(kv) of self-adjoint nilpotent endomorphisms of Vd . Be-
ing a Galois twisted version of the usual nilpotent orbits under GLd , the orbits
N (Vd,h)(kv)/U(Vd,h)(kv) are again classified by partitions of d according the Jor-
dan types of e ∈N (Vd,h)(kv) (here we use that the centralizer CGLd

(e) is connected,
and Lang’s theorem implies H1(kv,CGLd

(e)) = {1}). Therefore the isomorphism
class of (Q, h) ∈ |Hermv | is determined by the Jordan type of Q, and conversely
each Jordan type arises from a (Q, h). This shows that �Herm

d is a bijection. �

4.6.1 Further notations

Now let (Q, h) ∈ Herm2d(k). We write Qk for the base change of Q over X′
k
, and

adapt the notations Z′ ⊂ X′(k),Z ⊂ X(k),�(Z′),�(Z) from §4.4. Let |Z′| and |Z|
be the set of closed points contained in Z′ and Z. We have a decomposition

|Z| = |Z|s
∐

|Z|i
into split and inert places. For each closed point v ∈ |Z| we choose a geometric point
x′

v ∈ Z′ above v and denote its image in Z by xv .
Let Fr : X′ → X′ be the Frobenius morphism. Let Z� be the following subset of

Z′

Z� =
{
F i(x′

v) : v ∈ |Z|, 0 ≤ i < deg(v)
}

.

When v splits into v′, v′′ in |X′|, with x′
v|v′, then Z� contains all geometric points

above v′ and not any above v′′. When v is inert with preimage v′ ∈ |X′|, Z� contains
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half of the geometric points above v′ which form a chain under the Frobenius, starting
with x′

v . Therefore Z′ = Z�
∐

σ(Z�). For x ∈ Z let x� ∈ Z� be the unique element

above x. This induces a section �(Z)
∼→ �(Z�) ⊂ �(Z′) which we denote y �→ y�.

Let Q� ∈ Cohd(X)(k) be the point corresponding to the isomorphism class of
(Q, h) under the bijection in Lemma 4.12. Then Q�

k
∼= ν∗(Q|Z�). Recall the isomor-

phism (3.2) for each y ∈ �(Z)

βy : BQ� (y)
∼→
∏

x∈Z

BQ�
x
.

From this and the Künneth formula we get an identification

H∗(BQ� (y)) =
⊗

x∈Z

H∗(BQ�
x
).

By [9, Corollary 2.3(1)], H∗(BQ�
x
) is concentrated in even degrees. Let H∗(BQ� (y))+

be the direct sum of all ⊗x∈ZH2ix (BQ�
x
) (for varying (ix)x∈Z) such that

∑

v∈|Z|i
ixv is even. (4.4)

Similarly, let H∗(BQ� (y))− be the direct sum of all ⊗x∈ZH2ix (BQ�
x
) such that the

quantity in (4.4) is odd. We have

H∗(BQ� (y)) = H∗(BQ� (y))+ ⊕ H∗(BQ� (y))−. (4.5)

Taking direct sum over all y ∈ �(Z) we get a decomposition

H∗(BQ� ) = H∗(BQ� )+ ⊕ H∗(BQ� )−. (4.6)

Note that this decomposition depends on the choice of a geometric point xv over
each inert v. By Corollary 3.7, the action of Sy ⊂ Sd on H∗(BQ� (y)) preserves the
decomposition (4.5) since it is the same as the tensor product of the Springer actions
on each factor H∗(BQ�

x
). Therefore the decomposition (4.6) is stable under the Sd -

action.
Now (Q|Z� ⊂ Q) gives a geometric point of Lagr♦2d , which is not defined over k

if |Z|i �= ∅. Using this geometric point in Lagr♦2d , Proposition 4.11 gives an isomor-
phism α� := α(Q|

Z�⊂Q) on the level of stalks (see (4.3)):

α� : H∗(BHerm
Q )(Z/2Z)d ∼= H∗(BQ� ).

This isomorphism is Sd -equivariant. Both sides now carry geometric Frobenius ac-
tions which we denote by FrobQ and FrobQ� , which are not necessarily intertwined
under α� because the point (Q|Z� ⊂ Q) is not necessarily defined over k. The next
result gives the relation between the two Frobenius actions.

Proposition 4.13 Let θ be the involution on H∗(BQ� ) which is 1 on H∗(BQ� )+ and
−1 on H∗(BQ� )−. Then under the isomorphism α�, FrobQ corresponds to FrobQ� ◦θ .
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Proof Recall from the proof of Proposition 4.11 that α� is the composition

H∗(BHerm
Q )(Z/2Z)d ∼=

⊕

y∈�(Z)

H∗(BHerm
Q (y�))

⊕γ
Z�,y�−−−−→

⊕

y∈�(Z)

H∗(BQ� (y)).

Here γZ�,y� is defined in (4.1).
Then Fr∗ on H∗(BHerm

Q ) maps H∗(BHerm
Q (Fr(y�))) to H∗(BHerm

Q (y�)). Note that

Fr(y�) and (Fr y)� are in general different: if y(i) = Fr−1(xv) for some inert v, then
Fr(y�)(i) = σ(x′

v) while (Fr y)�(i) = x′
v . In other words, the only difference between

Fr(y�) and (Fr y)� is the switch of all x′
v and σ(x′

v) for all inert v. Therefore there is
a unique element τy ∈ (Z/2Z)d such that (Fr y)� = Fr(y�) ◦ τy .

Identifying H∗(BHerm
Q )(Z/2Z)d

with ⊕y∈�(Z)H∗(BHerm
Q (y�)), the geometric Frobe-

nius endomorphism FrobQ on H∗(BHerm
Q )(Z/2Z)d

is the direct sum of the following
compositions

H∗(BHerm
Q ((Fr y)�))

τy−→ H∗(BHerm
Q (Fr(y�)))

Fr∗−→ H∗(BHerm
Q (y�))

where the first map is the Springer action of τy ∈ Wd on (SprHerm
2d )Q.

On the other hand, let wy ∈ Wd be the minimal length element such that (Fr y)� =
Fr(y�) ◦ wy . Write

τy = wyuy, for a unique uy ∈ StabWd
((Fr y)�) = StabSd

(Fr y) ⊂ Sd.

Note that StabSd
(Fy) =∏x∈Z SIx where Ix ⊂ {1, 2, . . . , d} is the preimage of x un-

der y. An easy calculation shows that uy = (uy,x)x∈Z where uy,x ∈ SIx is

uy,x =
{

wIx , if x = xv, v ∈ |Z|i ,
1, otherwise.

Here wIx ∈ SIx is the involution that reverses the order of Ix .
We use abbreviated notation

H(y′) := H∗(BHerm
Q (y′)), for y′ ∈ �(Z′),

C(y) := H∗(BQ� (y)), for y ∈ �(Z).

For each y ∈ �(Z), consider the following diagram

H((Fr y)�)
uy

γ
Z�,(Fry)�

H((Fr y)�)
wy

γ
Z�,(Fry)�

H(Fr(y�))

γ
Z�,Fr(y�)

Fr∗

γFr(Z�),Fr(y�)

H(y�)

γ
Z�,y�

C(Fy)
uy

C(Fy)
δ∗

C(Fy)
Fr∗

C(y)

(4.7)
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The left square is commutative by the Sd -equivariance of α� proved in Proposi-
tion 4.11 (here uy ∈ StabWd

((Fr y)�) ⊂ Sd ). The middle upper triangle is commu-
tative by Lemma 4.10. The map δ∗ is defined to make the lower middle triangle
commutative. The right square is clearly commutative. The composite of the upper
row is the restriction of FrQ to H((Fr y)�). Let us compute the composite of the lower
row.

The map δ∗ is the pullback along the automorphism δ of BQ� (Fr y) that makes the
following diagram commutative

BHerm
Q (Fr(y�))

γFr(Z�),Fr(y�)

γ
Z�,Fr(y�)

BQ� (Fr y) BQ� (Fr y)
δ

Under the isomorphism βFr y : BQ� (Fr y)
∼→∏x∈Z BQ�

x
, δ is the product of automor-

phisms δx for each BQ�
x
. If x is not of the form x = xv for v ∈ |Z|i , δx is the identity.

If x = xv for some v ∈ |Z|i , then Q�
x = Qx′

v
and the Hermitian structure on Q gives

an isomorphism ι : Qσ(x′
v)

∼= Q∨
x′

v
. On the other hand, Frdeg(v) gives an isomorphism

φ : Qx′
v

∼= Qσ(x′
v) since σ(x′

v) = Frdeg(v)(x′
v). Combining ι and φ we get a perfect

symmetric pairing (·, ·)x′
v

on Qx′
v

itself. Then δx sends a full flag R• of Q�
xv

= Qx′
v

to R⊥• under the pairing (·, ·)x′
v
.

By the description of uy and δ above, under the isomorphism βFy , the composition
δ∗ ◦ uy takes the form

⊗(δ∗
x ◦ uy,x) :

⊗

x∈Z

H∗(BQ�
x
) →
⊗

x∈Z

H∗(BQ�
x
).

The automorphisms δ∗
x ◦ uy,x are the identity maps except when x = xv for some

v ∈ |Z|i , in which case uy,x = wIx . Let us compute δ∗
x ◦ wIx on H∗(BQ�

x
) for x = xv

and v ∈ |Z|i . For this we switch to the following notation. Let V = Qx′
v

= Q�
xv

, a
vector space of dimension m over k. We have argued that V carries a symmetric self-
duality (·, ·); the action of a uniformizer at xv gives a nilpotent element e ∈ Endk(V ),
which is self-adjoint under (·, ·). Let B be the flag variety of GL(V ) and Be be the
Springer fiber of e. Then Sm acts on H∗(Be). Let w0 be the longest element in Sm.
Let δ : Be

∼→ Be be the map sending a flag V• to V ⊥• . We claim that δ∗ ◦ w0 acts
on H2i (Be) by (−1)i . Indeed, by [9, Corollary 2.3(2)], the restriction map H∗(B) →
H∗(Be) is surjective and is clearly equivariant under δ∗ ◦w0, so it suffices to show that
δ∗ ◦ w0 acts by (−1)i on H2i (B). Since δ∗ ◦ w0 preserves the cup product on H∗(B),
it suffices to show it acts by −1 on H2(B) (which generates all of H2∗(B) under the
cup product). For 1 ≤ j ≤ m, let ξj be the Chern class of the tautological line bundle
on B whose fiber at V• is Vj /Vj−1. Then H2(B) is spanned by ξj for 1 ≤ j ≤ m.
Now we have w0(ξj ) = ξm+1−j since H2(B) is the reflection representation of Sm,
and δ∗ξj = −ξm+1−j by the definition of δ. Therefore δ∗ ◦ w0(ξj ) = −ξj for all
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1 ≤ j ≤ m, which proves that δ∗ ◦ w0 acts by −1 on H2(B), and hence acts by (−1)i

on H2i (B) and on H2i (Be).
The above argument shows that δ∗ ◦ uy acts by 1 on H∗(BQ� (Fr y))+ and acts

by −1 on H∗(BQ� (Fr y))−. Therefore the bottom row of (4.7) is FrQ� ◦θ . By the
commutativity of (4.7), FrQ� ◦θ corresponds under α� to the composite of the top
row, which is FrQ. This finishes the proof. �

5 Geometrization of local densities

The goal of this section is to give a sheaf-theoretic interpretation of the formula of
Cho-Yamauchi on the representation density of Hermitian lattices, see Theorem 5.3.
This will complete the geometrization of the analytic side of our proposed Siegel-
Weil formula, at least for non-singular Fourier coefficients. The technical part of the
proof of the theorem is a Frobenius trace calculation that uses properties of the Her-
mitian Springer action proved in §4.6.

5.1 Density function for torsion sheaves

Following Remark 2.4, for any Hermitian torsion sheaf (Q, h) ∈ Herm2d(X′/X)(k),
we may define the density polynomial Den(T ,Q) using the Cho-Yamauchi formula
as follows. Let Qv be the summand of Q supported over v ∈ |X|, we define

Den(T ,Q) :=
∏

v∈|X|
Denv(T deg(v),Qv)

where

Denv(T ,Qv) =
∑

0⊂I⊂I⊥⊂Qv

T 2�′
v(I)

mv(t ′v(I⊥/I);T ).

Here I⊥ is the orthogonal of I under the Hermitian form on Qv , so in other words
the sum is over all subsheaves of Qv that are isotropic under hv = h|Qv

, and we
write mv(−) to emphasize the dependence of m(a;T ) on F ′

v/Fv (see Definition 2.2).
The functions �′

v(−) and t ′v(−) are the functions �′(−) and t ′(−) defined in §2.4 for
F ′

v/Fv .
Expanding the product into a summation, we see

Den(T ,Q) =
∑

0⊂I⊂I⊥⊂Q
T dimk I

∏

v∈|X|
mv(t ′v(I⊥/I);T deg(v)). (5.1)

Given an injective Hermitian map a : E ↪→ σ ∗E∨, we have a Hermitian structure
on the torsion sheaf coker(a) as follows. Applying σ ∗RHom(−,ωX′) to the short
exact sequence

0 → E a−→ σ ∗E∨ →Q → 0 (5.2)
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yields a short exact sequence

0 → E σ ∗a∨−−−→ σ ∗E∨ → σ ∗Ext1(Q,ωX′) → 0. (5.3)

Since σ ∗a∨ = a, we may identify (5.2) and (5.3) and get an isomorphism hQ : Q ∼→
σ ∗Q∨. Using this, we may restate Theorem 2.8 as follows.

Theorem 5.1 Let E be a rank n vector bundle over X′ and a : E ↪→ σ ∗E∨ be an
injective Hermitian map. Then

Ea(m(E), s,�)

= χ(det(E))q−deg(E)(s−n/2)− 1
2 n2 deg(ωX) × Ln(s)−1 Den(q−2s , coker(a)).

5.2 Density sheaves

We will define a graded perverse sheaf on Herm2d(X′/X) whose Frobenius trace at
Q recovers Den(T ,Q). We will suppress X′/X from the notations.

For 0 ≤ i ≤ d , let Hermi,2d be the stack classifying

{(I, (Q, h)) ∈ Cohi (X
′) × Herm2d : I ⊂ Q and is isotropic under h}.

We have the following maps

Hermi,2d←−
f i

−→
fi =(

−→
f ′

i ,
−→
f ′′

i )

Herm2d Cohi (X
′) × Herm2(d−i)

Here
←−
f i takes (I, (Q, h)) to (Q, h),

−→
f ′

i takes it to I and
−→
f ′′

i takes it to I⊥/I with
the Hermitian structure induced from h.

Recall the perverse sheaf HSprd on Herm2d from Definition 4.7(2). It is obtained
from the Springer sheaf on Herm2d by taking (Z/2Z)d -invariants, and HSpr2d carries
an action of Sd .

Definition 5.2 We define the following graded virtual perverse sheaves on Herm2d .
(In the notation below, the degree of the formal variable T encodes the grading.)

(1) Pd(T ) =⊕d
j=0(−1)j (HSprd)(Sj ×Sd−j ,sgnj �1)T j .

(2) KEis
d (T ) =⊕d

i=0 R
←−
f i,!R

−→
f ∗

i (Q� · T i �Pd−i (T )).

Theorem 5.3 For any Q ∈ Herm2d(k), we have

Den(T ,Q) = Tr(Fr,KEis
d (T )Q).
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Proof By the Grothendieck-Lefschetz trace formula, we have

Tr(Fr,KEis
d (T )Q) =

d∑

i=0

∑

(I,Q)∈Hermi,2d (k)

T dimk I Tr(Fr,Pd−i (T )I⊥/I).

Comparing with the expansion (5.1) for Den(T ,Q), it suffices to prove, changing
notation d − i to d and I⊥/I to Q, that

Tr(Fr,Pd(T )Q) =
∏

v∈|X|
mv(t ′v(Q);T deg(v)). (5.4)

This will be proved in Proposition 5.7. �

The rest of the section is devoted to the proof of (5.4). The idea is to relate the
Frobenius trace to a similar Frobenius trace of a graded perverse sheaf on Cohd(X)

using results from §4.6, and then calculate the latter explicitly.

5.3 Comparison of two graded Frobenius modules

For (Q, h) ∈ Herm2d(k), write

PQ(T ) = Pd(T )Q =
d⊕

j=0

(−1)j (HSprd)
(Sj ×Sd−j ,sgnj �1)

Q T j

=
d⊕

j=0

(−1)j H∗(BHerm
Q )(Wj ×Wd−j ,sgnj �1)T j .

Here sgnj is the inflation of the sign representation of Sj under Wj � Sj . We view
PQ(T ) as a Z-graded virtual Frobenius module, with the Z-grading indicated by the
power of T . Let Q� ∈ Cohd(X)(k) be in the isomorphism class that corresponds to
(Q, h) under the bijection in Lemma 4.12. Define

PQ� (T ) =
d⊕

j=0

(−1)j (Sprd)
(Sj ×Sd−j ,sgnj �1)

Q� T j

=
d⊕

j=0

(−1)j H∗(BQ� )
(Sj ×Sd−j ,sgnj �1)T j .

Define the Frobenius traces

PQ(T ) := Tr(Fr,PQ(T )), PQ� (T ) := Tr(Fr,PQ� (T )) ∈ Q�[T ].
The goal is to get a relationship between PQ(T ) and PQ� (T ). Note that PQ� (T ) is a
special case of PQ(T ) when the double cover X′ = X � X (and Q is the direct sum
of Q� on one copy of X and Q�,∨ on the other). We shall apply Proposition 4.13 to
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express PQ(T ) in terms of PQ� (T ). For this we need to calculate the decomposition
of PQ� (T ) given in (4.6).

Recall notations Z,Z′,�(Z) and �(Z′) from §4.4. First we show that PQ� (T )

factorizes according to the support of Q in X. Let |Z| be the set of closed points in
Z. For v ∈ |Z|, let Q�

v denote the direct summand of Q� whose support is over v.

Lemma 5.4 We have a natural isomorphism of graded Fr-modules

PQ� (T ) ∼=
⊗

v∈|Z|
PQ�

v
(T ).

In particular,

PQ� (T ) =
∏

v∈|Z|
PQ�

v
(T ).

Proof Choose any y ∈ �(Z) and let |y| be the resulting map {1, 2, . . . , d} → |Z|.
Let S|y| = StabSd

(|y|), then S|y| ∼=∏v∈|Z| SIv , where Iv = |y|−1(v). Applying Corol-

lary 3.7 to Q� and to each Q�
v gives an isomorphism of (Sd, Fr)-modules

H∗(BQ� ) ∼= IndSd

S|y|

⎛

⎝
⊗

v∈|Z|
H∗(BQ�

v
)

⎞

⎠ . (5.5)

Here the factor SIv of S|y| acts on H∗(BQ�
v
) by the Springer action.

Write Hv = H∗(BQ�
v
) as a (SIv , Fr)-module. Let dv = #Iv . By Mackey theory, the

(Sj × Sd−j , sgnj �1)-isotypical part of the right side of (5.5) is a direct sum over
double cosets (Sj × Sd−j )\Sd/S|y|, which can be identified with the set of functions
i : |Z| → Z≥0, v �→ iv ≤ dv , such that

∑
v iv = j . The stabilizer of the Sj × Sd−j -

action on the orbit indexed by i is isomorphic to
∏

v∈|Z| Siv × Sdv−iv (where the Siv

factor lies in Sj , Sdv−iv lies in Sd−j , and Siv × Sdv−iv is naturally a subgroup of
SIv

∼= Sdv ). The contribution of the summand indexed by i is

⊗

v∈|Z|
H

(Siv ×Sdv−iv ,sgniv
�1)

v .

This implies that

PQ� (T ) ∼=
∑

i:|Z|→Z≥0,iv≤dv

(−1)
∑

iv

⎛

⎝
⊗

v∈|Z|
H

(Siv ×Sdv−iv ,sgniv
�1)

v

⎞

⎠T
∑

iv

∼=
⊗

v∈|Z|

⎛

⎝
dv∑

iv=0

(−1)iv H
(Siv ×Sdv−iv ,sgniv

�1)
v T iv

⎞

⎠=
⊗

v∈|Z|
PQ�

v
(T ).

�
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Let Qv be the direct summand of Q supported over v. Then Qv and Q�
v correspond

under the bijection in Lemma 4.12.
For any Frobenius module M with integral weights, let GrWi M be the pure of

weight i part of M . This notation applies also to graded Frobenius modules by taking
GrWi on each graded piece.

Proposition 5.5 Let Q ∈ Herm2d(k).

(1) We have

PQ(T ) ∼=
⊗

v∈|Z|
PQv

(T ), PQ(T ) =
∏

v∈|Z|
PQv

(T ). (5.6)

(2) If v ∈ |Z| is split in X′, then

PQv
(T ) = PQ�

v
(T ). (5.7)

(3) If v ∈ |Z| is inert in X′, then

PQv
(T ) =

∑

i

(−1)i Tr(Fr, GrW2i deg(v) PQ�
v
(T )). (5.8)

Moreover, Tr(Fr, GrWi PQ�
v
(T )) = 0 if i is not a multiple of 2 deg(v).

Proof We will use the notations from §4.6.1. For each y ∈ �(Z), the summand
H∗(BQ� (y)) ∼= ⊗x∈ZH∗(BQ�

x
) is graded by multidegree i : Z → Z≥0

H2i(BQ� (y)) =
⊗

x∈Z

H2i(x)(BQ�
x
).

We define H2i(BQ� ) as the direct sum of H2i(BQ� (y)) over all y ∈ �(Z). Then
each H2i(BQ� ) is stable under Sd . Accordingly, PQ� (T ) decomposes into the di-

rect sum of P2i
Q� (T ), which is by definition ⊕d

j=0(−1)j H2i(BQ� )
(Sj ×Sd−j ,sgnj �1)T j .

Let iv be the restriction of i to those x|v, then under the factorization isomorphism in
Lemma 5.4 we have

P
2i
Q� (T ) ∼=

⊗

v∈|Z|
P

2iv
Q�

v

(T ). (5.9)

(1) Recall the involution θ on H∗(BQ� ) in Proposition 4.13. Using the above nota-
tion, we see that θ acts on H2i(BQ� ) by

∏
v∈|Z|i (−1)i(xv) (where xv ∈ Z is a chosen

geometric point over v, as in §4.6.1). Because of (5.9), the action of θ on PQ� (T ) fac-
torizes as the tensor product of the similarly-defined θv on each PQ�

v
(T ). By Propo-

sition 4.13, PQ(T ) is the Frobenius module obtained by modifying the Frobenius
action on PQ� (T ) by composing with θ . By Lemma 5.4, this modified Frobenius
structure on PQ� (T ) is the tensor product of the similarly modified Frobenius mod-
ules PQ�

v
(T ), which in turn are isomorphic to PQv

(T ) by Proposition 4.13. This
implies (5.6).
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(2) From the definition we see that if v is split, then θv is the identity on PQ�
v
(T ).

Hence PQv
(T ) = PQ�

v
(T ) and PQv

(T ) = PQ�
v
(T ).

(3) Since the cohomology of BQ�
v

is pure by [9, Corollary 2.3(3)], we see

that GrWi PQ�
v
(T ) is the sum of P

2iv
Q�

v

(T ) where iv : {x ∈ Z : x|v} → Z≥0 satisfies
∑

x|v 2iv(x) = i. The action of Frobenius sends P
2iv
Q�

v

(T ) to P
2F ∗iv
Q�

v

(T ), where F ∗iv
means precomposing iv with Frobenius. Therefore only constant multi-degrees (i.e.,
constant functions iv) contribute to the Frobenius trace of PQ�

v
(T ). This implies

Tr(Fr, GrWi PQ�
v
(T )) = 0 unless i is a multiple of 2 deg(v).

By the discussion above,

PQv
(T ) = Tr(Fr◦θv,PQ�

v
(T )) =

∑

i≥0

Tr(Fr◦θv,P
(2i,2i,...,2i)

Q�
v

(T )).

Since v is inert, θv acts by (−1)i on P
(2i,2i,...,2i)

Q�
v

(T ), hence

Tr(Fr◦θv,P
(2i,2i,...,2i)

Q�
v

(T )) = (−1)i Tr(Fr,P(2i,2i,...,2i)

Q�
v

(T )).

On the other hand, Tr(Fr, GrW2i deg(v) PQ�
v
(T )) is the sum of Tr(Fr,P2iv

Q�
v

(T )) with total

degree
∑

x|v 2iv(x) = 2i deg(v). Since only constant multi-degrees contribute to the
trace, we again conclude

Tr(Fr, GrW2i deg(v) PQ�
v
(T )) = Tr(Fr,P(2i,2i,...,2i)

Q�
v

(T )).

Combining the above identities we get (5.8). �

5.4 Calculation of PQ� (T ) and PQ(T )

Let Q� ∈ Cohd(X)(k) with support Z ⊂ X(k). For each v ∈ |Z| recall tv(Q�) from
(2.5) for the local field Fv .

Proposition 5.6 For Q� ∈ Cohd(X)(k), we have

PQ� (T ) =
∏

v∈|Z|
(1 − T deg(v))(1 − qvT deg(v)) · · · (1 − qtv(Q�)−1

v T deg(v)).

Proof We write Cohd(X) simply as Cohd in the proof. For 0 ≤ j ≤ d , consider the
correspondence

Cohj,d

p r

Cohd Cohj ×Cohd−j .
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Here Cohj,d classifies pairs (Qj ⊂ Q) of torsion sheaves of length j and d respec-
tively, and the map r sends (Qj ⊂ Q) to (Qj ,Q/Qj ). We claim that

Spr
(Sj ×Sd−j ,sgnj �1)

d
∼= Rp∗Rr∗(Stj �Q�). (5.10)

Indeed, consider the following diagram with Cartesian parallelogram

C̃ohd

πj,d r̃

Cohj,d

p r

C̃ohj × C̃ohd−j

πj ×πd−j

Cohd Cohj ×Cohd−j

Here πj = πCoh
j , etc. The composition p ◦ πj,d = πd = πCoh

d . By the proper base
change theorem, we get

Sprd = Rp∗Rπj,d∗Q�
∼= Rp∗Rr∗R(πj × πd−j )∗Q� = Rp∗Rr∗(Sprj �Sprd−j ).

This isomorphism is Sj ×Sd−j -equivariant by checking easily over the open substack
Coh◦

d . Taking (Sj × Sd−j , sgnj �1)-isotypical parts of both sides we get (5.10).
By Lemma 5.4 it remains to compute PQ�

v
(T ) for each v. Therefore we may as-

sume Q� = Q�
v . By (5.10) and the Grothendieck-Lefschetz trace formula we have

PQ�
v
(T ) =

∑

j

(−1)j Tr(Fr, (Sprd)
(Sj ×Sd−j ,sgnj �1)

Q�
v

)T j

=
∑

j

(−1)j Tr(Fr,Rp∗Rr∗(Stj �Q�)Q�
v
)T j

=
∑

R⊂Q�
v,

dimkv (R)=j

(−1)deg(v)j Tr(Fr, (Stdeg(v)j )R)T deg(v)j .

By Proposition 3.8, (Stdeg(v)j )R is zero unless R ∼= k
⊕j
v , in which case the Frobe-

nius trace is (−1)j (deg(v)−1)q
j (j−1)/2
v . Let Qv[
 ] be the kernel of the action of a

uniformizer 
 at v. Note V := Q�
v[
 ] has dimension t = tv(Q�) over kv . Then we

only need to sum over kv-subspaces R of V . The above sum becomes

t∑

j=0

(−1)j qj (j−1)/2
v T deg(v)j # Gr(j,V )(kv).
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Recall that the “q-binomial theorem” says that q
j (j−1)/2
v # Gr(j,V )(kv) is the coef-

ficient of xj in (1 + x)(1 + qvx) . . . (1 + qt−1
v x). Making the change of variables

x = −T deg(v), we get

t∑

j=0

(−1)j qj (j−1)/2
v T deg(v)j # Gr(j,V )(kv)

= (1 − T deg(v))(1 − qvT deg(v)) . . . (1 − qt−1
v T deg(v))

as desired. �

Now we are ready to prove (5.4).

Proposition 5.7 For Q ∈ Herm2d(X′/X)(k) with support Z, we have

PQ(T ) =
∏

v∈|X|
mv(t ′v(Q);T deg(v)) =

∏

v∈|Z|

t ′v(Q)−1∏

j=0

(1 − (η(
v)qv)j T deg(v)).

Proof By (5.6) it suffices to treat the case Q is supported over a single place v. Let
Q� ∈ Cohd(X)(k) be the corresponding point. If v is split, we have PQ(T ) = PQ� (T )

by (5.7), and the formula follows from Proposition 5.6.
If v is inert, let t = t ′v(Q) = tv(Q�). From the form of PQ� (T ) computed in Propo-

sition 5.6, which is valid for any extension of k, the trace of the pure weight pieces of
PQ� (T ) are separated by different powers of qv , i.e., q−i

v Tr(Fr, GrW2i deg(v) PQ� (T ))

is the coefficient of qi
v in
∏t−1

j=0(1 − q
j
v T deg(v)). By (5.8),

PQ(T ) =
∑

i

(−1)i Tr(Fr, GrW2i deg(v) PQ� (T )) =
t−1∏

j=0

(1 − (−qv)j T deg(v))

which is what we want because η(
v) = −1 in this case. �

Part 2. The geometric side

6 Moduli of Hermitian shtukas

In this section we introduce some of the fundamental geometric objects in our story,
in particular the moduli stacks of unitary (also called Hermitian) shtukas, which play
an analogous role to that of unitary Shimura varieties in the work of Kudla-Rapoport.

6.1 Hermitian bundles

We adopt the notation of §1.3, and in particular for the remainder of the paper en-
force the assumption that X is proper, and ν : X′ → X is a finite étale double cover
(possibly trivial).
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Definition 6.1 A rank n Hermitian (also called unitary) bundle on X ×S with respect
to ν : X′ → X is a vector bundle F of rank n on X′ × S, equipped with an isomor-
phism h : F ∼−→ σ ∗F∨ such that σ ∗h∨ = h. We refer to h as the Hermitian structure
on F .

We denote by BunU(n) the moduli stack of rank n unitary bundles on X, which
sends a test scheme S to the groupoid of rank n unitary bundles on X × S. The
notation is justified by the following remark.

Remark 6.2 There is an equivalence of categories between the groupoid of Hermitian
bundles on X × S, and the groupoid of G-torsors for the group scheme G = U(n)

over X defined as

{g ∈ ResX′/X GLn : σ(tg−1) = g}.

Indeed, we choose a square root ω
1/2
X of ωX (which exists over k = Fq by [27, p.291,

Theorem 13]). Then F1 := ν∗ω
1/2
X′ is equipped with the canonical Hermitian structure

h1 : F1 ∼= σ ∗F1 ∼= σ ∗F∨
1 , and (Fn,hn) := (F1, h1)⊕n is a rank n Hermitian bundle

on X whose automorphism group scheme is U(n). To a Hermitian bundle (F , h) on
X × S, IsomX×S((Fn �OS,hn � Id), (F , h)) (the scheme of unitary isometries) is a
right torsor for U(n) over X × S. Conversely, for a right U(n)-torsor G over X × S,

the contracted product G
U(n)× Fn is a Hermitian bundle on X × S.

6.2 Hecke stacks

We now define some particular Hecke correspondences for BunU(n).

Definition 6.3 Let r ≥ 0 be an integer. The Hecke stack Hkr
U(n) has as S-points the

groupoid of the following data:

(1) x′
i ∈ X′(S) for i = 1, . . . , r , with graphs denoted by �x′

i
⊂ X′ × S.

(2) A sequence of vector bundles F0, . . . ,Fr of rank n on X′ × S, each equipped
with Hermitian structure hi : Fi

∼−→ σ ∗F∨
i .

(3) Isomorphisms fi : Fi−1|X′×S−�x′
i
−�σ(x′

i
)

∼−→ Fi |X′×S−�x′
i
−�σ(x′

i
)
, for 1 ≤ i ≤ r ,

compatible with the Hermitian structures, with the following property: there ex-
ists a rank n vector bundle F �

i−1/2 and a diagram of vector bundles

such that coker(f ←
i ) is locally free of rank 1 over �x′

i
, and coker(f →

i ) is lo-
cally free of rank 1 over �σ(x′

i )
. In particular, f ←

i and f →
i are invertible upon
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restriction to X′ × S − �x′
i
− �σ(x′

i )
, and the composition

Fi−1|X′×S−�x′
i
−�σ(x′

i
)

(f ←
i )−1

−−−−→F �
i−1/2|X′×S−�x′

i
−�σ(x′

i
)

f →
i−−→Fi |X′×S−�x′

i
−�σ(x′

i
)

agrees with fi .

Remark 6.4 Condition (3) above is equivalent to asking for the existence of a diagram

such that coker(h←
i ) is flat of length 1 over �σ(x′

i )
, and coker(h→

i ) is flat of length 1
over �x′

i
. In particular, h←

i and h→
i are invertible upon restriction to X′ × S − �x′

i
−

�σ(x′
i )

, and the composition

Fi−1|X′×S−�x′
i
−�σ(x′

i
)

h←
i−−→ F�

i−1/2|X′×S−�x′
i
−�σ(x′

i
)

(h→
i )−1

−−−−→Fi |X′×S−�x′
i
−�σ(x′

i
)

agrees with fi .

Definition 6.5 (Terminology for modifications of vector bundles) Given two vector
bundles F and F ′ on X′ × S, we will refer to an isomorphism between F and F ′ on
the complement of a relative Cartier divisor D ⊂ X′ ×S as a “modification” between
F and F ′, and denote such a modification by F ��� F ′. Given x, y ∈ X′(S), we say
that the modification is “lower” of length 1 at x and “upper” of length 1 at y if it is
as in Definition 6.3 (3), i.e. if there exists a diagram

such that coker(f ←) is flat of length 1 over �x , and coker(f →) is flat of length 1
over �y , and F ���F ′ agrees with the composition

F |X′×S−�x−�y

(f ←)−1

−−−−→ F �|X′×S−�x−�y

f →
−−→ F |X′×S−�x−�y

.

The condition admits a reformulation as in Remark 6.4.

6.3 Hermitian shtukas

For a vector bundle F on X′ × S, we denote by τF := (IdX′ ×FrS)∗F . If F has a
Hermitian structure h : F ∼−→ σ ∗F∨, then τF is equipped with the Hermitian struc-
ture τ h; we may suppress this notation when we speak of the “Hermitian bundle”
τF .
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Definition 6.6 Let r ≥ 0 be an integer. We define ShtrU(n) by the Cartesian diagram

A point of ShtrU(n) will be called a “U(n)-shtuka”.
Concretely, the S-points of ShtrU(n) are given by the groupoid of the following

data:

(1) x′
i ∈ X′(S) for i = 1, . . . , r , with graphs denoted �x′

i
⊂ X × S. These are called

the legs of the shtuka.
(2) A sequence of vector bundles F0, . . . ,Fn of rank n on X′ × S, each equipped

with a Hermitian structure hi : Fi
∼−→ σ ∗F∨

i .

(3) Isomorphisms fi : Fi−1|X′×S−�x′
i
−�σ(x′

i
)

∼−→ Fi |X′×S−�x′
i
−�σ(x′

i
)

compatible with

the Hermitian structure, which as modifications of the underlying vector bundles
on X′ × S are lower of length 1 at x′

i and upper of length 1 at σ(x′
i ).

(4) An isomorphism ϕ : Fr
∼= τF0 compatible with the Hermitian structure.

Lemma 6.7 The stack ShtrU(n) is empty if and only if r is odd.

Proof We first treat the case n = 1. Let NmX′/X : PicX′ → PicX be the norm
map. Then BunU(1)

∼= Nm−1
X′/X

(ωX), hence it is a torsor under Prym(X′/X) =
ker(NmX′/X). Moreover, ShtrU(1) fits into a Cartesian square

with the bottom horizontal map sending D �→ O(D − σD). If X′ is geometrically
connected, then the stack Prym(X′/X) has two connected components, and by a
result of Wirtinger, explained in [21, §2], the bottom horizontal map lands in the
identity component if and only if r is even. If X′ is geometrically disconnected (i.e. it
is either X

∐
X or Xk′ ), then we have π0(Prym(X′/X)k) ∼= Z, the Lang map lands in

(therefore surjects onto, by Lang’s Theorem) the identity component, and the bottom
horizontal map hits the identity component if and only if r is even. This shows that,
in all cases, ShtrU(1) is empty if and only if r is odd.

For general n, taking determinant of a hermitian shtuka gives a map ShtrU(n) →
ShtrU(1). From this we see that if r is odd, then ShtrU(n) is empty for any n since
ShtrU(1) is empty.

On the other hand if r is even, then ShtrU(1) is non-empty. If n > 1, from an S

point of ShtrU(1), we can produce an S-point of ShtrU(n) by formation of direct sum
with (the base change to X × S of) a unitary bundle of rank n − 1 on X (e.g. we can
take (Fn−1, hn−1) from Remark 6.2). �
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6.4 Geometric properties

Lemma 6.8 The stack BunU(n) is smooth and equidimensional.

Proof The standard tangent complex argument, cf. [7, Prop. 1]. �

Lemma 6.9 (1) The projection map (prX, prr ) : Hkr
U(n) → (X′)r ×BunU(n) recording

{xi} and (Fr , hr ) is smooth of relative dimension r(n − 1).
(2) ShtrU(n) is a Deligne-Mumford stack locally of finite type. The map ShtrU(n) →

(X′)r is smooth, separated, equidimensional of relative dimension r(n − 1).

Proof The statements about ShtrU(n) being locally finite type and separated are well-
known properties of moduli of G-shtukas for general G [24, Proposition 2.16 and
Theorem 2.20].3

Part (2) follows from (1) by [14, Lemma 2.13].
So it suffices to check (1). As a self-correspondence of BunU(n), Hkr

U(n) is the

r-fold composition of Hk1
U(n). This allows us to reduce to the case r = 1. In this

case, the map (prX, pr1) : Hk1
U(n) → X′ × BunU(n) exhibits Hk1

U(n) as a Pn−1-bundle
whose fiber over (x′,F1, h1) classifies hyperplanes in F1,σ (x′). Indeed, a hyperplane
in F1,σ (x′) determines a lower modification at σ(x′), and the upper modification at
x′ is then determined from the lower modification by the Hermitian structure. This
shows that (prX, pr1) is smooth, separated and equidimensional of relative dimension
(n − 1) in the case r = 1, and the general case follows. �

7 Special cycles: basic properties

In this section we define special cycles over the moduli stacks of hermitian shtukas,
and construct corresponding cycle classes. The latter task is rather subtle, as the cy-
cles are in most cases of a highly “derived” nature, with their “virtual dimension”
differing significantly from their actual dimension.

7.1 Special cycles

Definition 7.1 Let E be a rank m vector bundle on X′.
We define the stack Zr

E whose S-points are the groupoid of the following data:

• A U(n)-shtuka with ({x′
1, . . . , x′

r}, {F0, . . . ,Fr}, {f1, . . . , fr}, ϕ) ∈ ShtrU(n)(S).
• Maps of coherent sheaves ti : E �OS → Fi on X′ × S such that the isomorphism

ϕ : Fr
∼= τF0 intertwines tr with τ t0, and the maps ti−1, ti are intertwined by the

3See also [28, paragraph after Theorem 5.4] for a sketch of the separatedness in a similar situation, which
readily adapts here.
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modification fi : Fi−1 ��� Fi for each i = 1, . . . , r , i.e. the diagram below com-
mutes.

In the sequel, when writing such diagrams we will usually just omit the “�OS” factor
from the notation.

We will call the Zr
E (or their connected components) special cycles of corank m

(with r legs).

There is an evident map Zr
E → ShtrU(n) projecting to the data in the first bullet

point. When rankE = 1, the Zr
E are function field analogues (with multiple legs) of

the Kudla-Rapoport divisors introduced in [12, 13].

7.2 Indexing via Hermitian maps

Definition 7.2 Let Aall
E (k) be the k-vector space of Hermitian maps4 a : E → σ ∗E∨

such that σ(a)∨ = a. Let AE (k) ⊂ Aall
E (k) be the subset where the map a : E → σ ∗E∨

is injective (as a map of coherent sheaves).

Let ({x′
i}, {Fi}, {fi}, ϕ, {ti}) ∈Zr

E (S). By the compatibilities between the ti in the
definition of Zr

E , the compositions

E �OS
ti−→ Fi

hi−→ σ ∗F∨
i

σ ∗t∨i−−→ σ ∗E∨ �OS (7.1)

agree for each i, and (7.1) for i = r also agrees with the Frobenius twist of (7.1)
for i = 0. Hence (7.1) for every i gives the same map E � OS → E∨ � OS , which
moreover must come by pullback from Aall

E (k). This defines a map Zr
E → Aall

E (k).
For a ∈ Aall

E (k), we denote by Zr
E (a) the fiber of Zr

E over a. We have

Zr
E =

∐

a∈Aall
E (k)

Zr
E (a).

Definition 7.3 For a ∈ AE (k), let Da be the effective divisor on X such that ν−1(Da)

is the divisor of the Hermitian map det(a) : det(E) → σ ∗ det(E)∨.

Definition 7.4 For any a ∈Aall
E (k), we define:

• Zr
E (a)◦ ⊂ Zr

E (a) to be the open substack classifying ({x′
i}, {E

ti−→ Fi}) with the
additional condition that all ti are injective when restricted to X′

s for any geometric
point s of the test scheme S.

4We will later in §8.2 introduce a space Aall over BunGL′
m

for which Aall
E (k) is the k-rational points of

the fiber over E ∈ BunGL′
m

(k), justifying the notation.
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• Zr
E (a)∗ ⊂ Zr

E (a) to be the open substack classifying ({x′
i}, {E

ti−→ Fi}) with the
additional condition that all ti are non-zero when restricted to X′

s for any geometric
point s of the test scheme S.

Note that if rank(E) = 1, then the inclusion Zr
E (a)◦ ↪→ Zr

E (a)∗ is an isomorphism,
and both include isomorphically into Zr

E (a) unless a = 0.

7.3 Finiteness properties

We next establish that the projection map Zr
E (a) → ShtrU(n) is finite, which will even-

tually allow us to construct cycle classes on ShtrU(n) associated to Zr
E (a).

Proposition 7.5 Let E be any vector bundle of rank m on X′ and let a ∈Aall
E (k). Then

the projection maps Zr
E (a) → ShtrU(n) and Zr

E (a)∗ → ShtrU(n) are both finite.

Proof Note that Zr
E (a) has a closed substack where the map t : E → F is 0,

which projects isomorphically to ShtrU(n). The complement of this closed substack
is Zr

E (a)∗, so it suffices to show the finiteness of Zr
E (a)∗ → ShtrU(n). We will show

that it is proper and quasi-finite. First we establish the properness. It suffices to show
this locally on the target, so we pick a Harder-Narasimhan polygon P for BunU(n)

and consider the truncation Bun≤P
U(n). Define Shtr,≤P

U(n) to be the open substack of

ShtrU(n) obtained as the pullback of Bun≤P
U(n) ↪→ BunU(n) via the tautological projec-

tion pr0 : ShtrU(n) → BunU(n) recording F0, and Zr,≤P
E (a) ↪→ Zr

E (a) the analogous
pullback.

We can then pick a sufficiently anti-ample vector bundle E ′ of rank m on X′
and an injection ι : E ′ ↪→ E so that the stack Hom(E ′,−)≤P parametrizing {(F ∈
Bun≤P

U(n)
, t ∈ Hom(E ′,F))} forms a vector bundle over Bun≤P

U(n)
, with respect to the

obvious projection map. Let a′ := (σ ∗ι∨) ◦ a ◦ ι : E ′ → E ′∨. Then we have a closed
embedding Zr,≤P

E (a) ↪→Zr,≤P
E ′ (a′) cut out by the condition that the map t : E ′ → F

factors through ι, which fits into a commutative diagram

It suffices to show the open substack Zr,≤P
E ′ (a′)∗ defined by the condition that t0 �= 0

fiberwise over the test scheme is proper over Shtr,≤P
U(n) . We can factorize this map as

the composition of two maps in the diagram below:
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where j is determined by the map Zr,≤P
E ′ (a′)∗ → P(Hom(E ′,−)≤P ) sending

(F0 ��� . . . ���Fr
∼= τF0, (ti)

r
i=0) �→ (F0, t0 : E ′ →F0).

The map pr2 is a projective bundle by design, so in order to establish that pr2 ◦j

is proper it suffices to show that j is finite. Indeed, since data of all the ti is de-
termined by t0, the analogous map Zr,≤P

E ′ (a′)∗ → Hom(E ′,−)≤P ×Bun≤P
U(n)

Shtr,≤P
U(n)

is a closed embedding. The requirement t0 = τ t0 in the definition of Zr
E ′ therefore

implies that the map j is a k×-torsor onto its image, which is a closed substack of
P(Hom(E ′,−)≤P ). This completes the proof of properness.

It remains to show that Zr
E (a) → ShtrU(n) is quasi-finite. Since the map is already

established to be proper, it suffices by [23, Tag 01TC] to check that the fibers over
field-valued points are finite. Let

({x′
i}1≤i≤r , (F0, h0) ��� (F1, h1) ��� . . . (Fr , hr )

∼−→ (τF0, τ h0)) ∈ ShtrU(n)(κ)

be such a point valued in a field κ . Its fiber in Zr
E (a)(κ) consists of {ti : E →Fi}0≤i≤r

fitting into commutative diagrams

such that σ ∗t∨i ◦ hi ◦ ti = a ∈ Aall
E (κ) for each i = 0, . . . , r . We want to show that

there are finitely many possibilities for such ti ∈ H0(X′
κ ,E∨

κ ⊗Fi ).
The situation can be abstracted to the following semi-linear algebra problem.

Lemma 7.6 Suppose that κ is any field over k, and we have finite-dimensional κ-
vector spaces V1,V2 ⊂ V with an injective Fr-semi-linear map τ : V1 ↪→ V2.

Then the set {x ∈ V1 : τ(x) = x ∈ V } is finite.

We assume Lemma 7.6 for the moment and use it to conclude the proof of
Proposition 7.5. We apply it to the situation above with V1 := HomX′

κ
(Eκ ,F0),

V2 := HomX′
κ
(τEκ , τF0), which are both viewed as subspaces of

V := HomX′
κ

⎛

⎝Eκ ,F0(

r∑

j=1

(x′
j + σ(x′

j )))

⎞

⎠

by the obvious inclusion. The map V1 → V2 is the twist by τ . Then Lemma 7.6
shows that there are finitely many possibilities for t0 since τ(t0) = t0. The other ti
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are determined by t0 (if they exist) because the ti as well as the modifications Fi ���
Fi+1 are all isomorphisms over an open subset of X′

κ . �

Proof of Lemma 7.6 By replacing κ with an algebraic closure, it suffices to consider
the case when κ is algebraically closed. Let us call a subspace V ′

1 ⊂ V1 “τ -fixed”
if τ(V ′

1) = V ′
1 ⊂ V . Since a sum of τ -fixed subspaces is evidently τ -fixed, there is

a well-defined largest τ -fixed subspace V ◦
1 ⊂ V1. It is a sub κ-vector space of V1,

hence necessarily finite-dimensional. Since τ : V1 → V2 is injective, the restriction
of τ to V ◦

1 is a Fr-semi-linear bijection. The set {x ∈ V1 : τ(x) = x ∈ V } is evidently
contained in (V ◦

1 )τ , which is an k-form of V ◦
1 (because κ is algebraically closed) and

therefore finite-dimensional over k. �

7.4 Variation with E

Let E ′,E be two vector bundles (with possibly distinct ranks) on X′ and s : E ′ → E
be a map of coherent sheaves. Given a : E → σ ∗E∨ in Aall

E (k), let a′ = (σ ∗s∨) ◦
a ◦ s : E ′ → σ ∗(E ′)∨ be the corresponding element in Aall

E ′ (k). Therefore, composing
with s defines a map

zs : Zr
E (a) →Zr

E ′(a′) (7.2)

sending

The following lemma follows directly from definitions.

Lemma 7.7 If E = E1 ⊕ E2, and ai ∈ Aall
Ei

(k) for i = 1, 2, then there is a canonical
isomorphism

Zr
E1

(a1) ×Shtr
U(n)

Zr
E2

(a2) ∼=
∐

a=
(

a1 ∗
∗ a2

)
Zr
E (a)

where the union runs over all Hermitian maps a : E → σ ∗E∨ whose restriction to Ei

is ai (for i = 1, 2). The map from the right side to the left is given by (zι1 , zι2), where
ιi : Ei ↪→ E is the inclusion.

Lemma 7.8 Under the notations of the beginning of this subsection,

(1) If s : E ′ → E is generically surjective, then zs : Zr
E (a) → Zr

E ′(a′) is a closed
embedding.
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(2) Suppose that s is generically an isomorphism (in particular E and E ′ have the
same rank). Let Ds ⊂ X′ be the divisor of det(s). Then the restriction of zs over
(X\ν(Ds))

r

Zr
E (a)|(X\ν(Ds))r ⊂ Zr

E ′(a′)|(X\ν(Ds))r

is open and closed. Here we write Zr
E (a)|(X\ν(Ds))r for the preimage of (X\

ν(Ds))
r under the leg map Zr

E (a) → ShtrU(n) → X′ r νr−→ Xr .

Proof (1) Let E ′ = E ′/ ker(s)
s−→ E , equipped with the induced Hermitian map

a′ : E ′ → σ ∗(E ′
)∨. Then s∗ factors as Zr

E (a)
zs−→ Zr

E ′(a′) ⊂ Zr
E ′(a′), the latter being

evidently a closed embedding. Therefore it suffices to show zs is a closed embedding.
We thus reduce to the case s is generically an isomorphism.

Let D be an effective divisor on X′ such that E(−D) ↪→ E ′ s−→ E . Let Funiv

be the universal Hermitian bundle over X′ × BunU(n), and Funiv
D its restriction to

D × BunU(n). Let VD = pr2∗ Hom(pr∗1 E(−D)|D,Funiv
D ), where pr1, pr2 are the pro-

jections of D × BunU(n) to the two factors. Then VD is a vector bundle of rank equal
to n rank(E) deg(D) over BunU(n). Let Vi,D be the pullback of VD over Zr

E ′(a′)
via the map pri : Zr

E ′(a′) → BunU(n). Then Vi,D has a section vi whose value at
({x′

j }, {Fj }, {tj : E ′ → Fj }) ∈ Zr
E ′(a′) is the restriction of ti to E(−D)|D → Fi |D .

Then ti extends to E if and only if vi vanishes at the point ({x′
j }, {Fj }, {tj }). This

identifies Zr
E (a) as the common zero locus of the sections (vi)0≤i≤r−1 of the vector

bundles Vi,D over Zr
E ′(a′), hence closed in Zr

E ′(a′).
(2) By (1), it remains to show the openness of zs when restricted to (X\ν(Ds))

r .
Let U ′ = X′\ supp(Ds + σDs). Let ShtrU(n),Ds

be the moduli stack of Hermitian
shtukas ({x′

i}, {Fi}) of rank n with legs in U ′ r , and trivializations of Fi |Ds (as
a vector bundle over Ds of rank n) compatible with the shtuka structures. Then
λ : ShtrU(n),Ds

→ ShtrU(n) |U ′ r is a GLn(ODs )-torsor. Let Zr
E (a)Ds and Zr

E ′(a′)Ds be
the base changes of Zr

E (a) and Zr
E ′(a′) along λ. Since Zr

E ′(a′)Ds → Zr
E ′(a′)|U ′ r is

finite étale surjective, it suffices to show that the inclusion Zr
E (a)Ds ↪→ Zr

E ′(a′)Ds is
open. Using the trivializations of Fi |Ds , we get an evaluation map

evDs : Zr
E ′(a′)Ds → HomDs (E ′|Ds ,O⊕n

Ds
)

where the target is a discrete set. Then Zr
E (a)Ds is the preimage of the image of

HomDs (E |Ds ,O⊕n
Ds

)
(−)◦s−−−→ HomDs (E ′|Ds ,O⊕n

Ds
)

under evDs . Indeed, a map E ′ → Fi extends to E → Fi if and only if E ′|Ds → Fi |Ds

vanishes on ker(E ′|Ds → E |Ds ) (this can be checked locally using elementary di-
visors). Since the target of evDs is discrete, Zr

E (a)Ds ⊂ Zr
E ′(a′)Ds is open and

closed. �
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7.5 Corank 1 special cycles

A special role is played by the case m = 1, i.e. where E is a line bundle on X′, because
it is only in this case that we can appropriately control the dimension of the cycles
Zr
E . We will write L := E to emphasize that it is a line bundle.
Note that in this case a ∈AL(k) if and only if a �= 0.

Proposition 7.9 We have dimZr
L(a)◦ ≤ r(n − 1).

This is established later, in Proposition 9.1 (for a �= 0) and Proposition 9.5 (for
a = 0), as a consequence of a more refined study of the geometry of Zr

L(a)◦.

Remark 7.10 One can show that when a �= 0, in fact Zr
L(a)◦ is LCI of pure dimension

r(n− 1). This will appear in a future paper; it relies on some ideas from [4]. This fact
will not be used in the present paper, but it may be psychologically helpful.

Definition 7.11 For a ∈ Aall
L (k), we define [Zr

L(a)◦] ∈ Chr(n−1)(Zr
L(a)◦) to be the

cycle class of the union of the irreducible components of Zr
L(a)◦ with dimension

r(n − 1), throwing away the irreducible components of dimension < r(n − 1). (Ac-
cording to Remark 7.10, there are no such components to be thrown away at least
when a �= 0, but we neither prove nor use this in the present paper.)

7.6 Corank n special cycles

In this paper we are mainly concerned with the case where the rank of E is m = n.
The following proposition contains basic geometric information about Zr

E (a).

Lemma 7.12 Let E be a vector bundle on X′ of rank n, and a ∈AE (k). Then the map
Zr
E (a) → X′ r recording the legs has image in (suppν−1(Da))r .

Proof Let ({x′
i}, {Fi}, {ti}) be a geometric point of Zr

E (a). For each 1 ≤ i ≤ r , the

Hermitian map a factorizes as E ↪→ F �
i−1/2 ↪→ Fi−1 ↪→ σ ∗E∨, we see that x′

i (the

support of Fi−1/F �
i−1/2) is in the support of σ ∗E∨/a(E), i.e., x′

i ∈ supp ν−1(Da).
�

Proposition 7.13 Let E be a vector bundle on X′ of rank n, and a ∈ AE (k). Then
Zr
E (a) is a proper scheme over k that depends only on the torsion sheaf Q =

coker(a) = σ ∗E∨/E together with the Hermitian structure a on Q induced from a

(see §4.1 for the notion of Hermitian structure on a torsion sheaf).

The proof involves a few ideas not yet introduced, and will be given later in §8.4.1.
The next goal is to equip the proper scheme Zr

E (a) with a 0-cycle class in its Chow
group. The “virtual dimension” of Zr

E (a) is at most zero, for if E is a direct sum of
line bundles L1 ⊕· · ·⊕Ln, then Zr

E (a) is contained in the intersection of Zr
Li

(aii) for
1 ≤ i ≤ r , each having codimension at least r in ShtrU(n) by Proposition 7.9 (which
can be shown to be an equality, cf. Remark 7.10). However the actual dimension of
Zr
E (a) can be strictly positive. Our task is to find the correct virtual fundamental class

of Zr
E (a).
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7.7 Intersection theory on stacks

Recall the discussion of intersection theory on Deligne-Mumford stacks from [28,
Appendix A]. Let Y be a smooth, separated, locally finite type Deligne-Mumford
stack over k of pure dimension d . Let Y1, . . . , Yn be Deligne-Mumford stacks with
maps fi : Yi → Y . Then there is an intersection product

(−) ·Y (−) ·Y · · · ·Y (−) : Chi1(Y1) × Chi2(Y2) × · · · × Chin (Yn)

→ Chi1+···+in−d(n−1)(Y1 ×Y · · · ×Y Yn).

For ζi ∈ Ch∗(Yi), the intersection product ζ1 ·Y · · · ·Y ζn is defined as the Gysin pull-
back of the external product ζ1 × · · · × ζn ∈ Ch∗(Y1 × · · · × Yn) along the diagonal
map � : Y → Y n, which is a regular embedding of codimension d(n − 1).

7.8 Intersection problem: the case of a direct sum of line bundles

We now formulate the cycle classes which enter into our intersection problem. We
first consider the case E a direct sum of m line bundles on X′,

E ∼= L1 ⊕ · · · ⊕Lm.

Let a ∈AE (k). We write a as an m × m-matrix with entries aij ∈ Hom(Lj , σ ∗L∨
i ).

Let

Zr
L1,...,Lm

(a11, . . . , amm)◦ := Zr
L1

(a11)◦ ×Shtr
U(n)

. . . ×Shtr
U(n)

Zr
Lm

(amm)◦.

In Definition 7.11 we defined a fundamental class [Zr
L(a)◦] ∈ Chr(n−1)(Zr

L(a)◦).
Applying the intersection product construction in §7.7 for Y = ShtrU(n) (the hypothe-
ses apply by Lemma 6.9 (2)), we obtain a class

[Zr
L1

(a11)◦] ·Shtr
U(n)

. . . ·Shtr
U(n)

[Zr
Lm

(amm)◦]
∈ Chr(n−m)(Zr

L1,...,Lm
(a11, . . . , amm)◦). (7.3)

Let Aall
E (a11, . . . , amm)(k) be the finite set of Hermitian maps a : E → σ ∗E∨ (not

assumed to be injective) such that its restriction to Li is aii for i = 1, . . . ,m. By
Lemma 7.7, there is a map

Zr
L1

(a11) ×Shtr
U(n)

. . . ×Shtr
U(n)

Zr
Lm

(amm) → Aall
E (a11, . . . , amm)(k)

such that the fiber over a ∈ AE (k) identifies with Zr
E (a). Since a is injective, the

image of Zr
E (a) → Zr

Li
(aii) lies in Zr

Li
(aii)

◦. In particular,

Zr
E (a) ⊂ Zr

L1,...,Lm
(a11, . . . , amm)◦

is open and closed. Restricting (7.3) to Zr
E (a) gives a cycle class

ζ r
L1,...,Lm

(a) :=
(
[Zr

L1
(a11)◦] ·Shtr

U(n)
. . . ·Shtr

U(n)
[Zr

Lm
(amm)◦]

)
|Zr

E (a)

∈ Chr(n−m)(Zr
E (a)).
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Remark 7.14 Our notation suggests that ζ r
L1,...,Lm

(a) (as a cycle class on Zr
E (a)) de-

pends, at least a priori, on the decomposition of E into a direct sum of line bundles
L1, . . . ,Lm. However, we will show later in Theorem 10.1 that, at least when m = n,
it only depends on E , and is equal to the cycle class [Zr

E (a)] that we will define for
general rank n bundle E .

7.9 Intersection problem: m = n and E arbitrary

To define a 0-cycle [Zr
E (a)] for general rank n vector bundle E on X′, we need to

make some auxiliary choice first; eventually we will show that the definition is inde-
pendent of the choice.

Definition 7.15 Let E be a rank n vector bundle over X′ and a ∈ AE (k). A good
framing of (E, a) is an n-tuple (si : Li → E)1≤i≤n of OX′ -linear maps from line
bundles Li ∈ Pic(X′) satisfying:

(1) The map s = ⊕si : E ′ := ⊕n
i=1Li → E is injective.

(2) Let Ds be the divisor of the nonzero map det(s) : ⊗n
i=1Li → detE . Then ν(Ds)

(image in X) is disjoint from Da (see Definition 7.3).

Lemma 7.16 For any rank n bundle E on X′ and a ∈ AE (k), there exists a good
framing for (E, a) in the sense of Definition 7.15.

Proof For notational convenience we give the argument for X′ connected; the case
X′ = X

∐
X can be proved with obvious changes.

We strengthen condition (2) on s : ⊕n
i=1Li → E slightly by asking ν(Ds) to avoid

a prescribed divisor D0 on X, instead of Da . We prove the existence of s satisfying
this stronger condition by induction on n.

The base case n = 1 is trivial: take L1 = E .
For the inductive step, start by picking any saturated line bundle L1 ↪→ E . Then

En−1 := E/L1 is a vector bundle of rank n − 1. By induction hypothesis we may pick
s : ⊕n

i=2L′
i ↪→ En−1 satisfying the conditions of Definition 7.15 and such that ν(Ds)

avoids the given divisor D0. Let D2, . . . ,Dn be effective divisors on X′ such that

(1) ν(D2), . . . , ν(Dn) are disjoint from ν(D0), and
(2) degL′

i − Di + 2g′ − 2 < degL1 for i = 2, . . . , n.

Let Li = L′
i (−Di). By the inequality above we see that Ext1(Li ,L1) = 0, so the map

si : Li ↪→ En−1 = E/L1 lifts to a map si : Li ↪→ E , i = 2, . . . , n.
Now we have an injection s : ⊕n

i=1Li ↪→ E whose divisor Ds satisfies Ds = Ds +
D2 +· · ·+Dn. Since ν(D2), . . . , ν(Dn), ν(Ds) are disjoint from D0 by construction,
the same is true for ν(Ds). �

Corollary 7.17 If s : E ′ = ⊕n
i=1Li ↪→ E is a good framing, then the map (7.2) realizes

ZE (a) as an open and closed subscheme of ZE ′(a′).

Proof Closedness is proved in Lemma 7.8(1). Only the openness requires an argu-
ment. By the definition of a good framing, ν(Ds) is disjoint from Da , and therefore
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disjoint from all legs of all points of Zr
E (a) by Lemma 7.12. Let U ′ = X′\ supp(Ds +

σDs), then Zr
E (a) = Zr

E (a)|U ′ r . By Lemma 7.8(2), the inclusion

Zr
E (a) = Zr

E (a)|U ′ r ↪→ZE ′(a′)|U ′ r

is open, hence the inclusion Zr
E (a) ↪→Zr

E ′(a′) is open. �

Definition-Proposition 7.18 Let E be a vector bundle of rank n over X′ and a ∈
AE (k). Let s : ⊕n

i=1Li ↪→ E be a good framing of (E, a). Let

[Zr
E (a)] := ζ r

L1,...,Ln
(a′)|Zr

E (a) ∈ Ch0(Zr
E (a)).

Here we are using Corollary 7.17 to make sense of the restriction, as it implies that
Zr
E (a) is a union of connected components of Zr

E ′(a′). Then the cycle class [Zr
E (a)]

thus defined is independent of the good framing s : E ′ = ⊕n
i=1Li ↪→ E .

The independence of good framing will be proved in Theorem 10.1 after some
preparation in §8. The idea is to construct another 0-cycle class on Zr

E (a) without
making auxiliary choices (which is done by introducing Hitchin shtukas), and show
that the two constructions agree.

By Proposition 7.13, Zr
E (a) is proper over k, therefore the degree of the 0-cycle

of [Zr
E (a)] ∈ Ch0(Zr

E (a)) is a well-defined number in Q. The main problem we are
concerned with in this Part is to determine deg[Zr

E (a)] ∈ Q.

8 Hitchin-type moduli spaces

In this section we introduce certain “Hitchin-type moduli stacks” which will help to
analyze the special cycles. In particular, we will be able to use these to give an alterna-
tive construction of the cycle classes associated to special divisors, that is manifestly
independent of auxiliary choices.

8.1 Hitchin stacks

Until §8.4, we fix an arbitrary positive integer m.

Definition 8.1 The Hitchin stack Mall(m,n) (sometimes denoted Mall when m,n

are understood) has S-points the groupoid consisting of the following data.

• E a rank m vector bundle on X′ × S.
• F a rank n vector bundle on X′ × S, equipped with a Hermitian map h : F ∼−→

σ ∗F∨.
• A map of underlying coherent sheaves t : E →F over X′ × S.

We define M(m,n) ⊂ Mall (sometimes denoted M when m,n are understood) to be
the open substack where the map t base changes to an injective map on X′

s for each
geometric point s → S.

Let us emphasize that both E and (F , h) are varying in this definition. We will
usually suppress the dependence on m,n from the notation.



Higher Siegel–Weil: non-singular terms 627

8.2 Hitchin base

Definition 8.2 We define the following two versions of the Hitchin base.

(1) Aall(m) (sometimes denoted Aall when m is understood) to be the stack whose
S-points is the groupoid of the following data:

• E a rank m vector bundle on X′ × S;
• a : E → σ ∗E∨ is a map of coherent sheaves on X′ × S such that σ(a∨) = a.

(2) We define A ⊂ Aall to be the open substack where a : E → σ ∗E∨ is injective
after base change to X′

s for every geometric point s → S.

Definition 8.3 For integers 1 ≤ m ≤ n, we define the Hitchin fibration for Mall =
Mall(m,n) to be the map f : Mall →Aall sending (E, (F , h), t) to the composition

a : E t−→F h−→ σ ∗F∨ σ ∗t∨−−→ σ ∗E∨.

Remark 8.4 In general the Hitchin fibration does not send M(m,n) to A(m) even
when m ≤ n. However, in the special case m = n, the Hitchin map does send M(n,n)

to A(n) because when t : E → F is generically injective, it is generically an iso-
morphism for rank reasons, hence the induced Hermitian map a on E is generically
non-degenerate.

8.3 Hitchin shtukas

We now discuss a notion of shtukas for Hitchin stacks. Throughout, M = M(m,n).

Definition 8.5 (Hecke stacks for Hitchin spaces) For r ≥ 0, we define Hkr
Mall to be

the stack whose S-points are given by the groupoid of the following data:

(1) ({x′
i}1≤i≤r , {(Fi , hi)}0≤i≤r ) ∈ Hkr

U(n)(S).
(2) A vector bundle E of rank m on X′ × S.
(3) Maps ti : E → Fi fitting into the commutative diagram

We define the open substack Hkr
M ⊂ Hkr

Mall by the condition that t0 base changes to
an injective map along every geometric point s → S (equivalently, every ti has this
property). Let pri : Hkr

M → M (resp. prall
i : Hkr

Mall → Mall) be the map recording
(E,Fi , hi, ti ), for 0 ≤ i ≤ r .
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Definition 8.6 (Shtukas for Hitchin stacks) For r ≥ 0, we define ShtrMall as the fibered
product

and the open substack ShtrM ⊂ ShtrMall as the fibered product

(8.1)

Explicitly, the stack ShtrMall parametrizes diagrams of the form below, with notation
as in Definition 8.5,

(8.2)

and ShtrM is the open substack where t0 base changes to an injective map along every
geometric point s → S (equivalently, the same property holds for every ti ).

In particular, E ∼−→ τE is a shtuka with no legs, exhibiting E as arising from a rank
m vector bundle on X′, i.e. coming from BunGL′

m
(k). Note that in (8.2), E is not fixed,

so the automorphisms of E are present in the functor of points of ShtrMall . Therefore,
if we define

Zr

E := [Zr
E/(Aut(E)(k)],

then ShtrMall decomposes as a disjoint union of special cycles

ShtrMall =
∐

E∈BunGL′
m

(k)

Zr

E .

This decomposition can be refined. The compositions f ◦ pri : Hkr
Mall → Aall all

coincide, and they induce a map

ShtrMall → Aall(k).

Here Aall(k) is the groupoid of pairs {E,E a−→ σ ∗E∨}. Let us write Aut(a) :=
Aut(E a−→ σ ∗E∨) ⊂ Aut(E). Then each E a−→ σ ∗E∨ defines a map a : Spec k →
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B Aut(a)(k) ↪→ Aall(k), the latter map being an open-closed inclusion, and we have
a Cartesian square

In particular, Zr
E (a) is a finite étale cover of an open-closed substack of ShtrMall

isomorphic to [Zr
E (a)/ Aut(a)(k)]. Similarly, restricting to the injective locus (see

Definition 7.4) we have a Cartesian square

(8.3)

If m = n and a ∈A(k), then we have Zr
E (a)◦ = Zr

E (a) and we can replace Aall(k) by
A(k) in the above diagram (see Remark 8.4).

8.4 From vector bundles to torsion sheaves

For the rest of the section, we concentrate on the case m = n. In this case, we will
relate M = M(n,n) to the moduli stack of Hermitian torsion sheaves introduced in
§4.1. We introduce the following abbreviated notations.

Definition 8.7 Let d ∈ Z≥0.

(1) Let Md = M(n,n)d be the open-closed substack of M = M(n,n) consisting

of (E t−→F) where d = degE∨−deg(E)
2 = −χ(X′,E).

(2) Let Ad = A(n)d be the open-closed substack of A = A(n) consisting of (E, a)

where d = degE∨−deg(E)
2 = −χ(X′,E).

By Remark 8.4, the Hitchin map for Mall = Mall(n,n) restricts to a map

fd :Md →Ad .

When d is understood, we abbreviate f for fd .
Recall that Herm2d = Herm2d(X′/X) is the moduli stack of length 2d torsion

coherent sheaves Q on X′ equipped with a Hermitian structure hQ : Q ∼−→ σ ∗Q∨,
where Q∨ := Ext1(Q,ωX′) such that σ ∗h∨

Q = hQ. Alternatively we may think of hQ
as the datum of a perfect pairing

h′
Q :Q⊗OX′ σ ∗Q → ωX′,F ′/ωX′

where ωX′,F ′ is the constant Zariski sheaf of rational differential form on X′. The
Hermitian condition is equivalent to h′

Q(u, v) = σ ∗h′
Q(v,u) for local sections u,v

of Q.
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In §4.5 we have also introduced the moduli stack Lagr2d = Lagr2d(X′/X) classi-
fying (Q, hQ,L) where (Q, hQ) ∈ Herm2d and L ⊂ Q is a Lagrangian subsheaf.

There is a canonical map g : Ad → Herm2d sending (E, a) to the torsion sheaf
Q = σ ∗E∨/E together with the Hermitian structure hQ defined in §5.1.

We have a map gM : Md → Lagr2d sending (E t−→ F) ∈ Md to the torsion Her-
mitian sheaf (Q = σ ∗E∨/E, hQ) constructed above together with the Lagrangian
L = F/E .

Lemma 8.8 The maps defined above fit into a Cartesian diagram

(8.4)

Proof Given a : E → σ ∗E∨ that is injective, the datum of a subsheaf L ⊂ σ ∗E∨/E is
the same as a coherent sheaf F such that E ⊂ F ⊂ σ ∗E∨. It is easy to see that L is
Lagrangian if and only if F is self-dual under the Hermitian map a. �

Corollary 8.9 The Hitchin fibration fd : Md → Ad is proper.

Proof Apply Lemma 8.8 and the fact that υ2d is proper. �

Lemma 8.10 The map υ2d : Lagr2d → Herm2d is small.

Proof The map πHerm
2d from §4.2 factors as

πHerm
2d : H̃erm2d

λ2d−−→ Lagr2d

υ2d−−→ Herm2d .

Since λ2d is surjective and πHerm
2d is small by Proposition 4.5, we get the desired

statement. �

8.4.1 Proof of Proposition 7.13

Let Lagr(Q) be the moduli space of Lagrangian subsheaves of Q. Let Hkr
Lagr(Q)

be its Hecke version, classifying points {x′
i}1≤i≤r of X′ and chains of Lagrangian

subsheaves of Q

where the dashed arrow fi are modifications at x′
i ∪ σ(x′

i ), similar to those in Def-
inition 6.3. There is a natural map Zr

E (a) → Hkr
Lagr(Q)

sending a point ({x′
i}, {ti :

E → Fi}) of Zr
E (a) to the collection of (necessarily Lagrangian) subsheaves F i =



Higher Siegel–Weil: non-singular terms 631

coker(ti) ⊂ Q = σ ∗E∨/E . This map fits into a Cartesian diagram

Zr
E (a) Hkr

Lagr(Q)

Lagr(Q)
(Id,Fr)

Lagr(Q) × Lagr(Q)

Now both Lagr(Q) and Hkr
Lagr(Q)

are proper schemes over k, hence the same is true
for Zr

E (a). The diagram also makes it clear that Zr
E (a) only depends on (Q, a).

8.5 Smoothness

Lemma 8.11 The map

βd :Md → Cohd(X′) × BunU(n)

sending (E t−→ F , h) to (coker(t), (F , h)) is smooth of relative dimension dn. In par-
ticular, Md is smooth of pure dimension dn + n2(g − 1).

Proof Consider the stack M′
d classifying (T ,F , h, s) where T ∈ Cohd(X′), (F , h) ∈

BunU(n) and an OX′ -linear map s :F → T . Let β ′
d : M′

d → Cohd(X′) × BunU(n) be
the natural map. Due to the vanishing of Ext1(F ,T ), β ′

d exhibits M′
d as a vector

bundle over Cohd(X′) × BunU(n) of rank dn = dim HomX′(F ,T ). Now Md is the
open substack of M′

d where s is surjective. Therefore βd is also smooth of relative
dimension dn. �

Proposition 8.12 The map g : Ad → Herm2d is smooth.

Proof We have a map s
Lagr
2d : Lagr2d → X′

d sending (Q, hQ,L) to the divisor of L.
Recall also the map sHerm

2d : Herm2d → Xd sending (Q, hQ) to the descent of the
divisor of Q to X.

Recall in §4.5 we introduced the open subset

(X′
d)♦ = {D′ ⊂ X′ : D′ ∩ σ(D′) = ∅} ⊂ X′

d .

Let Lagr♦2d ⊂ Lagr2d and M♦
d ⊂ Md be the preimages of (X′

d)♦ under the maps

s
Lagr
2d and s

Lagr
2d ◦ gM.

We claim that both squares in the diagram

are Cartesian. The left square is Cartesian by definition. Now we show that the
right square is Cartesian. Let (Q, hQ) ∈ Herm2d , D′ ∈ (X′

d)♦ lying over D =
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sHerm
2d (Q, hQ). Since D′ ∩ σ(D′) = ∅, there is a unique Lagrangian subsheaf L ⊂ Q

supported on the support of D′, namely L = Q|supp D′ . This gives the unique point

(Q, hQ,L) ∈ Lagr♦2d mapping to (Q, hQ) ∈ Herm2d and D′ ∈ (X′
d)♦.

Note that the map (X′
d)♦ → Xd is faithfully flat: it is clearly surjective, and the

map νd : X′
d → Xd is a finite morphism between smooth schemes, hence flat. We will

show that M♦
d → Lagr♦d is smooth. By fppf descent it then follows that Ad → Hermd

is also smooth.
Recall from §4.5 that ε′

d : Lagr2d → Cohd(X′) (recording only L) restricts to an

isomorphism Lagr♦2d

∼→ Cohd(X′)♦ := Cohd(X′)|(X′
d )♦ . Therefore it suffices to show

that the composition M♦
d

gM−−→ Lagr♦2d

ε′
d−→ Cohd(X′)♦ is smooth. This follows from

the smoothness of Md → Cohd(X′) proved in Lemma 8.11. �

Corollary 8.13 The Hitchin fibration f : Md → Ad is small. The complex Rf∗Q� is
a shifted perverse sheaf that is the middle extension from any dense open substack of
Ad .

Proof By the smoothness of g in Proposition 8.12 and the Cartesian diagram in
Lemma 8.8, the smallness of f follows from that of υ2d : Lagr2d → Herm2d , which
is proved in Lemma 8.10. �

8.6 Cycle class from Hitchin shtukas

In this subsection we take m = n, so M = M(n,n) and A = A(n). Now consider the
Hitchin shtukas for Md ⊂ M. Let N = dimMd . By Corollary 8.13, dimAd = N .
The Cartesian diagram (8.1) restricts to a Cartesian diagram

ShtrMd
Hkr

Md

(pr0,prr )

Md

(Id,Fr)
Md ×Md

(8.5)

We would like to define a 0-cycle class on ShtrMd
as the Gysin pullback of a cycle on

Hkr
Md

along the Frobenius graph of Md . Although the virtual dimension of Hkr
Md

is the same as dimMd , its actual dimension may be larger. For this reason we have
to define in a roundabout way a virtual fundamental cycle on Hkr

Md
of the virtual

dimension by relating it to Hk1
Md

, which we show is smooth below.

Lemma 8.14 The stack Hk1
Md

is smooth and equidimensional of the same dimension
as Md .

Proof Let (x′,F0 ��� F1) ∈ Hk1
U(n). Let F � := F �

1/2 = F0 ∩F1 as in Definition 6.3.
The generically compatible Hermitian structures on F0 and F1 equip this intersection
with a Hermitian structure h� : F � ↪→ σ ∗(F �)∨ whose cokernel has length 1 at x′ and
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at σ(x′). We call such a bundle almost Hermitian with defect at the ordered pair of
conjugate points (x′, σ (x′)). Conversely, given (F �, h�) almost Hermitian with defect
at (x′, σ (x′)), one can uniquely recover F0 (resp. F1) as the upper modification of
F � at x′ (resp. σ(x′)) inside σ ∗(F �)∨.

Let Bun�

U(n) be the moduli stack parametrizing (x′ ∈ X′,F �, h�) where (F �, h�) is
an almost Hermitian bundle with defect at (x′, σ (x′)). The discussion in the previous
paragraph shows that there is an isomorphism Hk1

U(n)

∼→ Bun�

U(n) over X′. Let M�
d

be the moduli stack of (x′,E t−→ F �, h�) where (F �, h�) is almost Hermitian with
defect at (x′, σ (x′)), E is a vector bundle on X′ of rank n and χ(X′,E) = −d , and t

is injective. Then we have an isomorphism Hk1
Md

∼= M�
d .

We have a natural map

β
�
d : M�

d → Cohd−1(X′) × Bun�

U(n)

sending (x′,E t−→ F �, h�) to (coker(t), (x′,F �, h�)). The same argument as Lem-
ma 8.11 shows that β

�
d exhibits M�

d as an open substack in a vector bundle of rank

n(d −1) over Cohd−1(X′)×Bun�

U(n). Now dim Cohd−1(X′) = 0 and dim Bun�

U(n) =
dim Hk1

U(n) = dim BunU(n) +n by Lemma 6.9(1). Therefore Hk1
Md

∼= M�
d is of pure

dimension dim BunU(n) +dn, which is the same as dimMd by Lemma 8.11. �

Definition 8.15 For any stack S over k we define a morphism

�r
S : Sr+1 → S2r+2

by the formula �r
S(ξ0, . . . , ξr ) = (ξ0, ξ1, ξ1, ξ2, ξ2, . . . , ξr−1, ξr , ξr , Fr(ξ0)). When r

is fixed in the context, we simply write �S .

We rewrite ShtrMd
as the fiber product

ShtrMd
(Hk1

Md
)r ×Md

(pr0,pr1)r×�

(Md)r+1
�r

Md

(Md)2r+2 = (Md)2r × (Md)2

(8.6)

Here the vertical map (pr0, pr1)r sends (h1, . . . , hr ) ∈ (Hk1
Md

)r to (pr0(h1), pr1(h1),

. . . , pr0(hr), pr1(hr)) ∈ (Md)2r , while � is the diagonal map.

Definition 8.16 We define a 0-cycle classes [ShtrMd
] ∈ Ch0(ShtrMd

) as the image

of the fundamental class of (Hk1
Md

)r × Md (which is smooth of the same di-

mension as (Md)r+1 by Lemma 8.14) under the refined Gysin map along �Md
:

(Md)r+1 → (Md)2r+2 (which is defined since Md is smooth and equidimensional
by Lemma 8.11; see [10, Theorem 2.1.12(xi)])

[ShtrMd
] := (�r

Md
)![(Hk1

Md
)r ×Md ] ∈ Ch0(ShtrMd

).
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9 Special cycles of corank one

In this section we prove geometric properties of the special cycles Zr
E (a) when

m = rankE = 1 (where the number field analogues are called “Kudla-Rapoport divi-
sors”). In particular, we show that for a �= 0, Zr

E (a) are local complete intersections
of dimension r less than ShtrU(n). When a = 0, we show that Zr

E (a)∗ has dimension
at most dim ShtrU(n) −r . These geometric properties are proved by studying stratifi-
cations introduced and analyzed in §9.1 and §9.2.

9.1 Stratification of the special cycle when m = 1

In this section we fix a line bundle L on X′
k and a ∈ AL(k), i.e., a : L → σ ∗L∨ is

nonzero Hermitian. We now define a stratification of Z := Zr
L(a)k and estimate the

dimension of each stratum.
When n = 1, we have dimZ = 0. Indeed, Lemma 7.12 implies that there is a

0-dimensional closed subscheme D ⊂ (X′)r such that the morphism Z → ShtrU(1)

takes values in the preimage of D under the leg map ShtrU(1) → (X′)r . This preimage
is 0-dimensional by Lemma 6.9 (2). As Z → ShtrU(1) is finite (by Proposition 7.5)
with 0-dimensional image, we conclude that dimZ = 0.

Therefore in the rest of this subsection we will assume n ≥ 2.

For each (L ti−→ Fi )0≤i≤r ∈ Z(k) with legs (x′
i )1≤i≤r ∈ X′(k)r , let Di (0 ≤ i ≤ r)

be the divisor on X′
k

such that ti : L(Di) ↪→ Fi is saturated. For each 1 ≤ i ≤ r , we
have one of the four cases:

(0) Di = Di−1;
(+) Di = Di−1 + σ(x′

i );
(−) Di = Di−1 − x′

i ;
(±) Di = Di−1 − x′

i + σ(x′
i ).

Since the composition L ti−→ Fi
h−→ σ ∗F∨

i

σ ∗t∨i−−→ σ ∗L∨ is equal to a, we see that Di +
σ(Di) is a subdivisor of the divisor of a. Therefore ν(Di) ≤ Da as divisors on X(k).

9.1.1 Indexing set for strata

Consider the set D of sequences of effective divisors (Di)0≤i≤r on X′
k

satisfying

• ν(Di) ≤ Da for all 0 ≤ i ≤ r .
• For each 1 ≤ i ≤ r , the pair (Di−1,Di) falls into one of the cases (0), (+), (−), (±)

above for some x′
i ∈ X′(k).

• Dr = τ D0.

It is clear that D is a finite set. This will be the index set for our stratification of Z .

9.1.2 Definition of strata

Fix D• = (Di)0≤i≤r ∈ D. Let I0 := {1 ≤ i ≤ r|Di = Di−1}. Similarly we define
I+, I− and I± as the set of those i such that (Di−1,Di) falls into case (+), (−)
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and (±) respectively. Let Z[D•] be the substack of Zk classifying

({x′
i} ∈ X′ r ; {Fi} ∈ Hkr

U(n); {L(Di)
t ′i−→Fi}0≤i≤r )

such that every t ′i is saturated. Let

π[D•] :Z[D•] → (X′
k
)I0

be the map recording those x′
i for i ∈ I0. Note that for i ∈ I+ ∪ I− ∪ I±, x′

i is deter-
mined by D•.

Proposition 9.1 Let n ≥ 2.

(1) The substacks Z[D•] for D• ∈ D give a partition of Z .
(2) Each geometric fiber of π[D•] has dimension ≤ (n − 1)|I+| + (n − 2)|I0|.
(3) We have dimZ[D•] ≤ r(n − 1). The equality can only be achieved when I0 =

{1, 2, . . . , r}, i.e., all Di are equal to the same divisor of X′, which is then neces-
sarily defined over k. 5

Proof (1) Each geometric point of z ∈ Z defines a (unique) point D• ∈ D by taking
the zero divisor of ti , and then z ∈ Z[D•] by definition.

(2) Let H[D•] be the substack of the fiber of (Hkr
M)k over (L, a) ∈ Ad(k) clas-

sifying data ({x′
i},L

ti−→ Fi ) such that ti extends to a map t ′i : L(Di) → Fi which
is saturated. Note that for i ∈ I+ ∪ I− ∪ I±, x′

i is determined by D•. Let M[Di]
be the substack of the fiber of M(1, n)k over (L, a) ∈ A(1, n)(k) classifying maps
t : L → F that extend to a saturated map t ′ : L(Di) → F . Then we have a Cartesian
diagram of stacks over k

Z[D•] H[D•]
(p0,pr )

M[D0]
(Id,Fr)

M[D0] ×M[Dr ].

(9.1)

Note since Dr = τ D0, the Frobenius morphism sends M[D0] to M[Dr ].
Let

#[D•] :H[D•] →M[Dr ] × X
′ I0

k

be the projection pr and the map recording x′
i for i ∈ I 0.

Claim 9.2 The map #[D•] is smooth and representable of relative dimension (n −
1)|I+| + (n − 2)|I0|.
5In this case, Z[D•] can be identified with the open substack Z̊r

L(D0)
(a′) ⊂ Zr

L(D0)
(a′) (where a′ is

the map L(D0) → σ∗L(D0)∨ induced from a) defined by requiring all the maps t ′
i
: L(D0) → Fi be

saturated.
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Assuming the claim, we finish the proof of (2). Indeed, we may apply Lemma 9.3
below to the Cartesian diagram (9.1) to conclude, except that M[D0] is generally
not a scheme. To remedy, we may restrict to a finite type open substack M[D0]≤P ⊂
M[D0] by bounding Harder-Narasimhan polygon of (F , h), and impose level struc-
tures on the Hermitian bundle (F , h) at a closed point x ∈ |X| to arrive at a scheme
M̃[D0]≤P which is a torsor over M[D0]≤P by an algebraic group H . Truncating
and imposing the same level structures to H[D•] gives a scheme H̃[D•]≤P (with
legs away from x) such that H̃[D•]≤P /H = H[D•]≤P . Let Z̃[D•]≤P be defined
by a Cartesian diagram similar to (9.1), with H[D•] replaced by H̃[D•]≤P and
M[Di] replaced by M̃[Di]≤P for i = 0, r . We apply Lemma 9.3 to conclude that
the fibers of Z̃[D•]≤P → X

′ I0

k
have dimension ≤ (n − 1)|I+| + (n − 2)|I0|. Now

Z̃[D•]≤P /H(k)
∼→ Z[D•]≤P and for varying P and x, Z[D•]≤P cover Z[D•],

hence the same dimension estimate holds for Z[D•].
It remains to prove the claim.
For r ≥ j ≥ 0, let H≥j be the moduli stack defined similarly to H[D•] but classi-

fying saturated maps {ti : L(Di) → Fi}j≤i≤r (lying over a) only for i in the indicated
range. We can factorize #[D•] as

#[D•] : H[D•] = H≥0
#1−→ H≥1

#2−→ · · · #r−→ H≥r = M[Dr ] × X
′ I0

k
.

The desired smoothness and relative dimension claims would follow from the follow-
ing four statements:

(H0) If i ∈ I0, then #i exhibits H≥i−1 as an open substack in a Pn−2-bundle over
H≥i .

(H+) If i ∈ I+, then #i exhibits H≥i−1 as an open substack in a Pn−1-bundle over
H≥i .

(H−) If i ∈ I−, then #i is an isomorphism.
(H±) If i ∈ I±, then #i is an open immersion.

We next establish each of these statements.
Proof of (H0). When i ∈ I0, Di−1 = Di . We write the modification Fi−1 ��� Fi

as

(9.2)

Here both arrows have cokernel of length one supported at the labelled points. Such
modifications of Fi are parametrized by a hyperplane H in the fiber Fi |σ(x′

i )
. The

requirement that ti : L(Di) → Fi should land in F �
i−1/2 is equivalent to the (closed)

condition that H should contain the line given by the image of L(Di)|σ(x′
i )

. This cuts

out a Pn−2 in the space of hyperplanes H ⊂ Fi |σ(x′
i )

. The further requirement that

ti−1 : L(Di) →F �
i−1/2 → Fi−1 be saturated is an open condition.

This argument globalizes in the evident way, exhibiting that #i as an open sub-
stack in a Pn−2-bundle. This applies similarly for the analogous arguments below for
the other cases.
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Proof of (H+). When i ∈ I+, we have Di−1 = Di − σ(x′
i ). We write the modifi-

cation of Fi as in (9.2). This time the choice of the Fi ← F �
i−1/2 is the open subset

of those hyperplanes H ∈ P(Fi |σ(x′
i )

) that do not contain the image of L(Di)|σ(x′
i )

.

The requirement that L(Di−1) = L(Di − σ(x′
i )) → F �

i−1/2 → Fi−1 be saturated at
x′

i imposes a further open condition.
Proof of (H−). When i ∈ I−, we have Di−1 = Di +x′

i . We write the modification
as

(9.3)

where both arrows have cokernel of length one supported at the labelled points. Now
ti : L(Di) → Fi is required to extend to L(Di + x′

i ) → F�
i−1/2. This determines the

upper modification Fi → F�
i−1/2 uniquely, which in turn determines the lower mod-

ification F�
i−1/2 ← Fi−1 as well. We get a map t ′i−1 : L(Di−1) = L(Di + x′

i ) →
F�

i−1/2. We claim that t ′i−1 automatically lands in Fi−1. Indeed, the claim is equiva-
lent to saying that under the pairing between Fi |x′

i
and Fi |σ(x′

i )
, the images of ti (x

′
i )

and ti (σ (x′
i )) pair to zero. The latter statement is equivalent to saying that the induced

Hermitian map a′
i : L(Di) → σ ∗(L(Di))

∨ vanishes at x′
i . But we know that the divi-

sor of a′
i is ν∗Da − Di − σ(Di). Since Di−1 = Di + x′

i satisfies ν(Di−1) ≤ Da by
assumption, we see that ν∗Da − Di − σ(Di) ≥ x′

i + σ(x′
i ), hence a′

i is guaranteed to
vanish at x′

i and σ(x′
i ). This shows that there is a unique lifting of any point of H≥i

to H≥i−1, hence #i is an isomorphism.
Proof of (H±). When i ∈ I±, we have Di + x′

i = Di−1 + σ(x′
i ). We write the

modification as in (9.3). As in the case (H−), the requirement that ti : L(Di) → Fi

should extend to L(Di + x′
i ) → F�

i−1/2 determines the modification. Then we auto-
matically get a map ti−1 : L(Di−1) = L(Di + x′

i − σ(x′
i )) → Fi−1; the requirement

that ti−1 be saturated is an open condition. Therefore #i is an open immersion in this
case.

(3) By (2) we have

dimZ[D•] ≤ (n − 1)|I+| + (n − 2)|I0| + |I0| = (n − 1)(|I+ ∪ I0|) ≤ r(n − 1).

Equality holds only if I− and I± are empty. However, by degree reasons we have
|I+| = |I−|, so in the equality case we must have I+ = ∅ as well. We conclude that
equality can only be achieved if I0 = {1, 2, . . . , r}; in other words, all Di must be the
same. In particular, since Dr = τ D0, this forces D0 to be defined over k. �

The Lemma below, a slight variant of [14, Lemma 2.13], was used above.

Lemma 9.3 (Variant of [14, Lemma 2.13]) Let W,Z,T be schemes of finite type over
k. Let Z(1) be the Frobenius twist of Z (i.e., the pullback of Z under the q-Frobenius
Spec k → Spec k). Let h̃ = (h1, hT ) : W → Z(1) ×T be smooth of relative dimension
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d , and h0 : W → Z be an arbitrary map. Define V as the fibered product

Then each fiber of the composition map V → W
hT−→ T has dimension ≤ d .

Proof Restricting W over a point t ∈ T (k), we reduce to the case T itself is the
point Spec k. We may assume Z = Spec R where R = k[x1, . . . , xl]/I . Let R(1) =
k ⊗k R ∼= k[ξ1, . . . , ξl]/I (1) be the base change of R under Frq , where ξi = 1 ⊗ xi .
Since h1 : W → Z(1) is smooth of relative dimension d , by Zariski localizing we
may assume W = k[ξ1, . . . , ξl, y1, . . . , ym+d ]/(I (1), r1, . . . , rm), with (

∂ri

∂yj
)m
j=1 hav-

ing rank m (ri ∈ k[ξ1, . . . , ξl, y1, . . . , ym+d ]). Under h0 : W → Z, the coordinates
xi of Z pullback to functions f i on W , 1 ≤ i ≤ l. We lift fi to polynomials
fi ∈ k[ξ1, . . . , ξl, y1, . . . , ym+d ].

By definition, V has the form

V ∼= Spec
k[ξ1, . . . , ξl, y1, . . . , ym, ym+1 . . . , ym+d ]

(I (1)(ξ), g1, . . . , gl, r1, . . . , rm)

where gi = ξi − f
q
i . In particular, V is a closed subscheme of

U := Spec
(
k[ξ1, . . . , ξl, y1, . . . , ym, ym+1 . . . , ym+d ]/(g1, . . . , gl, r1, . . . , rm)

)
.

The Jacobian matrix for the defining equations of U has the form
⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂gi

∂ξj

l

j=1

∂gi

∂yj

m

j=1

∂gi

∂yj

m+d

j=m+1

∂ri

∂ξj

l

j=1

∂ri

∂yj

m

j=1

∂ri

∂yj

m+d

j=m+1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
(

Idl 0 0
∗ invertiblem ∗

)

,

which evidently has rank l + m. Hence U is smooth of dimension d . Since V ↪→ U ,
dim V ≤ d . �

9.2 The case m = 1 and a = 0

We keep the notations from §9.1. In this subsection we extend the discussion in §9.1
to the case a = 0. Fix a line bundle L ∈ Pic(X′). Recall from Definition 7.4 that
Zr
L(0)◦ is the moduli stack classifying hermitian shtukas ({x′

i}, {Fi}) together with

compatible maps {L ti−→ Fi}) with ti injective (fiberwise over the test scheme S) and
the image of ti being isotropic. In this subsection, let

Z := Zr
L(0)◦

k
.

If n = 1 then Zr
L(0)◦ = ∅. We always assume n ≥ 2 below.
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9.2.1 Indexing set for strata

Let I0 � I+ � I− be a partition of {1, 2, . . . , r} such that |I+| = |I−|. We denote this
partition simply by I•. For any N ∈ Z≥0, define D(N; I•) to be the moduli space of
sequences of effective divisors (Di)0≤i≤r on X′

k
such that

(1) deg(D0) ≤ N .
(2) For ? = 0,+ or −, and i ∈ I?, the pair (Di−1,Di) belongs to the corresponding

Case (?) listed in the beginning of §9.1 (for some x′
i ∈ X′

k
in the case ? = + or

−).
(3) Dr = τ D0.

We have a map recording the points x′
i for i ∈ I+ ∪ I−:

(π+,π−) :D(N; I•) → (X′
k
)I+ × (X′

k
)I− .

Lemma 9.4 The map π+ :D(N; I•) → (X′
k
)I+ is quasi-finite.

Proof For a fixed geometric point (x′
i )i∈I+ ∈ (X′

k
)I+(k), its fiber in D(N; I•) consists

of (D0, {x′
i}i∈I−) such that degD0 ≤ N and

D0 +
∑

i∈I+
σ(x′

i ) = τ D0 +
∑

i∈I−
x′

i . (9.4)

Let v ∈ |X′| be a closed point that intersects suppD0. If deg(v) > N , then D0 can-
not contain all geometric points over v and hence there exists a geometric point y|v
such that y ∈ supp τ D0 but y /∈ suppD0. By (9.4), y = σ(x′

i ) for some i ∈ I+. There-
fore points in D0 are either over closed points of degree ≤ N , or in the Galois orbit
of σ(x′

i ) for some i ∈ I+. This leaves finitely many possibilities for D0, hence for
{x′

i}i∈I− as well. �

9.2.2 Definition of strata

For a partition I = (I0, I+, I−) of {1, 2, . . . , r}, define Z[N; I•] to be the stack clas-
sifying

({Di}0≤i≤r , ({x′
i}1≤i≤r , {Fi}0≤i≤r ) ∈ Hkr

U(n), {L
ti−→ Fi}0≤i≤r )

such that {Di} ∈ D(N; I•) with image {x′
i}i∈I? under π? (? = +,−), and ti extends to

a saturated embedding L(Di) ↪→Fi . We have a map

π[N; I•] : Z[N; I•] → (X′
k
)I0 ×D(N; I•).

The following is the analog of Proposition 9.1 when a = 0.

Proposition 9.5 Let n ≥ 2.

(1) For varying N ∈ Z≥0 and partitions I• of {1, 2, . . . , r} such that |I+| = |I−|, the
substacks Z[N; I•] give a partition of Z .
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(2) The fibers of the map π[N; I•] have dimension ≤ (n − 1)|I+| + (n − 2)|I0|.
(3) We have dimZ[N; I•] ≤ r(n − 1). Moreover, when n ≥ 3, the equality can only

be achieved when I0 = {1, 2, . . . , r}, i.e., all Di are equal to the same divisor of
X′ defined over k.

Proof (1) is similar to Proposition 9.1(1), except we have to argue that the strata
are only non-empty for |I+| = |I−|, and that Case (±) cannot appear for points in
Z = Zr

L(0)◦. The first statement follows from the assumption that Dr = τ D0 has
the same degree as D0. For the second statement, suppose Case (±) happens for the
modification

Fi−1 ←F �
i−1/2 → Fi ,

and let H ⊂ Fi−1,x′
i

be the hyperplane that is the image of F �
i−1/2. Then H⊥ ⊂

Fi−1,σ (x′
i )

is the line along which the upper modification F �
i−1/2 ↪→Fi is performed.

Let �x′
i

(resp. �σ(x′
i )

) be the image of L(Di−1) → Fi−1 at x′
i (resp. at σ(x′

i )). Since
the image of L(Di−1) is isotropic (because a = 0), (�x′

i
, �σ(x′

i )
) = 0 under the pairing

between Fi−1,x′
i

and Fi−1,σ (x′
i )

. The condition Di +x′
i = Di−1 +σ(x′

i ) happens only

if �x′
i
�⊂ H and �σ(x′

i )
= H⊥. This contradicts the fact that (�x′

i
, �σ(x′

i )
) = 0.

(2) is proved in the same way as Proposition 9.1(2).
(3) Applying (2) and Lemma 9.4 we get

dimZ[N; I•] = (n − 1)|I+| + (n − 2)|I0| + |I0| + dimD(N; I•)

≤ (n − 1)|I+| + (n − 1)|I0| + |I+| = (n − 1)|I0| + n|I+|.
Since n ≥ 2, we have n ≤ 2(n − 1), therefore the above is ≤ (n − 1)(|I0| + 2|I+|) =
r(n − 1). When n ≥ 3, we have strict inequalities n < 2(n − 1), so equality can only
be achieved when I+, hence I−, are all empty. �

10 Comparison of two cycle classes

The goal in this section is to show the following theorem.

Theorem 10.1 Let E ∈ BunGL′
n
(k) and a ∈ AE (k). Let s : E ′ = ⊕n

i=1Li ↪→ E be a
good framing of (E, a) in the sense of Definition 7.15. Let a′ : E ′ → σ ∗(E ′)∨ be the
Hermitian map induced from a. Then we have an equality in the Chow group

ζ r
L1,...,Ln

(a′)|Zr
E (a) = [ShtrM(n,n)]|Zr

E (a) ∈ Ch0(Zr
E (a)). (10.1)

Here the restriction on the RHS is via (8.3), noting that Zr
E (a)◦ = Zr

E (a), and the
class [ShtrM(n,n)

] is as in Definition 8.16.
In particular, the cycle class [Zr

E (a)] as in Definition-Proposition 7.18 is well-
defined (i.e., independent of the choice of a good framing).

Below we consider the case where X′ is geometrically connected. At the end of
this section (§10.5) we comment on how to modify the argument in the case X′ =
X
∐

X or X′ = Xk′ , where k′/k is the quadratic extension.
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10.1 First reductions

For a vector bundle E on X′ let μmin(E) ∈ Q be the smallest slope that appears in the
Harder-Narasimhan filtration of E . For E of rank n and a ∈ AE (k), a good framing
s : ⊕n

i=1Li ↪→ E for (E, a) is called very good if it satisfies the additional condition

(3) μmin(E) > max{degLi + 2g′ − 1}1≤i≤n.

Most of the work in this section will be devoted to proving the slightly weaker
statement below.

Theorem 10.2 Suppose X′ is connected. Then the identity (10.1) holds if s : E ′ =
⊕n

i=1Li ↪→ E is a very good framing of (E, a).

Lemma 10.3 Theorem 10.2 implies Theorem 10.1.

Proof Choose effective divisors Di on X′ (1 ≤ i ≤ n) such that ν(D1 + · · · + Dn) is
multiplicity-free and disjoint from ν−1(Da). Let L′

i = Li (−Di). When the Di ’s have
sufficiently large degree, the resulting map

s′ : ⊕n
i=1L′

i ↪→ ⊕n
i=1Li ↪→ E

is a very good framing. Let a′′ be the induced Hermitian map ⊕L′
i → σ ∗(⊕L′

i )
∨. By

Theorem 10.2 we have

ζ r
L′

1,...,L′
n
(a′′)|Zr

E (a) = [ShtrM(n,n)]|Zr
E (a).

Therefore, to prove (10.1) it suffices to show

ζ r
L1,...,Ln

(a′)|Zr
E (a) = ζ r

L′
1,...,L′

n
(a′′)|Zr

E (a) ∈ Ch0(Zr
E (a)).

Let U ′ be the complement of ∪n
i=1 supp(Di + σDi) in X′. By construction,

U ′ contains ν−1(Da), therefore Zr
E (a)|U ′ r = Zr

E (a) by Lemma 7.12. Let ζi =
[Zr

Li
(a′

ii )
◦]|U ′ r ∈ Chr(n−1)(Zr

Li
(a′

ii )
◦|U ′ r ). Similarly define ζ ′

i using (L′
i , a′′

ii ). Then
it suffices to show the equality

(ζ1 · ζ2 · · · · · ζn)|Zr
E (a) = (ζ ′

1 · ζ ′
2 · · · · · ζ ′

n)|Zr
E (a) ∈ Ch0(Zr

E (a)), (10.2)

where the intersection products are taken over ShtrU(n) |U ′ r . Applying Lemma 7.8 to
each injection L′

i ↪→ Li , we see that Zr
Li

(a′
ii )|U ′ r ↪→Zr

L′
i

(a′′
ii )|U ′ r is open and closed.

Therefore Zr
Li

(a′
ii )

◦|U ′ r ↪→ Zr
L′

i

(a′′
ii )

◦|U ′ r is open. This shows that the fundamental

class ζi is the open restriction of ζ ′
i to Zr

Li
(a′

ii )
◦|U ′ r . The equality (10.2) then follows.

�

10.2 Auxiliary moduli spaces

Let d = (di)1≤i≤n ∈ Zn
≥0 and e ∈ Z≥0. Write d =∑di .

Recall that Me ⊂ M(n,n) is the open-closed substack where χ(X′,E) = −e. Let
Md be the moduli stack classifying ({Li}1≤i≤n, (F , h), {t ′i : Li → F}1≤i≤n) where
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• Li is a line bunde on X′ with χ(X′,Li ) = −di for 1 ≤ i ≤ n;
• (F , h) ∈ BunU(n) satisfying

μmin(F) > max{−di + 3g′ − 2}1≤i≤n. (10.3)

• For each 1 ≤ i ≤ n, t ′i : Li → F is an injective map (fiberwise over the test
scheme).

We define Hkr
Md

to be the moduli stack classifying

({Li}1≤i≤n, ({x′
i}1≤i≤r , {(Fj , hj )}0≤j≤r ) ∈ Hkr

U(n), {t ′ij : Li →Fj })
where Li are the same as in Md , each Fj satisfies the analogue of (10.3) with F
replaced by Fj , and fiberwise injective maps t ′ij : Li → Fj are compatible with the
isomorphisms between Fj−1 and Fj away from x′

i .

Lemma 10.4 The stacks Md and Hk1
Md

are smooth stacks of pure dimension dn −
(n2 − 2n)(g − 1).

Proof We first prove the statement for Md . Consider the map γd : Md →
∏n

i=1 Pic−di+g′−1
X′ ×BunU(n) sending ({Li}, (F , h), {ti}) to ({Li}, (F , h)). For

(F , h) ∈ BunU(n) and Li ∈ Pic−di+g′−1
X′ , the condition μmin(F) ≥ max{−di + 3g′ −

2}1≤i≤n = max{degLi + 2g′ − 1}1≤i≤n guarantees that Ext1(Li ,F) = Hom(F ,Li ⊗
ωX′)∨ = 0. Noting that degF = n(g′ − 1), the Riemann-Roch formula implies that
γd exhibits Md as an open substack of a vector bundle of rank dim Hom(⊕Li ,F) =
−n
∑

i degLi = dn − n2(g′ − 1) over the base. In particular, Md is smooth and

equidimensional. Since dim Pic−di+g′−1
X′ = g′ − 1 and dim BunU(n) = n2(g − 1), we

conclude that

dimMd = dn − n2(g′ − 1) + n(g′ − 1) + n2(g − 1) = dn − (n2 − 2n)(g − 1).

The argument for Hk1
Md

is similar. The natural map

Hk1
Md

→
n∏

i=1

Pic−di+g′−1
X′ ×Hk1

U(n)

exhibits Hk1
Md

as an open substack of a vector bundle of rank dim Hom(⊕Li ,F0 ∩
F1) = dn − n (using that deg(F0 ∩ F1) = n(g′ − 1) − 1) over the base. Here we
need the stronger inequality μmin(F0) > max{−di +3g′ −2} to guarantee μmin(F0 ∩
F1) ≥ max{−di + 3g′ − 2}. In particular, Hk1

Md
is smooth and equidimensional, and

dim Hk1
Md

= dn − n − n2(g′ − 1) + n(g′ − 1) + dim Hk1
U(n)

= dn − n − 2n2(g − 1) + 2n(g − 1) + n + n2(g − 1) = dimMd,

as desired. �
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Let Md,e be the moduli stack of ({Li}1≤i≤n,E,F , h, s, t) where

• Li ∈ PicX′ satisfies χ(X′,Li ) = −di for i = 1, . . . , n;
• E ∈ BunGL′

n
satisfies χ(X′,E) = −e;

• (F , h) ∈ BunU(n);
• t : E →F is an injective map;
• s : ⊕n

i=1Li → E is a very good framing for (E, a), where a = σ ∗t∨ ◦ h ◦ t is the
induced Hermitian map on E .

Note that being a very good framing requires −di < μmin(E) − (3g′ − 2) for all i,
which imposes an open condition on E . We view Md,e as a correspondence

Md,e

w1 w2

Md Me .

(10.4)

Here w1 records ⊕n
i=1Li

t◦s−→ F and w2 records E t−→ F .
We denote the Hitchin bases for Md,Me and Md,e by Ad , Ae and Ad,e re-

spectively. Here Ad parametrizes ({Li}1≤i≤n, a′ = (a′
ij )) (where a′

ij : Lj → σ ∗L∨
i )

such that a′ : ⊕Li → σ ∗(⊕Li )
∨ is an injective Hermitian map. The base Ae classi-

fies (E, a) with a an injective Hermitian map. The base Ad,e is the moduli stack of
({Li}1≤i≤n,E, s, a) where (E, a) ∈ Ae, s : ⊕n

i=1Li → E is a very good framing of
(E, a) and Li ∈ PicX′ with χ(X′,Li ) = −di . We view Ad,e as a correspondence

Ad,e

u1 u2

Ad Ae .

(10.5)

We have Hitchin maps

fd : Md → Ad,

fe : Me → Ae,

fd,e :Md,e → Ad,e.

These maps together give a map of correspondences (10.4) to (10.5). Note fd is not
necessarily proper because we have imposed an open condition on the minimal slope
of F .

Similarly we define the Hecke version Hkr
Md,e

of Md,e as the moduli stack of

({x′
i}1≤i≤r , {E → Fi}0≤i≤r ) ∈ Hkr

Me
together with a very good framing s : ⊕Li ↪→
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E for (E, a) with χ(X′,Li ) = −di . Again we view Hkr
Md,e

as a correspondence

Hkr
Md,e

h1 h2

Hkr
Md

Hkr
Me

.

Lemma 10.5 The maps w1, u1 and h1 are étale.

Proof We first prove that u1 is étale. Let (Xd−e × Xe)
♥ be the open subscheme of

divisors (D1,D2) ∈ Xd−e × Xe such that D1 is multiplicity-free and disjoint from
D2; let (X′

d−e × Xe)
♥ be the preimage of (Xd−e × Xe)

♥ in X′
d−e × Xe. We have a

map α : X′
d−e ×Xe → Xd sending (D′

1,D2) to ν(D1)+D2. Let α♥ be the restriction
of α to (X′

d−e × Xe)
♥. By factorizing α♥ as the composition

(X′
d−e × Xe)

♥ νd−e×Id−−−−→ (Xd−e × Xe)
♥ add−−→ Xd

we see that α♥ is étale. From the definition we have a map

j = (u1, j ′
d−e, je) : Ad,e → Ad ×Xd

(X′
d−e × Xe)

♥.

where j ′
d−e : Ad,e → X′

d−e sends ({Li},⊕Li
s−→ E, a) to Div(s) (the divisor of

det(s)) and je : Ad,e → Xe sends it to Da (see Definition 7.3). The map Ad → Xd

used in the fiber product records the divisor Da′ of the Hermitian map a′ on
⊕Li . We claim that j is an open immersion. Indeed, given ({Li}, a′) ∈ Ad and
(D′

1,D2) ∈ (X′
d−e × Xe)

♥ such that ν(D1) + D2 = Da′ , by the disjointness of
D′

1, σ (D′
1) and ν−1(D2), there is one and only one coherent sheaf E such that

⊕Li ⊂ E ⊂ σ ∗(⊕Li )
∨, E/ ⊕ Li is supported on D′

1, and σ ∗(⊕Li )
∨/E is supported

away from D′
1. This would give a very good framing of E if the open condition

μmin(E) > max{−di + 3g′ − 2}1≤i≤n is satisfied. This shows that j is an open im-
mersion. Since α♥ is étale, we conclude that Ad,e is étale over Ad .

To show w1 is étale, we observe that Md,e
∼= Md ×Ad

Ad,e . Since u1 is étale, so
is w1.

Finally, Hkr
Md,e

is the open substack of Hkr
Md

×Ad
Ad,e where the legs avoid

Div(s). Since u1 is étale, so is h1. �
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10.3 Auxiliary Hitchin shtukas

We define ShtrMd
and ShtrMd,e

as the fiber product

ShtrMd
Hkr

Md

(pr0,prr )

ShtrMd,e
Hkr

Md,e

(pr0,prr )

Md

(Id,Fr)
Md ×Md Md,e

(Id,Fr)
Md,e ×Md,e

(10.6)

The maps wi and hi induce maps

ShtrMd,e

u1 u2

ShtrMd
ShtrMe

(10.7)

The stack ShtrMd,e
decomposes into a disjoint union of open-closed substacks indexed

by ({Li},⊕Li
s−→ E, a) ∈Ad,e(k)

ShtrMd,e
=

∐

(⊕Li→E,a)∈Ad,e(k)

Zr
E (a).

Correspondingly, the diagram (10.7) decomposes into the disjoint union indexed by
Ad,e(k) of diagrams of the form

Zr
E (a)

u1 u2

Zr
⊕Li

(a′)♥ Zr
E (a)

Here Zr
⊕Li

(a′)♥ ⊂ Zr
⊕Li

(a′) (where a′ is the Hermitian map on ⊕Li induced from
a) is cut by the open condition μmin(Fj ) > max{−di + 3g′ − 2} for all 0 ≤ j ≤ r .
From this description and Corollary 7.17, we see that:

Lemma 10.6 The map u1 (resp. u2), when restricted to each connected component of
ShtrMd,e

, is an isomorphism onto a connected component of ShtrMd
(resp. ShtrMe

).

10.4 Zero cycles on auxiliary Hitchin shtukas

Similar to the definition of [ShtrMe
] given in §8.6, we define 0-cycles supported on

ShtrMd,e
and ShtrMd

as follows.
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We rewrite ShtrMd
as the fiber product

ShtrMd
(Hk1

Md
)r ×Md

(pr0,pr1)r×�

(Md)r+1
�Md

(Md)2r+2

Here �Md
= �r

Md
and the vertical maps are defined as in Definition 8.15. By the

smoothness of Hk1
Md

and Md proved in Lemma 10.4 and the dimension calculation
there, we define

[ShtrMd
] := �!

Md
[(Hk1

Md
)r ×Md ] ∈ Ch0(ShtrMd

).

Similarly, using the Cartesian diagram

ShtrMd,e
(Hk1

Md,e
)r ×Md,e

(pr0,pr1)r×�

(Md,e)
r+1

�Md,e

(Md,e)
2r+2

(10.8)

and the smoothness and dimension calculations of Hk1
Md,e

and Md,e (which follow
from Lemma 10.5 and Lemma 10.4), we define

[ShtrMd,e
] := �!

Md,e
[(Hk1

Md,e
)r ×Md,e] ∈ Ch0(ShtrMd,e

).

Lemma 10.7 We have u∗
1[ShtrMd

] = [ShtrMd,e
] ∈ Ch0(ShtrMd,e

).

Proof This is because the maps w1 and h1 are both étale by Lemma 10.5. �

Lemma 10.8 We have u∗
2[ShtrMe

] = [ShtrMd,e
] ∈ Ch0(ShtrMd,e

).

Proof The diagram (10.8) is obtained from (8.6) (for Md replaced by Me) by base
changing termwise along the map of the following two Cartesian diagrams induced
by u2 :Ad,e →Ae:

Ad,e(k) (Ad,e)
r+1

�r+1

Ae(k) (Ae)
r+1

�r+1

(Ad,e)
r+1

�Ad,e

(Ad,e)
2r+2 (Ae)

r+1
�Ae

(Ae)
2r+2
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Note that u2 : Ad,e → Ae is smooth since it exhibits Ad,e as an open substack of
a vector bundle over Ae (using the condition μmin(E) > max{−di + 3g′ − 2}). We
conclude by applying Proposition 10.9 below. �

10.4.1 Compatibility of cycle classes under Hitchin base change

To state the next result, we need some notations. Suppose we are given:

• stacks S,M and H that are locally of finite type over k and can be stratified into
locally closed substacks that are global quotient stacks;

• the stack M is smooth of pure dimension N with a map f : M → S;
• a map h̃ : H → Sr ×�r,S2r M2r (the fiber product uses the r-fold product of the

diagonal �r : Sr → S2r ).

Define h : H → M2r as h̃ followed by the second projection. Form the Cartesian
square

ShtH H × M

h×�

Mr+1
�M

M2r+2

Let u : S′ → S be a smooth representable morphism of pure relative dimension D.
Let M ′ = M ×S S′, H ′ = H ×Sr S′ r with natural maps h̃′ : H ′ → S′ r ×�r,S′2r M ′2r .
Let h′ : H ′ → M ′2r be the resulting map. Let uM : M ′ → M and uH : H ′ → H be
the natural maps. Form the Cartesian square

Sht′H H ′ × M ′

h′×�

M ′ r+1
�M ′

M ′2r+2

(10.9)

Since Sr+1 ×�S,S2r+2,�r+1 Sr+1 = S(k), ShtH decomposes as

ShtH =
∐

s∈S(k)

ShtH (s).

Similarly Sht′H decomposes into the disjoint union of Sht′H (s′) indexed by s′ ∈ S′(k).
Then the natural map uSht : Sht′H → ShtH lifts to an isomorphism

Sht′H = ShtH ×S(k)S
′(k) =

∐

s′∈S′(k)

ShtH (u(s′)).

Proposition 10.9 Let ζ ∈ Ch∗(H) and [M] be the fundamental class of M . Then we
have

u∗
Sht�

!
M(ζ × [M]) = �!

M ′u∗
H (ζ × [M]) ∈ Ch∗−rN (Sht′H ).
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Proof Consider first the diagram where all squares are Cartesian

ShtH ×Sr S′ r

v

H ′ × M ′

uH ×uM

S′ r+1

ur+1

ShtH H × M

h×�

Sr+1

Mr+1
�M

M2r+2

Here the top vertical arrows are smooth and representable. By the compatibility of
Gysin map with flat pullback [10, Theorem 2.1.12(ix)], we have

v∗�!
M(ζ × [M]) = �!

Mu∗
H (ζ × [M])

∈ Ch∗−rN+(r+1)D(ShtH ×Sr+1S
′ r+1). (10.10)

Here we recall that D is the relative dimension of u. We have

ShtH ×Sr+1S
′ r+1 =

∐

s∈S(k)

ShtH (s) × (S′
s)

r+1 (10.11)

where S′
s = u−1(s), which is a smooth scheme over k. Factorize uSht as the compo-

sition

From (10.11) we see that i is a regular embedding of codimension (r + 1)D. Now v

and uSht are both smooth. Applying [10, Theorem 2.1.12(ix)] we have u∗
Sht(−) = i!v∗

as maps Ch∗(ShtH ) → Ch∗(Sht′H ). Therefore

u∗
Sht�

!
M(ζ × [M]) = i!v∗�!

M(ζ × [M]) ∈ Ch∗−rN (Sht′H ). (10.12)

On the other hand, consider the following diagram where all squares are Carte-
sian

Sht′H
i

ShtH ×Sr+1S′ r+1 H ′ × M ′

h′×�

M ′ r+1
�1

Mr+1 ×�S◦f r+1,S2r+2 S′2r+2
�2

M ′2r+2

u2r+2
M

Mr+1
�M

M2r+2
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Here �1 is the base change of �S′ and �2 is the base change of �M . The
outer square of the top rows give (10.9). By the transitivity of Gysin maps, we
have

�!
M ′u∗

H (ζ × [M]) = �!
1�!

2u∗
H (ζ × [M]).

Since u2r+2
M is smooth representable, we have �!

2u∗
H (ζ × [M]) = �!

Mu∗
H (ζ × [M]).

Hence

�!
M ′u∗

H (ζ × [M]) = �!
1�!

Mu∗
H (ζ × [M]).

Since both �1 and i are regular embeddings of the same codimension, we have
�!

1(−) = i!(−) as maps Ch∗(ShtH ×Sr+1S′ r+1) → Ch∗−(r+1)D(Sht′H ), by [10, The-
orem 2.1.12(xi)] and [5, Theorem 6.2(c)]. Therefore

�!
M ′u∗

H (ζ × [M]) = i!�!
Mu∗

H (ζ × [M]) ∈ Ch∗−rN (Sht′H ). (10.13)

Combining (10.10), (10.12) and (10.13) we conclude

u∗
Sht�

!
M(ζ × [M]) = i!v∗�!

M(ζ × [M]) = i!�!
Mu∗

H (ζ × [M])
= �!

M ′u∗
H (ζ × [M]) ∈ Ch∗−rN (Sht′H ). �

Lemma 10.10 Let ({Li}1≤i≤n, a′) ∈ Ad(k) and E ′ := ⊕n
i=1Li . Then we have an

equality

[ShtrMd
]|Zr

E ′ (a′) = ζ r
L1,...,Ln

(a′) ∈ Ch0(Zr
E ′(a′)).

For the definition of ζ r
L1,...,Ln

(a′) see §7.8.

Proof We will apply the Octahedron Lemma [28, Theorem A.10] to a diagram of
moduli stacks in our setting. Since the Octahedron Lemma requires certain stacks in
question to be Deligne-Mumford, we need to rigidify our moduli stacks to satisfy
these requirements. This is a minor technical issue which we encourage the reader to
ignore: it is simply because the Octahedron Lemma in [28] is not stated and proved
in the most general form.

Let v ∈ |X′|. Let Pv be the moduli space (a scheme!) of line bundles on X′ together
with a trivialization of their fibers over v. Let Gv = Reskv

k Gm. Then Pv → PicX′ is a
Gv-torsor.

Now for each moduli stacks Md ,Ad and Hkr

Ṁd
that involve an n-tuple of line

bundles {Li}, we write Ṁd , Ȧd and Ḣk
r

Ṁd
to mean their rigidified versions where

Li ∈ PicX′ is replaced by L̇i ∈ Pv . Note that we do not impose any compatibility
condition between the rigidifcation on Li and the rest of the structures classified by
these moduli stacks. Define ShtrṀd

using the dotted version of the left one of the

Cartesian diagrams in (10.6).
Note that Ṁd, Ȧd and Ḣk

r

Ṁd
are now schemes, and they are Gn

v -torsors over their
undotted counterparts. The dotted version of Lemma 10.4 remains valid if we add
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n deg(v) = dim Gn
v to the dimensions. Also, ShtrṀd

� ShtrMd
×Ad (k)Ȧd(k). Since

Ȧd(k) → Ad(k) is surjective, to prove the Lemma, it suffices to prove its dotted
version: for any ({L̇i}, a′) ∈ Ȧd(k), writing E ′ := ⊕n

i=1Li , then there is an open and
closed embedding Zr

E ′(a′) ↪→ ShtrṀd
(using the rigifications L̇i of Li ); then we shall

prove

[ShtrṀd
]|Zr

E ′ (a′) = ζ r
L1,...,Ln

(a′) ∈ Ch0(Zr
E ′(a′)). (10.14)

For i = 1, . . . , n, let Ndi
be the open substack of M(1, n) consisting of points

(L ↪→ F , h) where χ(X′,L) = −di and μmin(F) > −di + 3g′ − 2. Similarly define
Hk1

Ndi
and ShtrNdi

; these are open substacks of Hk1
M(1,n)

and ShtrM(1,n)
respectively.

Let Ṅdi
, Hk1

Ṅdi

be the rigidified versions of Ndi
and Hk1

Ndi
where L ∈ PicX′ is re-

placed by L̇ ∈ Pv . Let ωi : Ṅdi
→ BunU(n) and ω̃i : Hk1

Ṅdi

→ Hk1
U(n) be the forgetful

maps.
We shall apply the Octahedron Lemma [28, Theorem A.10] to the following dia-

gram:

(Hk1
U(n))

r × BunU(n)

�

(pr0,pr1)r ×�

∏n
i=1((Hk1

U(n))
r × BunU(n))

∏
((pr0,pr1)r ×�)

∏n
i=1((Hk1

Ṅdi

)r × Ṅdi
)

∏
(ω̃r

i ×ωi )

∏
((pr0,pr1)r ×�)

Bun2r+2
U(n)

� ∏n
i=1 Bun2r+2

U(n)

∏n
i=1 Ṅ 2r+2

di

∏
ω2r+2

i

Bunr+1
U(n)

�

�BunU(n)

∏n
i=1 Bunr+1

U(n)

∏
�BunU(n)

∏n
i=1 Ṅ r+1

di

∏
�Ṅdi

∏
ωr+1

i

(10.15)
The fiber products of the three columns are

ShtrU(n)

� ∏n
i=1 ShtrU(n)

∏n
i=1 ShtrṄdi

(10.16)

where

ShtrṄdi

=
∐

L̇i∈Pv(k),
χ(X′,Li )=−di

⎛

⎜
⎝Zr

Li
(0)∗
∐

⎛

⎜
⎝
∐

a′
ii∈ALi

(k)

Zr
Li

(a′
ii )

⎞

⎟
⎠

⎞

⎟
⎠ . (10.17)

Let Md be the moduli stack of ({L̇i},⊕n
i=1Li

t ′−→ F , h) defined similarly as Ṁd

but without the condition that t ′ be injective, only that t ′i = t |Li
be injective. Then

Ṁd ↪→ Md is open. Similarly define Hk1
Md

and ShtrMd
. Note that Md is exactly
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the fiber product of

BunU(n)

� ∏n
i=1 BunU(n)

∏n
i=1 Ṅdi

.

∏
ωi

(10.18)

Similar remarks apply to Hk1
Md

. Therefore the fiber products of the three rows of

(10.15) are

(Hk1
Md

)r ×Md

(pr0,pr1)r×�

M2r+2
d

Mr+1
d

�Md

(10.19)

The common fiber product of (10.16) and (10.19) is ShtrMd
, which decomposes as

a disjoint union over the groupoid B(k) of (L̇i , a′
ii )1≤i≤n where L̇i ∈ Pv(k) with

χ(X′,Li ) = −di and a′
ii : Li → σ ∗L∨

i injective Hermitian. For a point (L̇i , a′
ii )1≤i≤n

of B(k), we have

ShtrMd
|(L̇i ,a

′
ii )1≤i≤n

= Zr
L1,...,Ln

(a′
11, . . . , a′

nn)◦,

where ShtrMd
|(L̇i ,a

′
ii )1≤i≤n

means the pullback of ShtrMd
to Spec k along the corre-

sponding Spec k → B(k).
We check that the assumptions for applying the Octahedron Lemma are satisfied

(the numbering below refers to that in [28, Theorem A.10]).

(1) All members in the diagram (10.15) are smooth and equidimensional. This is
clear for BunU(n) and Hk1

U(n). The same argument as in Lemma 10.4 proves that

Ṅdi
and Hk1

Ṅdi

are smooth of pure dimension din + (n2 − 2n + 2)(g − 1) +
deg(v).

(2) We check that, in forming the fiber products of the middle and bottom rows
and the left and middle columns, the intersections are proper intersections with
smooth equidimensional outcomes with the expected dimension. Here we use
Lemma 6.8 and 6.9 to argue for the left and middle columns. For the rows, the
same argument as in Lemma 10.4 proves that Md and Hk1

Md
are smooth of the

same dimension as Ṁd , which is dn − (n2 − 2n)(g − 1) + n deg(v). This is the
virtual dimension for Md as the fiber product of (10.18), since

n∑

i=1

dimNdi
− (n − 1) dim BunU(n)
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=
n∑

i=1

(
din + (n2 − 2n + 2)(g − 1) + deg(v)

)
− n2(n − 1)(g − 1)

= dn − (n2 − 2n)(g − 1) + n deg(v).

(3) We check the fiber products of the top row and right column of (10.15) sat-
isfy the conditions for [28, A.2.10]. The fiber product of the top row is also
a proper intersection: this follows from the same calculation as for the middle
and bottom rows. The fiber product of the right column is also a proper inter-
section: this uses the decomposition (10.17) and the calculation of the dimen-
sion of Zr

Li
(0)∗ in Proposition 9.5 and the dimension of Zr

Li
(a′

ii )
∗ in Proposi-

tion 9.1.
The only issue is that (Hk1

Md
)r+1 may not be a Deligne-Mumford stack,

which was part of the requirement of [28, A.2.10]. However, we argue that
this is not really an issue. The proof of the Octahedron Lemma allows the
following flexibility: since eventually we only care about the 0-cycles re-
stricted to ShtrṀd

, in the middle steps of forming the fiber products, we

may restrict to open substacks as long as the final fiber product contains
ShtrṀd

and only need check the relevant requirements there. Now in (10.19)

we may restrict to the open substack (Hk1
Ṁd

)r+1 ⊂ (Hk1
Md

)r+1, which is a

scheme.
(4) The same remark as above shows that it suffices to check that the fiber squares

obtained from (10.16) and (10.19), after replacing Md by Ṁd , each satisfy the
condition [28, A.2.8]. Therefore it suffices to check

• ShtrṀd
admits a finite flat presentation in the sense of [28, Definition A.1].

This is true because ShtrṀd
is a scheme.

• The diagonal map � : ShtrU(n) ↪→∏n
i=1 ShtrU(n) is a regular local immersion.

This is true because ShtrU(n) is a smooth Deligne-Mumford stack.

• The map �Ṁd
: Ṁr+1

d → Ṁ2r+2
d is a regular local immersion. This is true

because Ṁd is a smooth equidimensional scheme by the dotted version of
Lemma 10.4.

The conclusion of the (variant of) Octahedron Lemma says that the following two
elements in Ch0(ShtrMd

)

�!
Md

�!
(Hk1

U(n)
)r [

n∏

i=1

(Hk1
Ṅdi

)r ×Ṅdi
] and �!

Shtr
U(n)

(
∏

�Ṅdi
)![

n∏

i=1

(Hk1
Ṅdi

)r ×Ṅdi
]

become the same when restricted to ShtrṀd
. Further restricting to Zr

E ′(a′) we get the

desired identity (10.14). �
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Proof of Theorem 10.2 Restricting the equality in Lemma 10.10 to Zr
E (a), which is

open and closed in Zr
E ′(a′) by Corollary 7.17, we get

ζ r
L1,...,Ln

(a′)|Zr
E (a) = [ShtrMd

]|Zr
E (a). (10.20)

For fixed (⊕Li ↪→ E, a) ∈ Ad,e(k), Zr
E (a) can be viewed as a finite étale cover

of an open-closed substack in ShtrMd
, ShtrMd,e

and ShtrMe
by Lemma 10.6. By

Lemma 10.7 and Lemma 10.8 we have

[ShtrMd
]|Zr

E (a) = [ShtrMd,e
]|Zr

E (a) = [ShtrMe
]|Zr

E (a).

Combining this with (10.20) proves the theorem. �

10.5 Proof of Theorem 10.1 for X′ = X
∐

X or Xk′

Here k′/k is the quadratic extension.
In the case X′ = X

∐
X, we have BunU(n)

∼= BunGLn . We shall identify a Hermi-
tian bundle F on X′ with a pair of vector bundles (F1,F2) equipped with an isomor-
phism F2 ∼= F∨

1 , each living on one copy of X. A vector bundle E on X′ of rank n

corresponds to two rank n vector bundles (E1,E2), each living on one copy of X. Now
AE (k) is the set of injective maps a : E1 → E∨

2 . A good framing s : ⊕n
i=1Li ↪→ E for

(E, a) now consists of line bundles Li = (Li,1,Li,2) (1 ≤ i ≤ n) satisfying the same
conditions in Definition 7.15; it is called very good if it satisfies the additional condi-
tions

(31) μmin(E1) > max{degLi,1 + 2g − 1}1≤i≤n, and
(32) μmin(E2) > max{degLi,2 + 2g − 1}1≤i≤n.

The same argument of Lemma 10.3 shows that it suffices to prove the analogue of
Theorem 10.2, i.e., prove Theorem 10.1 for very good framings.

In both the X′ = X
∐

X and X′ = Xk′ case, we need to modify the definitions
of Md and Md,e as follows. In the definition of Md,e, we use the notion of very
good framing just defined over geometric fibers of X′

S → S (which are of the form
Xs

∐
Xs ). In the definition of Md , we change the inequality (10.3) to two inequalities

over the geometric fibers of X′
S → S

μmin(F1) > max{degLi,1 + 2g − 1}1≤i≤n,

μmin(F2) > max{degLi,2 + 2g − 1}1≤i≤n.

The same inequalities should be imposed in the definition of Ndi
that appear in the

proof of Lemma 10.10. With these changes, the argument for proving Theorem 10.2
goes through.
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11 Local intersection number and trace formula

11.1 Local nature of the intersection problem

Recall from Proposition 7.13 that Zr
E (a) only depends on the Hermitian torsion sheaf

Q = coker(a). In this subsection we show that the 0-cycle class [Zr
E (a)] also only

depends on Q.
Recall the stacks Herm2d = Herm2d(X′/X) and Lagr2d from §4. We have a

self-correspondence Hkr
Lagr2d

of Lagr2d over Herm2d : it classifies (Q, h, {Li}0≤i≤r )

where (Q, h) ∈ Herm2d , Li ⊂ Q are Lagrangian subsheaves such that Li/(Li ∩Li−1)

has length one for 1 ≤ i ≤ r . Define the local version ShtrLagr2d
of ShtrMd

by the Carte-
sian diagram

ShtrLagr2d
Hkr

Lagr2d

(pr0,prr )

Lagr2d

(Id,Fr)
Lagr2d ×Lagr2d

(11.1)

We have a decomposition into open-closed substacks

ShtrLagr2d
=

∐

(Q,h)∈Herm2d (k)

Zr
Q.

Lemma 11.1 The stack Hk1
Lagr2d

is smooth of dimension zero.

Proof We may identify Hk1
Lagr2d

with the moduli stack of (0 ⊂ L′ ⊂ L ⊂ Q, h) where
(L ⊂ Q, h) ∈ Lagr2d and L/L′ has length one. Under the local chart for Herm2d

described in Lemma 4.3, Hk1
Lagr2d

becomes [p/P ], where P ⊂ O2d = O(V ) is the
parabolic subalgebra stabilizing a pair of subspaces L′ ⊂ L with L Lagrangian and
dim L′ = d − 1. This local description implies that Hk1

Lagr2d
is smooth of dimension

zero. �

Rewriting ShtrLagr2d
as the fibered product (cf. Definition 8.15)

ShtrLagr2d
(Hk1

Lagr2d
)r × Lagr2d

(pr0,pr1)r×�

(Lagr2d)r+1
�Lagr2d

(Lagr2d)2r+2

(11.2)

we define a 0-cycle class

[ShtrLagr2d
] := �!

Lagr2d
[(Hk1

Lagr2d
)r × Lagr2d ] ∈ Ch0(ShtrLagr2d

).
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Restricting to Zr
Q we get

[Zr
Q] := [ShtrLagr2d

]|Zr
Q

∈ Ch0(Zr
Q).

Recall the maps gM : Md → Lagr2d and g : Ad → Herm2d defined in §8.4.

We also have a map gHk : Hkr
Md

→ Hkr
Lagr2d

sending ({x′
i}, {E

ti−→ Fi}) to (Q =
coker(a), hQ, {coker(ti)}) (a is the induced Hermitian map on E). The maps gHk, gM
and g exhibit the diagram (8.5) as the pullback of the diagram (11.1) via the base
change g :Ad → Herm2d . In particular we have a natural map

gSht : ShtrMd
→ ShtrLagr2d

.

For fixed (E, a) ∈ Ad(k) with image Q = coker(a) ∈ Herm2d(k), gSht restricts to an
isomorphism to the open-closed subschemes

gSht|Zr
E (a) :Zr

E (a)
∼→ Zr

Q. (11.3)

Proposition 11.2 We have an equality

[ShtrMd
] = g∗

Sht[ShtrLagr2d
] ∈ Ch0(ShtrMd

). (11.4)

Proof Apply Proposition 10.9 to the diagram (11.2), the fundamental class ζ =
[(Hk1

Lagr2d
)r × Lagr2d ] and the base change map u = g : Ad → Herm2d . By Proposi-

tion 8.12, g is smooth. We then have

�!
Md

g∗
Hk[(Hk1

Lagr2d
)r ×Lagr2d ] = g∗

Sht�
!
Lagr2d

[(Hk1
Lagr2d

)r ×Lagr2d ] ∈ Ch0(ShtrMd
).

Since gHk is smooth, g∗
Hk[(Hk1

Lagr2d
)r × Lagr2d ] = [(Hk1

Md
)r × Hk1

Md
]. The above

equality then becomes (11.4). �

Combined with Theorem 10.1, we get a local description of the cycle class
[Zr

E (a)]:

Corollary 11.3 For any (E, a) ∈ Ad(k) with image Q = coker(a) ∈ Herm2d(k),
[Zr

E (a)] is the same as [Zr
Q] under the isomorphism (11.3). In particular,

deg[Zr
E (a)] = deg[Zr

Q].

11.2 Sheaves on Herm2d

To describe the direct image complex Rf∗Q� on Ad , by the Cartesian diagram (8.4),
we first need to understand R(υ2d)∗Q� on Herm2d .

Lemma 11.4 The perverse sheaf R(υ2d)∗Q� on Herm2d is canonically isomorphic to
(SprHerm

2d )Sd (see Proposition 4.5(2)). Here the Sd -action on SprHerm
2d is the restriction

of the Springer Wd -action.
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Proof We have a Cartesian diagram

H̃erm2d

λ2d

ε̃d

C̃ohd(X′)

πCoh
X′,d

Lagr2d

ε′
d

Cohd(X′)

where ε′
d sends (Q, hQ,L) to L and ε̃d sends (Q1 ⊂ · · · ⊂ Qd ⊂ · · · ⊂ Q, h) to

(Q1 ⊂ · · · ⊂ Qd). By proper base change

Rλ2d∗Q�
∼= ε′ ∗

d Sprd,X′ .

In particular, Rλ2d∗Q� carries an action of Sd . Moreover, the induced Sd -action
on SprHerm

2d
∼= R(υ2d)∗Rλ2d∗Q� is the restriction of the Springer Wd -action to

Sd : this can be easily checked over Herm◦
2d , and then the statement holds over

Herm2d since SprHerm
2d is the middle extension from its restriction to Herm◦

2d by
Proposition 4.5(2). Since (Rλ2d∗Q�)

Sd ∼= ε′ ∗
d (Sprd,X′)Sd ∼= Q�, we conclude that

(SprHerm
2d )Sd ∼= R(υ2d)∗(Rλ2d∗Q�)

Sd ∼= R(υ2d)∗Q�, as desired. �

It is an elementary exercise to see that IndWd

Sd
1 decomposes into irreducible repre-

sentations

IndWd

Sd
1 =

d⊕

i=0

ρi (11.5)

where ρi = IndWd

(Z/2Z)d�(Si×Sd−i )
(χi � 1), and χi : (Z/2Z)d

� (Si × Sd−i ) → {±1} is

the character that is nontrivial on the first i factors of (Z/2Z)i , trivial on the rest and
trivial on Si × Sd−i . The decomposition also shows up in [28, §8.1.1].

Recall the notation SprHerm
2d [ρ] from Definition 4.7.

Corollary 11.5 There is a canonical decomposition

R(υ2d)∗Q�
∼=

d⊕

i=0

SprHerm
2d [ρi]. (11.6)

Proof By Lemma 11.4 and Frobenius reciprocity, we have

R(υ2d)∗Q�
∼= HomWd

(IndWd

Sd
1, SprHerm

2d ) = SprHerm
2d [IndWd

Sd
1].

The desired decomposition then follows from (11.5). �

Definition 11.6 Define the graded perverse sheaf on Herm2d(X′/X)

KInt
d (T ) :=

d⊕

i=0

SprHerm
2d [ρi]T i.
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The fundamental class of the self-correspondence Hk1
Lagr2d

of Lagr2d is viewed
as a cohomological correspondence of the constant sheaf on Lagr2d with itself. It
induces an endomorphism (see notation from [28, A.4.1])

(υ2d)![Hk1
Lagr2d

] : R(υ2d)∗Q� → R(υ2d)∗Q�.

Proposition 11.7 The action of (υ2d)![Hk1
Lagr2d

] on R(υ2d)∗Q� preserves the decom-

position (11.6), and it acts on SprHerm
2d [ρi] by multiplication by (d − 2i).

Proof By Proposition 4.5(2), SprHerm
2d [ρi] is the middle extension from its restriction

to Herm◦
2d , it suffices to prove the same statement on Herm◦

2d . Let I ′
d ⊂ X′

d × X′
be the universal divisor {(D ∈ X′

d, y ∈ X′) : y ∈ D}. The maps pr(D,y) = D and
q(D,y) = D − y + σ(y) define the incidence correspondence as in [28, proof of
Proposition 8.3],

(11.7)

Now over Herm◦
2d , the map Herm◦

2d → X◦
d is smooth, and Hk1

Lagr2d
is the pullback

of (11.7). We therefore reduce to checking the statement for the action of [I ′
d ] on

the direct image sheaf of νd : X′
d → Xd , which is done in the proof of [28, Proposi-

tion 8.3]. �

11.3 Lefschetz trace formula

We shall give a slight generalization of the Lefschetz trace formula [28, Proposition
A.12] expressing the intersection number of a cycle with the graph of Frobenius as
a trace. Instead of the graph of Frobenius, we need to intersect along �M : Mr+1 →
M2r+2. Consider the following situation:

• Let S be an algebraic stack locally of finite type over k = Fq . Assume S can be
stratified by locally closed substacks that are global quotients.

• Let M be a smooth equidimensional stack over k = Fq of dimension N with a
proper representable map f : M → S.

• For 1 ≤ i ≤ r , let (pri0, pri1) : Ci → M ×S M be a self-correspondence of M over
S. Assume pri0 is proper and representable.

Form the Cartesian diagram

ShtC (
∏r

i=1 Ci) × M

(pri0,pri1)1≤i≤r

Mr+1
�M

M2r+2 .

(11.8)
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Then ShtC decomposes as

ShtC =
∐

s∈S(k)

ShtC(s)

where ShtC(s) is the fibered product of ShtC → S(k) against s ∈ S(k). For s ∈ S(k),
we write ShtC |s for the fibered product

Then ShtC |s → ShtC(s) is a torsor for Aut(s), and in particular a finite étale cover.
Suppose we are given cycle classes

ζi ∈ ChN(Ci), 1 ≤ i ≤ r.

The cycle class cl(ζi) ∈ HBM
2N (Ci, Q�(−N)) is viewed as a cohomological correspon-

dence between the constant sheaf on M and itself. Therefore it induces an endomor-
phism of Rf!Q� which we denote by f! cl(ζi).

Proposition 11.8 For each s ∈ S(k) we have

deg((�!
M(ζ1 ×· · ·×ζr ×[M]))|ShtC |s ) = Tr(f! cl(ζ1)◦ · · · ◦f! cl(ζr )◦Frs , (Rf!Q�)s).

Proof We first prove the formula when S is a scheme of finite type. In this case M,Ci

are also schemes of finite type over k. Let C = C1 ×M ×· · ·×M Cr be the composition
correspondence, with maps pri : C → M for 0 ≤ i ≤ r . Consider the diagram where
all squares are Cartesian

ShtC C

(pr0,...,prr ,prr )

(
∏r

i=1 Ci) × M

∏
(pri0,pri1)×�

Mr+1

pr0

�1

Mr+2

(pr0,prr+1)

�2

M2r+2

M
(Id,FrM)

M × M

Here

�1(ξ0, . . . , ξr−1, ξr ) = (ξ0, . . . , ξr , FrM(ξ0)),

�2(ξ0, . . . , ξr , ξr+1) = (ξ0, ξ1, ξ1, . . . , ξr , ξr , ξr+1).

We have �M = �2 ◦ �1. Let ζ = �!
2(ζ1 × ζ2 × · · · × ζr × [M]) ∈ ChN(C).
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On the one hand, by the transitivity of the Gysin maps,

�!
M(ζ1 × · · · × ζr × [M]) = �!

1(ζ ) = (Id, FrM)!(ζ ). (11.9)

Applying the Lefschetz trace formula [28, Proposition A.12], we get

deg((Id, FrM)!(ζ )|ShtC |s ) = Tr(f! cl(ζ ) ◦ Fr, (Rf!Q�)s). (11.10)

One the other hand, by a diagram chase, we see that cl(ζ ) is the composition of
the cohomological correspondences cl(ζi) (1 ≤ i ≤ r), hence f! cl(ζ ) ∈ End(Rf!Q�)

is the composition of f! cl(ζ1) ◦ f! cl(ζ2) ◦ · · · ◦ f! cl(ζr ). Combining this fact with
(11.9) and (11.10) we get the desired formula.

Now consider the general case where S is a stack locally of finite type over
k and we aim to prove the formula for s ∈ S(k). We claim that there exists a
scheme S′ of finite type over k and a smooth map u : S′ → S such that u(S′(k))

contains s. Indeed, pick any smooth map u1 : S1 → S with S1 a scheme of fi-
nite type over k, such that s is contained in the image of u. Let s1 ∈ S1(Fqm)

be a point that maps to s. Let (S1/S)m be the m-fold fibered product of S1 over
S, based changed to k. We equip (S1/S)m with the Fr-descent datum given by
(x1, . . . , xm) �→ (Fr(xm), Fr(x1), . . . , Fr(xm−1)). This gives a descent of (S1/S)m to
a scheme S′ over k equipped with a map u : S′ → S which is still smooth since u1
is. Now s1 gives rise to a k-point s′ = (s1, Fr(s1), . . . , Frm−1(s1)) ∈ S′(k) such that
u(s′) = s.

Let M ′ = M ×S S′, C′
i = Ci ×S S′ and let uCi

: C′
i → Ci be the projection. De-

fine Sht′C using the analog of the diagram (11.8) with M and Ci replaced by M ′ and
C′

i . Then Sht′C ∼= ShtC ×S(k)S
′(k). For s′ ∈ S′(k) such that u(s′) = s, we get an iso-

morphism Sht′C |s′
∼→ ShtC |s . Let ζ ′

i = u∗
Ci

ζi . Now we apply Proposition 10.9 to the
diagram (11.8) along the base change map u : S′ → S to get

u∗
Sht�

!
M(ζ1 × · · · × ζr × [M]) ∼= �!

M ′(ζ ′
1 × · · · × ζ ′

r × [M]) ∈ Ch0(Sht′C).

Restricting to Sht′C |s′ ∼= ShtC |s and taking degrees we get

deg(�!
M(ζ1 × · · · × ζr × [M])|ShtC |s )

= deg(�!
M ′(ζ ′

1 × · · · × ζ ′
r × [M])|Sht′C |s′ ). (11.11)

On the other hand, letting f ′ : M ′ → S′, by smooth base change we have

Tr(f! cl(ζ1) ◦ · · · ◦ f! cl(ζr ) ◦ Frs , (Rf!Q�)s)

= Tr(f ′
! cl(ζ ′

1) ◦ · · · ◦ f ′
! cl(ζ ′

r ) ◦ Frs′ , (Rf ′
! Q�)s′). (11.12)

Since the right sides of (11.11) and (11.12) are equal by the scheme case that is al-
ready proven, the left sides of (11.11) and (11.12) are also equal, proving the propo-
sition in general. �

Recall the graded perverse sheaf KInt
d (T ) on Herm2d from Definition 11.6.
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Corollary 11.9 Let (Q, hQ) ∈ Herm2d(k). We have

deg[Zr
Q] = Tr([Hk1

Lagr2d
]r ◦ Fr, (R(υ2d)∗Q�)Q)

=
d∑

i=0

(d − 2i)r Tr(Fr, SprHerm
2d [ρi]Q)

= 1

(log q)r

(
d

ds

)r ∣
∣
∣
s=0

(
qds Tr(Fr,KInt

d (q−2s)Q)
)

.

Proof The first equality is an application of Proposition 11.8 to the case S = Herm2d ,
M = Lagr2d , Ci = Hk1

Lagr2d
and ζi = [Hk1

Lagr2d
]. The second equality follows from

Proposition 11.7. The third one is a direct calculation. �

Combining Corollary 11.9 with Corollary 11.3 we get:

Corollary 11.10 Let (E, a) ∈ Ad(k) with image (Q, hQ) ∈ Herm2d(k). Then we have

deg[Zr
E (a)] = 1

(log q)r

(
d

ds

)r ∣
∣
∣
s=0

(
qds Tr(Fr,KInt

d (q−2s)Q)
)

.

11.4 Symmetry

This subsection is not used in the proof of the main theorem. The graded perverse
sheaf KInt

d (T ) has a palindromic symmetry that we spell out. First, the étale double
covering ν : X′ → X gives a local system ηX′/X on X with monodromy in ±1. It
induces a local system ηd on Xd with monodromy in ±1: its stalk at a divisor x1 +
· · · + xd ∈ Xd(k) is ⊗d

i=1(ηX′/X)xi
. Let

ηHerm
2d := sHerm∗

2d ηd,

where sHerm
2d : Herm2d → Xd is the support map. This is a rank-one local system on

Herm2d with monodromy in ±1.

Lemma 11.11 We have a canonical isomorphism of perverse sheaves on Herm2d :

SprHerm
2d [ρd ] ∼= ηHerm

2d .

Proof By Proposition 4.5(2), SprHerm
2d [ρd ] is the middle extension of its restriction to

the open dense substack Herm◦
2d (preimage of X◦

d ). The same is true for ηd because it
is a local system and Herm2d is smooth. Therefore it suffices to check their equality
over Herm◦

2d , over which both are obtained by pushing out the Wd -torsor (X′d)◦ →
X◦

d along the character χd : Wd → {±1}. �

Lemma 11.12 There is an isomorphism of graded perverse sheaves on Herm2d

T dKInt
d (T −1) ∼= ηHerm

2d ⊗KInt
d (T ).
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Proof The equality amounts to

SprHerm
2d [ρd−i] ∼= ηHerm

2d ⊗ SprHerm
2d [ρi].

Both sides are middle extensions from Herm◦
2d by Proposition 4.5(2), over which

they correspond to representations ρd−i and χd ⊗ ρi of Wd . By definition,

χd ⊗ ρi
∼= χd ⊗ IndWd

Wi×Wd−i
(χi � 1).

Inserting χd |Wi×Wd−i
∼= χi � χd−i to the right side above gives

IndWd

Wi×Wd−i
(χd |Wi×Wd−i

⊗ (χi � 1)) ∼= IndWd

Wi×Wd−i
(1 � χd−i ) ∼= ρd−i .

Lemma 11.13 If (Q, hQ) ∈ Herm2d(k) is the image of some (E, a) ∈ Ad(k), then
Tr(Fr, ηHerm

2d |Q) = 1.

Proof If X′/X is split, then ηHerm
2d is trivial, and there is nothing to prove. Below we

assume X′/X is nonsplit. The local system ηd on Xd is pulled back from a local sys-
tem ηPic on PicX via the Abel-Jacobi map AJd : Xd → Picd

X ⊂ PicX . The Frobenius
trace function of ηPic is the idèle class character

ηF ′/F : F ×\A×
F /Ô× = PicX(k) → {±1}

trivial on the image of NmX′/X : PicX′(k) → PicX(k). Denote by detX(Q) the im-

age of Q under Herm2d → Xd
AJd−−→ Picd

X . We have ηHerm
2d |Q ∼= ηPic|detX(Q) as Fr-

modules. Now (Q, hQ) comes from (E, a), which implies

detX(Q) ∼= NmX′/X(detE)−1 ⊗ ω⊗n
X .

By [27, p.291, Theorem 13], ωX is a square in PicX(k), hence ηF ′/F (ω⊗n
X ) =

1. Since ηF ′/F (NmX′/X(detE)) = 1, we see that ηF ′/F (detX(Q)) = 1, hence
Tr(Fr, ηHerm

2d |Q) = 1. �

Corollary 11.14 Let (E, a) ∈ Ad(k) with image (Q, hQ) ∈ Herm2d(k). Then s �→
qds Tr(Fr,KInt

d (q−2s)Q) is an even function in s. In particular, its odd order deriva-
tives at s = 0 vanish.

By Corollary 11.10, this implies deg[Zr
E (a)] = 0 for r odd. However, we know

from Lemma 6.7 that ShtrU(n) = ∅ when r is odd, which implies Zr
E (a) = ∅.

Part 3. The comparison

12 Matching of sheaves

12.1 Recap

Let

Ẽa(m(E), s,�) = Ea(m(E), s,�) · χ(det(E))−1qdeg(E)(s− n
2 )+ 1

2 n2 deg(ωX) · Ln(s)
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= Den(q−2s , (E, a)) (12.1)

where the notation is as in Theorem 2.8, being a renormalization of the ath Fourier
coefficient of Ea(m(E), s,�).

We emphasize that, in keeping with §1.3, X is proper and ν : X′ → X is a finite
étale double cover (possibly trivial).

Theorem 12.1 Keep the notations above. Let (E, a) ∈Ad(k). Then we have

deg[Zr
E (a)] = 1

(log q)r

(
d

ds

)r ∣
∣
∣
s=0

(
qdsẼa(m(E), s,�)

)
. (12.2)

In the previous parts, we have found sheaves on Ad which correspond to the two
sides of (12.2), in the sense of the function-sheaf dictionary. Let us summarize the
situation.

On the analytic side, we proved a formula expressing the non-singular Fourier
coefficient of the Siegel–Eisenstein series in terms of the Frobenius trace of a graded
virtual perverse sheaf KEis

d (T ) on Herm2d(X′/X).

Theorem 12.2 (Combination of Theorems 2.8 and 5.3) Let (E, a) ∈ Ad(k). Then we
have

Ẽa(m(E), s,�) = Tr(Fr,KEis
d (q−2s)Q). (12.3)

On the geometric side, in Corollary 11.10, we found a formula expressing the de-
gree of the special 0-cycle in terms of r th derivative of the Frobenius trace of another
graded perverse sheaf KInt

d (T ) on Herm2d(X′/X), repeated below:

deg[Zr
E (a)] = 1

(log q)r

(
d

ds

)r ∣
∣
∣
s=0

(
qds Tr(Fr,KInt

d (q−2s)Q)
)

. (12.4)

12.2 Proof of the main theorem

Comparing (12.3) and (12.4), we see that in order to prove Theorem 12.1, it remains
to match the graded sheaves KInt

d (T ) and KEis
d (T ) on Herm2d(X′/X).

Proposition 12.3 We have KInt
d (T ) ∼= KEis

d (T ) as graded perverse sheaves on
Herm2d(X′/X).

Proof Both sides can be written as SprHerm
2d [ρ] for some graded virtual representation

ρ of Wd . By definition (Definition 11.6), the sheaf KInt
d (T ) corresponds to

ρKInt
d

(T ) =
d∑

i=0

IndWd

Wi×Wd−i
(χi � 1)T i .

We calculate the (a priori virtual) representation of Wd which corresponds under
Springer theory to the KEis

d (T ) from Definition 5.2. The operation R
←−
f i,!R

−→
f ∗

i
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corresponds under Springer theory to IndWd

Wd−i×Si
and Pd−i (T ) corresponds to

∑d−i
j=0(−1)j IndWd−i

Wj ×Wd−i−j
(sgnj �1)T j (cf. Definition 4.7 for HSprd ). Hence

KEis
d (T ) corresponds to

d∑

i=0

IndWd

Wd−i×Si

⎛

⎝
d−i∑

j=0

(−1)j IndWd−i

Wj ×Wd−i−j
(sgnj �1d−i−j ) � 1iT

i+j

⎞

⎠ .

After re-indexing, we have

ρKEis
d

(T ) =
d∑

i=0

i∑

j=0

(−1)j IndWd

Si−j ×Wj ×Wd−i
(1 � sgnj � 1)T i .

The desired statement then follows from the Lemma below (whose notation has been
re-indexed) by comparing each coefficient. �

Lemma 12.4 We have the identity of virtual representations of Wd :

χd =
d∑

j=0

(−1)j IndWd

Sd−j ×Wj
(1 � sgnj ).

Proof We will prove this by comparing traces of an arbitrary element g ∈ Wd . For
g ∈ Wd ,

Tr(g, IndWd

Sd−j ×Wj
(1 × sgnj )) =

∑

w∈Wd/(Sd−j ×Wj )

w−1gw∈Sd−j ×Wj

sgnj (g′′). (12.5)

Here, when w−1gw ∈ Sd−j × Wj , we write w−1gw = (g′, g′′) for g′ ∈ Sd−j and
g′′ ∈ Wj .

Identify Wd with the group of permutations of {±1, . . . ,±d} that commute with
the involution σ exchanging j ↔ −j for all 1 ≤ j ≤ d . The subgroup Sd−j × Wj

is the stabilizer of {1, 2, . . . , d − j}. Therefore the coset space Wd/(Sd−j × Wj )

is in natural bijection with subsets J ⊂ {±1, . . . ,±d} such that |J | = d − j and
J ∩ (−J ) = ∅. Let Jg be the set of J ⊂ {±1, . . . ,±d} such that |J | = d − j , J ∩
(−J ) = ∅ and gJ = J . Let g′′

J be the permutation of g on {±1, . . . ,±d}\(J ∪(−J )).
Combining this with (12.5), we obtain

d∑

j=0

(−1)j Tr(g, IndWd

Sd−j ×Wj
(1 × sgnj )) =

∑

J∈Jg

(−1)d−|J |sgn(g′′
J ).

For any g ∈ Wd , the cycle decomposition of g can be grouped into a decomposi-
tion g = g1 . . . gr (unique up to reordering) where gi is one of the two forms:

• (positive bicycle) gi is a product of two disjoint cycles ciσ (ci) (in particular, no
two elements appearing in ci are negatives of each other).
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• (negative cycle) gi is a single cycle invariant under the involution σ .

Let C+
g be the set of cycles of g that are part of a positive bicycle (i.e., C+

g contains
both ci and σ(ci) for each positive bicycle gi ). For any x ∈ Wd we denote by x ⊂
{±1, . . . ,±d} the set of elements that are not fixed by x. For a cycle c we let |c| be
its length. From this description we see that J ∈ Jg if and only if J is a union of c

for a subset of cycles c ∈ C+
g . In other words, consider the set Ig of subsets I ⊂ C+

g

such that I is disjoint from σ(I). Then we have a bijection Ig
∼→ Jg sending I ∈ Ig

to J := ∪c∈I c.
For I ∈ Ig , let g′

I be the product of gi such that gi contains a cycle in common
with I ; let g′′

I be the product of the remaining gi ’s. The above discussion allows us to
rewrite

d∑

j=0

(−1)j Tr(g, IndWd

Sd−j ×Wj
(1 × sgnj )) =

∑

I∈Ig

(−1)

∑
c∈C

+
g

|c|
sgn(g′′

I ).

This sum factorizes as a product over the gi with individual factors as follows:

• For a positive bicycle gi = ciσ (ci), the local factor is the sum of three contri-
butions, corresponding to whether ci ∈ I , σ(ci) ∈ I or neither ci nor σ(ci) is in
I . The first two cases each contribute 1. The last case leads to a contribution of
(−1)|ci | sgn(ci) = −1. The total contribution of the factor corresponding to a pos-
itive bicycle gi is therefore 1 + 1 + (−1) = 1.

• For each negative cycle gi , since it always appears in g′′
I , its contribution is

(−1)|gi |/2sgn(gi). Let gi be the image of gi in Sd , which is a cycle of length |gi |/2.
Then (−1)|gi |/2sgn(gi) = (−1)|gi | sgn(gi) = −1. Therefore the contribution of the
factor corresponding to a negative cycle gi is −1.

Summarizing, we have found

d∑

j=0

(−1)j Tr(g, IndWd

Sd−j ×Wj
(1 × sgnj )) =

⎛

⎝
∏

gi positive

1

⎞

⎠ ·
⎛

⎝
∏

gi negative

(−1)

⎞

⎠ . (12.6)

On the other hand, we have

χd(gi) =
{

1, gi is positive;

−1, gi is negative.

Indeed, if gi = ciσ (ci) is positive, then we have χd(ci) = χd(σ (ci)) = 1 because both
ci and σ(ci) can be conjugated into Sd . If gi is negative, then up to conjugacy we may
assume gi is the cyclic permutation (1, 2, . . . ,m,−1, . . . ,−m) for some 1 ≤ m ≤ d .
Then gi = (1,−1)(1, 2, . . . ,m)(−1,−2, . . . ,−m), from which we see χd(gi) = −1.

We conclude that the right side of (12.6) is
∏

χd(gi) = χd(g). This completes the
proof. �
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12.3 The split case X′ = X
∐

X

We make our result more explicit in the split case X′ = X
∐

X.
On the analytic side in §2.1, the group Hn = GL2n,F and Pn is the standard

parabolic corresponding to the partition (n,n), with Levi Mn � GLn,F ×GLn,F . We
then have the degenerate principal series

In(s) = IndHn(A)
Pn(A)

(| · |s+n/2
F × | · |−s−n/2

F ), s ∈C.

Let E = (E1,E2) ∈ BunMn(k) � BunGLn(k) × BunGLn(k), and let a : E1 → E∨
2 be an

injective map of OX-modules. Then by §2.6 the Siegel–Eisenstein series has a well-
defined ath Fourier coefficient Ea(m(E), s,�) at (E1,E2). By Theorem 2.8 and 5.1
we have

Ea(m(E), s,�) = q−(deg(E1)+deg(E2))(s−n/2)− 1
2 n2 degωXLn(s)−1 Den(q−2s ,E∨

2 /E1),

where Ln(s) =∏n
i=1 ζF (i + 2s) and, for a torsion OX-module Q, the density poly-

nomial is given by

Den(T ,Q) =
∑

0⊂I1⊂I2⊂Q
T dimk I1+dimk Q/I2

∏

v∈|X|
mv(tv(I2/I1);T deg(v)).

Here see (2.2) for mv(tv;T ). The normalized Fourier coefficient (12.1) is

Ẽa(m(E), s,�) = Den(q−2s ,E∨
2 /E1).

Next we come to the geometric side. We have a natural partition

(X′)r =
∐

μ∈{±1}r
Xr .

The moduli of hermitian shtukas ShtrU(n) defined in §6 is then partitioned into

ShtrU(n) =
∐

μ∈{±1}r
ShtμU(n),

and there is a natural isomorphism

ShtμU(n) � ShtμGLn
.

Here we recall that ShtμGLn
is the moduli of shtukas for GLn, cf. [28], whose S-points

are given by the groupoid of the following data:

(1) xi ∈ X(S) for i = 1, . . . , r .
(2) F0, . . . ,Fn ∈ BunGLn(S).
(3) An elementary modification fi : Fi−1 ���Fi at the graph of xi , which is of upper

of length 1 if μi = +1 and of lower of length 1 if μi = −1.
(4) An isomorphism ϕ : Fr

∼= τF0.

In particular, ShtμGLn
is empty unless

∑r
i=1 μi = 0.
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For the special cycle Zr
E (cf. Definition 7.1) associated to E = (E1,E2) above, we

have a partition

Zr
E =

∐

μ∈{±1}r
Zμ

E ,

where an object in Zμ

E (S) is an object as above in ShtμGLn
(S) together with maps

E1 �OS

t
(1)
i−−→Fi

t
(2)
i−−→ E∨

2 �OS, i = 1, . . . , r, (12.7)

such that the diagram commutes

Let a : E1 → E∨
2 be a map of OX-modules. Then Zμ

E (a) is the open-closed subscheme
of Zμ

E such that the common composition (12.7) is equal to a � IdOS
.

For an injective a : E1 → E∨
2 , our §7 shows that Zμ

E (a) is proper over Spec k and
defines a class [Zμ

E (a)] ∈ Ch0(Zμ

E (a)) for each μ ∈ {±1}r . Then our main Theorem
asserts

∑

μ∈{±1}r
deg[Zμ

E (a)] = 1

(log q)r

(
d

ds

)r ∣
∣
∣
s=0

(
qdsẼa(m(E), s,�)

)
,

where d = −(χ(X,E1) + χ(X,E2)). We remark that deg[Zμ

E (a)] is not independent
of μ ∈ {±1}r , even if we restrict our attention to those μ with

∑r
i=1 μi = 0.
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