
A QUICK INTRODUCTION TO B-CALCULUS

SEMYON DYATLOV AND ZHENHAO LI

Abstract. Some rough notes for a few lectures given at MSRI in Fall 2024. The

goal of these lectures is to use simple examples to demonstrate the key ingredients

needed to construct a full parametrix for an elliptic b-differential operator.

1. Prelude: the compact case

Let (M, g) be a compact Riemannian manifold without boundary, and ∆g be the

Laplace–Beltrami operator. A standard fact in the theory of elliptic PDE is that

∆g : H
s+2(M) → Hs(M) is a Fredholm operator. (1.1)

Here Hs(M) is the Sobolev space of order s ∈ R; for s ∈ N0 it is the space of functions

whose derivatives of order ≤ s lie in L2(M).

A common way to prove (1.1) is to use an elliptic estimate: for any N

∥u∥Hs+2 ≤ C∥∆gu∥Hs + C∥u∥H−N . (1.2)

The implication (1.2) =⇒ (1.1) goes through a functional analysis argument, where

the key input is the fact that the inclusion Hs+2(M) ↪→ H−N(M) is compact as soon

as s+ 2 > −N . It is here that the compactness of M is used.

One way to show the estimate (1.2) is via the construction of an elliptic parametrix,

an operator Q on distributions on M with the following properties:

(1) Q is bounded Hs(M) → Hs+2(M);

(2) Q∆g = I+R where the operatorR is smoothing, i.e. mapsH−N(M) → HN(M)

for all N , or equivalently R has a smooth integral kernel:

Rf(y) =

∫
M

R(y, y′)f(y′) dy′ where R ∈ C∞(M ×M). (1.3)

Indeed, we can apply the identity Q∆g = I + R to a distribution u ∈ Hs+2(M) and

get

u = Q∆gu−Ru,

which gives (1.2):

∥u∥Hs+2 ≤ ∥Q∆gu∥Hs+2 + ∥Ru∥Hs+2 ≤ C∥∆gu∥Hs + C∥u∥H−N .
1
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From now on, we will actually switch what we mean by a parametrix, replacing the

equation Q∆g = I +R by

∆gQ = I +R. (1.4)

This makes the presentation below a bit easier and from here we can get the original

parametrix by taking the adjoint.

1.1. Elliptic parametrix: basic example. To construct an elliptic parametrix Q,

we construct its distributional kernel Q ∈ D′(M ×M), where D′(M ×M) is the space

of distributions on M ×M (dual to the space of smooth functions) and Q and Q are

related by the following formula (interpreted distributionally):

Qf(y) =

∫
M

Q(y, y′)f(y′) dy′. (1.5)

Note that to canonically define Q this way, we would need to fix the density dy′. A

geometrically nice way around this is to work with sections of the line bundle |Ω|1/2 of
half-densities (which can be defined e.g. using coordinate charts with transition func-

tions given by the square root of the Jacobian). These half-densities can be expressed

in coordinates as f(y)|dy|1/2 where f is a function. Note that the L2 norm of such an

object is invariantly defined. Moreover, if Q ∈ D′(M ×M ; |Ω|1/2) is a half-density on

M ×M then it canonically defines an operator Q on L2(M ; |Ω|1/2). Of course, since

we have a metric we can identify functions with half-densities and that’s what we will

do here.

In terms of distributional kernels, the parametrix property (1.4) becomes

∆yQ(y, y′) = δ(y − y′) +R(y, y′) where R ∈ C∞(M ×M). (1.6)

Here δ(y − y′) is the delta function on the diagonal {y = y′} ⊂ M ×M , which is the

integral kernel of the identity operator, and ∆y is the Laplace–Beltrami operator taken

in the y variable.

Here is a basic example of an elliptic parametrix: on the circle S1
y = R/2πZ, consider

the Laplace–Beltrami operator ∆g = −∂2
y and define

Q(y, y′) = −χ(y, y′)
|y − y′|

2

where χ ∈ C∞
c (S1×S1) is a cutoff to a neighborhood of the diagonal {y = y′} and |y−y′|

is just the distance on the circle (well-defined near the diagonal). Since ∂2
y |y − y′| =

2δ(y − y′), we get

−∂2
yQ(y, y′) = δ(y − y′) +R(y, y′) where R ∈ C∞(S1 × S1).

Here R comes from the derivatives hitting the cutoff. Note that we could replace |y−y′|
2

by, say, the Heaviside function H(y − y′) – this does not matter as it just changes Q

by a smoothing operator.
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Of course, we would also need to show boundedness on Sobolev spaces – this is

definitely doable from the formula for Q but we do not do it here (or in the next

subsection for that matter).

1.2. Elliptic parametrix: general case. For the general case, we construct Q(y, y′)

as a conormal distribution to the diagonal {y = y′} ⊂ M ×M . This means that away

from {y = y′}, Q is smooth (we in fact do not lose anything by making it equal to 0

outside of a neighborhood of the diagonal), and near the diagonal in local coordinates

Q has the following Fourier integral form (where dimM = n):

Q(y, y′) = (2π)−n

∫
Rn

ei⟨y−y′,η⟩q(y, η) dη. (1.7)

Here q(y, η) is a symbol: it is smooth in y and has expansions in homogeneous functions

of η as |η| → ∞. One can think of this in terms of Fourier transform: if

q̌(y, z) = (2π)−n

∫
Rn

ei⟨z,η⟩q(y, η) dη

is the inverse Fourier transform of q in the second variable, then

Q(y, y′) = q̌(y, y − y′).

Since we only currently care about the singularities of Q, it is the behavior as |η| → ∞
that matters. In fact, if q is rapidly decaying as |η| → ∞, then Q is smooth. Also,

the integrals above may not converge in the usual sense, but we can use e.g. Fourier

transform of tempered distributions to make sense of these as distributions in y, y′.

We now construct q to satisfy the parametrix equation (1.6). First, by the Fourier

inversion formula we have the representation

δ(y − y′) = (2π)−n

∫
Rn

ei⟨y−y′,η⟩ dη.

Let us pretend for simplicity that g is Euclidean in our coordinates (the reader is en-

couraged to consider the general case which is similar but with a longer computation).

Then ∆y = −
∑n

j=1 ∂
2
yj

and we can compute

∆yQ(y, y′) = (2π)−n

∫
Rn

ei⟨y−y′,η⟩(|η|2q(y, η)− 2i⟨η, ∂yq(y, η)⟩+∆yq(y, η)
)
dη.

Thus we need to solve the symbolic equation

|η|2q(y, η)− 2i⟨η, ∂yq(y, η)⟩+∆yq(y, η) = 1. (1.8)

Note that as η → ∞, the dominant term is the first one, |η|2q(y, η). We then construct

q as an asymptotic series in η as |η| → ∞:

q(y, η) ∼
∑
ℓ≥0

qℓ(y, η), qℓ(y, η) = O(|η|−2−ℓ).
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To do this, we put the principal term to be

q0(y, η) = |η|−2 for |η| ≥ 1

and solve for the other terms iteratively. (Actually if the metric is Euclidean, all the

other terms are 0, but that’s an artifact of the constant coefficients.) This gives the

elliptic parametrix satisfying (1.6).

A geometer might wonder whether the class of conormal distributions defined by (1.7)

is coordinate invariant. It is, and the symbol q0(y, η) makes sense invariantly as a func-

tion on the cotangent bundle T ∗M . This can be seen using the method of stationary

phase, but we do not give any details here.

For more details on the constructions in this section, see for example [Dya22, §14].

2. Fredholm property on manifolds with cylindrical ends

The goal of these lectures is to establish the Fredholm property for manifolds with

cylindrical ends. A basic example is given by the exact cylinder with the product

metric

M = Rt × Yy, g = dt2 + h(y, dy) (2.1)

where (Y, h) is a compact Riemannian manifold. More generally, one can consider a

manifold M consisting of a compact core and an infinite end of the form [0,∞)t × Yy

with the product metric, where t = 0 is where we link with the compact core and

t → ∞ is the infinity. (This includes the case of several ends since we do not assume

Y to be connected.)

Even more generally, we can allow the coefficients of the metric in the infinite end

to depend on t in a mild way, that is being smooth in e−t, y, giving a metric of the

form

g = a(e−t, y)dt2 + b(e−t, y) dtdy + c(e−t, y, dy). (2.2)

Of course, what matters most here is the behavior at t = ∞ which is encoded by the

metric

g0 = a(0, y)dt2 + b(0, y)dtdy + c(0, y, dy).

2.1. Compactification and b-metrics. We now rewrite the cylinder metric using a

compactification of M . On an infinite end [0,∞)t × Yy, introduce the variable

x = e−t.

This turns the infinite end and the product cylindrical metric (2.1) into

(0, 1]x × Yy, g =
dx2

x2
+ h(y, dy).
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M

Figure 1. Example of a manifold with cylindrical ends with the ends

compactified. Highlighted in red is the the boundary of the compactifi-

cation Y = ∂M

Note that now x = 0 is the infinite end and x = 1 is where we link with the compact

core. The more general metric (2.2) becomes

g = g
(
x, y,

dx

x
, dy

)
= a(x, y)

dx2

x2
− b(x, y)

dx

x
dy + c(x, y, dy). (2.3)

What we do now is to compactify the cylindrical end to [0, 1]x×Yy, adding the boundary

hypersurface {x = 0} = {t = ∞}. This yields a manifold with boundary, denoted

by M , and the boundary is ∂M = Y . See figure 1. For example, the compactification

of the basic cylinder R× Y is diffeomorphic to [−1, 1]× Y , with ±1 corresponding to

the two infinite ends t = ±∞. The function x on the infinite end can be extended to

a boundary defining function x : M → [0,∞), that is x is smooth on M , the interior

is given by M = {x > 0}, the boundary is ∂M = {x = 0}, and dx is nonvanishing

on ∂M .

To think geometrically about metrics of the form (2.3), let us now consider a general

compact manifold with boundary M and define the Lie algebra of b-vector fields

Vb(M)

consisting of smooth vector fields on M tangent to the boundary. If we take local

coordinates (x, y1, . . . , yn−1) near a point of the boundary ∂M , with x a boundary

defining function, then Vb(M) is spanned over C∞(M) by vector fields

x∂x, ∂y1 , . . . , ∂yn−1 .
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We now say that a Riemannian metric g on M is a b-metric if the inverse tensor g−1

can locally be written as a positive definite quadratic form in b-vector fields. This

gives exactly metrics of the form (2.3), where Y = ∂M .

2.2. b-Sobolev spaces and the Fredholm property. Let us assume now that M

is a compact manifold with boundary Y = ∂M and g is a b-metric on it (that is, (M, g)

is an asymptotically cylindrical manifold). Let x be a boundary defining function.

The volume density

d volg

of the metric g looks like |dxdy|
x

near the boundary in coordinates (2.3). It is natural to

consider the L2 space

L2(M ; d volg).

Then we have b-Sobolev spaces

Hs
b(M), s ∈ R

which give the natural notion of Sobolev space adapted to the metric g (or really, to

b-metrics as a class: different b-metrics give equivalent spaces). If s ≥ 0 is an integer,

then we can define them by testing by b-vector fields:

Hs
b(M) = {f : V1 . . . Vmf ∈ L2(M ; d volg) for all V1, . . . , Vm ∈ Vb(M), m ≤ s}.

For example, on the cylinder Rt × S1
y with the metric dt2 + dy2 this just corresponds

to applying the fields ∂t, ∂y no more than s times and getting a function in L2(R ×
S1; |dtdy|). On the line Rt with the metric dt2, we just have Hs

b(R) = Hs(R), the
standard Sobolev space.

We cannot expect the Fredholm property of ∆g to hold in general. This is already

evident for the case of the line: the operator −∂2
t is not Fredholm H2(R) → L2(R).

More precisely, the range −∂2
t (H

2(R)) is not closed in L2(R). Let us show here the

similar (but slightly shorter to prove) statement that ∂t(H
1(R)) is not closed in L2(R).

By basic ODE analysis the space ∂t(H
1(R))∩C∞

c (R) = ∂t(C
∞
c (R)) consists of functions

f ∈ C∞
c (R) such that

∫
R f(t) dt = 0 (here C∞

c denotes the space of smooth compactly

supported functions). Now take χ ∈ C∞
c (R) such that

∫
R χ(t) dt = 1 and consider the

family of functions fδ(t) := χ(t)− δχ(δt) ∈ C∞
c (R) for δ > 0. Then

∫
R fδ(t) dt = 0 and

thus fδ(t) ∈ ∂t(H
1(R)) but as δ → 0 we have fδ → χ in L2(R), and χ /∈ ∂t(H

1(R)).
However, we will get the Fredholm property in weighted b-Sobolev spaces

xαHs
b(M),

where the order α ∈ R of the space has to satisfy the condition (2.7) below. We have

the inclusion xαHs
b(M) ⊂ xα′

Hs′

b (M) when α ≥ α′ and s ≥ s′. For example, on the

line Rt, if we forget that |t| is not smooth at the origin, we can take x = e−|t| so that

xαHs
b(R) = e−α|t|Hs(R).
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To describe the condition on α, we look for solutions to the equation ∆gu = 0 asymp-

totically in the infinite end which have the form

u(x, y) = xλv(y) = e−λtv(y). (2.4)

Here λ ∈ C is a constant. The action of the operator ∆g on such functions is described

by its indicial operator, which is a λ-dependent family of second order elliptic partial

differential operators I(λ) on the boundary Y = ∂M defined as follows:

x−λ∆g(x
λv(y)) = I(λ)v(y) +O(x) as x → 0. (2.5)

One can compute the indicial operator by replacing x∂x = −∂t with λ in ∆g and then

setting x = 0, since x−λ(x∂x)x
λ = x∂x+λ. For example, in case of the product metric

g = dx2

x2 + h(y, dy), we have ∆g = −(x∂x)
2 +∆h and we compute

I(λ) = ∆h − λ2. (2.6)

We say λ is an indicial root of ∆g if the operator I(λ) is not invertible (say, as an

operator H2(Y ) → L2(Y )). The set indicial roots is a discrete subset of C. In the

case of the product metric the indicial roots are solutions to λ2 ∈ Spec(∆h), where

Spec(∆h) ⊂ [0,∞) is the L2 spectrum of ∆h on the compact manifold Y .

If an indicial root λ satisfies Reλ = α then the function u from (2.4) gives an element

of the kernel of ∆g in the infinite end (or if the metric in the end depends on x, a good

enough approximate solution) which barely misses being in the space xαL2(M ; d volg)

(in the sense that it lies in xα−εL2(M ; d volg) for any ε > 0) and this is what causes

the lack of Fredholm property. As a basic example, for the operator −∂2
t − 1 on R, the

indicial roots are ±i and the problematic solutions are e±it which barely miss being in

L2(R). On the other hand, for the operator −∂2
t +1 the indicial roots are ±1 and this

operator is Fredholm H2(R) → L2(R).
The main result presented in these notes is that the situation described in the above

paragraph is the only obstruction to the Fredholm property:

Theorem 1. Let M be a compact manifold with boundary Y = ∂M and g be a b-metric

on M . Let α ∈ R and assume the condition

there are no indicial roots λ of ∆g on the line {Reλ = α}. (2.7)

Then for any s ∈ R

∆g : x
αHs+2

b (M) → xαHs
b(M) is a Fredholm operator. (2.8)

Note that in the product case g = dx2

x2 + h(y, dy), the condition (2.7) says that

α2 /∈ Spec(∆h).
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2.3. The estimate and the parametrix. As in the case of compact manifolds,

the Fredholm property follows from an elliptic estimate. However, this time we need

improvement in both Sobolev regularity and in behavior at infinity: for xαHs
b(M) to

embed compactly into xα′
Hs′

b (M) we need both s > s′ and α > α′ (e.g. H1(Rt) does

not embed compactly into L2(Rt) but e−|t|H1(R) does). The elliptic estimate takes

the following form: there exists α′ < α such that for all s and N

∥x−αu∥Hs+2
b (M) ≤ C∥x−α∆gu∥Hs

b(M) + C∥x−α′
u∥H−N

b (M). (2.9)

We remark that the estimate (2.9) with α′ = α can be obtained by generalizing the

elliptic parametrix construction for compact manifolds (often called the small calculus

in the context of b-calculus), but as mentioned above this is not enough to get the

compact embedding needed for the Fredholm property. To get (2.9) with α′ < α

requires much more work (see below) and this is also where the condition (2.7) is used.

In fact, the proof will need α′ and α to satisfy the following condition:

there are no indicial roots λ in the strip {α′ ≤ Reλ ≤ α}. (2.10)

To prove the estimate (2.9), we again construct an elliptic parametrix. This time it is

a bounded operator

Q : xαHs
b(M) → xαHs+2

b (M)

such that

∆gQ = I +R where R : xα′
H−N

b (M) → xαHN
b (M). (2.11)

As before, we identify Q with its distributional kernel, Q ∈ D′(M ×M), as follows:

Qf(z) =

∫
M

Q(z, z′)f(z′) d volg(z
′)

and construct Q. Note that since M is a manifold with boundary, the product M ×M

is a manifold with corners.

2.4. A basic example and a preview of the general construction. To provide

some inspiration for the general construction of Q below, here we look at the cylinder

M = Rt × S1
y, S1 = R/2πZ, g = dt2 + dy2.

We would like to describe the inverse of ∆g : H2
b(M) → H0

b(M). This inverse does

not exist and the condition (2.7) fails since 0 is an indicial root. We could fix this by

instead looking at the operator ∆g + 1, but this makes the formulas longer. So we

instead illegally ignore the zero Fourier mode in the presentation below.

Writing the Fourier mode expansion f(t, y) =
∑

k∈Z fk(t)e
iky, we see that (∆gf)k =

Pkfk where Pk is the operator on R given by

Pk = −∂2
t + k2.
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For k ̸= 0, the inverse of Pk : H
2(R) → L2(R) has the integral kernel

Rk(t, t
′) =

e−|k|·|t−t′|

2|k|
.

(The reader can check that (−∂2
t + k2)Rk(t, t

′) = δ(t− t′).) Then we sum over Fourier

modes k ̸= 0 and get the ‘inverse’ to ∆g with the following integral kernel:

Q(t, t′, y, y′) =
∑
k∈Z\0

Rk(t, t
′)eik(y−y′).

To make our computations simpler (avoiding the logs that come up otherwise), let us

just compute the y-derivative of this kernel:

∂yQ(t, t′, y, y′) =
i

2

∑
k ̸=0

sgn k e−|k|·|t−t′|+ik(y−y′)

=
i

2

∑
k≥0

e−k|t−t′|(eik(y−y′) − e−ik(y−y′)
)

=
i

2

(
1

1− e−|t−t′|+i(y−y′)
− 1

1− e−|t−t′|−i(y−y′)

)
=

sin(y′ − y)

2(cosh(t− t′)− cos(y − y′))
.

(2.12)

This is a function of t− t′, y, y′ (in fact, of t− t′ and y− y′ but this uses our particular

choice of Y = S1):

∂yQ(t, t′, y, y′) = Z(t− t′, y, y′) where Z(τ, y, y′) =
sin(y′ − y)

2(cosh τ − cos(y − y′))
.

Note that Z is smooth on Rτ×T2
y,y′\{τ = 0, y = y′}, consistent with elliptic regularity.

Near the submanifold {τ = 0, y = y′} we can use the standard approximations of sin

and cos at 0 to get

Z(τ, y, y′) ≈ y′ − y

τ 2 + (y − y′)2
.

This shows that Z is conormal to {τ = 0, y = y′} (as it is homogeneous in τ, y − y′

and smooth except when τ = y − y′ = 0).

In the (x, x′, y, y′) variables, where x = e−t and x′ = e−t′ , we have

∂yQ(x, x′, y, y′) = Z(τ, y, y′) where τ = log
(x′

x

)
. (2.13)

We see that this is not smooth onM×M because of the dependence on x′/x. Moreover,

the singularities of ∂yQ in the interior M ×M are on the diagonal {x = x′, y = y′}
which meets the boundary of M ×M at the corner Y × Y = {x = x′ = 0}.
To construct the integral kernel of the elliptic parametrix Q in the next section we

pass from M ×M to a blown-up space [M ×M ;Y ×Y ] on which x′/x is ‘more smooth’
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and the diagonal meets the boundary of the blown-up space transversally at the front

face, which is produced by the blow-up. We next construct Q in a form which is

inspired by the example (2.13). This general construction has several steps:

(1) Construction of Q near the diagonal {x = x′, y = y′}, similar to the ellip-

tic parametrix construction in the compact case (this is known as the small

calculus).

(2) Construction of Q near the front face, using the Fourier transform and the

integral kernel of the inverse of the indicial operator I(λ)−1. One has to make

a choice of the contour in the Fourier transform and this is where the indicial

roots play a crucial role.

(3) Analysis of Q near the corners where the front face meets the left and right

boundary and extension of it to those two boundaries.

2.5. The blown-up double space. Let us first examine the geometry of M × M

near the boundary. Recall that near the boundary Y = ∂M , we have local coordinates

(x, y) where x is a boundary defining function and y ∈ Y . Upon possibly rescaling,

we may further assume that the coordinate patch in a neighborhood of Y is given by

{x < 1}. Then in a neighborhood of the corner Y × Y = {x = x′ = 0} ⊂ M ×M , we

can write the coordinates

(x, x′, y, y′) where (x, x′) ⊂ [0, 1)2, (y, y′) ∈ Y × Y (2.14)

The Laplacian ∆g is roughly translation invariant (in the t variable) near the infinite

ends of M , so in the compactified picture, ∆g is dilation invariant (in the x variable)

near the boundary ∂M . Therefore, it is useful to introduce “polar coordinates” near

the corner by

θ =
x′

x+ x′ ∈ [0, 1], r = x+ x′ ∈ [0, 1). (2.15)

These coordinates are degenerate at x = x′ = 0, but this can be resolved geometrically

by introducing a blowup. We will not give a precise definition of the blowup. Instead,

see Figure 2. Essentially, we replace the corner Y × Y with the hypersurface [0, 1]θ ×
Yy × Yy′ , called the front face (denoted ff). A point in this front face captures the

direction at which a point in the corner is approached. The part of the boundary at

θ = 1 (or equivalently x = 0, x′ > 0) is called the left boundary (denoted lb). The part

of the boundary at θ = 0 (or equivalently x′ = 0, x > 0) is called the right boundary

(denoted rb). The blown up space is denoted by

[M ×M ;Y × Y ]. (2.16)

The polar coordinates (2.15) give us a description of the blown up space near ff, but

in practice, they are a bit inconvenient for computations. Instead, we will consider a

neighborhood of ff in three coordinate patches.
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diag(M ×M)

Y × Y

lb

rbff

diag(M ×M)

Figure 2. Left: the space M × M with the diagonal and the corner

Y × Y labelled. Right: the blown up space [M ×M ;Y × Y ] where the

corner Y × Y is replaced by the hypersurface ff. The diagonal is again

labelled. The blow up is constructed so that there exists a smooth blow

down map β : [M ×M ;Y × Y ] → M ×M that acts as the identity on

the interior.

Region I: Near diag(M ×M) ∩ ff (where the closure is taken in [M ×M ;Y × Y ]):

τ := log
(x′

x

)
= t− t′ ∈ (−1, 1), r = x+ x′ ∈ [0, 1), y, y′ ∈ Y. (2.17)

Region II: Near rb ∩ ff

s = eτ = x′/x ∈ [0,
1

2
), x ∈ [0, 1), y, y′ ∈ Y. (2.18)

Region III: Near lb ∩ ff:

s′ = e−τ = x/x′ ∈ [0,
1

2
), x′ ∈ [0, 1), y, y′ ∈ Y. (2.19)

See Figure 3 for an illustration of these coordinates.

Example. Recall the parametrix we computed in (2.12) for the Laplacian on the

manifold Rt×S1
y. Let’s write ∂yQ in the three three coordinate patches near the front

face to get an intuition for the behavior of the parametrix in the blown up geometry.

First, in Region I, we see that

∂yQ(τ, r, y, y′) =
sin(y′ − y)

2(cosh(τ)− cos(y − y′))
. (2.20)

In particular, near the diagonal, that is for τ, y − y′ ≪ 1, we have

∂yQ(τ, r, y, y′) ≈ y′ − y

τ 2 + (y − y′)2
,

Note that this is independent of r. Since the Laplacian is dilation invariant with respect

to the compactified x = e−t coordinates, it is expected that the parametrix should also
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Region I

Region II

Region III

x

s

rτ
s′

x′

ff

rb

lb

Figure 3. Diagram of the coordinate patches defined in (2.17), (2.18),

and (2.19).

dilation invariant. More generally, it is crucial that Q(τ, r, y, y′) is smooth in r up to

r = 0 as a family of conormal distributions in (τ, y, y′) with respect to {y = y′}.
In Region II, we have

∂yQ(τ, r, y, y′) =
sin(y′ − y)

s+ s−1 − 2 cos(y − y′)

∼ sin(y′ − y)s+ 2 sin(y′ − y) cos(y′ − y)s2 + · · ·
(2.21)

as s → 0. In particular, there exists an expansion in powers of s as we approach rb

as a family of smooth functions in (x, y, y′), and if we were to continue the series, the

remainder can be made to lie in OC∞([0,1)x×Yy×Yy′ )
(sN). We say that ∂Q is polyhomo-

geneous near ff ∩ rb with respect to rb. Similarly, in Region III, we can see that ∂Q

is polyhomogeneous near ff ∩ lb with respect to lb.

Remark. In this example, Q was actually smooth up to all the faces. But in general

Q is smooth up to ff and polyhomogeneous up the other 2 faces (i.e. has expansions

in powers of s, but not necessarily with integer coefficients; the coefficients depend on

the indicial roots, see the full parametrix construction in §3.3).
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3. Construction of the parametrix

3.1. Reduction to front face. For simplicity, let us first work near an exact cylin-

drical end. This means that the Laplacian takes the simple form

∆g = −∂2
t +∆h,y = −∂2

t +∆y.

Here, ∆h is the Laplacian on (Y, h), but we will omit the the metric h in the notation

and instead write ∆y to emphasize that it hits only the y variable. In view of (2.11),

we see that the Schwartz kernel Q of the full parametrix should satisfy

∆gQ(τ, r, y, y′) = δ(τ)δ(y − y′) +R(τ, r, y, y′) (3.1)

near the corner Y × Y ⊂ M × M , where R is the Schwartz kernel of the remainder

term in (2.11).

In the cylindrical end, ∆g is translation invariant with respect to t, thus dilation

invariant with respect to x = e−t, so we should try to look for a parametrix that is

also dilation invariant. What this means for the Schwartz kernel Q near Y ×Y is that

it should only depend on (τ, y, y′). That is, it is killed by the vector field −2r∂r which

is same as ∂t + ∂t′ . So we can actually just ignore the r variable near {r = 0}.
By the same reasoning, we can also expect the remainder R to be dilation invari-

ant. Furthermore, the remainder term must improve in both decay and regularity.

Therefore, in our exact cylindrical end case, we should require that R is smooth in the

interior M ×M ⊂ [M ×M ;Y × Y ], and vanishes in a small neighborhood of the front

face:

R ∈ C∞(M ×M), R(τ, r, y, y′) = 0 for r ∈ [0, 1). (3.2)

Then restricting (3.1) to a neighborhood of the front face, we arrive at the equation

(−∂2
τ +∆y)Q(τ, y, y′) = δ(τ)δ(y − y′). (3.3)

Remark. In more general cases, we might not have exact dilation invariance, so we

cannot just ignore the r variable. However, we only need the remainder R to vanish

at r = 0 to gain decay. Observe that

∆gQ(τ, r, y, y′) = (−∂2
τ +∆y)Q(τ, r, y, y′)

+

(
2

eτ + 1
∂τ −

eτ

(eτ + 1)2
− 1

(eτ + 1)2
r∂r

)
r∂rQ(τ, r, y, y′), (3.4)

so the second term vanishes at r = 0. Therefore, if we restrict to r = 0, we in fact end

up with the same equation as (3.3).

Geometrically, we have just reduced the problem of finding a parametrix that im-

proves decay near infinity to solving an exact problem at the front face of the blowup.

To motivate the formula we will write for Q, let us try to formally solve the equation
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R− ia

R− ia′

Figure 4. The blue solid line is the contour used in the definition

of (3.5). In red are the poles of (σ2+∆y)
−1. The dashed blue line is the

contour deformation used to obtain asymptotics towards rb. See (3.22).

by taking the Fourier transform in τ . Let σ be the Fourier dual variable to τ , then the

formal Fourier transform of (3.3) is given by

(σ2 +∆y)Q̂(σ, y, y′) = δ(y − y′).

Therefore, we are motivated to define

Qa(τ, y, y
′) = Q(τ, y, y′) :=

1

2π

∫
R−ia

eiστ (σ2 +∆y)
−1 dσ (3.5)

for a ∈ R, where by a slight abuse of notation, we write (σ2 + ∆y)
−1 for both the

operator and its Schwartz kernel. See Figure 4. Note in particular that if σ2 + ∆y is

invertible for all σ ∈ R− ia, then the integral makes perfect sense, since it follows from

the spectral theorem that

∥(σ2 +∆y)
−1∥L2(Y )→L2(Y ) ≤ Ca|σ|−2, σ ∈ R− ia.

Furthermore, with Q defined by (3.5), one can make sense of the Fourier–Laplace

transform of Q (and its derivatives) in suitable strips of the complex plane, so Q will

indeed satisfy (3.3) near the front face.

3.2. A 1-D example. In the end, we wish to understand the inverse Fourier transform

in (3.5). Let us first work out a toy example in one dimension. Consider the operator

−∂2
t + 1 on R. Then a Schwartz kernel of a parametrix near t = t′ = ∞ in τ = t− t′



A QUICK INTRODUCTION TO B-CALCULUS 15

coordinates is given by

Q(τ) =
1

2π

∫
R−ia

eiστ (σ2 + 1)−1 dσ.

This integral converges absolutely when a ̸= ±1. Let us consider the behavior as

τ → ±∞.

We will compute Q in both τ -coordinates and coordinates s = eτ from (2.18). The

s coordinates will illustrate the behavior of Q to rb (as well as to lb if we consider

s → ∞). Note that Q depends on the choice of a we make. We have three cases,

which we will denote by Qj for j = −1, 0, 1.

Case 1: a > 1. For τ > 0, we can deform the contour R− ia to the contour R + iN

as N → +∞ and find that

Q1(τ) =
e−τ − eτ

2
, τ > 0.

Deforming the contour to R− iN as N → −∞ for τ < 0, we have

Q1(τ) = 0, τ < 0.

In s coordinates, we see that

Q1(s) =

{
1
2
(e−τ − eτ ), s > 1

0, 0 < s < 1.

Case 2: a < −1. By similar contour deformations, we find that

Q−1(τ) =

{
0, τ > 0,
1
2
(eτ − e−τ ), τ < 0,

and

Q−1(s) =

{
0, s > 1,
1
2
(s− s−1), 0 < s < 1.

Case 3: |a| < 1. Finally, we have

Q0(τ) =
1

2
e−|τ |,

and

Q0(s) =

{
1
2
s−1, s > 1,

1
2
s, s < 1.

Let us analyze the mapping properties of Qj near x = 0 (that is t = ∞), where Qj

is the parametrix with Schwartz kernel Qj. We first work in the t, t′ coordinates since
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Qj are simply convolution operators in these coordinates. Let us apply Q0 to functions

of the form u(t) = e−ℓt for t ≥ 0 and 0 for t < 0. Then

Q0u(t) =

∫ ∞

0

e−|t−t′|e−ℓt dt (3.6)

In order for the integral to converge, note that we must have ℓ > −1. If ℓ > 1, then

e−ℓt decays much faster than the convolution kernel, so then as t → ∞, Q0u(t) ≃ e−t.

On the other hand, if −1 < ℓ < 1, the convolution kernel decays much faster than e−ℓt,

so Q0u(t) ≃ e−ℓt as t → ∞.

To emphasize the geometric aspects, we also consider the same mapping properties

in the x = e−t coordinates. We consider how Qj acts on functions that are locally

invariant by the generator of dilations in x near x = 0. Fix a cutoff χ ∈ C∞
c ([0,∞))

such that χ(x) = 1 near 0, and consider u(x) := χ(x)xℓ. Then

Q0u(x) =

∫ ∞

0

Q0(x, x
′)χ(x′)x′ℓdx

′

x′ = xℓ

∫ ∞

0

Q0(s)χ(xs)s
ℓds

s
(3.7)

Since Q0(s) =
1
2
s, near 0, we see that in order for the integral to converge, we must

have

ℓ > −1. (3.8)

In other words, Q0 can only be applied to functions that decays faster than x−1 near

0. Now let’s look at the decay of the output. If ℓ > −1, then as x → 0,

Q0u(x) ≃ xℓ

∫ x−1

0

Q0(s)s
ℓds

s
≃ xℓ + xℓ

∫ ∞

2

s−1sℓ
ds

s
≃ xℓ + x. (3.9)

Therefore, we see that if −1 < ℓ < 1, then Q0u(x) ≃ xℓ near 0, and if ℓ ≥ 1, then

Q0u(x) ≃ x near 0.

The mapping properties we just found can be viewed in a more geometric way.

We can view Q0 as a function on [0, 1)x × [0, 1)x′ . We can resolve the singularity at

0 by blowing up the corner. Then Q0 conormal to the diagonal smoothly up to ff,

and vanishes to first order to both lb and rb. More generally, we have the following

proposition.

Proposition 3.1 (rough statement). Consider Q ∈ C∞((0, 1)2) such that in the blown

up space [[0, 1)2; {(0, 0)}], Q is smooth up to ff. Furthermore, assume that near ff ∩ lb

(using Region II (2.18) coordinates), there exists a discrete set Erb ⊂ R that is bounded

below such that

Q(x, s) ∼
∑
λ∈Erb

sλvs(x), vs ∈ C∞([0, 1)), (3.10)
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and near ff∩lb (using Region III (2.19) coordinates), there exists a discrete set Elb ⊂ R
that is bounded below such that

Q(x, s) ∼
∑
λ∈Elb

(s′)λws(x
′), ws ∈ C∞([0, 1)). (3.11)

Let E• := min E• where • = lb, rb. Then the operator Q with Schwartz kernel Q has

the mapping property

Q : xαHs
b([0, 1)) → xβHs+N

b ([0, 1)) (3.12)

if β ≤ α, α > −Erb, and β < Elb, for all s,N ∈ R.

Remark. With asymptotic expansions (3.10) and (3.11), we are requiring that Q

is polyhomogeneous conormal to rb and lb. More general polyhomogeneous conormal

distributions may contain logs and complex powers in their expansion, and we will

inevitably encounter these. However, the proposition remains true with little change,

so for the sake of exposition, we keep the expansions simple and refer the reader

to [Mel93] for a more precise treatement. Erb and Elb are the order of vanishing of

Q to rb and lb respectively. We see from the above proposition that the permissible

range of weights for the mapping property is determined by the order of vanishing

of the Schwartz kernel to the left and right boundary of the blown up space. For

simplicity, we assumed above that Q is smooth on the interior of [0, 1)2, so from a

differential point of view, these operators are smoothing. However, we can also allow

Q(r, τ) to be an r-dependent family of conormal distributions in τ with respect to

{τ = 0} in the Region I (2.17) coordinates. In this case Proposition 3.1 holds with the

expected adjustments to the differential order in the Sobolev spaces. A consequence

of the Proposition 3.1 applied to the operators Qj computed in this subsection is that

Qj : x
αHs

b([0, 1)) → xαHs+2
b ([0, 1)) for


|α| < 1, j = 0

α > 1, j = 1

α < −1, j = −1.

(3.13)

In anticipation of the full parametrix remainder, we also consider the Schwartz

kernels that vanish to infinite order up to the front face. We have the following mapping

property, which follows from similar analysis.

Proposition 3.2 (rough statement). Let Q be as in Proposition 3.1. Further assume

that Q vanishes to infinite order up to the front face. More explicitely, this means that

the in Regions II and III, the asymptotic expansions (3.10) and (3.11) further satisfy

vλ(x), wλ(x) = O(x∞), (3.14)
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and in Region I, Q(r, τ) = OC∞((−1,1)τ )(r
∞). Then the operator Q with Schwartz kernel

Q has the mapping property

Q : xαHs
b([0, 1)) → xβHs+N

b ([0, 1)) (3.15)

if α > −Erb, and β < Elb, for all s,N ∈ R.

In particular, note that if Q vanishes to infinite order up to ff, the condition β ≤ α

is no longer required, which means that the operator Q can improve decay.

3.3. Full parametrix asymptotics. Now we return to (3.5). First, recall that (σ2+

∆y)
−1 is a meromorphic family of operators. define

Specb(∆g) := {σ ∈ C | σ2 +∆y is not invertible}.

Recall that we defined indicial roots as the roots of the indicial family (2.6). It is no

coincidence that σ ∈ Specb(∆g) if and only if λ = iσ is an indicial root. Note that by

taking the Fourier transform of ∆gQ in (3.5), what we are essentially doing is studying

how ∆g acts on functions of the form e−iσt = xiσ, which is precisely how we arrived at

the indicial family (2.6).

Remark. In most of the literature (see, for instance, [Mel93]), the indicial roots of

∆g refer to the set Specb(∆g). This convention is designed so that the indicial family

is simply given by the Fourier transform of the Schwartz kernel restricted to ff using

the τ coordinates. For the sake of exposition, we defined the indicial family as (2.6)

to emphasize the dilation invariant structure of b-operators.

Clearly, z ∈ C is a pole of (σ2 +∆y)
−1 if and only if z ∈ Specb(∆g), and for σ in a

sufficiently small neighborhood of z ∈ Specb(∆g), we have

(σ2 +∆y)
−1 =

Π−z2

σ2 − z2
+Rhol(σ) (3.16)

where Rhol is a holomorphic family of bounded operators on L2, and Π−z2 is the L2-

orthogonal projection onto the (−z2)-eigenspace of ∆y. We see that in the case of an

exact cylindrical end, the poles are in fact simple except at σ = 0, which has order 2.

Furthermore, it follows from elliptic regularity for compact manifolds that Π−z2 is a

smoothing operator, so the Schwartz kernel is smooth. Most importantly, all the poles

lie on the imaginary axis, which means that there are only finitely many poles in any

finite strip R+ i[α, β], −∞ < α < β < ∞.

We first consider the behavior of Q in Region I of Figure 3. For τ ̸= 0, we can

integrate by parts using 1
iτ
∂σ and find that

Q(τ, y, y′) =
1

2π

∫
R−ia

eiστ (σ2 +∆y)
−1 dσ =

1

2π

∫
R−ia

1

iτ
eiστ∂σ(σ

2 +∆y)
−1 dσ. (3.17)
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Differentiating the resolvent in σ, we see that

Dσ(σ
2 + 1)−1 = 2iσ(σ2 +∆y)

−1(σ2 +∆y)
−1. (3.18)

For σ ∈ R+ ia, there exists C > 0 such that

∥(σ2 +∆y)
−1∥L2→L2 ≤ C|σ|−2, ∥(σ2 +∆y)

−1∥Hs→Hs+2 ≤ C. (3.19)

Therefore, it follows from (3.17) and (3.18) that for τ ̸= 0,

∥Q(τ, •, •)∥L2(Y )→H2(Y ) < ∞.

Iteratively integrating by parts, we find that Q(τ, •, •) is in fact the Schwartz kernel

of a smoothing operator on Y for τ ̸= 0, depending smoothly in τ for τ ̸= 0. Therefore

Q(τ, y, y′) is in fact smooth away from τ = 0.

Since the Schwartz kernel of (σ2 +∆y)
−1 is smooth away from {y = y′}, we also see

that Q(τ, y, y′) is smooth away from y = y′. Therefore, the only singularity is on the

diagonal {y = y′, τ = 0}. We state without proof that Q(τ, y, y′) is conormal to the

diagonal. Roughly speaking, this is because (σ2 + ∆y)
−1 is a symbol in σ, valued in

distributions in (y, y′) conormal to {y = y′}. Hence the inverse Fourier transform is

conormal to {τ = 0, y = y′}.
To analyze the behavior of Q near rb, it is again convenient to use the coordinates

s = eτ so that

Q(s) =
1

2π

∫
R−ia

siσ(σ2 +∆y)
−1 dσ. (3.20)

This is Region II in Figure 3, and we are interested in the behavior as s → 0. For

s < 1, we are away from the diagonal, so by integrating by parts as in (3.17), we see

that Q(s) is a smoothing operator on Y and satisfies the bound

∥Q(s)∥Hℓ(Y )→Hℓ+N (Y ) ≲ sa as s → 0 (3.21)

Deforming the contour down (see Figure 4), we see that

Q(s) =
∑

z∈Specb(∆g)
−a′<Im z<−a
k≤ord(z)−1

siz(log s)kAz,k +

∫
R−ia′

siσ(σ2 +∆y)
−1 dσ, s < 1 (3.22)

where Az,k are smoothing operators (since they are a multiple of projection operators

onto an eigenspace following (3.16)), and ord(z) denotes the order the pole of (σ2 +

∆y)
−1 at σ = z. In our case, ord(z) = 1 if z ̸= 0 is a pole, and ord(z) = 2 when z = 0.

Furthermore, the remainder term satisfies the bound∥∥∥∥∫
R−ia′

siσ(σ2 +∆Y )
−1 dσ

∥∥∥∥
Hℓ(Y )→Hℓ+N (Y )

≲ sa
′
, (3.23)

which in particular decays faster than sa as s → 0 since a′ > a. This expansion

therefore gives precise asymptotics towards rb.
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Similarly, for the behavior as of Q near lb, we can use the coordinate s′ = e−τ . This

is Region III in Figure 3. As s′ → 0, we can deform the contour up and see that

Q(s′) =
∑

z∈Specb(∆g)
−a<Im z<−a′

k≤ord(z)−1

(s′)−iz(log s′)kAz,k +

∫
R−ia′

(s′)−iσ(σ2 +∆Y )
−1 dσ s′ < 1, (3.24)

and the remainder satisfies the bound∥∥∥∥∫
R−ia′

siσ(σ2 +∆Y )
−1 dσ

∥∥∥∥
Hℓ(Y )→Hℓ+N (Y )

≲ (s′)−a′ , (3.25)

as s′ → 0. Since a′ < a, this remainder decays faster than (3.21) as s′ → 0. The

expansion (3.24) is therefore giving us precise asymptotics towards lb.

Summarizing our analysis of the full parametrix and applying Proposition 3.1, we

arrive at the following result for the parametrix cutoff near ff.

Proposition 3.3. Let a ∈ R be such that (R+ ia) ∩ Specb(∆g) = ∅. Let

Erb := −max{Im z : z ∈ Specb(∆g), Im z < −a},
Elb := min{Im z : z ∈ Specb(∆g), Im z > −a}.

Fix χ ∈ C∞
c ([0, 1)) be such that χ(r) = 1 near r = 0 and χ(r) as a function on M is

supported in the exact cylindrical end. Define the cutoff parametrix

Q̃(τ, r, y, y′) :=
1

2π
χ(r)

∫
R−ia

eiστ (σ2 +∆y)
−1 dσ.

Then

∆gQ̃(τ, r, y, y′) = δ(τ)δ(y − y′) in a small neighborhood of ff,

and

Q̃ : xαHℓ
b(M) → xβHℓ+2

b (M) (3.26)

is bounded for all β ≤ α, α > −Erb and β < Elb, where Q̃ is the operator with kernel

Q̃.

Remark. Note that Erb and Elb are the order of vanishing to rb and lb respec-

tively, meaning they are the leading order in the polyhomogeneous expansions (3.22)

and (3.24) respectively. Note that

Elb > −Erb,

so a simple case of the mapping property (3.26) is by taking α = β = a.

Now a global parametrix Q can be constructed by gluing Q̃ together with a small

parametrix Qs:

Q := Q̃+ (1− χ)Qs (3.27)
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where χ = χ(r) is the same cutoff as in Proposition 3.3. The small parametrix is

constructed so that Qs vanishes to infinite order near lb and rb, and can also be

constructed so that

Q̃(τ, r, y, y′) = Qs(τ, r, y, y
′) for r ∈ suppχ′, r near 0, and y and y′. (3.28)

The one can check that

∆gQ = Id+R (3.29)

where the remainder R is has Schwartz kernel R ∈ C∞(M × M) that vanishes to

infinite order near ff, and has order of vanishing Elb and Erb to lb and rb respectively.

The vanishing to ff is precisely what gives us the desired Fredholm property. In view

of Proposition 3.2, one finds that

R : xαHℓ
b(M) → xβHℓ+N

b (M) (3.30)

for any α > −Erb and β < Elb. Again, we emphasize that that we obtain extra decay

here since R vanishes to infinite order to ff, so we do not need to require β ≤ α unlike

the mapping properties for Q̃ from Proposition 3.3.

4. Notes

Here is a brief overview of some literature related to the topic of these notes:

• For the case of a compact manifold, there are many treatments of elliptic

parametrix and the Fredholm property, such as Hörmander [Hör07, Theo-

rem 19.2.1]. Operators with distributional kernels conormal to the diagonal are

commonly known as pseudodifferential operators ; this is a class which includes

differential operators, singular integral operators, and elliptic parametrices.

Our presentation in §1 largely follows the first author’s lecture notes [Dya22].

• b-calculus was developed by Richard Melrose in the 1980s. The earliest source

is the unpublished MSRI preprint of Melrose–Mendoza [MM83]. The classi-

cal reference is the ‘green book’ by Melrose [Mel93] which applies b-calculus

to index theory. In particular, our Theorem 1 is a special case of [MM83,

Theorem 6.17] and [Mel93, Theorem 5.40].

• b-calculus is a particular case of geometric scattering theory which uses tools

such as conormal distributions, manifolds with corners, and blow-ups to con-

struct parametrices for a wide range of geometries at infinity (including man-

ifolds with cylindrical, asymptotically hyperbolic, or asymptotically Euclidean

ends). Roughly speaking, the idea is to make the geometry complicated and

the analysis easier. The notes by Grieser [Gri01] contain a lot of the geometric

motivation and tools in b-calculus, as do the earlier notes by Melrose [Mel96].

More recent applications of geometric scattering theory to problems in geome-

try include [HHM04], [GH09], [KR24b], [KR24a], [DM18].
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• The notes by Hintz [Hin23] are another great introduction to geometric scatter-

ing theory. In particular, [Hin23, §3] gives a proof of the elliptic estimate (2.9)

without explicitly constructing an elliptic parametrix, but instead combines a

b-regularity estimate with indicial analysis.
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