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Abstract: Starting from a homogeneous affine Springer fiber Fl,,
we construct three moduli spaces that correspond to the Dolbeault,
de Rham and Betti aspects of a hypothetical Simpson correspon-
dence with wild ramifications. We show that Fl; is homeomorphic
to the central Lagrangian fiber in the Dolbeault space, prove that
the Dolbeaut and de Rham spaces both have the same cohomology
as Fly, and construct a map from the de Rham space to the Betti
space which we conjecture to be an analytic isomorphism.
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1. Introduction
1.1. Springer fiber and Slodowy slice

Let G be a reductive group over an algebraically closed characteristic zero
field k& with Lie algebra g. For a nilpotent element e € N/ C g, the usual
Springer fiber B. = {¢gB € G/B|Ad(g !)e € Lie B} is the fiber over e of the
Springer resolution 7 : T*(G/B) = N' — N. Moreover, B, can be realized as
a Lagrangian subscheme in a symplectic smooth variety, via the construction
of the Slodowy slice through e. More precisely, let {e, h, f} be an sly-triple
containing e. Let S, = (e + g/) N NV be the nilpotent part of the Slodowy
slice through e. Let S. =8, x NN/ be the preimage of S, under the Springer
resolution. The following well known properties of these varieties play an

important role in geometric representation theory.

(1) S. is a smooth variety over k with a canonical symplectic form.

(2) The map 7 : S, —S.isa symplectic resolution.

(3) There are compatible G,,,-actions on S. and S, such that the symplec-
tic form on 5‘6 has weight 2, and S, contracts to the point e under the
Gun-action. In particular, if £ = C the embedding B, — g@ induces
a homotopy equivalence between the corresponding complex varieties.
The action is the product of the dilation action on 7%(G/B) and con-
jugation by a cocharacter coming from the homomorphism SL(2) — G
provided by the Jacobson-Morozov Theorem.

(4) The subvariety B, < S, (the fiber over e) is Lagrangian in S,.

(5) The symplectic variety S, can be obtained from 7*(G/B) by Hamil-
tonian reduction for a unipotent subgroup U. C G equipped with an
additive character.

The main goal of this paper is to construct and study an analogue of
the resolved Slodowy slice S. when the Springer fiber B, is replaced by an
affine Springer fiber Fl, for a homogeneous element 1. Roughly speaking,
a homogeneous element 1) is a regular semisimple element in the loop Lie
algebra g((¢)) for which there exists an analogue of the Jacobson-Morozov
cocharacter, i.e. a cocharacter of the Kac-Moody group for which v is an
eigenvector.
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1.2. Summary of main results

Starting from a homogeneous element 1 in g((t)), we construct three mod-
uli spaces that serve as the Dolbeault, de Rham and Betti aspects in the
terminology of the non-abelian Hodge theory.

(1) The Dolbeault space M, is a moduli space of G-Higgs bundles on P!
with level structures at 0 and oo, and prescribed irregular part at co.
This is the space we propose as a loop group analogue of the resolved
Slodowy slice. It shares some of its properties although there are also
some important differences. In particular, it is a symplectic algebraic
space with a G, action contracting the space to a Lagrangian subspace
homeomorphic to Fl, (see Theorem 2.8.1); it can be obtained from
T*F1 by Hamiltonian reduction for a subgroup J. in the loop group
equipped with an additive character (see §2.11). However, the analogue
of the Springer map is the Hitchin map f : My — A, which is a
completely integrable system rather than a symplectic resolution.
Also, the spaces Fl, and M, are finite dimensional but in general
have infinite type: in the simplest example Fl; is an infinite chain of
projective lines. They are both of finite type if ¥ is elliptic.

(2) The de Rham space Mgg,y is a moduli space of G-connections on P!
with level structures and prescribed irregular part at oc.

(3) The Betti space Mpet,y is a complex analytic stack that depends only
on the positive braid determined by 1. The essential part of it is, up to a
quotient by G, defined as an explicit subvariety in a product Gx(G/B)"™.
The key property justifying its name is the interpretation of Mpey,y as
the moduli space of Stokes data (See §4.3).

The three spaces My, Mgy, Mpet,y are related as follows.

There is a one-parameter deformation Mpeq,y of My with general fiber
isomorphic to Mgr . This family carries a G,,-action contracting it to the
Lagrangian subspace Fly, in the special fiber, which allows one to show that
the restriction maps induce isomorphisms on cohomology (see Theorem 2.8.4
and Corollary 3.2.3):

(1.1) H*(Flw) & H*(qu) &~ H* (MHod,w) =5 H*(MdR,w)~

Recall that for other types of connections (for example, for non-singular
connections on a projective curve over C) the non-abelian Hodge theory of
Corlette, Donaldson, Hitchin and Simpson defines a hyper-Kéahler structure
on the Hitchin moduli space and an isomorphism between the Dolbeaut and
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the De Rham moduli spaces as real manifolds, and realizes the Hodge moduli
space as an open subvariety (preimage of C under the projection to CP!) in
the twistor moduli space. We do not know if that theory can be extended to
our setting.

Another, more elementary comparison available for nonsingular connec-
tions over a complete complex curve is provided by the Riemann-Hilbert cor-
respondence: it yields an isomorphism between the de Rham and the Betti
moduli spaces as complex analytic (but not as algebraic) varieties. In §4.4,
using Stokes theory for G-connections (see §4.3), we defined an enhanced
Riemann-Hilbert map

(1.2) RH : Mar,p — MBet,p-

We conjecture that this map is an analytic isomorphism.

In the main body of the paper, we also include a variant of the above
spaces My, Mgr,y and Mpety with an arbitrary semisimple part of the
residue/monodromy at 0.

1.3. Relation to earlier results

Many of the constructions presented here are related to ones found in the
literature.

Precursors of the Dolbeault moduli space of this type, besides of course
the original construction of Hitchin [23], appeared in the work of Beauville [3],
Biquard-Garcia Prada-Mundet i Riera [6], Boalch [7], Bottacin [9], Markman
[30], Oblomkov-Yun [35] and Simpson [40]. The paper [18] by Fredrickson and
Neitzke studies a moduli space of Higgs bundles closely related to the case
G = GL,,v = d/n in this paper.

Biquard and Boalch [5] have developed non-abelian Hodge theory for
irregular connections whose polar part (excepting the residue) is semisimple.
When the underlying curve is P! and the polar part is homogeneous, these
are a special case of connections considered in the present work. However,
the moduli spaces we consider are different in that we endow the connection
with a framing at infinity: the moduli space of Biquard and Boalch can be
obtained from a special case of our moduli space by Hamiltonian reduction
with respect to a torus action. Boalch and Yamakawa [8] construct moduli
spaces of Stokes data for G-local systems, and endow them with Poisson
structures. Our Betti spaces, although presented differently, should be special
cases of their construction. The work of Bremer-Sage [12] studies moduli of
flat connections with level structure on the bundles, although for them, the
underlying vector bundle is always trivial.
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Mochizuki [31] has extended the irregular non-abelian Hodge correspon-
dence to (unframed) wild Higgs bundles whose polar parts are not semisimple.
To our knowledge it is not known if this induces an isomorphism of real man-
ifolds in the general case.

The Betti space is a variant of a special case of the moduli spaces defined
by Minh-Tam Trinh [43]. Its definition is purely Lie-theoretic and it uses only
the braid group element determined by v (or rather its slope). A version of
this space already appeared in Lusztig’s definition of character sheaves [28].
In the work of Shende-Treumann-Williams-Zaslow [39], when G = GL(n),
similar moduli spaces were interpreted as a moduli space of local systems on
P'\{0, 00} with Stokes data at cc.

In a research proposal, Vivek Shende speculated an irregular non-abelian
Hodge correspondence for curves and a P=W conjecture in that setting. In his
thesis, Minh-Tam Trinh [42] formulated a precise P=W conjecture connect-
ing cohomology of Hitchin fibers and cohomology of Steinberg-like varieties
attached to braids (which are closely related to Mpety). Our work gives
supporting evidence for these conjectures in the case of homogeneous Hitchin
fibers: assuming (1.2) is an analytic isomorphism and combing it with the iso-
morphisms (1.1), one would conclude that Mpet has the same cohomology
as the affine Springer fiber Fl,,.

1.4. Microlocal sheaves on Fl;, and wildly ramified geometric
Langlands

While we believe the above results to be of independent interest, our mo-
tivation for considering those spaces came from our study of the categories
of sheaves on the affine flag manifold and related categories of microlocal
sheaves. We now briefly explain the setting and the motivating conjectures,
our results in this direction will be presented elsewhere.

Denote by uShp(X) the category of microlocal sheaves on a polarised
conical X supported on a conical Lagrangian A as constructed from work of
[25], [38] and [33].

Consider MOG’]Vgeuw the Betti space for GV, the Langlands dual group, using
the positive braid defined by ¢ and the definition in §4.4.3.

1.4.1 Conjecture. There is a fully faithful functor
pShgy, (My) = IndCoh(MES ).

This conjecture can be viewed as a geometric Langlands correspondence
for deeper level structures/wild ramifications. At the same time, it can be
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viewed as an instance of homological mirror symmetry between M, and
Mggw. A version of this conjecture in the case 1 is homogeneous of slope 1
is proved in [4].

2. The Dolbeault moduli space

Let G be a reductive group over an algebraically closed field k£ such that
the adjoint G,q is simple. Let g be the Lie algebra of G. Fix a G-invariant
non-degenerate symmetric bilinear form (-,-) on g to identify g with g*. Let
To C G be a maximal torus and Wy = W(G, Tp) be the corresponding Weyl
group of G. We assume |Wj| is invertible in k.

In this section, we will construct analogues of the resolved Slodowy slice
S. when the Springer fiber B, is replaced with affine Springer fibers Fly
attached to certain elements ¢ € g((t)) called homogeneous (see §2.1). We will
construct a moduli space M, of Higgs bundles with the following features:

(1) My is a smooth algebraic space over k with a canonical symplectic
form.

(2) There is a Hitchin map f : M, — Ay that is a completely integrable
system. It is proper when v is elliptic.

(3) There are compatible G,,-actions on M,, and Ay, (compute the weight
of the symplectic form), contracting A, to the point a,. The central
fiber f~'(ay) = Mg, is homeomorphic to the affine Springer fiber Fly.

More precise statements will be given in Theorem 2.8.1. We will give three
constructions of My, each having its own advantages in proving certain geo-
metric properties.

2.1. Homogeneous affine Springer fibers

Let g((t) = g ® k((t)) be the loop Lie algebra. Let G((t)) be the loop group
of G and G[t] be the positive loop group so that (G((t)))(k) = G(k((t)) and
(G[th (k) = G(k[t]). Then G((t)) acts on g((t)) by the adjoint action. Let
a =g/ G be the adjoint quotient, and a((t)) = a(k((t))).

Let G* be the one-dimensional torus acting on g((t)) by loop rotation
G > s 1 A(t) = A(st). Let GI! be the one-dimensional torus acting on
g((t) by dilation G 5 s : A(t) = sA(t). The action of Gt x G3Il on g((t))
induces an action on a((t)).

Homogeneous elements in the loop Lie algebra g((t)) are defined by Varag-
nolo and Vasserot [44, Section 1.3]. Recall from loc. cit. and [35, Definition
3.1.2] that a regular semisimple element a € a((t)) is called homogeneous of
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slope v =d/m € Q (where d € Z, m € N in lowest terms) if it is fixed by the
action of the subtorus G,,(v) C G x G4 given by {(s7™,s%)|s € G,,}. A
regular semisimple element 1) € g((t)) is called homogeneous of slope v = d/m
if its image in a((t)) is. In other words, ¥ (t) € g((¢)) is homogeneous of slope
v = d/m if and only if it is regular semisimple, and that s~%)(s™t) is in the
same G((t))-orbit of ¢ (t) for all s € k*.

By [35, Theorem 3.2.5], a homogeneous element ¢ € g((t)) of slope v =
d/m exists if and only if m is a regular number for the Weyl group Wy, i.e.,
m is the order of a regular element in Wy in the sense of Springer [41] (we
will describe the conjugacy class of this regular element in Remark 2.4.1).

Fix a Borel subgroup By C G containing Tp, and let Iy C G[t] be the
corresponding Iwahori subgroup. Let F1 = G((t))/Iy be the affine flag variety
of G. For ¢ € g((t)) homogeneous of slope v = d/m > 0, following [26], we
may consider its affine Springer fiber Fl,,

Fl, = {g1y € Fl|Ad(g~")¢ € Lie I}.
This is an ind-scheme that is a union of projective schemes over k. It is an
affine analogue of Springer fibers.

2.1.1 Example. In the case G = SL,, consider the slope v = d/n, where
d > 1 is coprime to n. The element

is homogeneous of slope v = d/n. The affine Springer fiber Fl, has been
studied by Lusztig and Smelt [29]. It classifies chains of lattices in k((¢))"
stable under 1. We may reinterpret Fl, as classifying chains of fractional
ideals of the ring k[t,y]/(y" — t9).

2.2. Moy-Prasad filtration

The point x € X, (Tp)g (the standard apartment of the building of G((t)))
defines a Moy-Prasad grading on g[t,t™!]

g[t, t_l] = @ g[ta t_l]a:,s~

s€Q
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Here g[t,t7!], s is spanned by the affine root spaces of g[t,¢™!] for the affine
roots o + n such that a(x) +n = s.

Fix v = d/m > 0 in lowest terms, where m is a regular number for W.
We shall choose x such that the following hold:

« m is the smallest positive integer such that g[t,t™1], s # 0 implies s €
L7.
o g[t,t71],, contains a regular semisimple element (as an element in

g(()-

For such an x, a regular semisimple element v € g[t,t"!],, is homo-
geneous of slope v. Conversely, for any homogeneous ¥ € g((t)) of slope
v, there exists x satisfying the above conditions, and a regular semisimple
Y’ € g[t,t71,,, such that ¢ and ¢’ are in the G((t))-adjoint orbit. Indeed, by
[35, 3.3], we can take x = p¥/m. There many be more than one choice of x
for a homogeneous .

In the following we shall fix an = € X, (71p)q satisfying the above condi-
tions, and fix a regular semisimple ¢ € g[t,t"1],,, which is homogeneous of
slope v. We will simply write g[t,t™ ], ¢ as g[t,t 1], so that

(2'1) g[t7t_1] = @g[tvt_l]i/rm

i€Z
2.3. The curve and the parahoric subgroup

Let X = P} with affine coordinate ¢. Then ¢ is a uniformizer at 0 € P!, and
7 = t~! is a uniformizer at oo € P*. We identify the loop group G((t)) with
the loop group of G at 0 € X.

We also have the loop group G((7)) at co € X. For i € Z, let

—

o(P<ijm = D, _ 00t /o

where @ denotes the 7-adic completion of the direct sum. Then g((7))<;/m is
a k((7)-lattice in g((7)).

We will use the three notations g(7));/m = 8(£))j/m = 6[t,t™"];/m inter-
changeably depending on the context.

Let Po C G((7)) be the parahoric subgroup whose Lie algebra is g((7))<o.
Let POO(#) C P4 be the Moy-Prasad subgroups of P..: its Lie algebra is
9(7)<—ijm. Let P =P (L) be the pro-unipotent radical of Pe.

In particular, ¢ € g[t,t!], is viewed as a linear character of g((7))<_,.
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2.4. The centralizer of ¥

Let C be the torus over X\{0,00} that is the centralizer of ¢ (which is a
regular semisimple section of g over X'\{0,00}) under G. Note that C' is not
necessarily split; it becomes split over the pi,,-cover of X\{0, 0} = G,,, with
monodromy given by a regular element in W of order m. Let Co, C C((7)) be
the unique parahoric subgroup, and C} be the pro-unipotent radical of Cy.

The grading (2.1) on g[t, ¢~ !] restricts to a grading on c[t,#~!], the global
sections of the sheaf of Lie algebras Lie C' over X\{0, 00}

et =Pt t ijm

1EZL

where c[t, ™/, C g[t,t™ "]/ are clements commuting with .
Let ¢((7)) be the 7 = ¢ '-adic completion of c[t,t!]. Let ¢(7)<i/m =
9(7) <i/m Ne((7)). Then Lie Co = ¢((7))<0, and Lie CL = (7)) <—1/m-

2.4.1 Remark. Specializing both sides of (2.1) at ¢ = 1, each g[t, ¢~ '], ,,, can
be identified with a subspace of g. Thus we get a Z/mZ grading of g

€L/ ML

Recall z € X,(T)g defines the Moy-Prasad grading on g[t,¢~!]. Since the
graded pieces g[t,t '], , are nonzero only for s € LZ, we can write = = {/m
where ¢ € X, (Tg4). View ¢ as a homomorphism ¢ : G,,, — Tg4. Then (2.2)
is the grading obtained by the adjoint action of ju, via ¢|,,,. Evaluating at
t=1,c[t,t71); /m 18 identified with a subspace ¢;/,, C g;/m depending only on
i/m mod Z. Their sum

t = Bicz/mzli/m C 9

is a Cartan subalgebra of g stable under the Z/mZ-grading (2.2). Indeed, let
P E gq /m be the image of ¢, then t is the Lie algebra of the maximal torus
T := Cq(¥) C G, the fiber of C over 1 € X. Let (,, € pm be a primitive
m-th root of unity, then Ad(£((y,)) (whose eigenvalues on g gives the Z/mZ-
grading) normalizes T, hence determines an element w = w((,,) in the Weyl
group W = W(G,T) that is regular of order m. Different choices of (,, yields

conjugate w((y,). This defines a regular conjugacy class in W of order m.
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2.5. Construction of M,

Let Dy = Spec k[t], D§ = Spec k((t)) and Dy, = Spec k[7], DX = Spec k(7).
Let M, be the moduli stack parametrizing pairs (€, ¢) where

« & is a G-bundle over X with Ko := Poo(£)CH-level structure at oo

and Ip-level structure at 0. We denote by Ad(E) the vector bundle over

X\{0, 00} associated to the adjoint representation g of G.
e is a section of Ad(E) ® wx\ {000} satisfying the following conditions:

(i) After choosing a trivialization of £|p_ together with its K-level
structure, we require

¢lpx € (¥ +9(7)<0)dr/T.

Note that the right side is invariant under the adjoint action by
Ko, therefore this condition is independent of the trivialization of
Elp..-

(ii) After choosing a trivialization of &|p, together with its Ip-level
structure, we require

¢|px € Lie (I)dt/t.
2.6. Hitchin base

The Hitchin base Ay, is defined as follows. Fix homogeneous generators f; €
k[g]“ of degree d;, 1 <i < r, which give an isomorphism

(fisoo o fr)ia=g /)G A"

We identify wx (0 + co) with Ox using %. In particular, f;(¢) is a global
section of O([%4] . 0o) (the twisting means pole order at oo). Let A, C
[T TP, O([5

L] . 00)) be the subspace of sections a = (a;)1<i<, such that
foreachi=1,--- r

e a;(0)=0;
d(d;—1)
e a; = fi(v)) mod 7777 near oco.

&s

In other words, if we identify I'(P!, O([%4] - o)) with polynomials in ¢, then
fi(¢) is a monomial of degree dd;/m if dd;/m € Z and zero otherwise, and «a;
is a polynomial of the form

[d(di—1)/m]

a;i(t) = fi(v) + Z @i,ﬂfj~

J=1
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2.6.1 Lemma. Toking a Higgs bundle (€, ) € My to (fi(p))i<i<r defines
a map

f:./\/lqp—hAd,.

Proof. Since the residue of ¢ at 0 is nilpotent, f;(¢) vanishes at 0. To com-
pute the pole order of f;(¢) — fi(¢), we choose a trivialization of &|p_
so that ¢ € (¢¥ + g(7)<o)dr/7. Write ¢ = (¢ + 0)dr/7 for some 0 €
(7)) <o- Inside g(('/™)) we can G((77/™))-conjugate the grading g((7));/m (ex-
tended k((7'/™))-linearly to g((7'/™))) to the standard one given by powers
of 7V/™ ie., g® /™. After this conjugation, ¢ becomes ¢ = (:cT’d/m +
2550 gojTj/ ™)dr /7, for some regular semisimple z € g such that zr~%"™ is
in the same G((7'/™)-orbit of ¢, and ¢; € g for j > 0. Then it is clear
that f;(¢) = fi(¢') has leading term f;(2)7~%:/™ = f;(¢), with other terms

(d;—1)
starting with 7'*[d . O

2.6.2 Lemma. The Hitchin base Ay is an affine space of dimension dim Ay, =
L(L|®| —r + dim ) (where w is a regular element in W of order m defined
in §2.2 and ® the set of roots of g).

Proof. From the definition we have dim.4, is the same as the space of

(ay,--- ,a,) where a; is a section of (9([%] -00) vanishing at 0. Therefore

s, 3 [ 1]

p m
We have
d(d; — 1) d d ||
S A —1) = — !
DL T R

i

Therefore we reduce to showing

(2.3) > {(di —1)/m} = (r — dim *)/2.

7

Here {---} denotes the fractional part. Let ( € p,,, be a primitive mth root
of unity. We claim that

(2.4) The eigenvalues of w on t are {(%1};<;<, as a multi-set.

Indeed, by Remark 2.4.1, we may take t = ©;cz/mz¢i/m to be the central-
izer of a regular semisimple element y € gy, (the grading defined in (2.2)
using z = &/m € X, (T)qg), and w acts on t by Ad(£(¢)) for a primitive
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¢ € fim. Since the claim (2.4) is independent of the choice of z satisfying
the conditions in §2.2, we may take z = p*/m so that & = p". Therefore
the grading (2.2) is given by eigenspaces of Ad(p"({)). Consider the open
dense subset gie/gm C @1/m consisting of regular (but not necessarily semisim-
ple) elements. It suffices to show that for all y € gie/%n, the action of p¥(¢)
on 3, (the centralizer of y in g) has eigenvalues {¢%~'};<;<, as a multi-set,
because applying this statement to a regular semisimple y gives (2.4). Since
gie/gm is open dense in gy /,,, hence it is connected. The Lie algebra universal
centralizer 3 — gy, is a vector bundle with an action of Ad(p"(()), hence all
fibers have the same multi-set of eigenvalues under Ad(p¥(¢)). Now we take
y to be the regular nilpotent element yo = Y e,, (for simple roots «a;, noting
that go, C g1/m). Since the weights of Ad(p") on 3,, are the exponents of g
by definition, i.e., {d; — 1}, we see that the eigenvalues of Ad(p”({)) on 3y,
are {¢%~1}. This proves (2.4).

Therefore, when summing up {(d; —1)/m}, each pair of eigenvalues A\, A\=*
(A # £1) of w on t contributes 1; A = —1 contributes 1/2 and A = 1

contributes zero. Hence (2.3). O
2.7. The G, (v)-actions

2.7.1. Action on Fl;, The one-dimensional torus GLo' acts on k((t)) by
scaling the parameter t. We denote the action of s € GI2* by rot(s).

Recall x = £/m (where ¢ € X, (Tg4)) defines the Moy-Prasad grading on
g[t,t71] such that ¢ € g[t,t7],.

We have a G,,(v)-action on Fly, where (s™™, s%) € G,,(v) acts by

51 gIg = rot(s™™)Ad(E(s))glo.

2.7.2. Action on M, Let GI" act on X = P! by scaling the coordinate
t. We denote the action of s € G'' on X by rot(s). Note that for any s € G,

st rot(s ™M) (Ad(E(s™))Y) = ¥

Since rot(s~™)Ad(£(s™1)) fixes the line k1), it normalizes Co, and CL. Clearly
Gt x Tpd normalizes Poo (i) for all 4, therefore rot(s~™)Ad(¢(s™')) nor-
malizes Koo = Poo(2)CL. Similarly, the action of s? - rot(s™™)Ad({(s™"))
stabilizes )+ g((7))<o C g((7)). Therefore we get a G,,(v)-action on M,, with
(57, s%) € G,n(v) sending (€,p) € My to (£',¢') defined as follows. First
let £” be the G-bundle rot(s~™)*E with K2 = rot(s " )K-level at oo and

Io-level at 0. Since Ad(£(s71))K” = Ko, the action of Ad(£(s™1)) on G((7))
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induces an equivalence between the groupoids of G-bundles with K -level
and with K.-level at co. This turns £” into a G-bundle £ with K .-level at
oo and still Ty-level at 0. Finally ¢ = srot(s~™)*¢.

2.7.3. Action on A, The torus G,,(v) also acts on Ay so that (s7™, s?)
sends (a;(t)); to (s%a;(s~™t));. This action contracts Ay to the unique fixed

point ay = (fi(¥))1<i<r € Ay.
2.8. Main results on M,

The main geometric results on M, are:

2.8.1 Theorem. For a homogeneous element ¥ € g((t)) of slope v = d/m,
the following hold.

(1) The stack My is a smooth algebraic space over k of dimension 4|®| —
r+ dimt” (where w is a reqular element in W of order m defined in
§2.2 and ® the set of roots of g).

(2) My carries a canonical symplectic structure of weight d under the
G (v)-action.

(3) The map f : My — Ay is a Gy, (v)-equivariant completely integrable
system (i.e., fibers of f are Lagrangians).

(4) There is a natural map Fly — M, = f~(ay) which is a universal
homeomorphism.

(5) When 9 is elliptic (equivalently, w is elliptic), f is proper.

2.8.2 Remark. Constructions similar to M, have appeared before.

(1) When G = SL,, Markman [30] has constructed a Poisson moduli of
meromorphic Higgs bundles for arbitrary curve X and showed that
the Hitchin fibration is a completely integrable system (namely generic
fibers are Lagrangian in symplectic leaves of maximal rank). If we take
¢ = t?A where d > 1 and A € g is regular semisimple, our My is a
symplectic leaf in Markman’s Poisson moduli space.

(2) For any G and homogeneous ¢, Oblomkov and one of the authors [35]
constructed a Poisson moduli of Higgs bundles (on a weighted projective
line) with a contracting G,,-action whose central fiber is closely related
to Flw

Both of the constructions above are more closely related to the Poisson moduli
space ML in §2.13.
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2.8.3 Remark. Consider the case k = C. With the realization of Fl, as a
conical Lagrangian in the symplectic ambient space My, it makes sense to
consider the category pShry, (M) of microlocal sheaves on M., supported on
Fly,. More precisely, using the realization of M, as a Hamiltonian reduction of
the cotangent bundle of Bung(J%,Io) in §2.11, one may define pShyy, (My)
to be a full subcategory of sheaves on Bung(JL, , 1y)/G,,(v) with singular
support in Fly. This can be thought of a quantization of M, or as an affine
analogue of modules over W-algebras. In [4] we study this category in the
special case where 1 is homogeneous of slope 1.

We also prove the following cohomological result.

2.8.4 Theorem. The canonical map v : Fly, — M,, — My induces an
isomorphism on cohomology v* : H*(My) = H*(Fly).

Here, H*(My) is defined to be the projective limit of cohomology of finite-
type open subspaces; and H*(Fly) is defined to be the projective limit of co-
homology of finite-type closed subschemes. When 1 is elliptic, one can use the
fact that f is proper and the contraction principle to deduce Theorem 2.8.4
immediately. In general, the proof is more involved and uses hyperbolic lo-
calization.

2.9. Proof of Theorem 2.8.1(1)

From the well-known properties of moduli stack of G-bundles we know that
My, is an algebraic stack locally of finite type over k.

2.9.1.  We show that Aut(&, p) is trivial as an algebraic group for any k-
point (€, ¢) € My. By [34, Cor 4.11.3], Aut(&, ¢) is isomorphic to a subgroup
of a maximal torus of G, hence diagonalizable (this is proved in the case with-
out level structure but the argument works with level structure). On the other
hand, restricting to Do, Aut(&, ) is a subgroup of the pro-unipotent group
K, hence itself unipotent. Therefore, Aut(€, ) is the trivial algebraic group
over k. This implies that M, is an algebraic space locally of finite type over k.

2.9.2. We show that M, is a smooth Deligne-Mumford stack over k.

Let £ be a G-bundle over X with Iy and Ko, = Poo(%) - CZL level struc-
tures at 0 and oo respectively. For a Ip-invariant lattice Ag C g((t)) and a
K o-invariant lattice Ao C g((7)), we define Ad(E; Ap, Axo) to be the sub-
sheaf of j,Ad(E) (where j : X\{0,00} — X) that is equal to Ad(E) over
P'\{0, 00} and its local sections near 0 (resp. 0o) lies in Ag (resp. As) after
trivializing &|p, (resp. €|p,.)-
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The tangent complex of My, at (€,¢) € My is H*(X, K) where K is the
two step complex of vector bundles on X placed in degrees —1 and O:

(25) K =K, = [Ad(E; Lie Ty, tx) =5 Ad(E; Lie I, g((7)<0)].

Here £, = Lie K. The obstruction to the infinitesimal deformations of
(£, ) lies in H' (X, K) while the Lie algebra of Aut(€,¢) is H (X, K). To
show M, is smooth Deligne-Mumford, we need to show that H'(X,K) and
H™ (X, K) vanish.

We consider the complex KV = Hom(K,wx|[1]), obtained by taking the
Serre dual of K termwise but still placed in degrees —1 and 0:

KY = [Ad(E; Lie T, g(7) <_1/m) =2 Ad(E; Lie I, €L)].
Here we are using the pairing on Ad(£) induced from (-,-) on g; &, C
g((7)) is the dual lattice of €x = g((7))<—a/m + (7)) <—1/m, i.e. €L = {v €
a(7) (v, bodT/7) C K[7]d7}. Let ¢(7)* C g((7)) be the orthogonal com-

%lﬁment of ¢(7)) C g((7)) under (-,-). Let C((T))Jéi/m = () N g(7) <i/m-

8, = c(T)Z(a-1)/m @ (1)) <0-
In particular, g((7))<o C €Y. Hence there is a natural inclusion ¢ : K < KV.

We claim that ¢ induces a quasi-isomorphism in D’Coh(X). Indeed, after
trivializing £|p__, coker(¢) is the two-step complex

() <1 /m /o =D €% /a((7))<0-

Moy-Prasad filtration induces filtrations (€%, /g((7))<0)<j/m and (g(7))<—1/m/
£ )<j/m on both sides, with associated graded

(7)) /m = Gjm/Cipms —d+1 <5< —1
0 otherwise.

(T = Gjym/Cipm, 1< <d—1
0 otherwise.

(0(T)<—1/m/tc)jym = {

(€5 /8(T)<0)j/m = {

The map [—, ¢] sends (g((7)) <-1/m/¥s0) <j/m t0 (85/8(7))<0)<(j+d)/m and the
induced map on the associated graded is ad(y);/m : 8j/m/Cjm — 8(j+d)/m/
C(j+d)/m for —d +1 < j < —1. Since ¢ is regular semisimple, ad(v));/m, is
an isomorphism. Therefore coker(:) is acyclic, hence ¢« : K < KV is a quasi-
isomorphism. Therefore ¢ induces an isomorphism H*(X, ) = H*(X,KY).
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On the other hand, the complexes H*(X, ) and H*(X, KY) are linearly dual
to each other. Therefore we conclude that there is a perfect pairing between
H'(X,K) and H}(X, K), and a perfect pairing on H(X, K) which is easily
seen to be symplectic.

By §2.9.1, H}(X,K) = Lie Aut(&, ) = 0. Therefore H'(X,K) = 0 as
well, hence M, is a smooth algebraic space. Moreover, the tangent space
H(X,K) at every point (&, ) carries a canonical symplectic form, hence a
globally defined non-degenerate 2-form €2 on M,,. The fact that d€2 = 0 will
be shown in §2.11 where we identify M, as a Hamiltonian reduction from a
cotangent bundle, which then carries a canonical symplectic form, and it is
easy to check that the form coincides with 2.

2.9.3.  We compute dim My, or dimH°(X,K). By the vanishing of
H7Y(X, K), we have

dimHY(X,K) = degAd(E;Lie I, g(7))<0) — deg Ad(E; Lie Iy, &)
(2.6) = dimy g((7)) <0/€s — dimy Lie Iy/Lie I
= dimy, g(7) <0/t — 7

By construction, we have

d—1
9(7)<0/tse = 890 © D 9ijm/<ijm-
i=1
Therefore
d—1
i=0

We consider the roots ®(g,c¢) for the Cartan ¢. The Z/mZ-grading on g is
induced by w € W(g, ¢) regular of order m. Now w permutes ®(g,c) freely
with |®]/m orbits. Each orbit contributes 1-dimension to each g;/,,/¢;/y, for
all i € Z/mZ. Therefore dim g;/,, /¢;/m, = |®|/m for all i € Z. Using (2.7), we
see that

d d
dim g((7))<0/8s = dim ¢y + —|P| = dim t* + —|D|.
m m
Combined with (2.6) we get

d
dim(g#p) My, = dim HO(X, K(S,go)) =dimt¥ + E‘@‘ — 7.



78 Roman Bezrukavnikov et al.

2.10. Proof of Thereom 2.8.1(4)

Ngo’s product formula [34, Prop. 4.15.1] and its extension by Bouthier and
Cesnavicius [10, Theorem 4.3.8] has an analogue for our level structures which
we spell out.

Define a reduced sub-ind-scheme of G((7))/Koo:

Xy oo = {9Koo € G(7) /K| Ad(g™" )0 € ¥+ (7)) <0}

This is an analog of an affine Springer fiber.

Recall the torus C' over P'\{0, 00} defined in §2.4 as the centralizer of
. Extend C to a group scheme C on P! with parahoric level structures at
0 and oco. Let Picc(0;30) be the moduli space of C torsors over P! with
trivializations on Dy and Du. Then C[t] and C[r] act on Pico(0;50) by
changing the trivializations, and these actions extend to actions of the loop
tori C((t)) and C((7)). On the other hand, C((t)) and C((7)) act on Fl, and
Xyp.0o Tespectively by left translations.

There is a canonical morphism

. c@xc()
X

(2.8) a : Pice(0; ) (Fly X Xyno) = Mo,

defined as follows. Given a C-torsor Q over P! with trivializations on Dg

and D, we get a G-torsor £° = Q g G over P1\{0, 0} with a Higgs field
given by ¢ and trivializations on Dy and Ds. A point goly € Fly gives a
G-torsor & over Dy with Ig-level structure together with a trivialization over
D . We can glue & with £° along D using the trivializations. Similarly, a
point gooKoo € Xy oo gives a G-torsor 4 over Do, with Ko-level structure
together with a trivialization over DX, which we can glue with £° along D('.
This way we have extended £° to a G-torsor £ on P! with Iy and K.-level
structures. The Higgs field v on £° extends to £ because of the conditions
defining Fly and X o. This gives the map a. The same argument of [10,
Theorem 4.3.8] shows that « is a universal homeomorphism: the reason is
that for any (£,¢) € Mg, (R) where R is a seminormal strictly Henselian
local k-algebra, (£, ¢)[pL\ 10,00y Teduces to a C-torsor, and the restriction of
any C-torsor over Spec R((t)) and Spec R((7)) must be trivial, as shown in [10,
Theorem 3.2.4] (using that m is invertible in &, hence C' splits over a tamely
ramified cover of G,,,).

By Lemma 2.10.1 below, the action of C'(7)) on Xy  is transitive. The
stabilizer of C'(7)) at the base point 1 € Xy o is C'(7)) N Ko = CL. There-
fore the action map C((7))/CL — Xy is an isomorphism on the reduced
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structures. This allows us to simplify the left side of (2.8) to

~ (@)
(2.9) Picc(0;CL) x Fl, — M

Qqp *

Here Pice(0; C) is the moduli space of C-torsors over P! with a trivialization
on Dy and a CF -level structure at oo. Let Cy C C((¢)) be the parahoric sub-
group. Let Pica(Cop; CL) be the moduli space of C-torsors over P! with a Co-
level structure at 0 and a CI_-level structure at co. Then Pico(Cop; CL)) is the
discrete space X, (T') () of coinvariants under the action of (w). Indeed, a com-
putation of tangent space shows that Picc(Cop; CL) is discrete; the automor-
phism group of the identity point is trivial hence the automorphism group of
all points are trivial since Pico(Cyp; CL) is a Picard groupoid. By [22, Lemma
16] the connected components of Pico(Cop; Co) are canonically indexed by
Xo(T) (), hence the same is true for Picg(Cop; CL). On the other hand, the
Kottwitz map gives an isomorphism (C(t))/Cp)™® = X,(T) () (see [36, The-
orem 5.1, step A]), and Pice(Co; CL) is a trivial torsor under (C/((t))/Co)™ed.
Therefore the action of C((t)) on Pico(0; CL) is transitive, and the reduced

. c(@)
stabilizer is trivial. Hence the natural map Fl, — Picc(0; CL) X Fly is an

isomorphism on the reduced structure. Since (2.9) is a universal homeomor-
phism, we conclude that the composition

~ (@)
F]w — PiCC(O; C+) X Flw — M

is a universal homeomorphism. O

2.10.1 Lemma. Let ¢’ € ¢+ g((7))>0 be in the same G((1))-orbit of 1, then
there exists g € Poo(L) such that Ad(g)y' = .

m

Proof. We construct inductively a sequence of elements g; € Poo (L) (for
j < 1) such that

(1) 1 =1; »
(2) For j <0, g; € gj+1Pw (] )

(3) For j <0, Ad(g;)¢' =+ mod g(7))<j-1.

Then the limit g = lim;_,_, g; exists in Poo (), and it satisfies Ad(g)y’ = 1.
Take g1 = 1. Suppose g;41 has been constructed. Then we have

Ad(gir)V' =+ X+ X0+, Xp € 9(7)/m-

We look for Y € g((7))(j—a)/m such that [V, ] = Xj; then g; = exp(=Y)g;41
satisfies all the requirements.
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Now solve the equation [Y, ] = X for Y € g(7))(j—qa)/m- Recall f1,---, f.
€ k:[g]G is a set of homogeneous generators with degrees dy,--- ,d,. By as-

sumption f;(¢') = fi(+), hence
fi(W) = fi(Ad(gj41)V") = filv + Xj + X1 +---).

Taking Taylor expansion of f; at 1 with respect to the Moy-Prasad grading,
we get
<df1(¢)7Xj> ZO, VZZL ,T.

Here dfi(v) € g*((7)), and the pairing (,) is the k((7))-bilinear between g*((7))
and g((7)). Since v is regular semisimple as an element in g((7)), the differ-
entials {dfi(¢) }1<i<, span a subspace of g*((7)) which under the Killing form
can be identified with ¢((7)) (the centralizer of ). Therefore, the annihilator
of the span of {dfi(v¥)}1<i<r is [g(7)),¢]. The above equations imply that
X € [a((1),¢], so X; € [Z,4] for some Z € g((7)). Let Y be the g((7))(j—a)/m
homogeneous component of Z, then [Y, 1] = X;. This completes the inductive
construction of g;. O

2.11. Construction of M, as a Hamiltonian reduction

The symplectic structure on My, mentioned in Theorem 2.8.1 comes from a
realization of M, as a Hamiltonian reduction of a certain cotangent space.
We define a subgroup Jo, C G((7)) as follows:

(1) If d is odd, then Jo, = P (YHN2) . Cf |

(2) If d is even, then g((7))_q/om carries an alternating form (z,y)
(¥, [z, y]). Let m C g((7))—a/2m be a maximal isotropic subspace, and let
Pw(%)m be its preimage in Pm(%/z) under the projection POO(%Z) —

9(7)—d/2m)- Let Joo = Poo(%)m -CL.

Then 9 has a unique extension to a linear character zz : Joo = Gy such that,
on the level of Lie algebras, 1 is trivial on (Lie Jo) N 9(7)ijm for i < —d.

To construct this note that Jo is pro-unipotent so we just need check
that the linear map ¢ given by

1 -
Lie Joo C Lie Poo(—) = 8(7) —a/am —= k
m

is a Lie algebra homomorphism. That is to check that [Lie Jo, Lie Jo] is in

the kernel. This follows from the definition of POO(%) and the fact that

C1 is a commutative group centralizing .
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Recall the notation of Hamiltonian (or Marsden-Weinstein) reduction: let
X be a smooth stack with the action of an algebraic group H. Let ( : h — k
be a character of the Lie algebra h = Lie H, viewed as an element in h*. Let
w2 T*X — b be the moment map. Then define the stack

T°%//cH = i (¢)/H.

When ( is a regular value of pp, T*X//¢H is a smooth stack that inherits an
exact symplectic structure from that of T*X.

We apply this construction to the case X = Bung(J 1 :Tp), the moduli
stack of G-bundles on X = P! with J. := ker(¢)) C Juo-level structure at
oo and Ip-level structure at 0, with the action of H = G, = Joo/.]})O and the
character ¢ = 1 € h*. Here J, acts on Bung(JL ;Iy) by changing the J. -
level structure, where J. - acts trivially and thus this descends to an action
of H=G, = Js/JL..

2.11.1 Proposition. There is a canonical isomorphism between M, and the

Hamiltonian reduction of T*Bung(JL; I())//JG(I. In particular, My, carries

a canonical symplectic structure which coincides with the 2-form § defined in
§2.9.

Proof. We describe Ny, := T*Bung(JL ; 1o)// {ZGa as a moduli space of Higgs
bundles as follows. Let jo, = Lie Jo and j%, C g((7)) be the dual lattice under
the form (-,-) extended k((7)-linearly, i.e., j¥% = {v € g(7)|{v,jedT/T) C
k[r]dr}.

Recall the notations c((7))*, c((T))éj/m from §2.9.2. Then

Vo= c«T))é(dfl)/@m) @ c((T)<o d odd;
o h {mL @ ()22 1)m D (7)) <o d even.

Here m* C 9(7)a/2m) is the orthogonal complement of m C g((7))_q/(2m)
under the pairing (-, -).
Then Ny, classifies pairs (£, ¢) where
e £ isa G-bundle over X with J.-level structure at co and Iy-level struc-
ture at 0. We denote by Ad(€) the vector bundle over X\{0, 00} asso-

ciated to the adjoint representation g of G.
¢ is a section of Ad(£) ® wx\ (0,00} satisfying the following conditions:

(i) Under some (equivalently, any) trivialization of £|p_ together with
its Joo-level structure, we require

¢lpx € (¥ +is)dr/T.
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(ii) Under some (equivalently, any) trivialization of £|p, together with
its Ig-level structure, we require

¢|py € Lie (Ig)dt/t.
Since Koo C Jo and ¢ + g((7))<o C ¢ + )%, we have a natural map
F Mw — Nw.

We need to show that F' is an isomorphism of algebraic stacks.

Let Uy = (¥ +i%)/8(7)<o (an affine space). Let J = Joo/P(£). Then
J acts on Uy by the adjoint action. Let C' C J be the image of CL, then C
stabilizes the point v € U,. We thus get a morphism of stacks

v [{v}/Cl = [Uy/J].
On the other hand, we have an evaluation map
€ Z./\[,/, — [Uw/j]

by taking the Laurent expansion of ¢[px modulo g((7))<od7/7. From the
definitions we have a Cartesian diagram

My ——= Ny

{¢}/C]——[Uy/J]]
To show F' is an isomorphism, it suffices to show that ¢ is an isomorphism.

Consider the action map « : J — Uy sending g € J to Ad(g)y € Uy. It
passes to the quotient

a:J/C =2 /Ke — Uy

Then ¢ is an isomorphism if and only if @ is an isomorphism.
Ford/2 < j<danddE€Z,let

J
Q; = PulL)C,

Aj = (M) <(amjyym + 8(T)<o.
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We have

Koo=QiC--CQ; CQj1 C-Qpa2] CJeo,
g((T))S():AdC"'CAjCA]‘_1C"'CA[d/Q] C]Zo

Moreover, Ad(Q;)y C A;j for j > d/2.
We show inductively that for j > d/2, the map

aj  Joo/Qj = (0 +i%) /N

defined by g — Ad(g)y» mod A; is an isomorphism. Since aq = @, this would
finish the proof.

When d is odd, the initial step j = (d + 1)/2 is trivial since both sides
of a; are singletons. When d is even, we have Jo/Qq/2 = m/c_g/(2m), and
(Y +3i%)/Aaje = ¢ + mt, and the map ag)s is [—,¢]. By definition m is a
maximal isotropic subspace of g_g4/(2m) under the form (z,y) — (z, [y, ¢]).
This form has kernel ¢_g/(2m), hence [—,1)] maps m/c_g/(2m,) isomorphically
to m™.

Now assume ¢ is an isomorphism (where d/2 < j < d). We have a
commutative diagram

Joo/Qjt1 RiAEN (¥ +3%)/ N

)

Joo/Qj — 2= (¥ +3%)/Ay

Since the above diagram is J.-equivariant and the map «; is assumed to be
an isomorphism, to show a1 is an isomorphism it suffices to show that

0‘j+1’q;1(1) (1) = Q/Q — p () = (W Ay /A
is an isomorphism. This map can be identified with
(=] = ()2 = () a—s)ym-
Since 1 is regular semisimple with centralizer ¢((7)) under g((7)), the above

map is an isomorphism. This completes the inductive step.
To see the 2-form coincides we note that the tangent complex of Ny, is

K = Kie.p = [A(E; Lie T, jn) =5 Ad(E; Lie I, g(7)<o)].
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similarly defined to the tangent complex in equation 2.5. The result of the
2-forms now follows by noting that the above argument shows both tangent
complexes agree under the map ¢. O

2.12. Proof of Theorem 2.8.1(3)

By Theorem 2.8.1(1) and Lemma 2.6.2, we see that dim M, = 2dimA,.
Therefore all fibers of f have dimension > dim Ay,. Also, by Theorem 2.8.1(4),
the central fiber of f has dimension dim Fly, = dim Ay = dim My — dim Ay.
Since all points in Ay, contract to a,, under the G,,-action, all fibers of f have
dimension < dim Fl,. Combine both inequalities, we conclude that all fibers
of f have dimension equal to dim A,,. Since M., and Ay are both smooth, f
is flat of relative dimension equal to dim Ay.

It remains to check that the functions given by coordinates of Ay, are
Poisson commuting. Let (£, ) € M, with image a € Ay. We need to show
that the image of the cotangent map f* : T A, — T(*&w)/\/lw is isotropic.

Let F = @;_, O(ld(d; — 1)/m] - 0o — 0), where 0 denotes the point
0 € X. Then T,Ay is identified with H°(X, F). Recall from the proof of
Theorem 2.8.1 that the tangent space T(g ,) My = H°(X,K). The tangent
map fi : T(g )My — TuAy is induced from the following map of coherent
complexes on X by taking global sections

[77@}

Ad(&; Lie I, Lie Koo ) —— Ad(&; Lie I, g((7)) <o)
\L(dfi)lgigr
‘F

Here df; : Ad(E; Lie I, g(7))<0) — O([d(d; —1)/m] - 00 — 0) is the Ox-linear

map given fiberwise by the differential of f; at ¢. The map (df;)1<i<, above

factors through p : H'K — F. The tangent map f, at (£, ) is thus given by
Tie My = H(X,K) - HO (X, HK) & HO(X, F) = T, Ay.

Dually, the cotangent map f* at (€, ) is given by

Tr A, = HU(X, F* @ wx) Lo HY(X, HH(KY)) = HO(X,KY) = Tje ) My.

Here Y = Hom(K, wx/[1]) is the Serre dual of K, and (—)* denotes linear
dual Hom(—, Ox). In the proof of Theorem 2.8.1, we showed that the obvious
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map ¢ : K — KV is a quasi-isomorphism, which then induces an isomorphism
of short exact sequences
(2.11)

0

Hl(X, ’H‘llC) T(g7<p)/\/l¢ HO(X, %OK) ——0

LR

00— HY (X, H Y (KY)) —= T,y My — H(X, HO(KY)) —=0

By construction, the middle vertical map gives the symplectic form on Ti¢
M. The composition

* -1
TiAy L5 Tl My 5 Tie My 25 T,A,

factors through the composition of either row in (2.11), hence is zero. This
shows that the image of T} Ay, in T(*g @Mw is isotropic. O

2.13. Construction of M., as a symplectic leaf

Let ML be the moduli stack parametrizing pairs (£, ¢) where

o & is a G-bundle over X with PZ -level structure at oo and Ip-level
structure at 0.
¢ is a section of Ad(£) ® wx\ 10,00} satisfying the following conditions:

(i) Under some (equivalently, any) trivialization of £|p_ together with
its P -level structure, we require

elpx € (¥ + 9(T)<(@—1)/m)dT/T.

(ii) Under some (equivalently, any) trivialization of £|p, together with
its Ip-level structure, we require

¢lpy € Lie (Ig)dt/t.

The Hitchin base AL} for ./\/ljp is the closed subscheme AL C [, T(P,

O([94:] - 00)) of sections a = (a;)1<i<, such that for each i =1+ ,r

L al(O) = O;
e a; = fi(¢¥) mod T*% near oo (i.e., the leading coefficient of degree
7=ddi/m if m|d;, of a; at oo is the same as that of fi(¢))).
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We have the Hitchin map
tomt gt

It is also clear from the construction that there is a canonical map M, — ML

and an inclusion Ay C .AL.

2.13.1 Proposition. The canonical maps give a Cartesian diagram

My —= M},

T

Ay Al

In particular, My = ./\/ljp X 4t Ay
P

Proof. Let Q = PL/Poo(%). Let Vy = (¢ +g(7)) <(a-1)/m)/9(7)<o- Then Q
acts on the affine space V, by the adjoint action. Each (&, ¢) € ML gives an
Q-torsor Q induced from the PZ -level structure of £, and the polar terms of

Q
@(dr/7)™! give a section of the associated affine space bundle Q x V. This
construction gives a map

€: ML — [Vi/Q).

The stabilizer Qy of ¢ € Vj, is the image of CL in Q. By the definition of
My, we have a Cartesian diagram

(2.12) My ——— M},

L

¢}/ Qul——[V/d]

Let ay be the affine space of (a@;)1<i<, where @; € 7719%/mIk[7] /k[r] with
leading term f;(¢) in degree rddi/m jf m|d;. Then (fi)1<i<r gives a map

7:V¢—>a¢.

We have a map 7 : AL — ay by taking the first few terms of the Laurent
expansion a; of at oo. Let @, = m(ay) € ay. Then Ay, = 7 '(a@y). Let
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V) = f_l(dw). Therefore
M % Ay = (V/QD),

In view of (2.12), to show that My, is equal to the left side above, it suffices
to show that [{1}/Qy] = [V,]/Q], or equivalently,
(2.13)

The action map a : Q — V), ¢ — Ad(q), is smooth and surjective.

We first show that « is surjective on k-points. Let 1" € ¢4 g((7))<(a—1)/m
be such that f;(¢) = f;(¢) for all 1 <4 < r. We want to construct ¢ € PL
such that Ad(¢)y — ¢' € g((7))<o. The same argument as in the proof of
Lemma 2.10.1 works to construct h; inductively modulo Poo(%) for j =
1,2,---,d such that Ad(q)y — ' € g((7))<(a—j)/m- We omit details.

We then show that « is smooth. Since (V,))(k) is a single orbit of Q(k),
it suffices to show that the tangent map of « is surjective at 1. The tangent

map of o at 1 is

d—1

d—1
[~ ¥] : Lie @ = @ a((7)) —aym — D (7)5/m:
j=1

1

<

which is surjective since 1 is regular semisimple. This finishes the proof
of (2.13). The proposition is proved. O

2.13.2 Remark. One can show that ML is a smooth Poisson algebraic space,

and My, is a symplectic leaf in ML We omit the proof.
2.14. Proof of Theorem 2.8.1(5)

Assuming w is elliptic, we show that f is proper. By Proposition 2.13.1, it
suffices to show that fT is proper. We introduce a variant M?* of ML: it
classifies (€, ¢) where £ has P, and Ij-level structures, and the Higgs field is
required to lie in g((7))<a/md7 /T near oo such that its projection to g(7))¢/m
is regular semisimple, and in Lie I dt/t near 0 (after trivializations). Let A%
be the affine space of (a; € I'(X,O([dd;/m]) - 00)1<i<r With the condition
that a;(0) = 0. Evaluating the leading coefficient at oo gives a map At o
Gajm | Lp.., and let A* C A¥ be the preimage of 9)m J Lp., (where Lp_
is the Levi quotient of P; it is identified the connected subgroup of G with
Lie algebra go). We have the Hitchin fibration f* : M*% — Af Then the
fiber product M*¥ x 4 AL admits a description that is almost identical to
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MT, except that the P} -level structure is replaced with the slightly larger
level group PL C/ , where C, C P is the centralizer of ¢ in P. Since
(PLCL)/PL = Cr._(v) is finite over k for w elliptic, ML — M x 4 AL
is finite. Therefore, to show f is proper it suffices to show that f* is proper.
Now f* is a parahoric Hitchin fibration, and [35, Proposition 6.3.7(2)] implies
that f* is proper over the elliptic locus. However, we shall argue that the
whole A" consists of elliptic points. Indeed, the non-elliptic locus Z C At is
closed and G, (v)-stable, so must contain a G,,(v)-fixed point if non-empty.
But AH6m(®) consists of images of ¢/ for ¢/ € alt,t 7' 4/m, and they are all
elliptic. O

2.15. Comparison of cohomology

The goal of this subsection is to prove Theorem 2.8.4 about the cohomology
of My and Fly.

2.15.1. The situation We consider the following general situation. Let X
be an algebraic space locally of finite type over k, equipped with a G,,-action.
Let XCm = [oer Za be an open-closed decomposition of the fixed point locus.

In [14] Drinfeld introduces the attractor X* := Mapg, (A, X). It is
equipped with two maps

gt pt
xX6m Lyt T o x

Here p* (resp. q*) is evaluation at 1 € Al (resp. 0 € Al). Tt is shown in [14,
Theorem 1.4.2] that X* is represented by an algebraic space of finite type
over k, and q* is an affine morphism.
One defines the repeller X~ to be the attractor for the inverted G,,-action,
and we have maps p~ : X~ — X and ¢~ : X~ — XCn.
For each a € I, let X = q™71(Z,). Let p = p*
We make the following assumptions:

LqE — 4
x&tvqa_q ‘%f

(1) For each a € I, q} : X1 — X is a locally closed embedding.

(2) For each a € I, the reduced image of q, : X, — X is a locally closed
subspace X, of X, and the induced map X, — X, is a homeomor-
phism.

(3) UaerX} = X, i.e., for any z € X, the limit lim;_,o ¢ - = exists.

(4) There exists a partial order < on [ such that for each « € I

o The set {o' € I;0/ < a} is finite.
L4 %ga = Ua’ga%+

- is open in X, and is of finite type over k.
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o X2, = Uw<aX, is proper over k. In particular, each Z, is proper
over k.

The cohomology of a locally finite algebraic space is the projective limit of
the cohomology of finite type open subspaces. Therefore

H(%,Q) = lim H* (X2, Q).

ael

On the other hand, we define an ind-space

2 = lim X_
ﬁ <
as a union of finite type closed subspaces. We define the cohomology of 2) to
be
H*(Q.Ja@f) = @H*(X;aa@f)'

a€cl

2.15.2 Proposition. Under the above assumptions, the restriction maps
H*(%,Q,) — H*(Y,Qy) and Hg, (X,Q) — Hg, (D, Q) are isomorphisms.

Proof. First note that X_, C XZ,. Indeed, if z € X__, the limit lim; ot - =
exists in X2, since XZ,, is proper. But (XZ,)®" = [, <, Za, hence lim; o ¢-
x € Zy for some o < «, therefore x € 3€J<ra.

We extend < to a total ordering on I and add the minimal element 0 to
I. Let X§ = X5 = X, = @. We denote by if : Z, — X the inclusions.
Let s, @ XZ, = XE_ be the inclusion. If o is the predecessor of «, let
%ﬁa = .’{éa,, Xoo =X, and let sco = o

We prove by induction on « that the restriction map s, : H*(Xt,) —
H*(XZ,) is an isomorphism, and the same is true for G,,-equivariant coho-
mology. This would imply the proposition by taking projective limits. The
case o = ( is clear.

Suppose the s%, is an isomorphism, we show s}, is also an isomorphism.
Consider the commutative diagram (for simplicity we have omitted most of
the subscripts «)

Za " Xt
lz‘ k” lm
/\
_ J _ «
X X, —=x%,
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Here, i",i7, k™, s, S<a, v are closed embeddings, j~ is the composition X, —
X, < XZ, hence a topological open embedding; u is an open embedding.
We consider the following diagram of distinguished triangles in Dé’}m (X ;r o)

(2.14) kTETQ, Q, uu*Qy

o |

kfk_*@e > Saus Qp —— S<a*82a@z

The rows are given by the open-closed decompositions Xt = X*, UX} and
XZ, = X; UXZ, (by assumption X; — X is a homeomorphism). The
only map that requires explanation is ¢, which is the composition natural
transformations

CokTh o sausthT BT S sahn iR D souhs ik

— e — — 7 —
= Sawli Iyt J Sp = Sasxli JSe =k k.

Here ¢ : stk — h_i™ is given by k* o it = s, o A~ and adjunction;
p it kt — 7'k~ is the comparison map of hyperbolic localization functors,
see Braden [11, top of page 212]. The commutativity of (2.14) is a diagram
chase that we omit.

Taking global sections of (2.14) we get a map between long exact se-
quences of cohomology groups

= HN(XLETQ) —— HN(XL,) —— W (X)) ——

H*(O) lsz lS*@

= HIXL, Q) —HN (X ) —=H'(Xo) — -

By induction hypothesis, s, is an isomorphism, therefore to show s}, is an
isomorphism, it suffices to show H*(¢) is. Since X contracts to Z, under
qf : X% — Z,, the contraction principle gives an isomorphism g}, k' Q, =
it*k+'Q,. Taking global sections we get

H (X3, k7Q) = B (Za, i1 Q).

Similarly, using the contraction q; : X, — Z, we have an isomorphism
ok Q = i~'k™*Qy; taking global sections with compact support and using
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that Z, is proper, we get

HE(Xg k77 Q) 2 H (Za,im k7 Q).

Under these isomorphisms, the induced map on cohomology by ( is the com-
parison map of hyperbolic localizations to Z,:

H*(¢) = H*(p) : H*(Za, ik Qy) = H* (Za, i 'k Q).

By Braden’s theorem [11, Theorem 1] and its extension to algebraic spaces by
Drinfeld-Gaitsgory [15, Theorem 3.1.6], H*(p) is an isomorphism. This shows
H*(¢) is an isomorphism, hence s¥ is an isomorphism.

Taking G,,-equivariant global sections of (2.14), the same argument proves
that s, is an isomorphism on G,,-equivariant cohomology. O

2.15.3. Attractors and repellers for M,, We would like to apply the
above discussions to My, with the G,,(v)-action. For this we collect some
facts about its attractors and repellers.

Since the action of G,,(v) on Ay contracts to the point ay, the Gy, (v)-

fixed points Mgm(”) necessarily lie in the central fiber M, ,, hence homeo-

morphic to Flﬁm(y) by Theorem 2.8.1(4).

Recall Py C G((t)) is the parahoric subgroup whose Lie algebra is g((¢))>0.
By [27, §5.1], the Pg-orbits on Fl are parametrized by %\W, where Wp is
the Weyl group of the Levi Lp of Py,. For w € WAE\W7 let F1,, C Fl be
the Py-orbit containing any lifting of w. Then Wp\W is equipped with the

partial order < such that w < w’ if and only if Fl,, C Fl,,. This is the partial

order induced from the Bruhat order on W, if we identify WP\W as a subset
of W using longest representatives. Let Fl, ., = Fl, N Fl,. Denote by “I
(resp. “(Lie If)) the conjugate of Iy (resp. Lie If) by any lift of w € W.

Consider the action of G, () on FI given in §2.7.1 that stabilizes Fl.
Since the affine roots a + nd in Py are those with a(¢/m) +n > 0, and
a(&/m)+n =0 if and only if a+nd is a root of the Levi Lp, the fixed points
F16(*) is the disjoint union of Lpwly/Iy for w € Wp\W. Therefore Flﬁ’m(”)
admits a decomposition

(2.15) FI;"™ = [ He(w), Hy(w) = Lpwly/I NFl,.
wEWP\VT/

If we choose a representative w € W of w, then Hy(w) is isomorphic to
a Hessenberg variety for Lp defined using the Lp-module g((t))4/m and its
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subspace J(Lie L) N g()a/m:

Hy(w) 2= {h € Lp/(Lp N Lo)|Ad(h 1) () € ®(Lie 1) 0 g(£)a/m }-

Let v : Fly, — M, be the canonical map.

We shall use the notations from §2.15.1. For w € WP\W, let Z,, =
Y(Hy(w)) (it is open-closed in Mgm). Let X} and X, be the attractor and
repeller of Z,,, and we have maps p= : Xt — M, and q= : X — Z,,.

2.15.4 Lemma. The map v = V|3, (w) : Hy(w) — Zy is an isomorphism.

Proof. Since M, is smooth, so is Z,, by [14, Prop. 1.4.20]. It is well-known
that Hy(w) is smooth. The map 7, is a homeomorphism between smooth
spaces, hence an isomorphism. O

2.15.5 Lemma. The image of the map p,, : X,; — My, is the locally closed
subspace Xy := vy(Flyy). There is a unique isomorphism X, = Fl, ,, com-
patible with the maps p,, and . In particular, p,, is a homeomorphism onto
its image X, = y(Flyy).

Proof. We first show that the image of p;; is X, = v(Fl, ) (with the reduced
structure). Since the action of G,,(v) is contracting to ay, if lims_,o 5 (£, @)
exists, f(€, ) must be equal to ay, i.e., (£,9) € Mg,. Now we can identify
(€, ¢) with a geometric point gIy € Fl, under v. Since the inverted G,,(v)-
action s - g = rot(s™)Ad({(s))g contracts Py to Lp, Fl, = Powly/Ij is the
repelling subscheme of Lpwly/Ij in F1. Therefore, limg_,o s - gIg € Hy(w) if
and only if gly € Fly, .

From the above we also see that each geometric point of M, has a unique
limit point under the action of s € G,,(v),s — oco. By [14, Prop. 1.4.11(i)],
Py X, = My is unramified with image X . The uniqueness of limit points
as s — oo implies that p,, is a monomorphism (geometric fibers are a reduced
singleton).

Since My, is smooth, by [14, Prop. 1.4.20], the map q, : X, — Z, is
smooth. By [20, §4.5], the contraction map ¢ : Fl,, — Hy(w) is an iter-
ated affine space bundle, hence also smooth. Therefore the homeomorphism
Flyy — X, is the normalization map. The map p,, : X, — X, thus uniquely
lifts to p : X, — Fl, . We have a commutative diagram

X, —2=Fly,

-

Zw — ’Hw (w)
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The bottom map is an isomorphism by Lemma 2.15.4. We claim that p is an
isomorphism.

Note that p is a monomorphism because ¢, is; it is also surjective. Re-
placing Z,, by its connected components, and taking preimages in X, and
Fl, 4, we may assume Z,, is connected. In this case, X, is connected because
every point of it contracts to Z, under s — oco. Now p is a monomorphic
surjection between two smooth connected spaces. By considering differentials
we conclude that p is an isomorphism. O

On the other hand, by [16, Cor. 16] and [27, §5.2] the isomorphism classes
of Bung (P, Ip) are also indexed by Wp\W. Denote the locally closed sub-
stack with isomorphism class w by Bung (P, Ip). By [16, §3] Bung (P, Ip) C
Bung (Po, Io) if and only if w > w' under the partial order already defined
on Wp\W.

Let w: My — Bung(Po, Ip) be the forgetful map.

2.15.6 Lemma. For any (&€,p) € My, the limit lim,_os - (€, @) exists in
Mgm(u). Moreover, the map p; : X} — My is a locally closed embedding
whose image is w™H (Bun& (P, Ip)).

Proof. We first show the limit lims_,0 s - (£, ) always exists. Consider the
uniformization map v : F1 = G((t))/Iy — Bung(Ke,Ip). We think of F1 as
classifying a £-torsor on X with K-level at oo and Iy-level structure at 0
and a trivialization on X\{0}. Let N be the base change of M, along w.
Then N can be described as the moduli space of pairs (¢gIy, 6) where g1, € Fl
and 6 € g[t,t !]<o such that

Ad(g~") (¢ + 0)dt/t € Lie I dt/t.

Indeed, given (gIp, ), we define £ as the image of gIy under u, equipped with
the Higgs field ¢ = (¢ + 6)dt/t over X \{0}.
The action of G,,(r) on M, lifts to A, and is given by

s - (g1o,0) = (rot(s™™)Ad(¢(s ™)) g, srot(s™™)Ad((s™))0).-

Since 0 € g[t,t™ <o, lim,_o s%rot(s7™)Ad(£(s71))0 = 0. On the other hand,
since F1 is ind-proper, lim,_,o(rot(s~™)Ad(£(s~1))g)Iy € FI¢»(*) exists. This
shows that limg_,q s- (g1, ) exists for any point (¢gIy, §) € N. Since N' — My,
is surjective and G,,(v)-equivariant, the same is true for M.

We next show that the image of p; is w ™ (Bun& (P, Ip)). In other words,
for a geometric point (€,¢) of My, lims,os - (£,¢) € v(Hy(w)) if and
only if the image of £ in Bung(Pe,Ip) is the point w. Let (gIp,0) € N
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be a preimage of (£,¢). Then lim,,os - (£,¢) € v(Hy(w)) if and only if
lim,_,o rot(s ) Ad(¢£(s™))gly € Lpwly/Ty. Now FIE») = I Lewlo/
Io. Note that Bung(Puo, In) = T'oo\F1 where I'ye = P, N G[t, 7], and the
action of rot(s™™)Ad(£(s™!)) contracts the group I's, to the Levi Lp. There-
fore, the limit point lim,_,qrot(s~™)Ad(¢(s71))gly € Lpwly /Iy if and only if
9Ip lies in the T'-orbit of w, i.e., the image of gIy (or £) in Bung(P, Ip) is
in Bung (P, Ip).

So far we have shown that p; induces a map p: X} — Q, := w1 (Bun®
(P, Ip)). Finally we show that p is an isomorphism, therefore p;f is a locally
closed embedding. In Lemma 2.15.7 below, we construct a smooth map = :
Q — Hy(w) such that the following diagram is commutative

(2.16) xt—r-Q,
A
Zw —= /Hw (w)

By [14, Proposition 1.4.20], q; is smooth with connected fibers (since its
contracting to Z,). On the other hand 7 is also smooth. Moreover, by [14,
Proposition 1.4.11(i)], p is unramified. In our situation p is a monomorphism
and a surjection, therefore the. By comparing relative differentials of q;, and
v, we conclude that p is an isomorphism. O

2.15.7 Lemma. There is a smooth map 7 : €, — Hy(w) making (2.16)
commutative.

Proof. To see this we first construct a smooth map v : Q,, = Hy(w). Let H =
Poo/Poo(d/m), H = P} /Ps(d/m) which acts on V = &%, g((7));/m- Let
Vi = VNAd(w)(Lie (G[t]NIF)) and V,, = 9(7) <a/mNAd(w) (Lie (Gt]NIT)).
Let

Q= {(hv) € H x Vu|Ad(h)o € 9+ g((7)) <0}

Let Ay = PooNAd(w)(G[t]NIp), which is the automorphism group of the point
w in Bung(Puo, Ip). It acts on Q,, on the right by (h,v)-a = (ha, Ad(a™)v).
Let ¢y be ¢ viewed as an element in V', and Cy+ (1)) be its stabilizer under
H*. Then Cy+ (1) acts on €y, by left translation on h € H. Then there is an

isomorphism
CH+ (w)\ﬁw/Aw = Q.

This identification follows using [16, Cor. 16] restricted over Bung (P, Ip).
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_ Let Qu = {h € HIAd(h" )by € V,}. There is a natural map 3 : €, —
Qy (sending (h,v) to h) is an affine space bundle with fibers isomorphic to
a(7) <o N Ad(w)(Lie (G[t] NI§)). In particular, 3 is smooth.

Let Vi i/m = 0(7))i/mNAd(w)(Lie (G[t]NIY)). Let Hyy = {€ € Lp|Ad(¢)
¥ € Viy.a/m}- Then Ho — Hy(w) is a torsor under B,, = LpNAd(w)(G[t]NIp)
(a Borel subgroup of Lp). We have a map a : 0, — H,, sending h € H to
its image in Lp. Note that B, is a quotient of A,, and the composition
aB: Qw — He is Cy+ (v) invariant and A,-equivariant (via the quotient B,
on ﬁw) Therefore aff induces a map v : ,, — Hy(w) by passing to the
quotients. To summarize, we have a commutative diagram

Qw d ﬁw = ﬁw
Qw Rl 'Hw (w)

where 7w, 7’ and § are smooth. To show ~ is smooth, it suffices to show that
« is smooth.
We have a commutative diagram

(2.17) H Vv,

Y

Le —"= 0(T)aym/Viva/m

Here & and p are the projections, (h) = Ad(h™")ypy mod Vi;n(f) = Ad(¢71)
¢ mod V,, 4/m. By definition, Q, = 671(0), H,, = n~*(0) and « is the re-
striction of a. Let h € Q, with image = a(h) € Lp. The tangent maps

of (2.17) at h are given by

T50=[—,Ad(h~1)epy]

b = 320 VIV
(= g((r)o 2 i Vi

We need to show that 7,0 is surjective (which implies that Qw is sm~ooth
at h) and that the induced map 73,8, = ker(7),0) — ker(T3n) = T3H,, is
surjective. Consider the filtrations F_ih = ®;<ii<(q—1)8(7)) =it jm, Fi(V/Vi) =
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S1<ir<i®(7)it jm/Vi,it ym- Then Tp0 sends F_ib to Fy_;(V/V,,), and the in-
duced map on the associated graded is

Gr_i(Tn0) : F_ib = g(7) =i/m miiN Faei(V/Viw) = 8(7) @iy jm/ Vi, (a—i/m

where ¢/ = Ad(ﬁ_l)w € 9(7)ajm- In particular, T3n = Gro(730). It remains
to show that each Gr_;(73,0) is surjective, for 0 <i < d — 1.

Passing to the dual spaces and using the Killing form to identify g((7));/m
with the dual of g((7))_i/m, we reduce to showing that

(Gr_i(Th0))" : 9(7) (—ayym N Ad(w)(n + tg[t]) = g(7))i/m

is injective for 0 < ¢ < d—1. Let ¢/((7)) C g((7)) be the centralizer of ¢'. This is
a Cartan subalgebra of g((7)) with the induced grading ¢'(7));/m C 8(7))j/m-
Then the kernel of (Gr_;(T30))* is ¢/(7)) (i—ay/m N Ad(w)(n 4+ 7 *g[r!]). Let
z € (T)—aym N Ad(w)(n + tg[t]) and let f € k[g]” be a homogeneous
invariant polynomial of positive degree. Since i < d, z € g((7) <o, f(z) €
7k[7]; since x € Ad(w)(Lie (G[t] N1I7)), f(z) € tk[t]. Therefore f(x) = 0 for
all any non-constant homogeneous f € k[g]“, hence z is nilpotent. Since ¢/((7))
consists of semisimple elements only, z must be 0. This shows (Gr_;(7,,0))*
is injective and Gr_;(7},0) is surjective, for all i < d. This concludes the proof
that « is smooth. By previous discussion, it follows that ~ is also smooth.
The commutativity of (2.16) is clear by checking geometric points (at
which level p is a bijection). O

2.15.8. Proof of Theoreom 2.8.4 We need to verify that the G,,(v)-
action on X = My, satisfies the conditions in §2.15.1. We use the decomposi-
tion (2.15) for the fixed point subspace, and the partial order WP\W defined
in §2.15.3. We use notations X for attractors and repellers.

Condition (1) and (3) follow from Lemma 2.15.6.

Condition (2) follows from Lemma 2.15.5.

Condition (4). Since < on Wp\W is defined to be the closure order of
Pg-orbits on Fl, we have XZ, = v(Fl, N Fly) is proper since Fl, is. This
also shows that {w’;w’ < w} is finite. On the other hand, Bun3" (P, Ip) =
LJU/SUJEBqué’;(PO07 Iy) is open in Bung(Pw, Ip), therefore its preimage Xt in
My, is open. This verifies all conditions so Proposition 2.15.2 applies. o
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2.16. A further Hamiltonian reduction

We introduce a variant MZ} of My, by making a Hamiltonian reduction with

respect to the torus Cp := Co/CL = T%°. We define .ML’/, to be the moduli
stack of pairs (£, ¢) where

« £ is a G-bundle over X with Poo(%)Coo—level structure at oo and Io-
level structure at 0.

¢ is a section of Ad(€) ® wx\ (0,00} such that under some (equivalently
any) trivialization of £|p_, together with its P (4)Coo-level structure,
we have

Plpx € (0 + c(T)zo + c(T)<0)dr/T.

and, under some (equivalently, any) trivialization of £|p, together with
its Ip-level structure, go]Dox € Lie (If)dt/t.

There is a Hamiltonian action of Cp = C/CZL on M, since Poo(%)COo
normalizes K,. The moment map for this action is taking residue at oo

ress : My — ¢g = ¢((7))o = Lie Cp

defined as follows: for (€, ¢) € My, such that under some local trivialization
¢lpx = (¥ + 20 + 8(7)<—1/m)d7 /7, where z¢ € go, we let res(€, ) be
the projection of z¢ to ¢g = go/cy. This projection is independent of the
trivialization of £|p_ . By definition, we have

(2.18) M, = res }(0)/Co.

This realizes MZ, as the Hamiltonian reduction of My, by Cy.
On the other hand, we have a map

resy @ Ay — H Al
1<i<r,m|(di—1)

d(d;—1) i
sending (a;)1<i<r to the coefficient of 77~ = of a;, for those 1 <1i < r such

that m|(d; — 1). There is a commutative diagram

resco

M¢ Co

i ;

res 4

Aw — H1§i§r,m|(drl) Al
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Here ¢ sends xg € ¢o to ((Oz fi)(¥))1<i<dm|(@—1)- It is easy to see that ¢ is a
linear isomorphism. We define

Al = res i1 (0) C Ay.

In other words, in addition to the conditions defining Ay, we require the
d(d;—1) .
coefficient of 7=~ m  of a; (when m|(d; — 1)) to be zero. Then f induces a

map

fb:/\/lz, —>AZ}.

One can prove the following properties of M, analogous to those of My,

using either the same idea of proof or formal deduction from Hamiltonian
reduction (2.18).

2.16.1 Theorem. For a homogeneous element 1 € g((t)) of slope v = d/m,
the following hold.

(1) The stack /\/lz is a smooth algebraic stack over k of dimension %|CI>| —
r — dim t*.

(2) pr carries a canonical symplectic structure of weight d under the
G (v)-action.

(8) The map f°: My — Ay is a Gy, (v)-equivariant completely integrable
system.

(4) There is a natural homeomorphism [Fly/Co] — Mtblw = f""Yay).

(5) When v is elliptic (equivalently, w is elliptic), MZ} = Mw,AZ, = Ay,
and in particular f° = f is proper.

2.16.2 Remark. One could also consider the variant of ./\/lfﬁ by specifying
an arbitrary residue in ¢g at oo and an arbitrary residue in t at 0. They do not
have G, (v)-action in general but their Hitchin fibrations are still completely
integrable systems.

3. The de Rham moduli space

Similar to the usual Hitchin moduli space, M, admits a one-parameter defor-
mation into the moduli space of certain A-connections. We denote the A =1
fiber by Mgr,. The main result in this section gives a canonical isomorphism
between the cohomologies of Mg and M,
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3.1. Moduli of A-connections

3.1.1. MHoq,» and Mgr,y Let Mpoq,y be the moduli stack of triples
(A, €, V) where

« Ae AL

o &isa G-bundle over X with K, := Py (d/m)C1 -level structure at oo
and Iy-level structure at 0.

« Vis a Ad-connection on &|x\ (0,00} satisfying the following conditions:

(i) Under any (equivalently, some) trivialization of £|p_, together with
its Keo-level structure, V|px takes the form

Vipx € M+ (¥ +g(7)<0)d7/T.

(ii) Under any (equivalently, some) trivialization of £|p, together with
its Ip-level structure, V| D takes the form

V|px € Ad + Lie (Ig)dt/t.

We have the projection A : Myoqy — Al recording A. The fiber A71(0)
is identified with M. Define

MdR,z/; = )\71(1).

3.1.2. G, (v)-action The G,,(v)-action on M, extends to an action on
MHod,: We interpret the scaling by 5% as multiplying V by s¢, so that the
function A has weight d under the G,,(v)-action. We denote this action by

s:(NE V)= s-(NEY), seGupv),(N\E V) e Muody.

Since the function A has weight d > 0, the G, (v)-fixed points Mg;”d(l:g

necessarily lie in the central fiber of M., hence Mﬁ:&g = g’”(y), which

isomorphic to Flgm(l’) =[IHy(w) by Lemma 2.15.4.
Similar to Lemma 2.15.6, we have a version for Mpog,qp-

3.1.3 Lemma. For any (X\,E,V) € Muoay, the limit lims_,os - (X, €, V)
exists in Mﬁm(y). Moreover, limg_g s- (A, E, V) € Zy, if and only if the image
of € in Bung(Poo, L) is w.
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Proof. The proof is almost identical to that of Lemma 2.15.6. We only indicate
the modifications. Let Nioq = MHod,p XBung (Ko Io) Fl, where u @ F1 —
Bung (Koo, Ip) is the the uniformization map. Then Nyoq is the moduli space
of triples (), Iy, 8) where A € A, gl € Fl and 6 € g[t,t~']<¢ such that

Ag~tdg — Ad(g™") (¢ + 0)dt/t € Lie I dt/t.

Indeed, given (A, gIp,0), we define £ as the image of gIy under u, equipped
with the A-connection V = Ad — (¢ + 6)dt/t over X\{0}.
The action of G, () on Mieq .y lifts to A, and is given by

5- (X glp, 0) = (57X, (rot(s™)Ad(£(s71))g)Tp, s%rot(s ™) Ad(E(s71))H).

The rest of the argument can be copied verbatim from that of Lemma 2.15.6.
O

3.1.4 Theorem. The stack Muoa,y 5 an algebraic space smooth over Al
with pure relative dimension equal to dim M.

Proof. We first remark that Mpeq,y is an algebraic stack locally of finite
type over Bung(Ky,Ip) x Al. Indeed, letting £V be the universal G-
bundle over Bung (Koo, Ip) X X, there is an extension of vector bundles over
Bung (Ko, Ip) x X x Al of the form

(3.1) 0= PhunxxAA(E™; Lie I, g(7) <ajm) — A — pxTx(—0—00) = 0

whose splittings over A € A! classify A-connections on £ which locally looks
like Ad + Lie I§ dt/t near 0 and looks like Ad + g((7))<a/md7/T near oo. The
moduli stack M of splittings of (3.1) is an algebraic stack locally of finite
type over Bung (Koo, Ip) X Al. Our Mypeqy is a closed substack of M , hence
locally of finite type over k.

Now we show A : Mpeq,y — A is smooth. Let Z C MHoa,y be the closed
substack where A fails to be smooth. Suppose Z # @. Since A is G, (v)-
equivariant, Z is stable under the G,,(v)-action. By Lemma 3.1.3, Z contains
a fixed point under G,,(v), hence in particular, Z N My # @. At a geometric
point (A, €, V) € Muoq,p, the relative tangent complex of A : Mpoq,y — Al
is the de Rham cohomology H*(X, K¢ v)), where K v is the complex in
degrees —1 and 0:

Ad(&; Lie To, £) % Ad(E; Lie I, g((7)) <o)
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and Vaq is the A-connection on Ad(€) induced from V. In particular, at a
point (£,¢) € My, the relative tangent complex of A is the same as the
tangent complex of My, at (&, ¢), whose obstruction group vanishes by The-
orem 2.8.1(1). Therefore X is smooth at any point of My, i.e., ZN M, = @.
Contradiction! This shows Z = @ hence A is smooth.

To see Mpod has trivial automorphism groups, let 2 C Mpoq be
the closed substack where the automorphism group is nontrivial. Then Z is
G (v)-stable but Z N M, = @ since My, is known to be an algebraic space.
Therefore the same argument as above using Lemma 3.1.3 shows that Z = &.

Finally, we compute the dimension of Mg, at any geometric point
(A, &, V). Since Mygoq,p is smooth over Al with trivial automorphism group
at (A, &,V), the complex RI'(X, K¢ v)) is concentrated in degree 0, and
HO(X, K,w)) is the relative tangent space of A at (A, &, V). Therefore the
relative dimension of A at (A, &,V) is

X(X, Kev)) = x(X,Ad(&; Lie If, g(7) <0)) — x(X, Ad(&; Lie Iy, t)),

which is the same as dim M. O

3.1.5 Remark. The smooth map A : Myeq,s — A' carries a canonical sym-
plectic structure constructed as follows. Consider the “Serre dual” complex
/C(VS’V) given by

Ad(E; Lie To, 6(T) < 1/m) ~2% Ad(E; Lie If, €2).

Here Serre dual is in quotation marks because the differential in K¢ v) is
not Ox-linear. Here we take the termwise Serre dual (and the Killing form
to identify Ad(€)|g,, with Ad(E)*|g,,), and the differential in IC(V&V) is still
given by the adjoint connection.

The same argument as in §2.9.2 shows that the natural map K¢ vy —
IC(V&V) is a quasi-isomorphism in the derived category of sheaves of abelian
groups on X, hence a canonical isomorphism H*(X, K¢ v)) = H*(X, IC(V&V)).
We claim that there is a perfect pairing between H*(X,K(yv)) and
H*(X, IC(V&V)) even though (g v) is not an Ox-linear complex. Indeed, by
construction there is a k-linear pairing of complexes of sheaves

(3.2) Kev) @k Kie vy = wx[1].

Taking cohomology induces a pairing between H'(X, Kevy) and
H™(X, K 5y) valued in HY(X, wx[1]) = k. Writing K = K(g v) as [C! —
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K%, H*(X, K¢ v)) fits into a long exact sequence exact at the two ends
(3.3)
H™'(K) - H(K™') = H(K?) = H(K) —» H'(K™") — H'(K") — H'(K)

Similarly for H*(X, K¢ ¢)), or its dual

- HI(KV)* N Hl(IC—l,\/)* N HI(ICO’V)*
( : ) N HO(ICV)* N HO(IC—LV)* N HO(,CO,V)* N H—l(KV)*
The pairing gives a map of long exact sequences from (3.3) to (3.4). One checks
that the maps H*(K7) — H™(IC%V)* are the usual Serre duality (i = 0,1,
j = —1,0), hence are isomorphisms. Therefore the maps H*(K) — H™ (KY)*
given by the pairing (3.2) is also an isomorphism. It is easy to check that this
is gives a symplectic form on H°(X ,Ke,v)), and a perfect pairing between
H (X, K v)) and H'(X, K(ev))- It can be shown by calculations similar to
that done by R.Fedorov [17, §6.3] that this 2-form is closed. Therefore the
map A has a relative symplectic structure. In particular, Mgg y is a symplectic
algebraic space.

3.2. Comparison of cohomology

The non-abelian Hodge theory suggests that Mgg 4 should be diffeomorphic
to M. In particular they should have isomorphic cohomology. In this sub-
section we prove the cohomological isomorphism without showing they are
diffeomorphic.

3.2.1. The situation Consider the following general situation. Let f :
X — A! be a regular function on an algebraic space X locally of finite type
over an algebraically closed field k. Let X\ = f~1()\) for A\ € k. Let G,, act
on X such that f has weight d > 0. Let X®m = [loer Za be an open-closed
decomposition. We use notation X} and qf : X! — Z, from §2.15.1 for
attractors.

We make the following assumptions:

(1) The function f is a smooth morphism f : X — Al. In particular, X is
smooth over k.

(2) The map qf : X5 — X is a locally closed embedding.

(3) Uper Xt =X, ie., for any z € X, the limit lim;_,o ¢ - = exists.

(4) There exists a partial order < on I such that for each « € I

o The set {o/ € I;o/ < a} is finite.
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o X%, :=Uqu<oX] is open in X, and is of finite type over k.

3.2.2 Lemma. Under the above assumptions, the restriction map H*(X) —
H*(%4) is an isomorphism.

Proof. Let iy : X1 — X be the inclusion. The canonical map i1.Q,[—2](—1) =
i1.1,Q, — Q, induces a map

ro HE (X, 4Qp) = HE2(X, Qu(—1)) — HA(X, Q).

It suffices to prove r is an isomorphism, and the statement on cohomology
follows by Poincaré duality.

Extend < to a total order on /. Let %fga = %;ﬁ%l, and similarly define
.’{ia and f{f,<a. We have an analogue r<, of r for the inclusion f{fga — XZ,,
and similarly we have r, and r.,. We have a map of long exact sequences

o HETA(R L)(21) = HETP (R <o) (1) —— HITH(X] ) (1) —— -

= HI(XZ,) HE (X<o) ———— = Hi(X3) ——

By induction on «, it suffices to show that 7, is an isomorphism for each
a.

Let fo = fler : X = A and w0 = (fa, qf) : X7 — Al x Z,. We first
claim that 7, is smooth. Since the critical locus of 7, is closed and stable
under the G,,-action, it must intersect {0} x Z, if not empty. Therefore it
suffices to show that m, is smooth along Z,,. Let z € Z, be a geometric point.
By [14, Prop.1.4.11(vi)], (T.X}) = (T.X)" is the summand where G,, acts
with positive weights; T, Z, = (T.X)? is the zero weight space. The tangent
map of 7, at z € Z, is (T.f, pry), where pr, is the natural projection. By
assumption, f has weight d > 0, therefore T, f : T,X — ToA! = A! factors
through the weight d summand 7,X — (T,X)" — (T,X)%. Since f is a smooth
morphism, df(z) is nonzero. Therefore T,7, = (T%.f, pr,) is surjective, and 7,
is smooth.

We then show that the geometric fibers of m, are isomorphic to affine
spaces. By [14, Theorem 1.4.2], qF : X7 — Z, is an affine morphism of finite
type. Let 2 € Z, be a geometric point valued in K, then X = gl 71(2)
is a smooth affine scheme over K with a contracting G,,-action. We have
X7 = Spec A where A = @,>04,, is a finitely generated graded K-algebra
with Ay = K. Since Spec A is smooth at the cone point z, one can choose
liftings ¢4, ,t;m € Ay = ®p>0Ay, of a homogeneous basis of the cotangent
space Ay /A% so that K[ty, -+ ,ty,] = A as graded algebras. Now df,(z) is
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a nonzero homogeneous element in 77 (Spec A) by the smoothness of 7,, we
may assume t; = f, so that it lifts df,(z). This way, we have an isomorphism
of the pair (X7, f,) with (Spec Klt1, -+ ,tm],t1), so the geometric fibers of
fa|XT are affine spaces of dimension m — 1.

If needed we may decompose Z, further to ensure 7, is equidimensional.
Since 7, is smooth with geometric fibers isomorphic to A%, we have a canon-
ical isomorphism

Ka = Rﬂa!@é = _f[_2da}(_do¢) € Dg(Al X Za)'

Let ¢ : {1} x Zo — Al x Z, be the inclusion. The map 7, is induced from
the canonical map t1.0} K, — K, by taking H*(—). Now K, is constant, it
is clear that ¢1,t) Ko — K, induces an isomorphism on compactly supported
cohomology on A! x Z,. Therefore r,, is an isomorphism. O

3.2.3 Corollary. Both restriction maps

H* (M) <> H*(Mitod,s) —— H*(Mar )

are isomorphisms.

Proof. To show 4] is an isomorphism, we would like to apply Lemma 3.2.2.
We need to check that A : Myeq,y — Al satisfies the conditions in §3.2.1.
Condition (1) follows from Theorem 3.1.4; (2) can be proved in the same way
as Lemma 2.15.6; (3) follows from Lemma 3.1.3; for (4), the partial order on
Wp\W is the same one used §2.15.3.

Now we show that 4 is an isomorphism. Consider the further restriction
map along Yaoq : Fly — Mpod,. We have a factorization

Yiod * H (Mpod,p) % H*(My) Lo H*(FLy).

By Theorem 2.8.4, v* is an isomorphism. Observe that Prop. 2.15.2 also
applies to MHoq,, Which proves that 7,4 is an isomorphism. Therefore 4 is
also an isomorphism. O

3.3. Variants

3.3.1. Changing the level group We have a one-parameter deformation
MLod,qp of the Poisson moduli space ML introduced in §2.13: it classifies
(A, €, V) where
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« Ae Al

o & is a G-bundle over X with P -level structure at oo and Ip-level
structure at 0.

« Vis a A-connection on &|x\ (0,00} satisfying the following conditions:

(i) Under some (equivalently, any) trivialization of £|p_, together with
its P -level structure, we require

(3.5) Vipx € M+ (¥ + o(7) <(@-1)/m)d7/T.

(ii) Under some (equivalently, any) trivialization of £|p, together with
its Ip-level structure, we require

V|px € Ad+ Lie (Ig)dt/t.

A small part of the Hitchin map fT for ML continues to make sense
for MLOd v Recall in the proof of Proposition 2.13.1 we have introduced an

affine space a, with a surjection AL) — ay that records a Laurent tail of
a; at oo. Let @y € ay be the image of a,. We also introduced in the proof
of Proposition 2.13.1 an affine space Vi, = (¢ + (7)) <(a—1)/m)/8(7)) <0 with
the action of Q = P} /P (%). The invariant polynomials (f1,--- , f) give a
map [Vy/Q] — ay. Taking the irregular part of the connection V at oo yields
a map

-t
Fi s Misoqy = Ve /Q) = ay.
We have an analogue of Proposition 2.13.1 with the same proof.

3.3.2 Proposition. The natural map Muod,p — MLodﬂJ) identifies MHod,y

with the fiber of ﬁlj_l(ﬁw). Equivalently, Muoa,y can be identified with the

closed subspace of MLOd,w obtained by replacing the condition (3.5) with:
under some trivialization of €|p.,, Vlpx € Ad + (¢ + g(7))<0)d7 /7.

3.3.3. Hamiltonian reduction by Cy As in §2.16, Cy acts on Mpoq,y,
and we have the map of taking formal residue at oo

I'eSHod,c0 : MHod,p — €0-

For (€,V) € Muod, such that V|px = A+ (¢ + xo + (7)) <—1/m)d7/T
under some local trivialization, where zo € g((7))o = go, r€SHod,0 (€, V) is the
projection of g to ¢o = go/cg.
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We define
M?—Iod,w = reSITIcl)d,oo(O)/Cb? MZR,u; = (reSI?Icl)d,oo(O) N Mag,y)/Co-

Then MZRW is a smooth algebraic stack of the same dimension as ./\/llz’p The

analog of Corollary 3.2.3 holds, giving a canonical isomorphism H*(MzR,¢) &
H (Migoq,y) = H (M)

3.3.4. Varying semisimple monodromy at 0 The space Mpoq,y ad-
mits a deformation over the universal Cartan § as follows. Consider the mod-
uli stack pMpod, Of triples (A, £, V) as in the definition of Mgy, except
that we relax the condition near 0 to be: under any (equivalently, some) triv-
ialization of £|p, together with its Ip-level structure, V| py takes the form

Vipys € Ad + Lie (To)dt/t.

We have a map
p: hMHOd,w — Al X b
where the h-factor sends (A, &€, V) to the image of ResyV in the universal
Cartan h = Lie Iy/Lie I].
We define

pMary = p ({1} x ) C pMHod,y,

s My = p~ ({0} X ) C g Mrod .-
The map p is equivariant with respect to the G,,(v)-action on y Mod,y
and the scaling action on A! x b by the d-th power. If we fix s € b, then we

get a G,,(v)-equivariant one-parameter family by restricting s Mpoq, along
the line of A! x b through (1, s):

As  sMuoay — AL i={(\As)A e A} Cc Al x
whose fiber over A = 1 we denote by ;Mgr . Note its fiber over A = 0 is
My.

The formal residue construction extends to yMoq,y- In particular it re-
stricts to a formal residue map on the de Rham space

TeSqR, 00 ° thRﬂ/) — €p.

For 0 € ¢, let
b Mar,p.0 = TSR o (0)-
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3.3.5 Theorem. Both restriction maps

i i
H*(My) =<—= H*(:Miodp) — H* (sMar.p)
are isomorphisms. In particular, there is a canonical isomorphism
H*(sMar,y) = H* (My)

for any s € b.

The proof is along the same lines as Corollary 3.2.3, using the general
results about G,,-contracting families in §2.15 and §3.2.

3.3.6 Remark. For s € b, let M,y = p~1(0,s) C 5. M,. This is the Higgs
moduli space analogous to M, but with residue at 0 mapping to s € h under
b — b. By scaling s, there is an A'-family connecting with general fiber ;M
and O-fiber M. The same argument as Corollary 3.2.3 gives a canonical

isomorphism H*(sMy,) = H*(My).
3.4. Symmetry of Mg, coming from oo
We shall construct an action of C'((7))/Cl, on Mo -

3.4.1.  First we describe a filtration on the loop torus C'((7)).

Recall from Remark 2.4.1 we defined a maximal torus 7' C G to be the
fiber of C' at t = 1. Also T is the centralizer of ¥ € ¢q/m- Fix an mth root of 7
and denote it by 71/, Now v and ¢¥7~%™ are in the same Gq((7'/™))-orbit,
we get a canonical isomorphism between their centralizers (which are abelian)
inside G((7/™)):

can : C((7"/™) = T((r'/™)).
This allows us to identify C((7)) with the fixed points under the diagonal
pim-action on T((7Y/™))

(3.6) C((m) = (T ™))

where ¢ € pn, acts on 71/™ via the Galois action 7%/™ — (7Y™ and p,, acts
on T via an injective homomorphism

Wy = W =W(G,T)

that sends a primitive element ( € u,, to a regular element of order m.
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Later when we work with & = C, we shall let w be the image of (,, :=
exp(2mi/m) under w. In general, we use (w) to denote the image of w, keeping
in mind that w is a regular element of m up to taking prime to m powers.

Recall C,, C C((7)) is the parahoric subgroup, with pro-unipotent radical
C1 . Then the isomorphism (3.6) gives a canonical isomorphism C.,/Cl =
T{w)° the neutral component of the (w)-fixed points on 7. We have a Kot-
twitz isomorphism between mo(C((7))) = (C(7)/Cos)™® and the (w)-
coinvariants on X, (7)

(3.7) ke (C(7)/Coo)™ 2 Xu(T) -

See [36, §2.a.2, Theorem 5.1 step A]. This isomorphism makes the following
diagram commutative

(T((r"/™)/Too)™®! ——X.(T)

[ !

(C((7)/Coo)™®! — Xu(T)w)

Here To, = T[rY/™], kr is given by the 71/™-adic valuation, Nm is the norm

map z — 2((z) -+ (™ N (x) (for ¢ € p, acting on T(71/™)) diagonally), and
p is the canonical quotient map.

Let Ci C C((7)) be the maximal bounded subgroup that corresponds to
(T[] under (3.6). Then under the isomorphism (3.7), C%_/Cy, corre-
sponds to the torsion subgroup of X, (7). On the other hand, C% /Cl, =
T and Cf_ /C, can also be identified with mo(T(?). To summarize, we
have a filtration of C'(7)) with reduced associated graded as follows:

(3.8) CL ¢ C C c ()
~— ~— ~~—
T{(w),0 Xy (T) (w),tors Xy (T) (w) /tOI‘S

3.4.2. Residue map We construct a residue map
(3.9) resc oo : C((7))/CH, = XuT) wy /toOTs — €0

as follows. First, for the split torus 7'(7/™)) we have the usual residue map

resto 1 T(TY/™) /Too = —X(T) —~ t
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defined by = + res,—o(z~'dx) (taking the coefficient of d7 /7). Then resc o is
obtained from resy o, by restricting to p,-fixed points (noting that ¢g = t<w>).

We use the norm map to identify t,,, — t (z = z+wr+- - Fwm ).
Then the residue map fits into a commutative diagram

MIEST o0 T(7Y™)) ) Tog —= X (T) t
le \Lp Lp
resC, oo C((T))/Cu e X (T) <w>/tOI"S — () = f<w>

Here the maps indexed by p are natural projections.
When k = C, we may take the cokernel of the horizontal maps as complex
tori, and get a canonical isomorphism

(3.10) co/Im(rescoo) = Tiyy  ({w)-covariants on T)

3.4.3. Let M\Hod,w be the moduli space of (X, &, ax, V) where (A, E,V) is
as in the definition of Mpoq.4, and o is a trivialization of £|p_ (together
with its Keo-level structure) under which V|px takes the form Ad + (¢ +

9((7))<0)dr /7. Note that Mpod,y = M\Hod,w/Koo where K, acts by changing
the trivialization o.

Sending (A, €, aeo, V) to the connection one-form of V| x under the triv-
ialization o, gives a map

Mitods = ¥ + 8(7) <o.

For each ¢ € ¢ + g((7))<0, we have the centralizer group scheme C,, over
DX, and its maximal bounded subgroup Ciﬂ parahoric subgroup C, and
pro-unipotent radical C;ﬁ. As ¢ varies, these groups form families over ¢ €
¥ + g((7))<o. For example, the C, form a torus J over Dj = Spec R((1)),
where R = T'(¢ + g((7))<0, O); we have integral models J% J and J* of J
over Dp = Spec R[7] whose fibers over ¢ € 1) + g((7)) <o are CFP, C, and C}
respectively.

Let J((7)) be the loop group of J, which is a group ind-scheme over the
infinite-dimensional affine space ¢ + g((7))<o = Spec R. This is a subgroup
of G((1)) x (¢ + g((7))<0). We have an action of J((7)) on M\Hod,w over 1 +
9((7))<o by changing on the trivialization . Here we are using that, for

v €+ g(7)<o and g € Cy,((7)), we have g~'dg € g(7))<od7 /7.
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3.4.4 Lemma. The group scheme J% admits a canonical trivialization: J¢ =
Ci_XxSpec R over Dg (here we abuse the notation to view Ci, as a group
scheme over Dy, ) whose restriction to Dy, (corresponding to 1) is the iden-
tity.

Proof. We base change to the cyclic cover Dg%m) := Spec R[r'/™] — Dg =
Spec R[7]. We choose g € G((7'/™)) such that the adjoint action by ¢ sends
Y+9((7) <o = Spec R into a closed subscheme of Spec R’ = o7~ ™+g[r'/™]
for some regular semisimple 1y € t*. Consider the centralizer group scheme
J" over ng), and its integral model J' = J” (both maximally bounded and
parahoric since J' is split when specialized to each point of R’). Moreover,
J'| D carries a fi,-equivariant structure since it is the parahoric subgroup

of J'| yom = J X px Dg%m)’x. Then we have
R R
(3.11) Jh = (ReSD%m)/DR(JwDE;n)))Nm.

Let C' be the restriction of J' to DS (corresponding to Yot~ ¥™ €
Spec R'). We first give a canonical isomorphism of tori over Dt

AL = C'%Spec R

By the rigidity of homomorphisms between tori, it suffices to give a trivi-
alization of the restriction J'|spec r (Where Spec R’ < Dgl) is defined by
/™ = 0). However, .J' is the group scheme of centralizers of 1o+7%™g[r1/™],
hence its reduction modulo 7Y/™ is canonically trivialized.

Restricting both sides of 7/ to D}Em) we get an isomorphism of tori

Y : J/’Dgn) ~ C'XSpec R

whose restriction to Dg;n ) is the identity. It can be checked that the isomor-
phism 7, is independent of how one conjugates v + g((7)) <o into 17 =%™ +
g[rt/™] inside G((7'/™)) (since J is commutative).

Both sides of 7,,, admit p,-equivariant structures. It is easy to show that
the isomorphism + is compatible with the pu,,-equivariant structures (again it
suffices to check it over the center of the disk Spec R). Taking restriction of
scalars from Dg%m) to Dg and taking pu,,-fixed points (see (3.11)), we get the
desired isomorphism

Y Ju|D(m> i CEXJ XrSpec R. O
R
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By this lemma, J,J and J* all admit canonical trivializations over 1 +
9((7))<o0- Using the trivializations, the action of the group ind-scheme J((7)) on
M\Hod,w over 1 + g((7))<o becomes an action of the constant group C((7)) on
M\Hod,w- On the quotient Mod,y = M\Hod,w/Koo; the action of CI, C C((7))
is trivial, hence we get an action of C((7))/CZL on Miod,yp.

Summarizing, we get:

3.4.5 Proposition. There is a canonical action of C((1))/CL on Muod .

The formal residue map resped 0o 45 equivariant under the C((1))/CL -action.

Here, the action on ¢y factors through the lattice quotient C((1))/Cq, =

Xu(T) ) /tors, and is given by translation under the map resc, in (3.9).
The same statements hold for y Muod,-

4. The Betti moduli space

In this section, we first recall the moduli space M(/3) defined using a positive
braid 5. When k£ = C and G = GL(n), we recall the interpretation of M ()
as a moduli space of Stokes filtered local systems. For arbitrary G, we define
Mt as an enhanced version of M(f3), and a set-theoretic map Mgr y» —
Mgty Which is conjectured to be biholomorphic.

4.1. The stack M(S3)

In this subsection, G and k are in the same generality as §2.

Let (W, S) be the abstract Weyl group of G with simple reflections S,
i.e., W is the set of G-orbits on B2, where B is the flag variety of G. For
w € W, let BS(w) C B? be the corresponding G-orbit.

Let H be the universal Cartan of G, i.e., the reductive quotient of any
Borel subgroup of G. The abstract Weyl group W acts on H. It is conceptually
important to distinguish between the maximal torus 7T attached to ¢ and the
universal Cartan H, and between the Weyl group W = W(G,T) and the
abstract Weyl group W.

Let Brw be the braid group of W and Br{,rv be the monoid of positive
braids. For w € W, let w be its canonical lifting to Bri,v as a reduced word
in S.

Let 8 € Bryy and write

(4.1) B =y - i,

for a sequence of elements wy, - -+, w, € W. Let w € W be the image of 3 in
W, ie., w=w-- wy,.
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4.1.1 Definition. Let M(3) be the moduli stack parametrizing:

(1) An n+ 1-tuple (Fy, ..., E,,) of B-torsors over a point (or a test scheme).

(2) For 0 < i < n — 1, an isomorphisms of G-torsors ¢; : E; x8 G —
Ei1 xB G, such that the two B-reductions of the identified G-torsor
are in relative position w;.

(3) An isomorphism of B-torsors 7 : E,, = Ej.

By [13, Application 2], M(3) depends only on the positive braid /5 and
not on the decomposition (4.1), up to a canonical isomorphism.

The composition of the isomorphisms ¢q, - - - , t,,_1 together with 7 defines
an automorphism of the G-torsor Ey x? G, therefore a map

(4.2) psc s M(B) = [G/AA(G)].

On the other hand, each FE; induces a T-torsor K; via the surjection
B — T. The map E; x® G — E;;; xP G induces an isomorphism between
K; and w;(K;;1) = K;y1 x1%i T. Taking the composition of all these maps
we get an isomorphism between Ky and w(Kp). This gives a map

(4.3) ps. - M(B) — [H/Adw(H)]

where Ad,,(H) means t € H is acting on H by z + tzw(t™1).

We give an alternative description of M(/3), following the construction
in [39] and [43]. Let M*(3) be the moduli of (Ey,--- , Ey,t;,7) as in M(B)
together with a trivialization of Ey x? G. The monodromy map 4.2 lifts
to M*(8) — G. Via the isomorphisms of G-torsors, (Ey,--- , E,) give B-
reductions of Ey x2 @, which via the trivialization give a tuple of Borel
subgroups of G. We are led to the following description

Mﬁ(ﬁ) g{B07 7BTL7g) € Bn+1 X G|(BZ7B1+1) € BS(wl)
for 0 <i<n-—1,and B, =9By}.

The G-action on M#(3) by changing the trivialization of Ey x” G corresponds
to the diagonal action on B; € B and the conjugation action on g € G. Then

M(B) = [G\ME(B)].

From this description we easily see that

4.1.2 Lemma. For any 3 € Bryy,, M(B) is a smooth algebraic stack over k
of dimension ((3), the length of 5.
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4.1.3 Example. Consider the case 3 = @ is the “full twist”, where wy is the
longest element in W. This case will come up when we consider connections
from Mgr,y when v is homogeneous of slope v = 1.

In this case, M*(3) classifies (B, By, Ba,g) where both pairs of Borel
subgroups (By, B1) and (Bj, By) are opposite, and 9By = Bs. Fix a pair of
opposite Borel subgroups BT and B~ with T'= BTN B~. Up to G-action we
may assume By = BT and By = B~. Then (B~,9B™) is in general position
if and only if g € B~ B™. We get

M(@}) = [B~BT/AA(T)).

The map iz ¢ - M(w}) — [G/Ad(GQ)] is induced from the inclusion B~ B+ C
G; the map g M(w3) — [T/AA(T)] is induced from the projection
B BT=N"TN* = T.

4.2. Stokes filtered local systems

From now on we set k = C. In this subsection, we consider the case G =
GL(n).

Given a meromorphic connection (£, V) on a punctured disk A* with co-
ordinate 7, taking analytic flat sections defines a local system on A* endowed
with a Stokes structure at 7 = 0. We now recall the definition of this Stokes
structure, following Sabbah’s presentation in [37, Chapter 2|. The material
that follows, up to and including Section 4.2.7, is well-known, and we include
it for clarity.

Let A(0) denote the real blow-up of the disk A at 7 = 0, with boundary
circle S. Consider the constant sheaf J; on S with fiber

P = C(r)/C[r].
Sections are given by finite sums

(4.4) o= Z a;7.

1<0

The stalk of J; over § € S is partially ordered by the rate of growth of a
section as 7 approaches 0 along the ray arg(r) = 6. We denote this order by
<p. Write Sy<, for the open subset of S on which ¢ <y x.

Let £ be a local system on S. An unramified pre-Stokes filtration on L is
a collection of subsheaves L<4 C L for ¢ € P such that for all v € S

¢ <ogx = L<p9C Ly
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Let L4 be the subsheaf of L<y such that Lepg = >0, o, 4 Ly 0. Let
gryl = L<y/Lg. We can associate to this filtration a P-graded sheaf grl =
@Dyecw eryL, where U C P is the finite subset consisting of ¢ such that gr L #
0. The subset VU is called the ezponential factors of (L,L<s). The graded
pieces are in general not locally constant on S. When they are, the result is
a P-graded local system on S, which in this context is called an unramified
Stokes-graded local system.

Conversely, to an unramified Stokes-graded local system Lo, we can assign
an unramified pre-Stokes filtration as follows.

4.2.1 Definition. Let ¥ C P be a finite subset, and let Lo = Pyey Lo
be an unramified Stokes-graded local system. The graded unramified Stokes
filtration on L is
ﬁSd) = @ 5x§¢£x
Pev
where f3,<4 indicates restriction to the open S, <4 followed by extension by
7€ero.

4.2.2 Definition. An unramified Stokes filtered local system (£, L<,) on S
is a pre-Stokes filtration which is locally isomorphic to a graded unramified
Stokes filtration.

The map 7 — 7™ induces a map of real blow ups at 7 = 0. Restricting
to the boundary circles, we obtain an m-fold cover p,, : S — S. Denote by
o :S" — S’ the generator of the automorphism group of this cover given by
U(Tl/m) — 627ri/m7_1/m.

Define P, = C((7'/™))/C[r/™]. It carries a natural action of the Galois
group (o) = Z/mZ.

4.2.3 Definition. A Stokes-filtered local system is a triple (£, ¥, £.,) where

(1) £ is alocal system on S.

(2) ¥ C P, is a finite subset stable under the action of the Galois group
(o).

(3) L., is a pre-Stokes filtration on L' := p¥ £ such that (L', L,) is an
unramified Stokes-filtered local system on S’ with exponents ¥. More-
over, we require the canonical isomorphism o*£' = L to identify the
subsheaves L, and LIS () for all ¢ € Pp,.

From now on, we fix ¥ C C(7'/™) to be the set of eigenvalues of 1. Tt
consists of n distinct monomials of degree —d/m. We will be concerned with
Stokes-filtered local systems (£, ¥, L,) for which dimgr,L’ = 1 for each
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¢ € U. We fix a degree m cover S’ — S. Monodromy around 7 = 0 defines a
permutation w of ¥ of order m.

Choose a base point § € S. Let T = (G,,,)"¥ denote the subgroup of graded
automorphisms of the fiber of grl’ at v. Then w acts on T by permuting
factors.

4.2.4 Definition. Let T, be the coinvariant torus of 7" under the action of
the cyclic group (w). The formal monodromy of (£, ¥, £L,) is the element in
Tty defined by parallel transport in gr£’ from 6 to o(6).

4.2.5. Moduli of Stokes filtered local systems We describe the moduli
of Stokes local systems in our setting, when G = GL(n). We will give a more
general construction, which makes sense for arbitrary G, in Section 4.3.

The exponents ¥ define a braid as follows. Each ¢ € ¥ defines a function
R(p) : 8" — R. We say 6 € S is a Stokes direction if R(¢) = R(x) on a
preimage of # under S’ — S. To simplify the exposition, we assume that the
Stokes directions of distinct pairs (¢, x) are distinct. This holds for a dense
set of 1. This assumption will be lifted in Section 4.3.

The Stokes directions divide S into k Stokes sectors. Fix 6 in the interior
of such a sector. As G = GL(n), the braid §, arises from a loop S* —
Config,, (C), whose basepoint we take to be 6. The real projection of this
loop is given by the union of graphs of R(¢), ¢ € @, viewed as multivalued
functions on S. In fact, 8, can be reconstructed from these graphs. A Stokes
sector determines a complete ordering on W. A Stokes direction for the pair
(¢, x) determines a positive half-twist interchanging (¢, x). The braid 3, is
the product of these half-twists.

4.2.6 Proposition. Recall G = GL(n). The moduli stack of Stokes-filtered
local systems with exponential factors WV is isomorphic to M(f3). This iso-
morphism identifies the maps 4.2 and 4.3 with the monodromy and formal
monodromy respectively.

Proof. For any given Stokes sector, the set of framings of the fiber £ com-
patible with the Stokes filtration is a B-torsor. This defines the k£ 4 1-tuple
(Ep, ..., Ex), where Ey and Ej, are both associated to the initial Stokes sector.
The isomorphisms F; x 5 G — E;1 X g G are furnished by parallel transport.
The resulting pair of B-reductions of the G-torsor are related by the reflection
s; associated to that Stokes direction.

The identification of the monodromy and formal monodromy is a direct
consequence of the definitions. O
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4.2.7. Riemann-Hilbert map Let Conn be the category of meromor-
phic connections (£, V) on the punctured disk. Let Stokes be the category
of Stokes-filtered local systems on S. There is an ‘irregular Riemann-Hilbert’
functor

RH : Conn — Stokes, (€,V) — (£, L<,),

where L is the local system of V-flat sections of £ away from oo, and the
filtration L, is by order of growth near co, which in this formulation is due
to Deligne. It is an equivalence of categories.

The Stokes filtrations depend holomorphically on the connection V in
the following sense. Let V, = d + A(r, u)dT—T be a family of connections on
the trivial bundle £ = O™ over the analytic punctured disk A%, depending
holomorphically on an auxiliary variable u which varies in a domain U C
CN. Suppose that the irregular part of A(7,u) is constant in u, with regular
semisimple leading term, and only finitely many coefficients of A(7,u) are
non-constant.

Each such connection determines the same set of Stokes directions St(€, V)
C S. For each w € U and 6 € S\ St(€,V), we obtain a flag By, in the fiber
Ey =C".

4.2.8 Lemma. The map U — B defined by the above construction is complex
analytic.

Proof. This follows from [2, Remark 1.8], where it is explained that the secto-
rial flat sections of (€, V), out of which the Stokes filtrations are constructed,
vary holomorphically with V. O

4.3. Riemann-Hilbert map for G-connections
Now we are back in the setting of general reductive group G, and k = C.

4.3.1. Stokes directions for G-connections Let (£,V) be a meromor-
phic G-connection on the punctured disk A* with coordinate 7. The restric-
tion of (&€, V) to the formal punctured disk DX (around 7 = 0), after passing
to a ramified cover with parameter 71/, can be formally gauge transformed to
V € d+(B(rY™) +g[rY/™])dr /7, for some irregular part B(r'/™) € t[r=1/™]
(where t C g is a Cartan subalgebra). Recall that a = t / W. The image of
B(r'/™) under the projection t[r=/™] — a[r~1/™] lies in a[r!], which we
denote by A(7) € a[r71].

Below we assume that B(7Y/™) is regular semisimple, i.e., for any root o
of g with respect to t, a(B(7Y/™)) # 0.
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For any finite-dimensional representation V' of GG, we have the associated
local system E(V)V of flat sections of £(V) = €xYV on P!\ {0}. For § € S, we
have a subspace M(V)y C (£(V)V)g (meaning the stalk of £(V)V along any
point in the ray ¢) consisting of solutions defined in a small sector containing
the ray of @, that are of maximal decay along the ray 6. Since B(r'/™) is
regular semisimple, for V irreducible dim M (V')y = 1 for all but finitely many
0 € S. Note that

(4.5) M(V1 @ Va)g = M(V1)g @ M(Va)g C E(V1 @ Va)§ .

A point 6 € S is called a Stokes direction for (€, V) if for some irreducible
representation V of G, dim M (V)y > 1. We claim that there are only finitely
many Stokes directions. Indeed, V), € Rep(G) is the irreducible representation
with highest weight A, and for some finite subset {\1, -+, Ay} that generate
the monoid of dominant weights of G, dim M (V),)g = 1 for 1 < ¢ < N implies
dim M (Vy)g = 1 for all A (using (4.5)).

Let St(€,V) C S be the set of Stokes directions. A connected component
of S\ St(€, V) is called a Stokes sector.

Below, we fix a base point #y € S. We label elements in St(€, V) coun-
terclockwisely as {01, 09, - ,0,}, starting with the one immediately next to
6y in the counterclockwise direction. Let I; = (o4, 0441) be the Stokes sectors
(for 0 <i<mn-—1,and g9 := 0,).

4.3.2 Construction (B-torsors for each sector). For § € S\ St(&,V), we
define a B-reduction of & as follows. Indeed, the assignment V +— M (V)g C
E(V)y satisfies the relation (4.5) and M (V) is one-dimensional for V irre-
ducible. Such data determines a B-reduction of the G-torsor &£ along the
ray 6. Clearly, this B-reduction is locally constant as # moves in a Stokes sec-
tor. Therefore, on each Stokes sector I; C S\ St(€,V), we have a canonical
B-torsor E; constructed from (£, V), for 0 <i <n—1. We let E,, = FEj.

4.3.3 Construction (The braid). Let S! be the circle of radius € > 0 around
7 = 0. There is a canonical isomorphism S! = S. Restricting the map A :
Al ) —a=1b /W to S} the image lands in a™.
_Fix a base point 6y € S, which gives a corresponding base point et ¢ S1.
If 0y is a lifting of 6y to R, we abuse the notation to denote the interval
[0, 00 + 27] by [0o, 0 + 27]. Let ag = A(ee’®) € a™. Choose a lifting @y € h™
of ag. Then Alg: : St — a™ lifts uniquely to Ac ¢ [0y, 60 + 271] — b with
A€<90) = qayp. B
Let &; be the preimage of o; in [0y, 0y +27], and similarly let I; C [0, 0+
21| be the preimage of I;. Note Iy = [0, 1] U [0, 0o + 27]. We denote J; =
[0o,01]ifi =0, J;=1; for 1 <i<n-—1,and J, = [6,,00 + 27].
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Consider the projection AR,E . 0o, 60 + 27] Ao, h™ — br (projection
to the real part). Then {&y,---,0,} is precisely the preimage of the root
hyperplanes in hr under A.. The image AE(Ji) is contained in a unique Weyl
chamber C; C bg. For e sufficiently small, C; are independent of e. The
relative positions of two Weyl chambers in hg are indexed by W. Let w; € W
be the relative position of the Weyl chambers (C;_1,C;) for 1 < i < n. Then
define

5&):=@1ﬁb--'ﬂ% E‘BTév.

Recall for w € W, we write @ € Bryy its canonical lift. The braid 3, does
not depend on the lifting ap of ag. Changing the base point 0y, 5, changes
by a cyclic shift of words.

4.3.4 Remark. There is another natural way to get a conjugacy class in
Brw from A(7). The map Alg: gives an element in i (a™, A(ec’™)), which
is isomorphic to Brw (and the isomorphism is unique up to conjugacy). We
thus get a conjugacy class [§] in Brw. One can show that [3] is independent
of e and 0y as long as e is sufficiently small, and that 3y, defined above belongs
to the conjugacy class [5].

Recall the irregularity of the adjoint connection (Ad(£), V) associated
with (£, V) is defined to be

Ir(Ad(E), V) = > —ord,—g a( B(7"/™)).

acd

4.3.5 Lemma. We have () = Irr(Ad(€), V).

Proof. We first consider the case m = 1, i.e., B(7) € h[r~1]. On the one hand,
0B) = iy l(w;), and £(w;) is the number of root hyperplanes separating
C;i—1 and C;. Therefore £(3) is the number of times the image of Bg|s: crosses
the root hyperplanes (where By is the real projection Ai,l . Hr).
For the root hyperplane H, defined by o = 0, Bg]| s1 intersects H, exactly
when B, (1) = a(B(1)) takes values in iR for |7| = €. For ¢ < 1, the map
By : S} — C* has mapping degree — ord,—o a(B(7)), and Bq sy intersects iR
transversely (with the same sign of intersection) in —2ord,—o a(B(7)) times.
The total number of times Bg| s1 crosses the root hyperplanes is

Z —2ord,—p a(B(1)) = Z —ord,—o a(B(7))

aedt acd

which is Irr(Ad(E), V).
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In general, let @ : AY,,, — AX be the projection. Then the irregular
part of 7% (£, V) lies in h[7=1/™]. Let 3 be the braid attached to 7*(£, V). On
the one hand we have Irr(Ad(£), V) = LIrr(7*Ad(£), V), which is equal to

%E(ﬁ) by the previous paragraph. On the other hand, from the construction

of B one sees that B = 0182+ B where each B; is a positive braid with
the same length as 3. Therefore £(3) = m{(f3). Combining these facts we get
(A(E), V) = L0(3) = ¢(5). 0

4.3.6 Construction (A point in M(fy,)). We shall construct a point in
M(Bp,) from (£,V). In Construction 4.3.2 we have constructed a B-torsor
E; for 0 < i < n, with E,, = Ey. Let 7 = id : E, = Ej be the identity
isomorphism. For each oy, let 0, € I;_1 and U;r € I;, then parallel transport
along the path from o] to o that passes through o; identifies the stalks 8:1_

i

and 562. This gives a canonical isomorphism of G-torsors
(4.6) i1 B xPG2EY 2E) =Y. = F xP G

By the lemma below, the data (Eg,- -, En, t0,- -+ , tn—1,id) defines a point in
M(ﬁ@o)'

4.3.7 Lemma. The relative position of the two B-reductions F;_1 and E; of
EY (see (4.6)) is equal to w; € W defined in Construction 4.5.5.

Proof. We treat the case m = 1 below; the general case is proved by the
same argument after pullback to the cover A:l m — AX. Also, without loss
of generality we may assume ¢ = 1. Let w € W be the relative position of Ej
and F.

Let 0~ € Iy and 0T € I. Let 27 = RB(ee” ) € Cy (the dominant Weyl
chamber, for € < 1), and z7 = RB(ee”") € O} for € < 1.

Fix a regular anti-dominant weight A, and denote by V) the irreducible
representation of G with lowest weight \. Let €1\ be the set of weights of
V). The B-reduction E_ gives an increasing filtration F,E(Vy)Y- on E(Vi)Y-
indexed by the poset Q, (where py > po if and only if p; — pg is a sum
of positive coroots). Note that the smallest sub FA\E(V)Y. is the maximal
decay line M(V)),-. On the other hand, the maximal decay line M (V)),+ C
& (V,\)(Z, after parallel transport to o~ via the path through o1, gives a line
Ly C E(V)Y_. Since ) is regular, the relative position w can be characterized
as follows: it is the unique element w € W such that £ C F,nE(Vy)Y- and
L maps injectively to the associated graded Gr’,&(V))Y-. We would like to
show that this property of w implies w = w;.
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Let W) C P be the set of exponential factors of the connection (£(V)), V).
Then ) is the image of Q) — P given by u — (u, B(7)). As a Stokes filtered
local system, £(V,)V is locally (near o1) isomorphic to a Stokes graded local
system £ = @y cv, L,. We may assume 0% to be close enough to oy so that
this isomorphism is defined along the arc [¢~,0™]. In particular, there is a
unique x* € W such that £,+ ,+ = M(V)),+.

We claim that x™ = (w1 A, B(7)). Indeed, write x™ = (i, B(7)) for some
p € Q. Since L+ 5+ is the maximal decay line at o, for e < 1, (u,2F) <
(', xF) for all p' € Qy. Equivalently, (wi 'y, w zF) < (W, witzF) for all
i € Qy. Since wi 'tz € wi'Cy = Cy, which is the dominant Weyl chamber,
the above inequality implies w; 'y = A (the minimal element in €,), i.e.,
p = wi A, hence x* = (w1 \, B(1)).

Now L, = L,+ ,-. By the definition of w, L = L,+ ,- liesin Fw,\é’(V)\)f_
and maps injectively to the associated graded Gr,,E(V))Y-. This means
X" has the same decay rate as (w), B(7)) along the ray o~. Using xy* =
(w1 A\, B(7)), this implies (w1, x7) = (wA,z_) for e < 1. Since z_ is in the
interior of Cjy, this forces wiA = wA. Since A is regular, we conclude that
w] = w. O

4.4. Enhanced Riemann-Hilbert map

4.4.1. Specialization to our setting Consider the context of a homo-
geneous element ¢ € g((t)) of slope v = d/m. For any connection (£,V) €
Mg, and the choice of a base point 0y € S that is not a Stokes direction,
Construction 4.3.3 gives a positive braid Sy, that depends on ¥ but not oth-
erwise on (€,V). By Remark 4.3.4, [y, is a positive braid representing the
loop S' — a = b / W given by restricting the map x(¢)) : C* — g % a. One
can show that fp, depends only on the slope v and not otherwise on ¢. We
henceforth denote Sy, by 5,4,, or simply 3, is the base point 6 is fixed. The
image of 3 in W is conjugate to w?, which is in turn conjugate to w because
both w and w? are regular of order m.

When 1 is elliptic, we can compute 3, as follows. We have the regular
element w € W of order m, unique up to conjugacy. Let us assume w has
minimal length in its conjugacy class (then ¢(w) = |®|/m). One can take
B, = w?, where w € Bry is the lifting of w to a positive braid by any reduced
expression. We have ¢(5,) = v|®|. Note that w (hence w) is not unique, but
different choices of minimal length w differ by cyclic shift of words, as shown
by He-Nie in [21, Corollary 4.4]. Therefore, the resulting 5, also differ by a
cyclic shift, which then give isomorphic M(,).
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Constructions 4.3.2 and 4.3.6 give a set theoretic map
RH : MdR,qp — M(ﬁu)
When G = GL(n), Lemma 4.2.8 shows it is a holomorphic map.

4.4.2. The enhanced RH map Recall that M(f,) is equipped with two
monodromy maps: pig, ¢ to [G/Ad(G)] (which we simply write [G/G] below)
and pg, g to [H/Ad,(H)]. Since the connections classified by the global mod-
uli Mgr,y also has regular singularities at 0 with nilpotent monodromy lying
in a Borel reduction at 0. We have a map

resar,0 : Mar,y — N/G] = [n/B]
where N — A is the Springer resolution of the nilpotent cone N C g. Let

U — U be the Springer resolution of the unipotent variety 4 C G. The
following diagram is commutative by construction

(4.7) MR,y i M(By)

lreSdR,O l#ﬁu,c

W/G) =2~ U/G) —1G/q)

On the other hand, looking at the formal residue and formal monodromy
at oo, the following diagram should also be commutative

MR,y i M(By)
TeSdR, 00 \L[L/-}V,H
co— o puo 0 1p /A, (H))

Here &, is defined as follows. Let 6 € S’ be a preimage of 6y under the
degree m cyclic covering p,, : S’ — S. The adjoint Cartan t* has a canonical
real form & consisting of elements whose value under any root is real. Recall

1 € t. For € > 0 consider the image of ¥(ee?®)? under t — t*¢ — &4, Then
for € < 1 the image lies in a Weyl chamber Cy, C ta independent of e. Let
By, be the Borel subgroup of G containing 7" corresponding to the chamber
—Cl,. Thus we have an isomorphism of tori gy : T — By, — H. Changing
the choice of 6 changes Cy, by the action of the cyclic group (w), therefore
Lgé\Tw is independent of the choice of 6], which we denote by t7w. The map
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£, is the composition T%° % H — [H/Ad,(H)] where the last map is the
composition.

More generally, we consider the variant ;Mgar,y defined in §3.3.4 for an
arbitrary residue s € h at 0. Let k = exp(s) € H. Let g — g and G- G
be the Grothendieck alterations. Let pry : g — b and pry : G — H be
the projections. Let g[s] = pral(s) C g and G[k] = prg'(k) C G. Then the
diagram (4.7) becomes

stR,dJ i M (Bu)

TeSdR,0 l“ﬁu G

exp

[8ls]/G] —~ [GIx)/G] — [G/G]

These diagrams motivate the following definition.
4.4.3 Definition. Let ) be a homogeneous element of slope v.

(1) (Trinh [43]) Form the derived fiber product
My = M) {61 U/ G,

(2) We define the Betti moduli space attached to ¢ to be the derived com-
plex analytic stack

MBet,y 1= €0 X [H/Adw(H)] M(E]Set,w'

Here, the map ¢y — [H/Ad,(H)]| is given by the exponential map ¢y =
exp

t¥ — H“° C H followed by the quotient map.
(3) More generally, for k € H, we define

KMOBet,w = M(By) ><[%/G] [G[K]/G]
KMBet,d) “= €0 X[H/Ady(H)] nMoBet,w-
Note when w is elliptic, (Mpet,p — K/\/l%,et’w is a H"-torsor, and ,MBet
is a derived algebraic stack.
4.4.4 Conjecture. Let k € H.

(1) Forv >0, the derived structure on wMg ,, is trivial, and  M% , is
an algebraic stack smooth over C.

(2) The analytic stack Mpet,y is a complex analytic manifold with a canon-
ical symplectic structure.
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By the above diagrams and Definition 4.4.3, the map RH lifts to
(4.8) RH: Mary — 0 X(pryadu (i) M(B0) x5 [GlK]/G) = cMes,y.
4.4.5 Conjecture. For any reductive G over C and homogeneous element v

in g((t)) of slope v > 0, and any s € h with kK = exp(s), the map RH in (4.8)
is an analytic isomorphism.

We plan to return to this conjecture in a future work. As a consistency
check, we compare the dimensions of Mggry and Mpet,y. On one hand, we
have by Theorem 3.1.4 and Theorem 2.8.1(1)

dim Mggy = dim My, = v|®| — r + dim t*.

On the other hand, by Lemma 4.1.2 we have

dim M(8,) = ((5,).
By Lemma 4.3.5, we have for any (£,V) € Mgr.y

UBy) = In(Ad(E), V) = v]®).

Combining the two equations we get

dim M(5,) = v|®|.
Therefore the derived dimension of Mpey .y is

dim M(B,) + (dim[U/ /G] — dim[G/G]) + (dim ¢y — dim[H/Ad,,(H)])
=v|®| —r + dimt*.

Therefore Mg, has the same dimension as the derived version of Mpeg -

4.4.6 Remark. By Theorem 3.3.5, the cohomology H*(sMdr,y) is canoni-
cally independent of s € hh. Combined with Conjecture 4.4.5, it then implies
that the cohomology H*(,Mpet ) is independent of x € H (canonically upon
choosing a logarithm of k). Keeping track of the symmetry by (C((7))/CL )rd
on ¢Mgg,y, this also implies the statement that the cohomology of KMOBet,w
is independent of k. In other words, the direct image complex of the map

M(By) *i6/c) [G/G] = [G/G] == H
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should be locally constant. This direct image complex can be interpreted as
the parabolic restriction of character sheaves. It would be interesting to prove
the local constancy statement directly for a wider class of positive braids
and not just those coming from homogeneous .

4.4.7 Remark. Instead of making a base change of M(f3,) along ¢y —
[H/Ad,(H)], one can reformulate Conjecture 4.4.5 by taking a quotient of
MR -

It is clear that the map RH is invariant under the action of C'(7))/CdL
on the domain, because that action does not change the isomorphism class of
the connection on X\{oo}.

Consider the action of the reduced part (C'((7))/CL )™ on Myr - By (3.8),
this group is an extension of the lattice (C((7))/C% )" = X, (T, /tors by
Ci /Ct = T By Proposition 3.4.5, the action of (C((7))/CL )™ trans-
lates the formal residue via the lattice quotient (C'((7))/C%,)™, therefore the
quotient of Mgy by (C((7))/CL)™d makes sense as an analytic stack over
the quotient torus ¢o/Im(resc o), which is identified with T, in (3.10).

One can reformulate Conjecture 4.4.5 by saying that the map

Mar,/(C(7)/CL)™ = M(B,) % (6/c) U/ G

is an analytic isomorphism. This is consistent with Conjecture 4.4.5, as one
can check that (C((7))/CL ) is naturally isomorphic to the fiber of ¢g —
(H/Ady (H)]

5. Microlocal sheaves on Fl,;, and wildly ramified geometric
Langlands

In this section we will expand on the conjectural equivalence in §1.4.

From work of [25] and [32], we can construct a sheaf of categories pSh
on conical open subsets U C T*X, such that the global sections category
puSh(T*X) = D(X) is the derived category of constructible sheaves on X.

For a conical Lagrangian A C T*X we can define the full subcategory
uwShy of objects with singular support contained in A.

If G is a group acting on X, we can also use this to construct a sheaf of
categories on the Hamiltonian reduction T7*X//G := ug'(0)/G.

Let X an algebraic space with a G,, X G4-action, where G,, acts linearly
on G,. Let pg, xg, : 77X — A}Gm X A%;a be the moment map of the action.
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We have the following relations of Hamiltonian reductions

T*X//1Ga = pg} we, (Ag,, x {1})/Ga
= pgh e, (AG, X (Ag, \ {0}))/Gp x G,
= gt e, ({0} x (Ag, \ {0}))/Gp C T* X/ /Gy,

where the last is an open subset of the Hamiltonian reduction. We can thus
identify the shifted G, Hamiltonian reduction as an open subset of the G,,
Hamiltonian reduction and use this to define the sheaf of categories pSh on
T*X//1G,, and in particular the category of global sections uSh(7*X//1G,).

Let Jo, be the group defined in §2.11, equipped with a homomorphism
12 : Joo = G, induced by ¢. In Proposition 2.11.1 we prove the identification

My = T*Bung(JL,;1o)//1Ga, where JL, = ker(y)). We can thus apply the
formalism above to the construction to get a category puSh(M.y).

5.0.1 Remark. The definition of uSh(7*X//1G,) is inspired by a construc-
tion of Gaitsgory [19, §1.6] called Kirillov category. It allows to define a version
of D(g,4)(X) (where 1 is understood to be an Artin-Schreier sheaf on Gy,
which makes sense in characteristic p > 0) for X over an arbitrary base field,
as long as the Gg-action on X extends to a G,, X Gg-action. Denote this
Kirillov category by Kir(X). Then one can construct a functor

Kir(X) — pSh(T*X//1G,).
More details will be explained in [4]. In particular, we have a functor
Kir(Bung(J2 ;Ip)) — uSh(M,).

We can consider the full subcategory with fixed singular support along the
image of Fl, — My, constructed in §2.8.1(4) and denote this by jShgy, (My).

Consider MOB’gZp the Betti space for GV, the Langlands dual group, using
the positive braid defined by ¢ and the definition in §4.4.3.

Note that the definitions in §4 begin with a homogeneous element ¢ €
g((t)). We can construct a homogeneous element ¢" € g¥((¢)) inducing the
same map x(¢) = x(¥V) : C — a = /W = hY/W constructed in §4.4.1
under the identification /W = §Y /W given by choosing a W-invariant sym-
metric bilinear form on h. It therefore gives the same positive braid as defined
by . We can thus think of MOB’g,vd) as the Betti space associated to the ho-
mogeneous element V.
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5.0.2 Conjecture. There is a fully faithful functor
pShey, (My) — IndCoh(J\/lBet ¢)

5.0.3 Remark. (1) This conjecture can be viewed as a geometric Lang-
lands correspondence for deeper level structures/wild ramifications. At
the same time, it can be viewed as an instance of homological mirror
symmetry between My, and ./\/lBet -

(2) We expect the image of this functor on compact objects to consist of
coherent sheaves that are supported over proper subschemes of MOBng

We further expect that /\/lBet «» has a unique minimal unipotent orbit
and that objects in xShpy, (M) that have finitely many components of
Fly in their singular support should be Sent to sheaves living over this
smallest unipotent orbit appearing in ./\/lBet W

(3) A possible way to upgrade the above conjecture is to use wrapped mi-
crolocal sheaves as defined in [32]. These should include objects living
over non-proper subschemes of ./\/iBet e
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