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Abstract: Starting from a homogeneous affine Springer fiber Flψ,
we construct three moduli spaces that correspond to the Dolbeault,
de Rham and Betti aspects of a hypothetical Simpson correspon-
dence with wild ramifications. We show that Flψ is homeomorphic
to the central Lagrangian fiber in the Dolbeault space, prove that
the Dolbeaut and de Rham spaces both have the same cohomology
as Flψ, and construct a map from the de Rham space to the Betti
space which we conjecture to be an analytic isomorphism.
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1. Introduction

1.1. Springer fiber and Slodowy slice

Let G be a reductive group over an algebraically closed characteristic zero
field k with Lie algebra g. For a nilpotent element e ∈ N ⊂ g, the usual
Springer fiber Be = {gB ∈ G/B|Ad(g−1)e ∈ Lie B} is the fiber over e of the
Springer resolution π : T ∗(G/B) = Ñ → N . Moreover, Be can be realized as
a Lagrangian subscheme in a symplectic smooth variety, via the construction
of the Slodowy slice through e. More precisely, let {e, h, f} be an sl2-triple
containing e. Let Se = (e + gf ) ∩ N be the nilpotent part of the Slodowy
slice through e. Let S̃e = Se ×N Ñ be the preimage of Se under the Springer
resolution. The following well known properties of these varieties play an
important role in geometric representation theory.

(1) S̃e is a smooth variety over k with a canonical symplectic form.
(2) The map πe : S̃e → Se is a symplectic resolution.
(3) There are compatible Gm-actions on S̃e and Se such that the symplec-

tic form on S̃e has weight 2, and Se contracts to the point e under the
Gm-action. In particular, if k = C the embedding Be ↪→ S̃e induces
a homotopy equivalence between the corresponding complex varieties.
The action is the product of the dilation action on T ∗(G/B) and con-
jugation by a cocharacter coming from the homomorphism SL(2) → G
provided by the Jacobson-Morozov Theorem.

(4) The subvariety Be ↪→ S̃e (the fiber over e) is Lagrangian in S̃e.
(5) The symplectic variety S̃e can be obtained from T ∗(G/B) by Hamil-

tonian reduction for a unipotent subgroup Ue ⊂ G equipped with an
additive character.

The main goal of this paper is to construct and study an analogue of
the resolved Slodowy slice S̃e when the Springer fiber Be is replaced by an
affine Springer fiber Flψ for a homogeneous element ψ. Roughly speaking,
a homogeneous element ψ is a regular semisimple element in the loop Lie
algebra g((t)) for which there exists an analogue of the Jacobson-Morozov
cocharacter, i.e. a cocharacter of the Kac-Moody group for which ψ is an
eigenvector.
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1.2. Summary of main results

Starting from a homogeneous element ψ in g((t)), we construct three mod-
uli spaces that serve as the Dolbeault, de Rham and Betti aspects in the
terminology of the non-abelian Hodge theory.

(1) The Dolbeault space Mψ is a moduli space of G-Higgs bundles on P1

with level structures at 0 and ∞, and prescribed irregular part at ∞.
This is the space we propose as a loop group analogue of the resolved
Slodowy slice. It shares some of its properties although there are also
some important differences. In particular, it is a symplectic algebraic
space with a Gm action contracting the space to a Lagrangian subspace
homeomorphic to Flψ (see Theorem 2.8.1); it can be obtained from
T ∗Fl by Hamiltonian reduction for a subgroup J∞ in the loop group
equipped with an additive character (see §2.11). However, the analogue
of the Springer map is the Hitchin map f : Mψ → Aψ which is a
completely integrable system rather than a symplectic resolution.
Also, the spaces Flψ and Mψ are finite dimensional but in general
have infinite type: in the simplest example Flψ is an infinite chain of
projective lines. They are both of finite type if ψ is elliptic.

(2) The de Rham space MdR,ψ is a moduli space of G-connections on P1

with level structures and prescribed irregular part at ∞.
(3) The Betti space MBet,ψ is a complex analytic stack that depends only

on the positive braid determined by ψ. The essential part of it is, up to a
quotient by G, defined as an explicit subvariety in a product G×(G/B)n.
The key property justifying its name is the interpretation of MBet,ψ as
the moduli space of Stokes data (See §4.3).

The three spaces Mψ, MdR,ψ, MBet,ψ are related as follows.
There is a one-parameter deformation MHod,ψ of Mψ with general fiber

isomorphic to MdR,ψ. This family carries a Gm-action contracting it to the
Lagrangian subspace Flψ in the special fiber, which allows one to show that
the restriction maps induce isomorphisms on cohomology (see Theorem 2.8.4
and Corollary 3.2.3):

(1.1) H∗(Flψ) ∼← H∗(Mψ) ∼← H∗(MHod,ψ) ∼→ H∗(MdR,ψ).

Recall that for other types of connections (for example, for non-singular
connections on a projective curve over C) the non-abelian Hodge theory of
Corlette, Donaldson, Hitchin and Simpson defines a hyper-Kähler structure
on the Hitchin moduli space and an isomorphism between the Dolbeaut and
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the De Rham moduli spaces as real manifolds, and realizes the Hodge moduli
space as an open subvariety (preimage of C under the projection to CP1) in
the twistor moduli space. We do not know if that theory can be extended to
our setting.

Another, more elementary comparison available for nonsingular connec-
tions over a complete complex curve is provided by the Riemann-Hilbert cor-
respondence: it yields an isomorphism between the de Rham and the Betti
moduli spaces as complex analytic (but not as algebraic) varieties. In §4.4,
using Stokes theory for G-connections (see §4.3), we defined an enhanced
Riemann-Hilbert map

(1.2) R̃H : MdR,ψ → MBet,ψ.

We conjecture that this map is an analytic isomorphism.
In the main body of the paper, we also include a variant of the above

spaces Mψ,MdR,ψ and MBet,ψ with an arbitrary semisimple part of the
residue/monodromy at 0.

1.3. Relation to earlier results

Many of the constructions presented here are related to ones found in the
literature.

Precursors of the Dolbeault moduli space of this type, besides of course
the original construction of Hitchin [23], appeared in the work of Beauville [3],
Biquard-Garcia Prada-Mundet i Riera [6], Boalch [7], Bottacin [9], Markman
[30], Oblomkov-Yun [35] and Simpson [40]. The paper [18] by Fredrickson and
Neitzke studies a moduli space of Higgs bundles closely related to the case
G = GLn, ν = d/n in this paper.

Biquard and Boalch [5] have developed non-abelian Hodge theory for
irregular connections whose polar part (excepting the residue) is semisimple.
When the underlying curve is P1 and the polar part is homogeneous, these
are a special case of connections considered in the present work. However,
the moduli spaces we consider are different in that we endow the connection
with a framing at infinity: the moduli space of Biquard and Boalch can be
obtained from a special case of our moduli space by Hamiltonian reduction
with respect to a torus action. Boalch and Yamakawa [8] construct moduli
spaces of Stokes data for G-local systems, and endow them with Poisson
structures. Our Betti spaces, although presented differently, should be special
cases of their construction. The work of Bremer-Sage [12] studies moduli of
flat connections with level structure on the bundles, although for them, the
underlying vector bundle is always trivial.
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Mochizuki [31] has extended the irregular non-abelian Hodge correspon-
dence to (unframed) wild Higgs bundles whose polar parts are not semisimple.
To our knowledge it is not known if this induces an isomorphism of real man-
ifolds in the general case.

The Betti space is a variant of a special case of the moduli spaces defined
by Minh-Tam Trinh [43]. Its definition is purely Lie-theoretic and it uses only
the braid group element determined by ψ (or rather its slope). A version of
this space already appeared in Lusztig’s definition of character sheaves [28].
In the work of Shende-Treumann-Williams-Zaslow [39], when G = GL(n),
similar moduli spaces were interpreted as a moduli space of local systems on
P1\{0,∞} with Stokes data at ∞.

In a research proposal, Vivek Shende speculated an irregular non-abelian
Hodge correspondence for curves and a P=W conjecture in that setting. In his
thesis, Minh-Tam Trinh [42] formulated a precise P=W conjecture connect-
ing cohomology of Hitchin fibers and cohomology of Steinberg-like varieties
attached to braids (which are closely related to MBet,ψ). Our work gives
supporting evidence for these conjectures in the case of homogeneous Hitchin
fibers: assuming (1.2) is an analytic isomorphism and combing it with the iso-
morphisms (1.1), one would conclude that MBet,ψ has the same cohomology
as the affine Springer fiber Flψ.

1.4. Microlocal sheaves on Flψ and wildly ramified geometric
Langlands

While we believe the above results to be of independent interest, our mo-
tivation for considering those spaces came from our study of the categories
of sheaves on the affine flag manifold and related categories of microlocal
sheaves. We now briefly explain the setting and the motivating conjectures,
our results in this direction will be presented elsewhere.

Denote by μShΛ(X) the category of microlocal sheaves on a polarised
conical X supported on a conical Lagrangian Λ as constructed from work of
[25], [38] and [33].

Consider MG∨
0,Bet,ψ the Betti space for G∨, the Langlands dual group, using

the positive braid defined by ψ and the definition in §4.4.3.

1.4.1 Conjecture. There is a fully faithful functor

μShFlψ(Mψ) ↪→ IndCoh(M0,G∨

Bet,ψ).

This conjecture can be viewed as a geometric Langlands correspondence
for deeper level structures/wild ramifications. At the same time, it can be

For the author's personal use only.

For the author's personal use only.



Non-abelian Hodge moduli spaces 67

viewed as an instance of homological mirror symmetry between Mψ and
MG∨

Bet,ψ. A version of this conjecture in the case ψ is homogeneous of slope 1
is proved in [4].

2. The Dolbeault moduli space

Let G be a reductive group over an algebraically closed field k such that
the adjoint Gad is simple. Let g be the Lie algebra of G. Fix a G-invariant
non-degenerate symmetric bilinear form 〈·, ·〉 on g to identify g with g∗. Let
T0 ⊂ G be a maximal torus and W0 = W (G, T0) be the corresponding Weyl
group of G. We assume |W0| is invertible in k.

In this section, we will construct analogues of the resolved Slodowy slice
S̃e when the Springer fiber Be is replaced with affine Springer fibers Flψ
attached to certain elements ψ ∈ g((t)) called homogeneous (see §2.1). We will
construct a moduli space Mψ of Higgs bundles with the following features:

(1) Mψ is a smooth algebraic space over k with a canonical symplectic
form.

(2) There is a Hitchin map f : Mψ → Aψ that is a completely integrable
system. It is proper when ψ is elliptic.

(3) There are compatible Gm-actions on Mψ and Aψ, (compute the weight
of the symplectic form), contracting Aψ to the point aψ. The central
fiber f−1(aψ) = Maψ is homeomorphic to the affine Springer fiber Flψ.

More precise statements will be given in Theorem 2.8.1. We will give three
constructions of Mψ each having its own advantages in proving certain geo-
metric properties.

2.1. Homogeneous affine Springer fibers

Let g((t)) = g ⊗ k((t)) be the loop Lie algebra. Let G((t)) be the loop group
of G and G[[t]] be the positive loop group so that (G((t)))(k) = G(k((t))) and
(G[[t]])(k) = G(k[[t]]). Then G((t)) acts on g((t)) by the adjoint action. Let
a = g // G be the adjoint quotient, and a((t)) = a(k((t))).

Let Grot
m be the one-dimensional torus acting on g((t)) by loop rotation

Grot
m � s : A(t) �→ A(st). Let Gdil

m be the one-dimensional torus acting on
g((t)) by dilation Gdil

m � s : A(t) �→ sA(t). The action of Grot
m × Gdil

m on g((t))
induces an action on a((t)).

Homogeneous elements in the loop Lie algebra g((t)) are defined by Varag-
nolo and Vasserot [44, Section 1.3]. Recall from loc. cit. and [35, Definition
3.1.2] that a regular semisimple element a ∈ a((t)) is called homogeneous of
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slope ν = d/m ∈ Q (where d ∈ Z, m ∈ N in lowest terms) if it is fixed by the
action of the subtorus Gm(ν) ⊂ Grot

m × Gdil
m given by {(s−m, sd)|s ∈ Gm}. A

regular semisimple element ψ ∈ g((t)) is called homogeneous of slope ν = d/m
if its image in a((t)) is. In other words, ψ(t) ∈ g((t)) is homogeneous of slope
ν = d/m if and only if it is regular semisimple, and that s−dψ(smt) is in the
same G((t))-orbit of ψ(t) for all s ∈ k×.

By [35, Theorem 3.2.5], a homogeneous element ψ ∈ g((t)) of slope ν =
d/m exists if and only if m is a regular number for the Weyl group W0, i.e.,
m is the order of a regular element in W0 in the sense of Springer [41] (we
will describe the conjugacy class of this regular element in Remark 2.4.1).

Fix a Borel subgroup B0 ⊂ G containing T0, and let I0 ⊂ G[[t]] be the
corresponding Iwahori subgroup. Let Fl = G((t))/I0 be the affine flag variety
of G. For ψ ∈ g((t)) homogeneous of slope ν = d/m ≥ 0, following [26], we
may consider its affine Springer fiber Flψ

Flψ = {gI0 ∈ Fl|Ad(g−1)ψ ∈ Lie I0}.

This is an ind-scheme that is a union of projective schemes over k. It is an
affine analogue of Springer fibers.

2.1.1 Example. In the case G = SLn, consider the slope ν = d/n, where
d ≥ 1 is coprime to n. The element

ψ =

⎛⎜⎜⎜⎜⎜⎜⎝
1

1
. . .

1
t

⎞⎟⎟⎟⎟⎟⎟⎠

d

is homogeneous of slope ν = d/n. The affine Springer fiber Flψ has been
studied by Lusztig and Smelt [29]. It classifies chains of lattices in k((t))n
stable under ψ. We may reinterpret Flψ as classifying chains of fractional
ideals of the ring k[[t, y]]/(yn − td).

2.2. Moy-Prasad filtration

The point x ∈ X∗(T0)Q (the standard apartment of the building of G((t)))
defines a Moy-Prasad grading on g[t, t−1]

g[t, t−1] =
⊕
s∈Q

g[t, t−1]x,s.
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Here g[t, t−1]x,s is spanned by the affine root spaces of g[t, t−1] for the affine
roots α + n such that α(x) + n = s.

Fix ν = d/m > 0 in lowest terms, where m is a regular number for W0.
We shall choose x such that the following hold:

• m is the smallest positive integer such that g[t, t−1]x,s �= 0 implies s ∈
1
mZ.

• g[t, t−1]x,ν contains a regular semisimple element (as an element in
g((t))).

For such an x, a regular semisimple element ψ′ ∈ g[t, t−1]x,ν is homo-
geneous of slope ν. Conversely, for any homogeneous ψ ∈ g((t)) of slope
ν, there exists x satisfying the above conditions, and a regular semisimple
ψ′ ∈ g[t, t−1]x,ν such that ψ and ψ′ are in the G((t))-adjoint orbit. Indeed, by
[35, 3.3], we can take x = ρ∨/m. There many be more than one choice of x
for a homogeneous ψ.

In the following we shall fix an x ∈ X∗(T0)Q satisfying the above condi-
tions, and fix a regular semisimple ψ ∈ g[t, t−1]x,ν , which is homogeneous of
slope ν. We will simply write g[t, t−1]x,s as g[t, t−1]s, so that

(2.1) g[t, t−1] =
⊕
i∈Z

g[t, t−1]i/m.

2.3. The curve and the parahoric subgroup

Let X = P1
k with affine coordinate t. Then t is a uniformizer at 0 ∈ P1, and

τ = t−1 is a uniformizer at ∞ ∈ P1. We identify the loop group G((t)) with
the loop group of G at 0 ∈ X.

We also have the loop group G((τ)) at ∞ ∈ X. For i ∈ Z, let

g((τ))≤i/m =
⊕̂

j≤i
g[t, t−1]j/m

where ⊕̂ denotes the τ -adic completion of the direct sum. Then g((τ))≤i/m is
a k((τ))-lattice in g((τ)).

We will use the three notations g((τ))j/m = g((t))j/m = g[t, t−1]j/m inter-
changeably depending on the context.

Let P∞ ⊂ G((τ)) be the parahoric subgroup whose Lie algebra is g((τ))≤0.
Let P∞( i

m) ⊂ P∞ be the Moy-Prasad subgroups of P∞: its Lie algebra is
g((τ))≤−i/m. Let P+

∞ = P∞( 1
m) be the pro-unipotent radical of P∞.

In particular, ψ ∈ g[t, t−1]ν is viewed as a linear character of g((τ))≤−ν .
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2.4. The centralizer of ψ

Let C be the torus over X\{0,∞} that is the centralizer of ψ (which is a
regular semisimple section of g over X\{0,∞}) under G. Note that C is not
necessarily split; it becomes split over the μm-cover of X\{0,∞} = Gm, with
monodromy given by a regular element in W of order m. Let C∞ ⊂ C((τ)) be
the unique parahoric subgroup, and C+

∞ be the pro-unipotent radical of C∞.
The grading (2.1) on g[t, t−1] restricts to a grading on c[t, t−1], the global

sections of the sheaf of Lie algebras Lie C over X\{0,∞}

c[t, t−1] =
⊕
i∈Z

c[t, t−1]i/m

where c[t, t−1]i/m ⊂ g[t, t−1]i/m are elements commuting with ψ.
Let c((τ)) be the τ = t−1-adic completion of c[t, t−1]. Let c((τ))≤i/m =

g((τ))≤i/m ∩ c((τ)). Then Lie C∞ = c((τ))≤0, and Lie C+
∞ = c((τ))≤−1/m.

2.4.1 Remark. Specializing both sides of (2.1) at t = 1, each g[t, t−1]i/m can
be identified with a subspace of g. Thus we get a Z/mZ grading of g

(2.2) g =
⊕

i∈Z/mZ

gi/m.

Recall x ∈ X∗(T )Q defines the Moy-Prasad grading on g[t, t−1]. Since the
graded pieces g[t, t−1]x,s are nonzero only for s ∈ 1

mZ, we can write x = ξ/m
where ξ ∈ X∗(T ad

0 ). View ξ as a homomorphism ξ : Gm → T ad
0 . Then (2.2)

is the grading obtained by the adjoint action of μm via ξ|μm . Evaluating at
t = 1, c[t, t−1]i/m is identified with a subspace ci/m ⊂ gi/m depending only on
i/m mod Z. Their sum

t := ⊕i∈Z/mZci/m ⊂ g

is a Cartan subalgebra of g stable under the Z/mZ-grading (2.2). Indeed, let
ψ ∈ gd/m be the image of ψ, then t is the Lie algebra of the maximal torus
T := CG(ψ) ⊂ G, the fiber of C over 1 ∈ X. Let ζm ∈ μm be a primitive
m-th root of unity, then Ad(ξ(ζm)) (whose eigenvalues on g gives the Z/mZ-
grading) normalizes T , hence determines an element w = w(ζm) in the Weyl
group W = W (G, T ) that is regular of order m. Different choices of ζm yields
conjugate w(ζm). This defines a regular conjugacy class in W of order m.
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2.5. Construction of Mψ

Let D0 = Spec k[[t]], D×
0 = Spec k((t)) and D∞ = Spec k[[τ ]], D×

∞ = Spec k((τ)).
Let Mψ be the moduli stack parametrizing pairs (E , ϕ) where

• E is a G-bundle over X with K∞ := P∞( d
m)C+

∞-level structure at ∞
and I0-level structure at 0. We denote by Ad(E) the vector bundle over
X\{0,∞} associated to the adjoint representation g of G.

• ϕ is a section of Ad(E) ⊗ ωX\{0,∞} satisfying the following conditions:
(i) After choosing a trivialization of E|D∞ together with its K∞-level

structure, we require

ϕ|D×
∞
∈ (ψ + g((τ))≤0)dτ/τ.

Note that the right side is invariant under the adjoint action by
K∞, therefore this condition is independent of the trivialization of
E|D∞ .

(ii) After choosing a trivialization of E|D0 together with its I0-level
structure, we require

ϕ|D×
0
∈ Lie (I+

0 )dt/t.

2.6. Hitchin base

The Hitchin base Aψ is defined as follows. Fix homogeneous generators fi ∈
k[g]G of degree di, 1 ≤ i ≤ r, which give an isomorphism

(f1, · · · , fr) : a = g // G
∼→ Ar.

We identify ωX(0 + ∞) with OX using dt
t . In particular, fi(ψ) is a global

section of O([ ddim ] · ∞) (the twisting means pole order at ∞). Let Aψ ⊂∏r
i=1 Γ(P1,O([ ddim ] · ∞)) be the subspace of sections a = (ai)1≤i≤r such that

for each i = 1, · · · , r
• ai(0) = 0;
• ai ≡ fi(ψ) mod τ−[ d(di−1)

m
] near ∞.

In other words, if we identify Γ(P1,O([ ddim ] · ∞)) with polynomials in t, then
fi(ψ) is a monomial of degree ddi/m if ddi/m ∈ Z and zero otherwise, and ai
is a polynomial of the form

ai(t) = fi(ψ) +
[d(di−1)/m]∑

j=1
ai,jt

j .
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2.6.1 Lemma. Taking a Higgs bundle (E , ϕ) ∈ Mψ to (fi(ϕ))1≤i≤r defines
a map

f : Mψ → Aψ.

Proof. Since the residue of ϕ at 0 is nilpotent, fi(ϕ) vanishes at 0. To com-
pute the pole order of fi(ϕ) − fi(ψ), we choose a trivialization of E|D∞

so that ϕ ∈ (ψ + g((τ))≤0)dτ/τ . Write ϕ = (ψ + θ)dτ/τ for some θ ∈
g((τ))≤0. Inside g((τ 1/m)) we can G((τ 1/m))-conjugate the grading g((τ))i/m (ex-
tended k((τ 1/m))-linearly to g((τ 1/m))) to the standard one given by powers
of τ 1/m, i.e., g ⊗ τ i/m. After this conjugation, ϕ becomes ϕ′ = (xτ−d/m +∑

j≥0 ϕjτ
j/m)dτ/τ , for some regular semisimple x ∈ g such that xτ−d/m is

in the same G((τ 1/m))-orbit of ψ, and ϕj ∈ g for j ≥ 0. Then it is clear
that fi(ϕ) = fi(ϕ′) has leading term fi(x)τ−ddi/m = fi(ψ), with other terms
starting with τ−[ d(di−1)

m
].

2.6.2 Lemma. The Hitchin base Aψ is an affine space of dimension dimAψ =
1
2( d

m |Φ| − r + dim tw) (where w is a regular element in W of order m defined
in §2.2 and Φ the set of roots of g).

Proof. From the definition we have dimAψ is the same as the space of
(a1, · · · , ar) where ai is a section of O([ d(di−1)

m ] ·∞) vanishing at 0. Therefore

dimAψ =
r∑

i=1

[
d(di − 1)

m

]
.

We have ∑ d(di − 1)
m

= d

m

∑
i

(di − 1) = d

m

|Φ|
2 .

Therefore we reduce to showing

(2.3)
∑
i

{(di − 1)/m} = (r − dim tw)/2.

Here {· · · } denotes the fractional part. Let ζ ∈ μm be a primitive mth root
of unity. We claim that

(2.4) The eigenvalues of w on t are {ζdi−1}1≤i≤r as a multi-set.

Indeed, by Remark 2.4.1, we may take t = ⊕i∈Z/mZci/m to be the central-
izer of a regular semisimple element y ∈ g1/m (the grading defined in (2.2)
using x = ξ/m ∈ X∗(T )Q), and w acts on t by Ad(ξ(ζ)) for a primitive
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ζ ∈ μm. Since the claim (2.4) is independent of the choice of x satisfying
the conditions in §2.2, we may take x = ρ∨/m so that ξ = ρ∨. Therefore
the grading (2.2) is given by eigenspaces of Ad(ρ∨(ζ)). Consider the open
dense subset g

reg
1/m ⊂ g1/m consisting of regular (but not necessarily semisim-

ple) elements. It suffices to show that for all y ∈ g
reg
1/m, the action of ρ∨(ζ)

on zy (the centralizer of y in g) has eigenvalues {ζdi−1}1≤i≤r as a multi-set,
because applying this statement to a regular semisimple y gives (2.4). Since
g

reg
1/m is open dense in g1/m, hence it is connected. The Lie algebra universal

centralizer z → g
reg
1/m is a vector bundle with an action of Ad(ρ∨(ζ)), hence all

fibers have the same multi-set of eigenvalues under Ad(ρ∨(ζ)). Now we take
y to be the regular nilpotent element y0 =

∑
eαi (for simple roots αi, noting

that gαi ⊂ g1/m). Since the weights of Ad(ρ∨) on zy0 are the exponents of g
by definition, i.e., {di − 1}, we see that the eigenvalues of Ad(ρ∨(ζ)) on zy0

are {ζdi−1}. This proves (2.4).
Therefore, when summing up {(di−1)/m}, each pair of eigenvalues λ, λ−1

(λ �= ±1) of w on t contributes 1; λ = −1 contributes 1/2 and λ = 1
contributes zero. Hence (2.3).

2.7. The Gm(ν)-actions

2.7.1. Action on Flψ The one-dimensional torus Grot
m acts on k((t)) by

scaling the parameter t. We denote the action of s ∈ Grot
m by rot(s).

Recall x = ξ/m (where ξ ∈ X∗(T ad
0 )) defines the Moy-Prasad grading on

g[t, t−1] such that ψ ∈ g[t, t−1]ν .
We have a Gm(ν)-action on Flψ, where (s−m, sd) ∈ Gm(ν) acts by

s : gI0 �→ rot(s−m)Ad(ξ(s−1))gI0.

2.7.2. Action on Mψ Let Grot
m act on X = P1 by scaling the coordinate

t. We denote the action of s ∈ Grot
m on X by rot(s). Note that for any s ∈ Gm,

sd · rot(s−m)(Ad(ξ(s−1))ψ) = ψ.

Since rot(s−m)Ad(ξ(s−1)) fixes the line kψ, it normalizes C∞ and C+
∞. Clearly

Grot
m × T ad

0 normalizes P∞( i
m) for all i, therefore rot(s−m)Ad(ξ(s−1)) nor-

malizes K∞ = P∞( d
m)C+

∞. Similarly, the action of sd · rot(s−m)Ad(ξ(s−1))
stabilizes ψ+g((τ))≤0 ⊂ g((τ)). Therefore we get a Gm(ν)-action on Mψ with
(s−m, sd) ∈ Gm(ν) sending (E , ϕ) ∈ Mψ to (E ′, ϕ′) defined as follows. First
let E ′′ be the G-bundle rot(s−m)∗E with K′′

∞ = rot(s−m)K∞-level at ∞ and
I0-level at 0. Since Ad(ξ(s−1))K′′

∞ = K∞, the action of Ad(ξ(s−1)) on G((τ))
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induces an equivalence between the groupoids of G-bundles with K′′
∞-level

and with K∞-level at ∞. This turns E ′′ into a G-bundle E ′ with K∞-level at
∞ and still I0-level at 0. Finally ϕ′ = sdrot(s−m)∗ϕ.

2.7.3. Action on Aψ The torus Gm(ν) also acts on Aψ so that (s−m, sd)
sends (ai(t))i to (sddiai(s−mt))i. This action contracts Aψ to the unique fixed
point aψ = (fi(ψ))1≤i≤r ∈ Aψ.

2.8. Main results on Mψ

The main geometric results on Mψ are:

2.8.1 Theorem. For a homogeneous element ψ ∈ g((t)) of slope ν = d/m,
the following hold.

(1) The stack Mψ is a smooth algebraic space over k of dimension d
m |Φ| −

r + dim tw (where w is a regular element in W of order m defined in
§2.2 and Φ the set of roots of g).

(2) Mψ carries a canonical symplectic structure of weight d under the
Gm(ν)-action.

(3) The map f : Mψ → Aψ is a Gm(ν)-equivariant completely integrable
system (i.e., fibers of f are Lagrangians).

(4) There is a natural map Flψ → Maψ = f−1(aψ) which is a universal
homeomorphism.

(5) When ψ is elliptic (equivalently, w is elliptic), f is proper.

2.8.2 Remark. Constructions similar to Mψ have appeared before.

(1) When G = SLn, Markman [30] has constructed a Poisson moduli of
meromorphic Higgs bundles for arbitrary curve X and showed that
the Hitchin fibration is a completely integrable system (namely generic
fibers are Lagrangian in symplectic leaves of maximal rank). If we take
ψ = tdA where d ≥ 1 and A ∈ g is regular semisimple, our Mψ is a
symplectic leaf in Markman’s Poisson moduli space.

(2) For any G and homogeneous ψ, Oblomkov and one of the authors [35]
constructed a Poisson moduli of Higgs bundles (on a weighted projective
line) with a contracting Gm-action whose central fiber is closely related
to Flψ.

Both of the constructions above are more closely related to the Poisson moduli
space M†

ψ in §2.13.
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2.8.3 Remark. Consider the case k = C. With the realization of Flψ as a
conical Lagrangian in the symplectic ambient space Mψ, it makes sense to
consider the category μShFlψ(Mψ) of microlocal sheaves on Mψ supported on
Flψ. More precisely, using the realization of Mψ as a Hamiltonian reduction of
the cotangent bundle of BunG(J1

∞, I0) in §2.11, one may define μShFlψ(Mψ)
to be a full subcategory of sheaves on BunG(J1

∞, I0)/Gm(ν) with singular
support in Flψ. This can be thought of a quantization of Mψ, or as an affine
analogue of modules over W -algebras. In [4] we study this category in the
special case where ψ is homogeneous of slope 1.

We also prove the following cohomological result.

2.8.4 Theorem. The canonical map γ : Flψ → Maψ ↪→ Mψ induces an
isomorphism on cohomology γ∗ : H∗(Mψ) ∼→ H∗(Flψ).

Here, H∗(Mψ) is defined to be the projective limit of cohomology of finite-
type open subspaces; and H∗(Flψ) is defined to be the projective limit of co-
homology of finite-type closed subschemes. When ψ is elliptic, one can use the
fact that f is proper and the contraction principle to deduce Theorem 2.8.4
immediately. In general, the proof is more involved and uses hyperbolic lo-
calization.

2.9. Proof of Theorem 2.8.1(1)

From the well-known properties of moduli stack of G-bundles we know that
Mψ is an algebraic stack locally of finite type over k.

2.9.1. We show that Aut(E , ϕ) is trivial as an algebraic group for any k-
point (E , ϕ) ∈ Mψ. By [34, Cor 4.11.3], Aut(E , ϕ) is isomorphic to a subgroup
of a maximal torus of G, hence diagonalizable (this is proved in the case with-
out level structure but the argument works with level structure). On the other
hand, restricting to D∞, Aut(E , ϕ) is a subgroup of the pro-unipotent group
K∞, hence itself unipotent. Therefore, Aut(E , ϕ) is the trivial algebraic group
over k. This implies that Mψ is an algebraic space locally of finite type over k.

2.9.2. We show that Mψ is a smooth Deligne-Mumford stack over k.
Let E be a G-bundle over X with I0 and K∞ = P∞( d

m) ·C+
∞ level struc-

tures at 0 and ∞ respectively. For a I0-invariant lattice Λ0 ⊂ g((t)) and a
K∞-invariant lattice Λ∞ ⊂ g((τ)), we define Ad(E ; Λ0,Λ∞) to be the sub-
sheaf of j∗Ad(E) (where j : X\{0,∞} ↪→ X) that is equal to Ad(E) over
P1\{0,∞} and its local sections near 0 (resp. ∞) lies in Λ0 (resp. Λ∞) after
trivializing E|D0 (resp. E|D∞).
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The tangent complex of Mψ at (E , ϕ) ∈ Mψ is H∗(X,K) where K is the
two step complex of vector bundles on X placed in degrees −1 and 0:

(2.5) K = K(E,ϕ) := [Ad(E ; Lie I0, k∞) [−,ϕ]−−−→ Ad(E ; Lie I+
0 , g((τ))≤0)].

Here k∞ = Lie K∞. The obstruction to the infinitesimal deformations of
(E , ϕ) lies in H1(X,K) while the Lie algebra of Aut(E , ϕ) is H−1(X,K). To
show Mψ is smooth Deligne-Mumford, we need to show that H1(X,K) and
H−1(X,K) vanish.

We consider the complex K∨ = Hom(K, ωX [1]), obtained by taking the
Serre dual of K termwise but still placed in degrees −1 and 0:

K∨ = [Ad(E ; Lie I0, g((τ))≤−1/m) [−,ϕ]−−−→ Ad(E ; Lie I+
0 , k

∨
∞)].

Here we are using the pairing on Ad(E) induced from 〈·, ·〉 on g; k∨∞ ⊂
g((τ)) is the dual lattice of k∞ = g((τ))≤−d/m + c((τ))≤−1/m, i.e. k∨∞ = {v ∈
g((τ))|〈v, k∞dτ/τ〉 ⊂ k[[τ ]]dτ}. Let c((τ))⊥ ⊂ g((τ)) be the orthogonal com-
plement of c((τ)) ⊂ g((τ)) under 〈·, ·〉. Let c((τ))⊥≤i/m = c((τ))⊥ ∩ g((τ))≤i/m.
Then

k∨∞ = c((τ))⊥≤(d−1)/m ⊕ c((τ))≤0.

In particular, g((τ))≤0 ⊂ k∨∞. Hence there is a natural inclusion ι : K ↪→ K∨.
We claim that ι induces a quasi-isomorphism in DbCoh(X). Indeed, after
trivializing E|D∞ , coker(ι) is the two-step complex

g((τ))≤−1/m/k∞
[−,ϕ]−−−→ k∨∞/g((τ))≤0.

Moy-Prasad filtration induces filtrations (k∨∞/g((τ))≤0)≤j/m and (g((τ))≤−1/m/
k∞)≤j/m on both sides, with associated graded

(g((τ))≤−1/m/k∞)j/m ∼=
{
c((τ))⊥j/m ∼= gj/m/cj/m, −d + 1 ≤ j ≤ −1
0 otherwise.

(k∨∞/g((τ))≤0)j/m ∼=
{
c((τ))⊥j/m ∼= gj/m/cj/m, 1 ≤ j ≤ d− 1
0 otherwise.

The map [−, ϕ] sends (g((τ))≤−1/m/k∞)≤j/m to (k∨∞/g((τ))≤0)≤(j+d)/m, and the
induced map on the associated graded is ad(ψ)j/m : gj/m/cj/m → g(j+d)/m/
c(j+d)/m for −d + 1 ≤ j ≤ −1. Since ψ is regular semisimple, ad(ψ)j/m is
an isomorphism. Therefore coker(ι) is acyclic, hence ι : K ↪→ K∨ is a quasi-
isomorphism. Therefore ι induces an isomorphism H∗(X,K) ∼→ H∗(X,K∨).

For the author's personal use only.

For the author's personal use only.



Non-abelian Hodge moduli spaces 77

On the other hand, the complexes H∗(X,K) and H∗(X,K∨) are linearly dual
to each other. Therefore we conclude that there is a perfect pairing between
H1(X,K) and H−1(X,K), and a perfect pairing on H0(X,K) which is easily
seen to be symplectic.

By §2.9.1, H−1(X,K) = Lie Aut(E , ϕ) = 0. Therefore H1(X,K) = 0 as
well, hence Mψ is a smooth algebraic space. Moreover, the tangent space
H0(X,K) at every point (E , ϕ) carries a canonical symplectic form, hence a
globally defined non-degenerate 2-form Ω on Mψ. The fact that dΩ = 0 will
be shown in §2.11 where we identify Mψ as a Hamiltonian reduction from a
cotangent bundle, which then carries a canonical symplectic form, and it is
easy to check that the form coincides with Ω.

2.9.3. We compute dimMψ, or dim H0(X,K). By the vanishing of
H �=0(X,K), we have

dim H0(X,K) = deg Ad(E ; Lie I+
0 , g((τ))≤0) − deg Ad(E ; Lie I0, k∞)

= dimk g((τ))≤0/k∞ − dimk Lie I0/Lie I+
0(2.6)

= dimk g((τ))≤0/k∞ − r.

By construction, we have

g((τ))≤0/k∞ ∼= g0 ⊕
d−1⊕
i=1

gi/m/ci/m.

Therefore

(2.7) dim g((τ))≤0/k∞ = dim c0 +
d−1∑
i=0

gi/m/ci/m.

We consider the roots Φ(g, c) for the Cartan c. The Z/mZ-grading on g is
induced by w ∈ W (g, c) regular of order m. Now w permutes Φ(g, c) freely
with |Φ|/m orbits. Each orbit contributes 1-dimension to each gi/m/ci/m for
all i ∈ Z/mZ. Therefore dim gi/m/ci/m = |Φ|/m for all i ∈ Z. Using (2.7), we
see that

dim g((τ))≤0/k∞ = dim c0 + d

m
|Φ| = dim tw + d

m
|Φ|.

Combined with (2.6) we get

dim(E,ϕ) Mψ = dim H0(X,K(E,ϕ)) = dim tw + d

m
|Φ| − r.
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2.10. Proof of Thereom 2.8.1(4)

Ngô’s product formula [34, Prop. 4.15.1] and its extension by Bouthier and
Cesnavicius [10, Theorem 4.3.8] has an analogue for our level structures which
we spell out.

Define a reduced sub-ind-scheme of G((τ))/K∞:

Xψ,∞ = {gK∞ ∈ G((τ))/K∞|Ad(g−1)ψ ∈ ψ + g((τ))≤0}.

This is an analog of an affine Springer fiber.
Recall the torus C over P1\{0,∞} defined in §2.4 as the centralizer of

ψ. Extend C to a group scheme C on P1 with parahoric level structures at
0 and ∞. Let PicC(0̂; ∞̂) be the moduli space of C torsors over P1 with
trivializations on D0 and D∞. Then C[[t]] and C[[τ ]] act on PicC(0̂; ∞̂) by
changing the trivializations, and these actions extend to actions of the loop
tori C((t)) and C((τ)). On the other hand, C((t)) and C((τ)) act on Flψ and
Xψ,∞ respectively by left translations.

There is a canonical morphism

(2.8) α : PicC(0̂; ∞̂)
C((t))×C((τ))

× (Flψ ×Xψ,∞) → Maψ

defined as follows. Given a C-torsor Q over P1 with trivializations on D0

and D∞, we get a G-torsor E◦ = Q
C
× G over P1\{0,∞} with a Higgs field

given by ψ and trivializations on D0 and D∞. A point g0I0 ∈ Flψ gives a
G-torsor E0 over D0 with I0-level structure together with a trivialization over
D×

0 . We can glue E0 with E◦ along D×
0 using the trivializations. Similarly, a

point g∞K∞ ∈ Xψ,∞ gives a G-torsor E∞ over D∞ with K∞-level structure
together with a trivialization over D×

∞, which we can glue with E◦ along D×
0 .

This way we have extended E◦ to a G-torsor E on P1 with I0 and K∞-level
structures. The Higgs field ψ on E◦ extends to E because of the conditions
defining Flψ and Xψ,∞. This gives the map α. The same argument of [10,
Theorem 4.3.8] shows that α is a universal homeomorphism: the reason is
that for any (E , ϕ) ∈ Maψ(R) where R is a seminormal strictly Henselian
local k-algebra, (E , ϕ)|P1

R\{0,∞} reduces to a C-torsor, and the restriction of
any C-torsor over Spec R((t)) and Spec R((τ)) must be trivial, as shown in [10,
Theorem 3.2.4] (using that m is invertible in k, hence C splits over a tamely
ramified cover of Gm).

By Lemma 2.10.1 below, the action of C((τ)) on Xψ,∞ is transitive. The
stabilizer of C((τ)) at the base point 1 ∈ Xψ,∞ is C((τ)) ∩ K∞ = C+

∞. There-
fore the action map C((τ))/C+

∞ → Xψ,∞ is an isomorphism on the reduced
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structures. This allows us to simplify the left side of (2.8) to

(2.9) PicC(0̂;C+
∞)

C((t))
× Flψ → Maψ .

Here PicC(0̂;C+
∞) is the moduli space of C-torsors over P1 with a trivialization

on D0 and a C+
∞-level structure at ∞. Let C0 ⊂ C((t)) be the parahoric sub-

group. Let PicC(C0;C+
∞) be the moduli space of C-torsors over P1 with a C0-

level structure at 0 and a C+
∞-level structure at ∞. Then PicC(C0;C+

∞) is the
discrete space X∗(T )〈w〉 of coinvariants under the action of 〈w〉. Indeed, a com-
putation of tangent space shows that PicC(C0;C+

∞) is discrete; the automor-
phism group of the identity point is trivial hence the automorphism group of
all points are trivial since PicC(C0;C+

∞) is a Picard groupoid. By [22, Lemma
16] the connected components of PicC(C0;C∞) are canonically indexed by
X∗(T )〈w〉, hence the same is true for PicC(C0;C+

∞). On the other hand, the
Kottwitz map gives an isomorphism (C((t))/C0)red

∼→ X∗(T )〈w〉 (see [36, The-
orem 5.1, step A]), and PicC(C0;C+

∞) is a trivial torsor under (C((t))/C0)red.
Therefore the action of C((t)) on PicC(0̂;C+

∞) is transitive, and the reduced

stabilizer is trivial. Hence the natural map Flψ → PicC(0̂;C+
∞)

C((t))
× Flψ is an

isomorphism on the reduced structure. Since (2.9) is a universal homeomor-
phism, we conclude that the composition

Flψ → PicC(0̂;C+
∞)

C((t))
× Flψ → Maψ

is a universal homeomorphism.

2.10.1 Lemma. Let ψ′ ∈ ψ + g((τ))≥0 be in the same G((τ))-orbit of ψ, then
there exists g ∈ P∞( d

m) such that Ad(g)ψ′ = ψ.

Proof. We construct inductively a sequence of elements gj ∈ P∞( d
m) (for

j ≤ 1) such that

(1) g1 = 1;
(2) For j ≤ 0, gj ∈ gj+1P∞(−j+d

m );
(3) For j ≤ 0, Ad(gj)ψ′ ≡ ψ mod g((τ))≤j−1.

Then the limit g = limj→−∞ gj exists in P∞( d
m), and it satisfies Ad(g)ψ′ = ψ.

Take g1 = 1. Suppose gj+1 has been constructed. Then we have

Ad(gj+1)ψ′ = ψ + Xj + Xj−1 + · · · , Xk ∈ g((τ))j/m.

We look for Y ∈ g((τ))(j−d)/m such that [Y, ψ] = Xj ; then gj = exp(−Y )gj+1
satisfies all the requirements.
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Now solve the equation [Y, ψ] = Xj for Y ∈ g((τ))(j−d)/m. Recall f1, · · · , fr
∈ k[g]G is a set of homogeneous generators with degrees d1, · · · , dr. By as-
sumption fi(ψ′) = fi(ψ), hence

fi(ψ) = fi(Ad(gj+1)ψ′) = fi(ψ + Xj + Xj−1 + · · · ).

Taking Taylor expansion of fi at ψ with respect to the Moy-Prasad grading,
we get

〈dfi(ψ), Xj〉 = 0, ∀i = 1, · · · , r.
Here dfi(ψ) ∈ g∗((τ)), and the pairing 〈,〉 is the k((τ))-bilinear between g∗((τ))
and g((τ)). Since ψ is regular semisimple as an element in g((τ)), the differ-
entials {dfi(ψ)}1≤i≤r span a subspace of g∗((τ)) which under the Killing form
can be identified with c((τ)) (the centralizer of ψ). Therefore, the annihilator
of the span of {dfi(ψ)}1≤i≤r is [g((τ)), ψ]. The above equations imply that
Xj ∈ [g((τ)), ψ], so Xj ∈ [Z, ψ] for some Z ∈ g((τ)). Let Y be the g((τ))(j−d)/m
homogeneous component of Z, then [Y, ψ] = Xj . This completes the inductive
construction of gj .

2.11. Construction of Mψ as a Hamiltonian reduction

The symplectic structure on Mψ mentioned in Theorem 2.8.1 comes from a
realization of Mψ as a Hamiltonian reduction of a certain cotangent space.

We define a subgroup J∞ ⊂ G((τ)) as follows:

(1) If d is odd, then J∞ = P∞( (d+1)/2
m ) · C+

∞.
(2) If d is even, then g((τ))−d/2m carries an alternating form (x, y) �→

〈ψ, [x, y]〉. Let m ⊂ g((τ))−d/2m be a maximal isotropic subspace, and let
P∞(d/2m )m be its preimage in P∞(d/2m ) under the projection P∞(d/2m ) →
g((τ))−d/(2m). Let J∞ = P∞(d/2m )m · C+

∞.

Then ψ has a unique extension to a linear character ψ̃ : J∞ → Ga such that,
on the level of Lie algebras, ψ̃ is trivial on (Lie J∞) ∩ g((τ))i/m for i < −d.

To construct this note that J∞ is pro-unipotent so we just need check
that the linear map ψ̃ given by

Lie J∞ ⊂ Lie P∞( 1
m

) → g((τ))−d/2m
<ψ,−>−−−−→ k

is a Lie algebra homomorphism. That is to check that [Lie J∞,Lie J∞] is in
the kernel. This follows from the definition of P∞(d/2m )m and the fact that
C+

∞ is a commutative group centralizing ψ.
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Recall the notation of Hamiltonian (or Marsden-Weinstein) reduction: let
X be a smooth stack with the action of an algebraic group H. Let ζ : h → k
be a character of the Lie algebra h = Lie H, viewed as an element in h∗. Let
μH : T ∗X → h be the moment map. Then define the stack

T ∗X//ζH = μ−1
H (ζ)/H.

When ζ is a regular value of μH , T ∗X//ζH is a smooth stack that inherits an
exact symplectic structure from that of T ∗X.

We apply this construction to the case X = BunG(J1
∞; I0), the moduli

stack of G-bundles on X = P1 with J1
∞ := ker(ψ̃) ⊂ J∞-level structure at

∞ and I0-level structure at 0, with the action of H = Ga = J∞/J1
∞ and the

character ζ = ψ̃ ∈ h∗. Here J∞ acts on BunG(J1
∞; I0) by changing the J1

∞-
level structure, where J1

∞- acts trivially and thus this descends to an action
of H = Ga = J∞/J1

∞.

2.11.1 Proposition. There is a canonical isomorphism between Mψ and the
Hamiltonian reduction of T ∗BunG(J1

∞; I0)//ψ̃Ga. In particular, Mψ carries
a canonical symplectic structure which coincides with the 2-form Ω defined in
§2.9.

Proof. We describe Nψ := T ∗BunG(J1
∞; I0)//ψ̃Ga as a moduli space of Higgs

bundles as follows. Let j∞ = Lie J∞ and j∨∞ ⊂ g((τ)) be the dual lattice under
the form 〈·, ·〉 extended k((τ))-linearly, i.e., j∨∞ = {v ∈ g((τ))|〈v, j∞dτ/τ〉 ⊂
k[[τ ]]dτ}.

Recall the notations c((τ))⊥, c((τ))⊥≤j/m from §2.9.2. Then

(2.10) j∨∞ =
{
c((τ))⊥≤(d−1)/(2m) ⊕ c((τ))≤0 d odd;
m⊥ ⊕ c((τ))⊥≤(d/2−1)/m ⊕ c((τ))≤0 d even.

Here m⊥ ⊂ g((τ))d/(2m) is the orthogonal complement of m ⊂ g((τ))−d/(2m)
under the pairing 〈·, ·〉.

Then Nψ classifies pairs (E , ϕ) where

• E is a G-bundle over X with J∞-level structure at ∞ and I0-level struc-
ture at 0. We denote by Ad(E) the vector bundle over X\{0,∞} asso-
ciated to the adjoint representation g of G.

• ϕ is a section of Ad(E) ⊗ ωX\{0,∞} satisfying the following conditions:
(i) Under some (equivalently, any) trivialization of E|D∞ together with

its J∞-level structure, we require

ϕ|D×
∞
∈ (ψ + j∨∞)dτ/τ.
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(ii) Under some (equivalently, any) trivialization of E|D0 together with
its I0-level structure, we require

ϕ|D×
0
∈ Lie (I+

0 )dt/t.

Since K∞ ⊂ J∞ and ψ + g((τ))≤0 ⊂ ψ + j∨∞, we have a natural map

F : Mψ → Nψ.

We need to show that F is an isomorphism of algebraic stacks.
Let Uψ = (ψ + j∨∞)/g((τ))≤0 (an affine space). Let J = J∞/P( d

m). Then
J acts on Uψ by the adjoint action. Let C ⊂ J be the image of C+

∞, then C
stabilizes the point ψ ∈ Uψ. We thus get a morphism of stacks

ι : [{ψ}/C] → [Uψ/J ].

On the other hand, we have an evaluation map

ε : Nψ → [Uψ/J ]

by taking the Laurent expansion of ϕ|D×
∞

modulo g((τ))≤0dτ/τ . From the
definitions we have a Cartesian diagram

Mψ
F Nψ

ε

[{ψ}/C] ι [Uψ/J ]

To show F is an isomorphism, it suffices to show that ι is an isomorphism.
Consider the action map α : J → Uψ sending g ∈ J to Ad(g)ψ ∈ Uψ. It

passes to the quotient

α : J/C ∼= J∞/K∞ → Uψ

Then ι is an isomorphism if and only if α is an isomorphism.
For d/2 ≤ j ≤ d and d ∈ Z, let

Qj = P∞( j
m

)C+
∞,

Λj = c((τ))⊥≤(d−j)/m + g((τ))≤0.
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We have

K∞ = Qd ⊂ · · · ⊂ Qj ⊂ Qj−1 ⊂ · · ·Q�d/2� ⊂ J∞,

g((τ))≤0 = Λd ⊂ · · · ⊂ Λj ⊂ Λj−1 ⊂ · · · ⊂ Λ�d/2� ⊂ j∨∞.

Moreover, Ad(Qj)ψ ⊂ Λj for j ≥ d/2.
We show inductively that for j ≥ d/2, the map

αj : J∞/Qj → (ψ + j∨∞)/Λj

defined by g �→ Ad(g)ψ mod Λj is an isomorphism. Since αd = α, this would
finish the proof.

When d is odd, the initial step j = (d + 1)/2 is trivial since both sides
of αj are singletons. When d is even, we have J∞/Qd/2 ∼= m/c−d/(2m), and
(ψ + j∨∞)/Λd/2 ∼= ψ + m⊥, and the map αd/2 is [−, ψ]. By definition m is a
maximal isotropic subspace of g−d/(2m) under the form (x, y) �→ 〈x, [y, ψ]〉.
This form has kernel c−d/(2m), hence [−, ψ] maps m/c−d/(2m) isomorphically
to m⊥.

Now assume αj is an isomorphism (where d/2 ≤ j < d). We have a
commutative diagram

J∞/Qj+1
αj+1

qj

(ψ + j∨∞)/Λj+1

pj

J∞/Qj
αj (ψ + j∨∞)/Λj

Since the above diagram is J∞-equivariant and the map αj is assumed to be
an isomorphism, to show αj+1 is an isomorphism it suffices to show that

αj+1|q−1
j (1) : q−1

j (1) = Qj/Qj+1 → p−1
j (ψ) = (ψ + Λj)/Λj+1

is an isomorphism. This map can be identified with

[−, ψ] : c((τ))⊥−j/m → c((τ))⊥(d−j)/m.

Since ψ is regular semisimple with centralizer c((τ)) under g((τ)), the above
map is an isomorphism. This completes the inductive step.

To see the 2-form coincides we note that the tangent complex of Nψ is

K = K(E,ϕ) := [Ad(E ; Lie I0, j∞) [−,ϕ]−−−→ Ad(E ; Lie I+
0 , g((τ))≤0)].
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similarly defined to the tangent complex in equation 2.5. The result of the
2-forms now follows by noting that the above argument shows both tangent
complexes agree under the map ι.

2.12. Proof of Theorem 2.8.1(3)

By Theorem 2.8.1(1) and Lemma 2.6.2, we see that dimMψ = 2 dimAψ.
Therefore all fibers of f have dimension ≥ dimAψ. Also, by Theorem 2.8.1(4),
the central fiber of f has dimension dim Flψ = dimAψ = dimMψ − dimAψ.
Since all points in Aψ contract to aψ under the Gm-action, all fibers of f have
dimension ≤ dim Flψ. Combine both inequalities, we conclude that all fibers
of f have dimension equal to dimAψ. Since Mψ and Aψ are both smooth, f
is flat of relative dimension equal to dimAψ.

It remains to check that the functions given by coordinates of Aψ are
Poisson commuting. Let (E , ϕ) ∈ Mψ with image a ∈ Aψ. We need to show
that the image of the cotangent map f∗ : T ∗

aAψ → T ∗
(E,ϕ)Mψ is isotropic.

Let F =
⊕r

i=1 O([d(di − 1)/m] · ∞ − 0), where 0 denotes the point
0 ∈ X. Then TaAψ is identified with H0(X,F). Recall from the proof of
Theorem 2.8.1 that the tangent space T(E,ϕ)Mψ

∼= H0(X,K). The tangent
map f∗ : T(E,ϕ)Mψ → TaAψ is induced from the following map of coherent
complexes on X by taking global sections

Ad(E ; Lie I0,Lie K∞)
[−,ϕ]

Ad(E ; Lie I+
0 , g((τ))≤0)
(dfi)1≤i≤r

F

Here dfi : Ad(E ; Lie I+
0 , g((τ))≤0) → O([d(di− 1)/m] ·∞− 0) is the OX -linear

map given fiberwise by the differential of fi at ϕ. The map (dfi)1≤i≤r above
factors through p : H0K → F . The tangent map f∗ at (E , ϕ) is thus given by

T(E,ϕ)Mψ = H0(X,K) � H0(X,H0K) p−→ H0(X,F) = TaAψ.

Dually, the cotangent map f∗ at (E , ϕ) is given by

T ∗
aAψ = H1(X,F∗ ⊗ ωX) p∗−→ H1(X,H−1(K∨)) ↪→ H0(X,K∨) = T ∗

(E,ϕ)Mψ.

Here K∨ = Hom(K, ωX [1]) is the Serre dual of K, and (−)∗ denotes linear
dual Hom(−,OX). In the proof of Theorem 2.8.1, we showed that the obvious
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map ι : K → K∨ is a quasi-isomorphism, which then induces an isomorphism
of short exact sequences
(2.11)

0 H1(X,H−1K)

∼=

T(E,ϕ)Mψ

∼=ι

H0(X,H0K)

∼=

0

0 H1(X,H−1(K∨)) T ∗
(E,ϕ)Mψ H0(X,H0(K∨)) 0

By construction, the middle vertical map gives the symplectic form on T(E,ϕ)
Mψ. The composition

T ∗
aAψ

f∗
−→ T ∗

(E,ϕ)Mψ
ι−1
−−→ T(E,ϕ)Mψ

f∗−→ TaAψ

factors through the composition of either row in (2.11), hence is zero. This
shows that the image of T ∗

aAψ in T ∗
(E,ϕ)Mψ is isotropic.

2.13. Construction of Mψ as a symplectic leaf

Let M†
ψ be the moduli stack parametrizing pairs (E , ϕ) where

• E is a G-bundle over X with P+
∞-level structure at ∞ and I0-level

structure at 0.
• ϕ is a section of Ad(E) ⊗ ωX\{0,∞} satisfying the following conditions:

(i) Under some (equivalently, any) trivialization of E|D∞ together with
its P+

∞-level structure, we require

ϕ|D×
∞
∈ (ψ + g((τ))≤(d−1)/m)dτ/τ.

(ii) Under some (equivalently, any) trivialization of E|D0 together with
its I0-level structure, we require

ϕ|D×
0
∈ Lie (I+

0 )dt/t.

The Hitchin base A†
ψ for M†

ψ is the closed subscheme A†
ψ ⊂ ∏r

i=1 Γ(P1,

O([ ddim ] · ∞)) of sections a = (ai)1≤i≤r such that for each i = 1, · · · , r

• ai(0) = 0;
• ai ≡ fi(ψ) mod τ−

ddi−1
m near ∞ (i.e., the leading coefficient of degree

τ−ddi/m, if m|di, of ai at ∞ is the same as that of fi(ψ)).
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We have the Hitchin map

f † : M†
ψ → A†

ψ.

It is also clear from the construction that there is a canonical map Mψ → M†
ψ

and an inclusion Aψ ⊂ A†
ψ.

2.13.1 Proposition. The canonical maps give a Cartesian diagram

Mψ

f

M†
ψ

f†

Aψ A†
ψ

In particular, Mψ
∼= M†

ψ ×A†
ψ
Aψ.

Proof. Let Q = P+
∞/P∞( d

m). Let Vψ = (ψ+ g((τ))≤(d−1)/m)/g((τ))≤0. Then Q

acts on the affine space Vψ by the adjoint action. Each (E , ϕ) ∈ M†
ψ gives an

Q-torsor Q induced from the P+
∞-level structure of E , and the polar terms of

ϕ(dτ/τ)−1 give a section of the associated affine space bundle Q
Q
× Vψ. This

construction gives a map

ε : M†
ψ → [Vψ/Q].

The stabilizer Qψ of ψ ∈ Vψ is the image of C+
∞ in Q. By the definition of

Mψ, we have a Cartesian diagram

(2.12) Mψ M†
ψ

ε

[{ψ}/Qψ] [Vψ/Q]

Let aψ be the affine space of (ai)1≤i≤r where ai ∈ τ−[ddi/m]k[[τ ]]/k[[τ ]] with
leading term fi(ψ) in degree τ−ddi/m if m|di. Then (fi)1≤i≤r gives a map

f : Vψ → aψ.

We have a map π : A†
ψ → aψ by taking the first few terms of the Laurent

expansion ai of at ∞. Let aψ = π(aψ) ∈ aψ. Then Aψ = π−1(aψ). Let
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V 0
ψ := f

−1(aψ). Therefore

M†
ψ ×A†

ψ
Aψ = ε−1([V 0

ψ/Q]).

In view of (2.12), to show that Mψ is equal to the left side above, it suffices
to show that [{ψ}/Qψ] ∼= [V 0

ψ/Q], or equivalently,
(2.13)

The action map α : Q → V 0
ψ , q �→ Ad(q)ψ, is smooth and surjective.

We first show that α is surjective on k-points. Let ψ′ ∈ ψ+g((τ))≤(d−1)/m
be such that fi(ψ′) = fi(ψ) for all 1 ≤ i ≤ r. We want to construct q ∈ P+

∞
such that Ad(q)ψ − ψ′ ∈ g((τ))≤0. The same argument as in the proof of
Lemma 2.10.1 works to construct hj inductively modulo P∞( j

m) for j =
1, 2, · · · , d such that Ad(q)ψ − ψ′ ∈ g((τ))≤(d−j)/m. We omit details.

We then show that α is smooth. Since (V 0
ψ )(k) is a single orbit of Q(k),

it suffices to show that the tangent map of α is surjective at 1. The tangent
map of α at 1 is

[−, ψ] : Lie Q =
d−1⊕
j=1

g((τ))(j−d)/m →
d−1⊕
j=1

c((τ))⊥j/m,

which is surjective since ψ is regular semisimple. This finishes the proof
of (2.13). The proposition is proved.

2.13.2 Remark. One can show that M†
ψ is a smooth Poisson algebraic space,

and Mψ is a symplectic leaf in M†
ψ. We omit the proof.

2.14. Proof of Theorem 2.8.1(5)

Assuming w is elliptic, we show that f is proper. By Proposition 2.13.1, it
suffices to show that f † is proper. We introduce a variant M‡ of M†

ψ: it
classifies (E , ϕ) where E has P∞ and I0-level structures, and the Higgs field is
required to lie in g((τ))≤d/mdτ/τ near ∞ such that its projection to g((τ))d/m
is regular semisimple, and in Lie I+

0 dt/t near 0 (after trivializations). Let Ã‡

be the affine space of (ai ∈ Γ(X,O([ddi/m]) · ∞)1≤i≤r with the condition
that ai(0) = 0. Evaluating the leading coefficient at ∞ gives a map Ã‡ →
gd/m // LP∞ , and let A‡ ⊂ Ã‡ be the preimage of grs

d/m // LP∞ (where LP∞

is the Levi quotient of P∞; it is identified the connected subgroup of G with
Lie algebra g0). We have the Hitchin fibration f ‡ : M‡ → A‡. Then the
fiber product M‡ ×A‡ A†

ψ admits a description that is almost identical to
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M†
ψ, except that the P+

∞-level structure is replaced with the slightly larger
level group P+

∞C′
∞, where C′

∞ ⊂ P∞ is the centralizer of ψ in P∞. Since
(P+

∞C′
∞)/P+

∞
∼= CLP∞ (ψ) is finite over k for w elliptic, M†

ψ → M‡ ×A‡ A†
ψ

is finite. Therefore, to show f † is proper it suffices to show that f ‡ is proper.
Now f ‡ is a parahoric Hitchin fibration, and [35, Proposition 6.3.7(2)] implies
that f ‡ is proper over the elliptic locus. However, we shall argue that the
whole A‡ consists of elliptic points. Indeed, the non-elliptic locus Z ⊂ A‡ is
closed and Gm(ν)-stable, so must contain a Gm(ν)-fixed point if non-empty.
But A‡,Gm(ν) consists of images of ψ′ for ψ′ ∈ g[t, t−1]d/m, and they are all
elliptic.

2.15. Comparison of cohomology

The goal of this subsection is to prove Theorem 2.8.4 about the cohomology
of Mψ and Flψ.

2.15.1. The situation We consider the following general situation. Let X
be an algebraic space locally of finite type over k, equipped with a Gm-action.
Let XGm =

∐
α∈I Zα be an open-closed decomposition of the fixed point locus.

In [14] Drinfeld introduces the attractor X+ := MapGm
(A1,X). It is

equipped with two maps

XGm X+ p+q+

X

Here p+ (resp. q+) is evaluation at 1 ∈ A1 (resp. 0 ∈ A1). It is shown in [14,
Theorem 1.4.2] that X+ is represented by an algebraic space of finite type
over k, and q+ is an affine morphism.

One defines the repeller X− to be the attractor for the inverted Gm-action,
and we have maps p− : X− → X and q− : X− → XGm .

For each α ∈ I, let X±
α = q±,−1(Zα). Let p±α = p±|X±

α
; q±α = q±|X±

α
.

We make the following assumptions:

(1) For each α ∈ I, q+
α : X+

α → X is a locally closed embedding.
(2) For each α ∈ I, the reduced image of q−α : X−

α → X is a locally closed
subspace X−

α of X, and the induced map X−
α → X−

α is a homeomor-
phism.

(3) ∪α∈IX
+
α = X, i.e., for any x ∈ X, the limit limt→0 t · x exists.

(4) There exists a partial order ≤ on I such that for each α ∈ I

• The set {α′ ∈ I;α′ ≤ α} is finite.
• X

+
≤α := ∪α′≤αX

+
α is open in X, and is of finite type over k.
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• X−
≤α := ∪α′≤αX

−
α is proper over k. In particular, each Zα is proper

over k.

The cohomology of a locally finite algebraic space is the projective limit of
the cohomology of finite type open subspaces. Therefore

H∗(X,Q
) = lim←−
α∈I

H∗(X+
≤α,Q
).

On the other hand, we define an ind-space

Y := lim−→
α∈I

X−
≤α

as a union of finite type closed subspaces. We define the cohomology of Y to
be

H∗(Y,Q
) := lim←−
α∈I

H∗(X−
≤α,Q
).

2.15.2 Proposition. Under the above assumptions, the restriction maps
H∗(X,Q
) → H∗(Y,Q
) and H∗

Gm
(X,Q
) → H∗

Gm
(Y,Q
) are isomorphisms.

Proof. First note that X−
≤α ⊂ X

+
≤α. Indeed, if x ∈ X−

≤α, the limit limt→0 t · x
exists in X−

≤α since X−
≤α is proper. But (X−

≤α)Gm =
∐

α′≤α Zα′ , hence limt→0 t·
x ∈ Zα′ for some α′ ≤ α, therefore x ∈ X

+
≤α.

We extend ≤ to a total ordering on I and add the minimal element 0 to
I. Let X

+
0 = X

−
0 = X−

0 = ∅. We denote by i±α : Zα ↪→ X±
α the inclusions.

Let sα : X−
≤α ↪→ X

+
≤α be the inclusion. If α′ is the predecessor of α, let

X
±
<α := X

±
≤α′ , X−

<α := X−
≤α′ and let s<α = sα′ .

We prove by induction on α that the restriction map s∗α : H∗(X+
≤α) →

H∗(X−
≤α) is an isomorphism, and the same is true for Gm-equivariant coho-

mology. This would imply the proposition by taking projective limits. The
case α = 0 is clear.

Suppose the s∗<α is an isomorphism, we show s∗α is also an isomorphism.
Consider the commutative diagram (for simplicity we have omitted most of
the subscripts α)

Zα

i−

i+
X+

α

k+

X−
α

j−

k−

X−
≤α

sα
X

+
≤α

X−
<α

v

X
+
<α

u
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Here, i+, i−, k+, sα, s<α, v are closed embeddings, j− is the composition X−
α →

X−
α ↪→ X−

≤α hence a topological open embedding; u is an open embedding.
We consider the following diagram of distinguished triangles in Db

Gm
(X+

≤α):

(2.14) k+
! k

+!Q


ζ

Q
 u∗u
∗Q


k−! k
−∗Q
 sα∗s

∗
αQ
 s<α∗s

∗
<αQ


The rows are given by the open-closed decompositions X+
≤α = X

+
<α ∪X+

α and
X−

≤α = X−
α ∪ X−

<α (by assumption X−
α → X−

α is a homeomorphism). The
only map that requires explanation is ζ, which is the composition natural
transformations

ζ : k+
∗ k

+! → sα∗s
∗
αk

+
∗ k

+,! ξ−→ sα∗h
−
∗ i

+∗k+! ρ−→ sα∗h
−
∗ i

−!k−∗

= sα∗j
−
! i

−
∗ i

−!j−∗s∗α → sα∗j
−
! j

−∗s∗α = k−! k
−∗.

Here ξ : s∗αk
+
∗ → h−

∗ i
+∗ is given by k+ ◦ i+ = sα ◦ h− and adjunction;

ρ : i+∗k+! → i−!k−∗ is the comparison map of hyperbolic localization functors,
see Braden [11, top of page 212]. The commutativity of (2.14) is a diagram
chase that we omit.

Taking global sections of (2.14) we get a map between long exact se-
quences of cohomology groups

· · · H∗(X+
α , k

+!Q
)

H∗(ζ)

H∗(X+
≤α)

s∗α

H∗(X+
<α)

s∗<α

· · ·

· · · H∗
c(X−

α , k
−∗Q
) H∗(X−

≤α) H∗(X−
<α) · · ·

By induction hypothesis, s∗<α is an isomorphism, therefore to show s∗α is an
isomorphism, it suffices to show H∗(ζ) is. Since X+

α contracts to Zα under
q+
α : X+

α → Zα, the contraction principle gives an isomorphism q+
α∗k

+!Q

∼=

i+∗k+!Q
. Taking global sections we get

H∗(X+
α , k

+!Q
) ∼= H∗(Zα, i
+∗k+!Q
).

Similarly, using the contraction q−α : X−
α → Zα we have an isomorphism

q
−
α!k

−∗Q

∼= i−!k−∗Q
; taking global sections with compact support and using
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that Zα is proper, we get

H∗
c(X−

α , k
−∗Q
) ∼= H∗(Zα, i

−!k−∗Q
).

Under these isomorphisms, the induced map on cohomology by ζ is the com-
parison map of hyperbolic localizations to Zα:

H∗(ζ) = H∗(ρ) : H∗(Zα, i
+∗k+!Q
) → H∗(Zα, i

−!k−∗Q
).

By Braden’s theorem [11, Theorem 1] and its extension to algebraic spaces by
Drinfeld-Gaitsgory [15, Theorem 3.1.6], H∗(ρ) is an isomorphism. This shows
H∗(ζ) is an isomorphism, hence s∗α is an isomorphism.

Taking Gm-equivariant global sections of (2.14), the same argument proves
that s∗α is an isomorphism on Gm-equivariant cohomology.

2.15.3. Attractors and repellers for Mψ We would like to apply the
above discussions to Mψ with the Gm(ν)-action. For this we collect some
facts about its attractors and repellers.

Since the action of Gm(ν) on Aψ contracts to the point aψ, the Gm(ν)-
fixed points MGm(ν)

ψ necessarily lie in the central fiber Maψ , hence homeo-
morphic to FlGm(ν)

ψ by Theorem 2.8.1(4).
Recall P0 ⊂ G((t)) is the parahoric subgroup whose Lie algebra is g((t))≥0.

By [27, §5.1], the P0-orbits on Fl are parametrized by WP\W̃ , where WP is
the Weyl group of the Levi LP of P∞. For w ∈ WP\W̃ , let Flw ⊂ Fl be
the P0-orbit containing any lifting of w. Then WP\W̃ is equipped with the
partial order ≤ such that w ≤ w′ if and only if Flw ⊂ Flw′ . This is the partial
order induced from the Bruhat order on W̃ , if we identify WP\W̃ as a subset
of W̃ using longest representatives. Let Flw,ψ = Flw ∩ Flψ. Denote by wI0
(resp. w(Lie I+

0 )) the conjugate of I0 (resp. Lie I+
0 ) by any lift of w ∈ W̃ .

Consider the action of Gm(ν) on Fl given in §2.7.1 that stabilizes Flψ.
Since the affine roots α + nδ in P0 are those with α(ξ/m) + n ≥ 0, and
α(ξ/m)+n = 0 if and only if α+nδ is a root of the Levi LP, the fixed points
FlGm(ν) is the disjoint union of LPwI0/I0 for w ∈ WP\W̃ . Therefore FlGm(ν)

ψ

admits a decomposition

(2.15) FlGm(ν)
ψ =

∐
w∈WP\W̃

Hψ(w), Hψ(w) = LPwI0/I0 ∩ Flψ.

If we choose a representative w̃ ∈ W̃ of w, then Hψ(w) is isomorphic to
a Hessenberg variety for LP defined using the LP-module g((t))d/m and its
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subspace w̃(Lie I+
0 ) ∩ g((t))d/m:

Hψ(w) ∼= {h ∈ LP/(LP ∩ w̃I0)|Ad(h−1)(ψ) ∈ w̃(Lie I+
0 ) ∩ g((t))d/m}.

Let γ : Flψ → Mψ be the canonical map.
We shall use the notations from §2.15.1. For w ∈ WP\W̃ , let Zw =

γ(Hψ(w)) (it is open-closed in MGm

ψ ). Let X+
w and X−

w be the attractor and
repeller of Zw, and we have maps p±w : X±

w → Mψ and q±w : X±
w → Zw.

2.15.4 Lemma. The map γw = γ|Hψ(w) : Hψ(w) → Zw is an isomorphism.

Proof. Since Mψ is smooth, so is Zw by [14, Prop. 1.4.20]. It is well-known
that Hψ(w) is smooth. The map γw is a homeomorphism between smooth
spaces, hence an isomorphism.

2.15.5 Lemma. The image of the map p−w : X−
w → Mψ is the locally closed

subspace X−
w := γ(Flw,ψ). There is a unique isomorphism X−

w
∼= Flw,ψ com-

patible with the maps p−w and γ. In particular, p−w is a homeomorphism onto
its image X−

w = γ(Flw,ψ).

Proof. We first show that the image of p−w is X−
w = γ(Flw,ψ) (with the reduced

structure). Since the action of Gm(ν) is contracting to aψ, if lims→∞ s · (E , ϕ)
exists, f(E , ϕ) must be equal to aψ, i.e., (E , ϕ) ∈ Maψ . Now we can identify
(E , ϕ) with a geometric point gI0 ∈ Flψ under γ. Since the inverted Gm(ν)-
action s · g = rot(sm)Ad(ξ(s))g contracts P0 to LP, Flw = P0wI0/I0 is the
repelling subscheme of LPwI0/I0 in Fl. Therefore, lims→∞ s · gI0 ∈ Hψ(w) if
and only if gI0 ∈ Flw,ψ.

From the above we also see that each geometric point of Maψ has a unique
limit point under the action of s ∈ Gm(ν), s → ∞. By [14, Prop. 1.4.11(i)],
p−w : X−

w → Mψ is unramified with image X−
w . The uniqueness of limit points

as s → ∞ implies that p−w is a monomorphism (geometric fibers are a reduced
singleton).

Since Mψ is smooth, by [14, Prop. 1.4.20], the map q−w : X−
w → Zw is

smooth. By [20, §4.5], the contraction map q : Flw,ψ → Hψ(w) is an iter-
ated affine space bundle, hence also smooth. Therefore the homeomorphism
Flw,ψ → X−

w is the normalization map. The map p−w : X−
w → X−

w thus uniquely
lifts to p̃ : X−

w → Flw,ψ. We have a commutative diagram

X−
w

p̃

q
−
w

Flw,ψ

q

Zw
∼ Hψ(w)
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The bottom map is an isomorphism by Lemma 2.15.4. We claim that p̃ is an
isomorphism.

Note that p̃ is a monomorphism because q−w is; it is also surjective. Re-
placing Zw by its connected components, and taking preimages in X−

w and
Flw,ψ, we may assume Zw is connected. In this case, X−

w is connected because
every point of it contracts to Zw under s → ∞. Now p̃ is a monomorphic
surjection between two smooth connected spaces. By considering differentials
we conclude that p̃ is an isomorphism.

On the other hand, by [16, Cor. 16] and [27, §5.2] the isomorphism classes
of BunG(P∞, I0) are also indexed by WP\W̃ . Denote the locally closed sub-
stack with isomorphism class w by Bunw

G(P∞, I0). By [16, §3] Bunw
G(P∞, I0) ⊂

Bunw′
G (P∞, I0) if and only if w ≥ w′ under the partial order already defined

on WP\W̃ .
Let ω : Mψ → BunG(P∞, I0) be the forgetful map.

2.15.6 Lemma. For any (E , ϕ) ∈ Mψ, the limit lims→0 s · (E , ϕ) exists in
MGm(ν)

ψ . Moreover, the map p+
w : X+

w → Mψ is a locally closed embedding
whose image is ω−1(Bunw

G(P∞, I0)).

Proof. We first show the limit lims→0 s · (E , ϕ) always exists. Consider the
uniformization map u : Fl = G((t))/I0 → BunG(K∞, I0). We think of Fl as
classifying a E-torsor on X with K∞-level at ∞ and I0-level structure at 0
and a trivialization on X\{0}. Let N be the base change of Mψ along u.
Then N can be described as the moduli space of pairs (gI0, θ) where gI0 ∈ Fl
and θ ∈ g[t, t−1]≤0 such that

Ad(g−1)(ψ + θ)dt/t ∈ Lie I+
0 dt/t.

Indeed, given (gI0, θ), we define E as the image of gI0 under u, equipped with
the Higgs field ϕ = (ψ + θ)dt/t over X\{0}.

The action of Gm(ν) on Mψ lifts to N , and is given by

s · (gI0, θ) = (rot(s−m)Ad(ξ(s−1))gI0, s
drot(s−m)Ad(ξ(s−1))θ).

Since θ ∈ g[t, t−1]≤0, lims→0 s
drot(s−m)Ad(ξ(s−1))θ = 0. On the other hand,

since Fl is ind-proper, lims→0(rot(s−m)Ad(ξ(s−1))g)I0 ∈ FlGm(ν) exists. This
shows that lims→0 s·(gI0, θ) exists for any point (gI0, θ) ∈ N . Since N → Mψ

is surjective and Gm(ν)-equivariant, the same is true for Mψ.
We next show that the image of p+

w is ω−1(Bunw
G(P∞, I0)). In other words,

for a geometric point (E , ϕ) of Mψ, lims→0 s · (E , ϕ) ∈ γ(Hψ(w)) if and
only if the image of E in BunG(P∞, I0) is the point w. Let (gI0, θ) ∈ N
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be a preimage of (E , ϕ). Then lims→0 s · (E , ϕ) ∈ γ(Hψ(w)) if and only if
lims→0 rot(s−m)Ad(ξ(s−1))gI0 ∈ LPwI0/I0. Now FlGm(ν) =

∐
w∈WP\W̃ LPwI0/

I0. Note that BunG(P∞, I0) = Γ∞\Fl where Γ∞ = P∞ ∩ G[t, t−1], and the
action of rot(s−m)Ad(ξ(s−1)) contracts the group Γ∞ to the Levi LP. There-
fore, the limit point lims→0 rot(s−m)Ad(ξ(s−1))gI0 ∈ LPwI0/I0 if and only if
gI0 lies in the Γ∞-orbit of w, i.e., the image of gI0 (or E) in BunG(P∞, I0) is
in Bunw

G(P∞, I0).
So far we have shown that p+

w induces a map p̃ : X+
w → Ωw := ω−1(Bunw

G

(P∞, I0)). Finally we show that p̃ is an isomorphism, therefore p+
w is a locally

closed embedding. In Lemma 2.15.7 below, we construct a smooth map γ :
Ωw → Hψ(w) such that the following diagram is commutative

(2.16) X+
w

q
+
w

p̃ Ωw

γ

Zw
∼ Hψ(w)

By [14, Proposition 1.4.20], q+
w is smooth with connected fibers (since its

contracting to Zw). On the other hand γ is also smooth. Moreover, by [14,
Proposition 1.4.11(i)], p̃ is unramified. In our situation p̃ is a monomorphism
and a surjection, therefore the. By comparing relative differentials of q+

w and
γ, we conclude that p̃ is an isomorphism.

2.15.7 Lemma. There is a smooth map γ : Ωw → Hψ(w) making (2.16)
commutative.

Proof. To see this we first construct a smooth map γ : Ωw → Hψ(w). Let H =
P∞/P∞(d/m), H+ = P+

∞/P∞(d/m) which acts on V = ⊕d
i=1g((τ))i/m. Let

Vw = V ∩Ad(w)(Lie (G[t]∩I+
0 )) and Ṽw = g((τ))≤d/m∩Ad(w)(Lie (G[t]∩I+

0 )).
Let

Ω̂w = {(h, v) ∈ H × Ṽw|Ad(h)v ∈ ψ + g((τ))≤0}.

Let Aw = P∞∩Ad(w)(G[t]∩I0), which is the automorphism group of the point
w in BunG(P∞, I0). It acts on Ω̂w on the right by (h, v) · a = (ha,Ad(a−1)v).
Let ψV be ψ viewed as an element in V , and CH+(ψ) be its stabilizer under
H+. Then CH+(ψ) acts on Ω̂w by left translation on h ∈ H. Then there is an
isomorphism

CH+(ψ)\Ω̂w/Aw
∼= Ωw.

This identification follows using [16, Cor. 16] restricted over Bunw
G(P∞, I0).
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Let Ω̃w = {h ∈ H|Ad(h−1)ψV ∈ Vw}. There is a natural map β : Ω̂w →
Ω̃w (sending (h, v) to h) is an affine space bundle with fibers isomorphic to
g((τ))≤0 ∩ Ad(w)(Lie (G[t] ∩ I+

0 )). In particular, β is smooth.
Let Vw,i/m = g((τ))i/m∩Ad(w)(Lie (G[t]∩I+

0 )). Let H̃w = {� ∈ LP|Ad(�−1)
ψ ∈ Vw,d/m}. Then H̃w → Hψ(w) is a torsor under Bw = LP∩Ad(w)(G[t]∩I0)
(a Borel subgroup of LP). We have a map α : Ω̃w → H̃w sending h ∈ H to
its image in LP. Note that Bw is a quotient of Aw, and the composition
αβ : Ω̂w → H̃w is CH+(ψ) invariant and Aw-equivariant (via the quotient Bw

on H̃w). Therefore αβ induces a map γ : Ωw → Hψ(w) by passing to the
quotients. To summarize, we have a commutative diagram

Ω̂w
β

π

Ω̃w
α H̃w

π′

Ωw
γ Hψ(w)

where π, π′ and β are smooth. To show γ is smooth, it suffices to show that
α is smooth.

We have a commutative diagram

(2.17) H
θ

α̃

V/Vw

p

LP
η

g((τ))d/m/Vw,d/m

Here α̃ and p are the projections, θ(h) = Ad(h−1)ψV mod Vw; η(�) = Ad(�−1)
ψ mod Vw,d/m. By definition, Ω̃w = θ−1(0), H̃w = η−1(0) and α is the re-
striction of α̃. Let h ∈ Ω̃w with image h = α̃(h) ∈ LP. The tangent maps
of (2.17) at h are given by

h = ⊕d−1
i=0 g((τ))−i/m

Thθ=[−,Ad(h−1)ψV ]
V/Vw

l = g((τ))0
T
h
η=[−,Ad(h−1)ψ]

g((τ))d/m/Vw,d/m

We need to show that Thθ is surjective (which implies that Ω̃w is smooth
at h) and that the induced map ThΩw = ker(Thθ) → ker(Thη) = ThH̃w is
surjective. Consider the filtrations F−ih = ⊕i≤i′≤(d−1)g((τ))−i′/m, Fi(V/Vw) =
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⊕1≤i′≤ig((τ))i′/m/Vw,i′/m. Then Thθ sends F−ih to Fd−i(V/Vw), and the in-
duced map on the associated graded is

Gr−i(Thθ) : F−ih = g((τ))−i/m
[−,ψ′]−−−→ Fd−i(V/Vw) = g((τ))(d−i)/m/Vw,(d−i)/m

where ψ′ = Ad(h−1)ψ ∈ g((τ))d/m. In particular, Thη = Gr0(Thθ). It remains
to show that each Gr−i(Thθ) is surjective, for 0 ≤ i ≤ d− 1.

Passing to the dual spaces and using the Killing form to identify g((τ))i/m
with the dual of g((τ))−i/m, we reduce to showing that

(Gr−i(Thθ))∗ : g((τ))(i−d)/m ∩ Ad(w)(n + tg[t]) [−,ψ′]−−−→ g((τ))i/m

is injective for 0 ≤ i ≤ d−1. Let c′((τ)) ⊂ g((τ)) be the centralizer of ψ′. This is
a Cartan subalgebra of g((τ)) with the induced grading c′((τ))j/m ⊂ g((τ))j/m.
Then the kernel of (Gr−i(Thθ))∗ is c′((τ))(i−d)/m ∩ Ad(w)(n + τ−1g[τ−1]). Let
x ∈ c′((τ))(i−d)/m ∩ Ad(w)(n + tg[t]) and let f ∈ k[g]G be a homogeneous
invariant polynomial of positive degree. Since i < d, x ∈ g((τ))<0, f(x) ∈
τk[[τ ]]; since x ∈ Ad(w)(Lie (G[t] ∩ I+

0 )), f(x) ∈ tk[t]. Therefore f(x) = 0 for
all any non-constant homogeneous f ∈ k[g]G, hence x is nilpotent. Since c′((τ))
consists of semisimple elements only, x must be 0. This shows (Gr−i(Thθ))∗
is injective and Gr−i(Thθ) is surjective, for all i < d. This concludes the proof
that α is smooth. By previous discussion, it follows that γ is also smooth.

The commutativity of (2.16) is clear by checking geometric points (at
which level p̃ is a bijection).

2.15.8. Proof of Theoreom 2.8.4 We need to verify that the Gm(ν)-
action on X = Mψ satisfies the conditions in §2.15.1. We use the decomposi-
tion (2.15) for the fixed point subspace, and the partial order WP\W̃ defined
in §2.15.3. We use notations X±

w for attractors and repellers.
Condition (1) and (3) follow from Lemma 2.15.6.
Condition (2) follows from Lemma 2.15.5.
Condition (4). Since ≤ on WP\W̃ is defined to be the closure order of

P0-orbits on Fl, we have X−
≤w = γ(Flw ∩ Flψ) is proper since Flw is. This

also shows that {w′;w′ ≤ w} is finite. On the other hand, Bun≤w
G (P∞, I0) =

∪w′≤wBunw′
G (P∞, I0) is open in BunG(P∞, I0), therefore its preimage X

+
≤w in

Mψ is open. This verifies all conditions so Proposition 2.15.2 applies.
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2.16. A further Hamiltonian reduction

We introduce a variant M�
ψ of Mψ by making a Hamiltonian reduction with

respect to the torus C0 := C∞/C+
∞

∼= Tw,◦. We define M�
ψ to be the moduli

stack of pairs (E , ϕ) where

• E is a G-bundle over X with P∞( d
m)C∞-level structure at ∞ and I0-

level structure at 0.
• ϕ is a section of Ad(E) ⊗ ωX\{0,∞} such that under some (equivalently

any) trivialization of E|D∞ together with its P∞( d
m)C∞-level structure,

we have
ϕ|D×

∞
∈ (ψ + c((τ))⊥≤0 + c((τ))<0)dτ/τ.

and, under some (equivalently, any) trivialization of E|D0 together with
its I0-level structure, ϕ|D×

0
∈ Lie (I+

0 )dt/t.

There is a Hamiltonian action of C0 = C∞/C+
∞ on Mψ since P∞( d

m)C∞
normalizes K∞. The moment map for this action is taking residue at ∞

res∞ : Mψ → c0 = c((τ))0 = Lie C0

defined as follows: for (E , ϕ) ∈ Mψ such that under some local trivialization
ϕ|D×

∞
= (ψ + x0 + g((τ))≤−1/m)dτ/τ , where x0 ∈ g0, we let res∞(E , ϕ) be

the projection of x0 to c0 = g0/c
⊥
0 . This projection is independent of the

trivialization of E|D∞ . By definition, we have

(2.18) M�
ψ = res−1

∞ (0)/C0.

This realizes M�
ψ as the Hamiltonian reduction of Mψ by C0.

On the other hand, we have a map

resA : Aψ →
∏

1≤i≤r,m|(di−1)
A1

sending (ai)1≤i≤r to the coefficient of τ−
d(di−1)

m of ai, for those 1 ≤ i ≤ r such
that m|(di − 1). There is a commutative diagram

Mψ

f

res∞
c0

φ

Aψ
resA ∏

1≤i≤r,m|(di−1) A
1
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Here φ sends x0 ∈ c0 to ((∂x0fi)(ψ))1≤i≤d,m|(di−1). It is easy to see that φ is a
linear isomorphism. We define

A�
ψ = res−1

A (0) ⊂ Aψ.

In other words, in addition to the conditions defining Aψ, we require the
coefficient of τ−

d(di−1)
m of ai (when m|(di − 1)) to be zero. Then f induces a

map

f � : M�
ψ → A�

ψ.

One can prove the following properties of M�
ψ, analogous to those of Mψ,

using either the same idea of proof or formal deduction from Hamiltonian
reduction (2.18).

2.16.1 Theorem. For a homogeneous element ψ ∈ g((t)) of slope ν = d/m,
the following hold.

(1) The stack M�
ψ is a smooth algebraic stack over k of dimension d

m |Φ| −
r − dim tw.

(2) M�
ψ carries a canonical symplectic structure of weight d under the

Gm(ν)-action.
(3) The map f � : Mψ → Aψ is a Gm(ν)-equivariant completely integrable

system.
(4) There is a natural homeomorphism [Flψ/C0] → M�

aψ
= f �,−1(aψ).

(5) When ψ is elliptic (equivalently, w is elliptic), M�
ψ = Mψ,A�

ψ = Aψ,
and in particular f � = f is proper.

2.16.2 Remark. One could also consider the variant of M�
ψ by specifying

an arbitrary residue in c0 at ∞ and an arbitrary residue in t at 0. They do not
have Gm(ν)-action in general but their Hitchin fibrations are still completely
integrable systems.

3. The de Rham moduli space

Similar to the usual Hitchin moduli space, Mψ admits a one-parameter defor-
mation into the moduli space of certain λ-connections. We denote the λ = 1
fiber by MdR,ψ. The main result in this section gives a canonical isomorphism
between the cohomologies of MdR,ψ and Mψ.
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3.1. Moduli of λ-connections

3.1.1. MHod,ψ and MdR,ψ Let MHod,ψ be the moduli stack of triples
(λ, E ,∇) where

• λ ∈ A1.
• E is a G-bundle over X with K∞ := P∞(d/m)C+

∞-level structure at ∞
and I0-level structure at 0.

• ∇ is a λ-connection on E|X\{0,∞} satisfying the following conditions:

(i) Under any (equivalently, some) trivialization of E|D∞ together with
its K∞-level structure, ∇|D×

∞
takes the form

∇|D×
∞
∈ λd + (ψ + g((τ))≤0)dτ/τ.

(ii) Under any (equivalently, some) trivialization of E|D0 together with
its I0-level structure, ∇|D×

0
takes the form

∇|D×
0
∈ λd + Lie (I+

0 )dt/t.

We have the projection λ : MHod,ψ → A1 recording λ. The fiber λ−1(0)
is identified with Mψ. Define

MdR,ψ := λ−1(1).

3.1.2. Gm(ν)-action The Gm(ν)-action on Mψ extends to an action on
MHod,ψ: we interpret the scaling by sd as multiplying ∇ by sd, so that the
function λ has weight d under the Gm(ν)-action. We denote this action by

s : (λ, E ,∇) �→ s · (λ, E ,∇), s ∈ Gm(ν), (λ, E ,∇) ∈ MHod,ψ.

Since the function λ has weight d > 0, the Gm(ν)-fixed points MGm(ν)
Hod,ψ

necessarily lie in the central fiber of Mψ, hence MGm(ν)
Hod,ψ = MGm(ν)

ψ , which
isomorphic to FlGm(ν)

ψ =
∐Hψ(w) by Lemma 2.15.4.

Similar to Lemma 2.15.6, we have a version for MHod,ψ.

3.1.3 Lemma. For any (λ, E ,∇) ∈ MHod,ψ, the limit lims→0 s · (λ, E ,∇)
exists in MGm(ν)

ψ . Moreover, lims→0 s · (λ, E ,∇) ∈ Zw if and only if the image
of E in BunG(P∞, I0) is w.
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Proof. The proof is almost identical to that of Lemma 2.15.6. We only indicate
the modifications. Let NHod = MHod,ψ ×BunG(K∞,I0) Fl, where u : Fl →
BunG(K∞, I0) is the the uniformization map. Then NHod is the moduli space
of triples (λ, gI0, θ) where λ ∈ A1, gI0 ∈ Fl and θ ∈ g[t, t−1]≤0 such that

λg−1dg − Ad(g−1)(ψ + θ)dt/t ∈ Lie I+
0 dt/t.

Indeed, given (λ, gI0, θ), we define E as the image of gI0 under u, equipped
with the λ-connection ∇ = λd− (ψ + θ)dt/t over X\{0}.

The action of Gm(ν) on MHod,ψ lifts to N , and is given by

s · (λ, gI0, θ) = (sdλ, (rot(s−m)Ad(ξ(s−1))g)I0, s
drot(s−m)Ad(ξ(s−1))θ).

The rest of the argument can be copied verbatim from that of Lemma 2.15.6.

3.1.4 Theorem. The stack MHod,ψ is an algebraic space smooth over A1

with pure relative dimension equal to dimMψ.

Proof. We first remark that MHod,ψ is an algebraic stack locally of finite
type over BunG(K∞, I0) × A1. Indeed, letting Euniv be the universal G-
bundle over BunG(K∞, I0) ×X, there is an extension of vector bundles over
BunG(K∞, I0) ×X × A1 of the form

(3.1) 0 → p∗Bun×XAd(Euniv; Lie I+
0 , g((τ))≤d/m) → A → p∗XTX(−0−∞) → 0

whose splittings over λ ∈ A1 classify λ-connections on E which locally looks
like λd + Lie I+

0 dt/t near 0 and looks like λd + g((τ))≤d/mdτ/τ near ∞. The
moduli stack M̃ of splittings of (3.1) is an algebraic stack locally of finite
type over BunG(K∞, I0)×A1. Our MHod,ψ is a closed substack of M̃, hence
locally of finite type over k.

Now we show λ : MHod,ψ → A1 is smooth. Let Z ⊂ MHod,ψ be the closed
substack where λ fails to be smooth. Suppose Z �= ∅. Since λ is Gm(ν)-
equivariant, Z is stable under the Gm(ν)-action. By Lemma 3.1.3, Z contains
a fixed point under Gm(ν), hence in particular, Z ∩Mψ �= ∅. At a geometric
point (λ, E ,∇) ∈ MHod,ψ, the relative tangent complex of λ : MHod,ψ → A1

is the de Rham cohomology H∗(X,K(E,∇)), where K(E,∇) is the complex in
degrees −1 and 0:

Ad(E ; Lie I0, k∞) ∇Ad−−→ Ad(E ; Lie I+
0 , g((τ))≤0)

For the author's personal use only.

For the author's personal use only.



Non-abelian Hodge moduli spaces 101

and ∇Ad is the λ-connection on Ad(E) induced from ∇. In particular, at a
point (E , ϕ) ∈ Mψ, the relative tangent complex of λ is the same as the
tangent complex of Mψ at (E , ϕ), whose obstruction group vanishes by The-
orem 2.8.1(1). Therefore λ is smooth at any point of Mψ, i.e., Z ∩Mψ = ∅.
Contradiction! This shows Z = ∅ hence λ is smooth.

To see MHod,ψ has trivial automorphism groups, let Z ′ ⊂ MHod,ψ be
the closed substack where the automorphism group is nontrivial. Then Z is
Gm(ν)-stable but Z ∩Mψ = ∅ since Mψ is known to be an algebraic space.
Therefore the same argument as above using Lemma 3.1.3 shows that Z = ∅.

Finally, we compute the dimension of MHod,ψ at any geometric point
(λ, E ,∇). Since MHod,ψ is smooth over A1 with trivial automorphism group
at (λ, E ,∇), the complex RΓ(X,K(E,∇)) is concentrated in degree 0, and
H0(X,K(E,∇)) is the relative tangent space of λ at (λ, E ,∇). Therefore the
relative dimension of λ at (λ, E ,∇) is

χ(X,K(E,∇)) = χ(X,Ad(E ; Lie I+
0 , g((τ))≤0)) − χ(X,Ad(E ; Lie I0, k∞)),

which is the same as dimMψ.

3.1.5 Remark. The smooth map λ : MHod,ψ → A1 carries a canonical sym-
plectic structure constructed as follows. Consider the “Serre dual” complex
K∨

(E,∇) given by

Ad(E ; Lie I0, g((τ))≤−1/m) ∇Ad−−→ Ad(E ; Lie I+
0 , k

∨
∞).

Here Serre dual is in quotation marks because the differential in K(E,∇) is
not OX -linear. Here we take the termwise Serre dual (and the Killing form
to identify Ad(E)|Gm with Ad(E)∗|Gm), and the differential in K∨

(E,∇) is still
given by the adjoint connection.

The same argument as in §2.9.2 shows that the natural map K(E,∇) →
K∨

(E,∇) is a quasi-isomorphism in the derived category of sheaves of abelian
groups on X, hence a canonical isomorphism H∗(X,K(E,∇))

∼→ H∗(X,K∨
(E,∇)).

We claim that there is a perfect pairing between H∗(X,K(E,∇)) and
H∗(X,K∨

(E,∇)) even though K(E,∇) is not an OX -linear complex. Indeed, by
construction there is a k-linear pairing of complexes of sheaves

(3.2) K(E,∇) ⊗k K∨
(E,∇) → ωX [1].

Taking cohomology induces a pairing between Hi(X,K(E,∇)) and
H−i(X,K∨

(E,∇)) valued in H0(X,ωX [1]) ∼= k. Writing K = K(E,∇) as [K−1 →
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K0], H∗(X,K(E,∇)) fits into a long exact sequence exact at the two ends
(3.3)
H−1(K) → H0(K−1) → H0(K0) → H0(K) → H1(K−1) → H1(K0) → H1(K)

Similarly for H∗(X,K∨
(E,∇)), or its dual

H1(K∨)∗ → H1(K−1,∨)∗ → H1(K0,∨)∗

→ H0(K∨)∗ → H0(K−1,∨)∗ → H0(K0,∨)∗ → H−1(K∨)∗
(3.4)

The pairing gives a map of long exact sequences from (3.3) to (3.4). One checks
that the maps Hi(Kj) → H1−i(Kj,∨)∗ are the usual Serre duality (i = 0, 1,
j = −1, 0), hence are isomorphisms. Therefore the maps Hi(K) → H−i(K∨)∗
given by the pairing (3.2) is also an isomorphism. It is easy to check that this
is gives a symplectic form on H0(X,K(E,∇)), and a perfect pairing between
H−1(X,K(E,∇)) and H1(X,K(E,∇)). It can be shown by calculations similar to
that done by R.Fedorov [17, §6.3] that this 2-form is closed. Therefore the
map λ has a relative symplectic structure. In particular, MdR,ψ is a symplectic
algebraic space.

3.2. Comparison of cohomology

The non-abelian Hodge theory suggests that MdR,ψ should be diffeomorphic
to Mψ. In particular they should have isomorphic cohomology. In this sub-
section we prove the cohomological isomorphism without showing they are
diffeomorphic.

3.2.1. The situation Consider the following general situation. Let f :
X → A1 be a regular function on an algebraic space X locally of finite type
over an algebraically closed field k. Let Xλ = f−1(λ) for λ ∈ k. Let Gm act
on X such that f has weight d > 0. Let XGm =

∐
α∈I Zα be an open-closed

decomposition. We use notation X+
α and q+

α : X+
α → Zα from §2.15.1 for

attractors.
We make the following assumptions:

(1) The function f is a smooth morphism f : X → A1. In particular, X is
smooth over k.

(2) The map q+
α : X+

α → X is a locally closed embedding.
(3) ∪α∈IX

+
α = X, i.e., for any x ∈ X, the limit limt→0 t · x exists.

(4) There exists a partial order ≤ on I such that for each α ∈ I

• The set {α′ ∈ I;α′ ≤ α} is finite.
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• X
+
≤α := ∪α′≤αX

+
α is open in X, and is of finite type over k.

3.2.2 Lemma. Under the above assumptions, the restriction map H∗(X) →
H∗(X1) is an isomorphism.

Proof. Let i1 : X1 ↪→ X be the inclusion. The canonical map i1∗Q
[−2](−1) ∼=
i1∗i

!
1Q
 → Q
 induces a map

r : H∗
c(X1, i

!
1Q
) ∼= H∗−2

c (X1,Q
(−1)) → H∗
c(X,Q
).

It suffices to prove r is an isomorphism, and the statement on cohomology
follows by Poincaré duality.

Extend ≤ to a total order on I. Let X+
1,≤α = X

+
≤α∩X1, and similarly define

X
+
1,α and X

+
1,<α. We have an analogue r≤α of r for the inclusion X

+
1,≤α ↪→ X

+
≤α,

and similarly we have rα and r<α. We have a map of long exact sequences

· · · H∗−2
c (X+

1,<α)(−1)

r<α

H∗−2
c (X1,≤α)(−1)

r≤α

H∗−2
c (X+

1,α)(−1)

rα

· · ·

· · · H∗
c(X+

<α) H∗
c(X≤α) H∗

c(X+
α ) · · ·

By induction on α, it suffices to show that rα is an isomorphism for each
α.

Let fα = f |X+
α

: X+
α → A1, and πα = (fα, q+

α ) : X+
α → A1 × Zα. We first

claim that πα is smooth. Since the critical locus of πα is closed and stable
under the Gm-action, it must intersect {0} × Zα if not empty. Therefore it
suffices to show that πα is smooth along Zα. Let z ∈ Zα be a geometric point.
By [14, Prop.1.4.11(vi)], (TzX

+
α ) = (TzX)+ is the summand where Gm acts

with positive weights; TzZα = (TzX)0 is the zero weight space. The tangent
map of πα at z ∈ Zα is (Tzf, pr0), where pr0 is the natural projection. By
assumption, f has weight d > 0, therefore Tzf : TzX → T0A

1 = A1 factors
through the weight d summand TzX � (TzX)+ � (TzX)d. Since f is a smooth
morphism, df(z) is nonzero. Therefore Tzπα = (Tzf, pr0) is surjective, and πα
is smooth.

We then show that the geometric fibers of πα are isomorphic to affine
spaces. By [14, Theorem 1.4.2], q+

α : X+
α → Zα is an affine morphism of finite

type. Let z ∈ Zα be a geometric point valued in K, then X+
z = q+,−1

α (z)
is a smooth affine scheme over K with a contracting Gm-action. We have
X+

z = Spec A where A = ⊕n≥0An is a finitely generated graded K-algebra
with A0 = K. Since Spec A is smooth at the cone point z, one can choose
liftings t1, · · · , tm ∈ A+ = ⊕n>0An of a homogeneous basis of the cotangent
space A+/A

2
+, so that K[t1, · · · , tm] ∼→ A as graded algebras. Now dfα(z) is
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a nonzero homogeneous element in T ∗
z (Spec A) by the smoothness of πα, we

may assume t1 = fα so that it lifts dfα(z). This way, we have an isomorphism
of the pair (X+

z , fα) with (Spec K[t1, · · · , tm], t1), so the geometric fibers of
fα|X+

z are affine spaces of dimension m− 1.
If needed we may decompose Zα further to ensure πα is equidimensional.

Since πα is smooth with geometric fibers isomorphic to Adα , we have a canon-
ical isomorphism

Kα := Rπα!Q

∼= Q
[−2dα](−dα) ∈ Db

c(A1 × Zα).

Let ι1 : {1} × Zα → A1 × Zα be the inclusion. The map rα is induced from
the canonical map ι1∗ι

!
1Kα → Kα by taking H∗

c(−). Now Kα is constant, it
is clear that ι1∗ι!1Kα → Kα induces an isomorphism on compactly supported
cohomology on A1 × Zα. Therefore rα is an isomorphism.

3.2.3 Corollary. Both restriction maps

H∗(Mψ) H∗(MHod,ψ)
i∗1i∗0 H∗(MdR,ψ)

are isomorphisms.

Proof. To show i∗1 is an isomorphism, we would like to apply Lemma 3.2.2.
We need to check that λ : MHod,ψ → A1 satisfies the conditions in §3.2.1.
Condition (1) follows from Theorem 3.1.4; (2) can be proved in the same way
as Lemma 2.15.6; (3) follows from Lemma 3.1.3; for (4), the partial order on
WP\W̃ is the same one used §2.15.3.

Now we show that i∗0 is an isomorphism. Consider the further restriction
map along γHod : Flψ → MHod,ψ. We have a factorization

γ∗Hod : H∗(MHod,ψ)
i∗0−→ H∗(Mψ) γ∗

−→ H∗(Flψ).

By Theorem 2.8.4, γ∗ is an isomorphism. Observe that Prop. 2.15.2 also
applies to MHod,ψ, which proves that γ∗Hod is an isomorphism. Therefore i∗0 is
also an isomorphism.

3.3. Variants

3.3.1. Changing the level group We have a one-parameter deformation
M†

Hod,ψ of the Poisson moduli space M†
ψ introduced in §2.13: it classifies

(λ, E ,∇) where
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• λ ∈ A1.
• E is a G-bundle over X with P+

∞-level structure at ∞ and I0-level
structure at 0.

• ∇ is a λ-connection on E|X\{0,∞} satisfying the following conditions:
(i) Under some (equivalently, any) trivialization of E|D∞ together with

its P+
∞-level structure, we require

(3.5) ∇|D×
∞
∈ λd + (ψ + g((τ))≤(d−1)/m)dτ/τ.

(ii) Under some (equivalently, any) trivialization of E|D0 together with
its I0-level structure, we require

∇|D×
0
∈ λd + Lie (I+

0 )dt/t.

A small part of the Hitchin map f † for M†
ψ continues to make sense

for M†
Hod,ψ. Recall in the proof of Proposition 2.13.1 we have introduced an

affine space aψ with a surjection A†
ψ → aψ that records a Laurent tail of

ai at ∞. Let aψ ∈ aψ be the image of aψ. We also introduced in the proof
of Proposition 2.13.1 an affine space Vψ = (ψ + g((τ))≤(d−1)/m)/g((τ))≤0 with
the action of Q = P+

∞/P∞(md ). The invariant polynomials (f1, · · · , fr) give a
map [Vψ/Q] → aψ. Taking the irregular part of the connection ∇ at ∞ yields
a map

f
†
ψ : M†

Hod,ψ → [Vψ/Q] → aψ.

We have an analogue of Proposition 2.13.1 with the same proof.

3.3.2 Proposition. The natural map MHod,ψ → M†
Hod,ψ identifies MHod,ψ

with the fiber of f
†,−1
ψ (aψ). Equivalently, MHod,ψ can be identified with the

closed subspace of M†
Hod,ψ obtained by replacing the condition (3.5) with:

under some trivialization of E|D∞ , ∇|D×
∞
∈ λd + (ψ + g((τ))≤0)dτ/τ .

3.3.3. Hamiltonian reduction by C0 As in §2.16, C0 acts on MHod,ψ,
and we have the map of taking formal residue at ∞

resHod,∞ : MHod,ψ → c0.

For (E ,∇) ∈ MHod,ψ, such that ∇|D×
∞

= λd + (ψ + x0 + g((τ))≤−1/m)dτ/τ
under some local trivialization, where x0 ∈ g((τ))0 = g0, resHod,∞(E ,∇) is the
projection of x0 to c0 = g0/c

⊥
0 .
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We define

M�
Hod,ψ = res−1

Hod,∞(0)/C0, M�
dR,ψ = (res−1

Hod,∞(0) ∩MdR,ψ)/C0.

Then M�
dR,ψ is a smooth algebraic stack of the same dimension as M�

ψ. The
analog of Corollary 3.2.3 holds, giving a canonical isomorphism H∗(M�

dR,ψ) ∼=
H∗(M�

Hod,ψ) ∼= H∗(M�
ψ).

3.3.4. Varying semisimple monodromy at 0 The space MHod,ψ ad-
mits a deformation over the universal Cartan h as follows. Consider the mod-
uli stack hMHod,ψ of triples (λ, E ,∇) as in the definition of MHod,ψ, except
that we relax the condition near 0 to be: under any (equivalently, some) triv-
ialization of E|D0 together with its I0-level structure, ∇|D×

0
takes the form

∇|D×
0
∈ λd + Lie (I0)dt/t.

We have a map
ρ : hMHod,ψ → A1 × h

where the h-factor sends (λ, E ,∇) to the image of Res0∇ in the universal
Cartan h = Lie I0/Lie I+

0 .
We define

hMdR,ψ = ρ−1({1} × h) ⊂ hMHod,ψ,

hMψ = ρ−1({0} × h) ⊂ hMHod,ψ.

The map ρ is equivariant with respect to the Gm(ν)-action on hMHod,ψ
and the scaling action on A1 × h by the d-th power. If we fix s ∈ h, then we
get a Gm(ν)-equivariant one-parameter family by restricting hMHod,ψ along
the line of A1 × h through (1, s):

λs : sMHod,ψ → A1
s := {(λ, λs)|λ ∈ A1} ⊂ A1 × h

whose fiber over λ = 1 we denote by sMdR,ψ. Note its fiber over λ = 0 is
Mψ.

The formal residue construction extends to hMHod,ψ. In particular it re-
stricts to a formal residue map on the de Rham space

resdR,∞ : hMdR,ψ → c0.

For θ ∈ c0, let
hMdR,ψ,θ = res−1

dR,∞(θ).
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3.3.5 Theorem. Both restriction maps

H∗(Mψ) H∗(sMHod,ψ)
i∗1i∗0 H∗(sMdR,ψ)

are isomorphisms. In particular, there is a canonical isomorphism

H∗(sMdR,ψ) ∼= H∗(Mψ)

for any s ∈ h.

The proof is along the same lines as Corollary 3.2.3, using the general
results about Gm-contracting families in §2.15 and §3.2.

3.3.6 Remark. For s ∈ h, let sMψ = ρ−1(0, s) ⊂ hMψ. This is the Higgs
moduli space analogous to Mψ but with residue at 0 mapping to s ∈ h under
b → h. By scaling s, there is an A1-family connecting with general fiber sMψ

and 0-fiber Mψ. The same argument as Corollary 3.2.3 gives a canonical
isomorphism H∗(sMψ) ∼= H∗(Mψ).

3.4. Symmetry of MHod,ψ coming from ∞

We shall construct an action of C((τ))/C+
∞ on MHod,ψ.

3.4.1. First we describe a filtration on the loop torus C((τ)).
Recall from Remark 2.4.1 we defined a maximal torus T ⊂ G to be the

fiber of C at t = 1. Also T is the centralizer of ψ ∈ cd/m. Fix an mth root of τ
and denote it by τ 1/m. Now ψ and ψτ−d/m are in the same Gad((τ 1/m))-orbit,
we get a canonical isomorphism between their centralizers (which are abelian)
inside G((τ 1/m)):

can : C((τ 1/m)) ∼= T ((τ 1/m)).

This allows us to identify C((τ)) with the fixed points under the diagonal
μm-action on T ((τ 1/m))

(3.6) C((τ)) ∼= (T ((τ 1/m)))μm

where ζ ∈ μm acts on τ 1/m via the Galois action τ 1/m �→ ζτ 1/m, and μm acts
on T via an injective homomorphism

ω : μm → W = W (G, T )

that sends a primitive element ζ ∈ μm to a regular element of order m.
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Later when we work with k = C, we shall let w be the image of ζm :=
exp(2πi/m) under ω. In general, we use 〈w〉 to denote the image of ω, keeping
in mind that w is a regular element of m up to taking prime to m powers.

Recall C∞ ⊂ C((τ)) is the parahoric subgroup, with pro-unipotent radical
C+

∞. Then the isomorphism (3.6) gives a canonical isomorphism C∞/C+
∞

∼=
T 〈w〉,◦, the neutral component of the 〈w〉-fixed points on T . We have a Kot-
twitz isomorphism between π0(C((τ))) = (C((τ))/C∞)red and the 〈w〉-
coinvariants on X∗(T )

(3.7) κC : (C((τ))/C∞)red ∼= X∗(T )〈w〉.

See [36, §2.a.2, Theorem 5.1 step A]. This isomorphism makes the following
diagram commutative

(T ((τ 1/m))/T∞)red

Nm

κT
X∗(T )

p

(C((τ))/C∞)red κC
X∗(T )〈w〉

Here T∞ = T [[τ 1/m]], κT is given by the τ 1/m-adic valuation, Nm is the norm
map x �→ xζ(x) · · · ζm−1(x) (for ζ ∈ μm acting on T ((τ 1/m)) diagonally), and
p is the canonical quotient map.

Let C�
∞ ⊂ C((τ)) be the maximal bounded subgroup that corresponds to

(T [[τ 1/m]]〈w〉 under (3.6). Then under the isomorphism (3.7), C�
∞/C∞ corre-

sponds to the torsion subgroup of X∗(T )〈w〉. On the other hand, C�
∞/C+

∞
∼=

T 〈w〉, and C�
∞/C∞ can also be identified with π0(T 〈w〉). To summarize, we

have a filtration of C((τ)) with reduced associated graded as follows:

(3.8) C+
∞ ⊂︸︷︷︸

T 〈w〉,◦

C∞ ⊂︸︷︷︸
X∗(T )〈w〉,tors

C�
∞ ⊂︸︷︷︸

X∗(T )〈w〉/tors

C((τ))

3.4.2. Residue map We construct a residue map

(3.9) resC,∞ : C((τ))/C�
∞

∼= X∗(T )〈w〉/tors → c0

as follows. First, for the split torus T ((τ 1/m)) we have the usual residue map

resT,∞ : T ((τ 1/m))/T∞ = 1
m
X∗(T ) ↪→ t.
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defined by x �→ resτ=0(x−1dx) (taking the coefficient of dτ/τ). Then resC,∞ is
obtained from resT,∞ by restricting to μm-fixed points (noting that c0 = t〈w〉).

We use the norm map to identify t〈w〉
∼→ t〈w〉 (x �→ x+wx+ · · ·+wm−1x).

Then the residue map fits into a commutative diagram

mresT,∞ : T ((τ 1/m))/T∞
κT

Nm

X∗(T )

p

t

p

resC,∞ : C((τ))/C� κC
X∗(T )〈w〉/tors c0 ∼= t〈w〉

Here the maps indexed by p are natural projections.
When k = C, we may take the cokernel of the horizontal maps as complex

tori, and get a canonical isomorphism

(3.10) c0/Im(resC,∞) ∼→ T〈w〉 (〈w〉-covariants on T )

3.4.3. Let M̂Hod,ψ be the moduli space of (λ, E , α∞,∇) where (λ, E ,∇) is
as in the definition of MHod,ψ, and α∞ is a trivialization of E|D∞ (together
with its K∞-level structure) under which ∇|D×

∞
takes the form λd + (ψ +

g((τ))≤0)dτ/τ . Note that MHod,ψ = M̂Hod,ψ/K∞ where K∞ acts by changing
the trivialization α∞.

Sending (λ, E , α∞,∇) to the connection one-form of ∇|D×
∞

under the triv-
ialization α∞ gives a map

M̂Hod,ψ → ψ + g((τ))≤0.

For each ϕ ∈ ψ + g((τ))≤0, we have the centralizer group scheme Cϕ over
D×

∞, and its maximal bounded subgroup C�
ϕ, parahoric subgroup Cϕ and

pro-unipotent radical C+
ϕ . As ϕ varies, these groups form families over ϕ ∈

ψ + g((τ))≤0. For example, the Cϕ form a torus J over D×
R = Spec R((τ)),

where R = Γ(ψ + g((τ))≤0,O); we have integral models J�,J and J+ of J

over DR = Spec R[[τ ]] whose fibers over ϕ ∈ ψ + g((τ))≤0 are C�
ϕ,Cϕ and C+

ϕ

respectively.
Let J((τ)) be the loop group of J , which is a group ind-scheme over the

infinite-dimensional affine space ψ + g((τ))≤0 = Spec R. This is a subgroup
of G((τ)) × (ψ + g((τ))≤0). We have an action of J((τ)) on M̂Hod,ψ over ψ +
g((τ))≤0 by changing on the trivialization α∞. Here we are using that, for
ϕ ∈ ψ + g((τ))≤0 and g ∈ Cϕ((τ)), we have g−1dg ∈ g((τ))≤0dτ/τ .
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3.4.4 Lemma. The group scheme J� admits a canonical trivialization: J� ∼=
C�

∞×̂kSpec R over DR (here we abuse the notation to view C�
∞ as a group

scheme over D∞) whose restriction to D∞ (corresponding to ψ) is the iden-
tity.

Proof. We base change to the cyclic cover D
(m)
R := Spec R[[τ 1/m]] → DR =

Spec R[[τ ]]. We choose g ∈ G((τ 1/m)) such that the adjoint action by g sends
ψ+g((τ))≤0 = Spec R into a closed subscheme of Spec R′ = ψ0τ

−d/m+g[[τ 1/m]]
for some regular semisimple ψ0 ∈ trs. Consider the centralizer group scheme
J ′ over D

(m)
R′ , and its integral model J′ = J′� (both maximally bounded and

parahoric since J ′ is split when specialized to each point of R′). Moreover,
J′|

D
(m)
R

carries a μm-equivariant structure since it is the parahoric subgroup

of J ′|
D

(m)
R

= J ×D×
R
D

(m),×
R . Then we have

(3.11) J� = (Res
D

(m)
R /DR

(J′|
D

(m)
R

))μm .

Let C′ be the restriction of J′ to D
(m)
∞ (corresponding to ψ0τ

−d/m ∈
Spec R′). We first give a canonical isomorphism of tori over D(m)

R′

γ′m : J′ ∼= C′×̂kSpec R′.

By the rigidity of homomorphisms between tori, it suffices to give a trivi-
alization of the restriction J ′|Spec R′ (where Spec R′ ↪→ D

(m)
R′ is defined by

τ 1/m = 0). However, J ′ is the group scheme of centralizers of ψ0+τd/mg[[τ 1/m]],
hence its reduction modulo τ 1/m is canonically trivialized.

Restricting both sides of γ′ to D
(m)
R we get an isomorphism of tori

γm : J′|
D

(m)
R

∼= C′×̂kSpec R

whose restriction to D
(m)
∞ is the identity. It can be checked that the isomor-

phism γm is independent of how one conjugates ψ + g((τ))≤0 into ψ0τ
−d/m +

g[[τ 1/m]] inside G((τ 1/m)) (since J is commutative).
Both sides of γm admit μm-equivariant structures. It is easy to show that

the isomorphism γ is compatible with the μm-equivariant structures (again it
suffices to check it over the center of the disk Spec R). Taking restriction of
scalars from D

(m)
R to DR and taking μm-fixed points (see (3.11)), we get the

desired isomorphism

γm : J�|
D

(m)
R

∼= C�
∞×̂kSpec R.
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By this lemma, J,J and J+ all admit canonical trivializations over ψ +
g((τ))≤0. Using the trivializations, the action of the group ind-scheme J((τ)) on
M̂Hod,ψ over ψ + g((τ))≤0 becomes an action of the constant group C((τ)) on
M̂Hod,ψ. On the quotient MHod,ψ = M̂Hod,ψ/K∞, the action of C+

∞ ⊂ C((τ))
is trivial, hence we get an action of C((τ))/C+

∞ on MHod,ψ.
Summarizing, we get:

3.4.5 Proposition. There is a canonical action of C((τ))/C+
∞ on MHod,ψ.

The formal residue map resHod,∞ is equivariant under the C((τ))/C+
∞-action.

Here, the action on c0 factors through the lattice quotient C((τ))/C�
∞

∼=
X∗(T )〈w〉/tors, and is given by translation under the map resC,∞ in (3.9).

The same statements hold for hMHod,ψ.

4. The Betti moduli space

In this section, we first recall the moduli space M(β) defined using a positive
braid β. When k = C and G = GL(n), we recall the interpretation of M(β)
as a moduli space of Stokes filtered local systems. For arbitrary G, we define
MBet,ψ as an enhanced version of M(β), and a set-theoretic map MdR,ψ →
MBet,ψ which is conjectured to be biholomorphic.

4.1. The stack M(β)

In this subsection, G and k are in the same generality as §2.
Let (W, S) be the abstract Weyl group of G with simple reflections S,

i.e., W is the set of G-orbits on B2, where B is the flag variety of G. For
w ∈ W, let BS(w) ⊂ B2 be the corresponding G-orbit.

Let H be the universal Cartan of G, i.e., the reductive quotient of any
Borel subgroup of G. The abstract Weyl group W acts on H. It is conceptually
important to distinguish between the maximal torus T attached to ψ and the
universal Cartan H, and between the Weyl group W = W (G, T ) and the
abstract Weyl group W.

Let BrW be the braid group of W and Br+
W be the monoid of positive

braids. For w ∈ W , let w̃ be its canonical lifting to Br+
W as a reduced word

in S.
Let β ∈ Br+

W and write

(4.1) β = w̃1 · · · w̃n

for a sequence of elements w1, · · · , wn ∈ W. Let w ∈ W be the image of β in
W, i.e., w = w1 · · ·wn.
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4.1.1 Definition. Let M(β) be the moduli stack parametrizing:

(1) An n+1-tuple (E0, ..., En) of B-torsors over a point (or a test scheme).
(2) For 0 ≤ i ≤ n − 1, an isomorphisms of G-torsors ιi : Ei ×B G →

Ei+1 ×B G, such that the two B-reductions of the identified G-torsor
are in relative position wi.

(3) An isomorphism of B-torsors τ : En
∼→ E0.

By [13, Application 2], M(β) depends only on the positive braid β and
not on the decomposition (4.1), up to a canonical isomorphism.

The composition of the isomorphisms ι0, · · · , ιn−1 together with τ defines
an automorphism of the G-torsor E0 ×B G, therefore a map

(4.2) μβ,G : M(β) → [G/Ad(G)].

On the other hand, each Ei induces a T -torsor Ki via the surjection
B � T . The map Ei ×B G → Ei+1 ×B G induces an isomorphism between
Ki and wi(Ki+1) = Ki+1 ×T,wi T . Taking the composition of all these maps
we get an isomorphism between K0 and w(K0). This gives a map

(4.3) μβ,H : M(β) → [H/Adw(H)]

where Adw(H) means t ∈ H is acting on H by x �→ txw(t−1).
We give an alternative description of M(β), following the construction

in [39] and [43]. Let M�(β) be the moduli of (E0, · · · , En, ιi, τ) as in M(β)
together with a trivialization of E0 ×B G. The monodromy map 4.2 lifts
to M�(β) → G. Via the isomorphisms of G-torsors, (E0, · · · , En) give B-
reductions of E0 ×B G, which via the trivialization give a tuple of Borel
subgroups of G. We are led to the following description

M�(β) ∼={B0, ...., Bn, g) ∈ Bn+1 ×G|(Bi, Bi+1) ∈ BS(wi)
for 0 ≤ i ≤ n− 1, and Bn = gB0}.

The G-action on M�(β) by changing the trivialization of E0×BG corresponds
to the diagonal action on Bi ∈ B and the conjugation action on g ∈ G. Then

M(β) = [G\M�(β)].

From this description we easily see that

4.1.2 Lemma. For any β ∈ Br+
W, M(β) is a smooth algebraic stack over k

of dimension �(β), the length of β.
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4.1.3 Example. Consider the case β = w̃2
0 is the “full twist”, where w0 is the

longest element in W. This case will come up when we consider connections
from MdR,ψ when ψ is homogeneous of slope ν = 1.

In this case, M�(β) classifies (B0, B1, B2, g) where both pairs of Borel
subgroups (B0, B1) and (B1, B2) are opposite, and gB0 = B2. Fix a pair of
opposite Borel subgroups B+ and B− with T = B+ ∩B−. Up to G-action we
may assume B0 = B+ and B1 = B−. Then (B−, gB+) is in general position
if and only if g ∈ B−B+. We get

M(w̃2
0) ∼= [B−B+/Ad(T )].

The map μw̃2
0 ,G

: M(w̃2
0) → [G/Ad(G)] is induced from the inclusion B−B+ ⊂

G; the map μw̃2
0 ,T

: M(w̃2
0) → [T/Ad(T )] is induced from the projection

B−B+ = N−TN+ → T .

4.2. Stokes filtered local systems

From now on we set k = C. In this subsection, we consider the case G =
GL(n).

Given a meromorphic connection (E ,∇) on a punctured disk Δ× with co-
ordinate τ , taking analytic flat sections defines a local system on Δ× endowed
with a Stokes structure at τ = 0. We now recall the definition of this Stokes
structure, following Sabbah’s presentation in [37, Chapter 2]. The material
that follows, up to and including Section 4.2.7, is well-known, and we include
it for clarity.

Let Δ̃(0) denote the real blow-up of the disk Δ at τ = 0, with boundary
circle S. Consider the constant sheaf J1 on S with fiber

P := C((τ))/C[[τ ]].

Sections are given by finite sums

(4.4) φ =
∑
i<0

aiτ
i.

The stalk of J1 over θ ∈ S is partially ordered by the rate of growth of a
section as τ approaches 0 along the ray arg(τ) = θ. We denote this order by
≤θ. Write Sφ≤χ for the open subset of S on which φ ≤θ χ.

Let L be a local system on S. An unramified pre-Stokes filtration on L is
a collection of subsheaves L≤φ ⊂ L for φ ∈ P such that for all ν ∈ S

φ ≤θ χ =⇒ L≤φ,θ ⊂ L≤χ,θ.

For the author's personal use only.

For the author's personal use only.



114 Roman Bezrukavnikov et al.

Let L<φ be the subsheaf of L≤φ such that L<φ,θ =
∑

χ<θφ
L≤χ,θ. Let

grφL = L≤φ/L<φ. We can associate to this filtration a P-graded sheaf grL =⊕
φ∈Ψ grφL, where Ψ ⊂ P is the finite subset consisting of φ such that grφL �=

0. The subset Ψ is called the exponential factors of (L,L≤•). The graded
pieces are in general not locally constant on S. When they are, the result is
a P-graded local system on S, which in this context is called an unramified
Stokes-graded local system.

Conversely, to an unramified Stokes-graded local system L•, we can assign
an unramified pre-Stokes filtration as follows.

4.2.1 Definition. Let Ψ ⊂ P be a finite subset, and let L• =
⊕

φ∈Ψ Lφ

be an unramified Stokes-graded local system. The graded unramified Stokes
filtration on L is

L≤φ =
⊕
φ∈Ψ

βχ≤φLχ

where βχ≤φ indicates restriction to the open Sχ≤φ followed by extension by
zero.

4.2.2 Definition. An unramified Stokes filtered local system (L,L≤•) on S
is a pre-Stokes filtration which is locally isomorphic to a graded unramified
Stokes filtration.

The map τ → τm induces a map of real blow ups at τ = 0. Restricting
to the boundary circles, we obtain an m-fold cover ρm : S′ → S. Denote by
σ : S′ → S′ the generator of the automorphism group of this cover given by
σ(τ 1/m) = e2πi/mτ 1/m.

Define Pm = C((τ 1/m))/C[[τ 1/m]]. It carries a natural action of the Galois
group 〈σ〉 ∼= Z/mZ.

4.2.3 Definition. A Stokes-filtered local system is a triple (L,Ψ,L′
≤•) where

(1) L is a local system on S.
(2) Ψ ⊂ Pm is a finite subset stable under the action of the Galois group

〈σ〉.
(3) L′

≤• is a pre-Stokes filtration on L′ := ρ∗mL such that (L′,L′
≤•) is an

unramified Stokes-filtered local system on S′ with exponents Ψ. More-
over, we require the canonical isomorphism σ∗L′ ∼= L′ to identify the
subsheaves L′

≤φ and L′
≤σ(φ), for all φ ∈ Pm.

From now on, we fix Ψ ⊂ C(τ 1/m) to be the set of eigenvalues of ψ. It
consists of n distinct monomials of degree −d/m. We will be concerned with
Stokes-filtered local systems (L,Ψ,L′

≤•) for which dim grφL′ = 1 for each
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φ ∈ Ψ. We fix a degree m cover S′ → S. Monodromy around τ = 0 defines a
permutation w of Ψ of order m.

Choose a base point θ ∈ S. Let T ∼= (Gm)Ψ denote the subgroup of graded
automorphisms of the fiber of grL′ at ν. Then w acts on T by permuting
factors.

4.2.4 Definition. Let T〈w〉 be the coinvariant torus of T under the action of
the cyclic group 〈w〉. The formal monodromy of (L,Ψ,L′

≤•) is the element in
T〈w〉 defined by parallel transport in grL′ from θ to σ(θ).

4.2.5. Moduli of Stokes filtered local systems We describe the moduli
of Stokes local systems in our setting, when G = GL(n). We will give a more
general construction, which makes sense for arbitrary G, in Section 4.3.

The exponents Ψ define a braid as follows. Each φ ∈ Ψ defines a function
�(φ) : S′ → R. We say θ ∈ S is a Stokes direction if �(φ) = �(χ) on a
preimage of θ under S′ → S. To simplify the exposition, we assume that the
Stokes directions of distinct pairs (φ, χ) are distinct. This holds for a dense
set of ψ. This assumption will be lifted in Section 4.3.

The Stokes directions divide S into k Stokes sectors. Fix θ0 in the interior
of such a sector. As G = GL(n), the braid βν arises from a loop S1 →
Confign(C), whose basepoint we take to be θ0. The real projection of this
loop is given by the union of graphs of �(φ), φ ∈ Φ, viewed as multivalued
functions on S. In fact, βν can be reconstructed from these graphs. A Stokes
sector determines a complete ordering on Ψ. A Stokes direction for the pair
(φ, χ) determines a positive half-twist interchanging (φ, χ). The braid βν is
the product of these half-twists.

4.2.6 Proposition. Recall G = GL(n). The moduli stack of Stokes-filtered
local systems with exponential factors Ψ is isomorphic to M(β). This iso-
morphism identifies the maps 4.2 and 4.3 with the monodromy and formal
monodromy respectively.

Proof. For any given Stokes sector, the set of framings of the fiber L com-
patible with the Stokes filtration is a B-torsor. This defines the k + 1-tuple
(E0, ..., Ek), where E0 and Ek are both associated to the initial Stokes sector.
The isomorphisms Ei×B G → Ei+1 ×B G are furnished by parallel transport.
The resulting pair of B-reductions of the G-torsor are related by the reflection
si associated to that Stokes direction.

The identification of the monodromy and formal monodromy is a direct
consequence of the definitions.
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4.2.7. Riemann-Hilbert map Let Conn be the category of meromor-
phic connections (E ,∇) on the punctured disk. Let Stokes be the category
of Stokes-filtered local systems on S. There is an ‘irregular Riemann-Hilbert’
functor

RH : Conn → Stokes, (E ,∇) → (L,L≤•),

where L is the local system of ∇-flat sections of E away from ∞, and the
filtration L• is by order of growth near ∞, which in this formulation is due
to Deligne. It is an equivalence of categories.

The Stokes filtrations depend holomorphically on the connection ∇ in
the following sense. Let ∇u = d + A(τ, u)dττ be a family of connections on
the trivial bundle E = On over the analytic punctured disk Δ×

∞, depending
holomorphically on an auxiliary variable u which varies in a domain U ⊂
CN . Suppose that the irregular part of A(τ, u) is constant in u, with regular
semisimple leading term, and only finitely many coefficients of A(τ, u) are
non-constant.

Each such connection determines the same set of Stokes directions St(E ,∇)
⊂ S. For each u ∈ U and θ ∈ S\ St(E ,∇), we obtain a flag Bθ,u in the fiber
Eθ = Cn.

4.2.8 Lemma. The map U → B defined by the above construction is complex
analytic.

Proof. This follows from [2, Remark 1.8], where it is explained that the secto-
rial flat sections of (E ,∇), out of which the Stokes filtrations are constructed,
vary holomorphically with ∇.

4.3. Riemann-Hilbert map for G-connections

Now we are back in the setting of general reductive group G, and k = C.

4.3.1. Stokes directions for G-connections Let (E ,∇) be a meromor-
phic G-connection on the punctured disk Δ× with coordinate τ . The restric-
tion of (E ,∇) to the formal punctured disk D×

∞ (around τ = 0), after passing
to a ramified cover with parameter τ 1/m, can be formally gauge transformed to
∇ ∈ d+(B(τ 1/m)+g[[τ 1/m]])dτ/τ , for some irregular part B(τ 1/m) ∈ t[τ−1/m]
(where t ⊂ g is a Cartan subalgebra). Recall that a = t // W . The image of
B(τ 1/m) under the projection t[τ−1/m] → a[τ−1/m] lies in a[τ−1], which we
denote by A(τ) ∈ a[τ−1].

Below we assume that B(τ 1/m) is regular semisimple, i.e., for any root α
of g with respect to t, α(B(τ 1/m)) �= 0.
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For any finite-dimensional representation V of G, we have the associated
local system E(V )∇ of flat sections of E(V ) = E×GV on P1\{0}. For θ ∈ S, we
have a subspace M(V )θ ⊂ (E(V )∇)θ (meaning the stalk of E(V )∇ along any
point in the ray θ) consisting of solutions defined in a small sector containing
the ray of θ, that are of maximal decay along the ray θ. Since B(τ 1/m) is
regular semisimple, for V irreducible dimM(V )θ = 1 for all but finitely many
θ ∈ S. Note that

(4.5) M(V1 ⊗ V2)θ = M(V1)θ ⊗M(V2)θ ⊂ E(V1 ⊗ V2)∇θ .

A point θ ∈ S is called a Stokes direction for (E ,∇) if for some irreducible
representation V of G, dimM(V )θ > 1. We claim that there are only finitely
many Stokes directions. Indeed, Vλ ∈ Rep(G) is the irreducible representation
with highest weight λ, and for some finite subset {λ1, · · · , λN} that generate
the monoid of dominant weights of G, dimM(Vλi)θ = 1 for 1 ≤ i ≤ N implies
dimM(Vλ)θ = 1 for all λ (using (4.5)).

Let St(E ,∇) ⊂ S be the set of Stokes directions. A connected component
of S\ St(E ,∇) is called a Stokes sector.

Below, we fix a base point θ0 ∈ S. We label elements in St(E ,∇) coun-
terclockwisely as {σ1, σ2, · · · , σn}, starting with the one immediately next to
θ0 in the counterclockwise direction. Let Ii = (σi, σi+1) be the Stokes sectors
(for 0 ≤ i ≤ n− 1, and σ0 := σn).

4.3.2 Construction (B-torsors for each sector). For θ ∈ S\ St(E ,∇), we
define a B-reduction of Eθ as follows. Indeed, the assignment V �→ M(V )θ ⊂
E(V )∇θ satisfies the relation (4.5) and M(V )θ is one-dimensional for V irre-
ducible. Such data determines a B-reduction of the G-torsor E∇

θ along the
ray θ. Clearly, this B-reduction is locally constant as θ moves in a Stokes sec-
tor. Therefore, on each Stokes sector Ii ⊂ S\ St(E ,∇), we have a canonical
B-torsor Ei constructed from (E ,∇), for 0 ≤ i ≤ n− 1. We let En = E0.

4.3.3 Construction (The braid). Let S1
ε be the circle of radius ε > 0 around

τ = 0. There is a canonical isomorphism S1
ε
∼= S. Restricting the map A :

A1
τ−1 → a = h // W to S1

ε the image lands in ars.
Fix a base point θ0 ∈ S, which gives a corresponding base point εeiθ0 ∈ S1

ε .
If θ̃0 is a lifting of θ0 to R, we abuse the notation to denote the interval
[θ̃0, θ̃0 + 2π] by [θ0, θ0 + 2π]. Let a0 = A(εeiθ0) ∈ ars. Choose a lifting ã0 ∈ hrs

of a0. Then A|S1
ε

: S1
ε → ars lifts uniquely to Ãε : [θ0, θ0 + 2π] → hrs with

Ãε(θ0) = a0.
Let σ̃i be the preimage of σi in [θ0, θ0 +2π], and similarly let Ĩi ⊂ [θ0, θ0 +

2π] be the preimage of Ii. Note Ĩ0 = [θ0, σ̃1] � [σ̃n, θ0 + 2π]. We denote Ji =
[θ0, σ̃1] if i = 0, Ji = Ĩi for 1 ≤ i ≤ n− 1, and Jn = [σ̃n, θ0 + 2π].
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Consider the projection ÃR,ε : [θ0, θ0 + 2π] Ãε−→ hrs → hR (projection
to the real part). Then {σ̃1, · · · , σ̃n} is precisely the preimage of the root
hyperplanes in hR under Ãε. The image Ãε(Ji) is contained in a unique Weyl
chamber Ci ⊂ hrs

R . For ε sufficiently small, Ci are independent of ε. The
relative positions of two Weyl chambers in hR are indexed by W. Let wi ∈ W
be the relative position of the Weyl chambers (Ci−1, Ci) for 1 ≤ i ≤ n. Then
define

βθ0 = w̃1w̃2 · · · w̃n ∈ Br+
W.

Recall for w ∈ W, we write w̃ ∈ Br+
W its canonical lift. The braid βθ0 does

not depend on the lifting ã0 of a0. Changing the base point θ0, βθ0 changes
by a cyclic shift of words.

4.3.4 Remark. There is another natural way to get a conjugacy class in
BrW from A(τ). The map A|S1

ε
gives an element in π1(ars, A(εeiθ0)), which

is isomorphic to BrW (and the isomorphism is unique up to conjugacy). We
thus get a conjugacy class [β] in BrW. One can show that [β] is independent
of ε and θ0 as long as ε is sufficiently small, and that βθ0 defined above belongs
to the conjugacy class [β].

Recall the irregularity of the adjoint connection (Ad(E),∇) associated
with (E ,∇) is defined to be

Irr(Ad(E),∇) =
∑
α∈Φ

− ordτ=0 α(B(τ 1/m)).

4.3.5 Lemma. We have �(β) = Irr(Ad(E),∇).

Proof. We first consider the case m = 1, i.e., B(τ) ∈ h[τ−1]. On the one hand,
�(β) =

∑n
i=1 �(wi), and �(wi) is the number of root hyperplanes separating

Ci−1 and Ci. Therefore �(β) is the number of times the image of BR|S1
ε

crosses
the root hyperplanes (where BR is the real projection A1

τ−1 → h → hR).
For the root hyperplane Hα defined by α = 0, BR|S1

ε
intersects Hα exactly

when Bα(τ) = α(B(τ)) takes values in iR for |τ | = ε. For ε � 1, the map
Bα : S1

ε → C× has mapping degree − ordτ=0 α(B(τ)), and Bα|S1
ε

intersects iR
transversely (with the same sign of intersection) in −2 ordτ=0 α(B(τ)) times.
The total number of times BR|S1

ε
crosses the root hyperplanes is∑

α∈Φ+

−2 ordτ=0 α(B(τ)) =
∑
α∈Φ

− ordτ=0 α(B(τ))

which is Irr(Ad(E),∇).
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In general, let π : Δ×
τ1/m → Δ×

τ be the projection. Then the irregular
part of π∗(E ,∇) lies in h[τ−1/m]. Let β̃ be the braid attached to π∗(E ,∇). On
the one hand we have Irr(Ad(E),∇) = 1

m Irr(π∗Ad(E),∇), which is equal to
1
m�(β̃) by the previous paragraph. On the other hand, from the construction
of β̃ one sees that β̃ = β1β2 · · · βm where each βi is a positive braid with
the same length as β. Therefore �(β̃) = m�(β). Combining these facts we get
Irr(Ad(E),∇) = 1

m�(β̃) = �(β).

4.3.6 Construction (A point in M(βθ0)). We shall construct a point in
M(βθ0) from (E ,∇). In Construction 4.3.2 we have constructed a B-torsor
Ei for 0 ≤ i ≤ n, with En = E0. Let τ = id : En

∼→ E0 be the identity
isomorphism. For each σi, let σ−

i ∈ Ii−1 and σ+
i ∈ Ii, then parallel transport

along the path from σ−
i to σ+

i that passes through σi identifies the stalks E∇
σ−
i

and E∇
σ+
i

. This gives a canonical isomorphism of G-torsors

(4.6) ιi−1 : Ei−1 ×B G ∼= E∇
σ−
i

∼= E∇
σi

∼= E∇
σ+
i

∼= Ei ×B G.

By the lemma below, the data (E0, · · · , En, ι0, · · · , ιn−1, id) defines a point in
M(βθ0).

4.3.7 Lemma. The relative position of the two B-reductions Ei−1 and Ei of
E∇
σi

(see (4.6)) is equal to wi ∈ W defined in Construction 4.3.3.

Proof. We treat the case m = 1 below; the general case is proved by the
same argument after pullback to the cover Δ×

τ1/m → Δ×
τ . Also, without loss

of generality we may assume i = 1. Let w ∈ W be the relative position of E0
and E1.

Let σ− ∈ I0 and σ+ ∈ I1. Let x−ε = �B(εeiσ−) ∈ C0 (the dominant Weyl
chamber, for ε � 1), and x+

ε = �B(εeiσ+) ∈ C1 for ε � 1.
Fix a regular anti-dominant weight λ, and denote by Vλ the irreducible

representation of G with lowest weight λ. Let Ωλ be the set of weights of
Vλ. The B-reduction E− gives an increasing filtration FμE(Vλ)∇σ− on E(Vλ)∇σ−

indexed by the poset Ωλ (where μ1 ≥ μ2 if and only if μ1 − μ2 is a sum
of positive coroots). Note that the smallest sub FλE(Vλ)∇σ− is the maximal
decay line M(Vλ)σ− . On the other hand, the maximal decay line M(Vλ)σ+ ⊂
E(Vλ)∇σ+ , after parallel transport to σ− via the path through σ1, gives a line
L+ ⊂ E(Vλ)∇σ− . Since λ is regular, the relative position w can be characterized
as follows: it is the unique element w ∈ W such that L+ ⊂ FwλE(Vλ)∇σ− and
L+ maps injectively to the associated graded GrFwλE(Vλ)∇σ− . We would like to
show that this property of w implies w = w1.
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Let Ψλ ⊂ P be the set of exponential factors of the connection (E(Vλ),∇).
Then Ψλ is the image of Ωλ → P given by μ �→ 〈μ,B(τ)〉. As a Stokes filtered
local system, E(Vλ)∇ is locally (near σ1) isomorphic to a Stokes graded local
system L ∼= ⊕χ∈Ψλ

Lχ. We may assume σ± to be close enough to σ1 so that
this isomorphism is defined along the arc [σ−, σ+]. In particular, there is a
unique χ+ ∈ Ψλ such that Lχ+,σ+ = M(Vλ)σ+ .

We claim that χ+ = 〈w1λ,B(τ)〉. Indeed, write χ+ = 〈μ,B(τ)〉 for some
μ ∈ Ωλ. Since Lχ+,σ+ is the maximal decay line at σ+, for ε � 1, 〈μ, x+

ε 〉 ≤
〈μ′, x+

ε 〉 for all μ′ ∈ Ωλ. Equivalently, 〈w−1
1 μ,w−1

1 x+
ε 〉 ≤ 〈μ′, w−1

1 x+
ε 〉 for all

μ′ ∈ Ωλ. Since w−1
1 x+

ε ∈ w−1
1 C1 = C0, which is the dominant Weyl chamber,

the above inequality implies w−1
1 μ = λ (the minimal element in Ωλ), i.e.,

μ = w1λ, hence χ+ = 〈w1λ,B(τ)〉.
Now L+ = Lχ+,σ− . By the definition of w, L+ = Lχ+,σ− lies in FwλE(Vλ)∇σ−

and maps injectively to the associated graded GrwλE(Vλ)∇σ− . This means
χ+ has the same decay rate as 〈wλ,B(τ)〉 along the ray σ−. Using χ+ =
〈w1λ,B(τ)〉, this implies 〈w1λ, x

−
ε 〉 = 〈wλ, x−ε 〉 for ε � 1. Since x−ε is in the

interior of C0, this forces w1λ = wλ. Since λ is regular, we conclude that
w1 = w.

4.4. Enhanced Riemann-Hilbert map

4.4.1. Specialization to our setting Consider the context of a homo-
geneous element ψ ∈ g((t)) of slope ν = d/m. For any connection (E ,∇) ∈
MdR,ψ and the choice of a base point θ0 ∈ S that is not a Stokes direction,
Construction 4.3.3 gives a positive braid βθ0 that depends on ψ but not oth-
erwise on (E ,∇). By Remark 4.3.4, βθ0 is a positive braid representing the
loop S1 → a = h //W given by restricting the map χ(ψ) : C× → g

χ−→ a. One
can show that βθ0 depends only on the slope ν and not otherwise on ψ. We
henceforth denote βθ0 by βν,θ0 , or simply βν is the base point θ0 is fixed. The
image of β in W is conjugate to wd, which is in turn conjugate to w because
both w and wd are regular of order m.

When ψ is elliptic, we can compute βν as follows. We have the regular
element w ∈ W of order m, unique up to conjugacy. Let us assume w has
minimal length in its conjugacy class (then �(w) = |Φ|/m). One can take
βν = w̃d, where w̃ ∈ Br+

W is the lifting of w to a positive braid by any reduced
expression. We have �(βν) = ν|Φ|. Note that w (hence w̃) is not unique, but
different choices of minimal length w differ by cyclic shift of words, as shown
by He-Nie in [21, Corollary 4.4]. Therefore, the resulting βν also differ by a
cyclic shift, which then give isomorphic M(βν).
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Constructions 4.3.2 and 4.3.6 give a set theoretic map

RH : MdR,ψ → M(βν).

When G = GL(n), Lemma 4.2.8 shows it is a holomorphic map.

4.4.2. The enhanced RH map Recall that M(βν) is equipped with two
monodromy maps: μβν ,G to [G/Ad(G)] (which we simply write [G/G] below)
and μβν ,H to [H/Adw(H)]. Since the connections classified by the global mod-
uli MdR,ψ also has regular singularities at 0 with nilpotent monodromy lying
in a Borel reduction at 0. We have a map

resdR,0 : MdR,ψ → [Ñ/G] = [n/B]

where Ñ → N is the Springer resolution of the nilpotent cone N ⊂ g. Let
Ũ → U be the Springer resolution of the unipotent variety U ⊂ G. The
following diagram is commutative by construction

(4.7) MdR,ψ

resdR,0

RH M(βν)

μβν ,G

[Ñ/G] exp
∼ [Ũ/G] [G/G]

On the other hand, looking at the formal residue and formal monodromy
at ∞, the following diagram should also be commutative

MdR,ψ

resdR,∞

RH M(βν)
μβν ,H

c0
exp

Tw,◦ ξθ0 [H/Adw(H)]

Here ξθ0 is defined as follows. Let θ′0 ∈ S′ be a preimage of θ0 under the
degree m cyclic covering ρm : S′ → S. The adjoint Cartan tad has a canonical
real form tad

R consisting of elements whose value under any root is real. Recall
ψ ∈ t. For ε > 0 consider the image of ψ(εeiθ̃0)d under t � tad � tad

R . Then
for ε � 1 the image lies in a Weyl chamber Cθ′0

⊂ tad
R independent of ε. Let

Bθ′0
be the Borel subgroup of G containing T corresponding to the chamber

−Cθ′0
. Thus we have an isomorphism of tori ιθ′0 : T ↪→ Bθ′0

� H. Changing
the choice of θ′0 changes Cθ′0

by the action of the cyclic group 〈w〉, therefore
ιθ′0 |Tw is independent of the choice of θ′0, which we denote by ιTw . The map
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ξθ0 is the composition Tw,◦ ιTw−−→ H → [H/Adw(H)] where the last map is the
composition.

More generally, we consider the variant sMdR,ψ defined in §3.3.4 for an
arbitrary residue s ∈ h at 0. Let κ = exp(s) ∈ H. Let g̃ → g and G̃ → G
be the Grothendieck alterations. Let prh : g̃ → h and prH : G̃ → H be
the projections. Let g̃[s] = pr−1

h (s) ⊂ g̃ and G̃[κ] = pr−1
H (κ) ⊂ G̃. Then the

diagram (4.7) becomes

sMdR,ψ

resdR,0

RH M(βν)
μβν ,G

[g̃[s]/G] exp
∼ [G̃[κ]/G] [G/G]

These diagrams motivate the following definition.

4.4.3 Definition. Let ψ be a homogeneous element of slope ν.

(1) (Trinh [43]) Form the derived fiber product

M0
Bet,ψ := M(βν) ×R

[G/G] [Ũ/G],

(2) We define the Betti moduli space attached to ψ to be the derived com-
plex analytic stack

MBet,ψ := c0 ×[H/Adw(H)] M0
Bet,ψ.

Here, the map c0 → [H/Adw(H)] is given by the exponential map c0 ∼=
tw

exp−−→ Hw,◦ ⊂ H followed by the quotient map.
(3) More generally, for κ ∈ H, we define

κM0
Bet,ψ := M(βν) ×R

[G/G] [G̃[κ]/G]

κMBet,ψ := c0 ×[H/Adw(H)] κM0
Bet,ψ.

Note when w is elliptic, sMBet,ψ → κM0
Bet,ψ is a Hw-torsor, and κMBet,ψ

is a derived algebraic stack.

4.4.4 Conjecture. Let κ ∈ H.

(1) For ν > 0, the derived structure on κM0
Bet,ψ is trivial, and κM0

Bet,ψ is
an algebraic stack smooth over C.

(2) The analytic stack κMBet,ψ is a complex analytic manifold with a canon-
ical symplectic structure.
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By the above diagrams and Definition 4.4.3, the map RH lifts to

(4.8) R̃H : sMdR,ψ → c0 ×[H/Adw(H)] M(βν) ×R
[G/G] [G̃[κ]/G] = κMBet,ψ.

4.4.5 Conjecture. For any reductive G over C and homogeneous element ψ
in g((t)) of slope ν > 0, and any s ∈ h with κ = exp(s), the map R̃H in (4.8)
is an analytic isomorphism.

We plan to return to this conjecture in a future work. As a consistency
check, we compare the dimensions of MdR,ψ and MBet,ψ. On one hand, we
have by Theorem 3.1.4 and Theorem 2.8.1(1)

dimMdR,ψ = dimMψ = ν|Φ| − r + dim tw.

On the other hand, by Lemma 4.1.2 we have

dimM(βν) = �(βν).

By Lemma 4.3.5, we have for any (E ,∇) ∈ MdR,ψ

�(βν) = Irr(Ad(E),∇) = ν|Φ|.

Combining the two equations we get

dimM(βν) = ν|Φ|.

Therefore the derived dimension of MBet,ψ is

dimM(βν) + (dim[Ũ/G] − dim[G/G]) + (dim c0 − dim[H/Adw(H)])
= ν|Φ| − r + dim tw.

Therefore MdR,ψ has the same dimension as the derived version of MBet,ψ.

4.4.6 Remark. By Theorem 3.3.5, the cohomology H∗(sMdR,ψ) is canoni-
cally independent of s ∈ h. Combined with Conjecture 4.4.5, it then implies
that the cohomology H∗(κMBet,ψ) is independent of κ ∈ H (canonically upon
choosing a logarithm of κ). Keeping track of the symmetry by (C((τ))/C+

∞)red
on sMdR,ψ, this also implies the statement that the cohomology of κM0

Bet,ψ
is independent of κ. In other words, the direct image complex of the map

M(βν) ×[G/G] [G̃/G] → [G̃/G] prH−−→ H
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should be locally constant. This direct image complex can be interpreted as
the parabolic restriction of character sheaves. It would be interesting to prove
the local constancy statement directly for a wider class of positive braids β

and not just those coming from homogeneous ψ.

4.4.7 Remark. Instead of making a base change of M(βν) along c0 →
[H/Adw(H)], one can reformulate Conjecture 4.4.5 by taking a quotient of
MdR,ψ.

It is clear that the map RH is invariant under the action of C((τ))/C+
∞

on the domain, because that action does not change the isomorphism class of
the connection on X\{∞}.

Consider the action of the reduced part (C((τ))/C+
∞)red on MdR,ψ. By (3.8),

this group is an extension of the lattice (C((τ))/C�
∞)red ∼= X∗(T )〈w〉/tors by

C�
∞/C+

∞
∼= T 〈w〉. By Proposition 3.4.5, the action of (C((τ))/C+

∞)red trans-
lates the formal residue via the lattice quotient (C((τ))/C�

∞)red, therefore the
quotient of MdR,ψ by (C((τ))/C+

∞)red makes sense as an analytic stack over
the quotient torus c0/Im(resC,∞), which is identified with T〈w〉 in (3.10).

One can reformulate Conjecture 4.4.5 by saying that the map

MdR,ψ/(C((τ))/C+
∞)red → M(βν) ×[G/G] [Ũ/G]

is an analytic isomorphism. This is consistent with Conjecture 4.4.5, as one
can check that (C((τ))/C+

∞)red is naturally isomorphic to the fiber of c0 →
[H/Adw(H)].

5. Microlocal sheaves on Flψ and wildly ramified geometric
Langlands

In this section we will expand on the conjectural equivalence in §1.4.
From work of [25] and [32], we can construct a sheaf of categories μSh

on conical open subsets U ⊂ T ∗X, such that the global sections category
μSh(T ∗X) ∼= D(X) is the derived category of constructible sheaves on X.

For a conical Lagrangian Λ ⊂ T ∗X we can define the full subcategory
μShΛ of objects with singular support contained in Λ.

If G is a group acting on X, we can also use this to construct a sheaf of
categories on the Hamiltonian reduction T ∗X//G := μ−1

G (0)/G.
Let X an algebraic space with a Gm ⋉Ga-action, where Gm acts linearly

on Ga. Let μGm⋉Ga : T ∗X → A1
Gm

× A1
Ga

be the moment map of the action.
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We have the following relations of Hamiltonian reductions

T ∗X//1Ga = μ−1
Gm⋉Ga

(A1
Gm

× {1})/Ga

∼= μ−1
Gm⋉Ga

(A1
Gm

× (A1
Ga

\ {0}))/Gm ⋉Ga

∼= μ−1
Gm⋉Ga

({0} × (A1
Ga

\ {0}))/Gm ⊂ T ∗X//Gm,

where the last is an open subset of the Hamiltonian reduction. We can thus
identify the shifted Ga Hamiltonian reduction as an open subset of the Gm

Hamiltonian reduction and use this to define the sheaf of categories μSh on
T ∗X//1Ga, and in particular the category of global sections μSh(T ∗X//1Ga).

Let J∞ be the group defined in §2.11, equipped with a homomorphism
ψ̃ : J∞ → Ga induced by ψ. In Proposition 2.11.1 we prove the identification
Mψ

∼= T ∗BunG(J1
∞; I0)//1Ga, where J1

∞ = ker(ψ̃). We can thus apply the
formalism above to the construction to get a category μSh(Mψ).

5.0.1 Remark. The definition of μSh(T ∗X//1Ga) is inspired by a construc-
tion of Gaitsgory [19, §1.6] called Kirillov category. It allows to define a version
of D(Ga,ψ)(X) (where ψ is understood to be an Artin-Schreier sheaf on Ga,
which makes sense in characteristic p > 0) for X over an arbitrary base field,
as long as the Ga-action on X extends to a Gm ⋉ Ga-action. Denote this
Kirillov category by Kir(X). Then one can construct a functor

Kir(X) → μSh(T ∗X//1Ga).

More details will be explained in [4]. In particular, we have a functor

Kir(BunG(J1
∞; I0)) → μSh(Mψ).

We can consider the full subcategory with fixed singular support along the
image of Flψ → Mψ constructed in §2.8.1(4) and denote this by μShFlψ(Mψ).

Consider M0,G∨

Bet,ψ the Betti space for G∨, the Langlands dual group, using
the positive braid defined by ψ and the definition in §4.4.3.

Note that the definitions in §4 begin with a homogeneous element ψ ∈
g((t)). We can construct a homogeneous element ψ∨ ∈ g∨((t)) inducing the
same map χ(ψ) = χ(ψ∨) : C → a = h/W ∼= h∨/W constructed in §4.4.1
under the identification h/W ∼= h∨/W given by choosing a W -invariant sym-
metric bilinear form on h. It therefore gives the same positive braid as defined
by ψ. We can thus think of M0,G∨

Bet,ψ as the Betti space associated to the ho-
mogeneous element ψ∨.

For the author's personal use only.

For the author's personal use only.



126 Roman Bezrukavnikov et al.

5.0.2 Conjecture. There is a fully faithful functor

μShFlψ(Mψ) → IndCoh(M0,G∨

Bet,ψ).

5.0.3 Remark. (1) This conjecture can be viewed as a geometric Lang-
lands correspondence for deeper level structures/wild ramifications. At
the same time, it can be viewed as an instance of homological mirror
symmetry between Mψ and M0,G∨

Bet,ψ.
(2) We expect the image of this functor on compact objects to consist of

coherent sheaves that are supported over proper subschemes of M0,G∨

Bet,ψ.
We further expect that M0,G∨

Bet,ψ has a unique minimal unipotent orbit
and that objects in μShFlψ(Mψ) that have finitely many components of
Flψ in their singular support should be sent to sheaves living over this
smallest unipotent orbit appearing in M0,G∨

Bet,ψ.
(3) A possible way to upgrade the above conjecture is to use wrapped mi-

crolocal sheaves as defined in [32]. These should include objects living
over non-proper subschemes of M0,G∨

Bet,ψ.
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