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Abstract. In this article, we show that in each of four standard families of hyperelliptic
curves, there is a density-1 subset of members with the property that their Jacobians have
adelic Galois representation with image as large as possible. This result constitutes an
explicit application of a general theorem on arbitrary rational families of abelian varieties
to the case of families of Jacobians of hyperelliptic curves. Furthermore, we provide explicit
examples of hyperelliptic curves of genus 2 and 3 over Q whose Jacobians have such maximal
adelic Galois representations.

1. Introduction

1.1. Background. Let A be a principally polarized abelian variety (PPAV) of dimension
g ≥ 1 over a number field K. Fix an algebraic closure K of K, and let GK ··= Gal(K/K) be
the absolute Galois group. The action of GK on the torsion points of A(K) gives rise to the
adelic Galois representation

ρA : GK → GSp2g(Ẑ).
For prime numbers ℓ, the mod-ℓ Galois representation ρA,ℓ : GK → GSp2g(Z/ℓZ) is defined
by reducing the image of ρA modulo ℓ. See [Zyw15, Section 2.2] and [LSTX19, Section 3.1]
for more detailed descriptions of these representations.

In 1972, Jean-Pierre Serre proved the celebrated Open Image Theorem (see [Ser72]), which
states that for an elliptic curve E/K without complex multiplication, ρE(GK) is an open

subgroup of, and hence has finite index in, the profinite group GSp2(Ẑ). While the Open
Image Theorem implies that the adelic Galois representation maps onto a large subgroup

of GSp2g(Ẑ), the image of this representation is not always equal to GSp2g(Ẑ). Indeed,
Serre observed in [Ser72, Proposition 22] that for every elliptic curve E/Q, the image of ρE
has even index in GSp2(Ẑ). Nonetheless, in [Ser72, Sections 5.5.6-8], Serre constructs several
examples of elliptic curves overQ whose Galois representations have “maximal image” among

all elliptic curves, in the sense that the index of the image in GSp2(Ẑ) is equal to 2.
The obstruction faced by elliptic curves over Q to having surjective adelic Galois repre-

sentation no longer exists when Q is replaced by a larger number field. In [Gre10], Greicius
constructs an example of an elliptic curve over a cubic extension of Q whose Galois represen-

tation has image equal to GSp2(Ẑ). Furthermore, in [Zyw15], Zywina constructs an example
of a non-hyperelliptic curve of genus 3 over Q whose Jacobian has adelic Galois image equal

to GSp6(Ẑ). While there are explicit examples in genera 1 and 3, to the authors’ knowl-
edge, there are no examples in the literature of curves of genus 2 with associated Galois
representation having maximal image among such curves. Additionally, there are no known
examples of hyperelliptic curves of genus 3 whose Galois image is maximal. Nevertheless,
there are a few examples that come close: In [Die02, Theorem 5.4], Dieulefait gives an exam-
ple of a genus-2 curve over Q whose Jacobian has mod-ℓ monodromy equal to GSp4(Z/ℓZ)
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for ℓ ≥ 5. Similarly, in [ALS16, Corollary 1.1], an example of a genus-3 hyperelliptic curve
over Q whose Jacobian has mod-ℓ Galois image equal to GSp6(Z/ℓZ) for primes ℓ ≥ 3 is
constructed. However, in both of these cases, it is easy to check that these examples have
mod-2 Galois image that is not maximal among all hyperelliptic curves of genus 2 or 3. In
Theorem 1.3, we improve on the results of [Die02] and [ALS16], giving explicit examples of
hyperelliptic curves of genus 2 and 3 over Q with maximal adelic Galois image. The reader
may wish to also refer to the related recent paper [AD17], which constructs hyperelliptic
curves with maximal mod-ℓ Galois image in all genera g with the property that 2g + 2 can
be expressed as of sum of two primes in two different ways, with none of the primes being
the largest prime less than 2g + 2.1

In addition to finding explicit examples of PPAVs with maximal Galois image, there are
a number of results in the literature concerning how many members of a given family of
PPAVs have maximal adelic Galois image. The first key result in this direction is due to
Duke, who proved in [Duk97] that “most” elliptic curves E/Q in the standard family with
Weierstrass equation y2 = x3 + ax + b have the property that ρE,ℓ(GQ) = GSp2(Z/ℓZ)
for every prime number ℓ; here, the term “most” means a density-1 subset of curves or-
dered by näıve height. Building upon the work of Duke, Jones proved in [Jon10, Theorem

4] that [GSp2g(Ẑ) : ρE(GK)] = 2 for most elliptic curves E in the standard family over
Q. In [Zyw10b, Theorem 1.15], Zywina generalized the above results, showing that most
members of every non-isotrivial rational family of elliptic curves over an arbitrary number
field have maximal adelic Galois image, subject to the constraints that arise from the arith-
metic and geometric properties of the family under consideration. Additional results over
Q were obtained in [Gra00], [CH05], and [CGJ11] (see [Zyw10b, p. 6] for a more detailed
overview). In Theorem 1.2, we give an explicit version of [LSTX19, Theorem 1.1] – a result
that generalizes Zywina’s results to rational families of higher-dimensional PPAVs – for many
common families of hyperelliptic curves. This yields a generalization of [Zyw10a, Theorem
1.2] and [Jon10, Theorem 4] to hyperelliptic curves of higher genus.

1.2. Main Results. In this paper, we primarily consider those PPAVs that arise as Ja-
cobians of hyperelliptic curves belonging to one of the following four standard families;
we restrict our consideration to curves of genus at least 2 because the results of Zywina
in [Zyw10b] completely handle the case of elliptic curves.

Definition 1.1. Let g ≥ 2 be an integer, and for i ∈ {1, 2, 3, 4} define W (i)
g,K by

W (1)
g,K = A2g+1

[a0,...,a2g ]
\∆(1), W (2)

g,K = A2g+2
[a0,...,a2g+1]

\∆(2),

W (3)
g,K = A2g

[a0,...,a2g−1]
\∆(3), W (4)

g,K = A2g+1
[a0,...,a2g ]

\∆(4),

where each ∆(i) is the discriminant locus, on which the indicated polynomial has at least
one multiple root:

x2g+1 + a2gx
2g + · · ·+ a0 ⇝ ∆(1)

x2g+2 + a2g+1x
2g+1 + · · ·+ a0 ⇝ ∆(2)

x2g+1 + a2g−1x
2g−1 + · · ·+ a0 ⇝ ∆(3)

x2g+2 + a2gx
2g + · · ·+ a0 ⇝ ∆(4).

1Note that [AD17] therefore does not address the cases g = 2, 3, which we cover in this paper.
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Consider the following vanishing loci, and view them as families over W (i)
g,K via projection

onto the first factor:

V (y2 − x2g+1 − a2gx2g − · · · − a0) ↪→ W (1)
g,K × A2

[x,y] → W (1)
g,K ,

V (y2 − x2g+2 − a2g+1x
2g+1 − · · · − a0) ↪→ W (2)

g,K × A2
[x,y] → W (2)

g,K ,

V (y2 − x2g+1 − a2g−1x
2g−1 − · · · − a0) ↪→ W (3)

g,K × A2
[x,y] → W (3)

g,K ,

V (y2 − x2g+2 − a2gx2g − · · · − a0) ↪→ W (4)
g,K × A2

[x,y] → W (4)
g,K .

For 1 ≤ i ≤ 4, define Y (i)
g,K , the standard families of genus-g hyperelliptic curves by complet-

ing the above smooth affine curve over W (i)
g,K to a smooth projective curve over W (i)

g,K . The

definition of ∆(i) ensures that these are indeed genus-g hyperelliptic curves. For a K-valued

point u ∈ W (i)
g,K(K), we denote by Au the Jacobian (which is necessarily a g-dimensional

PPAV) of the fiber over u of the corresponding standard family.

As we show in Section 3.3, the mod-2 Galois image of the Jacobian of a member of

Y (i)
g,K always lands in a certain copy of the symmetric group S2g+2−(i mod 2) ⊂ Sp2g(Z/2Z).

Denote by G̃S2g+2−(i mod 2),K the intersection of the following two subgroups of GSp2g(Ẑ):
(1) the subgroup of those matrices with multiplier landing in χ(K) ⊂ Ẑ×, where χ denotes
the cyclotomic character, and (2) the preimage of S2g+2−(i mod 2) under the projection map

GSp2g(Ẑ) → Sp2g(Z/2Z). Let Ht: Pr(K) → R>0 denote the absolute multiplicative height
on projective space, and define a height function ∥−∥ on the lattice Or

K sending (t1, . . . , tr) 7→
maxσ,i |σ(ti)|, where σ varies over all field embeddings σ : K ↪→ C. Having fixed this notation,
our first main theorem may be stated as follows:

Theorem 1.2. Let B > 0, i ∈ {1, 2, 3, 4}, g ≥ 2, and let n be an arbitrarily positive integer.

Let δQ = 2, and let δK = 1 for K ̸= Q. Then [G̃S2g+2−(i mod 2),K : ρAu(GK)] ≥ δK for all

u ∈ Y (i)
g,K(K), and we have the following asymptotic statements, with the implied constants

depending only on n, g, and K:

|{u ∈ W (i)
g,K(OK) : ∥u∥ ≤ B, [G̃S2g+2−(i mod 2),K : ρAu(GK)] = δK}|

|{u ∈ W (i)
g,K(OK) : ∥u∥ ≤ B}|

= 1 +O((logB)−n),

|{u ∈ W (i)
g,K(K) : Ht(u) ≤ B, [G̃S2g+2−(i mod 2),K : ρAu(GK)] = δK}|

|{u ∈ W (i)
g,K(K) : Ht(u) ≤ B}|

= 1 +O((logB)−n).

Furthermore, the statement above applies if we take i = 2 and replace W (2)
g,K by any rational

family of hyperelliptic curves dominating the moduli of hyperelliptic curves, so long as the
map to the moduli of hyperelliptic curves has geometrically connected generic fiber.

The methods employed to prove density-1 results like Theorem 1.2 do not lend themselves
well to the construction of explicit examples, which may be useful insofar as they can provide
evidence in support of related conjectures. We now give two explicit examples, improving
upon the examples of [Die02] and [ALS16] mentioned in Section 1.1. To the authors’ knowl-
edge, these are the first examples of hyperelliptic curves in genus g = 2 and 3 whose mod-ℓ
monodromy is equal to GSp2g(Z/ℓZ) when ℓ > 2, and equal to S2g+2 when ℓ = 2. Moreover,

we show the Galois representations of these curves have index 2 in the group G̃S2g+2,Q. Note
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that all hyperelliptic curves over Q have Galois representation strictly contained in G̃S2g+2,Q,
as follows from Corollary 3.10 (since the monodromy of any curve is contained in that of the
universal family). Hence, our examples yield curves with maximal monodromy among all
hyperelliptic curves of genus 2 and 3.

Theorem 1.3. Let C2 and C3 over Q be smooth projective models of the affine plane curves
cut out by the equations

C2 : y2 = x6 + 7471225x5 + 16548721x4 + 6639451x3 + 16857421x2+

20754195x+ 9508695, and

C3 : y2 = x8 + 10781051650x7 + 5302830080x6 + 33362176x5 + 10656581376x4+

5522318080x3 + 4238752256x2 + 3613465600x+ 3725404480.

Then for each g ∈ {2, 3}, the Jacobian JCg of Cg is a g-dimensional PPAV over Q satisfying

the condition [G̃S2g+2,Q : ρJCg
(GQ)] = 2.

Remark 1.4. In checking the examples declared in Theorem 1.3, we combined the methods
developed in [AD17] and [Zyw15] to expedite the verification process. It is also possible to
modify the techniques introduced in [Zyw15] to show that the curves cut out by the equations

f(x) = x6 − 2x4 − 2x3 − 3x2 − 2x+ 1 and(1.1)

f(x) = x8 − 4x3 + 4x+ 4,(1.2)

which are of respective genera 2 and 3, both have maximal monodromy. The reader may
contact any one of the authors if further details of the proof of this claim are desired.

The rest of this paper is organized as follows: Section 2 is concerned with proving the
group-theoretic Theorem 2.2. In Section 3.2, we use Theorem 2.2 to prove Lemma 3.4, which
is employed in the proof of Theorem 1.2 to verify the claimed value of δK . In Section 3.4 we
compute the monodromy of various families of hyperelliptic curves. We combine these two
results to prove Theorem 1.2 in Section 3.5. Finally, in Section 4, we prove Theorem 1.3.

2. Definitions and Properties of Symplectic Groups

This section is devoted to proving Theorem 2.2, which is needed for proving the main
results of this paper, Theorems 1.2 and 1.3. We start in Sections 2.1 and 2.2.2 by defining
symplectic groups, discussing their basic properties, and introducing some recurring notation.
Then, in Section 2.2 we prove a result that is a crucial input to Section 3, where we prove
Theorem 1.2. The reader may choose to continue directly to Section 3 after studying the
statement of Theorem 2.2.

2.1. Symplectic Groups. Let R be a commutative ring, and let g be a positive integer. Let
M be a free R-module of rank 2g, and let ⟨−,−⟩ : M×M → R be a non-degenerate alternat-
ing bilinear form onM . Define the general symplectic group (otherwise known as the group of
symplectic similitudes) GSp(M) ⊂ GL(M) to be the subgroup of allR-automorphisms S such
that there exists some mS ∈ R×, called the multiplier of S, satisfying ⟨Sv, Sw⟩ = mS · ⟨v, w⟩
for all v, w ∈ M . If mS exists, then it is necessarily unique, and one easily checks that the
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resulting mult map

mult : GSp(M)→ R×

S 7→ mS

is a group homomorphism; we call its kernel the symplectic group Sp(M).
Choose an R-basis forM , and denote by Ω2g the matrix which expresses the inner product
⟨−,−⟩ with respect to this basis. The choice of basis gives rise to an identification GL(M) ≃
GL2g(R), and we take GSp2g(R) to be the image of GSp(M) and Sp2g(R) to be the image
of Sp(M) under this identification. Let det : GL2g(R) → R× be the determinant map, and
observe that the diagram

GSp(M) GSp2g(R)

R×

∼

multg
det

commutes. Note that GSp2g(R) ⊂ GL2g(R) is the subgroup of all invertible matrices S

satisfying STΩ2gS = (multS) Ω2g and that Sp2g(R) = ker(mult : GSp2g(R)→ R×).
Let Mat2g×2g(R) be the space of 2g × 2g matrices having entries in R, and consider the

Lie algebras gsp2g(R) and sp2g(R) defined by

gsp2g(R) ··= {Λ ∈ Mat2g×2g(R) : Λ
TΩ2g + Ω2gΛ = d · Ω2g for some d ∈ R},

sp2g(R) ··= {Λ ∈ Mat2g×2g(R) : Λ
TΩ2g + Ω2gΛ = 0}.

When studying Galois representations associated to PPAVs, we usually take R to be one

of the following: the profinite completion Ẑ of Z, the ring of ℓ-adic integers Zℓ for a prime
number ℓ, or the finite cyclic ring Z/mZ for a positive integer m. Observe that we have the
following isomorphisms of topological groups:

(2.1) GSp2g(Zℓ) ≃ lim←−
k

GSp2g(Z/ℓkZ) and

(2.2)
∏

prime ℓ

GSp2g(Zℓ) ≃ GSp2g(Ẑ) ≃ lim←−
m

GSp2g(Z/mZ).

The isomorphisms (2.1) and (2.2) remain valid if GSp2g is replaced by Sp2g. As for the Lie

algebras, note that by sending Λ 7→ id2g +ℓ
kΛ we obtain group isomorphisms

gsp2g(Z/ℓZ) ≃ ker(GSp2g(Z/ℓk+1Z)→ GSp2g(Z/ℓkZ)),
sp2g(Z/ℓZ) ≃ ker(Sp2g(Z/ℓk+1Z)→ Sp2g(Z/ℓkZ))

for every k ≥ 1, so when it is useful or convenient, we will sometimes use the Lie algebra
notation to denote the above kernels.

2.2. Computing Commutators of Large Subgroups of GSp2g(Z2). The objective of
this section is to prove a soon-to-be-useful theorem concerning the commutator of a subgroup
of GSp2g(Z2) which is the preimage (under mod-2 reduction) of a subgroup of Sp2g(Z/2Z)
that contains a copy of the symmetric group S2g+1.



6 AARON LANDESMAN, ASHVIN A. SWAMINATHAN, JAMES TAO, AND YUJIE XU

2.2.1. Embedding the Symmetric Group, Take 1. We asserted in the discussion immediately
preceding the statement of Theorem 1.2 that the symmetric group S2g+1 may be viewed as
a subgroup of Sp2g(Z/2Z). We now provide a working description of the way in which this
embedding is constructed; the manner in which this description applies to the context of
studying hyperelliptic curves is discussed in Section 3.3.

Lemma 2.1. For every g ≥ 2, we have an inclusion S2g+2 ↪→ Sp2g(Z/2Z). When g = 2,
this inclusion is an isomorphism.

Proof. Let V be a (2g + 2)-dimensional vector space over F2, and equip V ≃ F2g+2
2 with

the standard inner product. Let t ··= (1, . . . , 1) be the vector whose components are all
equal to 1. Then the hyperplane t⊥ ⊂ V of all vectors orthogonal to t actually contains t
since dimV = 2g + 2 is even. Moreover, if we define W = t⊥/ span(t), the inner product
on V descends to a nondegenerate alternating bilinear form on W . The action of S2g+2

given by permuting the coordinates of V fixes both t and t⊥, so it descends to an action on
W that preserves the bilinear form. Thus, we obtain an inclusion of S2g+2 into the group
of symplectic transformations of W with multiplier 1. For a more conceptual explanation
of this inclusion in terms of the two-torsion of hyperelliptic curves, see Section 3.3. Upon
choosing a suitable basis for W we may identify this group with Sp2g(Z/2Z). For g = 2, the
resulting inclusion is an isomorphism because #(S6) = 720 = #(Sp4(Z/2Z)). □

We embed S2g+1 ↪→ S2g+2 as the subgroup fixing the vector (0, . . . , 0, 1) ∈ F2g+2
2 .

2.2.2. Notation. In what follows, we shall (for the most part) study subquotients of GSp2g(Z2)

and GSp2g(Z/2kZ) for k a positive integer. We employ the following notational conventions:

• Let H ⊂ GSp2g(Z2) be a closed subgroup.
• For m,n ∈ Z>0 ∪ {∞} with m > n, let GΦ2m→2n : GSp2g(Z/2mZ)→ GSp2g(Z/2nZ)
and Φ2m→2n : Sp2g(Z/2mZ) → Sp2g(Z/2nZ) be the natural projection maps. (When
m =∞, Z/2mZ denotes Z2.)
• Let H(2k) = GΦ2∞→2k(H) ⊂ GSp2g(Z/2kZ) be the mod-2k reduction of H.
• For any topological group G, let [G,G] be the closure of its commutator subgroup,
and let Gab ··= G/[G,G] be its abelianization.
• For each positive integer n, let idn denote the n× n identity matrix.

2.2.3. Main Group Theoretic Result. We can now state the main theorem of this section.

Theorem 2.2. Let g ≥ 2. Let H ⊂ GSp2g(Z2) be a subgroup such that H = GΦ−1
2∞→2(H(2))

and such that H(2) contains S2g+1. Then we have that

(2.3) [H,H] = Φ−1
2∞→2([H(2), H(2)]).

Moreover, the homomorphism H → (H(2))ab × (Z2)
×, defined on the left component by

postcomposing reduction mod-2 with the abelianization map H(2)→ H(2)ab and on the right
component by the multiplier map mult, induces an isomorphism

(2.4) Hab ≃ (H(2))ab × (Z2)
×.

The relevance of Theorem 2.2 to studying Galois representations of Jacobians of hyper-
elliptic curves is described in Lemma 3.4, given at the beginning of Section 3. We prove
Theorem 2.2 next in Section 2.3.
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2.3. Proof of Theorem 2.2.

Proof of Theorem 2.2 assuming Corollary 2.5 and Proposition 2.10. Because we have that

[H,H](2) = [H(2), H(2)],

in order to prove (2.3), it suffices to prove that [H,H] ⊃ kerΦ2∞→2. To prove this statement,
it further suffices to prove the following two statements:

(A) [H,H] ⊃ kerΦ2∞→4,
(B) [H(4), H(4)] ⊃ kerΦ4→2.

Statement (A) is proven in Corollary 2.5 and statement (B) is proven in Proposition 2.10.
To complete the proof, we only need verify (2.4). Note that (2.3) tells us that the map
H → (H(2))ab × (Z2)

× has kernel precisely [H,H], so to prove (2.4), it suffices to check
that the map H → (H(2))ab × (Z2)

× is surjective. But this is easy to check by hand: For
α ∈ (Z2)

×, let Nα be the matrix which has alternating 1’s and α’s on the diagonal, taken
with respect to a symplectic basis e1, . . . , e2g where ⟨ei, ej⟩ is 1 if i = 2k, j = 2k+1 for some
integer k, is −1 if i = 2k+1, j = 2k, and is 0 otherwise. For (M2, α) ∈ (H(2))ab× (Z2)

×, let
M∞

2 ∈ Φ−1
2∞→2(M2), and observe thatM∞

2 ·Nα 7→ (M2, α) via the map H → (H(2))ab×(Z2)
×.

This concludes the proof of our main group-theoretic result, Theorem 2.2. □

2.3.1. Proving Statement (A). We begin with the following lemma, in which we compute
the commutator subalgebra of gsp2g(Z/2Z).

Lemma 2.3. Let ℓ be a prime number. We have [gsp2g(Z/ℓZ), gsp2g(Z/ℓZ)] = sp2g(Z/ℓZ).2

Proof. For convenience, let gℓ ··= [gsp2g(Z/ℓZ), gsp2g(Z/ℓZ)]. That gℓ ⊂ sp2g(Z/ℓZ) is obvi-
ous from the definitions of gsp2g(Z/ℓZ) and sp2g(Z/ℓZ), so it suffices to prove that reverse
containment. For ℓ ≥ 3, this is immediate from [LSTX19, Proposition 2.10], so we may re-
strict to the case where ℓ = 2 (note that this is the case of primary interest to us).3 Choose

a basis for (Z/2Z)2g with respect to which Ω2g is given by Ω2g =

[
0 idg

− idg 0

]
. Then

sp2g(Z/2Z) consists of matrices of the form

[
A B

C −AT

]
where A,B,C ∈ Matg×g(Z/2Z)

and B,C are required to be symmetric. Since we have[[
A 0

0 −AT

]
,

[
D 0

0 −DT

]]
=

[
AD −DA 0

0 ATDT −DTAT

]
,(2.5)

all block-diagonal matrices in sp2g(Z/2Z) with every diagonal entry equal to 0 are contained
in g2. Moreover, for symmetric B,C,E, F ∈ Matg×g(Z/2Z), we have[[

0 B

C 0

]
,

[
0 E

F 0

]]
=

[
BF − EC 0

0 CE − FB

]
,(2.6)

2This result is a variant of [LSTX19, Proposition 2.10].
3In essence, the reason why the case of ℓ odd needs to be handled separately is that sp2g(Z/ℓZ) is a perfect

Lie algebra if and only if ℓ is odd, a result due to Hogeweij [Hog82].
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and we can arrange that BF − EC is an elementary matrix with a single nonzero entry
on the diagonal. Summing matrices from (2.5) and (2.6), tells us that all block-diagonal
matrices in sp2g(Z/2Z) are contained in g2. Additionally, note that gsp2g(Z/2Z) also contains[
idg 0

0 0

]
, from which we deduce that g2 contains

[[
idg 0

0 0

]
,

[
0 B

0 0

]]
=

[
0 B

0 0

]
,(2.7)

where B ∈ Matg×g(Z/2Z) is symmetric. One similarly checks that g2 contains

[
0 0

C 0

]
,

for C ∈ Matg×g(Z/2Z) symmetric. It follows that g2 ⊃ sp2g(Z/2Z). □

Corollary 2.4. We have [kerGΦ2∞→2, kerGΦ2∞→2] = kerΦ2∞→4.

Proof. Clearly [kerGΦ2∞→2, kerGΦ2∞→2] ⊂ kerΦ2∞→4, so it suffices to prove the reverse
inclusion. By [LSTX19, Lemma 2.11], we have that [kerGΦ2∞→2, kerGΦ2∞→2] ⊃ kerΦ2∞→8.
Then, identifying gsp2g(Z/2Z) with kerGΦ8→4 and sp2g(Z/2Z) with kerΦ8→4, we have by
Lemma 2.3 that

kerΦ8→4 = [kerGΦ8→4, kerGΦ8→4] = [kerGΦ2∞→4, kerGΦ2∞→4] (8)

⊂ [kerGΦ2∞→2, kerGΦ2∞→2] (8)

It follows that [kerGΦ2∞→2, kerGΦ2∞→2] ⊃ kerΦ2∞→4. □

Corollary 2.5. We have kerΦ2∞→4 ⊂ [H,H].

Proof. The hypothesis that H = GΦ−1
2∞→2(H(2)) implies that kerGΦ2∞→2 ⊂ H, and hence

[kerGΦ2∞→2, kerGΦ2∞→2] ⊂ [H,H]. Applying Corollary 2.4 then yields the desired result.
□

2.3.2. Proving Statement (B): Tensor Product Notation. Just as we did in the proof of
Lemma 2.3, we must choose a basis with respect to which our symplectic form has an
easy-to-use matrix representation. The goal of this subsection is to choose such a basis
and to develop a shorthand notation for this basis. In Sections 2.3.3 and 2.3.4, we use this
notation to prove Statement (B), thereby completing the proof of Theorem 2.2.

Recall the notation introduced in the first paragraph of Section 2.1: R is a commutative
ring (which we will take to be either Z2 or Z/4Z), and M is a free R-module of rank 2g. We
choose a basis (e1, . . . , e2g) for M so that the symplectic form ⟨−,−⟩ is given by

⟨ei, ej⟩ ··=

{
j − i if |j − i| = 1 and max{i, j} ≡ 0 (mod 2)

0 otherwise

We may alternatively construct M as follows. Let N1 ≃ R2 have basis (x1, x2) and let
N2 ≃ Rg have basis (y1, . . . , yg). Endow N1 with the alternating form given by ⟨xi, xj⟩ =
j − i, and endow N2 with the symmetric form given by ⟨yi, yj⟩ = δij, where δij denotes the
Kronecker δ-function as usual. Then if we take M ··= N1 ⊗ N2, we have that (xi ⊗ yj : i ∈
{1, 2}, j ∈ {1, . . . , g}) is a basis for M and that M is equipped with an alternating form
defined on simple tensors by

⟨a1 ⊗ b1, a2 ⊗ b2⟩ ··= ⟨a1, a2⟩ · ⟨b1, b2⟩.
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Note that the map sending xi⊗yj 7→ e2j+i−2 gives an identification between our two different
constructions of M .

Linear operators onM are R-linear combinations of tensor products of linear operators on
N1 with linear operators on N2. If we denote by xij the row-i, column-j elementary matrix
acting on N1 and by ymn the row-m, column-n elementary matrix acting on N2, then a basis
for End(M) is given by (xij ⊗ ymn : i, j ∈ {1, 2}, m, n ∈ {1, . . . , g}). Also notice that any
element Λ ∈ End(M) may be expressed as

(2.8) Λ =

g∑
i=1

g∑
j=1

Λij ⊗ yij

where Λij ∈ End(N1) for all i, j ∈ {1, . . . , g}.

Proposition 2.6. Let ϕ ∈ End(End(N1)) be defined by

x11 7→ −x22, x22 7→ −x11, x12 7→ x12, x21 7→ x21.

The Lie algebra gsp2g(R) consists of those elements Λ ∈ End(M) with Λij ∈ End(N1) such
that there exists d ∈ R satisfying

ϕ(Λji) = Λij − (dδij) · id2 .

Moreover, sp2g(R) admits an analogous description in which d is required to be zero.

Proof. Since Ω2
2g = − id2g, the defining equation for gsp2g(R) is equivalent to

Ω2gΛ
TΩ2g − Λ + d · (id2⊗ idg) = 0.(2.9)

Note that the identity element End(N2) is given by idg = y11 + · · · + ygg. Substituting this
in along with the expansion (2.8) for Λ as well as (x12 − x21)⊗ idg for Ω2g on the left-hand
side of (2.9) yields that

g∑
i=1

g∑
j=1

[
(x12 − x21)(Λji)

T (x12 − x21)− Λij + (dδij) · id2

]
⊗ yij = 0,

which is equivalent to the following condition:

(x12 − x21)(Λji)
T (x12 − x21) = Λij − (dδij) · id2

The desired result then follows upon observing that (x12−x21)(Λji)
T (x12−x21) = ϕ(Λji). □

Remark 2.7. When R = Z/2Z, minus signs may be ignored, so the operator ϕ may be
concisely described as transposition across the anti-diagonal. It follows from Proposition 2.6
that the following is a basis for sp2g(Z/2Z):(
id2⊗yii, x12 ⊗ yii, x21 ⊗ yii : i ∈ {1, . . . , g}

)
∪(

x12 ⊗ (yij + yij), x11 ⊗ yij + x22 ⊗ yji, x21 ⊗ (yij + yji), x22 ⊗ yij + x11 ⊗ yji : 1 ≤ i < j ≤ g
)
.

In Section 2.3.4, it will be convenient to define a function ind that assigns to each of the
above basis elements the value of i (e.g., ind(id2⊗yii) = i and ind(x12 ⊗ (yij + yij)) = i).
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2.3.3. Proving Statement (B): Describing the Action of S2g+2. We now seek to describe the
embedding S2g+2 ↪→ Sp2g(Z/2Z) from Lemma 2.1 in terms of the tensor product notation

that we just introduced in Section 2.3.2. To this end, we set R = Z/2Z, so that M ≃ F2g
2 .

Lemma 2.8. Recall notation from the proof of Lemma 2.1. The map ψ : M → t⊥/⟨t⟩ of
symplectic vector spaces defined by

x1 ⊗ yn 7→
2n∑
i=1

ei and x2 ⊗ yn 7→ e2n+1 +
2n−1∑
i=1

ei for each n ∈ {1, . . . , g}

is an isomorphism.

Proof. The lemma follows immediately from the observation that ψ identifies the symplectic
forms of M and t⊥/⟨t⟩. □

Recall that the group S2g+2 is generated by the adjacent transpositions Tk for k ∈
{1, . . . , 2g + 1} whose cycle types are given by Tk = (k, k + 1). We now compute the
action of Tk on M for each k:

Lemma 2.9. When viewed as operators on M , the transpositions Tk are given by

T2n = id2g +(x11 + x12 + x21 + x22)⊗ ynn,
T2n+1 = id2g +x12 ⊗ (ynn + y(n+1)n + yn(n+1) + y(n+1)(n+1)),

according as k = 2n or k = 2n+ 1, where any term with an out-of-range index is zero.

Proof. The result for k = 2n follows from the observation that T2n swaps x1⊗yn with x2⊗yn
and keeps all the other basis vectors fixed. As for k = 2n+ 1, we break into three cases:

(1) Suppose n = 0. The transposition T1 sends

ψ(x2 ⊗ y1) = (e1 + e3) 7→ (e1 + e2) + (e1 + e3) = ψ(x1 ⊗ y1) + ψ(x2 ⊗ y2)
and fixes all other ψ(xi ⊗ yj). Thus, T1 is given by T1 = id2g +x12 ⊗ y11.

(2) Suppose n = g. The transposition T2g+1 sends

ψ(x2 ⊗ yg) = e2g+1 +

2g−1∑
i=1

ei 7→
2g+1∑
i=1

ei +

2g−1∑
i=1

ei = e2g + e2g+1 = ψ(x1 ⊗ yg) + ψ(x2 ⊗ yg)

and fixes all other ψ(xi ⊗ yj). Thus, Tg is given by T2g+1 = id2g +x12 ⊗ ygg.
(3) Finally, suppose n ∈ {1, . . . , g − 1}. The transposition T2n+1 sends

ϕ(x2 ⊗ yn) = e2n+1 +
2n−1∑
i=1

ei 7→
2n+2∑
i=1

ei +

(
e2n+1 +

2n−1∑
i=1

ei

)
+

2n∑
i=1

ei

= ψ(x1 ⊗ yn+1) + ψ(x2 ⊗ yn) + ψ(x1 ⊗ yn),

ψ(x2 ⊗ yn+1) = e2n+3 +
2n+1∑
i=1

ei 7→ e2n+3 +
2n+1∑
i=1

ei +
2n+2∑
i=1

ei +
2n∑
i=1

ei

= ψ(x2 ⊗ yn+1) + ψ(x1 ⊗ yn+1) + ψ(x1 ⊗ yn),
and fixes all other ψ(xi ⊗ yn). Thus, T2n+1 is given by

T2n+1 = id2g +x12 ⊗ (ynn + y(n+1)n + yn(n+1) + y(n+1)(n+1)).

The result for k = 2n+ 1 follows immediately from points (1)–(3) above. □
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2.3.4. Finishing the Proof of Statement (B).

Proposition 2.10. We have [H(4), H(4)] ⊃ kerΦ4→2.

Proof. The assumption thatH = GΦ−1
2∞→2(H(2)) implies that kerGΦ4→2 ⊂ H(4). Recall that

we may identify kerGΦ4→2 with gsp2g(Z/2Z), so that each S ∈ kerGΦ4→2 may be expressed
as S = id2g +2Λ where Λ ∈ gsp2g(Z/2Z). The assumption that H(2) contains S2g+1 tells
us that for any M2 ∈ S2g+1 ⊂ Sp2g(Z/2Z), we may lift M2 to an element M4 ∈ H(4). In
particular, we have that

id2g +2(Λ +M2ΛM
−1
2 ) = (id2g +2Λ)−1M4(id2g +2Λ)M−1

4 ∈ [H(4), H(4)].

To complete the proof, it suffices to show that matrices of the form Λ +M2ΛM
−1
2 span all

of sp2g(Z/2Z). Let V = span(Λ +M2ΛM
−1
2 : Λ ∈ gsp2g(Z/2Z) and M2 ∈ S2g+1).

It suffices to restrict our consideration to matrices M2 corresponding to transpositions
Tk ∈ S2g+1. Note that Tk = (Tk)

−1, so that if we write Tk = id2g +Nk, then we have

Λ + TkΛ(Tk)
−1 = NkΛ + ΛNk +NkΛNk.(2.10)

As in Lemma 2.9, we will have to treat the cases k = 2n and k = 2n + 1 separately. In
what follows, we induct on the value of the ind function that V contains the seven types of
basis elements listed in Remark 2.7. First, however, we perform some calculations that serve
to greatly simplify this inductive argument. Combining Lemma 2.9 with (2.10) and taking
Λ = x11 ⊗ idg, we find that

Λ + T2nΛT2n = id2⊗ynn ∈ V,(2.11)

Λ + T2n−1ΛT2n−1 = x12 ⊗ (y(n−1)(n−1) + y(n−1)n + yn(n−1) + ynn) ∈ V.(2.12)

Repeating this calculation for k = 2n but taking Λ = x12 ⊗ ynn, we find that

Λ + T2nΛT2n = (x12 + x21)⊗ ynn ∈ V.(2.13)

Now fix n, ℓ with ℓ > n, and take Λ = M ⊗ ynℓ + ϕ(M) ⊗ yℓn for any M ∈ Mat2×2(Z/2Z).
By Proposition 2.6, all such Λ are elements of gsp2g(Z/2Z). We find that

Λ + T2nΛT2n = (x11 + x12 + x21 + x22)M ⊗ ynℓ +(2.14)

ϕ(M)(x11 + x12 + x21 + x22)⊗ yℓn ∈ V,
Λ + T2n−1ΛT2n−1 = x12M ⊗ (ynℓ + y(n−1)ℓ) + ϕ(M)x12 ⊗ (yℓn + yℓ(n−1)) ∈ V.(2.15)

Taking M = x11 in (2.14), so that ϕ(M) = x22, yields that

(x11 + x21)⊗ ynℓ + (x21 + x22)⊗ yℓn ∈ V,(2.16)

and taking M = x22 in (2.14), so that ϕ(M) = x11, yields that

(x12 + x22)⊗ ynℓ + (x11 + x12)⊗ yℓn ∈ V.(2.17)

Taking M = x22 in (2.15), so that ϕ(M) = x11, yields that

x12 ⊗ (ynℓ + yℓn) ∈ V(2.18)

and taking M = x21 in (2.18), so that ϕ(M) = x21, yields that

x11 ⊗ ynℓ + x22 ⊗ yℓn ∈ V.(2.19)
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We are now ready to carry out the induction. For the base case, we need to check that all
basis vectors with ind-value equal to 1 are in V ; this follows immediately upon taking n = 1
in (2.11)–(2.19). Next, suppose for some N ∈ {1, . . . , g} we have that all basis vectors with
ind-value less than N are in V . Taking n = N in (2.11)–(2.19) and applying the inductive
hypothesis yields that all basis vectors with ind-value equal to N are in V . □

3. Proof of Theorem 1.2

In this section, we prove the first main result of this paper, namely Theorem 1.2. We
begin in Section 3.1 with a description of the relevant background material on Galois rep-
resentations of PPAVs. Then, in Section 3.2, we prove a group-theoretic Lemma, useful for
determining δK . In Section 3.3, we describe the particular manner in which we embed S2g+2

as a subgroup of Sp2g(Z/2Z). In Section 3.4 we determine the monodromy groups of the
four families of hyperelliptic curves introduced in Definition 1.1 and the monodromy of the
universal family over the moduli stack of hyperelliptic curves. Finally, in Section 3.5, we
complete the proof of Theorem 1.2.

3.1. Background. Let K be a number field, let r ≥ 0 be an integer, and let U ⊂ Pr
K be an

open subscheme. For an integer g ≥ 0, let A be a family of g-dimensional PPAVs over U , by
which we mean that A is an abelian scheme over U , meaning that A→ U is a proper smooth
group scheme with geometrically connected fibers of dimension g, and A is equipped with
a principal polarization over U . Because the base U is rational, we call A → U a rational
family. By construction, the fiber Au of the morphism A → U over any K-valued point
u ∈ U(K) is a g-dimensional PPAV over K.

Recall that the action of the étale fundamental group π1(U) on the torsion points of a
chosen geometric generic fiber of A→ U gives rise to a continuous linear representation whose

image is constrained by the Weil pairing to lie in the general symplectic group GSp2g(Ẑ).
We denote the resulting adelic representation by

(3.1) ρA : π1(U)→ GSp2g(Ẑ).4

We now define the monodromy groups associated to ρA. We call the image of ρA : π1(U)→
GSp2g(Ẑ) the monodromy of the family A→ U , and we denote it by HA. We write HA(m)
for the mod-m reductions and HA,ℓ for the ℓ-adic reductions of the above-defined monodromy
groups.

Remark 3.1. Let u ∈ U(K) be a K-valued point. Precomposing the adelic representation

with the induced map π1(u)→ π1(U) gives a representation π1(u)→ GSp2g(Ẑ) whose image
we denote by HAu . Because π1(u) ≃ GK , the representation ρAu obtained by restricting ρA
to Au is the same as the adelic representation ρAu discussed in Section 1.1.

Remark 3.2. For a commutative ring R, recall from the definition of the general symplectic
group that we have a multiplier map mult : GSp2g(R) → R×. If χ denotes the cyclotomic
character, then for a PPAV A it follows from GK-invariance of the Weil pairing that χ =
mult ◦ρA. More generally, if A → U is a family of PPAVs with U normal and integral, and
if ϕ denotes the map π1(U)→ π1(SpecK) induced by the structure map U → SpecK, then
we have that χ ◦ ϕ = mult ◦ρA

4The map in (3.1) is well-defined up to the choice of base-point, and choosing a different base-point would
only alter the image of ρA by an inner automorphism. For this reason, when it will not lead to confusion,
we may omit the base-point from our notation.
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3.2. Computing δK. In this section, we prove Lemma 3.4, which is used to compute the
value of δK in the proof of Theorem 1.2, given in Section 2.3. In order to state Lemma 3.4,
we need the following definition, in which we introduce notation used throughout the paper
to denote various lifts of S2g+i:

Definition 3.3. For i ∈ {1, 2}, we define

S̃2g+i ··= (Sp2g(Ẑ)→ Sp2g(Z/2Z))−1(S2g+i) and S2g+i ··= Φ−1
2∞→2(S2g+i).

The next lemma applies Theorem 2.2 to determine how large the commutator subgroup

of G̃S2g+i,K , is as a subgroup of S̃2g+i:

Lemma 3.4. Let g ≥ 2, let i ∈ {1, 2} and let H ⊂ GSp2g(Ẑ) be a closed subgroup. Suppose
that

• H2 = GΦ−1
2∞→2(S2g+i), and

• H(ℓ) ⊃ Sp2g(Z/ℓZ) for ℓ ≥ 3.

Then

[H,H] = Φ−1
2∞→2(A2g+i)×

∏
ℓ≥3

Sp2g(Zℓ),

where A2g+i denotes the alternating group on 2g + i letters.

Proof. By Theorem 2.2,

[H,H]2 = [H2, H2] = Φ−1
2∞→2(A2g+i).

Also, note that for ℓ ≥ 3,

[H,H](ℓ) = [H(ℓ), H(ℓ)]

⊃ [Sp2g(Z/ℓZ), Sp2g(Z/ℓZ)]
= Sp2g(Z/ℓZ),

the last equality following from [O’M78, 3.3.6]. We now appeal to the fact that a closed
subgroup of Sp2g(Zℓ) mapping onto Sp2g(Z/ℓZ) must in fact be all of Sp2g(Zℓ) for g > 1.
This fact was shown in [Wei96, Theorem B] (except for the case where g = 3 and ℓ = 2),
as well as in [Vas03, Theorem 1.3], and then again in [LSTX19, Proposition 2.5]. Applying

this fact to [H,H] ⊂ Sp2g(Ẑ) gives the result. □

Corollary 3.5. For H as in Lemma 3.4, we have [S̃2g+i : [H,H]] = 2. In particular,

[S̃2g+i : [G̃S2g+i,K , G̃S2g+i,K , ]] = 2.

3.3. Embedding the Symmetric Group, Take 2. In Section 2.2.1 we constructed the
well-known embedding S2g+2 ↪→ Sp2g(Z/2Z). Beginning with

V ≃ F2g+2
2

t = (1, . . . , 1) ∈ V
W = t⊥/ span(t),

we observed that the action of S2g+2 on the basis vectors of V descends to a symplectic
action on W . Our goal in this section is to relate this embedding with the mod-2 Galois
representation attached to a family of hyperelliptic curves, by proving the following result:
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Theorem 3.6. Given a family C→ U of hyperelliptic curves (where U is any stack), and a
geometric generic point η ↪→ U, the monodromy group ρ2(π1(U, η)) ⊂ Sp2g(Z/2Z) is in fact
contained in S2g+2 ⊂ Sp2g(Z/2Z). As a subgroup of S2g+2, the monodromy group is given by
the action of π1(U) on the Weierstrass points of Cη.

This has an immediate consequence for our standard families:

Corollary 3.7. For i ∈ {1, 2, 3, 4}, we have H
Y

(i)
g,K
⊂ G̃S2g+2−(i mod 2),K.

Proof. We have mult(H
Y

(i)
g,K

) = χ(K) as subgroups of Ẑ×, by Remark 3.2. Therefore, it

suffices to show that H
Y

(i)
g,K

(2) ⊂ S2g+2−(i mod 2). By Theorem 3.6, we need only check that the

monodromy action on the Weierstrass points of Y (i)
g,K → W (i)

g,K is contained in S2g+2−(i mod 2)).

The nontrivial cases i = 1, 3 follow by observing that, when the defining equation is y2 = f(x)
with deg f(x) = 2g + 1, one Weierstrass point always lies over infinity, hence is fixed under
monodromy. □

We prove Theorem 3.6 in three steps:

(1) In subsection 3.3.1, we prove the statement when U is Spec k. The key points are
that the constructions are functorial in C and that the isomorphism with JacC/U [2]
follows from standard facts about divisors on hyperelliptic curves.

(2) In subsection 3.3.2, we prove the statement when U is a scheme by explicitly con-
structing the algebraic space of Weierstrass points over U, the corresponding group
space t⊥/ span(t) over U, and the map from the latter to JacC/U [2]. Step (1) implies
that this map is an isomorphism.

(3) In subsection 3.3.3, we interpret the (functorial) constructions of step (2) as giving
rise to corresponding objects and maps over the moduli space Xg of hyperelliptic
curves, corresponding to the universal family Cg →Xg.

3.3.1. A single hyperelliptic curve. Let k be an algebraically closed field of characteristic
zero, let C be a hyperelliptic curve over k, and let J be the Jacobian of C. The set of
Weierstrass points {P1, . . . , P2g+2} of C is uniquely determined because g ≥ 2. With this
setup, define V to be the free vector space over F2 spanned by P1, . . . , P2g+2, so that

t = P1 + · · ·+ P2g+2

t⊥ = spanF2
(Pi − Pj : i, j ∈ {1, . . . , 2g + 2}).

The map

spanZ(P1, . . . , P2g+2) PicC∑
i ai · Pi OC (

∑
i ai · Pi) ,

ϕ

is such that ϕ(spanZ(Pi − Pj)) ⊂ Pic0C ≃ J . Furthermore, it can be checked that

• The resulting map spanZ(Pi − Pj) → J annihilates 2 · (Pi − Pj) and t. Hence it
descends to a map W ··= t⊥/ span(t)→ J [2] of F2 vector spaces.
• This latter map is an isomorphism.

The second bullet point implies that the action of Aut(C) on J [2], a priori contained in
Sp2g(Z/2Z), is in fact contained in the subgroup S2g+2 ⊂ Sp2g(Z/2Z) which is determined
by the vector space isomorphism J [2] ≃ W . For details, see [Yel15, Proposition 1.2.1(a)].
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3.3.2. Schematic families of hyperelliptic curves. Let C → U be a family of hyperelliptic
curves of genus g, where U is a scheme. Because all constructions in 3.3.1 were functorial,
they can be carried out in families. Let us indicate how this is done.

(1) Let P be the fixed point locus of the hyperelliptic involution. Then we have a diagram

P C

U

closed emb.

étale

For any geometric point u ↪→ U , the fiber Pu consists of the Weierstrass points of Cu.

(2) Let G be the group algebraic space over U which represents the sheaf associated to
the following presheaf on Sch/U , in the étale topology:

T 7→ spanZ(HomU(T, P )).

Representability follows by taking an étale cover of U which trivializes P . For u→ U
a geometric point, the fiber Gu equals spanZ(Pu).
There is a section t : U → G which is first defined on a sufficiently fine étale cover

U ′ → U for which U ′ ×U P is a trivial (2g + 2)-cover of U ′, by “adding all the
Weierstrass points,” i.e. summing the (2g + 2) basis elements of

spanZ(HomU(U
′, P )) ≃ spanZ(HomU ′(U ′, U ′ ×U P )).

The section on U ′ can then be descended to U .
We can also define a group subspace G0 ↪→ G via the sub-presheaf given by requir-

ing that the coefficients of the Z-linear combination sum to zero.

(3) Define a map Φ : G→ PicC/U of group spaces over U as follows: given f ∈ G(T ), we
may find an étale cover σ : T ′ → T for which σ∗f =

∑
i fi, for some fi ∈ HomU(T

′, P ).
Each fi gives a section of the pulled-back family CT ′ → T ′, whose image determines a
relative effective Cartier divisor Di. A standard descent argument shows that

∑
iDi

descends to a divisor D on CT , which does not depend on the chosen étale cover σ.
We may therefore define Φ(f) ··= D. This assignment is natural in T , so it gives a
natural transformation of functors G → PicC/U . The fiber Φu is the map ϕ defined

in 3.3.1. The map Φ restricts to a map G0 → Pic0C/U ≃ JacC/U .

(4) Subsection 3.3.1 allows us to describe the kernel and image of Φ as follows. First,
2 · G0 maps to zero, so Φ descends to a map G0/(2 · G0) → JacC/U . Second, the
inclusion G0 ↪→ G gives an injection G0/(2 · G0) ↪→ G/(2 · G), and the image of
t ∈ G(U) in the quotient G/(2 · G) in fact lies in G0/(2 · G0) because t is a sum of
an even number of terms; we abuse notation by denoting the latter section with the
same symbol t. This t spans the kernel of the descended map G0/(2 ·G0)→ JacC/U ,
the image of which is equal to JacC/U [2]. Thus, we have that

G0/(2 ·G0 + span(t))→ JacC/U [2]

is an isomorphism of group stacks over U .

This proves Theorem 3.6 when U ··= U is a scheme, because the action of π1(U) on the fiber
of G0/(2G0 + span(t)) over a chosen geometric generic point η ∈ U (as an F2-vector space)
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is obtained from the action of π1(U) on the fiber of Pη (as a set of size (2g + 2)) via the
procedure of Section 2.2.1.

3.3.3. The universal family over Xg. The constructions of subsection 3.3.2 are functorial in
the chosen family C → U , and behave well under base change V → U , so we obtain the
analogous constructions over the moduli stack of hyperelliptic curves:

P Cg

Xg

closed emb.

étale
and

G0 Pic0Cg/Xg

G PicCg/Xg

Xg

O(−)

O(−)

t

where t is a section of G→Xg, for which we have the following isomorphism of group stacks
over Xg:

G0/(2 · G0 + span(t)) Pic0Cg/Xg
[2]

Xg

≃

Here, t is interpreted as a section of G0/(2 ·G0) over Xg just as in step (4) of subsection 3.3.2.

Remark 3.8. By way of example, let us explain the definition of P, and prove that it is
a stack. By definition, P(U) is the groupoid whose objects are pairs (C → U, f) where
C → U is a hyperelliptic family over U (i.e. an object of Xg(U)) and f is a section of the
étale cover P → U constructed in subsection 3.3.2 from the family C → U . A morphism
(C1 → U, f1) ≃ (C2 → U, f2) is an isomorphism σ of families

C1 C2

U

≃

for which the resulting isomorphism P1 ≃ P2 of the associated spaces of Weierstrass points
identifies the sections f1 and f2.

The descent condition is easy to check. Given an étale cover V → U , a descent datum for

P is given by a family C̃ → V and a section f̃ of the resulting space of Weierstrass points,

denoted P̃ → V , along with gluing isomorphisms that take place over V ×U V , which satisfy

a cocycle condition on V ×U V ×U V . The cocycle condition first allows us to realize C̃ as
the pullback of a family C → U , because Xg is known to be a stack. By functoriality, the
pullback to V of the resulting space of Weierstrass points P → U is canonically identified

with P̃ → V . So effectiveness of the descent datum follows from the fact that P → U is an
étale sheaf over Sch/U , and, as such, satisfies a gluing axiom.

In a similar way, the following points are formal consequences of subsection 3.3.2:

• All stacks appearing in the three commutative diagrams above are algebraic.
• All maps to Xg appearing above are representable.
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• The isomorphism in the third diagram, which gives the desired statement about
monodromy for the universal family Cg →Xg, can be checked on pullback to schemes
U , but this is exactly the conclusion of subsection 3.3.2.

To finish the proof of Theorem 3.6, we need only note that any hyperelliptic family C→ U,
with U a Deligne-Mumford stack, is pulled back from the universal family Cg → Xg via a
map U→ Xg. In this case, all constructions above can be pulled back along the same map
U→Xg. Therefore, to C→ U, we can associate a stack of Weierstrass points, whose Z-span
maps to PicC/U, giving rise to an isomorphism analogous to that of the third commutative
diagram above. This gives the desired result, by the same reasoning as in the last paragraph
of subsection 3.3.2.

3.4. Monodromy of Hyperelliptic Families W (i)
g,K and Xg,K. We now show that the

containment in Corollary 3.7 is an equality for the families Y (i)
g,K → W (i)

g,K .

Lemma 3.9. Let g ≥ 2, and let i ∈ {1, 2, 3, 4}.
(i) For any algebraically closed field L which is a subfield of C, we have H

Y
(i)
g,L

= S̃2g+2−(i mod 2).

(ii) For any number field K, we have H
Y

(i)
g,K

= G̃S2g+2−(i mod 2),K.

Proof. (i) ⇔ (ii): we have a map of short exact sequences

(3.2)

0 H
Y

(i)

g,K

H
Y

(i)
g,K

χ(K) 0

0 S̃2g+2−(i mod 2) G̃S2g+2−(i mod 2),K χ(K) 0.

mult

mult

By the Five Lemma, the second vertical map is an isomorphism if and only if the first is.
Proof of (i): By Corollary 3.7, and because L is a subfield of C, we have containments

H
Y

(i)
g,C
⊂ H

Y
(i)
g,L
⊂ S̃2g+2−(i mod 2).

Therefore, it suffices to show that H
Y

(i)
g,C

= S̃2g+2−(i mod 2). For i ∈ {1, 2}, this follows

from [A’C79, Théorème 1], since the étale fundamental group is the profinite completion
of the topological fundamental group. To complete the proof we need only show that, when
i ∈ {3, 4}, we have H

Y
(i)
g,C

= H
Y

(i−2)
g,C

.

For this, it suffices to construct a deformation retract

ϕ : W (i−2)
g,C × [0, 1]→ W (i−2)

g,C

of W (i−2)
g,C onto W (i)

g,C, which is done as follows. Let n ··= 2g + 2 − (i mod 2). Then W (i−2)
g,C

parameterizes unordered n-tuples of distinct points in A1
C, and W (i)

g,C parameterizes those
which sum to zero. At time t ∈ [0, 1], we define

ϕt : {zi}ni=1 7→
{
zi − t ·

z1 + · · ·+ zn
n

}n

i=1

,

where the n-tuple on the right sums to zero by construction. This ϕ is continuous, as desired.
In fact, ϕ is regular: its coordinate functions are obtained by expressing the elementary
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symmetric polynomials in the right hand side n-tuple as polynomials in (the elementary
symmetric polynomials of the zi) and t. □

Corollary 3.10. Let g ≥ 2. We have that HCg,K
= G̃S2g+2,K, where Cg,K → Xg,K is the

universal family over the moduli stack of hyperelliptic curves.

Proof. A priori, we have the containments

H
Y

(2)
g,K
⊂ HCg,K

⊂ G̃S2g+2,K ,

the latter following from Corollary 3.6. But Lemma 3.9 implies that H
Y

(2)
g,K

= G̃S2g+2,K . □

3.5. Finishing the Proof. We are now in position to complete the proof of Theorem 1.2.
The main input to the proof is the following general theorem from [LSTX19].

Theorem 3.11 ([LSTX19, Theorem 1.1]). Let B, n > 0, and suppose that the rational family

A→ U is non-isotrivial and has big monodromy, meaning that HA is open in GSp2g(Ẑ). Let
δQ be the index of the closure of the commutator subgroup of HA in HA ∩ Sp2g(Ẑ), and let
δK = 1 for K ̸= Q. Then [HA : HAu ] ≥ δK for all u ∈ U(K), and we have the following
asymptotic statements:

|{u ∈ U(K) ∩ Or
K : ∥u∥ ≤ B, [HA : HAu ] = δK}|

|{u ∈ U(K) ∩ Or
K : ∥u∥ ≤ B}|

= 1 +O((logB)−n), and

|{u ∈ U(K) : Ht(u) ≤ B, [HA : HAu ] = δK}|
|{u ∈ U(K) : Ht(u) ≤ B}|

= 1 +O((logB)−n),

where the implied constants depend only on A→ U and n.

Proof of Theorem 1.2. First, we explain how Theorem 3.11 applies to the standard families

Y (i)
g,K → W (i)

g,K . By Lemma 3.9(ii), these families have big monodromy, so Theorem 3.11

applies. Lemma 3.9(ii) says that H
Y

(i)
g,K

= G̃S2g+2−(i mod 2),K . With this in mind, Corollary 3.5

implies that δQ = 2 in the statement of Theorem 3.11.
Next, we apply Theorem 3.11 to a rational family C → U represented by a map U →Xg,K

with connected geometric generic fiber. This hypothesis implies that π1(U) → π1(Xg,K) is
a surjection, cf. [LSTX19, Corollary 5.3], so the monodromy group of C → U is equal to
that of the universal family over Xg,K , and Corollary 3.10 implies that the universal family

over Xg,K has monodromy group G̃S2g+2,K . At this point, Corollary 3.5 implies δQ = 2, as
before. □

4. Verification of the Examples

The objective of this section is to prove our second main result, namely Theorem 1.3.
To verify that the example curves stated in Theorem 1.3 have maximal monodromy among
members of Xg,Q, we shall rely on two different sets of criteria, one adapted from [AD17],
and the other adapted from [Zyw15]. We introduce these criteria in Section 4.1; then, in
Section 4.2, we apply these criteria to check the example curves.
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4.1. Criteria for Having Maximal Monodromy. Let g ∈ {2, 3}, and let C be a genus-g
hyperelliptic curve over Q given by the Weierstrass equation y2 = f(x), where f(x) ∈ Q[x]

is a polynomial of degree 2g + 2; note that C is a Q-valued point of W (2)
g,Q .

Let J denote the Jacobian of C. We want to write down criteria for the associated
monodromy group HJ to be as large as possible in HXg,Q ≃ G̃S2g+2,Q, which by Theorem 1.2

is equivalent to having index 2 in G̃S2g+2,Q. We shall rely on the following lemma, which
gives us two conditions under which maximal monodromy is attained:

Lemma 4.1. Suppose C is a hyperelliptic curve over Q with Jacobian J satisfying

(HJ)2 = GΦ−1
2∞→2(S2g+2), and(4.1)

HJ(ℓ) ⊃ Sp2g(Z/ℓZ) for every prime number ℓ ≥ 3.(4.2)

Then, [G̃S2g+2,Q : HJ ] = 2.

Proof. Since the maximal abelian extension Qab is equal to the maximal cyclotomic extension
Qcyc, we have that

(4.3) ρJ(Gal(Q/Qcyc)) = ρJ(Gal(Q/Qab)) = [HJ , HJ ].

Using (4.3), we find that

[G̃S2g+2,Q : HJ ] = [S̃2g+2 : ρJ(Gal(Q/Qcyc))]

= [S̃2g+2 : [G̃S2g+2,Q, G̃S2g+2,Q]] · [[G̃S2g+2,Q, G̃S2g+2,Q] : ρJ(Gal(Q/Qcyc))]

= 2 · [[S̃2g+2, S̃2g+2] : [HJ , HJ ]],

where in the last step above we used the result of Corollary 3.5. Thus, to prove that HJ is

maximal, it suffices to show that the inclusion [HJ , HJ ] ⊂ [S̃2g+2, S̃2g+2] is an equality. The
result then follows from Lemma 3.4. □

Criterion (4.2) may be broken down into two different sets of criteria by means of the
following two propositions, adapted from [AD17] and [Zyw15] respectively. The first set of
criteria has the advantage that it implies the image is surjective at all but finitely many
primes, although notably it does omit a finite list of primes ℓ.
We first recall definitions from [AD17].

Definition 4.2 ([AD17, Definition 1.2, Definition 1.3]). Let t ≥ 1 be an integer and p a
prime. A polynomial f(x) ··= xm + am−1x

m−1 + · · · + a0 ∈ Zp[x] is t-Eisenstein if v(ai) ≥ t
for i > 0 and v(a0) = t, for v the p-adic valuation. Further, suppose q1, . . . , qk are prime
numbers and f(x) ∈ Zp[x] is monic and squarefree. We say f(x) is of type t−{q1, . . . , qk} if it
can be factored as f(x) = h(x)

∏k
i=1 gi(x−αi) over Zp[x] for αi ∈ Zp with αi ̸≡ αj mod p for

all i ̸= j, gi(x) a t-Eisenstein polynomial of degree qi, and h(x) mod p a separable polynomial
with h(αi) ̸≡ 0 mod p for all i.

The next proposition follows immediately upon combining the main results of [AD17]:

Proposition 4.3 ([AD17]). Suppose f ∈ Z[x] satisfies the following properties:

(1) There exist primes q1, q2, and q3 such that

q1 ≤ q2 < q3 < q1 + q2 = 2g + 2.

(2) There exist two distinct primes pt1 , pt2 > g so that f has type 1− {2} at pt1 and pt2.
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(3) There exists a prime p2 > 2g + 2 which is a primitive root modulo q1, q2, and q3 so
that f has type 1− {q1, q2} at p2 > 2g + 2.

(4) There exist a prime p3 > 2g + 2 which is a primitive root modulo q3 such that f has
type 2− {q3} at p3.

(5) Writing f = x2g+2+ a2g+1x
2g+1+ · · ·+ a1x+ a0 we have a0 ≡ 22g mod 22g+2, a2g+1 ≡

2 mod 22g+2, and ai ≡ 0 mod 22g+2−i for 1 ≤ i ≤ 2g.
(6) For all primes p /∈ {2, p2, p3} we have that p2 ∤ disc f , the discriminant of f .

Let J denote the Jacobian of the regular proper model for the affine curve y2 = f(x). Then
HJ(ℓ) ⊃ Sp2g(Z/ℓZ) for every ℓ > g so long as ℓ ̸∈ {2, 3, q1, q2, q3, p2, p3}.
Proof. We now demonstrate why Proposition 4.3 follows immediately from the results of
[AD17]. It suffices to verify the hypotheses of [AD17, Theorem 6.2]. Their hypotheses
(G+ε), (2T), (p2) and (p3) are respectively (1), (2), (3), and (4) above. Next, we note that
f satisfies their condition (adm): We have to show f is admissible (in the terminology of
[AD17, Definition 4.6]) at all primes p. f is admissible at p2 by [AD17, Lemma 4.10] and at
p3 by [AD17, Lemma 4.11]. Further, f is admissible at all primes with semistable reduction
by [AD17, Lemma 4.9] so it suffices to show f is semistable at all primes p /∈ {p2, p3}. At
p = 2 this follows from [AD17, Lemma 7.7], using (5) above, while at all odd primes this
follows from [AD17, Lemma 7.5], using (6) above. To conclude the proof, we only need check
that all primes ℓ > g with ℓ ̸∈ {2, 3, q1, q2, q3, p2, p3} satisfy either [AD17, Theorem 6.2(i)
or (iii)]. If ℓ ̸= p2, p3 then ℓ satisfies [AD17, Theorem 6.2(i)] because we have seen J/Qℓ is
semistable above. If ℓ = p2 or p3 then ℓ satisfies [AD17, Theorem 6.2(iii)] by (3) and (4)
above. □

The second set of criteria has the advantage that it is simpler to state and works for
every odd prime ℓ. The following criteria have, in essence, appeared in several papers
including [AdRDW16, Theorem 1.1], [Hal08, Theorem 1.1], and [Zyw15, Proposition 2.2].

Proposition 4.4. Let g ≥ 2, and let ℓ ≥ 3 be prime. Consider a subgroup H(ℓ) ⊂ GSp2g(Fℓ)
satisfying the following conditions:

(A) H(ℓ) contains a transvection, by which we mean an element with determinant 1 that
fixes a codimension-1 subspace.

(B) The action of H(ℓ) on (Z/ℓZ)2g is irreducible, in the sense that there are no nontrivial
invariant subspaces.

(C) The action of H(ℓ) on (Z/ℓZ)2g is primitive, in the sense that there does not exist a
decomposition (Z/ℓZ)2g ≃ V1 ⊕ · · · ⊕ Vk with H(ℓ) permuting the Vi’s.

Then we have that H(ℓ) ⊃ Sp2g(Z/ℓZ).

4.2. Checking the Criteria. The remainder of the paper is devoted to using the criteria
introduced in Section 4.1 to verify the examples declared in Theorem 1.3.

4.2.1. Criterion (4.1): The 2-adic Component. The following lemma allows us to verify
criterion (4.1):

Lemma 4.5. Let g ∈ {2, 3}, and let H2 ⊂ S2g+2 be a closed subgroup. If H2(2) = S2g+2,
then we have that H2 = S2g+2.

Proof. When g = 2, the inclusion S6 ⊂ Sp4(Z/2Z) is an equality, so the lemma follows
from [LSTX17, Theorem 1]. For the rest of the proof, we take g = 3. Note that an easy
generalization of the argument given in [Ser98, Lemma 3, Section IV.3.4] shows that, if
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H ⊂ Sp6(Z2) is a closed subgroup satisfying S8(8) = H(8), then H2 = Φ−1
2∞→2(H(2)). So it

suffices to show that S8(8) = H(8). Indeed, the following magma code verifies that there are
no strict subgroups of S8(8) with mod-2 reduction equal to S8(2) = S8.

G := GL(6,quo<Integers()|8>);

e := elt<G| 1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,

0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1>;

f := elt<G|1,1,0,0,0,0,0,1,1,0,0,0,1,1,1,1,0,0,

1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1>;

H := sub<G|e,f>;

maximals := MaximalSubgroups(H);

grp, f := ChangeRing(G, quo<Integers()|2>);

for K in maximals do

if #f(K`subgroup) eq #H then

assert false;

end if;

end for; □

Recall from the discussion in Section 3.3.1 that HJ(2) = S2g+2 if and only if the polynomial
f(x) has Galois group S2g+2. A simple magma computation that this is the case for the
polynomials f(x) associated to the curves stated in Theorem 1.3. Then Lemma 4.5 tells us
that (HJ)2 = S2g+2, thus verifying the criterion (4.1).

4.2.2. Criterion (4.2): The Genus-2 Example. We now verify the genus-2 example. We first
apply Proposition 4.3. To verify the conditions (1)-(6) on the polynomial f(x), we make the
following choices:

q1 = q2 = 3, q3 = 5, pt1 = 3, pt2 = 5, p2 = 17, p3 = 7.

Condition (1) is clearly satisfied and conditions (2)-(4) are satisfied upon observing that f(x)
admits the following factorizations:

(x4 + x3 + x2 + x+ 1)(x2 − 3) mod 32

(x4 + x2 + x+ 1)(x2 − 5) mod 52

(x3 − 17)((x− 1)3 − 17) mod 172

(x− 1)(x5 − 72) mod 73.

Condition (5) is verified by reducing f modulo 22g+2 = 26 = 64. Finally, the computer
verifies that the prime factorization of disc f is given by

disc f = 3·5·78·174·421·6397·103434941173345262214445927·4899652830439610728976665849.

Hence, Proposition 4.3 tells us that condition (4.2) holds for every odd prime ℓ satisfying
ℓ ̸∈ {3, 5, 7, 17}.
To deal with the four remaining primes ℓ, we utilize the criteria given in Proposition 4.4.

First, we show the existence of a transvection (condition (A) of Proposition 4.4). Indeed,
this follows from [AD17, Lemma 2.9], which says that if there is a prime p ∤ 2ℓ such that f(x)
has type 1 − {2} when viewed as a polynomial in Zp[x], then J [ℓ] contains a transvection.
For ℓ ∈ {5, 7, 17} this follows by taking p = 3 while for ℓ = 3 this follows by taking p = 5.
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To complete the proof, it suffices to verify conditions (B) and (C) of Proposition 4.4. For
p be a prime of good reduction of J , let Frobp ∈ GQ denote the corresponding Frobenius

element, and let chp(T ) ∈ Z[t] denote the characteristic polynomial of ρJ(Frobp) ∈ GSp2g(Ẑ).
The next proposition gives us a criterion to check irreducibility and primitivity together
(conditions (B) and (C)):

Proposition 4.6 ([Zyw15, Proof of Lemma 7.2]). Fix a prime ℓ ≥ 3. Suppose there exists
p ̸= ℓ of good reduction such that chp(T ) is irreducible modulo ℓ and ℓ ∤ tr(Frobp). Then
H(ℓ) acts irreducibly and primitively on (Fℓ)

2g.

A simple magma calculation shows that for ℓ ∈ {3, 17}, we can apply Proposition 4.6 with

ch401(T ) = T 4 − 49T 3 + 1257T 2 − 19649T + 160801.

Likewise, for ℓ = 5, we can use

ch61(T ) = T 4 + 6T 3 + 54T 2 + 366T + 3721,

and for ℓ = 7, we can use

ch277(T ) = T 4 + 31T 3 + 765T 2 + 8587T + 76729.

This completes the verification that the curve C2 in Theorem 1.3 has maximal monodromy.

4.2.3. Criterion (4.2): The Genus-3 Example. We now verify the genus-3 example. We
begin again by applying Proposition 4.3. To verify the conditions (1)-(6) on the polynomial
f(x), we make the following choices:

q1 = 3, q2 = 5, q3 = 7, pt1 = 5, pt2 = 13, p2 = 17, p3 = 19.

Condition (1) is clearly satisfied and conditions (2)-(4) are satisfied upon observing that f(x)
admits the following factorizations:

(x6 + x3 + x2 + 1)(x2 + 5) mod 52

(x6 + 51x5 + 12x4 + 70x3 + 82x2 + 41x+ 158)((x− 10)2 + 143(x− 10) + 78) mod 132

((x− 1)3 + 17)(x5 + 17) mod 172

(x+ 1)(x7 + 361) mod 193.

Condition (5) is verified by reducing f modulo 22g+2 = 28 = 256. Finally, the computer
verifies that the prime factorization of disc f is given by

disc f = 244 · 5 · 13 · 176 · 1912 · 409 · 71347 · 249200273817326443 · 2259862376409853901527·
76378336963241484055881774103 · 3700557180228322572272219236151.

Hence, Proposition 4.3 tells us that condition (4.2) holds for every odd prime ℓ satisfying
ℓ ̸∈ {3, 5, 7, 13, 17, 19}.
To deal with the four remaining primes ℓ, we again utilize the criteria given in Proposi-

tion 4.4. First, we show the existence of a transvection (condition (A) of Proposition 4.4).
This follows from [AD17, Lemma 2.9], which says that if there is a prime p ∤ 2ℓ such that f(x)
has type 1 − {2} when viewed as a polynomial in Zp[x], then J [ℓ] contains a transvection.
For ℓ ∈ {3, 7, 13, 17, 19} this follows by taking p = 5 while for ℓ = 5 this follows by taking
p = 13.
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To complete the proof, it suffices to verify conditions (B) and (C) of Proposition 4.4. A
simple magma calculation shows that for ℓ = 3, we can apply Proposition 4.6 with

ch101(T ) = T 6 + 10T 5 + 60T 4 + 222T 3 + 6060T 2 + 102010T + 1030301.

Likewise, for ℓ = 5, we can use

ch89(T ) = T 6 − 3T 5 + 93T 4 + 40T 3 + 8277T 2 − 23763T + 704969,

for ℓ ∈ {7, 17}, we can use

ch127(T ) = T 6 − 12T 5 + 8T 4 + 548T 3 + 1016T 2 − 193548T + 2048383,

and for ℓ ∈ {13, 19}, we can use

ch103(T ) = T 6 − 7T 5 + 55T 4 − 191T 3 + 5665T 2 − 74263T + 1092727.

This completes the verification that the curve C3 in Theorem 1.3 has maximal monodromy.

5. Conjecture Regarding Maximal Adelic Image of Hyperelliptic Curves

As we saw in Section 3.3, the mod-2 monodromy of a hyperelliptic curve y2 = f(x)
always lies in the subgroup S2g+2 ⊂ Sp2g(Z/2Z). Further, the mod-2 monodromy will be
all of S2g+2 if and only if the spitting field of f(x) is as large as possible; i.e., has Galois
group S2g+2 over the base field K. In Lemma 4.5, we saw that for g = 2 or 3, if the mod-2
monodromy is surjective modulo 2, then it is surjective 2-adically. We conjecture that this
pattern continues to hold in higher genera:

Conjecture 5.1. Let g ≥ 2 and let H ⊂ S2g+2 be a closed subgroup. If H(2) = S2g+2 then
H = S2g+2.

To conclude, we make some remarks on the consequences of this conjecture.

Remark 5.2. As described in the proof of Lemma 4.1, via an easy generalization of the
argument given in [Ser98, Lemma 3, Section IV.3.4], to prove Conjecture 5.1, it suffices to
check S2g+2(8) = H(8).

Remark 5.3. Note that Conjecture 5.1, if true, has the following useful consequence: If C is a
hyperelliptic curve overQ with Jacobian J satisfyingHJ(2) = S2g+2 andHJ(ℓ) ⊃ Sp2g(Z/ℓZ)
for every ℓ ≥ 3, then the C has maximal adelic Galois image. That is, [G̃S2g+2,Q : HJ ] = 2.

Indeed, granting Conjecture 5.1, this claim follows immediately from Lemma 4.1.

Remark 5.4. As follows from Remark 5.3, Conjecture 5.1, would imply that the examples
of hyperelliptic curves with maximal mod-ℓ image constructed in [ALS16, Theorem 7.1] in
fact have maximal adelic image.
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