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ABSTRACT. In this article, we show that in each of four standard families of hyperelliptic
curves, there is a density-1 subset of members with the property that their Jacobians have
adelic Galois representation with image as large as possible. This result constitutes an
explicit application of a general theorem on arbitrary rational families of abelian varieties
to the case of families of Jacobians of hyperelliptic curves. Furthermore, we provide explicit
examples of hyperelliptic curves of genus 2 and 3 over Q whose Jacobians have such maximal
adelic Galois representations.

1. INTRODUCTION

1.1. Background. Let A be a principally polarized abelian variety (PPAV) of dimension
g > 1 over a number field K. Fix an algebraic closure K of K, and let G = Gal(K/K) be
the absolute Galois group. The action of G on the torsion points of A(K) gives rise to the
adelic Galois representation R

pa: G — GSpyy(Z).

For prime numbers /, the mod-¢ Galois representation pae: G — GSpy,(Z/lZ) is defined
by reducing the image of p4 modulo ¢. See [Zyw15], Section 2.2] and [LSTX19, Section 3.1]
for more detailed descriptions of these representations.

In 1972, Jean-Pierre Serre proved the celebrated Open Image Theorem (see [Ser72]), which
states that for an elliptic curve E/K without complex multiplication, pg(Gk) is an open
subgroup of, and hence has finite index in, the profinite group GSpQ(Z). While the Open
Image Theorem implies that the adelic Galois representation maps onto a large subgroup
of GSpQg(z), the image of this representation is not always equal to GSpQg(Z). Indeed,
Serre observed in [Ser72l, Proposition 22| that for every elliptic curve E/Q, the image of pg
has even index in GSpQ(i). Nonetheless, in [Ser72, Sections 5.5.6-8], Serre constructs several
examples of elliptic curves over Q whose Galois representations have “maximal image” among
all elliptic curves, in the sense that the index of the image in GSpQ(z) is equal to 2.

The obstruction faced by elliptic curves over Q to having surjective adelic Galois repre-
sentation no longer exists when Q is replaced by a larger number field. In [Grel(], Greicius
constructs an example of an elliptic curve over a cubic extension of Q whose Galois represen-
tation has image equal to GSpQ(z). Furthermore, in [Zyw15], Zywina constructs an example
of a non—}iyperelliptic curve of genus 3 over (Q whose Jacobian has adelic Galois image equal
to GSpg(Z). While there are explicit examples in genera 1 and 3, to the authors’ knowl-
edge, there are no examples in the literature of curves of genus 2 with associated Galois
representation having maximal image among such curves. Additionally, there are no known
examples of hyperelliptic curves of genus 3 whose Galois image is maximal. Nevertheless,
there are a few examples that come close: In [Die02, Theorem 5.4], Dieulefait gives an exam-

ple of a genus-2 curve over QQ whose Jacobian has mod-¢ monodromy equal to GSp,(Z/(Z)
1
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for ¢ > 5. Similarly, in [ALS16, Corollary 1.1], an example of a genus-3 hyperelliptic curve
over Q whose Jacobian has mod-¢ Galois image equal to GSpg(Z/¢Z) for primes ¢ > 3 is
constructed. However, in both of these cases, it is easy to check that these examples have
mod-2 Galois image that is not maximal among all hyperelliptic curves of genus 2 or 3. In
Theorem , we improve on the results of [Die02] and [ALS16], giving explicit examples of
hyperelliptic curves of genus 2 and 3 over Q with maximal adelic Galois image. The reader
may wish to also refer to the related recent paper [ADI7|, which constructs hyperelliptic
curves with maximal mod-¢ Galois image in all genera g with the property that 2g + 2 can
be expressed as of sum of two primes in two different ways, with none of the primes being
the largest prime less than 2¢g + 2E|

In addition to finding explicit examples of PPAVs with maximal Galois image, there are
a number of results in the literature concerning how many members of a given family of
PPAVs have maximal adelic Galois image. The first key result in this direction is due to
Duke, who proved in [Duk97] that “most” elliptic curves E/Q in the standard family with
Weierstrass equation y* = z3 + az + b have the property that pp(Go) = GSp,(Z/(Z)
for every prime number /; here, the term “most” means a density-1 subset of curves or-
dered by naive height. Building upon the work of Duke, Jones proved in [Jonl0, Theorem
4] that [GSp2g(z) : pe(Gg)] = 2 for most elliptic curves E in the standard family over
Q. In [Zyw10b, Theorem 1.15], Zywina generalized the above results, showing that most
members of every non-isotrivial rational family of elliptic curves over an arbitrary number
field have maximal adelic Galois image, subject to the constraints that arise from the arith-
metic and geometric properties of the family under consideration. Additional results over
Q were obtained in [Gra00], [CHO5], and |[CGJ1I] (see |[Zyw1Ob, p. 6] for a more detailed
overview). In Theorem [1.2] we give an explicit version of [LSTX19, Theorem 1.1] — a result
that generalizes Zywina’s results to rational families of higher-dimensional PPAVs — for many
common families of hyperelliptic curves. This yields a generalization of [Zyw10al Theorem
1.2] and [Jon10, Theorem 4] to hyperelliptic curves of higher genus.

1.2. Main Results. In this paper, we primarily consider those PPAVs that arise as Ja-
cobians of hyperelliptic curves belonging to one of the following four standard families;
we restrict our consideration to curves of genus at least 2 because the results of Zywina
in [Zyw10b] completely handle the case of elliptic curves.

Definition 1.1. Let g > 2 be an integer, and for i € {1,2,3,4} define 7/9(?( by
1 29+1 2 2942
W():Ag-i- }\A(l), %(Jg:Ag-ﬁ- }\A@),

9,K [ao,...,a2qg [ag,...,a2g+1

W.‘J(yig = Azg ‘12971] \ A(B)’ Wg(;g = A2g+1 a2g] \ A(4)’

[a'07~“a [CLO,.“7

where each A® is the discriminant locus, on which the indicated polynomial has at least
one multiple root:

x29+2 + a2g+1x29+1 + ... + aO ~ A(Q)

x29+2 -+ a2gx29 + .+ ag S A(4)

Note that [ADI17] therefore does not address the cases g = 2,3, which we cover in this paper.
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Consider the following vanishing loci, and view them as families over 7/ i Via projection
onto the first factor:

V(y? — 2%t —aga® — - —ag) = K X A ] %(2,
V(y2 - $2g+2 — a2 +1£L’29+ : aO) K X A [x,y] - %(27
V(y? — 2%t —ag, 2 — o — ) — ”‘// "X A[ g %(2,

V(y? —a*% —aggz™ — - ao)(—>7/K><A ]—>7ﬂg(’2_

For 1 <1 < 4, define %E?{, the standard families of genus-¢g hyperelliptic curves by complet-
ing the above smooth affine curve over 7/ i 10 a smooth projective curve over V/Q( - The
definition of A® ensures that these are 1ndeed genus-g hyperelliptic curves. For a K-valued

point u € ”‘//g(zl)((K ), we denote by A, the Jacobian (which is necessarily a g-dimensional
PPAV) of the fiber over u of the corresponding standard family.

As we show in Section [B.3| the mod-2 Galois image of the Jacobian of a member of
9 (K always lands in a certain copy of the symmetric group Sog o (imod2) C Spo,(Z/2Z).
Denote by G82g+2_(1 mod 2),k the intersection of the following two subgroups of GSpgg( )E

(1) the subgroup of those matrices with multiplier landing in x(K) C 2*, where y denotes
the cyclotomic character, and (2) the preimage of Sog+2—(i mod 2) under the projection map

GSpy, (Z ) — Spy,(Z/2Z). Let Ht: PT(K) — R-q denote the absolute multiplicative height
on projective space, and define a height function ||—|| on the lattice O% sending (¢1,...,t,) —
max,; |o(t;)|, where o varies over all field embeddings o: K — C. Having fixed this notation,
our first main theorem may be stated as follows:
Theorem 1.2. Let B >0, i € {1,2,3,4}, g > 2, and let n be an arbitrarily positive integer.
Let 69 = 2, and let 6 = 1 for K # Q. Then [G82g12-(imod 2),k : pA.(GK)| > 0k for all
u € %SQ(K), and we have the following asymptotic statements, with the implied constants
depending only on n, g, and K:
{u € #, % (0x) : ull < B, [GSa445- (i moa 2.k : pa,(Gi)] = O}
{u € #,5(0k) : |lull < BY
{u € #,%(K) : Ht(u) < B, [GS2g42—(i moa 2).x * . (Gr)] = xc}|
{u € #(K) : Hi(u) < BY|

Furthermore, the statement above applies if we take i = 2 and replace 7/ % by any rational
family of hyperelliptic curves dominating the moduli of hyperelliptic curves so long as the
map to the moduli of hyperelliptic curves has geometrically connected generic fiber.

=14+ 0O((logB)™),

=14+ O((log B)™).

The methods employed to prove density-1 results like Theorem do not lend themselves
well to the construction of explicit examples, which may be useful insofar as they can provide
evidence in support of related conjectures. We now give two explicit examples, improving
upon the examples of [Die02] and [ALSI6] mentioned in Section[L.1] To the authors’ knowl-
edge, these are the first examples of hyperelliptic curves in genus g = 2 and 3 whose mod-/¢
monodromy is equal to GSpy,(Z/(Z) when ¢ > 2, and equal to Soy12 when ¢ = 2. Moreover,

we show the Galois representations of these curves have index 2 in the group GTS29+27Q. Note
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that all hyperelliptic curves over Q have Galois representation strictly contained in G82412 g,
as follows from Corollary (since the monodromy of any curve is contained in that of the
universal family). Hence, our examples yield curves with maximal monodromy among all
hyperelliptic curves of genus 2 and 3.

Theorem 1.3. Let Cy and C5 over Q be smooth projective models of the affine plane curves
cut out by the equations

Co i y? =ab 4+ 747122525 4+ 165487212 + 66394512 + 1685742122+
207541952 + 9508695, and

Cs:  y* = 2%+ 10781051650x" + 5302830080x° + 333621762 + 106565813762+
55223180802° + 423875225622 + 36134656002 + 3725404480.

Then for each g € {2,3}, the Jacobian Jo, of Cy is a g-dimensional PPAV over Q satisfying
the condition [G8ag12.0 1 pic, (Go)] = 2.

Remark 1.4. In checking the examples declared in Theorem [I.3] we combined the methods
developed in [ADI7] and [Zyw15] to expedite the verification process. It is also possible to
modify the techniques introduced in [Zyw15] to show that the curves cut out by the equations

(1.1) flz) =% —22* —22% — 32> — 22+ 1 and
(1.2) f(z) =a® — 42® + 4z + 4,

which are of respective genera 2 and 3, both have maximal monodromy. The reader may
contact any one of the authors if further details of the proof of this claim are desired.

The rest of this paper is organized as follows: Section [2] is concerned with proving the
group-theoretic Theorem [2.2] In Section [3.2] we use Theorem [2.2]to prove Lemma[3.4], which
is employed in the proof of Theorem to verify the claimed value of dx. In Section [3.4] we
compute the monodromy of various families of hyperelliptic curves. We combine these two
results to prove Theorem in Section [3.5] Finally, in Section [, we prove Theorem [I.3]

2. DEFINITIONS AND PROPERTIES OF SYMPLECTIC (GROUPS

This section is devoted to proving Theorem which is needed for proving the main
results of this paper, Theorems and [[.3] We start in Sections and by defining
symplectic groups, discussing their basic properties, and introducing some recurring notation.
Then, in Section we prove a result that is a crucial input to Section [3] where we prove
Theorem [1.2] The reader may choose to continue directly to Section [ after studying the
statement of Theorem [2.2]

2.1. Symplectic Groups. Let R be a commutative ring, and let g be a positive integer. Let
M be a free R-module of rank 2¢g, and let (—, —): M x M — R be a non-degenerate alternat-
ing bilinear form on M. Define the general symplectic group (otherwise known as the group of
symplectic similitudes) GSp(M) C GL(M) to be the subgroup of all R-automorphisms S such
that there exists some mg € R*, called the multiplier of S, satisfying (Sv, Sw) = mg - (v, w)
for all v,w € M. If mg exists, then it is necessarily unique, and one easily checks that the
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resulting mult map

mult: GSp(M) — R
S — mg

is a group homomorphism; we call its kernel the symplectic group Sp(M).

Choose an R-basis for M, and denote by {2y, the matrix which expresses the inner product
(—, —) with respect to this basis. The choice of basis gives rise to an identification GL(M) ~
GLgy(R), and we take GSp,,(R) to be the image of GSp(M) and Sp,,(R) to be the image

of Sp(M) under this identification. Let det: GLg,(R) — R* be the determinant map, and
observe that the diagram

GSp(M) —— GSpy,(R

commutes. Note that GSp,,(R) C GLyy(R) is the subgroup of all invertible matrices S
satisfying S7Qy,S = (mult S) Qyy and that Spy,(R) = ker(mult: GSp,y,(R) — R*).

Let Matogxo4(R) be the space of 2g x 2g matrices having entries in R, and consider the
Lie algebras gsp,, () and sp,,(R) defined by

95py, (R) := {A € Matggua(R) : ATQQQ + Qg A = d - Qy, for some d € R},
5p2g(R) = {A € Matggxgg(R) . ATQgg + QggA = 0}
When studying Galois representations associated to PPAVs, we usually take R to be one
of the following: the profinite completion Z of Z, the ring of ¢-adic integers Z, for a prime

number ¢, or the finite cyclic ring Z/mZ for a positive integer m. Observe that we have the
following isomorphisms of topological groups:

(2.1) GSpay(Ze) = lim GSpy, (Z/¢"Z)  and
k
(2.2) [T GSpoy(Ze) ~ GSpyy(Z) = lim GSpy, (Z/mZ).
prime £ m

The isomorphisms (2.1) and (2.2) remain valid if GSp,, is replaced by Sp,,. As for the Lie
algebras, note that by sending A + idy, +¢*A we obtain group isomorphisms
5P, (Z /L) ~ ker(GSp,, (Z/ " Z) — GSpyy (Z/(° 7)),
5Py (Z/UZ) ~= ker(Spoy (Z/ ¥ L) — Spyy(Z/(*Z))

for every k > 1, so when it is useful or convenient, we will sometimes use the Lie algebra
notation to denote the above kernels.

2.2. Computing Commutators of Large Subgroups of GSp,,(Z,). The objective of
this section is to prove a soon-to-be-useful theorem concerning the commutator of a subgroup
of GSp,,(Zs) which is the preimage (under mod-2 reduction) of a subgroup of Sp,,(Z/27Z)
that contains a copy of the symmetric group Sagg41.
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2.2.1. Embedding the Symmetric Group, Take 1. We asserted in the discussion immediately
preceding the statement of Theorem that the symmetric group Sy,41 may be viewed as
a subgroup of Spy,(Z/27). We now provide a working description of the way in which this
embedding is constructed; the manner in which this description applies to the context of
studying hyperelliptic curves is discussed in Section [3.3]

Lemma 2.1. For every g > 2, we have an inclusion Sygio < Spe,(Z/2Z). When g = 2,
this inclusion is an isomorphism.

Proof. Let V be a (2g + 2)-dimensional vector space over Fy, and equip V ~ F3?™ with
the standard inner product. Let ¢ := (1,...,1) be the vector whose components are all
equal to 1. Then the hyperplane t- C V of all vectors orthogonal to ¢ actually contains ¢
since dimV = 2g + 2 is even. Moreover, if we define W = ¢+ /span(t), the inner product
on V descends to a nondegenerate alternating bilinear form on W. The action of Sy,io
given by permuting the coordinates of V fixes both ¢ and t*, so it descends to an action on
W that preserves the bilinear form. Thus, we obtain an inclusion of Sy,4s into the group
of symplectic transformations of W with multiplier 1. For a more conceptual explanation
of this inclusion in terms of the two-torsion of hyperelliptic curves, see Section |3.3] Upon
choosing a suitable basis for W we may identify this group with Spy,(Z/2Z). For g = 2, the
resulting inclusion is an isomorphism because #(Sg) = 720 = #(Sp4(Z/2Z)). O

We embed Spy 1 <+ Sa,yo as the subgroup fixing the vector (0,...,0,1) € F37™.

2.2.2. Notation. In what follows, we shall (for the most part) study subquotients of GSp,,(Z2)
and GSp,,(Z/ 2F7) for k a positive integer. We employ the following notational conventions:

e Let H C GSp,,(Zs) be a closed subgroup.

e For m,n € Z-o U {oo} with m > n, let G®om _,9n: GSp,,(Z/2™Z) — GSpy,(Z/2"Z)
and ®om _on: Spy,(Z/2™7Z) — Spy,(Z/2"Z) be the natural projection maps. (When
m = oo, Z/2™7 denotes Z.)

o Let H(2%) = Gyt (H) C GSpy,(Z/2*Z) be the mod-2* reduction of H.

e For any topological group G, let |G, G] be the closure of its commutator subgroup,
and let G* := G/[G, G] be its abelianization.

e For each positive integer n, let id,, denote the n x n identity matrix.

2.2.3. Main Group Theoretic Result. We can now state the main theorem of this section.

Theorem 2.2. Let g > 2. Let H C GSp,,(Zs) be a subgroup such that H = GOyt _,,(H(2))
and such that H(2) contains Sagy1. Then we have that

(2.3) [H, H] = @y _5([H(2), H(2))).

Moreover, the homomorphism H — (H(2))* x (Zy)*, defined on the left component by
postcomposing reduction mod-2 with the abelianization map H(2) — H(2)* and on the right
component by the multiplier map mult, induces an isomorphism

(2.4) H™ ~ (H(2))™ x (Zy)*.

The relevance of Theorem to studying Galois representations of Jacobians of hyper-
elliptic curves is described in Lemma [3.4 given at the beginning of Section 8] We prove
Theorem 2.2 next in Section 2.3
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2.3. Proof of Theorem [2.2|

Proof of Theorem assuming Corollary and Proposition[2.10. Because we have that
[H, H](2) = [H(2), H(2)],

in order to prove ([2.3)), it suffices to prove that [H, H] D ker ®3=_,5. To prove this statement,
it further suffices to prove the following two statements:

(A) [H, H] D ker ®y_4,

(B) [H(4),H(4)] D ker &4 _,o.

Statement is proven in Corollary and statement is proven in Proposition m

To complete the proof, we only need verify (2.4). Note that (2.3)) tells us that the map
H — (H(2))® x (Zy)* has kernel precisely [H, H], so to prove (2.4)), it suffices to check

that the map H — (H(2))* x (Z)* is surjective. But this is easy to check by hand: For
a € (Zy)*, let N, be the matrix which has alternating 1’s and a’s on the diagonal, taken
with respect to a symplectic basis e, .. ., es, where (e;,¢;) is 1 if i = 2k, j = 2k + 1 for some
integer k, is —1if i = 2k + 1, j = 2k, and is 0 otherwise. For (M, o) € (H(2))* x (Z3)*, let
M5° € @yt ,,(My), and observe that M$°- N, + (Ma, o) via the map H — (H(2))2P x (Zy)*.
This concludes the proof of our main group-theoretic result, Theorem [2.2] 0

2.3.1. Prouving Statement . We begin with the following lemma, in which we compute
the commutator subalgebra of gsp,,(Z/27Z).

Lemma 2.3. Let { be a prime number. We have [gspy,(Z/VZ), 9594, (Z/{Z)] = 5p2g(Z/£Z).E|

Proof. For convenience, let g, := [gspy,(Z/{Z), 95p,,(Z/{Z)]. That g, C sp,,(Z/{Z) is obvi-
ous from the definitions of gsp,,(Z/(Z) and sp,,(Z/(Z), so it suffices to prove that reverse
containment. For ¢ > 3, this is immediate from [LSTX19, Proposition 2.10], so we may re-
strict to the case where £ = 2 (note that this is the case of primary interest to us).E| Choose

0 |id
a basis for (Z/27)* with respect to which y, is given by Qy, = ” 109 . Then
—id,
. : B
sy, (Z/27) consists of matrices of the form =y where A, B,C € Matyy,(Z/27)

and B, C' are required to be symmetric. Since we have
Al o D| o AD — DA | 0
0[-A" || o|-D" 0 | ATDT - DTAT

(2.5)

)

all block-diagonal matrices in sp,,(Z/27) with every diagonal entry equal to 0 are contained
in go. Moreover, for symmetric B, C, E, F' € Mat,y,(Z/2Z), we have

0|5
clo

0|E

BF -EC| 0
Flo

(2.6)
0 \ CE— FB

I )

2This result is a variant of [LSTX19, Proposition 2.10].
3In essence, the reason why the case of £ odd needs to be handled separately is that s, (Z/0Z) is a perfect
Lie algebra if and only if £ is odd, a result due to Hogeweij [Hog82].
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and we can arrange that BF — EC is an elementary matrix with a single nonzero entry
on the diagonal. Summing matrices from (2.5) and (2.6)), tells us that all block-diagonal
matrices in sp,, (Z/27) are contained in gy. Additionally, note that gsp,,(Z/27) also contains

id, | O
[ 109 0 ] , from which we deduce that g, contains

2 id, | 0 | o|B]] _[o|B |
0o fo] oo 0
: . o : 010
where B € Matgy,(Z/27Z) is symmetric. One similarly checks that go contains [7‘? ,
for C' € Matyy(Z/27) symmetric. It follows that go D spy,(Z/27Z). O

Corollary 2.4. We have [ker GPyo 9, ker GPos 5] = ker Pooo 4.

Proof. Clearly [ker GPgo o, ker GPgo 5] C ker oy, so it suffices to prove the reverse
inclusion. By [LSTX19, Lemma 2.11], we have that [ker Gy 9, ker GPox o] D ker Posc_s.
Then, identifying gsp,,(Z/2Z) with ker G®g_,4 and sp,,(Z/27Z) with ker dg_,4, we have by
Lemma [2.3] that

ker g .4 = [ker GPg .4, ker GPg_,4] = [ker GPoo g, ker GPoso_ 4] (8)
C [ker GPgeo 9, ker GPoxo 0] (8)
It follows that [ker G@gox_,o, ker GPooo 5] D ker Poso_y. d
Corollary 2.5. We have ker ®9~_,4 C [H, H].

Proof. The hypothesis that H = G®,. .,(H(2)) implies that ker G®y_,» C H, and hence
[ker GPooo 9, ker GPo 5] C [H, H]. Applying Corollary then yields the desired result.
U

2.3.2. Proving Statement (B): Tensor Product Notation. Just as we did in the proof of
Lemma [2.3, we must choose a basis with respect to which our symplectic form has an
easy-to-use matrix representation. The goal of this subsection is to choose such a basis
and to develop a shorthand notation for this basis. In Sections [2.3.3] and [2.3.4] we use this
notation to prove Statement (B), thereby completing the proof of Theorem @

Recall the notation introduced in the first paragraph of Section 2.1} R is a commutative
ring (which we will take to be either Zy or Z/47Z), and M is a free R-module of rank 2g. We

choose a basis (ey, ..., ey,) for M so that the symplectic form (—, —) is given by
j—i if|j —i] =1 and max{i,j} = 0 (mod 2)
<6i7 ej> = .
0 otherwise

We may alternatively construct M as follows. Let N; ~ R? have basis (z1,72) and let
Ny >~ R9 have basis (yi,...,y,). Endow N; with the alternating form given by (z;,z;) =
j — 1, and endow Ny with the symmetric form given by (y;,y;) = d;;, where d;; denotes the
Kronecker d-function as usual. Then if we take M := N; ® N, we have that (z; ® y; : i €
{1,2},j € {1,...,g}) is a basis for M and that M is equipped with an alternating form
defined on simple tensors by

(a1 @ by, ag @ by) = (a1, az) - (b1, ba).
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Note that the map sending x; ® y; — ezj4_2 gives an identification between our two different
constructions of M.

Linear operators on M are R-linear combinations of tensor products of linear operators on
N, with linear operators on Ny. If we denote by z;; the row-i, column-j elementary matrix
acting on Ny and by ¥,,, the row-m, column-n elementary matrix acting on N, then a basis
for End(M) is given by (24 ® Ypmn : 1,5 € {1,2}, m,n € {1,...,g}). Also notice that any
element A € End(M) may be expressed as

g g
(2.8) A= A;®u;
i=1 j=1
where A;; € End(V;) for all 4,5 € {1,...,g}.
Proposition 2.6. Let ¢ € End(End(Ny)) be defined by
T11 r —X22, T2 b7 —T11, X2 77 X2,  T21 b7 Tor.

The Lie algebra gspy,(R) consists of those elements A € End(M) with A;; € End(Ny) such
that there exists d € R satisfying

P(Aji) = Nij — (ddy) - ida.
Moreover, spQQ(R) admits an analogous description in which d is required to be zero.
Proof. Since Q3, = —idyg, the defining equation for gsp,,(R) is equivalent to
(2.9) QogAT Qo — A+ d - (idy®id,) = 0.

Note that the identity element End(/N,) is given by idy = y11 + - - - + yg4g. Substituting this
in along with the expansion (2.8)) for A as well as (x12 — z21) ® id, for Qy, on the left-hand

side of (2.9) yields that

Z Z [($12 - IE21)(AJ‘¢)T(=’E12 - 9521) - Aij + (d5ij) : idQ} ® yi; = 0,

i=1 j=1
which is equivalent to the following condition:
(513'12 - $21)(Aji)T(9C12 - 91521) = Aij - (d5ij) -idy
The desired result then follows upon observing that (z12 —21)(Aji)* (212 —291) = ¢(Aj;). O

Remark 2.7. When R = 7Z/27, minus signs may be ignored, so the operator ¢ may be
concisely described as transposition across the anti-diagonal. It follows from Proposition [2.6
that the following is a basis for sp,,(Z/27Z):

(ide @i, T12 ® Yis, 21 @ i -1 € {1,...,g}) U

(212 @ (Y35 + Vi), T11 ® Yij + T2 @ Yji, Ta1 ® (Yij + Yji), T2 @ yij + a1 @ yzi 1 1 < i < j < g).

In Section it will be convenient to define a function ind that assigns to each of the
above basis elements the value of i (e.g., ind(idy ®y;;) = ¢ and ind(z12 ® (yi; + yij)) = 7).
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2.3.3. Proving Statement (B): Describing the Action of Sag+2. We now seek to describe the
embedding Sygy2 — Spy,(Z/27) from Lemma in terms of the tensor product notation

that we just introduced in Section [2.3.2 To this end, we set R = Z/27Z, so that M ~ F.
Lemma 2.8. Recall notation from the proof of Lemma . The map ¢ - M — t+/(t) of

symplectic vector spaces defined by
2n 2n—1

x1®ynr—>26i and $2®yn»—>62n+1+26i for each ne{l,... g}
i=1 =1
18 an isomorphism.

Proof. The lemma follows immediately from the observation that 1 identifies the symplectic
forms of M and /(). O

Recall that the group Ssgio is generated by the adjacent transpositions 7} for k& €
{1,...,29 + 1} whose cycle types are given by T, = (k,k + 1). We now compute the
action of T} on M for each k:

Lemma 2.9. When viewed as operators on M, the transpositions Ty are given by
Ty, = idgg + (211 + 12 + T21 + Z22) @ Y,
T2n+1 = ing +212 & (ynn + Yn+1)n + Yn(n+1) + y(n+1)(n+1))7

according as k = 2n or k = 2n + 1, where any term with an out-of-range index is zero.
Proof. The result for k = 2n follows from the observation that 15, swaps 1 ® 1y, with zo®1,
and keeps all the other basis vectors fixed. As for kK = 2n + 1, we break into three cases:

(1) Suppose n = 0. The transposition 7} sends

Y(ra@y1) = (e1 +e3) — (e1 +e2) + (e1 +e3) = V(1 @ y1) + (22 ® o)
and fixes all other ¢(z; ® y;). Thus, T; is given by T = idy, +212 ® y11.
(2) Suppose n = g. The transposition 5,11 sends
2g—1 2g+1 2g9—1
V(12 @ Yy) = 2941 + Z €; — Z e + Z ;i = €ag + 2941 = V(21 ® yy) + V(72 ® yy)

i=1 i=1 i=1
and fixes all other ¥ (x; ® y;). Thus, T} is given by Thy11 = idag +T12 ® Yyq-
(3) Finally, suppose n € {1,...,g9 — 1}. The transposition T3, sends

2n—1 2n—+2 2n—1 2n
O(r2 @ Yp) = €2n41 + Z e — Z e; + | eany1 + Z e | + €;
i=1 i=1 i=1 i=1

= YP(T1 @ Ynt1) + V(22 @ Yp) + V(1 @ Yn),
2n+1 2n+1 2n+2

2n
(T2 ® Ynt1) = €2n43 + Z € > €apg3z+ Z e + Z e + €;
i=1 i=1 i=1 i=1

= (22 ® Ynt1) + (@1 ® Ynt1) + (@1 @ Yn),
and fixes all other ¥(x; ® y,,). Thus, Ty, is given by
Tony1 = idag +712 ® (Ynn + Ym+1)n + Un(nt1) + Ynt1)(nt1))-
The result for k = 2n + 1 follows immediately from points (1)—(3) above. O
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2.3.4. Finishing the Proof of Statement (B).
Proposition 2.10. We have [H(4), H(4)] D ker ®4_,5.

Proof. The assumption that H = G®,2 ., (H(2)) implies that ker Gd4_,» C H(4). Recall that
we may identify ker G®y_,o with gsp, (Z/2Z), so that each S € ker G®4_,» may be expressed
as S = idyy +2A where A € gsp,,(Z/2Z). The assumption that H(2) contains Sy, tells
us that for any My € Syyy1 C Spy,(Z/2Z), we may lift M to an element My € H(4). In
particular, we have that

idag +2(A + MyAM; ) = (idgg +2A) " My (iday +20) M ' € [H(4), H(4)].

To complete the proof, it suffices to show that matrices of the form A + MyAM, ' span all
of sp,,(Z/2Z). Let V = span(A + MyAM; " = A € gsp,, (Z/2Z) and My € Sygy1).

It suffices to restrict our consideration to matrices M, corresponding to transpositions
Ty € Sagt1. Note that Ty = (T}) !, so that if we write T = idy, +Ny, then we have

(2.10) A+ TpA(T}) ™! = NeA + AN, + NpAN.

As in Lemma [2.9] we will have to treat the cases k = 2n and k = 2n + 1 separately. In
what follows, we induct on the value of the ind function that V' contains the seven types of
basis elements listed in Remark [2.7] First, however, we perform some calculations that serve
to greatly simplify this inductive argument. Combining Lemma with and taking
A =z ®1idy, we find that

(2.11) A + TonAT, = ids @ynn €V,

(212) A+ Top 1 ATt = 212 @ (Yn-1)(n-1) T Yn-)n + Yn(n-1) + Ynn) € V.
Repeating this calculation for k = 2n but taking A = 215 ® Y., we find that
(2.13) A+ T, ATy, = (212 + 221) @ Y € V.

Now fix n, ¢ with ¢ > n, and take A = M ® y,0 + ¢(M) ® yp, for any M € Matoyo(Z/27).
By Proposition , all such A are elements of gsp,,(Z/27). We find that

(2.14) A+ 1o, ATy, = (211 + T12 + D21 + 22) M @ Y +
¢(M)($11 + Z12 + T21 + 2622) & Yen € V7
(2.15) A+ Top 1 ATop—1 = 212M @ (Yt + Yn—1)e) + ¢(M)Z12 @ (Yen + Yo(n—1)) € V.

Taking M = xq; in (2.14)), so that ¢(M) = xq, yields that
(2.16) (211 + 721) ® Yne + (T21 + T22) @ Yem €V,
and taking M = xqy in (2.14)), so that ¢(M) = x1;, yields that

(2.17) (T12 + 22) @ Yoo + (¥11 + T12) @ Yo € V-
Taking M = xqy in (2.15)), so that ¢(M) = x1;, yields that
(2.18) 212 @ (Yot + Yen) €V

and taking M = x5 in (2.18)), so that ¢(M) = xa, yields that
(2.19) T11 @ Yot + T2 @ You € V.
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We are now ready to carry out the induction. For the base case, we need to check that all
basis vectors with ind-value equal to 1 are in V; this follows immediately upon taking n = 1
in (2.11)—(2.19). Next, suppose for some N € {1,..., g} we have that all basis vectors with

ind-value less than N are in V. Taking n = N in (2.11)—(2.19) and applying the inductive
hypothesis yields that all basis vectors with ind-value equal to N are in V. U

3. PROOF OF THEOREM [1.2]

In this section, we prove the first main result of this paper, namely Theorem [I.2] We
begin in Section |3.1] with a description of the relevant background material on Galois rep-
resentations of PPAVs. Then, in Section [3.2] we prove a group-theoretic Lemma, useful for
determining dx. In Section , we describe the particular manner in which we embed Syg9
as a subgroup of Sp,,(Z/2Z). In Section we determine the monodromy groups of the
four families of hyperelliptic curves introduced in Definition [I.1] and the monodromy of the
universal family over the moduli stack of hyperelliptic curves. Finally, in Section |3.5, we
complete the proof of Theorem [1.2

3.1. Background. Let K be a number field, let 7 > 0 be an integer, and let U C P} be an
open subscheme. For an integer g > 0, let A be a family of g-dimensional PPAVs over U, by
which we mean that A is an abelian scheme over U, meaning that A — U is a proper smooth
group scheme with geometrically connected fibers of dimension g, and A is equipped with
a principal polarization over U. Because the base U is rational, we call A — U a rational
family. By construction, the fiber A, of the morphism A — U over any K-valued point
u € U(K) is a g-dimensional PPAV over K.

Recall that the action of the étale fundamental group m;(U) on the torsion points of a
chosen geometric generic fiber of A — U gives rise to a continuous linear representation whose
image is constrained by the Weil pairing to lie in the general symplectic group GSpQQ(i).
We denote the resulting adelic representation by

(3.1) pa: mi(U) = GSpy,(Z)[]
We now define the monodromy groups associated to p4. We call the image of ps: 7 (U) —

~

GSp,,(Z) the monodromy of the family A — U, and we denote it by H. We write Ha(m)
for the mod-m reductions and H 4 4 for the ¢-adic reductions of the above-defined monodromy
groups.

Remark 3.1. Let uw € U(K) be a K-valued point. Precomposing the adelic representation
with the induced map 7 (u) — 7 (U) gives a representation m (u) — GSpQQ(Z) whose image
we denote by Hy,. Because m(u) ~ Gk, the representation p,, obtained by restricting pa
to A, is the same as the adelic representation p,, discussed in Section .

Remark 3.2. For a commutative ring R, recall from the definition of the general symplectic
group that we have a multiplier map mult: GSp,,(R) — R*. If x denotes the cyclotomic
character, then for a PPAV A it follows from Gg-invariance of the Weil pairing that y =
mult ops. More generally, if A — U is a family of PPAVs with U normal and integral, and
if ¢ denotes the map 7 (U) — m1(Spec K) induced by the structure map U — Spec K, then
we have that y o ¢ = mult opy

4The map in (3.1) is well-defined up to the choice of base-point, and choosing a different base-point would
only alter the image of p4 by an inner automorphism. For this reason, when it will not lead to confusion,
we may omit the base-point from our notation.
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3.2. Computing 0. In this section, we prove Lemma [3.4] which is used to compute the
value of 0k in the proof of Theorem [1.2] given in Section [2.3] In order to state Lemma [3.4]
we need the following definition, in which we introduce notation used throughout the paper
to denote various lifts of Syg;:

Definition 3.3. For i € {1,2}, we define
§2g+z = (Sp2g( ) — SPQQ(Z/2Z)) (SZg—H') and Sog+i i= <D2_°1°—>2(S2g+i)-

The next lemma applies Theorem |2 2.2 to determine how large the commutator subgroup
of GSQgH K, 1S as a subgroup of SQQH

Lemma 3.4. Let g > 2, leti € {1,2} and let H C GSpQg( ) be a closed subgroup. Suppose
that

Hy = Gq’zo}v—n(SZgﬂ) and
H(l) D Spy,(Z/LZ) for £ > 3.
Then
[H> H] = (1)2_°£—>2(A29+i) X H szg(Zg),

>3

where Asgy; denotes the alternating group on 2g + 1t letters.
Proof. By Theorem [2.2]

[H7 H]2 - [HQv HQ] = (I)Z_éaQ(A?g-H’)'
Also, note that for ¢ > 3,

[H, H](£) = [H(£), H(C)]

= Sp?g(Z/KZ)a

the last equality following from [O’MT8|, 3.3.6]. We now appeal to the fact that a closed
subgroup of Spy,(Z¢) mapping onto Spy,(Z/{Z) must in fact be all of Sp,,(Z) for g > 1.

This fact was shown in [Wei96, Theorem B| (except for the case where g = 3 and ¢ = 2),
as well as in [Vas03, Theorem 1. 3], and then again in [LSTXI9l Proposition 2.5]. Applying

this fact to [H, H] C szg( ) gives the result. O

Corollary 3.5. For H as in Lemma we have [SQQH : [H,H]] = 2. In particular,
[82g+z . [GSQQ-H K GSQg-H K7H 2.

3.3. Embedding the Symmetric Group, Take 2. In Section [2.2.1] we constructed the
well-known embedding Sy 5 < Sp,,(Z/27Z). Beginning with
V ~ FT?
t=(1,...,1) eV
W = t+/span(t),

we observed that the action of Sy,19 on the basis vectors of V' descends to a symplectic
action on W. Our goal in this section is to relate this embedding with the mod-2 Galois
representation attached to a family of hyperelliptic curves, by proving the following result:
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Theorem 3.6. Given a family C — W of hyperelliptic curves (where U is any stack), and a
geometric generic point 7 — U, the monodromy group py(m (U, 7)) C Spy,(Z/27) is in fact
contained in Sagio C Spyy(Z/2Z). As a subgroup of Sayyo, the monodromy group is given by
the action of m (W) on the Weierstrass points of Cy.

This has an immediate consequence for our standard families:

Corollary 3.7. Fori € {1,2,3,4}, we have H o C éézﬁz_(i mod 2),K -
7).

Proof. We have mult(H,, ) = x(K) as subgroups of Z*, by Remark . Therefore, it
g9, K
suffices to show that H 20, (2) C S2g42—(i mod 2)- By Theorem , we need only check that the

monodromy action on the Weierstrass points of @g(?( — 7/9(7}( is contained in Sy (i mod 2))-
The nontrivial cases i = 1, 3 follow by observing that, when the defining equation is y* = f(z)
with deg f(x) = 2g + 1, one Weierstrass point always lies over infinity, hence is fixed under
monodromy. 0

We prove Theorem in three steps:

(1) In subsection , we prove the statement when U is Speck. The key points are
that the constructions are functorial in € and that the isomorphism with Jacc (2]
follows from standard facts about divisors on hyperelliptic curves.

(2) In subsection , we prove the statement when U is a scheme by explicitly con-
structing the algebraic space of Weierstrass points over U, the corresponding group
space ¢/ span(t) over U, and the map from the latter to Jacc,[2]. Step (1) implies
that this map is an isomorphism.

(3) In subsection [3.3.3] we interpret the (functorial) constructions of step (2) as giving
rise to corresponding objects and maps over the moduli space 2 of hyperelliptic
curves, corresponding to the universal family €, — 2.

3.3.1. A single hyperelliptic curve. Let k be an algebraically closed field of characteristic
zero, let C' be a hyperelliptic curve over k, and let J be the Jacobian of C'. The set of
Weierstrass points { P, ..., P2} of C is uniquely determined because g > 2. With this
setup, define V' to be the free vector space over Fy spanned by P, ..., P49, so that
=P+ + Py
t+ =spang, (P, — P;:i,j € {1,...,29 +2}).
The map

¢ .
spany (P, ..., Pyyi9) —— Pice

>0 P ——— 00 (3,0 Py),

is such that ¢(spany(P; — P;)) C Pic}, ~ J. Furthermore, it can be checked that
e The resulting map span, (P — P;) — J annihilates 2 - (P, — P;) and ¢. Hence it
descends to a map W := t*/span(t) — J[2] of Fy vector spaces.
e This latter map is an isomorphism.
The second bullet point implies that the action of Aut(C) on J[2|, a priori contained in
SPoy(Z/2Z), is in fact contained in the subgroup Sazi2 C Spy,(Z/2Z) which is determined
by the vector space isomorphism J[2] ~ W. For details, see [Yelldl, Proposition 1.2.1(a)].
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3.3.2. Schematic families of hyperelliptic curves. Let C — U be a family of hyperelliptic
curves of genus g, where U is a scheme. Because all constructions in [3.3.1] were functorial,
they can be carried out in families. Let us indicate how this is done.

(1)

Let P be the fixed point locus of the hyperelliptic involution. Then we have a diagram

)z closed emb. C

]

U
For any geometric point u < U, the fiber P, consists of the Weierstrass points of C,.

Let G be the group algebraic space over U which represents the sheaf associated to
the following presheaf on Sch/y, in the étale topology:

T — spany(Homy (T, P)).

Representability follows by taking an étale cover of U which trivializes P. For v — U
a geometric point, the fiber G, equals span,(P,).

There is a section t: U — G which is first defined on a sufficiently fine étale cover
U'" — U for which U" xy P is a trivial (29 + 2)-cover of U’, by “adding all the
Weierstrass points,” i.e. summing the (2g + 2) basis elements of

spang (Homy (U’, P)) ~ spany(Homy (U, U’ xy P)).

The section on U’ can then be descended to U.
We can also define a group subspace G° < G via the sub-presheaf given by requir-
ing that the coefficients of the Z-linear combination sum to zero.

Define a map ® : G — Piceyy of group spaces over U as follows: given f € G(T), we
may find an étale cover o : 7" — T for which o* f = ), f;, for some f; € Homy (1", P).
Each f; gives a section of the pulled-back family C'7» — T”, whose image determines a
relative effective Cartier divisor D;. A standard descent argument shows that ). D;
descends to a divisor D on Cp, which does not depend on the chosen étale cover o.
We may therefore define ®(f) := D. This assignment is natural in 7, so it gives a
natural transformation of functors G — Picc/y. The fiber ®, is the map ¢ defined
in . The map & restricts to a map G° — Picg,; ~ Jaceyu.

Subsection allows us to describe the kernel and image of ¢ as follows. First,
2 - GY maps to zero, so ® descends to a map G"/(2- G®) — Jaccyy. Second, the
inclusion G° — G gives an injection G°/(2 - G°) — G/(2 - G), and the image of
t € G(U) in the quotient G/(2 - G) in fact lies in G°/(2 - G°) because ¢ is a sum of
an even number of terms; we abuse notation by denoting the latter section with the
same symbol ¢. This ¢ spans the kernel of the descended map G°/(2 - G°) — Jaccyu,
the image of which is equal to Jacc/y[2]. Thus, we have that

G°/(2 - G° + span(t)) — Jaccu[2]

is an isomorphism of group stacks over U.

This proves Theorem when U := U is a scheme, because the action of 71 (U) on the fiber
of G°/(2G" + span(t)) over a chosen geometric generic point 77 € U (as an Fo-vector space)
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is obtained from the action of m(U) on the fiber of P; (as a set of size (2g + 2)) via the
procedure of Section [2.2.1]

3.3.3. The universal family over Z,. The constructions of subsection are functorial in
the chosen family ¢' — U, and behave well under base change V' — U, so we obtain the
analogous constructions over the moduli stack of hyperelliptic curves:

bg/ Zg
closed emb. [ \[
and o) : .
mj l S—— Plch/ggg
\

where ¢ is a section of § — 2, for which we have the following isomorphism of group stacks

over Zy:
G%/(2-G° 4 span(t)) —=— Pic, 2,12

\ l

Here, ¢ is interpreted as a section of §°/(2-G%) over %, just as in step (4) of subsection [3.3.2]

Remark 3.8. By way of example, let us explain the definition of P, and prove that it is
a stack. By definition, P(U) is the groupoid whose objects are pairs (C' — U, f) where
C' — U is a hyperelliptic family over U (i.e. an object of Z,(U)) and f is a section of the
étale cover P — U constructed in subsection from the family C — U. A morphism
(Cy = U, f1) ~ (Cy = U, f2) is an isomorphism o of families

Cl — ” C2
U

for which the resulting isomorphism P; ~ P, of the associated spaces of Weierstrass points
identifies the sections f; and fs.

The descent condition is easy to check. Given an étale cover V' — U, a descent datum for
P is given by a family C' — V and a section f of the resulting space of Weierstrass points,
denoted P — V', along with gluing isomorphisms that take place over V' xy V', which satisfy
a cocycle condition on V Xy V xy V. The cocycle condition first allows us to realize C' as
the pullback of a family C' — U, because Z, is known to be a stack. By functoriality, the
pullback to V' of the resulting space of Weierstrass points P — U is canonically identified
with P — V. So effectiveness of the descent datum follows from the fact that P — U is an
étale sheaf over Sch;;, and, as such, satisfies a gluing axiom.

In a similar way, the following points are formal consequences of subsection [3.3.2}

e All stacks appearing in the three commutative diagrams above are algebraic.
e All maps to Z, appearing above are representable.
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e The isomorphism in the third diagram, which gives the desired statement about
monodromy for the universal family ¢, — %, can be checked on pullback to schemes
U, but this is exactly the conclusion of subsection |3.3.2

To finish the proof of Theorem we need only note that any hyperelliptic family € — U,
with U a Deligne-Mumford stack, is pulled back from the universal family €, — %, via a
map U — Z,. In this case, all constructions above can be pulled back along the same map
U — Z,. Therefore, to € — U, we can associate a stack of Weierstrass points, whose Z-span
maps to Picepy, giving rise to an isomorphism analogous to that of the third commutative
diagram above. This gives the desired result, by the same reasoning as in the last paragraph

of subsection [3.3.2

3.4. Monodromy of Hyperelliptic Families 7/9(?( and % K- We now show that the
containment in Corollary is an equality for the families 6’/ K 7/9 i

Lemma 3.9. Let g > 2, and let i € {1,2,3,4}.
(i) For any algebraically closed field L which is a subfield of C, we have H,u = gQQ+2_(i mod 2) -

(ii) For any number field K, we have H@/g(,?( = @2%2_(1 mod 2),K - o
Proof. (i) < (ii): we have a map of short exact sequences
0 —— H?yg(% > qm . mult X(K) —— 0
(3.2) l l H
0 —— gQg-i—Q—(i mod2) — év829+2—(z‘ mod 2),Kk = X — 0.

By the Five Lemma, the second vertical map is an isomorphism if and only if the first is.
Proof of (i): By Corollary [3.7, and because L is a subfield of C, we have containments

H@u) C Hgm C 82g42—(i mod 2)-

Therefore, it suffices to show that H@u) = 829+2 (imod2)- For i € {1,2}, this follows

from [A’C79, Théoreme 1], since the etale fundamental group is the profinite completion

of the topological fundamental group. To complete the proof we need only show that, when
i € {3,4}, we have H](z = H, .
g,C

For this, it suffices t0 Constrﬁct a deformation retract
i—2 i—2
0 W % [0,1] = #Y

of Vﬂg(fc_m onto Wg(fg, which is done as follows. Let n := 2¢g + 2 — (¢ mod 2). Then V/Q(jC_m

parameterizes unordered n-tuples of distinct points in Af, and V/Q(fg parameterizes those
which sum to zero. At time t € [0, 1], we define

R
o {2 ?_IH{zi—t-;} ,
n i=1

where the n-tuple on the right sums to zero by construction. This ¢ is continuous, as desired.
In fact, ¢ is regular: its coordinate functions are obtained by expressing the elementary
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symmetric polynomials in the right hand side n-tuple as polynomials in (the elementary
symmetric polynomials of the z;) and ¢. O

Corollary 3.10. Let g > 2. We have that Hy, ,, = (ESQQJFZK, where Gy — Zyx 15 the
universal family over the moduli stack of hyperelliptic curves.

Proof. A priori, we have the containments

H?](Z C Hg K - G829+2 K

the latter following from Corollary |3.6, But Lemma implies that H G/rv529+27 K. O

73

3.5. Finishing the Proof. We are now in position to complete the proof of Theorem 1.2
The main input to the proof is the following general theorem from [LSTX19].

Theorem 3.11 ([LSTX19, Theorem 1.1]). Let B,n > 0, and suppose that the rational family
A — U is non-isotrivial and has big monodromy, meaning that H 4 is open in GSpy,(Z). Let

dg be the index of the closure of the commutator subgroup of Hy in Ha N SpQQ(z), and let
=1 for K # Q. Then [Hy : Ha,] > 6k for all uw € U(K), and we have the following

asymptotic statements:

{u € UK)NO% : |lul| < B, [Ha: Ha,] = 5}
[{u € U(K) N O : [Jull < B}|

=14+ O((log B)™), and

Hue U(K):Ht(u) < B, [Ha: Ha,] = dr}|
{u € U(K) : Ht(u) < B}|

where the implied constants depend only on A — U and n.

=14 0((log B)™),

Proof of Theorem [1.3. First, we explain how Theorem applies to the standard families
@g(}){ — 7/9(2 By Lemma (ii) these families have big monodromy, so Theorem |3.11

applies. Lemma (ii) says that H o), = G829+2 (i mod 2), k- With this in mind, Corollary L

implies that 0g = 2 in the statement of Theorem

Next, we apply Theorem [3.11]to a rational famlly C’ — U represented by amap U — 2 k
with connected geometric generic fiber. This hypothesis implies that m (U) — (2} k) is
a surjection, cf. [LSTX19, Corollary 5.3], so the monodromy group of C' — U is equal to
that of the universal family over 2y, and Corollary 3.10 B.10] implies that the universal family

over 4, k has monodromy group G83449 k. At this point, Corollary [3.5 implies g = 2, as
before. O

4. VERIFICATION OF THE EXAMPLES

The objective of this section is to prove our second main result, namely Theorem [1.3]
To verify that the example curves stated in Theorem have maximal monodromy among
members of 2, we shall rely on two different sets of criteria, one adapted from [AD17],
and the other adapted from [Zyw15]. We introduce these criteria in Section [4.1} then, in
Section we apply these criteria to check the example curves.
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4.1. Criteria for Having Maximal Monodromy. Let g € {2, 3}, and let C be a genus-g
hyperelliptic curve over Q given by the Weierstrass equation y* = f(z ) Where f(z) € Q[z]

is a polynomial of degree 2g + 2; note that C' is a Q-valued point of 7/
Let J denote the Jacobian of C. We want to write down crlterla for the associated
monodromy group H, to be as large as possible in Hy, , ~ G82g+2,@, which by Theorem

is equivalent to having index 2 in (EéQngzQ. We shall rely on the following lemma, which
gives us two conditions under which maximal monodromy is attained:

Lemma 4.1. Suppose C' is a hyperelliptic curve over Q with Jacobian J satisfying
(41) (HJ)2 = G(D;D:L_)2(829+2), and
(4.2) H;(0) D Spy,(Z/lZ) for every prime number £ > 3.

Then, [(53294_2’@ cHyl=2.

Proof. Since the maximal abelian extension Q" is equal to the maximal cyclotomic extension
Q%¢, we have that

(4.3) ps(Gal@/Q)) = ps(Gal(@/Q™)) = [Hy, Hy].
Using , we find that
(G82g12.0 : Hyl = [Sag42 : ps(Gal(Q/Q))]
- [§29+2 : [6'82%2,@’ 632g+2,@]] ' [[632%2,@, GArézgm,Q] . ps(Gal(Q/Q™))]
=2 [[Sag42, Sag42] : [Hy, HJll,

where in the last step above we used the result of Corollary~. Thus, to prove that H, is

maximal, it suffices to show that the inclusion [H;, H;] C [8a4+2, Sog+42] is an equality. The
result then follows from Lemma [B.4] O

Criterion (4.2) may be broken down into two different sets of criteria by means of the
following two propositions, adapted from [ADI17] and [Zyw15] respectively. The first set of
criteria has the advantage that it implies the image is surjective at all but finitely many
primes, although notably it does omit a finite list of primes /.

We first recall definitions from [ADI17].

Definition 4.2 ([AD17, Definition 1.2, Definition 1.3]). Let ¢ > 1 be an integer and p a
prime. A polynomial f(z) := 2™ + ap_12™ ' + -+ 4+ ag € Zy[x] is t-Fisenstein if v(a;) > ¢
for i > 0 and v(ag) = t, for v the p-adic valuation. Further, suppose ¢i,...,q; are prime
numbers and f(z) € Z,|x] is monic and squarefree. We say f(x) is of type t —{q1, ..., qx } if it
can be factored as f(z) = h(x) []i_, gi(x — o) over Z,[z] for a; € Z, with a; # o; mod p for
all i # j, g;(x) a t-Eisenstein polynomial of degree ¢;, and h(z) mod p a separable polynomial
with A(a;) #Z 0 mod p for all i.

The next proposition follows immediately upon combining the main results of [AD17]:

Proposition 4.3 ([ADI17]). Suppose f € Z|x| satisfies the following properties:
(1) There exist primes qi, g2, and g3 such that
QS@E<@<qatqep=29+2
(2) There exist two distinct primes py,,py, > g so that f has type 1 — {2} at p;, and py,.
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(8) There exists a prime py > 2g + 2 which is a primitive root modulo q1,qa, and gz so
that f has type 1 — {q1,q2} at py > 29+ 2.

(4) There exist a prime ps > 2g + 2 which is a primitive root modulo q3 such that f has
type 2 — {gs} at p;.

(5) Writing f = 2% + agy 2% + -+ -+ @12 + ag we have ag = 229 mod 22912 ag, 41 =
2 mod 22972, and a; = 0 mod 229727 for 1 <i < 2g.

(6) For all primes p & {2, p2, p3} we have that p* { disc f, the discriminant of f.

Let J denote the Jacobian of the reqular proper model for the affine curve y*> = f(x). Then
H;(£) D Spy,(Z/LZ) for every £ > g so long as £ & {2,3,q1,q2,q3, P2, P3}-

Proof. We now demonstrate why Proposition follows immediately from the results of
[AD17]. It suffices to verify the hypotheses of [ADI7, Theorem 6.2]. Their hypotheses
(G+e), (2T), (p2) and (ps) are respectively (1), (2), (3), and (4) above. Next, we note that
f satisfies their condition (adm): We have to show f is admissible (in the terminology of
[AD17, Definition 4.6]) at all primes p. f is admissible at p, by [AD17, Lemma 4.10] and at
ps by [AD17, Lemma 4.11]. Further, f is admissible at all primes with semistable reduction
by [AD17, Lemma 4.9] so it suffices to show f is semistable at all primes p ¢ {p2,ps}. At
p = 2 this follows from [ADI7, Lemma 7.7], using (5) above, while at all odd primes this
follows from [ADI7, Lemma 7.5], using (6) above. To conclude the proof, we only need check
that all primes ¢ > g with ¢ & {2,3,q1, ¢, g3, p2, p3} satisfy either [ADI7, Theorem 6.2(i)
or (iii)]. If £ # po, ps then ¢ satisfies [AD17, Theorem 6.2(i)] because we have seen J/Qy is
semistable above. If ¢ = py or ps then ¢ satisfies [AD17, Theorem 6.2(iii)] by (3) and (4)
above. U

The second set of criteria has the advantage that it is simpler to state and works for
every odd prime ¢. The following criteria have, in essence, appeared in several papers
including [AdRDW16, Theorem 1.1], [Hal0O8, Theorem 1.1], and [Zyw15, Proposition 2.2].

Proposition 4.4. Let g > 2, and let { > 3 be prime. Consider a subgroup H({) C GSp,,(F)
satisfying the following conditions:
(A) H({) contains a transvection, by which we mean an element with determinant 1 that
fixes a codimension-1 subspace.
(B) The action of H({) on (Z/lZ)? is irreducible, in the sense that there are no nontrivial
mvariant subspaces.
(C) The action of H({) on (Z/{Z)* is primitive, in the sense that there does not exist a
decomposition (Z/0Z7)* ~ Vi @ --- @ Vi, with H({) permuting the V;’s.
Then we have that H({) D Spy,(Z/lZ).

4.2. Checking the Criteria. The remainder of the paper is devoted to using the criteria
introduced in Section [4.1] to verify the examples declared in Theorem

4.2.1. Criterion (4.1): The 2-adic Component. The following lemma allows us to verify
criterion (4.1)):

Lemma 4.5. Let g € {2,3}, and let Hy C 83442 be a closed subgroup. If Hy(2) = Sagyo,
then we have that Hy = Sgg42.

Proof. When g = 2, the inclusion Sg C Sp,(Z/27Z) is an equality, so the lemma follows
from [LSTX17, Theorem 1]|. For the rest of the proof, we take g = 3. Note that an easy
generalization of the argument given in [Ser98, Lemma 3, Section IV.3.4] shows that, if
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H C Spy(Zs) is a closed subgroup satisfying 8g(8) = H(8), then Hy = &5+ ,,(H(2)). So it
suffices to show that 8g(8) = H(8). Indeed, the following magma code verifies that there are
no strict subgroups of 83(8) with mod-2 reduction equal to 8g(2) = Ss.

G := GL(6,quo<Integers()[8>);
e := elt<G| 1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,

0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1>

f := elt<Gl|t,1,0,0,0,0,0,1,1,0,0,0,1,1,1,1,0,0,
1,1,0,1,1,0,1,2,1,1,1,1,1,1,1,1,0,1>

H := sub<Gle,f>;

maximals := MaximalSubgroups(H) ;

grp, f := ChangeRing(G, quo<Integers()|2>);
for K in maximals do
if #f (K subgroup) eq #H then
assert false;
end if;
end for; O

Recall from the discussion in Section that H;(2) = Say+0 if and only if the polynomial
f(z) has Galois group Sy,4o. A simple magma computation that this is the case for the
polynomials f(x) associated to the curves stated in Theorem . Then Lemma tells us
that (Hjy)s = 8o442, thus verifying the criterion (4.1]).

4.2.2. Criterion (4.2): The Genus-2 Example. We now verify the genus-2 example. We first
apply Proposition |4.3] To verify the conditions (1)-(6) on the polynomial f(x), we make the
following choices:

1 =G¢=3,q3=05,py, =3, P, =0, p2=17,p3 =1T7.
Condition (1) is clearly satisfied and conditions (2)-(4) are satisfied upon observing that f(x)
admits the following factorizations:
(z* 4+ 2* + 2° + 2+ 1)(2* — 3) mod 3?
(z* + 2% + x + 1)(2® — 5) mod 5?
(2 —17)((x — 1)® — 17) mod 17
(z — 1)(2° — 7*) mod 7°.

Condition (5) is verified by reducing f modulo 2% = 26 = 64. Finally, the computer
verifies that the prime factorization of disc f is given by

disc f = 3-5-7%-17%.421-6397-103434941173345262214445927-4899652830439610728976665849.

Hence, Proposition tells us that condition holds for every odd prime ¢ satisfying
0 {3,5,7,17}.

To deal with the four remaining primes ¢, we utilize the criteria given in Proposition 1.4
First, we show the existence of a transvection (condition (A) of Proposition [£.4). Indeed,
this follows from [ADI7, Lemma 2.9], which says that if there is a prime p 1 2¢ such that f(x)
has type 1 — {2} when viewed as a polynomial in Z,[z], then J[{] contains a transvection.
For ¢ € {5,7,17} this follows by taking p = 3 while for ¢ = 3 this follows by taking p = 5.
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To complete the proof, it suffices to verify conditions (B) and (C) of Proposition 4.4 For
p be a prime of good reduction of J, let Frob, € Gg denote the corresponding Frobenius

element, and let ch,(7) € Z[t] denote the characteristic polynomial of p;(Frob,) € GSpgg(i).

The next proposition gives us a criterion to check irreducibility and primitivity together
(conditions (B) and (C)):

Proposition 4.6 ([Zywl5, Proof of Lemma 7.2]). Fiz a prime ¢ > 3. Suppose there exists
p # L of good reduction such that ch,(T) is irreducible modulo ¢ and ¢ 1 tr(Frob,). Then
H({) acts irreducibly and primitively on (F;)%.

A simple magma calculation shows that for ¢ € {3,17}, we can apply Proposition with
chyo1 (T) = T* — 49T° + 1257T% — 19649T + 160801.
Likewise, for ¢ =5, we can use
che (T) = T* + 6T° + 54T + 366T + 3721,
and for £ =7, we can use
chor7(T) = T* 4 31T% + 7657 + 8587T + 76729.

This completes the verification that the curve Cy in Theorem [I.3] has maximal monodromy.

4.2.3. Criterion ({4.2): The Genus-3 Example. We now verify the genus-3 example. We
begin again by applying Proposition To verify the conditions (1)-(6) on the polynomial
f(z), we make the following choices:
Q1:37 CI2257 Q3:7apt1 :57pt2 :137192:17,]93:19
Condition (1) is clearly satisfied and conditions (2)-(4) are satisfied upon observing that f(x)
admits the following factorizations:
(z° + 2% + 2* + 1) (2 + 5) mod 5
(2% 4+ 512° + 122* + 702° + 822% + 412 + 158)((x — 10)? + 143(z — 10) + 78) mod 13?
((x —1)> +17)(2° + 17) mod 17?
(z + 1)(2" + 361) mod 19,
Condition (5) is verified by reducing f modulo 22972 = 28 = 256. Finally, the computer
verifies that the prime factorization of disc f is given by
disc f =2%.5.13-17°-19'2 . 409 - 71347 - 2492002738