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Abstract. We study a model of internal waves in an effectively 2D aquarium under

periodic forcing. In the case when the underlying classical dynamics has sufficiently

irrational rotation number, we prove that the energy of the internal waves remains

bounded. This involves studying the spectrum of a related 0-th order pseudodifferen-

tial operator at spectral parameters corresponding to such dynamics. For the special

cases of rectangular and elliptic domains, we give an explicit spectral description of

that operator.

1. Introduction

Below the surface layers of the ocean, the density field can be be approximated by a

stable-stratified field. This means that the density depends only on depth and increases

slowly with it. A standard model for internal waves is given by considering linear

perturbations of such stable-stratified fluids, and is a central topic in oceanography.

These perturbations occur naturally and can arise mechanically or thermodynamically.

For a more complete introduction to the physics behind internal waves, see Mass

[Maa05] and Sibgatullin–Ermanyuk [SE19].

In this paper, we consider an open, bounded, and simply-connected domain Ω ⊂
R2

x1,x2
with a smooth boundary. Internal waves are modeled by the equation

(∂2t∆+ ∂2x2
)u = f(x) cos(λt), u|t=0 = ∂tu|t=0 = 0, u|∂Ω = 0 (1.1)

with λ ∈ (0, 1) and f ∈ C∞(Ω;R). This is the Poincaré equation [Poi85], also called

the Sobolev equation [Sob54]. This problem comes from the study of internal waves in

a 2D aquarium with a constant Brunt-Väısälä frequency which we take equal to 1. The

solution u represents the stream function of the fluid velocity, meaning the velocity

field is given by

v = (∂x2u,−∂x1u). (1.2)

Then (1.1) can be interpreted as the evolution of the stream function under periodic

forcing in the interior of the domain with forcing profile f . The Dirichlet boundary

condition is simply saying that velocity of the fluid near the boundary must be tangent

to the boundary, i.e. no forcing from the boundary. Let g ∈ C∞(∂Ω;R), and let
1



2 YVES COLIN DE VERDIÈRE AND ZHENHAO LI
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Figure 1. Plots of u = ∆−1
ω w (∆Ω is the Dirichlet Laplacian) where

w is an eigenfunction of the Poincaré operator P = ∂2x2
∆−1

Ω , see §4.2.
We also plot the velocity field of u2,5 given by (1.2). It is clear that the

integral curves are simply the level sets of uk,N , the zero set (excluding

the boundary) is highlighted in red above.

g̃|∂Ω = g and ∆g̃ = 0. Then the boundary forced equation

(∂2t∆+ ∂2x2
)u = 0, u|t=0 = g̃, ∂tu|t=0 = 0, u|∂Ω = g(x) cos(λt)

can be easily reduced to (1.1) by replacing u(x, t) with u(x, t)− g̃(x) cos(λt).

Rewriting (1.2) so that (1.1) reads like an evolution problem, we define

P := ∂2x2
∆−1

Ω : H−1(Ω) → H−1(Ω), ⟨u,w⟩H−1(Ω) := ⟨∇∆−1
Ω u,∇∆−1

Ω w⟩L2(Ω). (1.3)

where ∆Ω denotes the Dirichlet Laplacian. Then w := ∆u satisfies the equation

(∂2t + P )w = f cosλt, w|t=0 = ∂tw|t=0 = 0, f ∈ C∞
c (Ω;R), u = ∆−1

Ω w. (1.4)
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The operator P is bounded and self-adjoint, see [Ral73]. The solution w(t) can then

be written using the functional calculus:

w(t) =
cos(t

√
P )− cos(tλ)

λ2 − P
f. (1.5)

We are interested in its long-time behavior which equivalent to the long time behavior

of the solution u to (1.1). As t → ∞ the functional solution (1.5) becomes singular

when the spectral parameter is equal to λ2. Therefore studying the long-time behavior

is closely related top the spectral properties of P at λ2.

Our main result concerns the behavior of u when the underlying classical dynamics

is ergodic. The relevant dynamics at forcing frequency λ is given by the chess billiard

map, which is a λ-dependent family of circle diffeomorphism b(•, λ) : ∂Ω → ∂Ω (see

(2.4) for details and §2.1 for motivation). To every b(•, λ), we may assign a rotation

number r(λ) ∈ [0, 1], which measures the average rotation of b(•, λ), see (2.5) for the

precise definition. When the rotation number r(λ) is irrational, the map b(•, λ) is

ergodic, which is the setting we will focus on.

Finally, we need a natural geometric assumption on the domain Ω, called λ-simplicity

[DWZ21], see Definition 2.1. For now, we emphasize that all strictly convex domains

satisfy this assumption for all λ ∈ (0, 1).

Theorem 1. Let Ω ⊂ R2 be open, bounded, and simply connected. Assume that

λ ∈ (0, 1) is such that Ω is λ-simple.

(a) If the rotation number r(λ) is irrational, then λ2 is not in the pure point spec-

trum of P , i.e. (P − λ2) : H−1(Ω) → H−1(Ω) is injective.

(b) If the rotation number r(λ) is Diophantine (see Definition 2.3), the solution

u(t) to (1.1) remains bounded in energy space for all times, i.e. there exists a

constant C > 0 such that

∥u(t)∥H1
0 (Ω) ≤ C (1.6)

for all t ∈ R.
(c) If the rotation number r(λ) is Diophantine, the spectral measure µf of f satis-

fies, for all N ∈ N,

µf

(
[λ2 − ε, λ2 + ε]

)
= O

(
εN

)
Parts (b) and (c) of Theorem 1 were first proved by the second named author [Li23]

(Theorem 2 and Theorem 1 respectively). This was done by studying a boundary

reduced 0-th order pseudo-differential operator on the circle, found in [DWZ21]. The

assumptions in (a) are weaker than the corresponding assumption of [Li23, Lemma 6.1],

which assumes the eigenfunction to be smooth. It was already proven in [Arn61,

Theorem 10], see also [Joh41].
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Figure 2. Numerical evidence for the relevance of the Diophantine

assumption in part (c) of Theorem 1. Here Ω = [0, 1] × [0, 1]. The

spectral measure of a 2ε interval centered at λ2 with r(λ) Diophantine

decays much faster than if r(λ) is irrational but not Diophantine. It is

clear that
∑∞

n=1 2
−n!, which is a base 2 version of Liouville’s constant,

cannot satisfy Definition 2.3 for any choice of constants c or β. The data

presented is courtesy of Matthew Colbrook.

In this paper, we give a simpler proof by directly constructing an inverse to a related

eigenvalue problem (see (2.1)). We also describe the spectrum in two simple cases:

rectangular and elliptic domains; the latter is related to the recent work of the first

named author and Vidal [CdVV23] which studied the case rotating fluids in ellipsoids.

The spectral measure of P can be numerically approximated using the methods

developed in [Col21, CHT21, Col22]. Theorem 1 still holds for the square even though

the boundary is not smooth. In that case, the rotation number can be computed as

an explicit smooth function of λ, and so the spectral bound can be seen numerically

in Figure 2.

Two examples where we can explicitly compute the spectrum of P are given by

Ω = [0, 1] × [0, 1] and Ω = D, the unit disk. For the square, the eigenfunctions are

simply the Fourier modes. For the circle, we will give an explicit complete basis of

H1
0 consisting of solutions to the eigenvalue problem (2.1), see (4.11) and Figure 1.

Then by changing the coordinates, we have spectral information about elliptic and

rectangular domains.

Theorem 2. If Ω is an ellipse or if Ω is a rectangle with sides parallel to the coordinate

axis, the spectrum of P is pure point dense in [0, 1] and the eigenvalues are exactly the

values of λ for which the rotation number r(λ) is rational.
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For the theorem above, we emphasize that the ellipses we consider can be any

nondegenerate linear transformation of a circle. This includes tilted ellipses with major

and minor axis not necessarily parallel to the coordinate axis. On the other hand, the

theorem fails for tilted rectangle; it is shown in [Ral73] that the spectrum contains an

absolutely continuous part.

1.1. Related works. Analysis of (1.1) goes back to [Sob54]. The spectral properties

of the operator P defined in (1.3) were studied in [Ale60] and [Ral73]. The study

of internal waves has motivated the mathematical analysis of 0-th order self-adjoint

pseudodifferential operators. Such operators on closed surfaces in the presence of

attractors were studied in [CdVSR20, CdV20] and then in [DZ19]. The viscosity limits

of these 0-th order pseudodifferential operators were recently studied by Galkowski–

Zworski [GZ22] and Wang [Wan22]. Spectral properties of 0-th order pseudodifferential

operators on the circle were studied by Zhongkai Tao [Tao19] who produced examples

of embedded eigenvalues.

Then for the case of 2D planar domains, [DWZ21] showed that when the underlying

dynamics has hyperbolic attractors, there can be high concentration of the fluid ve-

locity near these attractors. This phenomenon was predicted in the physics literature

by Maas–Lam [ML95] in 1995, and has since been experimentally observed by Maas

et al. [MBSL97], Hazewinkel et al. [HTMD10], and Brouzet [Bro16]. We also consider

2D planar domains in our work, but the underlying dynamical assumption is different,

thus leading to different conclusions.

2. Preliminaries

In this section, we establish the necessary geometric assumptions so that the under-

lying classical dynamics governing the system can be reduced to the the boundary of Ω.

We then provide an outline of the necessary results from one-dimensional dynamics

required to analyze our internal waves model.

2.1. Geometric assumptions. From (1.5), it is clear that we need to understand

the spectral properties of P at λ2. We consider the eigenvalue problem

P (λ)u = 0 where P (λ) := (P − λ2)∆ = (1− λ2)∂2x2
− λ2∂2x1

. (2.1)

Clearly, P (λ) : H1
0 (Ω) → H−1(Ω) is invertible if and only if λ2 is not in the spectrum

of the operator P defined in (1.4). The problem has no nontrivial solutions if λ > 1,

because then the operator P (λ) is elliptic and the result follows from the maximum

principle. There is also no solution for λ = 0 or λ = 1 by direct inspection. It is also

known that the spectrum of P is precisely [0, 1], see [Ral73].

The advantage of working with P (λ) is that it is simply a (1 + 1)-dimensional wave

operator, and the symbol is given by the quadratic form −(1 − λ2)ξ22 + λ2ξ21 . The
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Figure 3. Definition of the involutions γ± as well as the chess billiard

map b(x). Also illustrates the definition of λ-simplicity, since ℓ± is non-

degenerate at the critical points x±min and x±max. The diagram is from

[DWZ21], which considered the same dynamical system.

relevant classical dynamics here is given by the Hamiltonian flow of the symbol. The

dual of this quadratic form can be factorized as

−x
2
1

λ2
+

x22
1− λ2

= ℓ+(x, λ)ℓ−(x, λ), ℓ±(x, λ) := ±x1
λ

+
x2√
1− λ2

. (2.2)

In particular, the integral curves of the Hamiltonian flow of the symbol projected

onto Ω are precisely the level sets of ℓ±(x, λ).

Definition 2.1. Let λ ∈ (0, 1). Then Ω is called λ-simple if each ℓ±(•, λ) : ∂Ω → R
has exactly two distinct critical points which are both non-degenerate. See Figure 3.

Under the λ-simple condition, the dynamics can be reduced to the boundary. In

particular, there exist unique smooth orientation-reversing involutions γ±(•, λ) : ∂Ω →
∂Ω that satisfy

ℓ±(x) = ℓ±(γ±(x)). (2.3)

Composing γ+ and γ−, we obtain an orientation preserving diffeomorphism of the

boundary ∂Ω. This is known as the chess billiard map b(•, λ) : ∂Ω → ∂Ω, defined by

b := γ+ ◦ γ−. (2.4)

See Figure 3. We will often suppress the dependence on λ in the notation when there

is no ambiguity.

2.2. One-dimensional dynamics. Let x : S1 = R/Z → ∂Ω be a positively oriented

parametrization on ∂Ω. This gives rise to a covering map π̃ : R → ∂Ω given by

π̃(x) = x(x mod 1). Let b(•, λ) : R → R be a lift of b(•, λ), i.e. b(•, λ) satisfies

π(b(x, λ)) = b(π(x), λ)
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for all x ∈ R. Fix an initial point x0 ∈ R. The rotation number of b(•, λ) is then

defined as

r(λ) := lim
k→∞

bk(x0, λ)− x0
k

∈ R/Z. (2.5)

The rotation number is simply the averaged rotation along an orbit, and it is a well-

defined quantity:

Lemma 2.2. The rotation number r(λ) as defined by the limit (2.5) exists. Further-

more, it is independent of the choice of initial point x0, the parametrization x, and the

lift b.

See e.g. [Wal99] for a proof of Lemma 2.2. We refer the reader to [dMvS93, Chapter 1]

for a thorough discussion of circle homeomorphisms.

We wish to understand to what extent a circle diffeomorphism b can be conjugated

to a rotation. This is clearly impossible for rational rotations, and it was proved by

Denjoy in [Den32] that when the rotation number is irrational, the circle diffeomor-

phism is topologically conjugate to a rotation. We will need more regularity than

just topologically conjugate, which is known when the rotation number satisfies the

following Diophantine condition:

Definition 2.3. A number α ∈ R is Diophantine if there exists constants c, β > 0 so

that ∣∣∣∣α− p

q

∣∣∣∣ ≥ c

q2+β

for all p ∈ Z and q ∈ N.

Roughly speaking, this is a “sufficiently irrational” condition; α is Diophantine if it

is sufficiently far away from all rational numbers. Diophantine numbers exist and form

a full measure set. Indeed, take some β > 0 and a small c > 0, and consider the set of

numbers in (0,1) that are Diophantine with respect to β and c:

E =

{
α ∈ (0, 1) :

∣∣∣∣α− p

q

∣∣∣∣ ≥ c

q2+β
for all p ∈ Z and q ∈ N

}
.

We can think of E as the set remaining after stripping away small neighborhoods of

rational numbers, so the measure of E is at least

|E| ≥ 1−
∞∑
q=1

2q · c

q2+β
.

The right hand side becomes arbitrarily close to 1 as c→ 0.

If the rotation number is irrational, then the topological conjugation can be upgraded

to smooth conjugation to a rotation. This upgrade is due to Herman [Her79] and

Yoccoz [Yoc84]. We collect the conjugation results from [Den32, Her79, Yoc84] in the

following proposition.
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Proposition 2.4. Let b : S1 → S1 be a smooth circle diffeomorphism with rotation

number α.

(a) if α is irrational, then there exists a homeomorphism ψ : S1 → S1 such that

(ψ ◦ b ◦ ψ−1)(θ) = θ + α.

(b) if α is Diophantine, then there exists a smooth diffeomorphism ψ : S1 → S1

such that (ψ ◦ b ◦ ψ−1)(θ) = θ + α.

A standard consequence of the topological conjugacy result is the unique ergodicity

of circle diffeomorphisms with irrational rotation number.

Corollary 2.5. Let b : S1 → S1 be a smooth circle diffeomorphism with irrational

rotation number. Then for every f ∈ C0(S1), there exists a constant function c(f)

such that

1

N

N−1∑
n=0

(b∗)nf → c(f) in C0(S1) as N → ∞.

Consequently, if b∗f = f , then f must be constant.

Proof. By Proposition 2.4, it suffices to prove the theorem in the case that b(θ) = θ+α

for some irrational α ∈ (0, 1). Furthermore, it suffices to prove the statement for a

dense subset of C0(S1), so we simply check the statement for trigonometric polynomials.

Indeed, it is trivial for constant functions, and for k ∈ Z \ {0},

1

N

N−1∑
n=0

e2πik(θ+nα) =
1

N
e2πikθ

1− e2πikαN

1− e2πikα
→ 0

uniformly in θ since 1− e2πikα ̸= 0 by the irrationality of α. This proves the statement

for all trigonometric polynomials as desired. □

Eventually, we will need to solve cohomological equations of the form

v(θ)− v(θ + α) = g(θ) (2.6)

given g ∈ C∞
c (S1) with vanishing integral. If α satisfies the Diophantine condition,

then we can have explicit high frequency control of v. In particular, if g is smooth,

then we have smooth solutions.

Lemma 2.6. Let g ∈ C∞(S1) with
∫
S1 g = 0, and assume that α is Diophantine. Then

there exists v ∈ C∞(S1) that solves (2.6) uniquely modulo constant functions.

Proof. Let c, β > 0 be the Diophantine constants associated with α in Definition 2.3.

Taking the Fourier series of both sides of (2.6),

ĝ(k) = (1− e2πikα)v̂(k).
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For all k ̸= 0, ∣∣∣∣ 1

1− e2πikα

∣∣∣∣ ≤ c−1|k|1+β.

Since ĝ(0) = 0, v can be solved uniquely up to choice of v̂(0), and we have the estimate

∥v∥Hs ≤ C∥g∥Hs+β+1

for every s > 0. Therefore v is smooth and unique modulo constant functions. □

3. Internal waves in an ergodic setting

In this section we prove Theorem 1. The strategy is to construct a right inverse to

P (λ) on smooth functions for λ such that r(λ) is Diophantine (Definition 2.3). Define

coordinates

y± =
1

2
ℓ±(x, λ) (3.1)

where ℓ± are defined in (2.2). In these coordinates, we have

P (λ) =
∂2

∂y+∂y−
.

In this form, it is clear that solutions on the interior of Ω to the eigenvalue problem

(2.1) can be found by integration up to boundary conditions, which effectively reduces

the problem to the boundary.

3.1. Injectivity of the eigenvalue problem. We first show that solutions to the

eigenvalue problem take a very convenient form.

Lemma 3.1. Let Ω be λ-simple and suppose u ∈ H1
0 (Ω) is a solution to the eigenvalue

problem (2.1). Then using the coordinates (3.1), u can be decomposed as

u(y+, y−) = u+(y+) + u−(y−)

where u± ∈ H1(Ω) are functions on Ω that depend only on y± respectively. In fact,

u± ∈ C0(Ω).

Proof. Let u′+ := ∂y+u. Observe that ∂y−u
′
+ = 0, so u′+ is a function of y+ only. The

eigenvalue problem (2.1) is invariant under shifting of the domain, so we may assume

without the loss of generality that the two nondegenerate critical points of ℓ+ are

y+ = 0 and y+ = a. Note that u′+ ∈ L2(Ω), so the nondegeneracy of the critical points

imply that ∫ 1

0

√
y+(a− y+)|u′+(y+)|2 dy+ <∞.

By Cauchy-Schwarz, we then have

∥u′+∥L1([0,a]) ≤ ∥(y+(1− y+))
1/4u′+∥L2([0,a])∥(y+(1− y+))

−1/4∥L2([0,a]) <∞
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Put

ũ+(y+) :=

∫ y+

0

u′+(s) ds

By a slight abuse of notation, we can view ũ+ as an element of C0(Ω) that depends

only on y+. Then we see that u− ũ+ ∈ H1 is a function that depends only on y−.

Running the same argument with y− instead of y+, we also have ũ− ∈ C0(Ω) de-

pending only on y− such that u− ũ− depends only on y+. Modifying ũ± by constants,

there must exist u± ∈ C0(Ω) that depends only on y± such that u+ + u− = 0. □

Proof of Theorem 1(a). We prove that the operator P (λ) has trivial kernel. Suppose u

is a solution the eigenvalue problem (2.1). Then we have the decomposition u(y+, y−) =

u+(y+) + u−(y−) from Lemma 3.1. Define the boundary traces

U± := u±|∂Ω ∈ C0(Ω). (3.2)

Observe that U++U− = 0 and U± ◦γ± = U±, so it follows that U± are invariant under

pullback by the chess-billiard map:

U± = b∗U±. (3.3)

If the rotation number ρ(λ) of b(•, λ) is irrational, it follows from (3.3) and Corollary

2.5 that the functions U± must be constant. The solution u can then be recovered

from the boundary data U±, and we clearly have u = 0. □

3.2. Energy boundedness. We first construct the right inverse on smooth functions

to P (λ) when the rotation number defined in (2.5) is Diophantine.

Proposition 3.2. Let Ω be λ-simple and assume that the rotation number r(λ) is Dio-

phantine. Then there exists R(λ) : C∞(Ω) → C∞(Ω)∩H1
0 (Ω) such that P (λ)R(λ) = Id.

Proof. 1. Using the coordinates y± defined in (3.1), we wish to solve

∂2u

∂y+∂y−
= f, f ∈ C∞(Ω) (3.4)

for u ∈ H1
0 (Ω). Let f̃ ∈ C∞

c (R2) be an extension of f , i.e. f̃ |Ω = f . Define

u0(y+, y−) :=

∫ y+

−∞

∫ y−

−∞
f̃(η+, η−) dη−dη+, and U0 := u0|∂Ω ∈ C∞(∂Ω).

Therefore, it suffices to solve

∂2v

∂y+∂y−
= 0, v|∂Ω = U0 (3.5)

for v ∈ C∞(Ω) since u = u0 − v would then be the solution to (3.4).
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2. By Proposition 2.4, we may choose smooth coordinates θ on the boundary ∂Ω so

that b(θ) = θ + r(λ). We claim that∫
∂Ω

U0(γ
±(θ))− U0(θ) dθ = 0. (3.6)

Recall by (2.4), we have b◦γ+ = γ+◦b−1. In the coordinate θ this gives γ+(θ)+r(λ) =

γ+(θ − r(λ)). Differentiating in θ, we get

∂θγ
+(θ) = ∂θγ

+(θ − r(λ)).

Since r(λ) is irrational and γ+ is an orientation reversing involution, we see that

∂θγ
+(θ) = −1. Similarly, ∂θγ

−(θ) = −1, hence (3.6) follows.

3. Therefore, it follows from Lemma 2.6 that there exist unique V± ∈ C∞(∂Ω) such

that

(b±1)∗V± − V± = (γ∓)∗U0 − U0 and

∫
∂Ω

V±(θ) dθ =
1

2

∫
∂Ω

U0(θ) dθ. (3.7)

Observe that

(V+ + V−)− (b−1)∗(V+ + V−) = (b−1)∗((γ−)∗U0 − U0)− ((γ+)∗U0 − U0)

= U0 − (b−1)∗U0.

Solutions to the cohomological equation are unique up to constants, and it follows

from (3.7) that
∫
V+ + V− =

∫
U0, so we must have

V+ + V− = U0. (3.8)

Furthermore, applying γ∓ to both sides of (3.7), we see that

((γ±)∗V±)− (b±1)∗((γ±)∗V±) = U0 − (γ∓)∗U0.

Adding this to (3.6),

[(γ±)∗V± − V±]− (b±1)∗[(γ±)∗V± − V±] = 0.

Again using Lemma 2.6, we find that

(γ±)∗V± = V±. (3.9)

By the λ-simplicity assumption, the coordinate functions restricted to boundary, y±|∂Ω,
have nondegenerate critical points. In particular, up to a smooth change of coordinates,

we may assume that y+ = 0 is a critical point of y+|∂Ω, near which the boundary can

be parameterized by y− and is given by {y+ = y2−}. We may further assume that the

γ+-invariance of V+ from (3.9) in these coordinates reads V+(y−) = V+(−y−) near the
critical point. Therefore V+ is a smooth function of y+ = y2− near the critical point.

Similar analysis holds for all other critical points, so, there exists v± ∈ C∞(Ω) such

that v± depends only on y± and v±|∂Ω = V±. Then v = v+ + v− solves (3.5) and the

boundary conditions are satisfied due to (3.8). □
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The obstruction to energy boundedness in the functional calculus solution (1.5) is

the singularity at z = λ2 that appears as t→ ∞. This can be cancelled out using the

right inverse to P (λ) constructed in the previous proposition.

Proof of Theorem 1(b). Let f ∈ C∞(Ω;R) and let R(λ) be as in Proposition 3.2. Then

g := ∆ΩR(λ)f lies in C∞(Ω) ⊂ H−1(Ω). Then the evolution problem (1.4) can be

rewritten as

(∂2t + P )w = (P − λ2)g cosλt, w|t=0 = ∂tw|t=0 = 0, u = ∆−1
Ω w.

Using the functional calculus solution formula for w(t) given in (1.5), we have

w(t) = (cos(t
√
P )− cos(tλ))g. (3.10)

Since |cos(t
√
z)− cos(tλ)| ≤ 2 for all z ∈ [0, 1] and t ∈ R, it follows from the spectral

theorem that w(t) given by (3.10) is uniformly bounded in H−1(Ω) for all t. Therefore

the solution to the internal waves equation (1.1) given by u(t) = ∆−1
Ω w(t) is uniformly

bounded in H1
0 (Ω) for all t. □

Remark. In fact, it is easy to see that smoothness of f is not required. It suffices to

have f ∈ HN(Ω) for sufficiently large N > 0 depending on the constants in Definition

2.3 of Diophantine numbers. The proof of Lemma 2.6 gives explicit estimates for

the regularity of the solution to the cohomological equation. This means that the

boundary traces V± from Proposition 3.2 lies in HN−k(∂Ω) for some k depending on

the Diophantine constants. Since the critical points of the coordinate functions y±
restricted to the boundary are nondegenerate and V± are invariant under pullback by

γ± respectively, it follows that v± ∈ HN/2−k(Ω) for a possibly different k depending

only on the Diophantine constants.

3.3. Spectral estimate near λ2. We now use the right inverse R(λ) in Proposi-

tion 3.2 to obtain bounds on the spectral measure near λ.

Proof of Theorem 1(c). Let f ∈ C∞(Ω) ⊂ H−1(Ω). The spectral measure dµf satisfies∫
φdµf = ⟨φ(P )f, f⟩.

Put fk = (∆ΩR(λ))
kf . Note that fk ∈ C∞(Ω) and (P − λ2)kfk = f . Therefore,∣∣∣∣∣
∫ λ2+ε

λ2−ε

dµf

∣∣∣∣∣ =
∣∣∣∣∣
∫ λ2+ε

λ2−ε

(x− λ2)2k dµfk(x)

∣∣∣∣∣ ≤ Ckε
2k

as desired. □
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4. Examples

In this section we give the explicit computations related to the spectrum of the square

and the disk, from which Theorem 2 follows immediately. Note that the square does not

satisfy the hypothesis of Theorem 1 since the boundary is not smooth. Nevertheless,

the conclusions of Theorem 1 holds, and we verify this directly.

4.1. The square. We consider the square domain Ω = [0, 1] × [0, 1]. Clearly the

Fourier modes provide a basis of eigenfunctions and it is easy to see that the eigenvalues

are dense in [0, 1], so Theorem 2 for the square is clear.

The square thus has the advantage that (1.1) can be solved directly in Fourier series,

so we can verify the contents of Theorem 1 for the square domain, despite it having

corners.

The chess billiard flow on the square is the same as the standard billiard flow, so

the rotation number function r(λ) defined in (2.5) is smooth and can be written down

explicitly. It is given by

r(λ) =
λ√

1− λ2 + λ
.

See [Zhu22] for the full derivation. We can formally write

u(t, x) =
∑
k∈N2

û(t,k) sin(πk1x1) sin(πk2x2)

where k = (k1, k2) ∈ N2. Only in this subsection, we use the hat to denote Fourier

transform with respect to the Dirichlet sine basis. If u(t, x) is a solution to (1.1), the

coefficients must satisfy the periodically driven harmonic oscillator equation

−π2(k21 + k22)∂
2
t û(t,k) + π2k22û(t,k) = f̂(k) cosλt,

where f̂(k) =

∫
[0,1]2

f(x) sin(πk1x1) sin(πk2x2) dx1dx2
(4.1)

This has solution

û(t,k) =
f̂(k)

λ2k21 − (1− λ2)k22

[
cos(λt)− cos

(
k2
|k|
t

)]
(4.2)

If r(λ) is Diophantine, then the result of Theorem 1 holds. In fact, in this case, we

get that u(t) ∈ C∞(Ω) uniformly in all the seminorms for all t ∈ R. Indeed, if r(λ) is
Diophantine, then there exist constants c, β > 0 such that

|q · r(λ)− p| ≥ c

q1+β

for any p ∈ Z and q ∈ N. Rewriting this condition in terms of λ, we find that

|(q − p)λ− p
√
1− λ2| ≥ c

q1+β
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where c is a possibly different constant. Put q = k1 + k2 and p = k2 to find that

|k1λ− k2
√
1− λ2| ≥ c

q1+β
≳

1

|k|1+β
. (4.3)

where the hidden constant is independent of k. We clearly have

|k1λ+ k2
√
1− λ2| ≥ 1, (4.4)

so combining (4.3) and (4.4) yields

|λ2k21 − (1− λ2)k22| ≥
c

|k|1+β
. (4.5)

for a possibly different constant c > 0. Since f ∈ C∞
c (Ω;R), f̂(k) is rapidly decreasing

in k, which tempers the denominator in (4.2) to give uniform smoothness of u(t) in

time.

The above analysis also exhibits the spectral result part (c) of Theorem 1. Note that

κ(k) sin(πk1x1) sin(πk2x2), k ∈ N2 form a complete orthonormal basis for H−1(Ω),

where κ(k) = O(|k|) are simply normalizing constants. This basis consists of eigen-

functions with eigenvalues k1
k1+k2

for the operator P defined in (1.4). In particular,

sin(πk1x1) sin(πk2x2) has eigenvalue
k22

k21+k22
. If r(λ) is Diophantine, then (4.5) gives a

characterization of the eigenvalues near λ2:∣∣∣∣ k22
k21 + k22

− λ2
∣∣∣∣ ≤ ε =⇒ 1

|k|3+β
≳ ε−1

Therefore the spectral measure µf,f satisfies part (c) of Theorem 1 near λ2. Indeed,

using the fact that the coefficients f̂(k) of f ∈ C∞
c (Ω) defined in (4.1) are rapidly

decreasing, we have

µf,f ((λ
2 − ε, λ2 + ε)) ≲

∑
k:

∣∣ k2
k21+k22

−λ2

∣∣≤ε−1

f̂(k)2κ(k)−2 < Cdε
d

for any d ∈ N. See Figure 2.

Finally, we mention that by tilting the square by η, the set of λ for which λ is

Diophantine is no longer a full measure set. More specifically, we consider the square

domain specified by the vertices{
(0, 0), (cos η, sin η), (− sin η, cos η),

√
2(cos(η + π

4
), sin(η + π

4
))
}
.

Then graph of r(λ) is constant near values of λ for which r(λ) is rational. See Figure 4

for an illustration and [DWZ21, §2.5] for details.
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Figure 4. Graphs of the rotation number function r(λ) (defined

in (2.5)) for various domains. Left: The blue curve is for the untilted

square [0, 1]2. The orange curve is the square tilted by η = π/20. Note

that it has rational plateaus. Right: The domain is a disk, so the

boundary is a round circle.

4.2. The disk. We finally consider the case when Ω = D is the unit disk. This has

previously been studied in [Ale60, Section 9]. The 3-dimensional case of a triaxial

ellipsoid has been studied in [CdVV23], following the physics work of [IJW15, BR17].

We may assume D is centered at origin. Parameterize the boundary ∂D counterclock-

wise by arclength with ϕ = 0 being the point (1, 0). The boundary is then identified

with the circle R/2πZ. This is a different convention from the previous sections, and

we switch conventions to avoid carrying factors of 2π. The mod 1 rotation number as

defined in 2.5 is given by

r(λ) = 1− 2

π
arccos(λ), (4.6)

see [Li23, §2.2.2] for details and Figure 4. It will be convenient to rescale the rotation

number and define

α(λ) =
π

2
r(λ). (4.7)

We henceforth drop λ from the notation when there is no ambiguity. The terms of the

factorization (2.2) and the chess billiard map take the explicit forms

ℓ±(x1, x2) = x1 cosα± x2 sinα, b(ϕ) = ϕ+ 4α. (4.8)

We will provide an explicit complete basis of eigenfunctions. Recall from (2.2) that

ℓ+(x, λ)ℓ−(x, λ) is dual to the symbol of P (λ), so u ∈ H1
0 (Ω) is a solution to the
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eigenvalue problem if and only if

u(x) = u+(ℓ
+(x)) + u−(ℓ

−(x)) and

U+ + U− = 0 where U+ := (u+ ◦ ℓ+)|∂Ω, U− := (u− ◦ ℓ−)|∂Ω.
(4.9)

for some u± ∈ C0 and u± ◦ ℓ± ∈ H1(Ω). See Lemma 3.1 for discussion of the regularity

of u±. Using the explicit formulas (4.8), we can compute

U±(ϕ) = u±(cosϕ cosα± sinϕ sinα) = u±(cos(ϕ∓ α)),

U±(ϕ) = U±(ϕ+ 4α)
(4.10)

Let N ∈ N and k ∈ {1, . . . , N − 1}. Then define

αk,N := α(λk,N) =
π

2

k

N
where λk,N ∈ (0, 1) uniquely satisfies r(λk,N) =

k

N
.

We wish to construct a solution to every eigenvalue problem P (λk,N)u = 0. Collecting

the symmetries in (4.9) and (4.10), we must have

U+(−ϕ+ 2αk,N) = U+(ϕ) = U+(−ϕ+ 2αk,N), U− = −U+.

U+ is thus invariant under the action of a dihedral group, so we consider the Fourier

modes on an interval of the boundary which is a fundamental domain, and we are led

to functions of the form

U±(ϕ) = (±1)k+1 cos(N(ϕ∓ αk,N)),

which precisely satisfies the conditions given in (4.10). Let TN be the Chebyshev

polynomials, which are defined by TN(cosϕ) = cos(Nϕ). Therefore, we have solutions

to the eigenvalue problem (2.1) at λ = λk,N given by

uk,N(x1, x2) = TN(x1 cosαk,N + x2 sinαk,N)− (−1)kTN(x1 cosαk,N − x2 sinαk,N)

for every N ∈ N, k ∈ {1, . . . , N − 1}.
(4.11)

The above forms a complete basis of H1
0 (D) since for every N , the set {uk,N}N−1

k=1

consists of N−1 linearly independent degree N polynomials vanishing at the boundary.

Linear independence follows immediately from the fact that ∆uk,N is an eigenfunction

of P with eigenvalue λk,N . See Figure 1. Furthermore, we see that there are infinitely

many solutions to the eigenvalue problem (2.1) for every λ such that r(λ) is rational,

since there are infinitely many ways to represent a rational number as k/N .

The explicit formulas (4.11) for the solutions of the eigenvalue problem directly

completes the proof of Theorem 2 for the unit disk. The proof of Theorem 2 for

ellipses and rectangles is now a purely geometric problem.

Proof of Theorem 2. Let Ω be an ellipse. Then there exists a symmetric nondegenerate

2 × 2 matrix A and v ∈ R2 such that Ω = AD + v where D is the unit disk. Then
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observe that there exists a family of rotation matrices R(λ) that depends smoothly on

λ such that under the coordinate change

y = R(λ)A−1(x− v),

P (λ) on Ω becomes c(λ)P (σ(λ)) on D, for some c(λ) > 0 and σ : [0, 1] → [0, 1] smooth

and monotonically increasing with σ(0) = 0 and σ(1) = 1. The result then follows

from the explicit basis of eigenfunctions corresponding to eigenvalues dense in (0, 1)

given in (4.11) for the circle.

The rectangle case follows from the square case simply by a linear change of coordi-

nates by a diagonal matrix independent of λ. □
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problem, 2022. Preprint; arXiv:2210.13384.

https://arxiv.org/abs/2301.12365
https://arxiv.org/abs/2210.13384

	1. Introduction
	1.1. Related works

	2. Preliminaries
	2.1. Geometric assumptions
	2.2. One-dimensional dynamics

	3. Internal waves in an ergodic setting
	3.1. Injectivity of the eigenvalue problem
	3.2. Energy boundedness
	3.3. Spectral estimate near 

	4. Examples
	4.1. The square
	4.2. The disk

	References

