MIT Integration Bee 11 January 2013 Qualifying Round

Name:

MIT Email:

This is the qualifying test for the 2013 Integration Bee, held on Friday, the 11th of January at 4:00 PM - 6:00 PM in room 4-145. Finalists will be notified by email by midnight tomorrow night (12:00 AM, Sunday, January 13th). You have 20 minutes to solve as many of the given 25 integrals as you can. Each integral is worth 1 point. In order to receive full credit you must express your answer in terms of x for indefinite integrals or simplified expressions in terms of constants for definite integrals, and your answer must be circled. There is no partial credit. The "log" symbol denotes the natural logarithm. In your answers, it is not necessary to include the arbitrary constant C nor the absolute value sign around the argument of a logarithm.
$1 \quad \int \log \left(x^{2}\right)-2 \log (2 x) d x=-x \log (4)+C$
$2 \int_{-1}^{3} e^{|x|} d x=e^{3}+e-2$
$3 \int \frac{(\log x)(\cos x)-(\sin x)(1 / x)}{(\log x)^{2}} d x=\frac{\sin x}{\log x}+C$
$4 \int_{1}^{11} x^{3}-3 x^{2}+3 x-1 d x=2500$
(5) $\int_{0}^{2} \sqrt{12-3 x^{2}} d x=\pi \sqrt{3}$
(6) $\int_{0}^{6} x+(x-3)^{7}+\sin (x-3) d x=18$
$7 \int \sin x \sqrt{1+\tan ^{2} x} d x=-\log \cos x+C$
$8 \int \frac{x^{5}-x^{3}+x^{2}-1}{x^{4}-x^{3}+x-1} d x=\frac{x^{2}}{2}+x+C$
9 $\int_{0}^{1} \log x d x=-1$
$10 \int \frac{1}{1-e^{-x}} d x=\log \left(1-e^{x}\right)+C$
$11 \int_{0}^{\pi} \sin ^{2} x \cos ^{2} x d x=\pi / 8$
$12 \int_{0}^{441} \frac{\pi \sin (\pi \sqrt{x})}{\sqrt{x}} d x=4$
$13 \int \tan ^{2} x d x=-x+\tan x+C$
$14 \int_{0}^{256}(x-\lfloor x\rfloor)^{2} d x=256 / 3$
$15 \int e^{\sqrt[4]{x}} d x=e^{\sqrt[4]{x}}\left(4 x^{3 / 4}-12 \sqrt{x}+24 \sqrt[4]{x}-24\right)+C$
$16 \int \cos x \cot x d x=\cos x-\log \cos (x / 2)+\log \sin (x / 2)+C$
$17 \int 2 \log x+(\log x)^{2} d x=x(\log x)^{2}+C$
$18 \int \frac{x^{3}}{1+x^{2}} d x=\frac{x^{2}}{2}-\frac{1}{2} \log \left(x^{2}+1\right)+C$
$19 \int \frac{1}{2-2 x+x^{2}} d x=-\tan ^{-1}(1-x)+C$
$20 \int \sin x \log (\sin x) d x=\cos (x)+\log \left(\tan \left(\frac{x}{2}\right)\right)-\cos (x) \log (\sin (x))+C$
$21 \int \frac{x}{1-x^{4}} d x=\frac{1}{4}\left(\log \left(1+x^{2}\right)-\log \left(1-x^{2}\right)\right)+C$
$22 \int \sqrt{12-3 x^{2}} d x=\frac{\sqrt{3}}{2}\left(x \sqrt{4-x^{2}}+4 \sin ^{-1}\left(\frac{x}{2}\right)\right)+C$
$23 \int \sec ^{5} x \tan ^{3} x d x=\frac{1}{35} \sec ^{5}(x)\left(5 \sec ^{2}(x)-7\right)$
24 $\int_{-\pi / 4}^{\pi / 4} \frac{1}{1-\sin x} d x=2$
$25 \int \frac{1}{x \sqrt{x^{2}-2}} d x=-\frac{\tan ^{-1}\left(\frac{\sqrt{2}}{\sqrt{x^{2}-2}}\right)}{\sqrt{2}}+C$

