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Abstract. Let (G,X) be a Shimura datum of Hodge type, and SK(G,X)

its integral model with hyperspecial (resp. parahoric, assuming the group is

quasisplit at p) level structure. We prove that SK(G,X) admits a closed em-
bedding, which is compatible with moduli interpretations, into the integral

model SK′ (GSp, S±) for a Siegel modular variety. More precisely, the nor-

malization step in the construction of SK(G,X) is redundant, and the flat
closure model is already smooth at hyperspecial level (resp. normal at para-

horic level). As a consequence, this also removes the normalization step in the

construction of SK′ (G′, X′) when (G′, X′) is of arbitrary abelian type.
Moreover, combined with a result of Lan’s on the boundary components

of toroidal compactifications of integral models, our result also implies that

there exist closed embeddings of toroidal compactifications of integral models
of Hodge type into toroidal compactifications of Siegel integral models, for

suitable choices of cone decompositions.
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1. Introduction

1.1. Main results and Outline. Let (G,X) be a Shimura datum of Hodge type,
i.e. it is equipped with an embedding (G,X) ↪→ (GSp(V, ψ), S±), where V is a
Q-vector space equipped with a symplectic pairing ψ. The embedding of Shimura
data induces an embedding of Shimura varieties ShK(G,X) ↪→ ShK′(GSp, S±),
where K ′ ⊂ GSp(Af ). The moduli interpretation of the Siegel modular variety
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ShK′(GSp, S±) naturally gives rise to an integral model SK′(GSp, S±). We con-
sider the integral model SK(G,X) of ShK(G,X) with hyperspecial (resp. para-
horic) level structure, as constructed in [Kis10] (resp. [KP18]), which is initially
defined as the normalization of the closure of ShK(G,X) inside SK′(GSp, S±). In
this article, we show that this construction can be simplified, in that the normal-
ization step is redundant, and that SK(G,X) is simply the closure of ShK(G,X)
inside SK′(GSp, S±).

Our main theorem is the following, which is independent of the choice of sym-
plectic embeddings.

Theorem 1.1.1. For K ⊂ G(Af ) small enough and hyperspecial, there exists some
K ′ ⊂ GSp(Af ), such that we have a closed embedding (“the Hodge embedding”)

SK(G,X) ↪→ SK′(GSp, S±)

Consequentially, the normalization step SK(G,X)
ν−→ S −

K (G,X) is redundant as

the closure S −
K (G,X) is already smooth, and the integral model SK(G,X) has a

moduli interpretation inherited from that of SK′(GSp, S±).

In particular, the Hodge morphism is a closed embedding in the PEL case, where
we consider integral models constructed in [Kot92] (resp. [RZ96]). To see the result
in that case (see [Xu21b] for details), recall that the Hodge morphism is given by
forgetting the OB-action on an abelian scheme A, where B is a semisimple Q-
algebra attached to the PEL moduli problem. Let T (p)(A) be the prime-to-p Tate

module. For a point on SK(G,X), the corresponding level structure η : V ⊗Ap
f

∼−→
T (p)(A)⊗Ap

f is compatible with the OB-actions. This shows that the OB-action on
A is already determined by η, and hence that the Hodge morphism is an embedding.
Strictly speaking, this argument only applies when we let the level structure away
from p go to zero, but it is not hard to deduce Theorem 1.1.1 from this.

In the general Hodge type case, the mod p points of the integral model SK(G,X)
can be interpreted as abelian varieties equipped with certain “mod p Hodge cycles”,
which come from reduction mod p of Hodge cycles in characteristic zero. These
mod p Hodge cycles are indeed motivated cycles in characteristic p in the sense of
[And96, And06b, And06a]. We denote the mod p Hodge cycle at a mod p point
x ∈ SK(G,X) by a tuple (sα,ℓ,x, sα,cris,x), which is determined by either its ℓ-
adic étale component or its cristalline component (see Proposition 3.2.7). This is
analogous to the case of Hodge cycles in characteristic 0, which are determined by
either their étale components or their de Rham components [Del82].

More specifically, let S −
K (G,X) be the closure of ShK(G,X) in SK′(GSp, S±).

By a criterion in [Kis17] (resp. [Zho17, GLX23]), two mod p points x, x′ ∈ SK(G,X)
that have the same image in S −

K (G,X) are equal if and only if sα,cris,x = sα,cris,x′ .
Therefore, to show that the normalization morphism is an isomorphism, it reduces
to proving the following “motivic” statement on cohomological tensors:

Proposition 1.1.2. sα,ℓ,x = sα,ℓ,x′ =⇒ sα,cris,x = sα,cris,x′ .

By a CM lifting result on SK(G,X) due to [Kis17] (resp. [Zho17, GLX23]), these
cohomological tensors lift, up to G-isogenies parametrized by affine Deligne–Lusztig
varieties, to Hodge cycles on CM abelian varieties. A key observation is that when
two mod p points x, x′ ∈ SK(G,X)(k) map to the same image in S −

K (G,X)(k),
they can be CM-lifted using the same torus, whose cocharacter induces the filtration
on the Dieudonné modules D(Ax) = D(Ax′) which then identifies the filtrations on
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the Dieudonné modules associated to CM-liftable mod p points, giving rise to an
isogeny in characteristic zero between the two CM lifts. This key observation
allows us to match up the mod p cristalline tensors using the input from ℓ-adic
étale tensors, precisely due to the rationality of Hodge cycles in characteristic zero
and the existence of an isogeny lift in characteristic zero.

It is worth pointing out that, in the case where the aforementioned cohomological
tensors are algebraic–for example, at points where the Hodge conjecture is true–the
family of Hodge cycles (tensors) sα that naturally lives over the Hodge type integral
model SK(G,X) becomes a flat family of algebraic cycles over SK(G,X). In this
case, sα,ℓ,x = sα,ℓ,x′ implies that the two algebraic cycles corresponding to the two
ℓ-adic cycles are ℓ-adic cohomologically equivalent, hence numerically equivalent,
and we only need to show that they are also cristalline-cohomologically equivalent.
Recall that the Grothendieck Standard Conjecture D says that numerical equiva-
lence and cohomological equivalence agree for algebraic cycles. The proof of 1.1.2
thus follows from a cristalline realisation of this Standard Conjecture D, for points
on the integral model of Hodge type and their associated cristalline tensors, which
are mod p Hodge cycles. The strategy here is similar to that in [Clo99], where the
Standard Conjecture D on abelian varieties over finite fields is proved for ℓ-adic
étale cohomology for a positive density set of primes ℓ. Our result essentially es-
tablishes, unconditionally, rationality for mod p Hodge cycles that live on mod p
points of Hodge type Shimura varieties.

In general, without the algebraicity of sα, Proposition 1.1.2 is essentially a weaker
form of a conjecture due to Yves André on the rationality of motivated cycles in
characteristic p > 0 [And96, And06a], which has implications for the Tannakian
category constructed by Langlands-Rapoport [LR87].

We remark that experts have long known the finiteness of the Hodge morphism
SK(G,X) → SK′(GSp, S±) for PEL type SK(G,X). Indeed, the finiteness of
such morphisms boils down to the finiteness of certain H1

fppf (see [Xu21a] for de-

tails). Note that for a general abelian type integral model, since the normalization
step really occurs in the construction of its associated Hodge type component (see
3.2.14), removing normalization from the construction of Hodge type models also
removes normalization from the construction of any abelian type integral model.
We immediately obtain the following corollary.

Corollary 1.1.3. Let (G′, X ′) be a Shimura datum of abelian type. The normal-
ization step in the construction of SK′(G′, X ′) is redundant.

Finally, we state the following two analogues of our Theorem 1.1.1. Firstly,
in the case of parahoric integral models constructed in [KP18], we impose a mild
technical assumption from [GLX23] on CM lifting, which is a strengthening of the
earlier parahoric CM lifting result in [Zho17], using our main theorem on connected
components of affine Deligne–Lusztig varieties obtained recently in [GLX23].

Theorem 1.1.4. Let G be quasi-split at p, and K a parahoric level structure. There
exists a closed embedding SK(G,X) ↪→ SK′(GSp, S±) of integral models, for some
suitable K ′. In particular, the normalization step in the construction of SK(G,X)
is redundant as the closure S −

K (G,X) is already normal.

The second analogue concerns toroidal compactifications of integral models of
Hodge type constructed in [MP19] (the PEL cases were constructed earlier in
[Lan13]). Combining our main theorem 1.1.1 with an analysis from [Lan19] on
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the boundary components of toroidal compactifications, one immediately obtains
the following result.

Corollary 1.1.5. Let (G,X) be a Shimura datum of Hodge type. For each K ⊂
G(Af ) sufficiently small1, there exist collections Σ and Σ′ of cone decompositions,
and K ′ ⊂ GSp(Af ), such that we have a closed embedding of toroidal compactifica-
tions of integral models

S Σ
K (G,X) ↪→ S Σ′

K′ (GSp, S±)

extending the Hodge embedding of integral models.
In particular, the normalization step is redundant, and S Σ

K (G,X) can be con-

structed by simply taking the closure of ShK(G,X) inside S Σ′

K′ (GSp, S±).

The construction of smooth (resp. normal) integral models of Shimura varieties
plays an important part in the Langlands program. For a more detailed historical
exposition, see [Kis10, Kis17, KP18] etc. On the other hand, such results as Theo-
rems 1.1.1, 1.1.4 and 1.1.5 have been useful in various other aspects of arithmetic
geometry, e.g. in the construction of p-adic L-functions using Euler systems tech-
niques, in the arithmetic intersection theory of special cycles on Shimura varieties
and their integral models as in the Kudla-Rapoport program etc.

1.2. Organization. In Chapter 2, we recall the basic theory of Hodge or abelian
type integral models as in [Kis10, Kis17] (resp. [KP18, Zho17, GLX23]), and ex-
plain how the question of whether the normalization morphism is an isomorphism
essentially reduces to proving the key proposition 1.1.2. In section 3.1, we review
CM lifting results on the integral model SK(G,X), and prove a few lemmas specific
to our setting. In section 3.2, we prove the key result 1.1.2 (see 3.2.7), which leads
to our Main Theorems 1.1.1 and 1.1.4 (see Theorem 3.2.9). We give the toroidal
compactification version in section 3.3.

Acknowledgments. I would like to thank my advisor Mark Kisin for suggesting
this problem to me, and for his continued encouragement. I would also like to thank
Ben Howard and Keerthi Madapusi Pera for helpful conversations. The author was
supported by Harvard University graduate student fellowships.

2. Integral models of Hodge type

This section reviews the theory of integral models of Hodge type from [Kis10,
Kis17]. Note that the p = 2 case is addressed in [KMP16], henceforward we will not
emphasize the difference between the p > 2 and the p = 2 cases in our expositions.
Our expositions will mainly focus on the hyperspecial case, and will mention the
parahoric analogues from [KP18, Zho17, GLX23] whenever necessary for our proofs.

2.1. Setup and notations.

2.1.1. We fix a Q-vector space V with a perfect alternating pairing ψ. For any
Q-algebra R, denote by VR = V ⊗Q R. Let GSp = GSp(V, ψ) be the corresponding
group of symplectic similitudes, and let S± be the Siegel double space. We fix an
embedding of Shimura data i : (G,X) ↪→ (GSp, S±) and assume that Kp ⊂ G(Qp)
is hyperspecial, i.e. Kp = GZ(p)

(Zp) for some reductive group GZ(p)
over Z(p) with

1For parahoric level, take the same conditions as in Theorem 1.1.4.
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generic fibre G. By [Kis10, 2.3.1, 2.3.2] the embedding i of Shimura data is induced
by an embedding GZ(p)

↪→ GL(VZ(p)
) for some Z(p)-lattice VZ(p)

⊂ V . By Zarhin’s

trick, up to replacing VZ(p)
by HomZ(p)

(VZ(p)
, VZ(p)

)4, we can assume that ψ also
induces a perfect pairing on VZ(p)

which we again denote by ψ. For any Z(p)-
algebra R, we denote VR = VZ(p)

⊗Z(p)
R.

Take K ′
p = GSp(VZ(p)

)(Zp) ⊂ GSp(Qp). For each compact open Kp ⊂ G(Ap
f ), by

[Kis10, 2.1.2], there exists a compact open K ′p ⊂ GSp(Ap
f ) such that K ′p ⊃ Kp

and that the embedding i of Shimura data induces an embedding

ShK(G,X) ↪→ ShK′(GSp, S±)

of E-schemes, where K ′ = K ′
pK

′p and K = KpK
p and E = E(G,X) is the reflex

field.

2.1.2. Let B be an abelian scheme over a Z(p)-scheme T , and we define the “prime-

to-p Tate module” to be the étale local system on T given by V̂ p(B) = lim←−
p∤n
B[n].

We denote “the rational Tate module away from p” by V̂ p(B)Q = V̂ p(B)⊗Z Q. We
work in the localized category of the category of abelian schemes over T , where
the morphisms are given by Hom groups in the usual category tensored with Z(p).
We call an object in this category an abelian scheme up to prime to p isogeny. An
isomorphism in this category will be called a p′-quasi-isogeny.

Let A be an abelian scheme up to prime to p isogeny, and let A∗ be the dual
abelian scheme. By a weak polarization we mean an equivalence class of p′-quasi-
isogenies λ : A ∼−→ A∗ such that some multiple of λ is a polarization, and two weak
polarizations are equivalent if they differ by an element of Z×

(p).

2.1.3. For an abelian scheme up to prime to p isogeny with a weak polarization,

i.e. a pair (A, λ), we denote by Isom(VAp
f
, V̂ p(A)Q) the étale sheaf on T consisting

of isomorphisms VAp
f

∼−→ V̂ p(A)Q which are compatible with the pairings induced

by ψ and λ up to an Ap×
f -scalar. We define a K ′p-level structure on (A, λ) to be a

section

(2.1.4) ϵpK′ ∈ Γ(T, Isom(VAp
f
, V̂ p(A)Q)/K ′p)

We consider the following functor from the category Sch/Z(p)
of Z(p)-schemes to

the category of sets

Sch/Z(p)
→ Sets

T 7→ {Isomorphism classes of triples (A/T, λ, ϵpK′)}

For K ′p sufficiently small, the above functor is representable by a smooth Z(p)-

scheme, which we denote by SK′(GSp, S±)Z(p)
, whose Q-fibre is precisely the Siegel

modular variety ShK′(GSp, S±).
Let O := OE denote the ring of integers of the reflex field E = E(G,X). Let

v|p be a prime of E lying over p, and denote by O(v) the localization at v. We

denote by SK′(GSp, S±)O(v)
the base change of SK′(GSp, S±)Z(p)

to O(v). Denote

by S −
K (G,X) the closure of ShK(G,X) in SK′(GSp, S±)O(v)

, and by SK(G,X)

the normalization of S −
K (G,X). We call the normalization SK(G,X) the integral

model of Hodge type for the Hodge type Shimura datum (G,X). In the following,
we shall denote by ν : SK(G,X)→ S −

K (G,X) the normalization morphism.
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2.2. Cohomological tensors over the integral model.

2.2.1. Recall from 2.1.1 that the embedding of Shimura data i is induced by a
closed embedding GZ(p)

↪→ GL(VZ(p)
) for some Z(p)-lattice VZ(p)

⊂ V . By [Kis10,

Proposition 1.3.2.], there exists a finite collection of tensors (sα) ⊂ V ⊗
Z(p)

such

that the subgroup GZ(p)
⊂ GL(VZ(p)

) is the scheme-theoretic stabilizer of these

tensors (sα). The moduli interpretation of SK′(GSp, S±) as the moduli space of
polarized abelian schemes gives us a universal abelian scheme A → SK′(GSp, S±).
Therefore, we can pullback this universal abelian scheme to an abelian scheme

(2.2.2) h : A → SK(G,X)

which, by abuse of notation, we still denote as A . Let VB = R1han∗ Z(p) and sα
have Betti realisations sα,B ∈ V ⊗

B . Consider the first relative de Rham cohomology
V = R1h∗Ω

• of A . The sα can be viewed as parallel sections of the complex analytic
vector bundle associated to V⊗, which lie in the Fil0 part of the Hodge filtration.
By [Kis10, Propositions 2.2.2, 2.3.9.], these sections have de Rham realisations
sα,dR ∈ V⊗ defined over O(v).

On the other hand, for a prime ℓ ̸= p, consider the étale local system Vℓ with Qℓ-
coefficients on SK(G,X) given by Vℓ := R1hét∗Qℓ, where hét is the map on étale
sites induced from h. The tensors sα have ℓ-adic étale realisations sα,ℓ ∈ V⊗

ℓ which
descend to O(v). Moreover, for an O(v)-scheme T and x ∈ SK(G,X)(T ), we define
sα,ℓ,x to be the pullback of the section sα,ℓ (defined over O(v)) to T . We denote by

Ax the pullback of A to x, thus sα,ℓ,x ∈ H1
ét(Ax,κ,Qℓ)

⊗, where κ := κ(x).
At the prime p, we consider the local system Vp := R1hη ét∗Zp, where hη the

generic fibre of h, and the tensors sα have p-adic étale realisations sα,p ∈ V⊗
p which

descend to E. Likewise, for an E-scheme T and x ∈ SK(G,X)(T ), we define sα,p,x
to be the pullback of sα,p to T . Thus sα,p,x ∈ H1

ét(Ax,κ,Zp)
⊗ where κ := κ(x).

2.2.3. For a point x ∈ ShK(G,X)(T ) ↪→ ShK′(GSp, S±)(T ), then the image of x
corresponds to a triple (Ax/T, λ, ϵ

p
K′), where Ax is an abelian scheme up to prime-

to-p isogeny over T and ϵpK′ is a section as defined in 2.1.4. For any finite index
subgroup K ′

1 such that K ⊂ K ′
1 ⊂ K ′, since we have the embedding

ShK(G,X) ↪→ ShK′
1
(GSp, S±)

(the image of) x also gives rise to a point of K ′
1-level structure, i.e. a section

ϵpK′
1
∈ Γ(T, Isom(VAp

f
, V̂ p(Ax)Q)/K

′
1
p
). We define

(2.2.4) ϵpK := lim←−
K′

1s.t.

K⊂K′
1⊂K′

ϵpK′
1
∈ Γ(T, Isom(VAp

f
, V̂ p(Ax)Q)/K)

Therefore, given a section ϵpK′ , we can “promote” it to a section ϵpK as defined in
2.2.4 above, for K ⊂ K ′.

Remark 2.2.5. The “promoted” level structures are realized in terms of the ℓ-adic
tensors, in the sense that ϵpK : sα 7→ (sα,ℓ)ℓ ̸=p.

2.2.6. We fix an algebraic closure Q of Q. For each place v of Q, we also fix an
algebraic closure Qv of Qv and embeddings Q ↪→ Qv. Let Fp be the residue field

of Qp. Denote L := FracW (Fp) and Qunr
p ⊂ L the subfield of elements algebraic

over Qp. We choose a fixed algebraic closure L of L, and an embedding Qp ↪→ L of
Qunr

p -algebras.
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Recall the notation E := E(G,X) for the reflex field of (G,X). Let Ep be the

completion of E at the prime corresponding to Q ↪→ Qp, and k ⊂ Fp be a subfield

containing the residue field kE of Ep. LetW :=W (k) andK ⊂ L be a finite, totally
ramified extension of W [1/p]. Take x ∈ SK(G,X)(k) and let x̃ ∈ ShK(G,X)(K)
be a point that specializes to x. LetK be the algebraic closure ofK in L. As before,
Ax̃ is the pullback of A to x̃, and Ax̃,K the geometric fibre of A over x̃. Thus we

have p-adic étale tensors sα,p,x̃ ∈ H1
ét(Ax̃,K ,Zp)

⊗, which are Gal(K/K)-invariant.

We will need the following result.

Lemma 2.2.7. ([Kis17, Proposition 1.3.7.]) (1) Under the p-adic comparison iso-
morphism

H1
ét(Ax̃,K ,Zp)⊗Zp

Bcris
∼−→ H1

cris(Ax/W )⊗W Bcris

the sα,p,x̃ map to φ-invariant tensors sα,cris,x̃ ∈ Fil0(H1
cris(Ax/W )⊗).

(2) There is a W -linear isomorphism

H1
ét(Ax̃,K ,Zp)⊗Zp

W
∼−→ H1

cris(Ax/W )

taking sα,p,x̃ to sα,cris,x̃. In particular, the sα,cris,x̃ define a reductive group scheme
GW ⊂ GL(H1

cris(Ax/W )) which is isomorphic to GZ(p)
⊗Z(p)

W .

(3) The filtration on Hcris(Ax/W )⊗W k is given by µ−1
0 where µ0 is a GW -valued

cocharacter conjugate to the Hodge cocharacter µh for h ∈ X.

2.2.8. Let x, x̃ be defined as above. Suppose we also have another point x̃′ ∈
SK(G,X)(K) which specializes to x′ ∈ SK(G,X)(k). Suppose moreover that
both x, x′ ∈ SK(G,X)(k) map to the same image x ∈ S −

K (G,X)(k) under the
normalization map ν. We shall make use of the following property about the
irreducible components of S −

K (G,X). In the hyperspecial case, we have:

Lemma 2.2.9. ([Kis10, Proposition 2.3.5]) Let x ∈ S −
K (G,X) be a closed point

with characteristic p residue field. Denote by Ûx the completion of S −
K (G,X) at x.

Then the irreducible components of Ûx are formally smooth over O(v).

In the parahoric case, the irreducible components are normal.

Lemma 2.2.10. ([KP18, Prop.4.2.2]) Let Ûx be the completion of S −
K (G,X)OEunr

at x. Then the irreducible component of Ûx containing x is isomorphic to M̂ loc
G,y

(which are normal by [PZ13]) as formal schemes over OEunr .

In 2.2.9 and 2.2.10, the term “irreducible components” of the formal scheme Ûx

refers to the irreducible components of the rigid analytic space attached to Ûx. See
[dJ95, § 7] for details. An immediate corollary of the proof for 2.2.9 (resp. 2.2.10)
is the following “cristalline criterion,” which forms the basis for the proof of main
theorem 1.1.1.

Lemma 2.2.11. (hyperspecial level [Kis17, Prop 1.3.9., Corollary 1.3.11]; parahoric
level [Zho17, Corollary 6.3])
(a) sα,cris,x̃ depends only on x and not on x̃. (Thus we will write sα,cris,x in place
of sα,cris,x̃ from now on.)

(b) Let x, x′ ∈ SK(G,X)(k) be two points having the same image in S −
K (G,X)(k).

Then x = x′ if and only if sα,cris,x = sα,cris,x′ .
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We will also need the following result, which goes into the proof of the CM lifting
theorem 3.1.12.

Lemma 2.2.12. [Kis17, 1.1.19] Let µ : Gm → G be a cocharacter, defined over K
and conjugate to µ0. Suppose that µ

−1 induces an admissible filtration on D(G )K :=
D(G )(W )⊗W K.

Then there exists a finite extension K ′/K with residue field k′, a p-divisible group

G̃ ′ over OK′ , and a quasi-isogeny θ : G → G ′ where G ′ = G̃ ′ ⊗OK′ k
′ such that

(1) θ identifies the filtration on D(G ′)K corresponding to G̃ ′ and the filtration
on D(G )K induced by µ−1.

(2) θ identifies D(G ′) with g · D(G ) for some g ∈ G(L) with

g−1bσ(g) ∈ G(OL)p
v0G(OL).

(3) Viewing sα,cris ∈ D(G ′)⊗ via θ, the deformation G̃ ′ of G ′ is gGW (k′)g
−1-

adapted, where gGW (k′)g
−1 is the stabilizer of sα,cris ∈ D(G ′)⊗.

The parahoric analogue of this lemma can be extracted from [KP18, §3].

2.3. A few more remarks on tensors.

2.3.1. We continue to use the notations as in the previous sections. To emphasize
the fact that S −

K (G,X) depends on a choice of K ′ ⊂ GSp(Af ), we denote it, briefly

for now, by S −
K,K′(G,X) instead. First we establish the following lemma, see also

Theorem 3.2.9.

Lemma 2.3.2. One of the following two situations always holds: either

(1) there exists a sufficiently small K ′ ⊂ GSp(Af ) such that SK(G,X) ∼=
S −

K,K′(G,X); or

(2) there exist two points x, x′ ∈ SK(G,X)(k) which have the same image
xK′ ∈ SK′(GSp, S±) for all K ′ containing K.

Proof. For each K ′ containing K, let UK′ ⊂ S −
K,K′(G,X) be the largest open set

of points where the normalization ν is an isomorphism. Let ZK′ be its complement,
which shrinks when K ′ shrinks. Since S −

K,K′(G,X) is Noetherian, the decreasing

sequence {ZK′}K′ stabilizes at some small enough K ′
∗. There are then two possi-

bilities: (1) if ZK′
∗
= ∅, then SK(G,X) ∼= S −

K,K′
∗
(G,X); (2) if ZK′

∗
̸= ∅, then we

can take a closed point x ∈ ZK′
∗
, hence x ∈ ZK′ for any K ′ containing K, such

that ν is not an isomorphism at x. Therefore, when we are not in situation (1),
there exist two points x, x′ ∈ SK(G,X) that map to x ∈ SK′(GSp, S±) for all K ′

containing K. □

Therefore, to prove Theorem 1.1.1, it suffices to treat only case (2) in Lemma 2.3.2.
We now show that case (2) reduces to an equality of the ℓ-adic tensors sα,ℓ. Let
x̃ ∈ SK(G,X)(K) be a characteristic 0 point that specializes to x ∈ SK(G,X)(k);
likewise, let x̃′ ∈ SK(G,X)(K) be a point that specializes to x′ ∈ SK(G,X)(k).

Lemma 2.3.3. Fix a level K ⊂ G(Af ). If x, x′ ∈ SK(G,X)(k) map to the same
image point xK′ ∈ SK′(GSp, S±)(k) for all K ′ containing K, then sα,ℓ,x = sα,ℓ,x′ .

Proof. For each K ′ containing K, by 2.2.3 we have sections ϵK′,x̃ and ϵK′,x̃′ which
promote to sections ϵpK,x̃ and ϵpK,x̃′ respectively. Since x and x′ map to the same
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image point xK′ ∈ SK′(GSp, S±), by 2.2.5, we have sα,ℓ,x ≡ sα,ℓ,x′ modK ′. There-
fore, sα,ℓ,x ≡ sα,ℓ,x′ mod

⋂
K⊂K′

K ′ = K. Therefore, sα,ℓ,x = sα,ℓ,x′ since they are

both invariant under K by construction. □

Remark 2.3.4. If x, x′ ∈ SK(G,X)(k) map to the same image point x ∈ S −
K (G,X)(k)

under the normalization map ν, and x̃, x̃′ ∈ SK(G,X)(K) are points that special-
ize to x, x′ respectively. Then Ax = Ax = Ax′ ; moreover, Ax̃ reduce mod p to Ax,
and Ax̃′ reduce mod p to Ax′ , i.e. Ax̃ and Ax̃′ have the same mod p reduction.

Now by Lemmas 2.2.11, 2.3.2 and 2.3.3, to show that the normalization morphism
is an isomorphism, it suffices to show that: (i.e. Proposition 1.1.2)

sα,ℓ,x = sα,ℓ,x′ =⇒ sα,cris,x = sα,cris,x′

Remark 2.3.5. If we knew that both the Hodge conjecture for abelian varieties
and the Grothendieck standard conjecture D for abelian varieties in characteristic
p are true, then our result follows trivially.

3. Proof of Main Theorem

3.1. CM lifting on the integral model.

3.1.1. First we recall some CM lifting results on the integral model SK(G,X) from
[Kis17, §2], whose notations we adopt. Let v be a miniscule cocharacter. Consider
the affine Deligne-Lusztig variety

Xv(b) = {g ∈ G(L)/G(OL) : g
−1bσ(g) ∈ G(OL)p

vG(OL)}.

For an arbitrary point x ∈ SK(G,X)(k), consider the abelian variety Ax and
its p-divisible group Gx. Consider the Dieudonne module D(Gx) := D(Gx)(OL).
Since D(Gx) is a Dieudonné module, v acting on D(Gx) has non-negative weights
and induces a minuscule cocharacter of GL(D(Gx)). If g ∈ Xv(b), then g · D(Gx)
is stable under Frobenius and satisfies the axioms of a Dieudonné module. Thus
g · D(Gx) corresponds to the Dieudonné module of a p-divisible group Ggx, which
is naturally equipped with a quasi-isogeny Gx → Ggx, corresponding to the natural

isomorphism g · D(Gx) ⊗Zp Qp
∼−→ D(Gx) ⊗Zp Qp. Note that by the definition of

G-invariant tensors, we have

(3.1.2) sα,cris,x = g(sα,cris,x) ∈ (gD(Gx))
⊗ = D(Ggx)

⊗.

Denote by Agx the abelian variety corresponding to Ggx. It is isogenous to Ax

by construction, and comes equipped with a canonical K ′-level structure ϵK′,g·x
induced from the level structure on Ax, and a weak polarization λg·x induced from
the weak polarization on Ax since G ⊂ GSp. We define a map

Xv(b)→ SK′(GSp, S±)(Fp)(3.1.3)

g 7→ (Agx, λgx)(3.1.4)

Lemma 3.1.5. (hyperspecial level [Kis17, Prop.1.4.4.]; parahoric level [GLX23,
Corollary 1.3]) There is a unique lifting of 3.1.3 to a map

(3.1.6) ιx : Xv(b)→ SK(G,X)(Fp)

such that sα,cris,x = sα,cris,ιx(g) ∈ D(Ggx)
⊗.
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Note that the uniqueness here simply follows from Lemma 2.2.11(b). Moreover,
3.1.6 extends to a ⟨Φ⟩ × ZG(Qp)×G(Ap

f )-equivariant map

(3.1.7) ιx : Xv(b)×G(Ap
f )→ SKp

(G,X)(Fp)

We call the image of ιx the G-isogeny class of x. Let δ ∈ G(K0) be as in [Kis17,
2.1.2], where K0 =W (k)[1/p]. More specifically, we fix an isomorphism

D(Gx)
∼−→ V ∗

Z(p)
⊗Z(p)

W

which takes sα,cris,x to sα. Thus we have identifications

GZ(p)
⊗Z(p)

K0 = GK0

∼−→ G(sα,cris,x) ⊂ GL(D(Gx)K0
)

∼−→ GL(H1
cris(Ax/W )K0

),

where G(sα,cris,x) ⊂ GL(D(Gx)K0
) denotes the subgroup defined by sα,cris,x. There-

fore, the Frobenius on D(Gx) has the form δσ with δ ∈ G(K0), where σ is the ab-
solute Frobenius on W (Fp). Note that the element δ is independent of the choices
made in its construction, up to σ-conjugacy by elements of G(W ).

3.1.8. As in [Kis17, § 2.1.2], attached to a point x ∈ SK(G,X)(k), let γℓ ∈
G(Qℓ) be the geometric q-Frobenius in Gal(Fp/k) acting on H1

ét(Ax,Qℓ) and Iℓ/k =
Iℓ,x/k ⊂ GQℓ

the centralizer of γℓ. Let Iℓ,n be the centralizer of γnℓ in GQℓ
, which

forms a decreasing sequence in GQℓ
and stabilizes to what we shall denote as Iℓ =

Iℓ,x for n sufficiently large.
Likewise, we can define Ip/k = Ip,x/k as the algebraic group over Qp whose

R-points for a Qp-algebra R is given by

(3.1.9) Ip/k(R) := {α ∈ G(W ⊗Zp R) : δσ(α) = αδ}.

For each positive integer n, let kn ⊂ Fp be the degree-n extension of k and we define
Ip,n by replacing W with W (kn) in 3.1.9. For n sufficiently large, the increasing
sequence Ip,n (as subgroups inside the group Jδ defined in [Kis17, 1.2.12]) stabilizes
and we denote this group by Ip := Ip,x. We write

(3.1.10) Ix ⊂ AutQ(Ax ⊗k Fp) = AutQ(Ax ⊗k Fp)

for the subgroup whose points Ix(R), for a Q-algebra R, consist of those elements
of AutQ(Ax ⊗k Fp)(R) fixing the tensors sα,cris,x and sα,ℓ,x for all ℓ ̸= p. Similarly,
attached to the point x′ ∈ SK(G,X)(k), we define Ix′ analogously. Let φ be the
Frobenius. The following Lemma is essentially the analogous result to [Tat66, Main
Theorem] for the Hodge cycles sα.

Lemma 3.1.11. (hyperspecial level [Kis17, 2.1.7]; parahoric level [GLX23, Corol-
lary 2.5]) For some prime ℓ ̸= p, IQℓ

= I ⊗Q Qℓ contains the connected component
of the identity in Iℓ. In particular, rank I = rank Iℓ = rankG.

The following CM lifting Theorem (and its proof) is crucial to our proofs. Thus
we also sketch its proof.

Lemma 3.1.12. (hyperspecial level [Kis17, Theorem 2.2.3.]; parahoric level [GLX23,
Corollary 1.4(2)]) The isogeny class ιx(Xv(δ) × G(Ap

f )) contains a point which is

the reduction of a special point on ShK(G,X).

Proof. We take a maximal torus T ⊂ Ip defined over Qp. Since I and Ip have the
same rank, we can assume that T is induced by a maximal torus T in the Q-group
I, and the induced action of T on D(Gx̃)K respects filtrations, where Gx̃ is a GW -
adapted deformation such that the filtration on D(Gx̃)K is given by µ−1

T (by Lemma



NORMALIZATION IN INTEGRAL MODELS OF SHIMURA VARIETIES OF ABELIAN TYPE11

2.2.12). One can then check that T is in fact a maximal torus in G and that x̃ is
a special point because the Mumford-Tate group commutes with T and is hence a
subgroup of T . □

In the parahoric case, an analogue of Lemma 3.1.5 is given in [Zho17, Prop.6.5]
under the assumption that GQp

is residually split, where the isogeny classes are
parametrized by a certain X(σ{µy}, b), which is a certain union of affine Deligne-
Lusztig varieties over certain µ-admissible set. The parahoric version of the CM
lifting theorem 3.1.12 is given in [Zho17, Theorem 9.4] under the same assumption
that GQp is residually split. In [GLX23], the parahoric version of Lemma 3.1.5 is
achieved without any assumption on G. The CM lifting theorem at parahoric level
holds under the relaxed assumption that G is quasisplit at p by [GLX23, Corollary
1.4 (2)] (see also Remark 3.2.12).

3.2. Finishing up the proof.

3.2.1. Recall the setting from §2.3 that we start with two mod p points x, x′ ∈
SK(G,X)(k) on the normalized integral model that map to the same image x ∈
S −

K (G,X)(k) for all K ′ ⊃ K. In particular, we have Ax = Ax′ = Ax by pulling
back the abelian scheme A → SK(G,X) to the point x or x′.

Consider the isogeny class ιx(Xv(δ) × G(Ap
f )). By 3.1.12, there exists a point

y := ιx(g) ∈ ιx(Xv(δ) × G(Ap
f )), for some g ∈ Xv(δ) × G(Ap

f ), such that Ay is

G-isogenous to Ax and such that sα,cris,x = sα,cris,y ∈ D(Ggx)
⊗, and such that y is

the reduction of a special point ỹ ∈ ShK(G,X)(K ′). Likewise, for the mod p point
x′, we define y′ and ỹ′ analogously.

Lemma 3.2.2. Let x, x′ ∈ SK(G,X)(k) be as in §3.2.1 and Ix, Ix′ as defined in
(3.1.10). We have Ix = Ix′ as subgroups of AutQ(Ax ⊗k Fp).

Proof. By Lemma 3.1.11, we have

Ix ⊗Q Qℓ = {g ∈ AutQℓ
(H1

ét(Ax,k,Qℓ))
∣∣gsα,ℓ,x = sα,ℓ,x for all ℓ ̸= p, gφ = φg},

and likewise

Ix′ ⊗Q Qℓ = {g ∈ AutQℓ
(H1

ét(Ax′,k,Qℓ))
∣∣gsα,ℓ,x′ = sα,ℓ,x′ for all ℓ ̸= p, gφ = φg}.

Since sα,ℓ,x = sα,ℓ,x′ for all ℓ ̸= p by Lemma 2.3.3, we have Ix ⊗Q Qℓ = Ix′ ⊗Q Qℓ,

thus we have Ix = Ix′ ⊂ AutQ(Ax ⊗Q Fp). □

3.2.3. By the proof of Lemma 3.1.12, to make such a CM lift ỹ of point y, one finds
a maximal torus Tx in Ix. The induced action of Tx on D(Gỹ)K′ respects filtrations,
and thus the action of Tx on Ay lifts to Aỹ.

Lemma 3.2.4. There is an isogeny Aỹ → Aỹ′ .

Proof. Since Ix = Ix′ by Lemma 3.2.2, we can take the same torus T := Tx = Tx′ ⊂
Ix = Ix′ to construct the CM liftings for x and x′, i.e. Aỹ and Aỹ′ . By Lemma
2.2.12, the filtration on D(Gy) corresponding to the deformation Gỹ is identified via
the isogeny Gy → Gx (induced by g ∈ Xv(δ)) with the filtration on D(Gx) = D(Gx′)
induced by µTx

= µTx′ , and this filtration is then identified with that on D(Gy′)
induced by the deformation Gỹ′ (of Gy′). In particular, the filtration induced by
Aỹ on D(Gy) is identified with the filtration induced by Aỹ′ on D(Gỹ′), thus we
obtain a priori a map between p-divisible groups Gỹ → Gỹ′ whose reduction mod p
is precisely the isogeny Gy → Gy′ given by the composition Gy → Gx = Gx′ → Gy′ of



12 YUJIE XU

G-isogenies. (Note that Gy → Gy′ is not a priori a G-isogeny.) Since we have a map
between the mod p abelian varietiesAy → Ay′ via composing the G-isogenies to and
from Ax = Ax′ , and a lifting of this map for p-divisible groups Gỹ → Gỹ′ , by Serre-
Tate theory, we then obtain an isogeny between abelian varieties Aỹ → Aỹ′ . □

Lemma 3.2.5. The isogeny (but not a priori G-isogeny) Aỹ → Aỹ′ sends the
Hodge cycle (sα,ℓ,ỹ, sα,dR,ỹ) to the Hodge cycle (sα,ℓ,ỹ′ , sα,dR,ỹ′).

Proof. Under the G-isogeny Ay → Ax, the tensors sα,ℓ,y get sent to sα,ℓ,x = sα,ℓ,x′ ,
which then get sent to sα,ℓ,y′ under the G-isogeny Ax′ → Ay′ . In particular, the
isogeny (but not a priori a G-isogeny) Ay → Ay′ , which factors through Ax =
Ax′ , sends sα,ℓ,y to sα,ℓ,y′ . Under the specialization isomorphism H∗

ét(Ay,k,Qℓ)→
H∗

ét(Aỹ,K ,Qℓ), the isogeny Aỹ → Aỹ′ sends sα,ℓ,ỹ to sα,ℓ,ỹ′ . Since Aỹ → Aỹ′ is an
isogeny in characteristic zero and Hodge cycles in characteristic zero are determined
by either its ℓ-adic étale or de Rham components (as they both come from the Betti
realizations), the isogeny Aỹ → Aỹ′ (again not a priori known to be a G-isogeny)
sends the Hodge cycle (sα,ℓ,ỹ, sα,dR,ỹ) to (sα,ℓ,ỹ′ , sα,dR,ỹ′). □

Corollary 3.2.6. The isogeny (again not a priori G-isogeny) Ay → Ay′ sends
sα,cris,y to sα,cris,y′ .

Proof. By Lemma 3.2.5, the mod p reduction Ay → Ay′ of Aỹ → Aỹ′ sends
the cristalline realizations sα,cris,y to sα,cris,y′ , via the specialization isomorphism
H∗

dR(Aỹ)→ H∗
cris(Ay/W )⊗W K. □

Now we are ready to prove the key proposition.

Proposition 3.2.7. sα,ℓ,x = sα,ℓ,x′ =⇒ sα,cris,x = sα,cris,x′

Proof. Combining Lemmas 3.2.2 through 3.2.6, the isogeny Ay → Ay′ sends sα,cris,y
to sα cris,y′ . On the other hand, this isogeny factors through the G-isogeny Ay → Ax

which sends sα,cris,y 7→ sα,cris,x and G-isogeny which sends sα,cris,x′ 7→ sα,cris,y′ ,
thus we must also have sα,cris,x = sα,cris,x′ (otherwise the image of sα,cris,y via this
composition of isogenies Ay → Ax = Ax′ → Ay′ would get sent to something other
than sα,cris,y′ , causing a contradiction). □

Remark 3.2.8. The Proposition 3.2.7 essentially suggests that the mod p points
of the integral model of Hodge type can be interpreted as abelian varieties equipped
with a well-defined notion of “mod pHodge cycles,” written as tuples (sα,ℓ,x, sα,cris,x),
which are determined by either their ℓ-adic étale components or their cristalline
components. This is analogous to the case with absolute Hodge cycles in charac-
teristic 0, which are determined by either their étale components or their de Rham
components.

Theorem 3.2.9. The normalization morphism ν is an isomorphism. In particular,
SK(G,X) admits a closed embedding into SK′(GSp, S±).

Proof. Resume the setting in §2.3. For any two mod p points x, x′ ∈ SK(G,X)(k)
that map to the same image in S −

K (G,X)(k) for all K ′ containing K, by Lemma
2.3.3 and Proposition 3.2.7, we have sα,cris,x = sα,cris,x′ . Therefore, by Lemma
2.2.11, we have x = x′. Therefore, the normalization morphism ν is injective on k-
points for any k ⊂ Fp that contains the residue field kE of Ep (2.2.6). On the other
hand, since the source and target of ν also have the same generic fibre ShK(G,X),
this implies that S −

K (G,X) is unibranch. Therefore, by definition ([EGA4, Chapter
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IV (6.15.1)]), the local ring Ux of S −
K (G,X) at x is unibranch. Thus by [Sta20,

Tag0C2E], the complete local ring Ûx only has one irreducible component. By
Lemma 2.2.9 (resp. Lemma 2.2.10), each irreducible component of the complete

local ring Ûx is formally smooth (resp. normal), thus each Ûx is formally smooth
(resp. normal) over O(v). Therefore, S −

K (G,X) is also smooth (resp. normal) over
O(v). In particular, the normalization morphism ν is an isomorphism of schemes,

and that the scheme-theoretic closure of ShK(G,X) inside SK′(GSp, S±)O(v)
is

already smooth (resp. normal). □

Remark 3.2.10. Note that in particular Theorem 3.2.9 does not depend on the
choice of a symplectic embedding (G,X) ↪→ (GSp, S±).

3.2.11. In particular, in the construction of the parahoric integral model SK◦(G,X)
in [KP18, §4.3.6], we can simply define it as the normalization of S −

K (G,X) in
ShK◦(G,X). This reduces the number of normalization steps by one.

We briefly recall the notations, and refer the reader to loc. cit. for the details.
We fix a point x ∈ B(G,Qp), i.e. the Bruhat-Tits building of G, and let G = Gx
be the corresponding smooth Zp-group scheme whose generic fibre is G, and such
that G0 is a parahoric group scheme. We write K◦

p = G◦(Zp) and K◦ = K◦
pK

p.
The parahoric integral model SK◦(G,X) with parahoric level structure K◦ is a
priori defined as the normalization of SK(G,X) in ShK◦(G,X), but can now be
simplified as simply the normalization of S −

K (G,X) in ShK◦(G,X), as above.

Remark 3.2.12. The main theorem on connected components of affine Deligne–
Lusztig varieties in [GLX23] holds in full generality, i.e. without the quasi-split
assumption; however, the CM lifting result in [GLX23] ultimately involves the
quasi-split assumption. It would certainly be interesting to extend the CM liting
result beyond the quasisplit case, and the author expects this to be quite doable.

Remark 3.2.13. In [KP18], G is supposed to split over a tamely ramified exten-
sion. We expect that this conditon can be relaxed using [KZ21].

Remark 3.2.14. Recall from [Kis10, Theorem 3.4.10] that abelian type inte-
gral models SK2(G2, X2) are built out of auxiliary Hodge type integral models
SK(G,X)+, where the reductive Z(p)-group scheme G2,Z(p)

admits a central isogeny

Gder
Z(p)
→ Gder

2,Z(p)
which induces an isomorphism (Gad, Xad)

∼−→ (Gad
2 , X

ad
2 ), as in

§3.3.6 loc.cit..
In the construction of such SK2

(G2, X2), since the normalization step occurs
only in the Hodge type step involving SK(G,X), Theorem 3.2.9 tells us that the
normalization step is unnecessary in the construction of arbitrary abelian type
integral models.

3.2.15. The fact that the mod p Hodge cycles (tensors) are determined by either
its ℓ-adic or its cristalline component (Proposition 3.2.7) can be thought of as
a “rationality” statement. As a historical remark, we remind the reader of the
following rationality conjecture of Deligne’s, which is a weakened form of the Hodge
conjecture.

Conjecture 3.2.16. (Deligne) Suppose two abelian varieties A1 and A2 defined
over Q have the same reduction A over Fp, and suppose there are given Hodge
cycles ξ1 and ξ2 on A1 and A2, respectively. Then the intersection number of the
reductions ξ1,ét and ξ2,ét is rational.
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In our specific situation for points on SK(G,X), given Ax̃ and Ax̃′ equipped
with Hodge cycles (sα,x̃) and (sα,x̃′) respectively. Suppose sα,x̃ and sα′,x̃′ have
complementary degrees viewed as cohomology classes on powers of Ax̃ and Ax̃′

respectively. Then Deligne’s rationality conjecture is automatic in this case: since
sα,x̃ deforms to a Hodge cycle on Ax̃′ (and likewise sα′,x̃′ deforms to a Hodge
cycle on Ax̃), the intersection number sα,ℓ,x ∪ sα′,ℓ,x′ is rational by rationality in
characteristic zero. The same is true at p, i.e. sα,cris,x ∪ sα,cris,x′ is rational.

3.3. Toroidal compactifications of integral models. We briefly mention one
application of our main theorem to the toroidal compactifications of integral mod-
els of Hodge type constructed in [MP19]. The main input is an analysis on the
boundary components from [Lan19], where the level structure is taken to be neat,
i.e. sufficiently small. We remark that while Lan’s result is conditional on the
existence of an embedding on the open part, our result is unconditional (since we
proved the embedding on the open part).

3.3.1. We adopt the notations loc. cit.. Let S Σ
K (G,X) =

∐
Z[σ] be a stratifica-

tion into locally closed subschemes, where σ ∈ Σ+
Z . Let S Σ′

K′ (GSp, S±) =
∐
Z ′

[τ ]

be a stratification, where τ ∈ Σ
′+
Z′ . Note that the Hodge morphism SK(G,X) →

SK′(GSp, S±) extends uniquely to a morphism S Σ
K (G,X) → S Σ′

K′ (GSp, S±) be-
tween their toroidal compactifications. In particular, the following diagram com-
mutes:

(3.3.2)

S Σ
K (G,X) S Σ′

K′ (GSp, S±)

SK(G,X) SK′(GSp, S±)

Corollary 3.3.3. Let (G,X) be a Shimura datum of Hodge type. For each K ⊂
G(Af ) sufficiently small2, there exist collections Σ and Σ′ of cone decompositions,
and K ′ ⊂ GSp(Af ), such that we have a closed embedding

(3.3.4) S Σ
K (G,X) ↪→ S Σ′

K′ (GSp, S±)

extending the Hodge embedding of integral models.
In particular, the normalization step is redundant, and S Σ

K (G,X) can be con-

structed by simply taking the closure of ShK(G,X) inside S Σ′

K′ (GSp, S±).

Proof. The result follows immediately by combining [Lan19, Thm 2.2] with our
main Theorem 1.1.1. For the reader’s convenience, we sketch the argument.

Let x′ ∈ S Σ′

K′ (GSp, S±) be any point that lies in the stratum Z ′
[τ ]. Then étale

locally at x′, 3.3.2 becomes

(3.3.5)

∐
j

(
EZ,j(σj)×SpecZ CZ,j

)
EZ′(τ)×SpecZ CZ′

∐
j

(
EZ,j ×SpecZ CZ,j

)
EZ′ ×SpecZ CZ′

2When the level structure is parahoric, one needs to also impose the assumptions as in 1.1.4
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More precisely, there exists an étale neighborhood U
′ → S Σ′

K′ (GSp, S±) of x′ and an

étale morphism U
′ → EZ′(τ)×SpecZ CZ′ which pullback via the Hodge morphism

to étale morphisms U → S Σ
K (G,X) and U →

∐
j

(EZ,j(σj)×SpecZ CZ,j).

By [Lan19, Prop 4.9], there exist “strictly compatible collections” (see [Lan19,
Definition 4.6]) Σ and Σ′ of cone decompositions with respect to the Hodge mor-
phism Φ. By Theorem 1.1.1 (resp. Theorem 1.1.4), the Hodge morphism

Φ : SK(G,X)→ SK′(GSp, S±)

is a closed embedding. Therefore, diagram 3.3.5 gives a closed embedding

(3.3.6)
∐
j

(EZ,j ×SpecZ CZ,j) ↪→ EZ′ ×SpecZ CZ′

over certain étale neighborhood U
′
of x′ (see [Lan19, 3.11]). This then implies that

(3.3.7) CZ,j → CZ′

are closed embeddings over the image of U
′
in CZ′ for all j. On the other hand,

one can check directly from the construction, as in [Lan19, Lemma 4.3], that

(3.3.8) EZ,j(σj) ↪→ EZ′(τ)

is a closed embedding. Therefore for each j, by 3.3.7 and 3.3.8 the map

EZ,j(σj)×SpecZ CZ,j ↪→ EZ′(τ)×SpecZ CZ′

is a closed embedding over the image of U
′
. To show that

(3.3.9)
∐
j

(
EZ,j(σj)×SpecZ CZ,j

)
→ EZ′(τ)×SpecZ CZ′

is a closed embedding, it then suffices to show that any point x′ in the image of
3.3.9 can only come from one of term indexed by j on the left-hand-side. We
show this by contradiction. Suppose there are j1 ̸= j2 and points y1 (resp. y2) of
EZ,j1(σj1)×SpecZCZ,j1 (resp. EZ,j2(σj2)×SpecZCZ,j2) that map to the point x′ of
EZ′(τ)×SpecZ CZ′ under 3.3.9. Then x′, y1 and y2 have the same image z′ ∈ CZ′ .
On the other hand, z′ is also in the image of closed embeddings CZ,j1 ↪→ CZ′

and CZ,j2 ↪→ CZ′ . By considering the pullbacks to z′ of the closed embeddings
EZ,j1(σj1)→ EZ′(τ) and EZ,j1(σj1)→ EZ′(τ), we obtain closed embeddings αj1 :
EZ,j1(σj1)z′ → EZ′(τ)z′ and αj2 : EZ,j1(σj1)z′ → EZ′(τ)z′ which have overlapping
images. One then argues as in [Lan19, 4.4, 4.8] to conclude that (EZ,j1)z′ → (EZ′)z′

and (EZ,j2)z′ → (EZ′)z′ would be closed embeddings with overlapping images, but
then this contradicts the Hodge embedding in Theorem 1.1.1 (resp. Theorem 1.1.4),
or more specifically its local consequence 3.3.6. □

Remark 3.3.10. Note that our current proof for Corollary 3.3.3 only gives us
the existence of cone decompositions Σ,Σ′ that produce closed embeddings of the
form 3.3.4. Our statement does not imply that for any cone decomposition Σ′ on
SK′(GSp, S±), there is an induced Σ on SK(G,X) such that (Σ,Σ′) gives the
desired closed embedding 3.3.4. It is unclear to the author at the moment whether
3.3.4 can be constructed for any Σ′.
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