
UNIFORMIZING THE MODULI STACKS OF GLOBAL G-SHTUKAS II
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Abstract. We show that the moduli spaces of bounded global G-Shtukas with pairwise colliding legs
admit p-adic uniformization isomorphisms by Rapoport-Zink spaces. Here G is a smooth affine group
scheme with connected fibers and reductive generic fiber, i.e. we do not assume it to be parahoric, or
even hyperspecial. Moreover, we deduce the Langlands-Rapoport Conjecture over function fields in
the case of colliding legs using our uniformization theorem.

1. Introduction

1.1. Main Results. Shimura varieties play an important role in arithmetic geometry. Their structure,
especially their reduction at bad primes, has been intensively studied. One way to investigate their
reduction is through p-adic uniformization (see for example [RZ96]). In this paper, we consider
the function field analogues of Shimura varieties and their p-adic uniformization. The first such
analogues are the moduli spaces of Drinfeld modules [Dri74]. In order to prove Langlands reciprocity
[Dri77b, Dri87] for GL2 over the function field Q of a smooth projective curve X over a finite field Fq,
Drinfeld [Dri87] defined global G-shtukas (which he called “F -sheaves”) and constructed their moduli
spaces. These were later generalized by Varshavsky [Var04] and V. Lafforgue [Laf18] to the case of
arbitrary constant split reductive groups G, and by Ngô and Ngô Dac [NND08, ND13] to the case
of certain non-constant groups G. For general flat affine group schemes G of finite type over X, the
moduli spaces of bounded global G-shtukas with n legs were constructed by Arasteh Rad and the first
author [ARH21] as separated Deligne-Mumford stacks locally of finite type over Fq.

More precisely, an (iterated) global G-shtuka E = (x, E(i), φ(i) : i = 0, . . . , n − 1) with n legs over a

base scheme S consists of a tuple x = (x1, . . . , xn) ∈ Xn(S) called legs, and G-bundles E(i) over XS :=

X ×Fq S together with isomorphisms (called modifications) φ(i−1) : E(i−1)|XS∖Γxi

∼−→ E(i)|XS∖Γxi
of G-

bundles outside the graph Γxi of xi, with E(n) := τE(0), where τ := idX ×Frobq,S (see Definition 2.7.1
for the general setup). Drinfeld considered the case where G := GLr and n = 2 (see Example 2.11.1). In
addition to [ARH21], various other special cases have been treated in literature: Hilbert-Blumenthal
Shtukas by Stuhler [Stu86] for G = ResX′|X SLr where X ′ is a smooth curve, finite flat over X
on which ∞ splits completely (“totally real case”); D-elliptic sheaves by Laumon, Rapoport and
Stuhler [LRS93] where G is the unit group of (a maximal order in) a central division algebra over
Q (see Example 2.11.3); generalizations of D-elliptic sheaves by L. Lafforgue [Laf97], Lau [Lau07],
Ngô [Ngo06] and Spiess [Spi10]; global G-shtukas for G = PGL2 in [YZ17, YZ19], and for unitary

groups G in [FYZ22, FYZ21]. In all these cases, the modifications φ(i) were suitably bounded.
In the current article, we study uniformization of the moduli stacks of G-shtukas with colliding legs.

We generalize the notion of boundedness from [ARH21, Bie23]. We define bounds Z in Section 2.6
as closed subschemes of the Beilinson-Drinfeld Grassmannian GrG,Xn,I• which are defined over their
reflex scheme. The latter generalizes the notion of a reflex field, which is familiar from the theory of
Shimura varieties. Here we allow more general reflex schemes than in [ARH21, Bie23]. In particular,

the modifications φ(i) can be bounded by cocharacters of G. But we also allow the bound to be defined
in the fiber of GrG,Xn,I• at a closed point of X when the leg is constant at that point. This is needed

to recover and generalize the bounds used in [Stu86, LRS93]. We define the stack ShtZG,Xn,I• of global
G-shtukas with n legs bounded by Z. In Theorems 2.7.9 and 2.7.12, we prove the following result (in
more detail and generality).
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Theorem 1.1.1. The stack ShtZG,Xn,I• is a Deligne-Mumford stack locally of finite type and separated

over Xn. The bound Z is a local model for ShtZG,D,Xn,I•, i.e. both are isomorphic locally for the étale
topology.

Our main result in this article is the uniformization of these stacks. In Section 1.2, we give a
summary of the history of uniformization for Shimura varieties and moduli stacks of shtukas. For the
latter, uniformization was proven in full generality for smooth affine group schemes G over X with
connected fibers and reductive generic fiber by Arasteh Rad and the first author [ARH21] under the
assumption that the legs xi stay disjoint. For colliding legs, uniformization of shtuka stacks is only
known in the very special case of G = GLr or ResX′|X SLr as above, with two legs, one fixed at a
closed point ∞ ∈ X with basic bound and the other leg moving into ∞ bounded by the cocharacter
µ = (d, 0, . . . , 0) for a positive integer d (see [Dri74, Dri77a, Stu86, BS97, Har05]). In all of the above
articles, the bound at ∞ was imposed by using chains of G-bundles. Our results recover the case of
two legs, one fixed at ∞ with minimal basic bound and the other leg moving into ∞ (see §2.8), but
we generalize to arbitrary smooth, affine group schemes G over X with connected fibers and reductive
generic fiber G and arbitrary cocharacter µ as bound.

Our first innovation is to replace the chains from [Dri74, Dri77a, Stu86, BS97, Har05] by a suitably

chosen bound at ∞. Let Q∞ denote the completion of Q at ∞, and let Q̆∞ be the completion of the
maximal unramified extension of Q∞. Let G∞ := G ×X SpecO∞ be the base change to the valuation
ring O∞ of Q∞. Take β ∈ G(Q̆∞) such that βG∞β−1 = G∞. Thus in a sense, β is as small as possible
(see § 2.6.10). We then consider the stack ShtG,X×∞ of global G-shtukas with two legs, of which one
is allowed to vary over all of X and the other is fixed at ∞. For a conjugacy class of cocharacters

µ : Gm → G and a compact open subgroup H ⊂ G(A∞), we define the stack Sht
Z(µ,β)
G,H,∞̂×∞ of such

global G-shtukas with H-level structure, whose varying leg x : S → X factors through ∞̂ := Spf O∞
and whose modification φ(0) (respectively φ(1)) at x (respectively ∞) is bounded by µ (respectively
by β) (see Definitions 2.6.14 and 2.7.8).

Our second innovation is to construct the β−1-twisted global-local functor L+
∞,M in Definition 2.9.22,

which relates such global G-shtukas to localM-shtukas (see §2.9), whereM is the inner form of G∞
given by β−1. The cocharacter µ gives rise to a cocharacter µ of M by which we can bound local
M-shtukas (see Definition 2.9.9 for more details). Let Oµ be the ring of integers in the reflex field

extension of Q∞ of µ and let Ŏµ be the completion of the maximal unramified extension of Oµ. For any
global G-shtuka E ∈ Sht

Z(µ,β)
G,H,∞̂×∞(S), the localM-shtuka L+

∞,M(E) is bounded by µ (Corollary 2.9.25).

Via this twisted global-local functor, we obtain a Serre-Tate Theorem for Shtukas.

Theorem 1.1.2. There is an equivalence between deformations of E and deformations of L+
∞,M(E).

Theorem 1.1.2 allows us to prove the following Theorem 1.1.3. More precisely, we fix a global

framing object G-shtuka E ∈ Sht
Z(µ,β)
G,∞̂×∞(F∞) over F∞. Let L be its associated localM-shtuka under

the β-twisted global-to-local functor (see Definition 2.9.22). Let RZ≤µ
M,L be the Rapoport-Zink space

of L bounded by µ. It was shown by Arasteh Rad and the first author in [ARH14, Theorem 4.18]
that the Rapoport-Zink space is representable by a formal scheme locally formally of finite type over
Spf Ŏµ. Finally, let IE(Q) be the quasi-isogeny group of E (see Remark 2.7.4). With this setup, we
generalize the uniformization theorem of [Dri74, Dri77a, Stu86, BS97, Har05] to the following.

Theorem 1.1.3. (a) There is a canonical morphism

(1.1.4) ΘE : IE(Q)
∖(
RZ≤µ

M,L ×G(A
∞)/H

)
−→ Sht

Z(µ,β)
G,H,∞̂×∞ ×̂Spf Ŏµ

of formal algebraic Deligne-Mumford stacks over Spf Ŏµ, which is an ind-proper and formally étale
monomorphism.

(b) Let X := XE be the image of ΘE as in Lemma 3.3.5(b). It is the isogeny class of E. Let

Sht
Z(µ,β)
G,H,∞̂×∞ /X be the formal completion of Sht

Z(µ,β)
G,H,∞̂×∞ ×̂Spf Ŏµ along the set XE. Then ΘE induces
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an isomorphism of locally noetherian, adic formal algebraic Deligne-Mumford stacks locally formally
of finite type over Spf Ŏµ

ΘE,X : IE(Q)
∖(
RZ≤µ

M,L ×G(A
∞)/H

) ∼−→ Sht
Z(µ,β)
G,H,∞̂×∞ /X .

Our theorem recovers all known uniformization results for moduli spaces of shtukas with colliding
legs. For the moduli space of D-elliptic sheaves, we hereby prove the result expected by Laumon,
Rapoport and Stuhler [LRS93, (14.19)]. We prove Theorem 1.1.3 slightly more generally in Theo-
rems 3.3.3 and 3.3.7 and discuss the compatibility of the morphisms with the actions through Hecke
correspondences and other actions. Combining our techniques with the ones from [ARH21], one can
even extend our result to the case of several disjoint pairs of two colliding legs, such that in each pair
one leg varies and the other leg is fixed at a place ∞i and bounded by some element βi. Then the
uniformizing space will be a product of Rapoport-Zink spaces for inner forms of G; see Remark 3.3.9.

As an application of our Theorem 1.1.3, we prove the function field analogue of the Langlands-
Rapoport conjecture for moduli spaces of global G-Shtukas with colliding legs. The case of disjoint
legs was solved by Arasteh Rad and the first author in [ARH16]. The Langlands-Rapoport conjecture
was first proposed for Shimura varieties in [Lan76], which describes some of the ideas flowing from
Kronecker’s Jugendtraum. The conjecture, following the works of Ihara [Iha68a, Iha68b, Iha69], is an
essential part of the Langlands program [Lan77, Lan79b, Lan79a] to express the zeta function of a
Shimura variety as a product of automorphic L-functions. This conjecture was made more precise
by Kottwitz [Kot90] and then further refined by Langlands-Rapoport [LR87] using the formalism of
motives. In the Shimura varieties setting, there has been progress towards this conjecture in the case
of abelian type Shimura varieties at hyperspecial level at p [Kis17, KSZ21].

In the function field setting, we consider the Q-linear semi-simple Tannakian category Mot∞X of
“X-motives” away from ∞ (see Definition 3.5.1), which generalizes Anderson’s t-motives [And86]. It
is equipped with a fiber functor ω to vector spaces over Q⊗Fq Fq, whose Tannakian fundamental group

P := Aut⊗(ω|Mot∞X ) is the motivic groupoid. One can alternatively view P as a motivic Galois gerbe

via 1 → P∆ → P → Gal(Q ⊗Fq Fq/Q) → 1. Given any global G-Shtuka E ∈ ShtG,∅,∞̂×∞(F∞), one
can associate a corresponding “G-motive”, which is a tensor functor hE from RepQG to the category
Mot∞X of “X-motives”; equivalently, hE gives a homomorphism (of Galois gerbes) from P to the the

neutral Galois gerbe GG := G(Q̆)⋊Gal(Q̆/Q) of G. To each such homomorphism h, one can attach
a set X∞(h), which corresponds to “prime-to-∞” quasi-isogenies (i.e. they are isomorphisms at ∞),
and a set X∞(h), which corresponds to “at-∞” quasi-isogenies (i.e. they are isomorphisms away from
∞). Let Ih be the “isogeny group” of h (see Remark 2.7.4). The Langlands-Rapoport conjecture gives
a precise description of the action of Ih(Q) on X∞(h)×X∞(h).

Theorem 1.1.5. The F∞-points of the Shtuka space Sht
Z(µ,β)
G,H,∞̂×∞ has the form predicted by the

Langlands-Rapoport conjecture, i.e.

(1.1.6) Sht
Z(µ,β)
G,H,∞̂×∞(F∞) =

∐
h

Ih(Q)\X∞(h)×X∞(h)/H,

compatible with Hecke correspondences, Frobenius, and the action of the center.

Note that for the level structure at ∞, we take the group scheme G∞ which is only assumed to be
smooth, affine, with connected fibers and reductive generic fiber. In particular, our level structure at
∞ does not need to be parahoric (or even hyperspecial).

1.2. Historical overview of uniformization. For convenience of the reader, let us summarize the
history of uniformization for Shimura varieties and shtuka stacks.

A. Uniformization varieties at infinity. The history begins in the 19th century with (1) elliptic
modular curves over the complex numbers C, which can be written as quotients of Poincaré’s upper
halfplane by congruence subgroups. It was generalized by Baily, Borel , and Shimura who showed
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that (2) certain quotients of Hermitian symmetric domains by discrete arithmetic groups are algebraic
varieties and defined over number fields. Deligne [Del79] systematically developed the theory of these
varieties, which today are called Shimura varieties and wrote them as a double quotient of a Hermitian
symmetric domain times the adèle points of the corresponding reductive group. All the cases (1), (2)
of uniformization are for number fields and over C, i.e. “at infinity”. Function fields first came into
play with (3) Drinfeld modular varieties [Dri74] which parameterize Drinfeld A-modules of rank r
where A = Γ(X ∖ {∞},OX) for a fixed closed point ∞ ∈ X. Drinfeld A-modules have one leg
x : S → SpecA ⊂ X. Let C∞ be the completion of an algebraic closure of Q∞. Then Drinfeld showed
that the points of the Drinfeld modular varieties with values in S = SpecC∞ are the quotient of his
(r−1)-dimensional upper halfspace ΩrQ∞

by a congruence subgroup. Deligne [DH87] explained that this

can be rewritten as a double coset GLr(Q)\ΩrQ∞
×GLr(A∞)/H, where A∞ are the adèles of Q outside

∞ and H ⊂ GLr(A∞) is a compact open subgroup. Also the uniformization of the Drinfeld modular
varieties is “at infinity”, because ∞ is the place forbidden for the leg x : S → SpecA = X ∖ {∞},
which still moves “close” to ∞ on S = SpecC∞.

B. Uniformization away from infinity. At the same time, uniformization at a place p different
from infinity arose in the work (4) of Čerednik [Cer76], who proved that certain Shimura curves of

EL-type have p-adic uniformization by Deligne’s formal model Ω̂2
Qp

of Drinfeld’s upper halfplane Ω2
Qp

.

Drinfeld [Dri76] explained that for any r the formal model Ω̂rQp
is a Rapoport-Zink space for an

inner form of GLr, i.e. a moduli space for p-divisible groups with extra structure that are isogenous
to a fixed supersingular p-divisible group. See Boutot–Carayol [BC91] and Genestier [Gen96] for a
detailed account. This was vastly generalized (5) by Rapoport and Zink [RZ96] to (partial) p-adic
uniformization of integral models of higher dimensional Shimura varieties by more general moduli
spaces for p-divisible groups. These integral models have a morphism to SpecZp, which can be
called the “leg” of the data parameterized by the integral model. This leg stays disjoint from ∞,
which is a kind of “fixed second leg” for all Shimura varieties, see Remark 1.2.1. In contrast, for the
uniformizations (1), (2), (3) mentioned in the previous paragraph the varying leg moved towards ∞.

C. Uniformization of moduli spaces of shtukas. Generalizing the uniformization (3) of the
Drinfeld modular varieties, Stuhler [Stu86] proved (6) uniformization at ∞ of his moduli spaces of
Hilbert-Blumenthal shtukas. In [BS97], Blum and Stuhler reinterpreted and reproved the uniformiza-
tion (3) in terms of (7) Drinfeld’s “elliptic sheaves” [Dri77a]. The latter was generalized by the first
author in [Har05] where (8) partial uniformization at ∞ of moduli stacks of “abelian τ -sheaves” was
proven. Laumon, Rapoport and Stuhler mention (9) the uniformization at ∞ of their moduli spaces
of D-elliptic sheaves in [Stu86, p. 493] and [LRS93, (14.19)], but do not prove it. Uniformization (10)
for these spaces at a place v different from ∞, i.e. for the two legs v and ∞ staying disjoint, was
proven by Hausberger [Hau05]. When all the legs stay disjoint, the uniformization of moduli spaces of
G-shtukas with n legs was proven in full generality (11) for smooth affine G with connected fibers and
reductive generic fiber by Arasteh Rad and the first author [ARH21]. In all these cases (7), (8), (9),
(10), (11) the uniformizing spaces are Rapoport-Zink spaces for local shtukas as above. For colliding
legs uniformization of shtuka stacks (3), (6), (7), (8) is only known in the very special case for G = GLr
or ResX′|X SLr and two legs, one fixed at ∞ with basic bound and the other leg moving into ∞. The
condition on the legs is analogous to (1), (2), see Remark 1.2.1. In (6), (7), (8), (9) the boundedness
condition at ∞ on the shtukas was imposed by using chains. We give a detailed explanation of this in
Section 2.8.

Remark 1.2.1. We want to explain, why we think that Shimura varieties have two legs, i.e. a hidden
leg at infinity in addition to the obvious leg, which is the structure morphism of the Shimura variety
over SpecZ. For simplicity, we restrict to the case of Shimura varieties of PEL-type parameterizing
abelian varieties with extra structures. Consider an abelian variety A over a finite field Fq of character-
istic p. The (varying) leg of A is the morphism SpecFq → SpecZ given by the natural homomorphism
Z→ Z/(p)→ Fq. This leg and the hidden leg at infinity of A can be seen by looking at the absolute
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values of the q-Frobenius endomorphism π : A → A of A. Since the endomorphism algebra End◦(A)
of A is a finite dimensional Q-algebra, π is the root of its minimal polynomial mπ ∈ Q[T ]. Fix an
absolute value | . | on an algebraic closure Qalg of Q and a root α ∈ Qalg of mπ. If | . | extends an ℓ-adic
absolute value on Q for ℓ ̸= p, then |α| = 1. On the other hand, if ℓ = p then |α| can be different
from 1 depending on the slopes of (the p-divisible group of) A. Responsible for both cases ℓ ̸= p and
ℓ = p is the leg at p which implies that at ℓ ̸= p all slopes are zero. Finally, if | . | is obtained from the

archimedean absolute value on C by an inclusion Qalg ↪→ C, we have |α| = q1/2 ̸= 1. This hints at the
presence of another leg at infinity, where all slopes of the Frobenius endomorphism π are equal, that
is π and A and its p-divisible group could be called “basic”.

Acknowledgments. The authors would like to thank Eva Viehmann for helpful conversations. U.H. ac-
knowledges support of the DFG (German Research Foundation) in form of Project-ID 427320536 – SFB
1442, and Germany’s Excellence Strategy EXC 2044–390685587 “Mathematics Münster: Dynamics–
Geometry–Structure”. Y.X. was supported by the National Science Foundation under Award No. 2202677.

2. Preliminaries

2.1. Notations. Let Fq denote a finite field with q elements. Let X denote a smooth, projective,

geometrically connected curve over Fq. Let Q := Fq(X) be its function field. Let Qalg and Qsep denote
an algebraic and separable closure of Q, respectively. For an Fq-scheme S and an open or closed
subscheme U ⊂ X, denote US := U ×Fq S. For a morphism x : S → X of Fq-schemes, we denote by
Γx ⊂ XS the graph of x. Closed points of X are also called places of Q or of X.

For a closed point v ∈ X, we denote by Fv its residue field, Ov := ÔX,v its complete local ring, and

Qv = Frac(Ov) the fraction field of Ov. Let Fv be a separable closure of Fv. Let Ŏv and Q̆v denote the
completions of maximal unramified extensions of Ov and Qv, respectively. Upon fixing a uniformizer
zv at v, one has canonical identifications Ov = Fv[[zv]], Qv = Fv((zv)), Ŏv = Fv[[zv]] and Q̆v = Fv((zv)).
Let N ilpOv (resp. N ilpŎv

) denote the category of all Ov-schemes (resp. Ŏv-schemes) on which zv is

locally nilpotent (in the structure sheaf).
In some parts of this article we will consider a point∞ ∈ X(Fq), which is assumed to be Fq-rational

for simplicity. Then F∞ = Fq, but we will still use the notation F∞ to emphasize that it comes with

the morphism SpecF∞
∼−→ {∞} ⊂ X.

Let G be a smooth affine group scheme over X with connected fibers and reductive generic fiber
G := G×XSpecQ. Set Gv := G×XSpecOv and Gv := G×XSpecQv. As usual, for elements g, h ∈ G(S)
for some S → X we write inth : g 7→ h g h−1 for the conjugation action (“interior automorphism”).
For a sheaf H of groups (in the fppf -topology) on a scheme Y , an H -bundle (also called a right
H -torsor) on Y is a sheaf E for the fppf -topology on Y , together with a right action of the sheaf H
such that E is isomorphic to H on an fppf -covering of Y . Here H is viewed as an H -torsor via right
multiplication.

We denote by τ := Frobq,S the absolute q-Frobenius of an Fq-scheme S, which is the identity
on the topological space, and the q-power map on the structure sheaf. For a place v ∈ X we let
qv := #Fv = q[Fv :Fq ] and τ̂v := τ [Fv :Fq ] = Frobqv ,S . For data defined over S (e.g. G-bundles E on XS),
we denote the pullback under τ by a left superscript τ (e.g. τE). We use a similar notation with τ̂v or
more generally with τn for n ∈ N. For a linear algebraic group M over Qv, the Frobenius

(2.1.1) τM : LvM(S)→ LvM(S),

for an Fv-scheme S, is defined by sending g : S → LvM to τM (g) := g ◦ Frobqv ,S . In particular, this
applies to M = Gv.

2.2. Loop groups. We will recall the definition of the (positive) loop groups L∆G and L+
∆G in the

general setting for an effective relative Cartier divisor ∆ ⊂ XR over SpecR. We then modify the
notation in the important special cases discussed in Example 2.2.7.
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Let S = SpecR be affine and write XR := XS . Let ∆ ⊂ XR be an effective relative Cartier
divisor over S, i.e. ∆ is an effective Cartier divisor on XR and is finite flat over S. In particular, ∆
is an affine scheme. Its ideal sheaf I∆ ⊆ OXR

is invertible. Thus Zariski-locally on XR, the sheaf
I∆ = z∆ · OXR

is principal, for some z∆ ∈ OXR
. In particular, ∆ = SpecOXR

/I∆ is locally of the
form SpecOXR

/(z∆).

Let ∆̂ be the formal completion of XR at ∆. It is an affine formal scheme of the form Spf ÔXR,∆,

where ÔXR,∆ := lim←−
n

OXR
/I n

∆. Looking at an open neighborhood where I∆ = z∆ · OXR
is principal,

we see that Zariski-locally on SpecR, the formal scheme ∆̂ is of the form Spf R[[z∆]].

Definition 2.2.1. Let ∆ ⊂ XR be an effective relative Cartier divisor over S = SpecR.

(a) The positive loop group of G at ∆ is the fpqc-sheaf of groups L+
∆G over SpecR whose R′-points,

for an R-algebra R′ are given by

L+
∆G(R

′) := G(ÔXR′ ,∆′) = HomX(Spf ÔXR′ ,∆′ ,G) = HomOX
(OG , ÔXR′ ,∆′)

= lim←−
n

HomOX
(OG ,OXR′/I

n
∆′) = lim←−

n

G(SpecOXR′/I
n
∆′),

(2.2.2)

where ∆′ ⊂ XR′ denotes the pullback of ∆ to XR′ .
(b) The loop group of G at ∆ is the fpqc-sheaf of groups L∆G over SpecR whose R′-points, for an

R-algebra R′, are given by

(2.2.3) L∆G(R′) := G(ÔXR′ ,∆′ [z−1
∆ ]).

Zariski-locally on R the group L+
∆G(R′) is of the form G(R′[[z∆]]) and the group L∆G(R′) is of the form

G(R′((z∆))) for R
′((z∆)) := R′[[z∆]][z

−1
∆ ]. Note that (2.2.3) is independent of the choice of z∆, because

any other z∆ is of the form z̃∆ = u · z∆ for some u ∈ O×
XR
⊆ Ô×

XR,∆
.

Thus, the functor L+
∆G is representable by an infinite-dimensional affine group scheme over R.

Moreover, the functor L∆G is representable by an ind-affine ind-scheme of ind-finite type over R by
[Ric16a, Lemma 2.11].

Let [SpecR/L+
∆G] (resp. [SpecR/L∆G]) denote the classifying space of L+

∆G-bundles (resp. L∆G-
bundles). It is a stack fibered in groupoids over the category of R-schemes S′ whose category
[SpecR/L+

∆G](S′) (resp. [SpecR/L∆G](S′)) consists of all L+
∆G-bundles (resp. L∆G-bundles) on S′.

The inclusion of sheaves L+
∆G ⊂ L∆G gives rise to the natural 1-morphism

(2.2.4) L∆ : [SpecR/L+
∆G] −→ [SpecR/L∆G], L 7−→ L∆L.

Definition 2.2.5. The (local) affine flag variety of G at a divisor ∆ ⊂ XR is the fpqc-sheaf FℓG,∆ :=

L∆G/L+
∆G on SpecR.

Lemma 2.2.6. The affine flag variety FℓG,∆ represents the functor on R-schemes that sends an R-

scheme S to the set of isomorphism classes of pairs (L, δ̂), where L is an L+
∆G-bundle over S and

δ̂ : L∆L ∼−→ (L∆G)S is an isomorphism of L∆G-bundles over S.

Proof. This was proven in [Ric16a, Lemma 2.12] (or [PR08] in the special case where ∆ = {v}×Fq S ⊂
XS for a closed point v in X). □

Example 2.2.7. (a) For any x ∈ X(R), the graph ∆ := Γx ⊂ XR of x is an effective relative

Cartier divisor over SpecR by [BLR90, § 8.2, Lemma 6]. In this case we write Γ̂x := ∆̂ for the formal
completion of XR along Γx. We also write L+

x G := L+
∆G and LxG := L∆G for the (positive) loop group

of G at x, and FℓG,x := FℓG,∆ for the affine flag variety, and Lx for the functor from (2.2.4).

(b) As a special case of (a) consider a closed point v ∈ X and view it as a point x := v ∈ X(Fv) for
R = Fv. Let zv be a uniformizing parameter at v. In this case we write FℓG,v := FℓG,x for the affine
flag variety, Lv for the functor from (2.2.4), and L+

v G := L+
x G and LvG := LxG for the (positive) loop



UNIFORMIZING THE MODULI STACKS OF GLOBAL G-SHTUKAS II 7

group of G at v. They are fpqc-sheaves of groups on SpecFv. Their R′-valued points for an Fv-algebra
R′ are

L+
v G(R′) = G(R′[[zv]]) = Gv(R′[[zv]]) and LvG(R′) = G(R′((zv))) = Gv(R′((zv))).

This definition extends to arbitrary smooth affine group schemesM over Ov instead of Gv. The group
L+
vM is also called the positive loop group associated with M, and LvM is called the loop group

associated with M. The latter only depends on the generic fiber M×Ov Qv. The fact that LvM is
represented by an ind-scheme was proven earlier in [PR08, § 1.a], or when M is constant in [BD91,
§4.5], and [NP01], and [Fal03].

(c) More generally than (a) let n ∈ N>0 and let x = (x1, . . . , xn) ∈ Xn(R). Then ∆ := Γx :=

Γx1 + . . . + Γxn is an effective relative Cartier divisor over SpecR. In this case we write Γ̂x := ∆̂ for

the formal completion of XR along Γx. We also write L+
x G := L+

∆G and LxG := L∆G for the (positive)

loop group of G at x, and FℓG,x := FℓG,∆ for the affine flag variety, and Lx for the functor from (2.2.4).

Definition 2.2.8. Let n ∈ N>0. The global positive loop group is defined as the fpqc-sheaf on SpecFq
whose R-valued points for an Fq-algebra R are given by

(2.2.9) L+XnG(R) := {(x, g) : x ∈ Xn(R), g ∈ L+
x G(R)}.

The global loop group is defined as the fpqc-sheaf on SpecFq whose R-valued points for an Fq-algebra
R are given by

(2.2.10) LXnG(R) := {(x, g) : x ∈ Xn(R), g ∈ LxG(R)}.

For an n-tuple of non-negative integers (ci)i we also consider the truncated global positive loop group
defined as the fpqc-sheaf on SpecFq whose R-valued points for an Fq-algebra R are given by

(2.2.11) L+,(ci)iXn G(R) := {(x, g) : x ∈ Xn(R), g ∈ G(∆)},

for the divisor ∆ :=
∑

i ci · Γxi ⊂ XR considered as a scheme over X.

Clearly, L+XnG is a subsheaf of LXnG, and L+,(ci)iXn G is a quotient of L+XnG. The projection onto x

defines morphisms L+XnG → Xn and LXnG → Xn and L+,(ci)iXn G → Xn.

Lemma 2.2.12. (a) The global loop group LXnG is representable by an ind-group scheme which
is ind-affine over Xn.

(b) The global positive loop group L+XnG is representable by a quasi-compact, reduced, infinite di-
mensional group scheme, which is affine and flat over Xn with geometrically connected fibers.

(c) The truncated global positive loop group L+,(ci)iXn G is representable by a smooth, affine group
scheme over Xn of relative dimension equal to (

∑
i ci) · dimG with geometrically connected

fibers.

Proof. The statement is local on Xn. Thus for (a) and (b) we can work on an affine open subscheme
U ⊂ Xn, and assume that the divisor Γx ⊂ XU is principal and the zero locus of an element zx ∈ OXU

.
Then L+

x G(R) = G(R[[zx]]) and LxG(R) = G(R((zx))). After this reformulation, (a) was proven by

Heinloth [Hei10, Proposition 2] and (b) was proven by Richarz [Ric16a, Lemma 2.11]. Since L+XnG is

affine over the quasi-compact Xn, also L+XnG is quasi-compact.

(c) We consider the universal situation over Xn in which the section xi : X
n → X is the projection

onto the i-th component. Then the divisor ∆ :=
∑

i ci · Γxi is a closed subscheme in X ×Fq X
n. Let

pr1 : ∆ → X and pr2 : ∆ → Xn be the projections. The morphism pr2 is finite and flat of degree∑
i ci. Then the group L+,(ci)iXn G over Xn is the Weil restriction Respr2(pr

∗
1 G) of pr∗1 G under pr2. Our

assertions now follow from [CGP10, Propositions A.5.2 and A.5.9]. □
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2.3. The stacks of G-bundles.

Definition 2.3.1. Let BunG := BunXG denote the category fiberd in groupoids over the category of
Fq-schemes, which assigns to an Fq-scheme S the category whose objects BunG(S) are G-bundles over
XS and morphisms are isomorphisms of G-bundles.

Let D ⊂ X be a proper closed subscheme. A D-level structure on a G-bundle E on XS is a
trivialization ψ : E ×XS

DS
∼−→ G×X DS along DS . Let BunG,D denote the stack classifying G-bundles

with D-level structures, i.e. for an Fq-scheme S the objects of the category BunG,D(S) are

(2.3.2) BunG,D(S) :=
{
(E , ψ) : E ∈ BunG(S), ψ : E ×XS

DS
∼−→ G ×X DS

}
,

and the morphisms are those isomorphisms of G-bundles that preserve the D-level structure ψ.

The following theorem is well known, see for example [Beh91, § 4.4], [Hei10, Proposition 1] and
[ARH21, Theorem 2.5].

Theorem 2.3.3. The stack BunG,D is a smooth Artin stack, locally of finite type over Fq. It admits a
covering by connected open substacks (given by bounds on the Harder-Narasinham filtration) of finite
type over Fq.

2.3.4. Generalizing [ARH14, § 5.1] we define the global-local-functor L∆ for BunG . Let S = SpecR be
affine and let ∆ ⊂ XR be an effective relative Cartier divisor. Let [X/G](XR ∖∆) be the category of

G-bundles
◦
E on XR∖∆ and let [X/G](XR∖∆)ext be the full subcategory of [X/G](XR∖∆) consisting

of those G-bundles
◦
E over XR ∖∆ that can be extended to some G-bundle E over the whole relative

curve XR. The restriction functor

(2.3.5) • |XR∖∆ : BunG(R) −→ [X/G](XR ∖∆)ext, E 7−→ E|XR∖∆

assigns to a G-bundle E over XR the G-bundle E|XR∖∆ := E ×XR
(XR ∖∆) over XR ∖∆.

For E ∈ BunG(R), we also consider its formal completion E|
∆̂

:= E ×XR
∆̂ along ∆. By [ARH14,

Proposition 2.4], the formal completion E|
∆̂

corresponds to an L+
∆G-bundle over SpecR which we

denote as L+
∆(E). This gives a functor

(2.3.6) L+
∆ : BunG(R) −→ [SpecR/L+

∆G](R) , E 7→ L+
∆(E) .

Moreover, we have a functor

(2.3.7) L∆ : [X/G](XR ∖∆)ext −→ [SpecR/L∆G](R) ,
◦
E 7→ L∆(

◦
E) := L∆L

+
∆(E)

which sends the G-bundle
◦
E over XR ∖ ∆ (equipped with some extension E over XR) to the L∆G-

bundle L∆(
◦
E) associated with L+

∆(E) under the functor L∆ from (2.2.4). As in [ARH14, § 5.1] one

can show that L∆(
◦
E) is independent of the choice of the extension E . The functors from (2.3.6) and

(2.3.7) are called the global-local-functors at ∆.

Example 2.3.8. We continue with Example 2.2.7 and introduce the following notation.

(a) For a point x ∈ X(R) we write L+
x and Lx for the global-local functors from (2.3.6) and (2.3.7).

(b) When v ∈ X is a closed point we write L+
v and Lv for the global-local functors from (2.3.6) and

(2.3.7). Later on we will apply these functors for different groups. For clarity, we will then include
the group in the subscript and write L+

v,G (resp. Lv,G) instead.

Let TriG(XR,∆) denote the category whose objects are triples (
◦
E ,L, γ), where

◦
E ∈ [X/G](XR∖∆)ext,

and L ∈ [SpecR/L+
∆G](R), and γ : L∆(

◦
E) ∼−→ L∆(L) is an isomorphism of L∆G-bundles on SpecR.
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We obtain a functor

BunG(R) −→ TriG(XR,∆)

E 7−→
(
E|XR∖∆, L

+
∆(E), γ),

(2.3.9)

where γ is the identity morphism of the L∆G-bundle L∆(E|XR∖∆) := L∆L
+
∆(E). The following lemma

generalizes [ARH14, Lemma 5.1].

Lemma 2.3.10. The functor (2.3.9) is an equivalence of categories BunG(R) ∼= TriG(XR,∆).

Proof. This follows from the glueing lemma of Beauville and Lazlo [BL95] as in [ARH14, Lemma 5.1].
□

2.4. The Hecke stack. We recall the definition of the Hecke stack with n legs from [Laf18, Defi-
nition 1.2]. Let n ∈ N0, let I = {1, . . . , n}, and let I• = (I1, . . . , Ik) be an ordered partition of I,
i.e. I = I1 ⊔ . . . ⊔ Ik. Let D ⊂ X be a proper closed subset.

Definition 2.4.1. The Hecke stack HeckeG,D,Xn,I• with n legs and partition I• is the stack over Fq,
whose S-valued points, for an Fq-scheme S, are tuples

(
x, (E(j), ψ(j))j=0...k, (φ

(j−1))j=1...k

)
where1

• xi ∈ (X ∖D)(S) for i = 1, . . . , n are sections, called legs, and x := (xi)i=1...n ∈ (X ∖D)n(S)

• (E(j), ψ(j)) for j = 0, . . . , k are objects in BunG,D(S), and

• the modifications φ(j−1) : E(j−1)|XS∖∪i∈Ij
Γxi

∼−→ E(j)|XS∖∪i∈Ij
Γxi

for j = 1, . . . , k are isomor-

phisms preserving the D-level structures, i.e. ψ(j) ◦ φ(j−1)|DS
= ψ(j−1).

Morphisms
(
x, (E(j), ψ(j))j=0...k, (φ

(j−1))j=1...k

)
→

(
x, (Ẽ(j), ψ̃(j))j=0...k, (φ̃

(j−1))j=1...k

)
are tuples of

isomorphisms f (j) : (E(j), ψ(j)) ∼−→ (Ẽ(j), ψ̃(j)) in BunG,D(S) for all j which are compatible with the

φ(j−1) and φ̃(j−1). We can visualize the above data as

(2.4.2) (E(0), ψ(0))
φ(0)

xi : i∈I1
// (E(1), ψ(1))

φ(1)

xi : i∈I2
// . . .

φ(k−1)

xi : i∈Ik
// (E(k), ψ(k)) .

The projection map of (2.4.2) onto (xi)i=1...n defines a morphism

(2.4.3) HeckeG,D,Xn,I• → (X ∖D)I .

When D = ∅, we will drop it (and the ψ(j)) from the notation. For n = 1, the set I = {1} only has
the trivial partition I1 := I. Thus we drop I• from the notation and simply write HeckeG,D,X .

Remark 2.4.4. Let Ĩ• = (Ĩ1, . . . , Ĩk̃) be a partition of I and I• = (I1, . . . , Ik) a coarsening of Ĩ•

obtained by uniting certain Ĩj̃ with neighboring indices. More precisely, we require that there are

integers 0 = ℓ0 < ℓ1 < . . . < ℓk = k̃ and Ij =
⋃
ℓj−1<j̃≤ℓj Ĩj̃ . Then there is an Xn-morphism

HeckeG,D,Xn,Ĩ•
−→ HeckeG,D,Xn,I•(2.4.5) (

x, (Ẽ(j̃), ψ̃(j̃))j̃=0...k̃, (φ̃
(j̃−1))j̃=1...k̃

)
7−→

(
x, (E(j), ψ(j))j=0...k, (φ

(j−1))j=1...k

)
given by forgetting the (Ẽ(j̃), ψ̃(j̃)) for j̃ /∈ {ℓ0, . . . , ℓk}, reindexing by (E(j), ψ(j)) := (Ẽ(ℓj), ψ̃(ℓj)), and

composing the corresponding φ̃(j̃) to φ(j) := φ̃(−1+ℓj+1) ◦ . . . ◦ φ̃(ℓj).

Proposition 2.4.6. HeckeG,D,Xn,I• is an ind-Artin stack locally of ind-finite type over X. The mor-

phism HeckeG,D,Xn,I• → Xn×FqBunG,D sending
(
x, (E(j), ψ(j))j=0...k, (φ

(j−1))j=1...k

)
to

(
x, (E(k), ψ(k))

)
is relatively representable by a morphism of ind-schemes which is of ind-finite type and ind-quasi-
projective. It is even ind-projective if and only if the group scheme G is parahoric as in [PR08,
Appendix, Definition 1].

1Here we use superscript for indexing inside the Hecke stack and subscript for indexing inside CBun; see Defini-
tion 2.8.1. Both super- and sub- scripts will be used in Section 2.8, where we explain that our G-shtukas generalize the
D-elliptic sheaves from [LRS93].
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Proof. This was proven in [ARH21, Propositions 3.9 and 3.12], where instead of the φ(j), their inverses
are considered (and called τk−j , while also the numbering of the G-bundles is reversed). □

Proposition 2.4.7. Let U := {(xi)i ∈ Xn : xi ̸= xj for i ̸= j} ⊆ Xn be the complement of all

diagonals. Let I• and Ĩ• be partitions of I, such that I• is a coarsening of Ĩ• as in Remark 2.4.4.
Then over the open set U ⊂ Xn, the morphism HeckeG,D,Xn,Ĩ•

×XnU ∼−→ HeckeG,D,Xn,I• ×XnU from

(2.4.5) is an isomorphism.

Proof. We define the divisors ∆j̃ :=
∑

i∈Ĩj̃
Γxi , which are pairwise disjoint over U . Then the in-

verse of the morphism (2.4.5) is given by reconstructing the forgotten Ẽ(j̃) with ℓj < j̃ < ℓj+1

from (Ẽ(ℓj), ψ̃(ℓj)) := (E(j), ψ(j)). This is done via Lemma 2.3.10 by succesively glueing E(j̃−1) with

L+
∆j̃

(E(j+1)) via the isomorphism L∆j̃
(φ(j)) to obtain Ẽ(j̃) and φ̃(j̃−1). Finally we set ψ̃(j̃) := ψ̃(j̃−1) ◦

(φ̃(j̃−1))−1|DS
. □

In the rest of this subsection, we fix a point∞ ∈ X(Fq). We are particularly interested in the Hecke
stack with two legs, one fixed at ∞. For simplicity, we slightly change the notation and use ′ and ′′

instead of numbers for upper-scripts.

Definition 2.4.8. Let I = {1, 2} and let D ⊂ X ∖ {∞} be a proper closed subset.

(a) For the finest partition I• = ({1}, {2}), we define the Hecke stack with two legs, one fixed at ∞ as

HeckeG,D,X×∞ := HeckeG,D,X2,({1},{2})×X2(X ×Fq SpecF∞).

Its S-valued points, for S an Fq-scheme, are tuples(
x, (E , ψ), (E ′, ψ′), (E ′′, ψ′′), φ, φ′ )

where

• x ∈ (X ∖D)(S) is a section, called a leg,
• (E , ψ), (E ′, ψ′), (E ′′, ψ′′) are objects in BunG,D(S), and

• the modifications φ : E|XS∖Γx
∼−→ E ′|XS∖Γx and φ′ : E ′|(X∖{∞})S

∼−→ E ′′|(X∖{∞})S are isomor-
phisms preserving the D-level structures, i.e. ψ′ ◦ φ|DS

= ψ and ψ′′ ◦ φ′|DS
= ψ′.

We can visualize the above data as

(2.4.9) (E , ψ)
φ

x
// (E ′, ψ′)

φ′

∞
// (E ′′, ψ′′) .

(b) We also define the stack for the coarsest partition I1 := I = {1, 2}
′HeckeG,D,X×∞ := HeckeG,D,X2,({1,2})×X2(X ×Fq SpecF∞).

classifying data
(
x, (E , ψ), (E ′′, ψ′′), φ : (E , ψ)|XS∖(Γx∪∞)

∼−→ (E ′′, ψ′′)|XS∖(Γx∪∞)

)
, visualized as

(2.4.10) (E , ψ)
φ

x,∞
// (E ′′, ψ′′) .

When D = ∅, we will drop it and the ψ,ψ′, ψ′′ from the notation. The projection map onto the leg
x defines morphisms HeckeG,D,X×∞ → ′HeckeG,D,X×∞ → X.

“Creating” an unnecessary additional leg at ∞ defines a morphism

HeckeG,D,X −→ ′HeckeG,D,X×∞(2.4.11) (
x, (E , ψ)

φ
99
x
K (E ′, ψ′)

)
7−→

(
x, (E , ψ)

φ
9999
x,∞

K (E ′, ψ′)
)

where we view the isomorphism φ : (E , ψ)|XS∖Γx
∼−→ (E ′, ψ′)|XS∖Γx outside Γx as an isomorphism

φ : (E , ψ)|XS∖(Γx∪∞)
∼−→ (E ′, ψ′)|XS∖(Γx∪∞) outside Γx ∪ (∞×Fq S). This is a morphism over X ×Fq

BunG,D as in Proposition 2.4.6.
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Lemma 2.4.12. The morphism (2.4.11) is a monomorphism, and hence schematic.

Proof. To prove that it is a monomorphism we must show that it is fully faithful as a functor. Let

(x, (E , ψ), (E ′, ψ′), φ) and (x, (Ẽ , ψ̃), (Ẽ ′, ψ̃′), φ̃) be two objects of HeckeG,D,X(S). Then the isomorphism
between these two objects in HeckeG,D,X(S) and also in ′HeckeG,D,X×∞(S) consist of isomorphisms

f : (E , ψ) ∼−→ (Ẽ , ψ̃) and f ′ : (E ′, ψ′) ∼−→ (Ẽ ′, ψ̃′) which are compatible with φ and φ̃. This proves that
(2.4.11) is a monomorphism. It is schematic by [LMB00, Corollaire 8.1.3 and Théorème A.2]. □

2.5. The Beilinson-Drinfeld Grassmannian. Let n ∈ N0, let I = {1, . . . , n}, and let I• =
(I1, . . . , Ik) be a partition of I.

Definition 2.5.1. The Beilinson-Drinfeld Grassmannian GrG,Xn,I• is the fpqc-sheaf of sets on Fq,
whose S-points, for an Fq-scheme S, are tuples(

x, (E(j))j=0...k, (φ
(j−1))j=1...k

)
∈ HeckeG,∅,Xn,I•(S)

as in Definition 2.4.1 together with:

• a trivialization ϵ : E(k) ∼−→ G ×X XS .

For n = 1, the set I = {1} only has the trivial partition I1 := I. Thus we drop I• from the notation
and simply write GrG,X . Thus GrG,Xn,I• is the fiber product

(2.5.2) GrG,Xn,I•
//

��

HeckeG,∅,Xn,I•

E(k)

��
SpecFq

G // BunG

where the vertical map on the right was defined in Proposition 2.4.6 and the horizontal map on the
bottom comes from the trivial G-bundle G ∈ BunG(Fq).

Proposition 2.5.3. GrG,Xn,I• is an ind-scheme of ind-finite type, which is ind-quasi-projective over
Xn. It is even ind-projective if and only if the group scheme G is parahoric.

Proof. This was proven by Richarz [Ric16a, Lemma 2.8(ii)] in case n = 1. In general it follows from
Proposition 2.4.6 by the base change diagram (2.5.2). □

We will need the following alternative description from [Laf18, (0.10)] of the Beilinson-Drinfeld
Grassmannian in terms of modifications of L+

x G-bundles.

Proposition 2.5.4. Via the functor Lx from Example 2.2.7(c), the Beilinson-Drinfeld Grassmannian
GrG,Xn,I• is isomorphic to the fpqc-sheaf on SpecFq, whose S-valued points are tuples

(2.5.5)
(
x, L(0)

φ̂(0)

xi : i∈I1
// L(1)

φ̂(1)

xi : i∈I2
// . . .

φ̂(k−1)

xi : i∈Ik
// L(k) ϵ̂

∼
// (L+

x G)S
)
,

where the L(j) are L+
x G-bundles on S, the φ̂(j−1) are isomorphism of LxG-bundles that above Γx ∖⋃

i∈Ij Γxi are even isomorphisms of L+
x G-bundles, and ϵ̂ is an isomorphism of L+

x G-bundles.

Remark 2.5.6. The condition on φ̂(j−1) means the following. Let SpecR ⊂ S be an affine open
subset. For every j = 1, . . . , k let Ij be the ideal sheaf of the effective relative Cartier divisor∑

i∈Ij Γxi . Then locally on XS the sheaf Ij is generated by an element zj ∈ OXS
. For any j, we can

define the partial loop group LjxG Zariski locally on SpecR as the fpqc-sheaf of groups on SpecR given

by LjxG(R′) := G(ÔXR′ ,∆′ [z−1
j ]), where ∆′ denotes the pullback of ∆ to XR′ . As in Definition 2.2.1,

this is independent of the chosen generator zj , and hence glues to an fpqc-sheaf of groups on S. The

inclusion of sheaves L+
x G ⊂ L

j
xG induces a functor Lj : [S/L

+
x G]→ [S/LjxG]. By the condition on φ̂(j−1)

we mean that φ̂(j−1) is an isomorphism of the induced LjxG-bundles φ̂(j−1) : Lj(L(j−1)) ∼−→ Lj(L(j)).
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Proof of Proposition 2.5.4. The functor L+
x sends an object

(
x, (E(j))j=0...k, (φ

(j−1))j=1...k, ϵ
)
∈ GrG,Xn,I•(S)

to (
x, L+

x (E(0))
Lx(φ(0))

xi : i∈I1
// L+
x (E(1))

Lx(φ(1))

xi : i∈I2
// . . .

Lx(φ(k−1))

xi : i∈Ik
// Lx(E(k))

L+
x (ϵ)

∼
// L+
x G

)
That it is an equivalence follows from Lemma 2.3.10, by gluing G ×X (XS ∖ Γx) with L(j) via the

isomorphism ϵ̂ ◦ φ̂(k−1) ◦ . . . ◦ φ̂(j) to obtain E(j) and φ(j). □

Definition 2.5.7. The global loop group L+XnG from Definition 2.2.8 acts on GrG,Xn,I• by acting on
ϵ̂. More precisely, the action is given by a morphism

L+XnG ×Xn GrG,Xn,I• −→ GrG,Xn,I•

such that (x, g) ∈ L+XnG(S) sends an object (2.5.5) of GrG,Xn,I•(S) to the same object but with ϵ̂
replaced by g · ϵ̂.

Let n = 1 and recall from Definition 2.2.5 and Example 2.2.7(a) the local affine flag variety FℓG,x. For
the global loop groups from Definition 2.2.8, the set of S-valued points of the fppf -quotient LXG/L+XG
equals { (x, g) : x ∈ X(S), g ∈ FℓG,x(S) }. Via the interpretation of FℓG,x from Lemma 2.2.6, we
consider the morphism

GrG,X −→ LXG/L+XG ,(
x, E(0)

φ(0)

9999
x

K E(1) ϵ−−→
∼
G ×X XS

)
7−→

(
x, L+

x (E(0)), Lx(ϵ ◦ φ(0))
)
.

(2.5.8)

Corollary 2.5.9. The map in (2.5.8) is an isomorphism GrG,X ∼= LXG/L+XG. In particular, for a
fixed closed point v ∈ X, we obtain a canonical isomorphism of ind-schemes over Spf Ov

(2.5.10) GrG,X ×X Spf Ov ∼−→ FℓG,v ×̂Fv Spf Ov

where FℓG,v is the local affine flag variety from Example 2.2.7(b) and ×̂Fv denotes the fiber product of
ind-schemes over Fv.

Proof. The first assertion follows from Proposition 2.5.4. To prove the second assertion, note that
Spf Ov = lim

−→
SpecOv/(znv ) where zv is a uniformizing parameter at v. Thus it suffices to prove

that (2.5.10) is an isomorphism modulo znv for every n. To this end we must show for every ring
R and morphism x : SpecR → SpecOv/(znv ) that FℓG,x(R) = FℓG,v(R). Let ζ := x∗(zv) ∈ R.
Then zx := zv − ζ is a generator of the ideal sheaf IΓx defining the graph Γx ⊂ XR of x. Since

ζn = 0 in R, we have Γ̂x = Spf R[[zx]] = Spf R[[zv]] and R((zx)) = R((zv)). This proves the equality
FℓG,x(R) = FℓG,v(R). □

2.5.11. Let n = 1. We recall the definition of the affine Schubert varieties from [Ric16a, Laf18]. Let
µ : Gm,Qsep → GQsep be a cocharacter of G, and let K/Q be a finite separable extension over which µ
is defined. Let Eµ be the reflex field of µ, i.e. Eµ is the field of definition of the conjugacy class of µ.

It is a finite separable field extension of Q, contained in K. Let X̃K and X̃µ be the normalizations of

X in K and Eµ. The field extensions correspond to finite, flat, surjective morphisms X̃K → X̃µ → X.

We consider the canonical leg x : SpecK ↪→ X̃K ↠ X. The completion Γ̂x of its graph Γx is of the

form Γ̂x = SpfK[[zx]]. If z ∈ Q is an element for which Q is a separable extension of Fq(z) and ζ

denotes the image of z in K, then Γ̂x = SpfK[[zx]] = SpfK[[z − ζ]] by [HJ20, Lemma 1.3]. There is
a ring homomorphism Fq(z) ↪→ K[[z − ζ]] sending z to z = ζ + (z − ζ), which modulo the maximal
ideal (z − ζ) induces the inclusion Fq(z) ↪→ K sending z to ζ. Since K is finite separable over Fq(z)
and K[[z − ζ]] is henselian, there is a unique Fq(z)-homomorphism K ↪→ K[[z − ζ]], which modulo
the maximal ideal (z − ζ) induces the identity on K. Note that this Fq(z)-homomorphism is not the
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isomorphism K ∼−→ K · (z− ζ)0 ⊂ K[[z− ζ]], because it sends z to z = ζ + (z− ζ) ̸∈ K · (z− ζ)0. This
Fq(z)-homomorphism defines the upper row in the following diagram

Γ̂x = SpfK[[z − ζ]] // Spec(K ⊗Fq K) //

��

SpecK //

��

SpecQ //

��

X

��
SpecK // SpecFq SpecFq SpecFq

and realizes Γ̂x = SpfK[[z−ζ]] as the formal completion of Spec(K⊗FqK) along the diagonal embedding
of SpecK. Pulling back the group scheme G from X to SpecK under the upper row in the diagram,

we see that the cocharacter µ : Gm,K → GK is defined over Γ̂x.

We now define the K-valued point (x, ḡ) ∈ GrG,X(K) = (LXG/L+XG)(K) given as in Corollary 2.5.9
by the canonical leg x as above, and

ḡ := µ(zx) · L+
x G(K) ∈ FℓG,x(K).

It is independent of the choice of zx, because any other z̃x differs from zx by a unit u ∈ K[[zx]]
×, which

is mapped under µ to µ(u) ∈ L+
x G(K); see [Ric16a, Remark A.2].

Definition 2.5.12. The affine Schubert variety Gr≤µG,X of µ in the Beilinson-Drinfeld Grassman-

nian GrG,X is defined as the scheme-theoretic image of the morphism (L+XG ×X SpecK) · (x, ḡ) →
GrG,X ×XX̃K . It is an L+XG ×X X̃K-invariant, closed subscheme, which is quasi-compact, because

L+XG is a quasi-compact scheme by Lemma 2.2.12(b). It only depends on the conjugacy class of µ,

because if µ̃ = inth ◦µ is conjugate to µ by an element h ∈ G(K), then (x, h) ∈ L+XG(K). Therefore,

the affine Schubert variety descends to a closed subscheme Gr≤µG,X of GrG,X ×XX̃µ.

Proposition 2.5.13. Let U := {(xi)i ∈ Xn : xi ̸= xj for i ̸= j} ⊆ Xn be the complement of all
diagonals. Over the open set U ⊂ Xn, the Beilinson-Drinfeld Grassmannian is a product

GrG,Xn,I• ×XnU ∼−→
(
GrG,X ×Fq . . .×Fq GrG,X

)
×Xn U(2.5.14) (

x, (E(j)), (φ(j−1)), ϵ
)
7−→

(
xi, L

+
xiE

(0), LxiE(0)
Lxi (ϵ◦φ

(k−1)◦...◦φ(0))
−−−−−−−−−−−−−−→ LxiG

)
i=1,...,n

.

Proof. Since the graphs Γxi are pairwise disjoint, we have L+
x (E(0)) =

(
L+
xi(E

(0))
)
i
. Using the isomor-

phism (2.4.5) from Proposition 2.4.7 we may assume that I• is the coarsest partition with I1 = I.

Then the data E(0) and φ(0) : E(0)|XS∖Γx
∼−→ E(1)|XS∖Γx can be recovered from E(1) := G ×X XS by

gluing E(1)|XS∖Γx with L+
x (E(0)) =

(
L+
xi(E

(0))
)
i
via Lx(ϵ ◦ φ(0)) as in Lemma 2.3.10. □

This proposition allows us to define bounds on the left-hand side of (2.5.14) using the bounds on
the right-hand side of (2.5.14) componentwise, see Construction 2.6.13.

Definition 2.5.15. As in the introduction we fix a point ∞ ∈ X(Fq).
(a) For I := {1, 2} with the finest partition I• = ({1}, {2}) we define the Beilinson-Drinfeld Grass-
mannian with two legs, one fixed at ∞ as

GrG,X×∞ := GrG,X2,({1},{2})×X2(X ×Fq SpecF∞)

Its S-valued points, for an Fq-scheme S, are tuples(
x, E , E ′, E ′′, φ, φ′ ) ∈ HeckeG,∅,X×∞(S)

as in Definition 2.4.8(a) together with

• a trivialization ϵ : E ′′ ∼−→ G ×X XS .
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(b) For the coarsest partition I1 := I = {1, 2} we also define
′GrG,X×∞ := GrG,X2,({1,2})×X2(X ×Fq SpecF∞).

classifying data
(
x, E , E ′′, φ : E|XS∖(Γx∪∞)

∼−→ E ′′|XS∖(Γx∪∞)

)
, visualized as

(2.5.16) E
φ

x,∞
// E ′′ .

Again, the projection map onto the leg x defines morphisms GrG,X×∞ → ′GrG,X×∞ → X.

Recall the isomorphism GrG,X ×X SpecF∞
∼−→ FℓG,∞ from (2.5.10) in Corollary 2.5.9.

Proposition 2.5.17. Above X ∖ {∞} the base changes GrG,X×∞×X(X ∖ {∞}) and ′GrG,X×∞ ×X
(X ∖ {∞}) are isomorphic to the product GrG,X ×X(X ∖ {∞})×Fq FℓG,∞.

Proof. This follows from Proposition 2.5.13 and Corollary 2.5.9. As in that proposition the isomor-
phism is given by

GrG,X×∞×X(X ∖ {∞}) ∼−−→ GrG,X ×X(X ∖ {∞})×Fq FℓG,∞

(x, E φ−→
x
E ′ φ′
−→
∞
E ′′ ϵ−→

∼
G ×X XS) 7−→

(
x, L+

x E , LxE
Lx(ϵ◦φ′◦φ)−−−−−−−→ LxG

)
,
(
L+
∞E ′, L∞E ′

L∞(ϵ◦φ′)−−−−−−→ L∞G
)
.

□

As in (2.4.11), “creating” an unnecessary additional leg at ∞ defines a morphism

GrG,X −→ ′GrG,X×∞(2.5.18) (
x, E

φ
99
x
K E ′ ϵ−−→

∼
G ×X XS

)
7−→

(
x, E

φ
9999
x,∞

K E ′′ := E ′ ϵ−−→
∼
G ×X XS

)
.

Lemma 2.5.19. The morphism (2.5.18) is an ind-proper monomorphism of ind-schemes.

Proof. We already saw in Lemma 2.4.12 that it is a monomorphism. To prove that it is ind-proper, we
may work on the fpqc-covering (X∖{∞})

∐
SpecO∞ of X. Above X∖{∞} the map is an ind-closed

immersion, because there
′GrG,X×∞ ×X (X ∖ {∞}) ∼= GrG,X ×X(X ∖ {∞})×Fq FℓG,∞

by Proposition 2.5.17. The image of the morphism (2.5.18) equals GrG,X ×X(X ∖ {∞})×Fq 1 · L+
∞G,

which is an ind-closed ind-subscheme. Over O∞ the ind-scheme GrG,X ×X SpecO∞ is ind-proper by
[Ric16a, § 2.5], because we assumed that G∞ is parahoric. Therefore also the morphism (2.5.18) is
ind-proper over O∞. This proves the lemma. □

2.6. Bounds. We recall the definition of bounds from Bieker [Bie23, § 2] and generalize it slightly (to
case (c) in Definition 2.6.1 below). We need three cases in which we want to define bounds.

Definition 2.6.1. For the ground field F = Q = Fq(X) or F = Qv or F = Fv at a place v ∈ X, we fix
an algebraic closure F sep of the ground field F and consider finite separable field extensions F ⊂ K

in F sep. For K we define X̃K as follows:

(a) global type: For F = Q = Fq(X) let X̃K be the normalization of X in K. It is a smooth

projective curve over Fq. Then we obtain a finite morphism X̃K → X.

(b) local type: For F = Qv at a place v ∈ X let X̃K := SpecOK , where OK is the valuation ring

of K. Then we obtain a finite morphism X̃K → SpecOv.
(c) finite type: For F = Fv at a place v ∈ X let X̃K := SpecK. Then we obtain a finite morphism

X̃K → SpecFv.

Remark 2.6.2. Since we are mainly interested in bounds defined by cocharacters of the group G and
bounds of the finite type (c), we only consider separable field extensions K of F in this article.
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We slightly generalize the definition of bounds from Bieker [Bie23, Definition 2.8].

Definition 2.6.3. (a) For i = 1, . . . , n we fix one of the three types in Definition 2.6.1 and let

Ki,K
′
i be two fields of that type (for the same place v in the local and finite case). We let X̃Ki

for Ki and X̃K′
i
for K ′

i as in Definition 2.6.1. We write
∏
i X̃Ki := X̃K1 ×Fq . . . ×Fq X̃Kn and

likewise
∏
i X̃K′

i
. For any two quasi-compact closed subschemes Z ⊆ GrG,Xn,I• ×Xn

∏
i X̃Ki and

Z ′ ⊆ GrG,Xn,I• ×Xn

∏
i X̃K′

i
, we say they are equivalent if for each i there is a finite extension

K ′′
i of both Ki,K

′
i such that

Z ×∏
i X̃Ki

∏
i

X̃K′′
i
= Z ′ ×∏

i X̃K′
i

∏
i

X̃K′′
i

inside GrG,Xn,I• ×Xn

∏
i X̃K′′

i
.

(b) Let Z be an equivalence class as in (a) and let Z(Ki)i ⊆ GrG,Xn,I• ×Xn

∏
i X̃Ki be a quasi-

compact closed subscheme for some tuple (Ki)i representating Z. For every i we let Fi be the

ground field of the corresponding type as in Definition 2.6.1, and K̃i be the Galois closure of
Ki/Fi. We define

AutZ(
∏
iK̃i) := {(gi)i ∈

∏
i

Gal(K̃i/Fi) : (gi)
∗
iZ = Z}.

The quotient

X̃Z :=
(∏
i

X̃
K̃i

)/
AutZ(

∏
iK̃i)

is called the reflex scheme of Z. Since
∏
iGal(K̃i/Ki) ⊂ AutZ(

∏
iK̃i), the reflex scheme is

equiped with a finite and faithfully flat morphism
∏
i X̃Ki → X̃Z .

(c) A bound in GrG,Xn,I• is an equivalence class Z as in (a), such that all its representatives Z(Ki)i ⊆
GrG,Xn,I• ×Xn

∏
i X̃Ki are stable under the left L

+
XnG×Xn

∏
i X̃Ki-action on GrG,Xn,I• ×Xn

∏
i X̃Ki

from Definition 2.5.7, and such that Z has a representative over its reflex scheme X̃Z .

Remark 2.6.4. The quotient X̃Z can be complicated and does not have to be a product. However,

when Z is the product
∏
iZ(i) as in Construction 2.6.13, the reflex scheme X̃Z will be the product of

the reflex schemes X̃Z(i) of the individual factors Z(i).

Lemma 2.6.5. For every bound Z there is a tuple of non-negative integers (ci)i such that the action of

L+XnG on all the representatives Z of Z factors through the finite group scheme L+,(ci)iXn G from (2.2.11).

We generalize the definition of bounded Hecke data from [ARH19] and [Bie23, Definition 3.3] as
follows.

Definition 2.6.6. Let Z be a bound in GrG,Xn,I• as in Definition 2.6.3 with reflex scheme X̃Z . Let

E =
(
x, (E(0), ψ(0))

φ(0)

9999K (E(1), ψ(1))
φ(1)

9999K . . .
φ(k−1)

99999K (E(k), ψ(k))
)

in (HeckeG,D,Xn,I• ×XnX̃Z)(S) be a Hecke datum over an X̃Z -scheme S. By definition of L+
x G-bundles,

there is an étale covering S′ → S and a trivialization ϵ : L+
x (E(k))S′ ∼−→ (L+

x G)S′ . As in Proposition
2.5.4, the tuple(

L+
x E(0)

Lxφ(0)

99999K . . .
Lxφ(k−1)

9999999K L+
x E(k)

ϵ−−→
∼

L+
x G

)
∈ (GrG,Xn,I• ×XnX̃Z)(S

′)

defines a morphism S′ → GrG,Xn,I• ×XnX̃Z . We say that E is bounded by Z if this morphism factors

through Z ⊂ GrG,Xn,I• ×XnX̃Z for the representative Z of Z that is defined over the reflex scheme
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X̃Z . By the invariance of Z under the left multiplication by L+
x G, the definition is independent of the

choice of ϵ and S′ → S.
We denote the stack of Hecke data bounded by Z by HeckeZG,D,Xn,I• . Then diagram (2.5.2) induces

an isomorphism HeckeZG,D,Xm,I• ×BunG,D
SpecFq ∼= Z ×X (X ∖D) for the representative Z of Z over

X̃Z .

Remark 2.6.7. For n = 1, let Z be a bound in GrG,X with reflex scheme X̃Z . Let S be a scheme over

X̃Z and let φ : E|XS∖Γx
∼−→ E ′|XS∖Γx be an isomorphism of G-bundles on XS outside the graph of a leg

x ∈ X(S). The definition allows to say that φ is bounded by Z, by viewing (x, E , E ′, φ) ∈ HeckeG,∅,X .

Theorem 2.6.8. The stack HeckeZG,D,Xn,I• is a closed substack of HeckeG,D,Xn,I• ×XnX̃Z . Moreover,
it is an Artin-stack locally of finite type over (X ∖D)n.

Proof. For any test scheme S over X̃Z and Hecke datum E ∈ HeckeG,D,Xn,I•(S), we must show that
in the cartesian diagram

S̃ //

��

HeckeZG,D,Xn,I•

��

S
E // HeckeG,D,Xn,I• ×XnX̃Z

the map S̃ → S is a closed immersion of schemes. This can be tested after base change to an étale
covering S′ → S, which we may choose as in Definition 2.6.6. Then the base change morphism

S̃ ×S S′ → S′ arises as the base change of Z ↪→ GrG,Xn,I• ×XnX̃Z which is a closed immersion. □

Next we give some examples of bounds.

Definition 2.6.9 (Bound in GrG,X given by µ). Let n = 1 and let µ : Gm,Qsep → GQsep be a cocharacter

of G. Let Eµ be the reflex field of µ, and X̃µ the normalization of X in Eµ as in Definition 2.6.1. The

affine Schubert variety Z≤µ := Gr≤µG,X of µ from Definition 2.5.12 defines a bound Z≤µ, which has the

representative Z≤µ over the reflex scheme X̃µ. We say that a Hecke datum E ∈ (HeckeG,D,X ×XX̃µ)(S)
is bounded by µ if it is bounded by Z≤µ.

Since we will need it later, we introduce the following notation. We choose a point ∞̃ of X̃µ that
lies above the point ∞ ∈ X(Fq) from the introduction. We write Oµ for the complete local ring of

X̃µ at ∞̃ and κµ for its residue field. We let Ŏµ be the completion of the maximal unramified ring

extension of Oµ. Then O∞ ⊂ Oµ and Ŏ∞ ⊂ Ŏµ and F∞ ⊂ κµ are finite extensions.

2.6.10. Let ∞ ∈ X(Fq) and let β ∈ L∞G(Fq) = G(Q̆∞) with β · L+
∞G · β−1 = L+

∞G. Then there
is a smallest finite field extension Fβ of Fq with β ∈ L∞G(Fβ). For the Frobenius τG∞ from (2.1.1)

we have τ jG∞
(β) · L+

∞G = L+
∞G · τ

j
G∞

(β) for any j ∈ Z, because G∞ is defined over Fq. This equality

implies that β is small in the sense, that its orbit in FℓG,∞(Fβ) under the left action of L+
∞G is the

single point β · L+
∞G(Fβ); see Definition 2.6.11.

That β is small can also be interpreted in the following way. Assume that G∞ is an Iwahori group
scheme corresponding to a τ -stable alcove a in the extended Bruhat-Tits building B(G∞, Q̆∞) of G∞
over Q̆∞. The condition β · L+

∞G · β−1 = L+
∞G says that a is a fixed point of β under the action of

G(Q̆∞) = L∞G(Fq) on B(G∞, Q̆∞). Assume further, that β also stabilizes an appartment containing

a. If A is the maximal split torus of G(Q̆∞) corresponding to that appartment, then β normalizes A.

In this case, β induces an element in the Iwahori-Weyl group W̃∞ := W̃ (G∞, A, Q̆∞) of A over Q̆∞;

see Richarz [Ric16b]. Then the condition β · L+
∞G · β−1 = L+

∞G means that β has length zero in W̃∞.
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Definition 2.6.11 (Bound in GrG,X ×X SpecFβ given by β). Let n = 1. Let β ∈ L∞G(Fβ) as in
§ 2.6.10. We define the bound

Z(β) := (L+
∞G)Fβ

· β · (L+
∞G)Fβ

/(L+
∞G)Fβ

= β · (L+
∞G)Fβ

/(L+
∞G)Fβ

(2.6.12)

⊂ FℓG,∞ ×Fq SpecFβ = (L∞G/L+
∞G)Fβ

.

Its reflex scheme X̃Z(β) is SpecFβ. This is a field of type (c) in Definition 2.6.1.

Construction 2.6.13 (Bounds in GrG,Xn,I• as products of bounds in GrG,X). Let (Z(i))i=1...n be an

n-tuple of bounds in GrG,X with reflex schemes X̃Z(i) , and let Z(i) be the representative of Z(i) over

X̃Z(i) for all i = 1, . . . , n. We allow each X̃Z(i) to be of any of the three types in Definition 2.6.1.

Let U ⊆ Xn be the complement of all diagonals as in Proposition 2.5.13. If
(∏

i X̃Z(i)

)
×Xn U is

non-empty, we define Z to be the scheme-theoretic image of the composite morphism( n∏
i=1

Z(i)
)
×Xn U

� y

++

� � //
((

GrG,X ×XX̃Z(1)

)
×Fq . . .×Fq

(
GrG,X ×XX̃Z(n)

))
×Xn U

� _

��

GrG,Xn,I• ×Xn

∏
i X̃Z(i) ,

where the right vertical map is given in Proposition 2.5.13. This Z defines a bound Z in GrG,Xn,I• ,

which we denote
∏
iZ(i) and call the product bound of the Z(i). Its reflex scheme is

∏
i X̃Z(i) , because

the group AutZ(
∏
iK̃i) from Definition 2.6.3(b) equals

∏
iGal(K̃i/Ei) for the “reflex fields” Ei for

which X̃Z(i) = X̃Ei .

Note that
(∏

i X̃Z(i)

)
×XnU is non-empty unless two different X̃Z(i) are of type (c) in Definition 2.6.1

for the same place v ∈ X.

Definition 2.6.14. Let β ∈ L∞G(Fβ) as in § 2.6.10 and let µ ∈ X∗(T ). We define the bounds Z(µ, β)
in GrG,X×∞ and ′Z(µ, β) in ′GrG,X×∞ as the product bound Z≤µ × Z(β) from Construction 2.6.13,
such that the bound at the moving leg x is Z≤µ and the bound at the fixed leg ∞ equals Z(β) from
Definition 2.6.11. The reflex scheme of these bounds is the product X̃µ,β := X̃µ ×Fq SpecFβ.

Since we will need it later, we introduce the following notation. We choose a point ∞̃ of X̃µ,β that

lies above the point ∞. We write Oµ,β for the complete local ring of X̃µ,β at ∞̃ and κµ,β for its

residue field. We let Ŏµ,β be the completion of the maximal unramified ring extension of Oµ,β. It is

equal to the ring Ŏµ from Definition 2.6.9 if the two points on X̃µ and X̃µ,β above ∞ ∈ X are chosen

compatibly. Then O∞ ⊂ Oµ,β and Ŏ∞ ⊂ Ŏµ,β and F∞ ⊂ κµ,β are finite extensions.

Proposition 2.6.15. The relative dimension of Z(µ, β) over X̃µ,β equals ⟨µ, 2ρ̌⟩, where 2ρ̌ is the sum
of all positive coroots of GQalg with respect to some Borel subgroup for which µ is dominant.

Proof. This was proven in [NP01, Lemma 2.2 and the remarks thereafter]. □

Lemma 2.6.16. Let β = 1, and hence Fβ = Fq. Let Z be a bound in GrG,X with reflex scheme X̃Z
of global type in Definition 2.6.1(a), such that its representative Z over X̃Z is the scheme theoretic
closure of its restriction Z ×X (X ∖ {∞}). Let Z × Z(1) be the product bound in ′GrG,X×∞ from
Construction 2.6.13.

(a) Under the morphism GrG,X → ′GrG,X×∞ from (2.5.18), the bound Z in GrG,X is mapped
isomorphically to the bound Z × Z(1) in ′GrG,X×∞.

(b) The morphism (2.4.11) restricts to an isomorphism HeckeZG,D,X
∼−→ ′Hecke

Z×Z(1)
G,D,X×∞.

Proof. (a) By Lemma 2.5.19 the morphism Z → ′GrG,X×∞×X X̃Z is a proper monomorphism, hence a

closed immersion. We write X̃Z∖{∞} := X̃Z×X (X∖{∞}). Identifying Z with its image, both Z and
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Z×Z(1) are defined as the scheme theoretic closure of their intersection with ′GrG,X×∞×X (X̃Z∖{∞}).
The latter is isomorphic to the product GrG,X ×X(X̃Z ∖ {∞})×Fq FℓG,∞ by Proposition 2.5.17, and

the intersections of Z and Z ×Z(1) with that product are equal to Z ×
X̃Z

(X̃Z ∖ {∞})×Fq (1 ·L+
∞G).

This proves (a).

(b) We must show that the two projection morphisms pr1 and pr2 in

(2.6.17) HeckeZG,D,X
pr1←−−− HeckeZG,D,X ×

′HeckeG,D,X×∞

′Hecke
Z×Z(1)
G,D,X×∞

pr2−−−→ ′Hecke
Z×Z(1)
G,D,X×∞

are isomorphisms, where the fiber product is defined via the morphism (2.4.11). The projection pr1
(respectively pr2) is a closed immersion (respectively a monomorphism) by Theorem 2.6.8 (respec-
tively Lemma 2.4.11). In particular, both projections are schematic by [LMB00, Corollaire 8.1.3 and
Théorème A.2]. Let (x, (E , ψ), (E ′, ψ′), φ) ∈ HeckeZG,D,X(S) be a G-shtuka bounded by Z over a test

scheme S. There is an étale covering S′ → S over which a trivialization ϵ : L+
∆(E ′S′) ∼−→ (L+

∆G)S′ exists,

where ∆ := Γx + (∞×Fq S
′). We let S′ ←↩ pr∗1 S′ =: S̃′ be the base change of the closed immersion

pr1 under the morphism S′ → HeckeZG,D,X . The morphism from S̃′ to the fiber product in (2.6.17)

corresponds to the object (x, (E , ψ), (E ′, ψ′), φ) ∈ HeckeZG,D,X(S̃
′) and an object (x, (Ẽ , ψ̃), (Ẽ ′, ψ̃′), φ̃) ∈

′Hecke
Z×Z(1)
G,D,X×∞(S̃′) together with an isomorphism (f, f ′) : (x, (Ẽ , ψ̃), (Ẽ ′, ψ̃′), φ̃) ∼−→ (x, (E , ψ), (E ′, ψ′), φ)

in ′HeckeG,D,X×∞(S̃′). In particular, f ′ : Ẽ ′ ∼−→ E ′ is an isomorphism of G-bundles. The trivialization

ϵ induces the trivialization ϵ ◦L+
∆(f

′) : L+
∆(Ẽ ′) ∼−→ (L+

∆G)S̃′ . Using these trivializations, the morphism

S′ ←↩ S̃′ is obtained as base change under S′ → Z from the projection pr1 in the following diagram

(2.6.18) Z pr1←−−−
∼
Z ×

′GrG,X×∞
(Z × Z(1)) pr2−−−→

∼
(Z × Z(1)).

That diagram is obtained from (2.6.17) under base change via SpecFq → BunG,D as in (2.5.2). In
diagram (2.6.18) the projections pr1 and pr2 are isomorphisms by (a). This shows that pr1 in (2.6.17)
is an isomorphism. The analogous argument for the projection pr2 in (2.6.17) starts with an object

(x, (Ẽ , ψ̃), (Ẽ ′, ψ̃′), φ̃) ∈ ′Hecke
Z×Z(1)
G,D,X×∞(S) and proves that pr2 is an isomorphism. □

2.7. Moduli spaces of shtukas. In this section, we recall the preliminaries on shtukas.

Definition 2.7.1. Let D ⊂ X be a finite subscheme. The stack of global G-shtukas ShtG,D,Xn,I• with
n legs and D-level structure is the stack fibered in groupoids over the category of Fq-schemes, whose
S-valued points, for an Fq-scheme S, are tuples(

(xi)i=1...n, (E(i), ψ(i))i=0...n, (φ
(i−1))i=1...n

)
∈ HeckeG,D,Xn,I•(S)

as in Definition 2.4.1 together with:

• shtuka condition: an isomorphism φ(k) : E(k) ∼−→ τE(0) compatible with the D-level structure,
i.e. τψ(0) ◦ φ(k) = ψ(k).

Here the superscript τ refers to the pullback under the absolute q-Frobenius τ = Frobq,S of S as defined
in §2.1.

We usually drop (E(k), ψ(k)) and φ(k) from the notation and simply identify (E(k), ψ(k)) with τ(E(0), ψ(0)).
Then we can visualize the above data as

(2.7.2) E :=
(
x, (E(0), ψ(0))

φ(0)

xi : i∈I1
// (E(1), ψ(1))

φ(1)

xi : i∈I2
// . . .

φ(k−1)

xi : i∈Ik
// τ(E(0), ψ(0))

)
and call it a global G-shtuka with D-level structure over S.

When D = ∅, we will drop it (and the ψ(i)) from the notation.
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Definition 2.7.3. Consider a scheme S together with legs xi : S → X ∖ D for i = 1, . . . , n and let

E , Ẽ ∈ ShtG,D,Xn,I•(S) be two global G-shtukas over S with the same legs xi. A quasi-isogeny from E to

Ẽ is a tuple of isomorphisms f (i) : (E(i), ψ(i))|XS∖NS
∼−→ (Ẽ(i), ψ̃(i))|XS∖NS

for i = 0, . . . , n of G-bundles
with D-level structure satisfying φ̃(i)◦f (i) = f (i+1)◦φ(i) for i = 0, . . . , n−1 and φ̃(k)◦f (k) = τf (0)◦φ(k),
where N ⊂ X is some proper closed subscheme. We denote the group of quasi-isogenies from E to
itself by QIsogS(E).

Remark 2.7.4. If S = SpecFq then we write IE(Q) := QIsogF∞
(E). We do not need the following

result in this article. However, it justifies the notation. There is a linear algebraic group IE over Q
such that IE(Q) = QIsogF∞

(E). This can be proven as in [ARH22, ARH16] by noting that E gives

rise to a tensor functor from RepQG to the category of C-motives (with C = X) as in [ARH22, (4.3)].
Here RepQG is the neutral Tannakian category of algebraic representations of G in finite dimensional
Q-vector spaces. By Tannakian duality the G-shtuka E corresponds to a homomorphism h = hE from
the Tannakian fundamental groupoid P of the category of C-motives to the neutral groupoid of G.
Then Ih := Aut(h) is the linear algebraic group over Q defined by

Ih(R) := Aut(h)(R) :=
{
g ∈ G(Qalg ⊗Q R) : intg ◦h = h

}
for Q-algebras R. Indeed, Ih and IE are equal by Lemma 3.5.10.

By Definition 2.7.1, the stack ShtG,D,Xn,I• is defined as the fiber product

(2.7.5) ShtG,D,Xn,I•
//

��

HeckeG,D,Xn,I•

(E(0),E(k))

��
BunG,D

id×Frobq // BunG,D ×Fq BunG,D

There is a map ShtG,D,Xn,I• → (X ∖D)n given by E 7→ (xi)i=1,...,n.

Theorem 2.7.6. (a) The stack ShtG,D,Xn,I• is an ind-Deligne-Mumford stack, locally of ind-finite
type and ind-separated over (X ∖D)n.

(b) If D ⊂ D′ ⊂ X are proper closed subschemes, then the natural morphism ShtG,D′,Xn,I• →
ShtG,D,Xn,I• ×(X∖D)n(X ∖ D′)n is finite, étale, surjective and a torsor for the finite abstract

group ker
(
G(D′)→ G(D)

)
.

Proof. This was proven in [ARH21, Theorem 3.15] building on earlier work for constant split G of
Varshavsky [Var04] and Lafforgue [Laf18]. □

The stacks ShtG,D,Xn,I• and the theorem generalize results on the moduli space of F -sheaves FShD,r
which were considered by Drinfeld [Dri87] and Lafforgue [Laf02] in their proof of the Langlands
correspondence for G = GL2 (resp. G = GLr), and its generalization FBun by Varshavsky [Var04].
It likewise generalizes the moduli stacks EℓℓX,D ,I of Laumon, Rapoport and Stuhler [LRS93], their
generalizations by L. Lafforgue [Laf97], Lau [Lau07], Ngô [Ngo06] and Spieß [Spi10], the spaces Chtλ
of Ngô and Ngô Dac [NND08, ND13], and the spaces AbShr,dH of the first author [Har05].

Corollary 2.7.7. Let E and E ′ be global G-shtukas with the same legs in ShtG,D,Xn,I•(S) over an
Fq-scheme S. Then the sheaf of sets on Sfpqc given by IsomS(E , E ′) : T 7→ IsomT (ET , E ′T ) is repre-
sentable by a scheme, which is finite and unramified over S. In particular, the (abstract) group of
automorphisms AutS(E) of E over S is finite.

Proof. Since ShtG,D,Xn,I• is an ind-separated ind-Deligne-Mumford stack, its diagonal is unramified
and proper. The base change of the diagonal under the morphism (E , E ′) : S → ShtG,D,Xn,I• ×Fq ShtG,D,Xn,I•

equals IsomS(E , E ′), which is hence an algebraic space unramified and proper over S. In particular it
is finite and affine over S and hence a scheme; c.f. [LMB00, Lemma 4.2]. □
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Definition 2.7.8. Let Z be a bound in GrG,Xn,I• and let X̃Z be its reflex scheme. We define

the closed substack ShtZG,D,Xn,I• of ShtG,D,Xn,I• ×XnX̃Z as the base change of HeckeZG,D,Xn,I• un-
der the morphism ShtG,D,Xn,I• → HeckeG,D,Xn,I• from (2.7.5). In terms of the data from (2.7.2) this

means that the boundedness is tested after trivializing L+
x (

τE(0)). We say that a global G-shtuka
E ∈ (ShtG,D,Xn,I• ×XnX̃Z)(S) is bounded by Z if it belongs to ShtZG,D,Xn,I•(S).

Theorem 2.7.9. The stack ShtZG,D,Xn,I• is a Deligne-Mumford stack locally of finite type and separated

over (X ∖D)n ×Xn X̃Z .

In the following we recall that the Beilinson-Drinfeld Grassmannian (and a bound therein) is a local
model for the moduli spaces of (bounded) shtukas.

Definition 2.7.10. Let D ⊂ X be a finite subscheme. We define S̃htG,D,Xn,I• as the stack, whose
S-valued points, for an Fq-scheme S, are tuples(

x = (xi)i=1...n, (E(i), ψ(i))i=0...n, (φ
(i−1))i=1...n, φ

(k)
)
∈ ShtG,D,Xn,I•(S)

as in Definition 2.7.1 together with:

• a trivialization ϵ̂ : LxE(k) ∼−→ (L+
x G)S .

Note that L+XnG is the automorphism group of the trivial L+
x G-bundle.

If Z is a bound in GrG,Xn,I• and Z is its representative over the reflex scheme X̃Z , we define

S̃ht
Z
G,D,Xn,I• := S̃htG,D,Xn,I• ×ShtG,D,Xn,I•

ShtZG,D,Xn,I• .

Forgetting the trivialization ϵ̂ (respectively the isomorphism φ(k) : E(k) ∼−→ τE(0)) defines the Xn-
morphisms π1 (respectively π2) in the following diagrams

(2.7.11) S̃htG,D,Xn,I•

π1

yy

π2

%%

S̃ht
Z
G,D,Xn,I•

π1

zz

π2

""
ShtG,D,Xn,I•

π2 &&

GrG,Xn,I•

π1yy

and ShtZG,D,Xn,I•

π2 %%

Z

π1{{
[GrG,Xn,I• /L+XnG] [Z/L+XnG]

in which the bottom entries are the stack quotients modulo the L+XnG-action. These diagrams are

called the local model diagram for ShtG,D,Xn,I• (respectively for ShtZG,D,Xn,I•).

Theorem 2.7.12. In the diagrams (2.7.11) the Xn-morphisms π2 and π2 are formally smooth and
both diagrams are cartesian. The Xn-morphisms π1 and π1 are L+XnG-torsors and have sections étale
locally on the target. For any such section s of π1, the composition π2 ◦ s is étale. In particular,
GrG,Xn,I• is a local model for ShtG,D,Xn,I•, in the sense that both are isomorphic locally for the étale

topology. Likewise, Z is a local model for ShtZG,D,Xn,I•.

If (ci)i is a tuple of integers as in Lemma 2.6.5 for which the L+XnG-action on the representatives

of the bound Z factors through L+,(ci)iXn G, then the morphism π2 factors through the morphism

(2.7.13) ShtZG,D,Xn,I• → [Z/L+,(ci)iXn G].
The latter is smooth of relative dimension (

∑
i ci) ·dimG, which is also equal do the relative dimension

of the group scheme L+,(ci)iXn G over Xn; see Lemma 2.2.12(c).

Proof. This goes back to Varshavsky [Var04, Theorem 2.20] for constant split reductive G and was
reproven by Lafforgue [Laf18, Proposition 2.11] and generalized by Arasteh Rad and Habibi [ARH19,



UNIFORMIZING THE MODULI STACKS OF GLOBAL G-SHTUKAS II 21

Theorem 3.2.1] to smooth affine group schemes G over X. The proof relies on the observation that in
the diagramm (2.7.5) which defines ShtG,D,Xn,I•

ShtG,D,Xn,I•
//

��

HeckeG,D,Xn,I•

(E(0),E(k))

��

GrG,Xn,I•
oo

��
BunG,D

id×Frobq // BunG,D ×Fq BunG,D BunG,D
id×Goo

both horizontal morphisms in the bottom row have the same differential (id, 0). □

Definition 2.7.14. Let ∞ ∈ X(Fq) and let D ⊂ X ∖ {∞} be a proper closed subscheme. The stack
of global G-shtukas ShtG,D,X×∞ with two legs, one fixed at ∞, is the stack, whose S-valued points, for
S an Fq-scheme, are tuples

(
x, (E , ψ), (E ′, ψ′), φ, φ′ ) where

• x ∈ (X ∖D)(S) is a section, called a leg,
• (E , ψ), (E ′, ψ′) are objects in BunG,D(S), and

• φ : E|XS∖Γx
∼−→ E ′|XS∖Γx and φ′ : E ′|(X∖{∞})S

∼−→ τE|(X∖{∞})S are isomorphisms preserving the
D-level structures, i.e. ψ′ ◦ φ|DS

= ψ and τψ ◦ φ′|DS
= ψ′.

We can visualize the above data as

(2.7.15) (E , ψ)
φ

x
// (E ′, ψ′)

φ′

∞
// τ(E , ψ) .

When D = ∅, we will drop it from the notation. The projection map(
x, (E , ψ), (E ′, ψ′), φ, φ′ ) 7→ x

defines a morphism ShtG,D,X×∞ → X ∖D.

For a bound Z in GrG,X×∞, we also define the stack ShtZG,D,X×∞ of global G-shtukas E ∈ ShtG,D,X×∞
that are bounded by Z as in Definition 2.7.8.

Theorem 2.7.16. The stack ShtZG,D,X×∞ is a Deligne-Mumford stack locally of finite type and sep-
arated over X ∖ D. Moreover, the stack ShtG,D,X×∞ is an ind-Deligne-Mumford stack, locally of
ind-finite type and ind-separated over X ∖D.

Proposition 2.7.17. Let Z be a bound in GrG,X×∞ and let Z be its representative over the reflex

scheme X̃µ,β. Then Z is a local model for ShtZG,D,X×∞, i.e. both are isomorphic locally for the étale
topology.

Proof. This follows from Theoreom 2.7.12. □

2.8. Interpretation in terms of chains. In this section let ∞ ∈ X(Fq) and let β ∈ L∞G(Fβ)
be the element from § 2.6.10. Let µ ∈ X∗(T ) and let Z(µ, β) be the bound in GrG,X×∞ from Def-

inition 2.6.14. In Corollary 2.8.11 we shall give an interpretation of Sht
Z(µ,β)
G,D,X×∞ in terms of chains

of G-bundles. This relates our global G-shtukas bounded by Z(µ, β) to the objects defined by “se-
quences”, namely the elliptic sheaves of Drinfeld [Dri77a, BS97] (see Example 2.11.1), the D-elliptic
sheaves of Laumon, Rapoport and Stuhler [LRS93] (see Example 2.11.3), and the abelian τ -sheaves of
the first author [Har05] (see Example ??). Recall the Frobenius map τG∞ of the group G∞ over Q∞
from (2.1.1).

Definition 2.8.1. Let D ⊂ X ∖ {∞} be a closed subscheme. Let CBunG,D,β be the stack over Fβ
classifying chains

(2.8.2) . . . L
Π−1
9999 (E−1, ψ−1) L

Π0
999 (E0, ψ0) L

Π1
999 (E1, ψ1) L

Π2
999 . . .

of G-bundles with D-level structure over S such that for all i ∈ Z the modifications are isomorphisms
of G-bundles Πi : (Ei, ψi)|(X∖{∞})S

∼−→ (Ei−1, ψi−1)|(X∖{∞})S bounded by Z(τ i−1
G∞

(β)−1), which preserve
the D-level structures.
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Morphisms (fi)i : (Ei, ψi,Πi)i → (E ′i, ψ′
i,Π

′
i)i in CBunG,D,β are tuples of isomorphisms fi : (Ei, ψi) ∼−→

(E ′i, ψ′
i) in BunG,D(S) satisfying Π′

i ◦ fi = fi−1 ◦Πi for all i.

Proposition 2.8.3. For any fixed j ∈ Z, the functor

prj : CBunG,D,β ∼−→ BunG,D ×Fq SpecFβ , (Ei, ψi,Πi) 7−→ (Ej , ψj)

is an isomorphism of stacks. In particular, CBunG,D,β is a smooth Artin-stack locally of finite type
over Fβ.

Proof. Since the D-level structure is outside∞, and the modifications Πi take place at∞, the D-level
structure is preserved. We will ignore the level structure in the rest of the proof. In the following, we
prove the result for j = 0. The same proof holds for arbitrary j ∈ Z.

(1) Full faithfulness of the functor pr0: Let (Ei,Πi)i and (E ′i,Π′
i)i be two chains over S, and let

f0 : E0 ∼−→ E ′0 be an isomorphism in BunG(S). For any i ≥ 0 (and similarly for i ≤ 0), the map f0
induces an isomorphism outside ∞

(2.8.4) Ei|(X∖{∞})S
∼= E0|(X∖{∞})S

∼−−→
f0
E ′0|(X∖{∞})S

∼= E ′i|(X∖{∞})S .

We apply the functor L+
∞ from Definition 2.2.1 and Example 2.2.7(b), and choose an étale covering

S′ → S, over which trivializations exist that form the vertical maps in the following diagram

(2.8.5)

L∞(Ei)S′ L∞(E0)S′ L∞(E ′0)S′ L∞(E ′i)S′

(L∞G)S′ (L∞G)S′ (L∞G)S′ (L∞G)S′

Π1◦...◦Πi

∼

αi∼

L∞(f0)

∼

α0∼

(Π′
1◦...◦Π′

i)
−1

∼

α′
0∼ α′

i∼

∼ ∼ ∼

Since τkG∞
(β) · L+

∞G(S′) = L+
∞G(S′) · τkG∞

(β) by § 2.6.10, the three horizontal isomorphisms in the

bottom row lie in τ0G∞
(β)−1 · . . . · τ i−1

G∞
(β)−1L+

∞G(S′) and L+
∞G(S′) and τ i−1

G∞
(β) · . . . · τ0G∞

(β)L+
∞G(S′),

respectively. Therefore, their composition lies in L+
∞G(S′) and yields an isomorphism L+

∞(Ei)S′ ∼−→
L+
∞(E ′i)S′ , which descends to S and glues with (2.8.4) to an isomorphism fi : Ei ∼−→ E ′i on all of XS by

Lemma 2.3.10. The fi define an isomorphism of chains (fi)i : (Ei,Πi)i ∼−→ (E ′i,Π′
i)i.

(2) Essential surjectivity of the functor pr0: Fix any E ∈ BunG(S). We want to construct a chain
of the form (2.8.2) with E0 = E . For every i ∈ Z≥0, we can construct Ei+1 from Ei via Lemma 2.3.10

by glueing
◦
E i+1 := Ei|(X∖{∞})S with Li+1, where Li+1 is constructed from L+

∞(Ei) as follows: choose

an étale covering S′ → S and a trivialization αi : L
+
∞(Ei)S′ ∼−→ (L+

∞G)S′ over S′. Let hi ∈ L+
∞G(S′′),

for S′′ := S′ ×S S′, be given by hi := pr∗2 αi ◦ pr∗1 α
−1
i , where prk : S′′ → S′ is the projection onto the

k-th factor, for k = 1, 2. Let (Li+1)S′ := (L+
∞G)S′ , let αi+1 := id: (Li+1)S′ ∼−→ (L+

∞G)S′ , and let

hi+1 := τ iG∞(β) · hi · τ iG∞(β)−1 ∈ τ iG∞(β) · L+
∞G(S′′) · τ iG∞(β)−1 = L+

∞G(S′′).

Then hi+1 defines a descent datum on (Li+1)S′ and the latter descends to an L+
∞G-bundle Li+1 on S.

Moreover,

(2.8.6) Πi+1 := α−1
i ◦ τ

i
G∞(β)−1 ◦ αi+1 : L∞(Li+1)S′ = (L∞G)S′ ∼−→ L∞(Ei)S′

satisfies pr∗2Πi+1 = pr∗1 α
−1
i ◦ h

−1
i τ iG∞

(β)−1hi+1 ◦ pr∗1 αi+1 = pr∗1Πi and descends to an isomorphism

(2.8.7) Πi+1 : L∞(Li+1)
∼−→ L∞(Ei)

over S. By Lemma 2.3.10 we glue Ei+1 from
◦
E i+1 := Ei|(X∖{∞})S and Li+1 via the isomorphism

Π−1
i+1 : L∞(

◦
E i+1) = L∞(Ei|(X∖{∞})S ) = L∞(Ei)

Π−1
i+1−−−→ L∞(Li+1).
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The isomorphism Πi+1 from (2.8.7) extends to the isomorphism

Πi+1 = id: Ei+1|(X∖{∞})S =
◦
E i+1 = Ei|(X∖{∞})S

∼−→ Ei|(X∖{∞})S .

We proceed analogously for all i < 0. This construction defines a chain (2.8.2) in CBunG,β(S). □

Let µ ∈ X∗(T ). Also the bound Z(µ, β) from Definition 2.6.14 can be interpreted in terms of chains.

Let X̃µ,β be its reflex scheme.

Proposition 2.8.8. The bound Z(µ, β) is represented by the closed subscheme of GrG,X×∞×XX̃µ,β

whose S-valued points are tuples
(
x, (Ei,Πi, E ′′i ,Π′′

i , φ
◁
i )i∈Z, ϵ

)
where

• x : S → X̃µ,β → X is a leg,
• together with a commutative diagram,

(2.8.9)

. . . E−1 E0 E1 . . .

. . . E ′′−1 E ′′0 E ′′1 . . .

Π−1

φ◁
−1

Π0

φ◁
0

Π1

φ◁
1

Π2

φ◁
2

Π′′
−1 Π′′

0 Π′′
1 Π′′

2

,

where the φ◁
i are isomorphisms outside the graph Γx bounded by µ in the sense of Defini-

tion 2.6.9 and Remark 2.6.7, and the Πi and Π′′
i are isomorphisms outside ∞ with Πi bounded

by Z(τ i−1
G∞

(β)−1) and Π′′
i bounded by Z(τ iG∞

(β)−1),

• and ϵ : E ′′0 ∼−→ G ×X XS is an isomorphism of G-bundles.

Proof. Let Z(µ, β) be the representative over X̃µ,β of the bound Z(µ, β). We will work over the

universal base scheme S := Z(µ, β). It is defined as the scheme theoretic closure in GrG,X×∞×XX̃µ,β

of its restriction S̃ := Z(µ, β)×X (X ∖ {∞}) outside ∞. Therefore, S̃ ⊂ S is schematically dense by

[Gro60, I, Corollaire 9.5.11]. The restriction S̃ classifies tuples (x, E0, E ′0, E ′′0 , φ0, φ
′
0, ϵ) ∈ GrG,X×∞ as

in Definition 2.5.15, where φ0 is bounded by Z≤µ and φ′
0 is bounded by Z(β). Under the isomorphism

pr0 from Proposition 2.8.3, we can uniquely extend E0, E ′0, and E ′′0 to chains of G-bundles to obtain
the rows of the following commutative diagram

(2.8.10)

. . . E−1 E0 E1 . . .

. . . E ′−1 E ′0 E ′1 . . .

. . . E ′′−1 E ′′0 E ′′1 . . .

φ−1

Π−1 Π0

φ0

Π1

φ1

Π2

φ′
−1

Π′
−1 Π′

0

φ′
0

Π′
1

φ′
1

Π′
2

Π′′
−1 Π′′

0 Π′′
1 Π′′

2

with Πi and Π′
i bounded by Z(τ i−1

G∞
(β)−1), and Π′′

i bounded by Z(τ iG∞
(β)−1). In this diagram the

dotted maps φi and φ
′
i for i ̸= 0 are the induced isomorphisms outside Γx ∪ {∞}. We claim for all

i ∈ Z
(a) that Π′′

i ◦ φ′
i : E ′i|(X∖{∞})S

∼−→ E ′′i−1|(X∖{∞})S extends to an isomorphism over all of XS ,

(b) and that φi, and hence also φ◁
i := Π′′

i ◦ φ′
i ◦ φi is bounded by Z≤µ.

We prove the claim for a fixed i > 0. For i < 0 we can argue analogously. We consider the associated
L+
∞G-bundles L+

∞(E□j ) for □ ∈ {∅, ′, ′′}. Over some étale covering S′ → S we choose trivializations

α□
j : L

+
∞(E□j )S′ ∼−→ (L+

∞G)S′

for all j ∈ {0, . . . , i}.
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Over S̃ := Z(µ, β)×X (X∖{∞}), the divisors Γx and∞×Fq S̃ are disjoint. There, the isomorphisms

α□
j−1 ◦ L∞(Π□

j ) ◦ (α□
j )

−1 : (L∞G)S′ ∼−→ (L∞G)S′ for □ ∈ {∅, ′}, respectively α′′
j−1 ◦ L∞(Π′′

j ) ◦ (α′′
j )

−1,

respectively α′′
0 ◦L∞(φ′

0)◦ (α′
0)

−1 are given by multiplication on the left with an element of τ j−1
G∞

(β)−1 ·
L+
∞G(S′), respectively of τ jG∞

(β)−1 · L+
∞G(S′), respectively of β · L+

∞G(S′); see (2.8.6) in the proof of

Proposition 2.8.3. We now use τ jG∞
(β)−1 · L+

∞G(S′) · τ jG∞
(β) = L+

∞G(S′).

To prove (a) we observe that over S̃

α′′
i−1 ◦ L∞

(
Π′′
i ◦ φ′

i) ◦ (α′
i)
−1 = α′′

i−1 ◦ L∞
(
(Π′′

1 ◦ . . . ◦Π′′
i−1)

−1 ◦ φ′
0 ◦ (Π′

1 ◦ . . . ◦Π′
i)
)
◦ (α′

i)
−1

is given by multiplication with an element of

τ i−1
G∞

(β) · . . . · τ1G∞(β) · β · τ0G∞(β)−1 · . . . · τ i−1
G∞

(β)−1 · L+
∞G(S′) = L+

∞G(S′),

and hence is an isomorphism at∞. As Π′′
i ◦φ′

i is also an isomorphism outside∞, it is an isomorphism
on all of X

S̃
.

We consider the tuple (∞,Π′′
i ◦ φ′

i : E ′i 99
∞
K E ′′i−1) as an object in HeckeG,∅,X(S). The condition

that Π′′
i ◦ φ′

i is an isomorphism over all of X can be formulated as boundedness by the trivial bound
Z(1) := 1 · L+XG ⊂ GrG,X given as in Corollary 2.5.9. Since Π′′

i ◦ φ′
i is an isomorphism on X

S̃
, the

composition S̃ → S → HeckeG,∅,X factors through the closed substack Hecke
Z(1)
G,∅,X from Theorem 2.6.8.

Since S̃ is schematically dense in S, already the morphism S → HeckeG,∅,X factors through Hecke
Z(1)
G,∅,X .

We conclude that Π′′
i ◦ φ′

i is an isomorphism on all of XS .

To prove (b) we continue to work over S̃, where the morphism L+
∞(φ0) : L

+
∞E0 ∼−→ L+

∞E ′0 is an
isomorphism. Then

α′
i ◦ L∞

(
φi) ◦ (αi)−1 = α′

i ◦ L∞
(
(Π′

1 ◦ . . . ◦Π′
i)
−1 ◦ φ0 ◦ (Π1 ◦ . . . ◦Πi)

)
◦ (αi)−1

is given by multiplication with an element of

τ i−1
G∞

(β) · . . . · τ0G∞(β) · τ0G∞(β)−1 · . . . · τ i−1
G∞

(β)−1 · L+
∞G(S′) = L+

∞G(S′).

Therefore, over S̃ the morphism φi is an isomorphism at ∞. Since the Πi and Π′
i are isomorphisms

outside∞, we conclude that with φ0 also φi and by (a) also φ◁
i are isomorphisms on X

S̃
∖Γx bounded

by Z≤µ at Γx.
We now consider the tuple (x, φi : Ei 9999

x,∞
K E ′i) as an object in ′HeckeG,∅,X×∞(S). Our consid-

erations show that the composition S̃ → S → ′HeckeG,∅,X×∞ factors through the closed substack
′Hecke

Z(µ,1)
G,∅,X×∞ from Theorem 2.6.8 for the bound Z(µ, 1). Since S̃ is schematically dense in S, al-

ready the morphism S → ′HeckeG,∅,X×∞ factors through ′Hecke
Z(µ,1)
G,∅,X×∞. But the latter is isomorphic

to HeckeZ
≤µ

G,∅,X by Lemma 2.6.16(b). We conclude that φi is bounded by Z≤µ. Thus diagram (2.8.10)

can be written in the form (2.8.9), such that φ◁
i := Π′′

i ◦ φ′
i ◦ φi is bounded by µ. □

Corollary 2.8.11. The stack Sht
Z(µ,β)
G,D,X×∞ is isomorphic to the stack over Fq whose points over Fq-

schemes S are tuples
(
x, (Ei, ψi,Πi, φ◁

i )i∈Z
)
consisting of

• one leg x : S → X̃µ,β → X which factors through X ∖D,
• a commutative diagram

(2.8.12)

. . . (E−1, ψ−1) (E0, ψ0) (E1, ψ1) . . .

. . . τ(E−1, ψ−1)
τ(E0, ψ0)

τ(E1, ψ1) . . .

φ◁
−1

Π−1 Π0

φ◁
0

Π1

φ◁
1

Π2

φ◁
2

τΠ−1
τΠ0

τΠ1
τΠ2
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of G-bundles with D-level structures (Ei, ψi) on XS where all the φ◁
i are isomorphisms outside the

graph Γx bounded by µ, and the Πi are isomorphisms outside ∞ bounded by Z(τ i−1
G∞

(β)−1).

Proof. Let E = (x, (E0, ψ0), (E ′0, ψ′
0), (E ′′0 , ψ′′

0), φ0, φ
′
0, φ

′′
0) ∈ Sht

Z(µ,β)
G,D,X×∞(S) be a global G-shtuka over S

bounded by Z(µ, β), where φ′′
0 : (E ′′0 , ψ′′

0)
∼−→ τ(E0, ψ0) is the isomorphism, which we often supress from

the notation. Under the isomorphism pr0 from Proposition 2.8.3, we can uniquely extend (E0, ψ0),
(E ′0, ψ′

0), and (E ′′0 , ψ′′
0) to chains of G-bundles to obtain the rows of the following commutative diagram

(2.8.13)

. . . (E−1, ψ−1) (E0, ψ0) (E1, ψ1) . . .

. . . (E ′−1, ψ
′
−1) (E ′0, ψ′

0) (E ′1, ψ′
1) . . .

. . . (E ′′−1, ψ
′′
−1) (E ′′0 , ψ′′

0) (E ′′1 , ψ′′
1) . . .

. . . τ(E−1, ψ−1)
τ(E0, ψ0)

τ(E1, ψ1) . . .

φ−1

Π−1 Π0

φ0

Π1

φ1

Π2

φ′
−1

Π′
−1 Π′

0

φ′
0

Π′
1

φ′
1

Π′
2

φ′′
−1

Π′′
−1 Π′′

0

φ′′
0

∼=

Π′′
1

φ′′
1

Π′′
2

τΠ−1
τΠ0

τΠ1
τΠ2

with Πi and Π′
i bounded by Z(τ i−1

G∞
(β)−1), and Π′′

i bounded by Z(τ iG∞
(β)−1). In this diagram the

dotted maps φi, φ
′
i, and φ

′′
i for i ̸= 0 are the induced isomorphisms outside Γx ∪ {∞}.

We first show that the isomorphism φ′′
0 : (E ′′0 , ψ′′

0)
∼−→ τ(E0, ψ0) outside ∞ inductively induces iso-

morphisms φ′′
i := τΠ−1

i ◦ φ′′
i−1 ◦ Π′′

i : (E ′′i , ψ′′
i )

∼−→ τ(Ei, ψi) on all of XS for all i > 0 and similarly for

i < 0. After choosing trivializations of L+
∞(Ei) and L+

∞(E ′′i ) over an étale covering of S, the Πi are given

by multiplication with τ i−1
G∞

(β)−1, and hence Π′′
i and τΠi are given by multiplication with τ iG∞

(β)−1.

Therefore, the φ′′
i are given by multiplication with an element of τ iG∞

(β) ·L+
∞G · τ iG∞

(β)−1 = L+
∞G for

i > 0, respectively τ i+1
G∞

(β)−1 ·L+
∞G·τ i+1

G∞
(β) = L+

∞G for i < 0. This proves that all φ′′
i are isomorphisms

on all of XS .
Now we choose an étale covering S′ → S and a trivialization ϵ : L+

∆(E ′′0 ) ∼−→ (L+
∆G)S′ for the divisor

∆ := Γx + (∞ ×Fq S
′). Then the boundedness of E by Z(µ, β) implies that we get a morphism

S′ → Z(µ, β) for the representative Z(µ, β) of Z(µ, β) over X̃µ,β. By (the proof of) Proposition 2.8.8
the unique extension of E to the diagram (2.8.13) corresponds to the unique extension of the morphism
S′ → Z(µ, β) to data over S′ as in diagram (2.8.10). There we saw for all i ∈ Z, that Π′′

i ◦ φ′
i is an

isomorphism on all of X, and that Π′′
i ◦ φ′

i ◦ φi is an isomorphism outside Γx bounded by µ. We

now take φ◁
i := φ′′

i−1 ◦ Π′′
i ◦ φ′

i ◦ φi : (Ei, ψi)|XS∖Γx
∼−→ τ(Ei−1, ψi−1)|XS∖Γx , which is bounded by µ.

Descending back to S finishes the proof. □

Corollary 2.8.14. We use the interpretation of Sht
Z(µ,β)
G,D,X×∞ in terms of chains as in Corollary 2.8.11.

(a) There is an action of Z on the stack Sht
Z(µ,β)
G,D,X×∞, which for an integer n ∈ Z is given by the

index shift

[n] : Sht
Z(µ,β)
G,D,X×∞ −→ Sht

Z(µ,β)
G,D,X×∞

(x, Ei, ψi,Πi, φ◁
i )i∈Z 7−→ (x, Enewi , ψnew

i ,Πnew
i , φ◁

i
new)i∈Z

(2.8.15)

with (Enewi , ψnew
i ,Πnew

i , φ◁
i
new) := (Ei+n, ψi+n,Πi+n, φ◁

i+n).

(b) For all integers m,n and every global G-shtuka E = (x, Ei, ψi,Πi, φ◁
i ) ∈ Sht

Z(µ,β)
G,D,X×∞(S) over a

scheme S, there is a quasi-isogeny

Πn : [n+m](E)→ [m](E),
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which is given by the isomorphism Πi+1 ◦ . . . ◦ Πi+n : Ei+n → Ei for n ≥ 0 (respectively Π−1
i ◦

. . . ◦Π−1
i+n+1 : Ei+n → Ei for n < 0) on (X ∖ {∞})S. □

2.9. Local shtukas and Rapoport-Zink spaces. Let v ∈ X be a place of Q and let qv := #Fv =
q[Fv :Fq ]. For a scheme S ∈ N ilpOv let τ̂v := Frobqv ,S be the Fv-Frobenius of S as defined in §2.1.

Definition 2.9.1. Let S ∈ N ilpOv . A local Gv-shtuka over S ∈ N ilpOv is a pair L = (L, φ̂) consisting
of an L+

v G-bundle L on S and an isomorphism of the associated LvG-bundles φ̂ : LvL ∼−→ τ̂vLvL from
(2.2.4) and Example 2.2.7(b). We denote the stack fibered in groupoids over N ilpOv which classifies
local Gv-shtukas by LocShtGv .

Remark 2.9.2. Note that in the literature on local G-shtukas usually an isomorphism τ̂vLvL ∼−→ LvL
is considered. Our φ̂ is the inverse of that isomorphism.

Remark 2.9.3. By definition, an L+
v G-bundle L over a scheme S can be trivialized over a suitable étale

covering S′ → S via an isomorphism α̂ : L ∼−→ (L+
v G)S′ . In this case we usually write L ∼=

(
(L+

v G)S′ , b
)

meaning that the isomorphism τ̂vα̂ ◦ φ̂ ◦ α̂−1 of the trivial LvG-bundle is given as multiplication on the
left with b ∈ LvG(S′). Note that if S is the spectrum of a strictly henselian local ring, then it has no
non-trivial étale coverings and we can take S′ = S.

Definition 2.9.4. A quasi-isogeny f : L → L′ between two local Gv-shtukas L = (L, φ̂) and L′ =
(L′, φ̂′) over S ∈ N ilpOv is an isomorphism of the associated LvG-bundles f : LvL → LvL′ satisfying
τ̂vf ◦ φ̂ = φ̂′ ◦ f . We denote by QIsogS(L,L′) the set of quasi-isogenies between L and L′ over S, and
we write QIsogS(L) := QIsogS(L,L) for the quasi-isogeny group of L.

Example 2.9.5. Let L = (L, φ̂) be a local G-shtuka over S ∈ N ilpOv . Then
τ̂vL = (τ̂vL, τ̂vφ̂) is a local

G-shtuka over S, too, and f := φ̂ : LvL ∼−→ Lv
τ̂vL satisfies τ̂vf ◦ φ̂ = τ̂vφ̂ ◦ f . Therefore, φ̂ : L → τ̂vL is

a quasi-isogeny, called the qv-Frobenius isogeny of L.

We recall the rigidity of quasi-isogenies of local Gv-shtukas from [ARH14, Proposition 2.11].

Proposition 2.9.6 (Rigidity of quasi-isogenies for local Gv-shtukas). Let S be a scheme in N ilpOv

and let j : S̄ → S be a closed immersion defined by a sheaf of ideals which is locally nilpotent. Let
L = (L, φ̂) and L′ = (L′, φ̂′) be two local Gv-shtukas over S. Then

QIsogS(L,L′) −→ QIsogS̄(j
∗L, j∗L′), f 7→ j∗f

is a bijection of sets.

Proof. Let I be the ideal sheaf defining j : S̄ ↪→ S. Arguing by induction over OS/Iq
n
v it suffices to

treat the case where Iqv = (0). In this case the morphism τ̂v = Frobqv ,S factors as S
i−→ S̄

j−→ S
where i is the identity on the underlying topological space |S̄| = |S| and on the structure sheaf this
factorization is given by

OS
j∗−−→ OS̄

i∗−−→ OS(2.9.7)

b 7→ bmod I 7→ bqv .

Therefore τ̂vf = i∗(j∗f) for any f ∈ QIsogS(L,L′). We obtain the diagram

(2.9.8) L∞L

∼=φ̂
��

∼=

f // L∞L′

∼= φ̂′

��
τ̂vL∞L ∼=

i∗(j∗f)
// τ̂vL∞L′

from which the bijectivity is obvious. □
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Definition 2.9.9. Consider the local type (b) at the place v in Definition 2.6.1 and let Z be a bound

in GrG,X ×XX̃Z with reflex scheme X̃Z . Then X̃Z = SpecOZ for a finite ring extension OZ of Ov.
Let Z be the representative of Z over OZ . Recall from Corollary 2.5.9 that GrG,X ×X Spf OZ ∼=
FℓG,v ×̂Fv Spf OZ . Let S ∈ N ilpOZ . A local Gv-shtuka L := (L, φ̂) is bounded by Z if for every (some)

étale covering S′ → S and every (some) trivialization α̂ : L ∼−→ (L+
v G)S′ the element b = τ̂vα̂◦ φ̂◦ α̂−1 ∈

LvG(S′) factors through Z ⊂ FℓG,v ×̂Fv Spf OZ when viewed as a morphism b : S′ → FℓG,v ×̂Fv Spf OZ .
Note that the equivalences of “every” and “some” was proven in [ARH14, Remark 4.9].

We write LocShtZGv
for the stack of local Gv-shtukas bounded by Z. When Z = Z≤µ ×

X̃µ
Spf Oµ

for the bound Z≤µ from Definition 2.6.9, we write LocSht≤µGv
.

Remark 2.9.10. We continue with Remark 2.9.2. Let L = (L, φ̂) be a local Gv-shtuka as in our
Definition 2.9.1. In the literature on local G-shtukas like [ARH14, ARH21, HV11, HV12, HV23] where
the Frobenius of a local Gv-shtuka is an isomorphism τ̂vLvL ∼−→ LvL one would have to consider
(L, φ̂−1) as the local Gv-shtuka. In the language of that literature one says that “(L, φ̂−1) is bounded

by a bound Z̃” if φ̂−1 is bounded by Z̃. This coincides with our definition that “(L, φ̂) is bounded by

Z” if one takes Z̃ = Z−1 in the sense of [HV23, Remark 2.3 and Lemma 2.12].

Definition 2.9.11. Let S ∈ N ilpŎ∞
. The global-local functor

(2.9.12) L+
∞,G : ShtG,D,X×∞(S) −→ LocShtG∞(S)

is defined as follows. Let E =
(
x, (E , ψ, )(E ′, ψ′), φ, φ′) ∈ ShtG,D,X×∞(S) be a global G-shtuka over S

as in Definition 2.7.14. Then

(2.9.13) L+
∞,G(E) :=

(
L+
∞,G(E), L∞,G(φ

′ ◦ φ)
)
.

Remark 2.9.14. Note that in the previous definition

φ′ ◦ φ : E|(X∖{∞})S
∼−→ τE|(X∖{∞})S

is an isomorphism of G-bundles, because S ∈ N ilpŎ∞
implies that XS∖Γx = (X∖{∞})S . So L+

∞,G(E)
recovers the combined modification of E at the two legs x and ∞.

2.9.15. Let β ∈ L∞G(Fβ) as in § 2.6.10. Recall the Frobenius τG∞ : L∞G(S)→ L∞G(S) from (2.1.1).
Let M :=Mβ−1 be the inner form over Q∞ of G∞ given by β−1, i.e. there is an isomorphism of linear

algebraic groups over Q̆∞
ι : G∞ ×Q∞ Q̆∞

∼−→Mβ−1 ×Q∞ Q̆∞

with Q∞-structure on Mβ−1 given by the Frobenius

(2.9.16) τM (g) = ι
(
β−1 · τG∞(ι−1(g)) · β

)
= ι

(
β−1 · τι−1(τM (g)) · β

)
i.e. given by id = ι ◦ intβ−1 ◦τι−1 and τι = ι ◦ intβ−1 .

Since β−1 · G∞ · β = G∞, there exists a smooth affine group schemeM =Mβ−1 over O∞ such that

ι restricts to an isomorphism of algebraic groups over Ŏ∞

(2.9.17) ι : G∞ ×O∞ Ŏ∞
∼−→Mβ−1 ×O∞ Ŏ∞ .

We use ι to identify L+
∞G(R) = G∞(R[[z]]) =M(R[[z]]) = L+

∞M(R) for Ŏ∞-algebras R.
The bound Z≤µ ×

X̃µ
Spf Oµ from Definition 2.9.9 induces a bound in FℓM,∞ which has a repre-

sentative over Oµ,β, and which we will use to bound localM-shtukas in Definition 2.9.31. That local

bound depends on the choice of the map SpecOµ,β → X̃µ,β.

Proposition 2.9.18. For any S ∈ N ilpŎ∞
and any β ∈ L∞G(Fβ) as in § 2.6.10, there is an equiva-

lence of categories given by left translation by β−1

(2.9.19) tβ−1 : LocShtG∞(S) ∼−→ LocShtMβ−1 (S),
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such that the underlying L+
∞G-bundle L of a local G∞-shtuka L = (L, φ̂) coincides with the underlying

L+
∞Mβ−1-bundle of tβ−1(L). In terms of trivialized local shtukas, the functor tβ−1 is given by(

(L+
∞G)S , b

)
7−→

(
(L+

∞Mβ−1)S , β
−1b

)
for b ∈ L∞G(S) = L∞Mβ−1(S). The functor tβ−1 also sends quasi-isogenies to quasi-isogenies.

Proof. Let L := (L, φ̂) be a local G∞-shtuka over S. Let S′ → S be an étale covering over which a

trivialization α : LS′
∼−→

(
(L+

∞G)S′ , b′
)
exists with b′ := τα◦φ̂◦α−1 ∈ L∞G(S′). Over S′′ = S′×SS′, we

obtain the descent datum h := pr∗2 α ◦pr∗1 α−1 ∈ L+
∞G(S′′) for L, where prj : S′′ → S′ is the projection

onto the j-th factor for j = 1, 2. Then τL is trivialized over S′ by τα with descent datum τG∞(h) =
pr∗2(

τα)◦pr∗1(τα)−1 ∈ L+
∞G(S′′). The fact that φ̂ is defined over S is equivalent to pr∗1 φ̂ = pr∗2 φ̂, which

in turn is equivalent to the equation

(2.9.20) τG∞(h) · pr∗1 b′ = pr∗2(
τα) ◦ pr∗1 φ̂ ◦ pr∗1 α−1 = pr∗2(

τα) ◦ pr∗2 φ̂ ◦ pr∗1 α−1 = pr∗2(b
′) · h.

We now view L as an L+
∞M-bundle via the isomorphism ι from (2.9.17). Over S′, we obtain the

trivialization ι◦α : LS′ ∼−→ (L+
∞M)S′ , which gives rise to the descent datum ι(h) = ι◦pr∗2 α◦pr∗1 α−1 ◦

ι−1 ∈ L+
∞M(S′′). However, τL is now trivialized over S′ by τ(ι ◦ α) : τLS′ ∼−→ (L+

∞M)S′ and has the
descent datum pr∗2

τ(ι ◦ α) ◦ pr∗1 τ(ι ◦ α)−1 = τι ◦ pr∗2(τα) ◦ pr∗1(τα)−1 ◦ τι−1 which sends the neutral
element 1 ∈ L+

∞M(S′′) to τι(τG∞(h)) = ι
(
β−1 · τG∞(h) · β

)
= τM (ι(h)) by definition of τM .

We equip LS′ with the new Frobenius φ̂′ := τ(ι ◦ α)−1 ◦ ι(β−1b′) ◦ (ι ◦ α) : L∞LS′ ∼−→ τL∞LS′ such

that ι ◦ α : (LS′ , φ̂′) ∼−→
(
(L+

∞M)S′ , ι(β−1b′)
)
is an isomorphism of local M-shtukas over S′. From

(2.9.20), we obtain the middle equality in the equation

τM (ι(h)) · pr∗1 ι(β−1b′) = ι
(
β−1τG∞(h)β · β−1 · pr∗1 b′

)
= ι

(
β−1 · pr∗2 b′ · h

)
= pr∗2 ι(β

−1b′) · ι(h),
where the first (resp. last) equality follows because ι commutes with pr∗1 (resp. pr∗2). Replacing τG∞

by τM ◦ ι and b′ by ι(β−1b′) in (2.9.20), this implies pr∗1 φ̂
′ = pr∗2 φ̂

′, and thus φ̂′ descends to an

isomorphism L∞L ∼−→ τL∞L over S. This defines the local M-shtuka tβ−1(L) := (L, φ̂′) over S and
the functor tβ−1 . To visualize the construction, we have the diagram

(L, φ̂)S′ = LS′ ((L+
∞G)S′ , b′) ((L+

∞Mβ−1)S′ , ι(b′))

(L, φ̂′)S′ = tβ−1(L)S′ ((L+
∞Mβ−1)S′ , ι(β−1 · b′))

α
∼

tβ−1

ι
∼

tβ−1

ι◦α
∼

We must show that tβ−1 is independent of the choices of S′ and α. If we choose a different S̃′, we

may as well replace it with a common refinement with the previous S′ and assume S̃′ = S′. Then the
new α̃ differs from the previous α by left multiplication with an element g := α̃ ◦ α−1 ∈ L+

∞G(S′).

This gives the new descent datum h̃ := pr∗2 α̃ ◦ pr∗1 α̃−1 = pr∗2 g · h · pr∗1 g−1 of the L+
∞G-bundle L

and changes b′ to b̃′ = τG∞(g) · b′ · g−1. It also changes the trivialization of the L+
∞M-bundle L to

ι ◦ α̃ = ι(g) · ι ◦ α and ι(β−1b′) to ι(β−1b̃′) = ι(β−1τG∞(g)β · β−1b′g−1) = τM (ι(g)) · ι(β−1b′) · ι(g)−1.

Therefore, tβ−1(g) := ι(g) :
(
(L+

∞M)S′ , ι(β−1b′)
) ∼−→

(
(L+

∞M)S′ , ι(β−1b̃′)
)
is an isomorphism over S′.

This shows that the change of the trivialization from α to α̃ does not change the L+
∞M-bundle L and

its new Frobenius φ̂′. Thus the functor tβ−1 is well defined.

Clearly tβ−1 is an equivalence, as its inverse functor is given by tι(β). Let f : L → L̃ be a quasi-
isogeny. We have trivializations over a suitable étale covering S′ of S

(2.9.21) α : LS′
∼−→ ((L+

∞G)S′ , b′) and α̃ : L̃S′
∼−→ ((L+

∞G)S′ , b̃′).

Let α̃ ◦ f ◦ α−1 =: g ∈ L∞G(S′). The same computations as in the preceeding paragraph with

g ∈ L∞G(S′) instead of L+
∞G(S′) show that tβ−1(f) is a quasi-isogeny tβ−1(L) → tβ−1(L̃). Thus the

functor tβ−1 is compatible with quasi-isogenies. □
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Let Z(µ, β) be the bound in GrG,X×∞ from Definition 2.6.14. The following is a variant of the global-
local functor from (2.3.6) and (2.3.7). It is the appropriate global-local functor for global shtukas in

Sht
Z(µ,β)
G,D,X×∞ when the two legs collide.

Definition 2.9.22. Let S ∈ N ilpŎ∞
. The β−1-twisted global-local functor

(2.9.23) L+
∞,Mβ−1

:= tβ−1 ◦ L+
∞,G : ShtG,D,X×∞(S) −→ LocShtMβ−1 (S)

is defined as follows. Let E =
(
x, (E , ψ), (E ′, ψ′), φ, φ′ ) ∈ ShtG,D,X×∞(S) be a global G-shtuka over S

as in Definition 2.7.14. Then

(2.9.24) L+
∞,Mβ−1

(E) := tβ−1

(
L+
∞,G(E), L∞,G(φ

′ ◦ φ)
)
.

Note that when β = 1, the β−1-twisted global-local functor L+
∞,Mβ−1

= L+
∞,G recovers the (usual)

global-local functor given in (2.3.6) and (2.3.7).

Corollary 2.9.25. Let E ∈ Sht
Z(µ,β)
G,D,X×∞(S) be given in terms of Corollary 2.8.11 as the tuple E =(

x, (Ei, ψi,Πi, φ◁
i )i∈Z

)
. Then

(2.9.26) L+
∞,Mβ−1

(τE−1) ∼= τL+
∞,Mβ−1

(E0)

and the β−1-twisted global-local functor L+
∞,Mβ−1

sends E to

(2.9.27) L+
∞,Mβ−1

(E) =
(
L+
∞,Mβ−1

(E0), L+
∞,Mβ−1

(φ◁
0 )

)
.

In particular, the localM-shtuka L+
∞,Mβ−1

(E) is bounded by µ.

Proof. To prove (2.9.26), let S′ → S be an étale covering over which trivializations αi : L
+
∞,G(Ei) ∼−→

(L+
∞G)S′ for i = −1, 0 exist. After base change under τ = Frobq,S′ this yields trivializations ταi : L

+
∞,G(

τEi) ∼−→
(L+

∞G)S′ . We now view these L+
∞G-bundles as L+

∞M-bundles via the isomorphism ι from (2.9.17). As

such they are trivialized by ι ◦ αi : L+
∞,M(Ei) ∼−→ (L+

∞M)S′ and ι ◦ ταi : L+
∞,M(τEi) ∼−→ (L+

∞M)S′ and
τ(ι ◦ αi) : τL+

∞,M(Ei) ∼−→ (L+
∞M)S′ .

Over S′′ = S′ ×S S′ we obtain the descent data hi := pr∗2 αi ◦ pr∗1 α
−1
i ∈ L+

∞G(S′′) for L+
∞,G(Ei) and

τG∞(hi) = pr∗2(
ταi) ◦ pr∗1(ταi)−1 ∈ L+

∞G(S′′) for L+
∞,G(

τEi), as well as ι(hi) = ι ◦ pr∗2 αi ◦ pr∗1 α
−1
i ◦ ι−1 ∈

L+
M(S′′) for L+

∞,M(Ei) and ι(τG∞(hi)) = ι ◦ pr∗2(ταi) ◦ pr∗1(ταi)−1 ◦ ι−1 ∈ L+
∞M(S′′) for L+

∞,M(τEi) and
τM (ι(hi)) = pr∗2

τ(ι◦αi)◦pr∗1 τ(ι◦αi)−1 ∈ L+
∞M(S′′) for τL+

∞,M(Ei); see the proof of Proposition 2.9.18.

Now by construction of E−1 from E0 in Proposition 2.8.3, we have h−1 = τ−1
G∞

(β)−1 · h0 · τ−1
G∞

(β). This

implies τM (ι(h0)) = ι(β−1 · τG∞(h0) · β) = ι(τG∞(τ−1
G∞

(β)−1 · h0 · τ−1
G∞

(β))) = ι(τG∞(h−1)), and hence
(2.9.26) follows.

To prove (2.9.27), we recall from the construction of tβ−1 in the proof of Proposition 2.9.18, that

over S′ the Frobenius of L+
∞,Mβ−1

(E)S′ is given by the left hand side in the following equation

ι
(
β−1 · τα0 ◦ L∞,G(φ

′
0 ◦ φ0) ◦ α−1

0

)
= ι

(
τα1 ◦ L∞,G(

τΠ0 ◦ φ′
0 ◦ φ0) ◦ α−1

0

)
.

This equation comes from the construction of L∞,G(Π0) := α−1
−1 ◦ τ

−1
G∞

(β)−1 ◦ α0 in (2.8.6) in Propo-

sition 2.8.3, which implies β−1 · τα0 = τα1 ◦ L∞,G(
τΠ0). Now the claim follows from the definition of

φ◁
0 := τΠ0 ◦ φ′

0 ◦ φ0 in the proof of Corollary 2.8.11. □

The following is an analogue of [Har05, Proposition 8.1].

Proposition 2.9.28. Let S ∈ N ilpŎ∞
.
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(a) Given global G-shtukas E , Ẽ ∈ ShtG,D,X×∞(S). Any quasi-isogeny δ : Ẽ → E induces a quasi-
isogeny

δ̂ := L∞,Mβ−1 (δ) : LM,∞(Ẽ)→ LM,∞(E)
of the corresponding localM-shtukas.

(b) Conversely, fix a global G-shtuka E ∈ ShtG,D,X×∞(S). Any quasi-isogeny δ̂ : L̃ → L∞,Mβ−1 (E)
of localM-shtukas over S comes from a unique (up to a canonical isomorphism) global G-shtuka
Ẽ and a quasi-isogeny δ : Ẽ → E which is an isomorphism outside∞ such that L∞,Mβ−1 (Ẽ) = L̃
and L∞,Mβ−1 (δ) = δ̂. In this setting, we will write δ̂∗E to denote Ẽ.

Proof. (a) A quasi-isogeny δ : Ẽ = (x, (Ẽ , ψ̃), (Ẽ ′, ψ̃′), φ̃, φ̃′) → E = (x, (E , ψ), (E ′, ψ′), φ, φ′) is given

by two isomorphisms f : (Ẽ , ψ̃)|XS∖NS
∼−→ (E , ψ)|XS∖NS

and f ′ : (Ẽ ′, ψ̃′)|XS∖NS
∼−→ (E ′, ψ′)|XS∖NS

for
some proper closed subscheme N ⊂ X, such that f ′ ◦ φ̃ = φ ◦ f and τf ◦ φ̃′ = φ′ ◦ f ′. Then
δ̂ := L+

∞,Mβ−1
(f) satisfies τM (δ̂) ·

(
β−1 ◦L+

∞,G(φ̃
′ ◦ φ̃)

)
= β−1 · τG∞(δ̂)◦L+

∞,G(φ̃
′ ◦ φ̃) =

(
β−1 ·L+

∞,G(φ
′ ◦

φ)
)
◦ δ̂, and hence is a quasi-isogeny L∞,Mβ−1 (Ẽ) → L∞,Mβ−1 (E). (Here, strictly speaking, the

equality τM (δ̂) · β−1 = β−1 · τG∞(δ̂) only makes sense after trivializing the L+
∞M-bundles L+

∞(Ẽ) and
L+
∞(E) over an étale covering S′ → S and viewing δ̂ as an element of L+

∞M(S′), as in the proof of
Proposition 2.9.18.)

(b) We construct Ẽ = (x, (Ẽ , ψ̃), (Ẽ ′, ψ̃′), φ̃, φ̃′) with the Beauvill-Laszlo glueing in Lemma 2.3.10 as

follows. Ẽ is obtained by glueing E|(X∖{∞})S with L̃ via the isomorphism

δ̂ : L∞L̃ ∼−→ L∞(L+
∞E) = L∞(E|(X∖{∞})S ).

Moreover, Ẽ ′ is obtained from τẼ as in the proof of Proposition 2.8.3, such that the isomorphism

φ̃′ : Ẽ ′|(X∖{∞})S
∼−→ τẼ |(X∖{∞})S is bounded by Z(β), or equivalently by glueing E ′|(X∖{∞})S with L̃

via the isomorphism

φ ◦ β−1 · δ̂ : L∞L̃ ∼−→ L∞(L+
∞E ′) = L∞(E ′|(X∖{∞})S ).

Finally ψ̃ = ψ and ψ̃′ = ψ′ and φ̃ = φ and φ̃′ = φ′ and δ = (idE , idE ′) as isomorphisms over
(X ∖ {∞})S = XS ∖ Γx. □

When β = 1, Proposition 2.9.28 is analogous to the theory of abelian varieties and p-divisible
groups.

Next we come to the analogue of the Serre-Tate-Theorem.

Definition 2.9.29. Let S ∈ N ilpŎ∞
and let j : S̄ ↪→ S be a closed subscheme defined by a locally

nilpotent sheaf I of ideals. Let Ē ∈ ShtG,D,X×∞(S̄) be a global G-shtuka over S̄. The category DefoS(Ē)
of deformations of Ē to S has

as objects: all pairs (E , α : j∗E ∼−→ Ē) where E is a global G-shtuka over S and α an isomorphism
of global G-shtukas over S̄,

as morphisms: isomorphisms between the E ’s that are compatible with the α’s.

If L̄ := L+
∞,Mβ−1

(Ē) is the associated local Mβ−1-shtuka over S̄, we similarly define the category

DefoS(L̄) of deformations of L̄ to S. By rigidity of quasi-isogenies ([ARH14, Prop 5.9] and Proposi-
tion 2.9.6), all Hom-sets in these categories contain at most one element.

The following result generalizes [Har05, Thm 8.4]. It is the analogue of the classical Serre-Tate
theorem for abelian varieties.

Proposition 2.9.30. In the situation of Definition 2.9.29 the functor

DefoS(Ē) ∼−→ DefoS(L̄) (E , α) 7−→
(
L+
∞,Mβ−1

(E), L+
∞,Mβ−1

(α)
)
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induced from L+
∞,Mβ−1

is an equivalence.

Proof. We construct the inverse of the above functor. Write x : S → Spf Ŏ∞ for the structure
morphism of S ∈ N ilpŎ∞

, and let x̄ := x ◦ j : S̄ → Spf Ŏ∞. Write Ē ∈ ShtG,D,X×∞(S̄) as Ē =

(x̄, (Ē , ψ̄), (Ē ′, ψ̄′), φ̄, φ̄′). It suffices to treat the case where Iq = (0). In this case the morphism τ =

Frobq,S factors as τ = j◦i as in (??). Let (L, α̂ : j∗L ∼−→ L̄) be an object of DefoS(L̄). Since XS∖Γx =

(X∖{∞})S , we can define the global G-shtuka Ẽ := [−1](x, i∗(Ē , ψ̄), i∗(Ē ′, ψ̄′), i∗φ̄, i∗φ̄′) over S, where

[−1] denotes the index shift from Corollary 2.8.14(a). It satisfies [1](j∗Ẽ) = (x̄, (τĒ , τψ̄), (τĒ ′, τψ̄′), τφ̄, τφ̄′).

The isomorphisms φ̄′ ◦ φ̄ : (Ē , ψ̄)|(X∖{∞})S
∼−→ (τĒ , τψ̄)|(X∖{∞})S and τφ̄ ◦ φ̄′ : (Ē ′, ψ̄′)|(X∖{∞})S

∼−→
(τĒ ′, τψ̄′)|(X∖{∞})S define a quasi-isogeny Ē → [1](j∗Ẽ). We compose it with the quasi-isogeny Π: [1](j∗Ẽ)→
j∗Ẽ from Corollary 2.8.14(b) to obtain a quasi-isogeny δ̄ : Ē → j∗Ẽ which is an isomorphism outside
∞.

We write L+
∞,Mβ−1

(Ẽ) = L̃ and L̄ = (L̄, φ̂). By Corollary 2.9.25 we have

τL̄ = L+
∞,M(τĒ−1) = L+

∞,M([−1]τĒ) = L+
∞,M(j∗Ẽ) = j∗L̃.

We view φ̂ : L̄ → τL̄ as a quasi-isogeny as in Example 2.9.5, and compose it with α̂ to obtain the

quasi-isogeny γ̂ := φ̂ ◦ α̂ : j∗L → τL̄ = j∗L̃. By rigidity of quasi-isogenies (Proposition 2.9.6) it lifts

to a quasi-isogeny γ̂ : L → L̃ with j∗γ̂ = γ̂. As in Proposition 2.9.28(b), we put E := γ̂∗Ẽ and recall

that there is a quasi-isogeny γ : E → Ẽ of global G-shtukas, which is an isomorphism outside ∞, and
satisfies L∞,Mβ−1 (E) = L and L∞,Mβ−1 (γ) = γ̂. We may now define the functor

DefoS(L̄)→ Defo(Ē)

by sending (L, α̂ : j∗L ∼−→ L̄) to (E , δ̄−1 ◦ j∗γ). The quasi-isogeny α := δ̄−1 ◦ j∗γ : j∗E → Ē is an
isomorphism outside ∞ by construction, and also at ∞ because L∞,Mβ−1 (α) = L∞,Mβ−1 (Π ◦ φ̄′ ◦
φ̄)−1 ◦ φ̂ ◦ α̂ = α̂ by Corollary 2.9.25. It can easily be seen by the above construction that these
functors are actually inverse to each other. □

Next we recall the definition of the Rapoport-Zink spaces for local shtukas bounded by a cocharacter
µ ∈ X∗(T ). Recall the bound Z≤µ from Definition 2.6.9 and the local bound Z≤µ ×

X̃µ
SpecOµ from

Definition 2.9.9 used to bound local shtukas by µ. That local bound depends on the choice of the map

SpecOµ → X̃µ.

Definition 2.9.31. Fix an element b ∈ LM(F∞) = L∞G(F∞). Consider the local M-shtuka L =
(L+

∞MF∞
, b) ∈ LocShtM over F∞.

(1) We define the Rapoport-Zink space RZ≤µ
M,L (of the framing object L) as the functor whose

S-points, for S ∈ N ilpŎµ
, are given by

RZ≤µ
M,L(S) :=

{
(L, δ̂) where L is localM-shtuka over S bounded by µ,

and δ̂ : L → LS is a quasi-isogeny
}
.(2.9.32)

Here “bounded by µ” means bounded by the bound Z≤µ from Definition 2.6.9; compare § 2.9.15.
(2) We define the affine Deligne–Lusztig variety X≤µ

M (b) by

(2.9.33) X≤µ
M (b)(F∞) := {g ∈ (L∞M/L+

∞M)(F∞) : τM (g)−1bg is bounded by µ}.

Remark 2.9.34. In the literature on affine Deligne-Lusztig varieties for an element b̃ ∈ M(Q̆∞) =

LM(Fq) one usually requires that g−1b̃ τM (g) is bounded. However the b̃ in that literature is equal to
our b−1 as explained in Remarks 2.9.2 and 2.9.10. Note that τM (g)−1bg is bounded by µ if and only
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if g−1b−1τM (g) is bounded by −µ. So our Rapoport-Zink spaces and affine Deligne-Lusztig varieties
are the same as the ones usually considered in the literature after changing µ and b to −µ and b−1.

Remark 2.9.35. Using the description of FℓM,∞ = L∞M/L+
∞M from Lemma 2.2.6, the space

RZ≤µ
M,L can also be described as

(2.9.36) RZ≤µ
M,L(S) := {g ∈ (L∞M/L+

∞M)(S) : τM (g)−1bg is bounded by µ},

where g ∈ (L∞M/L+
∞M)(S) is represented by g ∈ L∞M(S′) for some étale covering S′ → S.

In particular, RZ≤µ
M,L is an ind-closed ind-subscheme of FℓM,∞, compare Remark 2.6.7 and Theo-

rem 2.6.8.

We recall the following

Theorem 2.9.37. RZ≤µ
M,L is representable by a formal scheme over Spf Ŏµ, which is locally formally

of finite type and separated. Its underlying reduced subscheme is precisely X≤µ
M (b). In particular,

X≤µ
M (b) is a reduced scheme locally of finite type and separated over F∞.

Proof. In view of Remarks 2.9.10 and 2.9.34 this was proven in [ARH14, Theorem 4.18]. □

Remark 2.9.38. The group QIsogF∞
(L) of quasi-isogenies of L := (L+

∞MF∞
, b) acts on RZ≤µ

M,L via

j · (L̂, δ̂) := (L̂, j ◦ δ̂), for j ∈ QIsogF∞
(L). There is a connected algebraic group JL over Q∞ whose

R-points, for a Q∞-algebra R, is the group

(2.9.39) JL(R) :=
{
j ∈M(R⊗Q∞ Q̆∞) : τM (j)−1bj = b

}
,

see [ARH14, Remark 4.16]. In particular, QIsogF∞
(L) = JL(Q∞). This group also acts on X≤µ

M (b) via

multiplication j : g 7→ j · g for j ∈ JL(Q∞).

2.10. Tate modules. In this section, we consider the fiber products

ShtG,D,∞̂×∞ := ShtG,D,X×∞×X Spf O∞ and(2.10.1)

ShtG,D,∞×∞ := ShtG,D,X×∞×X SpecF∞(2.10.2)

on which the moving leg x : S → X factors through ∞̂ := Spf O∞ or ∞ := SpecF∞, respectively.
Recall that we have an additional fixed leg at ∞. This guarantees that we have a Tate module at
every place v ̸=∞.

Let O∞ := O∞
Q :=

∏
v ̸=∞Ov be the ring of integral adeles of X (i.e. of the function field Q = Fq(X))

outside∞. Let A∞ := A∞
Q := O∞⊗OX

Q be the ring of adeles of X outside∞. The group G(O∞) acts

through Hecke correspondences on the tower {ShtG,D,∞̂×∞}D. We want to extend this to an action of
G(A∞); see Definition 3.2.1 below. For this purpose, we generalize the notion of level structures on
global G-shtukas in this subsection.

Let S be a connected scheme in N ilpO∞ . We fix a geometric base point s̄ of S. Let RepO∞ G be
the category of pairs (V, ρ), where V is a finite free O∞-module and ρ : G ×X SpecO∞ → GLO∞(V ) is
an O∞ -morphism of algebraic groups. Let Funct⊗(RepO∞ G, ModO∞[πét

1 (S,s̄)]) denote the category of

tensor functors from RepO∞ G to the category ModO∞[πét
1 (S,s̄)] of O∞[πét1 (S, s̄)]-modules. For a proper

closed subscheme D of X ∖ {∞} the sheaf OD is an O∞-module and we can consider ρ|D : G|D :=
G ×X D → GLOD

(V ⊗O∞ OD).
Let E = (x, E , E ′, φ, φ′) ∈ ShtG,∅,∞̂×∞(S) be a global G-shtuka over S. Fix a proper closed subscheme

D of X ∖ {∞} and let E|DS
:= E ×XS

DS denote the pullback of E to DS . Also fix (V, ρ) ∈ RepO∞ G
and let

F := ρ∗E|DS
:= (ρ|D)∗(E|DS

) := (E|DS
)
G|D
× (V ⊗O∞ OD)

denote the pushout vector bundle on DS of rank equal to dimV . Since DS is disjoint from the graphs
of the legs x and ∞, the maps φ|DS

and φ′|DS
of E|DS

are isomorphisms. We equip F with the
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Frobenius isomorphism φF := (ρ|D)∗(φ′ ◦φ)|DS
: F ∼−→ τF . It is an isomorphism of ODS

-modules. For
the fixed geometric base point s̄ = Spec k of S let Fs̄ := F ⊗OS

k. Let

(2.10.3) (ρ∗E|Ds̄)
φ := {m ∈ Fs̄ : φF (m) = τm}

be the φ-invariants. They form a free OD-module of rank equal to dimV , equipped with a continuous
action of the étale fundamental group πét1 (S, s̄). This module (ρ∗E|Ds̄)

φ is independent of s̄ up to a
change of base point.

Let ŤE ∈ Funct⊗(RepO∞ G, ModO∞[πét
1 (S,s̄)]) be the tensor functor defined as

(2.10.4) ŤE(ρ) := lim←−
D⊂X∖∞

(ρ∗E|Ds̄)
φ.

Likewise, V̌E ∈ Funct⊗(RepO∞ G, ModA∞[πét
1 (S,s̄)]) is the tensor functor defined as

(2.10.5) V̌E(ρ) := A∞ ⊗O∞ lim←−
D⊂X∖∞

(ρ∗E|Ds̄)
φ.

Definition 2.10.6. We define the (dual)2 Tate-module functor as follows.

Ť− : ShtG,D,∞̂×∞(S) −→ Funct⊗(RepO∞ G , ModO∞[πét
1 (S,s̄)])

E 7−→ ŤE ,
(2.10.7)

We define the (dual) rational Tate-module functor as follows.

V̌− : ShtG,D,∞̂×∞(S) −→ Funct⊗(RepO∞ G , ModA∞[πét
1 (S,s̄)])

E 7−→ V̌E .
(2.10.8)

The functor V̌− moreover transforms quasi-isogenies δ : E → E ′ of global G-shtukas into isomorphisms
V̌δ : V̌E → V̌E ′ of their rational Tate modules.

Let ωO∞ : RepO∞ G → ModO∞ and ω := ωO∞ ⊗O∞ A∞ : RepO∞ G → ModA∞ denote the forgetful
functors sending (V, ρ) to V , and V ⊗O∞A∞, respectively. For a global G-shtuka E over S, consider the

sets of isomorphisms of tensor functors Isom⊗(ωO∞ , ŤE) and Isom⊗(ω, V̌E). These sets are non-empty
by Lemma 2.10.9 below. Since X ∖ {∞} is the spectrum of a Dedekind domain, by the generalized
Tannakian formalism [Wed04, Corollary 5.20], we have G(A∞) = Aut⊗(ω) and G(O∞) = Aut⊗(ωO∞).

By the definition of ŤE in (2.10.7), Isom⊗(ωO∞ , ŤE) admits an action of πét1 (S, s̄) × G(O∞) where

G(O∞) acts through ωO∞ and πét1 (S, s̄) acts through ŤE . Likewise, Isom⊗(ω, V̌E) admits an action of

πét1 (S, s̄)×G(A∞).

Lemma 2.10.9. The sets Isom⊗(ωO∞ , ŤE) and Isom⊗(ω, V̌E) are non-empty. Moreover, Isom⊗(ωO∞ , ŤE)
(resp. Isom⊗(ω, V̌E)) is a principal homogeneous space under the group G(O∞) (resp. G(A∞)).

Proof. This is [ARH21, Lemma 6.2]. □

Definition 2.10.10. Let m ∈ N0. For every global G-shtuka E := (x, (E , ψ), (E ′, ψ′), φ, φ′) ∈
ShtG,D,∞×∞(S), the qm-Frobenius quasi-isogeny ΦmE : E −→ τmE is defined as the tuple ΦmE = (f, f ′)
with

f := τm−1
(φ′ ◦ φ) ◦ . . . ◦ τ(φ′ ◦ φ) ◦ (φ′ ◦ φ) : (E , ψ)|(X∖∞)S −→ τm(E , ψ)|(X∖∞)S

f ′ := τmφ ◦ τm−1
(φ′ ◦ φ) ◦ . . . ◦ τ(φ′ ◦ φ) ◦ φ′ : (E ′, ψ′)|(X∖∞)S −→

τm(E ′, ψ′)|(X∖∞)S

satisfying τmφ ◦ f = f ′ ◦ φ and τmφ′ ◦ f ′ = τf ◦ φ′; see Definition 2.7.3.

2In the case of abelian varieties A, the Tate module T (A) is the homology
∏
ℓ

H1,ét(A,Zℓ), while for G-shtukas E , the

Tate module ŤE(ρ) is the cohomology
∏

v ̸=∞
H1

ét(ρ∗E ,Ov), see [HK20, Definition 3.4.1], hence the “dual” terminology.
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Here we observe that the global G-shtuka τmE is obtained by pulling back E under the absolute
qm-Frobenius τm = Frobqm,S : S → S. The leg x of E satisfies x ◦ Frobqm,S = Frobqm,F∞ ◦x = x,
because x : S → X factors through {∞} = SpecF∞ ∈ X and Frobqm,F∞ = idF∞ by our assumption
F∞ = Fq. So E and τmE have the leg.

Corollary 2.10.11. Keep the situation of Definition 2.10.10.
If γ ∈ Isom⊗(ω, V̌E) then we have an equality τm(γ) = V̌Φm

E
◦ γ inside Isom⊗(ω, V̌τmE).

Proof. This follows by the same argument as in [ARH21, Corollary 6.3]. □

Example 2.10.12. For m = 1 the composition of the q-Frobenius quasi-isogeny ΦE : E −→ τE with
the isogeny Π: E −→ [−1](E) from Corollary 2.8.14(b) is given by the maps φ◁

i : Ei → τEi+1 from
diagram (2.8.12), which are isomorphisms on (X ∖ {∞})S .
Definition 2.10.13. Let S ∈ N ilpO∞ be a connected scheme. For a compact open subgroup H ⊆
G(A∞), we define a rational H-level structure γ̄ on a global G-shtuka E over S as a πét1 (S, s̄)-invariant
H-orbit γ̄ = γH in Isom⊗(ω, V̌E). For a non-connected scheme S, we make a similar definition by
choosing a base point on each connected component and a rational H-level structure on the restriction
to each connected component separately.

Let Z be a bound in GrG,X×∞×X Spf O∞ which in terms of Definition 2.6.1 is of local type (b) at
the moving leg and of finite type (c) at the fixed leg ∞. Its reflex scheme is SpecOZ for a finite ring
extension O∞ ⊂ OZ . We write κZ for the residue field of OZ . We denote by ShtG,H,∞̂×∞ (respectively

ShtZG,H,∞̂×∞) the category fibered in groupoids over N ilpO∞ (respectively N ilpOZ ) whose S-valued

points ShtG,H,∞̂×∞(S) (respectively ShtZG,H,∞̂×∞(S)) is the category whose

• objects are tuples (E , γH) consisting of a global G-shtuka E over S (respectively, which is
bounded by Z) together with a rational H-level structure γH;
• morphisms are quasi-isogenies of global G-shtukas that are isomorphisms above ∞ and are
compatible with the H-level structures.

We also set

ShtG,H,∞×∞ := ShtG,H,∞̂×∞×O∞ SpecF∞ and(2.10.14)

ShtZG,H,∞×∞ := ShtZG,H,∞̂×∞×OZ SpecκZ(2.10.15)

This definition of level structures generalizes our initial Definition 2.3.1 as follows.

Proposition 2.10.16. Let D ⊂ X be a proper closed subscheme disjoint from ∞. Consider the
compact open subgroup HD := ker

(
G(O∞)→ G(OD)

)
⊂ G(A∞). There is a canonical isomorphism of

stacks
ShtG,D,∞̂×∞

∼−→ ShtG,HD,∞̂×∞ .

In particular, it induces an isomorphism of the moduli stacks of bounded G-shtukas
ShtZG,D,∞̂×∞

∼−→ ShtZG,HD,∞̂×∞ .

Proof. This follows as in [ARH21, Theorem 6.5]. □

Remark 2.10.17. (a) Let (E , γH) ∈ ShtG,H,∞̂×∞(S). Then every choice of a representative γ ∈
Isom⊗(ω, V̌E) of the H-level structure γH induces a representation of the étale fundamental group
given by

(2.10.18) ρE,γ : π
ét
1 (S, s̄) −→ H , g 7−→ γ−1 ◦ g(γ) =: ρE,γ(g) .

It is a group homomorphism because

ρE,γ(gg
′) = γ−1 ◦ g(γ) ◦ g

(
γ−1 ◦ g′(γ)

)
= ρE,γ(g) · ρE,γ(g′),

as γ−1 ◦ g′(γ) lies in H on which πét1 (S, s̄) acts trivially. Replacing γ by γh, for h ∈ H, gives
ρE,γ = inth ◦ρE,γh.
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(b) For any compact open subgroup H ⊆ G(A∞) and any element h ∈ G(A∞), there is an isomorphism

ShtG,H,∞̂×∞
∼−→ ShtG,h−1Hh,∞̂×∞ of stacks, given by (E , γH) 7→

(
E , γh(h−1Hh)

)
.

Proposition 2.10.19. (a) For any compact open subgroup H ⊆ G(A∞), the stack ShtG,H,∞̂×∞ is
an ind-Deligne-Mumford stack, ind-separated and locally of ind-finite type over Spf O∞. If mZ
denotes the maximal ideal of OZ , then for every e ∈ N the fiber product

ShtZG,H,∞̂×∞ ×̂OZ SpecOZ/m
e
Z

is an (algebraic) Deligne-Mumford stack separated and locally of finite type over SpecOZ/m
e
Z ,

and ShtZG,H,∞̂×∞ is a locally noetherian, adic formal algebraic Deligne-Mumford stack, separated

and locally of finite type over Spf OZ in the sense of [Har05, Appendix A].

(b) If H̃ ⊂ H ⊆ G(A∞) are compact open subgroups then the forgetful morphism

(2.10.20) ShtG,H̃,∞̂×∞ −→ ShtG,H,∞̂×∞, (E , γH̃) 7−→ (E , γH)

is finite étale and surjective. Moreover, the same is true for the stack ShtZG,H̃,∞̂×∞.

(c) Furthermore, if H̃ is a normal subgroup of H, then the group H/H̃ acts on ShtG,H̃,∞̂×∞ from

the right via hH̃ : (E , γH̃) 7→ (E , γhH̃) for hH̃ ∈ H/H̃.

Moreover, the stack ShtG,H,∞̂×∞ is canonically isomorphic to the stack quotient
[
ShtG,H̃,∞̂×∞

/
(H/H̃)

]
and ShtG,H̃,∞̂×∞ is a right H/H̃-torsor over ShtG,H,∞̂×∞ under the forgetful morphism (2.10.20).

The same is true for the bounded shtukas.

Proof. Assertions (b) and (c) are standard. See for example [ARH21, Theorem 6.7] for a detailed
proof.

(a) The intersection H1 := H ∩ G(O∞) has finite index in H, because it is open and H is compact.
Thus the intersection H2 :=

⋂
h∈H/H1

hH1h
−1 ⊂ H1 ⊂ G(O∞) is compact open, normal in H, and

of finite index in G(O∞). There is a proper closed subscheme D ⊂ X with HD ⊂ H2, and this is a
normal subgroup because HD is normal in G(O∞). Therefore, statement (a) holds for ShtG,HD,∞̂×∞
by Theorems 2.10.16 and 2.7.16, see the definition in (2.10.1). Consequently also ShtG,H2,∞̂×∞ and
ShtG,H,∞̂×∞ are ind-Deligne-Mumford stacks locally of ind-finite type over Spf O∞ by (c) because they
are obtained as stack quotients by finite groups. They are (ind-)separated over Spf O∞, because the
forgetful morphisms in (c) are finite surjective with (ind-)separated source. □

2.11. Examples and relation to the previous literature. We explain how our Theorems 3.3.3
and 3.3.7 generalize uniformization results in the literature.

Example 2.11.1. Drinfeld [Dri74] defined “elliptic modules” (which are today called Drinfeld mod-
ules), and constructed moduli spaces for them. In [Dri77a] he also defined the equivalent notion of
elliptic sheaves; see also [BS97, Chapter 3]. An elliptic sheaf over an Fq-scheme S is by definition a
global G-shtuka E =

(
x, (Ei, ψi,Πi, φ◁

i )i∈Z
)
as in Corollary 2.8.11 for G = GLr, µ = (0, . . . , 0,−1).

The group scheme G ×X (X ∖ {∞}) equals GLr, but G∞ is an Iwahori subgroup of GLr (e.g. whose
reduction is the Borel of lower triangular matrices), and

(2.11.2) β =


0 0 z∞
1 0
0

0 0 1 0

 ,

where z∞ is a uniformizer at ∞. Its reflex ring Ŏµ,β = Ŏ∞. The elliptic sheaf E is written in
[Dri77a, BS97] in terms of chains of vector bundles Fi of rank r. These vector bundles are obtained
from our right G-bundles Ei as Fi := Ei×GOrXS

via the action of G on OrXS
by left multiplication. The
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boundedness of φ◁
i by µ = (0, . . . , 0,−1) and of Πi by τ

i−1
G∞

(β)−1 = β−1 implies that (φ◁
i )

−1 : τFi−1 →
Fi and Π−1

i : Fi−1 → Fi are morphisms of vector bundles on XS whose cokernels are locally free of

rank 1 over OS supported on∞, and Γx, respectively. Moreover, for any i the composition Π−1
i+r ◦ . . .◦

Π−1
i+1 : Fi → Fi+r is bounded by βr = z∞ ∈ Q×

∞ ⊂ GLr(Q∞). This is equivalent to the periodicity
condition formulated in [BS97, ii) on page 146]. In this caseMβ−1 is the group of units in the maximal
order of the central division algebra over Q∞ of Hasse-invariant 1/r.

Drinfeld [Dri77a, Proposition 3] proved that the category of elliptic sheaves of rank r over S is
equivalent to the category of Drinfeld A-modules over S of rank r, where A = Γ(X ∖ {∞},OX). In

[Dri74] he showed that the moduli spaces M r
A,D := Sht

Z(µ,β)
G,D,X×∞ of Drinfeld A-modules of rank r with

D-level structure are uniformized over C∞ by his (r − 1)-dimensional upper halfspace ΩrQ∞
. This

uniformization was worked out by Blum and Stuhler [BS97, Chapter 4] in terms of elliptic sheaves.
Both uniformization results are implied by our Theorem 1.1.3 as follows. As the global framing object
E we take the global G-shtuka over Fq given by E0 = G and φ◁

0 = τΠ0. Its quasi-isogeny group IE equals

G. Then L = L+
∞,M(E) =

(
(L+

∞Mβ−1)Fq
, β−1), i.e. b = β−1. In view of Remark 2.9.34, the Rapoport-

Zink space RZ≤µ
M,L is the disjoint union indexed by Z of Deligne’s formal model Ω̂rQ∞

of ΩrQ∞
; see

for example [HV23, Example 6.14]. By the “Lemma of the critical index” [BS97, Lemma 3.3.1], the

isogeny class XE of E from Theorem 1.1.3 is the whole fiber Sht
Z(µ,β)
G,X×∞×X SpecF∞. This also follows

from the fact that B(Mβ−1 ,−µ) is a set of one element by [Kot97, § 6.11]. Thus this whole fiber is

the Newton stratum of L := L+
∞,M(E), i.e. for every global G-shtukas E in this fiber the associated

local M-shtuka L+
∞,M(E) is isogenous to L. By [Har05, Proposition 11.4] this implies that already

E and E are isogenous. As a consequence XE = Sht
Z(µ,β)
G,X×∞×X SpecF∞. The adelic uniformization

isomorphism described in [DH87, Theorem 5.6] follows from our Theorem 1.1.3

ΘE,X : GLr(Q)\Ω̂rQ∞ ×G(A
∞)/HD

∼−→ M r
A,D ×X Spf Ŏ∞ .

Note that we can use Ω̂rQ∞
instead of RZ≤µ

M,L =
∐

Z Ω̂
r
Q∞

, because the existence of elements in Q×

with vanishing order 1 at ∞ implies Q×\Z× (A∞)× = Q×\{1} × (A∞)×.

Example 2.11.3. As a variant of the previous example, Laumon, Rapoport and Stuhler [LRS93]
defined D-elliptic sheaves, where D is a sheaf on X of maximal orders in a central division algebra
over Q of dimension d2. The point ∞ is chosen such that D ⊗OX

O∞ ∼=Md(O∞). The group scheme
G×X (X∖{∞}) equals the group D× of units in D , and G∞ is an Iwahori subgroup of GLr (e.g. whose
reduction is the Borel of lower triangular matrices). We take µ = (0, . . . , 0,−1), and β is given by

the matrix from (2.11.2). Its reflex ring Ŏµ,β = Ŏ∞. Then by definition, a D-elliptic sheaf over an
Fq-scheme S is a global G-shtuka E =

(
x, (Ei, ψi,Πi, φ◁

i )i∈Z
)
as in Corollary 2.8.11. It is written in

[LRS93, Definition 2.2] in terms of right modules Fi over D ⊗Fq OS which are locally free of rank one.

These modules are obtained from our right G-bundles Ei as Fi := Ei ×D×
D via the action of G = D×

on D by left multiplication. As in the previous example,Mβ−1 is the group of units in the maximal
order of the central division algebra over Q∞ of Hasse-invariant 1/r.

The uniformization at ∞ of the moduli space EℓℓX,D ,D := Sht
Z(µ,β)
G,HD,X×∞ of D-elliptic sheaves was

mentioned by Laumon, Rapoport and Stuhler [LRS93, (14.19)], but not proven. We prove it in our
Theorem 1.1.3. As the global framing object E we take the global G-shtuka over Fq given by E0 = G
and φ◁

0 = τΠ0. Then L = L+
∞,M(E) =

(
(L+

∞Mβ−1)Fq
, β−1), i.e. b = β−1. Its quasi-isogeny group IE

equals G. As in the previous example, the Rapoport-Zink space RZ≤µ
M,L is the disjoint union indexed

by Z of Deligne’s formal model Ω̂dQ∞
of ΩdQ∞

, and the isogeny class XE of E from Theorem 1.1.3 is the

whole fiber Sht
Z(µ,β)
G,X×∞×X SpecF∞. We obtain the uniformization isomorphism

ΘE,X : G(Q)\Ω̂dQ∞ ×G(A
∞)/HD

∼−→ EℓℓX,D ,D ×X Spf Ŏ∞ .
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As in the previous example note that we can use Ω̂rQ∞
instead of RZ≤µ

M,L =
∐

Z Ω̂
r
Q∞

, because Q×\Z×
(A∞)× = Q×\{1} × (A∞)×.

3. Uniformization

3.1. Source and target of the uniformization map.

3.1.1. Throughout Chapter 3 we fix a global framing object E ∈ Sht
Z(µ,β)
G,∅,X×∞(F∞) and let L :=

(L, φ̂L) := L+
∞,Mβ−1

(E) denote the associated local M-shtuka over F∞, where L+
∞,Mβ−1

is the β−1-

twisted global-local functor from Definition 2.9.22. We fix a trivialization L ∼= (L+
∞MF∞

, b) for

[b] ∈ B(M,µ) by Proposition 2.8.8. Recall from Definition 2.7.3 and Remark 2.7.4 the group IE(Q) :=
QIsogF∞

(E) of quasi-isogenies of the framing object.

Proposition 3.1.2. Let S be a connected non-empty scheme in N ilpŎµ,β
. Then the natural group

homomorphism QIsogF∞
(E)→ QIsogS(ES), g 7→ g ×F∞

S =: gS is an isomorphism.

Proof. This follows as in [ARH21, Proposition 7.2]. □

We next describe the source of the morphism ΘE from (1.1.4). Let RZ≤µ
M,L be the Rapoport-Zink

space of L with underlying topological space X≤µ
M (b), see Theorem 2.9.37.

3.1.3. Recall that the group JL(Q∞) = QIsogF∞
(L) of quasi-isogenies of L over F∞ acts naturally on

RZ≤µ
M,L and on X≤µ

M (b); see Remark 2.9.38. In particular, we see that the group IE(Q) acts on RZ≤µ
M,L

and X≤µ
M (b) via the natural group homomorphism

(3.1.4) L∞,Mβ−1 : IE(Q) −→ JL(Q∞) ,

which sends a quasi-isogeny η ∈ IE(Q) of E to the quasi-isogeny LMβ−1 (η) of L = LMβ−1 (E).
The group IE(Q) also acts naturally on V̌E and Isom⊗(ω, V̌E) by sending γ ∈ Isom⊗(ω, V̌E) to

V̌η ◦ γ for η ∈ IE(Q); see Definition 2.10.6 and Lemma 2.10.9. Upon choosing an element γ0 ∈
Isom⊗(ωO∞ , ŤE), this defines an injective morphism

(3.1.5) ζ : IE(Q) −→ Aut⊗(ω) ∼= G(A∞), η 7→ γ−1
0 ◦ V̌η ◦ γ0 .

The map ζ depends on γ0 only up to G(A∞)-conjugation.

Lemma 3.1.6. The group homomorphisms L∞,Mβ−1 and ζ from (3.1.4) and (3.1.5) are injective.

Proof. Consider a faithful representation ρ : G ↪→ GL(V) as in [ARH21, Proposition 2.2(a)] for a vector
bundle V on X. Then ρ∗η induces a quasi-isogeny of the vector bundle M := ρ∗E on XS associated
with ρ∗E. If η lies in the kernel of ζ then its restriction to XF∞

∖ {∞} is the identity on M because

of [ARH14, Proposition 3.4]. Therefore η must be the identity. This proves that ζ is injective. On
the other hand, L+

∞,Mβ−1
(M) is the completion of M at the graph Γx of x : SpecF∞ → X. Since this

completion functor is faithful, also L∞,Mβ−1 : IE(Q)→ JL(Q∞) is injective. □

By Lemma 3.1.6, we have the following injective morphism

(3.1.7) (L∞,Mβ−1 , ζ) : IE(Q) ↪→ JL(Q∞)×G(A∞)

and we identify IE(Q) with its image.

Lemma 3.1.8. IE(Q) is a discrete subgroup of JL(Q∞)×G(A∞).

Proof. To show this, we take an open subgroup U ⊂ AutF∞
(L) and consider the open subgroup

U×G(O∞) ⊂ JL(Q∞)×G(A∞). Since G(O∞) = γ0Aut
⊗(ŤE)γ−1

0 , the elements of IE(Q)∩
(
U×G(O∞)

)
give automorphisms of the global G-shtuka E. Then the finiteness of IE(Q) ∩

(
U × G(O∞)

)
follows

from Corollary 2.7.7. □
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To state the properties of the source of ΘE, we say that a formal algebraic Deligne-Mumford stack

Y over Spf Ŏµ,β (see [Har05, Definition A.5]) is I-adic for a sheaf of ideals I ⊂ OY , if for some (any)
presentation Y → Y, the formal scheme Y is IOY -adic, i.e. IrOY is an ideal of definition of Y for all
r ∈ N>0. We then call I an ideal of definition of Y. We say that Y is locally formally of finite type
over Spf Ŏµ,β if Y is locally noetherian, adic, and if the closed substack defined by the largest ideal of

definition (see [Har05, A.7]) is an algebraic stack locally of finite type over SpecF∞.

Let H ⊂ G(A∞) be a compact open subgroup. Consider the countable double coset

(3.1.9) IE(Q)\ Isom⊗(ω, V̌E)/H ∼= IE(Q)\G(A∞)/H.

For γ̄ := γH ∈ Isom⊗(ω, V̌E)/H the coset hγH ⊂ G(A∞)/H of hγ := γ−1
0 γ ∈ G(A∞) is well defined.

We set

(3.1.10) Γγ̄ := IE(Q) ∩
(
JL(Q∞)× hγHh−1

γ

)
⊂ JL(Q∞).

This is a discrete subgroup for the ∞-adic topology by Lemma 3.1.8. Moreover, Γγ is separated in
the profinite topology, i.e. for every 1 ̸= η ∈ Γγ̄ , there is a normal subgroup of finite index in Γγ̄ that

does not contain g. Indeed, there is a normal subgroup H̃ ⊂ H of finite index such that hγH̃h
−1
γ does

not contain the element ζ(η) ̸= 1.

Proposition 3.1.11. (a) The quotient of RZ≤µ
M,L×Isom

⊗(ω, V̌E)/H by the abstract group IE(Q) exists

as a locally noetherian, adic, formal algebraic Deligne-Mumford stack locally formally of finite type
over Spf Ŏµ,β and is given by the following disjoint union

(3.1.12) IE(Q)
∖(
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H
) ∼= ∐

γ̄

Γγ̄
∖
RZ≤µ

M,L .

Here γ̄ := γH ∈ Isom⊗(ω, V̌E)/H runs through a set of representatives for the double coset (3.1.9).
(b) The quotient morphisms

RZ≤µ
M,L →→ Γγ̄

∖
RZ≤µ

M,L and(
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H
)
→→ IE(Q)

∖(
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H
)

(3.1.13)

are adic and étale.
(c) In particular, the closed substack of (3.1.12) defined by the largest ideal of definition is the

Deligne-Mumford stack locally of finite type over SpecF∞ given by

(3.1.14) IE(Q)
∖
X≤µ

M (b)× Isom⊗(ω, V̌E)/H ∼=
∐
γ̄

Γγ̄
∖
X≤µ

M (b) .

Remark 3.1.15. Note that all unipotent subgroups of JL(Q∞) are torsion, so they might not act

fixed-point-freely on RZ≤µ
M,L and X≤µ

M (b), thus the quotients (3.1.12) and (3.1.14) may not be (formal)

schemes.

Proof of Proposition 3.1.11. The quotients Γγ̄
∖
RZ≤µ

M,L and IE(Q)
∖(
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H
)
are

formal algebraic Deligne-Mumford stacks by [ARH14, Proposition 4.27]. That they are Deligne-
Mumford and the last assertion about (3.1.14) follow from the proof of [ARH14, Proposition 4.27]
where it is shown that (3.1.14) (respectively (3.1.12)) are locally the stack quotient of a (formal)
scheme by a finite group. □

3.2. Various actions on the source and target. We keep the situation of Section 3.1. There is
an action of G(A∞) by Hecke correspondences, which is explicitly given as follows.



UNIFORMIZING THE MODULI STACKS OF GLOBAL G-SHTUKAS II 39

Definition 3.2.1. Let H,H ′ ⊂ G(A∞) be compact open subgroups and let h ∈ G(A∞). We define
the Hecke correspondence π(h)H′,H by the two diagrams: the local case

(3.2.2) RZ≤µ
M,L × Isom⊗(ω, V̌E)/(hHh−1 ∩H ′)

uu ))

RZ≤µ
M,L × Isom⊗(ω, V̌E)/H RZ≤µ

M,L × Isom⊗(ω, V̌E)/H ′
π(h)H′,Hoo

On the S-valued points, it is given by

(L, δ̂)× γ(hHh−1 ∩H ′)

(L, δ̂)× γhH (L, δ̂)× γH ′

We define the Hecke correspondence in the global case by

(3.2.3)

Sht
Z(µ,β)
G,(hHh−1∩H′),∞̂×∞

Sht
Z(µ,β)
G,H,∞̂×∞ Sht

Z(µ,β)
G,H′,∞̂×∞π(h)H′,H

On the level of S-points, it is given by

(E , γ(hHh−1 ∩H ′))

(E , γhH) (E , γH ′)

Example 3.2.4. A special case for H ′ ⊂ H and h = 1 are the forgetful morphisms

π(1)H′,H : RZ≤µ
M,L × Isom⊗(ω, V̌E)/H ′ → RZ≤µ

M,L × Isom⊗(ω, V̌E)/H

and π(1)H′,H : Sht
Z(µ,β)
G,H′,∞̂×∞ → Sht

Z(µ,β)
G,H,∞̂×∞, which are finite étale and surjective; see Proposition 2.10.19(b).

3.2.5. There is a another group acting on the source and the target of the morphism ΘE from (1.1.4),
namely the group Z(Q∞) where Z ⊂ G ×X SpecQ = G is the center. Since the center of M and that
of G∞ coincide, Z(Q∞) lies in the center of L∞M(F∞). Recall the maps τG∞ and τM from (2.9.16).
Writing L ∼=

(
(L+

∞M)F∞
, b
)
with b ∈ L∞M(F∞) = L∞G(F∞), there is an inclusion

Z(Q∞) ↪−→ JL(Q∞) =
{
j ∈ L∞M(F∞) : τM (j) b = b j

}
= QIsogF∞

(L) ,

c 7−→ cL := c = τG∞(c) = β−1τG∞(c)β = τM (c) = b−1τM (c)b
(3.2.6)

through which c ∈ Z(Q∞) acts on (L, δ̂) ∈ RZ≤µ
M,L via c : (L, δ̂) 7→ (L, cL ◦ δ̂), where we denote the

image of c inside QIsogF∞
(L) by cL whenever confusion may arise.

This action can also be described in a different way as follows.
For any local M-shtuka L over a scheme S ∈ N ilpŎ∞

, we claim that c induces an element cL ∈
QIsogS(L) of the quasi-isogeny group of L such that δ̂ ◦ cL = cL ◦ δ̂. Over an étale covering S′ → S,

we can choose a trivialization α : LS′
∼−→

(
(L+

∞M)S′ , b′
)
for b′ ∈ L∞M(S′). Then c = τM (c) implies

b′c = τM (c)b′, i.e. α−1 ◦ c ◦ α ∈ QIsogS′(L).



40 URS HARTL AND YUJIE XU

Next we show that this quasi-isogeny descends to S. Let pr1,pr2 : S
′′ := S′ ×S S′ → S′ be the

projections onto the first and second factor. Set h := pr∗2 α◦pr∗1 α−1 ∈ L+
∞M(S′′). Then h◦pr∗1 c◦h−1 =

pr∗1 c = pr∗2 c implies

pr∗1(α
−1 ◦ c ◦ α) = pr∗2 α

−1 ◦ h ◦ pr∗1 c ◦ h−1 ◦ pr∗2 α = pr∗2(α
−1 ◦ c ◦ α) .

Therefore, α−1 ◦ c ◦α descends to a quasi-isogeny of L over S which we denote by cL ∈ QIsogS(L). If
moreover we are given a quasi-isogeny δ̂ : L → LS , i.e. if (L, δ̂) ∈ RZ

≤µ
M,L(S), then δ̂ is automatically

compatible with the quasi-isogenies cL ∈ QIsogS(L) and cL ∈ QIsogF∞
(L), i.e. δ̂ ◦ cL = cL ◦ δ̂. To see

this: using the trivialization α over S′ from above, δ̂ corresponds to g := δ̂ ◦ α−1 ∈ L∞G(S′). Thus

(3.2.7) δ̂ ◦ cL := δ̂ ◦ (α−1 ◦ c ◦ α) = g ◦ c ◦ α = c ◦ g ◦ α = cL ◦ δ̂ .

This shows that the action of c ∈ Z(Q∞) on RZ≤µ
M,L is given as

(3.2.8) c : RZ≤µ
M,L −→ RZ≤µ

M,L , (L, δ̂) 7−→ (L, δ̂ ◦ cL) = (L, cL ◦ δ̂) .

As such, it does not matter which quasi-isogeny group we realize Z(Q∞) in. The action of Z(Q∞) on

RZ≤µ
M,L commutes with the action of η ∈ IE(Q), as η and c act on RZ≤µ

M,L × Isom⊗(ω, V̌E)/H by

(3.2.9) (L, δ̂)× γH 7−→ (L, L∞,Mβ−1 (η) ◦ δ̂ ◦ c)× V̌ηγH .

On the other hand, c ∈ Z(Q∞) also acts on the target Sht
Z(µ,β)
G,H,∞̂×∞ of the map ΘE as follows.

Let (E , γH) be in Sht
Z(µ,β)
G,H,∞̂×∞(S) for some S ∈ N ilpŎµ,β

. Consider the associated local M-shtuka

L := L+
∞,Mβ−1

(E). We have seen above that c induces an element cL ∈ QIsogS(L) of the quasi-isogeny
group of L. By Proposition 2.9.28(b), there is a uniquely determined global G-shtuka c∗ E and a
quasi-isogeny cE : c

∗ E → E , which is an isomorphism outside ∞ and satisfies L∞,Mβ−1 (cE) = cL. We

can now define the action of c ∈ Z(Q∞) on (E , γH) ∈ Sht
Z(µ,β)
G,H,∞̂×∞(S) as

(3.2.10) c : (E , γH) 7−→ (c∗ E , V̌−1
cE γH) .

3.2.11. The source and target of ΘE carry a Weil-descent datum for the ring extension Oµ,β ⊂ Ŏµ,β,
compare [RZ96, Definition 3.45]. We explain what this means. Recall that κµ,β is the residue field of

Oµ,β. Consider the Oµ,β-automorphism λ of Ŏµ,β inducing

(3.2.12) λ|F∞
:= Frob#κµ,β ,F∞

: x 7−→ x#κµ,β for x ∈ F∞

on the residue field F∞ of Ŏµ,β. For a scheme (S, θ) ∈ N ilpŎµ,β
, where θ : S → Spf Ŏµ,β denotes the

structure morphism of the scheme S, we denote by S[λ] ∈ N ilpŎµ,β
the pair (S, λ ◦ θ). For a stack H

over Spf Ŏµ,β, we define the stack λH by

λH(S) := H(S[λ]) .

Definition 3.2.13. A Weil-descent datum on H is an isomorphism of stacks H ∼−→ λH, i.e. an
equivalence H(S) ∼−→ H(S[λ]) for every S ∈ N ilpŎµ,β

compatible with morphisms in N ilpŎµ,β
.

Let S ∈ N ilpŎµ,β
. Under the inclusion N ilpŎµ,β

↪→ N ilpOµ,β
, we have S = S[λ] in N ilpOµ,β

. There-

fore, on Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β, the canonical Weil-descent datum is given by the identity

(3.2.14) id : Sht
Z(µ,β)
G,H,∞̂×∞(S) ∼−→ Sht

Z(µ,β)
G,H,∞̂×∞(S[λ]) , (E , γH) 7−→ (E , γH).
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On RZ≤µ
M,L, we consider the Weil descent datum given by

RZ≤µ
M,L(S)

∼−→ RZ≤µ
M,L(S[λ]),

(L, δ̂ : L → LS) 7−→ (L, θ∗(φ̂[κµ,β : Fq ]
L ) ◦ δ̂ : L → LS[λ]

) ,
(3.2.15)

where φ̂L is the Frobenius of the local shtuka L = (L, φ̂L). Here we observe that LS := θ∗L and

LS[λ]
:= (λ ◦ θ)∗L = θ∗λ∗L = θ∗(τ

[κµ,β : Fq ]L), and that φ̂
[κµ,β : Fq ]
L : L→ τ

[κµ,β : Fq ]L is a quasi-isogeny.

Remark 3.2.16. On on RZ≤µ
M,L there is even a Weil descent datum for the ring extension Oµ ⊂ Ŏµ.

It is defined analogously by replacing κµ,β in (3.2.12) and (3.2.15) by Oµ. We do not discuss the

question whether this Weil descent datum on RZ≤µ
M,L is effective. In the analogous situation for

p-divisible groups, this is true and proven by Rapoport and Zink in [RZ96, Theorem 3.49]. Their
argument uses a morphism Gm → G, which might not exist in our setup.

Moreover, on RZ≤µ
M,L×Isom

⊗(ω, V̌E)/H we consider the product of the Weil Descent datum (3.2.15)

with the identity on Isom⊗(ω, V̌E)/H. Let η ∈ IE(Q). Since

θ∗(φ̂
[κµ,β : Fq ]
L ◦ L∞,Mβ−1 (η)) = θ∗

(
τ
[κµ,β : Fq ]

(L∞,Mβ−1 (η)) ◦ φ̂
[κµ,β : Fq ]
L

)
= (λ ◦ θ)∗(L∞,Mβ−1 (η)) ◦ θ∗(φ̂

[κµ,β : Fq ]
L ),

this product Weil descent datum commutes with the action of IE(Q) via the following diagram

(3.2.17) (L, δ̂) �
η //

_

Weil descent
��

(L, θ∗(L∞,Mβ−1 (η)) ◦ δ̂)
_

Weil descent
��

(L, θ∗(φ̂[κµ,β : Fq ]
L ) ◦ δ̂)

� η
,,

(L, θ∗(φ̂[κµ,β : Fq ]
L ) ◦ θ∗(L∞,Mβ−1 (η)) ◦ δ̂)

(L, (λ ◦ θ)∗(L∞,Mβ−1 (η)) ◦ θ∗(φ̂
[κµ,β : Fq ]
L ) ◦ δ̂) .

This defines a Weil descent datum on Y := IE(Q)
∖
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H by

Y(S) ∼−→ λY(S) = Y(S[λ])(3.2.18)

(L, δ̂, γH) 7−→ (L, θ∗(φ̂[κµ,β : Fq ]
L ) ◦ δ̂, γH) .

3.2.19. Now we define the Frobenius endomorphism on the source and target of ΘE. For every multiple

m ∈ N0 of [Oµ : Fq], the special fiber RZ≤µ
M,L ×̂Ŏµ,β

SpecF∞ of RZ≤µ
M,L carries a Frobenius endomor-

phism structure Φm defined as follows. Consider the absolute qm-Frobenius τm := Frobqm,S : S → S

on an F∞-scheme S. Consider a pair (L, δ̂) ∈ RZ≤µ
M,L(S), which induces the left horizontal morphisms

in the diagram

(3.2.20) S

Frobqm,S
��

(L, δ̂)
//

(τ
mL, τmδ̂)

,,

RZ≤µ
M,L ×̂Ŏµ,β

SpecF∞

Frobqm
��

// SpecF∞

Frobqm,F∞
��

S
(L, δ̂)

// RZ≤µ
M,L ×̂Ŏµ,β

SpecF∞ // SpecF∞
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Let θ : S → SpecF∞ be the structure morphism of S. Then the upper-left S in diagram (3.2.20),
viewed as a scheme over the lower-right SpecF∞, has structure morphism Frobqm,F∞

◦θ. Thus in

terms of §3.2.11, taking λ := λm := Frobqm,F∞
, the upper-left S becomes S[λm] over the lower-right

SpecF∞.

Let Z(µ) := Z≤µ be the bound from Definition 2.6.9, which we used as the bound on RZ≤µ
M,L

from Definition 2.9.31. Its special fiber Z(µ)∞ := Z(µ)×
X̃µ

Specκµ is defined over κµ. Since m is a

multiple of [κµ : Fq], the Frobenius φ̂τmL = τmφ̂L lies in τmZ(µ)∞ = Z(µ)∞. Thus τ
mL is also bounded

by Z(µ), and therefore the diagonal arrow (τ
mL, τmδ̂) lies in RZ≤µ

M,L(S[λm]) =
λm

(
RZ≤µ

M,L
)
(S).

Via the Weil descent datum (3.2.15), (τ
mL, τmδ̂) is mapped to (τ

mL, θ∗(φ̂ −m
L ) ◦ τmδ̂), which lies in

RZ≤µ
M,L(S). We therefore define the qm-Frobenius endomorphism of RZ≤µ

M,L ×̂R SpecF∞ as

Φm : RZ≤µ
M,L ×̂R SpecF∞ −→

(
RZ≤µ

M,L ×̂R SpecF∞
)

(3.2.21)

(L, δ̂) 7−→ (τ
mL, φ̂ −m

L ◦ τmδ̂) = (τ
mL, δ̂ ◦ φ̂ −m

L ) .

The product of the qm-Frobenius endomorphism Φm from (3.2.21) with the identity on Isom⊗(ω, V̌E)/H
gives a qm-Frobenius morphism (which we again denote by Φm)

Φm :
(
RZ≤µ

M,L ×̂R SpecF∞
)
× Isom⊗(ω, V̌E)/H −→(3.2.22)

−→
(
RZ≤µ

M,L ×̂R SpecF∞
)
× Isom⊗(ω, V̌E)/H .

Since the composition of η ∈ IE(Q) and Φm is given by

(L, δ̂)× γH 7−→ (L, L∞,Mβ−1 (η) ◦ δ̂ ◦ φ̂ −m
L )× V̌ηγH,

it follows that Φm commutes with the action of IE(Q). This defines the qm-Frobenius endomorphism

Φm of the source IE(Q)
∖
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H of ΘE .

Now we discuss the Frobenius endomorphisms on the target. Let m ∈ N0 be a multiple of [κµ,β : Fq].
Since Sht

Z(µ,β)
G,H,∞̂×∞×Oµ,β

SpecF∞ = (Sht
Z(µ,β)
G,H,∞̂×∞×Oµ,β

κµ,β) ×κµ,β
SpecF∞, the map id×τm defines

the relative qm-Frobenius of the left-hand side, which is an endomorphism, because this stack arises
by base change from Specκµ,β. Explicitly, this q

m-Frobenius endomorphism is given by

Φm : Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

SpecF∞ −→ Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

SpecF∞

(E , γH) 7−→ (τ
mE , τm(γ)H) .(3.2.23)

We observe that τ
mE is indeed bounded by Z(µ, β): Since m is a multiple of [κµ,β : Fq] and the special

fiber Z(µ, β)∞ := Z(µ, β) ×
X̃µ,β

Specκµ,β of the bound Z(µ, β) is defined over κµ,β, it follows that
τmE is bounded by τmZ(µ, β)∞ = Z(µ, β)∞.

3.3. Statement of the uniformization theorem. In this subsection, we define the uniformization
morphism and state our main results, Theorems 3.3.3 and 3.3.7, which will be proven in Section 3.4.

Recall from §3.1.1 that we fix a global G-shtuka E ∈ Sht
Z(µ,β)
G,∅,X×∞(F∞) and its associated localM-shtuka

L := L+
∞,Mβ−1

(E). We fix a trivialization L ∼=
(
(L+

∞M)F∞
, b
)
.

3.3.1. To define the uniformization map ΘE, let

(L, δ̂ : L → LS) ∈ RZ
≤µ
M,L(S), for S ∈ N ilpŎµ,β

,

where L ∈ LocSht≤µM (S) is a localM-shtuka bounded by µ. By Proposition 2.9.28(b), there is a global

G-shtuka δ̂∗E in Sht
Z(µ,β)
G,∅,∞̂×∞(S) and a quasi-isogeny δ : δ̂∗E → E with L∞,Mβ−1 (δ) = δ̂. Since δ is

defined over S, the isomorphism V̌δ is equivariant for the action of πét1 (S, s̄) which acts on V̌E through

the map πét1 (S, s̄)→ πét1 (SpecFq, s̄) = (1), that is trivially. Let H ⊂ G(A∞) be an arbitrary compact
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open subgroup. In particular, the H-orbit V̌−1
δ ◦ γH of the tensor isomorphism V̌−1

δ ◦ γ : ω
∼−→ V̌δ̂∗E is

invariant under πét1 (S, s̄). This defines the following morphism

Θ̃E : RZ≤µ
M,L × Isom⊗(ω, V̌E)/H −→ Sht

Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β
(L, δ̂, γH) 7−→ (δ̂∗E, V̌−1

δ ◦ γH),
(3.3.2)

which is obviously equivariant for the action of the center Z(Q∞) given in (3.2.8) and (3.2.10), and
the action of G(A∞) through Hecke correspondences given in (3.2.2) and (3.2.3).

Theorem 3.3.3. Consider a compact open subgroup H ⊂ G(A∞). The morphism Θ̃E from (3.3.2) is
IE(Q)-invariant, where IE(Q) acts trivially on the target and diagonally on the source as described in
§3.1.3. Furthermore, this morphism factors through a morphism

(3.3.4) ΘE : IE(Q)
∖
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H −→ Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β

of formal algebraic Deligne-Mumford stacks over Spf Ŏµ,β that is a monomorphism, i.e. the functor

ΘE is fully faithful, or equivalently its diagonal is an isomorphism. Both Θ̃E and ΘE are ind-proper
and formally étale.

Proof. An elelemt η ∈ IE(Q) acts on the source of the morphism Θ̃E by sending an S-valued point

(L, δ̂)×γH to (L, L∞,Mβ−1 (η)δ̂)×V̌η ◦γH. These two S-valued points are mapped under Θ̃E to global

G-shtukas with H-level structure (E , V̌−1
δ γH) and (Ẽ , V̌−1

δ̃
V̌ηγH) over S, where δ : E := δ̂∗E → E is

the isogeny satisfying L∞,Mβ−1 (δ) = δ̂ and δ̃ : Ẽ := (L∞,Mβ−1 (η)δ̂)
∗ E → E is the isogeny satisfying

L∞,Mβ−1 (δ̃) = L∞,Mβ−1 (η)δ̂. Since V̌δ̃−1ηδ ◦ V̌
−1
δ γH = V̌−1

δ̃
V̌ηγH, these two global G-shtukas with

H-level structure are isomorphic via the quasi-isogeny δ̃−1ηδ : E → Ẽ , which is an isomorphism at ∞,

because L∞,Mβ−1 (δ̃
−1ηδ) = (L∞,Mβ−1 (η)δ̂)

−1 ◦ L∞,Mβ−1 (η)δ̂ = id. In other words, Θ̃E is invariant

under the action of IE(Q) and factors through the morphism ΘE from (3.3.4) of formal algebraic
Deligne-Mumford stacks.

The remaining statements will be proven in Lemmas 3.4.1 through 3.4.11. □

Recall that the scheme X≤µ
M (b) × Isom⊗(ω, V̌E)/H is locally of finite type over F∞. Let {Tj} be a

set of representatives of IE(Q)-orbits of its irreducible components.

Lemma 3.3.5. (a) The image Θ̃E(Tj) of Tj under Θ̃E is a closed substack with the reduced substack

structure, and each Θ̃E(Tj) intersects only finitely many Θ̃E(T
′
j) for j

′ ̸= j.

(b) Let XE be the union of all the Θ̃E(Tj). Then XE (with its reduced structure) is a separated

Deligne-Mumford stack over Fq. Its underlying set |XE| ⊂ Sht
Z(µ,β)
G,H,∞×∞×κµ,β SpecFq is the

isogeny class of E, i.e. the set of all (E , γH) for which E is isogenous to E.
Moreover, the morphism Θ̃E restricted to X≤µ

M (b) factors through a map ιX : XE → Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β.

Proof. (a) Note that the Tj correspond bijectively to the irreducible components of the Deligne-

Mumford stack IE(Q)
∖
X≤µ

M (b) × Isom⊗(ω, V̌E)/H from (3.1.14), which is locally of finite type over

SpecF∞. Since ΘE is a monomorphism by Theorem 3.3.3, each Θ̃E(Tj) intersects only finitely many

Θ̃E(Tj′) for j′ ̸= j. Since Tj is quasi-compact by [ARH14, Corollary 4.26] and Θ̃E is ind-proper by

Theorem 3.3.3, the restriction of Θ̃E to Tj is proper. Thus Θ̃E(Tj) are closed substacks.

(b) For a field K, every K-valued point (E , γH) of XE lies in the image of Θ̃E, and hence is of the form

E = δ̂∗E with an isogeny δ : E → E. This shows that XE is contained in the (quasi-)isogeny class of E.
Conversely, let (E , γH) be a K-valued point of Sht

Z(µ,β)
G,H,∞×∞ in the isogeny class of E, and let

δ : E → EK be a quasi-isogeny. Let L := L∞,Mβ−1 (E) and δ̂ := L∞,Mβ−1 (δ) : L → LK and (V̌δ ◦γ)H ∈
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Isom⊗(ω, V̌E)/H. Then (L, δ̂, (V̌δ◦γ)H) is aK-valued point of the source of Θ̃E which is mapped under

Θ̃E to (E ′, (V̌−1
δ′ ◦ (V̌δ ◦ γ)H), where E ′ := δ̂∗ E and δ′ : E ′ → E is the isogeny with L∞,Mβ−1 (δ

′) = δ̂

which is an isomorphism outside ∞. The isogeny δ−1 ◦ δ′ : E ′ → E satisfies L∞,Mβ−1 (δ
−1δ′) = id and

V̌δ−1δ′ ◦ V̌−1
δ′ ◦ V̌δ ◦ γH = γH, and so (E ′, V̌−1

δ′ ◦ V̌δ ◦ γH) ∼= (E , γH) in Sht
Z(µ,β)
G,H,∞×∞(K). The point

(L, δ̂, γH) lies on an irreducible component of X≤µ
M (b)× Isom⊗(ω, V̌E)/H belonging to the IE(Q)-orbit

of some irreducible component Tj . By the IE(Q)-equivariance of Θ̃E we can move the point (L, δ̂, γH)

to Tj and then its image (E , γH) under Θ̃E lies in Θ̃E(Tj) ⊂ XE as desired.

To prove that XE is separated over SpecF∞ we use the valuative criterion [LMB00, Proposi-

tion 7.8]. Let R be a valuation ring containing F∞ with fraction field K. Consider two morphisms
f1, f2 : SpecR → XE whose restrictions fi,K to K are isomorphic in XE(K). We must show that

f1 ∼= f2 in XE(R). The K-valued point f1,K ∼= f2,K lies in Θ̃E(Tj)(K) ⊂ XE(K) for some j. Since

Θ̃E(Tj) is a closed substack of Sht
Z(µ,β)
G,H,∞×∞, the two morphisms f1, f2 factor through Θ̃E(Tj). Since

Sht
Z(µ,β)
G,H,∞×∞ is separated over F∞, also Θ̃E(Tj) is separated over F∞, and so f1 ∼= f2 in Θ̃E(Tj)(R).

Thus XE is separated over F∞. □

Reasoning as in [RZ96, 6.22], we may form the formal completion Sht
Z(µ,β)
G,H,∞̂×∞ /X of Sht

Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β
along the set X := XE From Lemma 3.3.5(b). It is the category fiberd over N ilpŎµ,β

whose S-valued

points give the full subcategory

Sht
Z(µ,β)
G,H,∞̂×∞ /X (S) :=

{
f : S → Sht

Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β, such that f |Sred
factors through XE

}
,

where Sred is the underlying reduced closed subscheme of S. Note that it follows immediately that
the natural morphism

(3.3.6) Sht
Z(µ,β)
G,H,∞̂×∞ /X −→ Sht

Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β
is an ind-proper monomorphism and formally étale, because for an affine scheme S = SpecB ∈
N ilpŎµ,β

and an ideal I ⊂ B with I2 = (0) one has Sred = (SpecB/I)red.

Theorem 3.3.7. Let Sht
Z(µ,β)
G,H,∞̂×∞ /X be the formal completion of Sht

Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β along

the set XE from Lemma 3.3.5(b).

(a) Then ΘE induces an isomorphism of locally noetherian, adic formal algebraic Deligne-Mumford

stacks locally formally of finite type over Spf Ŏµ,β

ΘE,X : IE(Q)
∖(
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H
) ∼−→ Sht

Z(µ,β)
G,H,∞̂×∞ /X ,

and in particular of the underlying Deligne-Mumford stacks

ΘE,X : IE(Q)
∖
X≤µ

M (b)× Isom⊗(ω, V̌E)/H ∼−→ XE

which are locally of finite type and separated over SpecF∞.

(b) The morphisms Θ̃E, ΘE and ΘE,X are compatible with the following actions on source and
target: the action of Z(Q∞) described in 3.2.5, the action of G(A∞) through Hecke-corres-
pondences described in Definition 3.2.1, and the Weil descent data described in 3.2.11.

For every multiple m ∈ N0 of [κµ,β : Fq], the base changes of Θ̃E, ΘE and ΘE,X to SpecF∞
are compatible with the qm-Frobenius endomorphisms Φm from (3.2.22) and (3.2.23).

The proof will be given in the next section.

Remark 3.3.8. Isogeny classes on Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β have the structure of quotients of affine

Deligne–Lusztig varieties by some Q-rational group IE(Q).

Theorem 3.3.7 has consequences for point-counting in the Langlands-Rapoport conjectures.
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Remark 3.3.9. Conbining our techniques with the ones from [ARH21, Theorem 7.11], one can extend
Theorems 3.3.3 and 3.3.7 to the case of n disjoint pairs (xi,∞i)i=1...n of two colliding legs, such that
in each pair the leg xi varies and the other leg is fixed at a place ∞i and bounded by some element
βi ∈ L∞iG(Fq) with βi · L+

∞i
G · β−1

i = L+
∞i
G for all i. Here disjoint means that ∞i ̸= ∞j for i ̸= j.

For each i one considers the β−1
i -twisted global-local functor L+

∞i,Mi
from global G-shtukas to local

Mi-shtukas, whereMi is the inner form of G∞i given by β−1
i . The target space of the uniformization

will be the stack Sht
Z((µi,βi)i)
G,H,(∞̂i×∞i)i

of global G-shtukas with n varying legs xi : S → Spf O∞i (respectively

n fixed legs ∞i) at which the modification is bounded by a cocharacter µi (respectively by βi), and
with a H-level structure for a compact open subgroups H ⊂ G(A∞) for ∞ = (∞1, . . . ,∞n). As a

global framing object one fixes a global G-shtuka E ∈ Sht
Z((µi,βi)i)
G,∅,(∞̂i×∞i)i

(Fq) over Fq. For every i the

associated localMi-shtuka is Li := L+
∞i,Mi

(E) ∼=
(
(L+Mi)Fq

, bi) with bi ∈ L∞iMi(Fq). One obtains

the Rapoport-Zink space RZ≤µi
Mi,Li

over Ŏµi =: Fq[[ξi]] with the affine Deligne-Lusztig varietie X≤µi
Mi

(bi)

as its underlying topological space. The uniformization is then given by an isomorphism

(3.3.10) ΘE,X : IE(Q)
∖( n∏

i=1

X≤µi
Mi

(bi)× Isom⊗(ω, V̌E)/H
) ∼−→ XE

of Deligne-Mumford stacks locally of finite type and separated over Fq, obtained as the restriction of
an isomorphism

ΘE,X : IE(Q)
∖( n∏

i=1

RZ≤µi
Mi,Li

× Isom⊗(ω, V̌E)/H
) ∼−→ Sht

Z((µi,βi)i)
G,H,(∞̂i×∞i)i /X

of locally noetherian, adic formal algebraic Deligne-Mumford stacks locally formally of finite type over

Ŏ(µi,βi)i := Fq[[ξ1, . . . , ξn]], where the target is the formal completion of Sht
Z((µi,βi)i)
G,H,(∞̂i×∞i)i

×Spf Ŏ(µi,βi)i

along the underlying set XE which is the image of the morphism (3.3.10) and the isogeny class of E.

3.4. Proof of the Main Theorems.

Lemma 3.4.1. The maps Θ̃E, ΘE, and ΘE,X are ind-proper and formally étale.

Proof. The claim that Θ̃E is formally étale follows from the rigidity of quasi-isogenies. We give more

details. Let S ∈ N ilpŎµ,β
, and let (E , γH) ∈ Sht

Z(µ,β)
G,H,∞̂×∞(S) with γ ∈ Isom⊗(ω, V̌E). Let S′ be a

closed subscheme of S defined by a locally nilpotent sheaf of ideals. Suppose that the base change

(ES′ , γH) to S′ lies in the image of Θ̃E, i.e. there is a tuple

(3.4.2) (L′, δ̂′ : L′ → LS′ , γ′H) ∈ RZ≤µ
M,L(S

′)× Isom⊗(ω, V̌E)/H

such that Θ̃E(L′, δ̂′, γ′H) = (ES′ , γH) in Sht
Z(µ,β)
G,H,∞̂×∞(S′). The last equality means that there is a

quasi-isogeny δ̃′ : ES′ → (δ̂′)∗ES′ of global G-shtukas over S′ that is an isomorphism over ∞ with

V̌−1

δ̃′
◦ V̌−1

δ′ ◦ γ
′H = γH in Isom⊗(ω, V̌E)/H, where δ′ : (δ̂′)∗ES′ → ES′ is the quasi-isogeny from Propo-

sition 2.9.28(b) with L∞,Mβ−1 ((δ̂
′)∗ES′) = L′ and L∞,Mβ−1 (δ

′) = δ̂′. In particular,

(3.4.3) L∞,Mβ−1 (δ̃
′) : L∞,Mβ−1 (E)S′ ∼−→ L∞,Mβ−1

(
(δ̂′)∗ES′

)
= L′

is an isomorphism of local M-shtukas. Thus (L′, δ̂′) equals (L∞,Mβ−1 (E)S′ , δ̂′ ◦ L∞,Mβ−1 (δ̃
′)) in

RZ≤µ
M,L(S

′). We may replace the former by the latter in (3.4.2) and thus assume L∞,Mβ−1 ((δ̂
′)∗ES′) =

L∞,Mβ−1 (E)S′ and L∞,Mβ−1 (δ̃
′) = idL∞,M

β−1
(E)S′ in (3.4.3)
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Now the quasi-isogeny δ̂′ = δ̂′ ◦L∞,Mβ−1 (δ̃
′) : L∞,Mβ−1 (E)S′ → LS′ lifts uniquely to a quasi-isogeny

δ̂ : L∞,Mβ−1 (E) → LS over S by the rigidity of quasi-isogenies for local M-shtukas; see Proposi-

tion 2.9.6. Therefore, (L∞,Mβ−1 (E), δ̂, γ′H) is an S-valued point of RZ≤µ
M,L(S) × Isom⊗(ω, V̌E)/H.

Its image under Θ̃E is (δ̂∗ES , V̌−1
δ ◦ γ′H), where δ : δ̂∗ES → ES is the quasi-isogeny from Proposi-

tion 2.9.28(b) with L∞,Mβ−1 (δ̂
∗ES) = L∞,Mβ−1 (E) and L∞,Mβ−1 (δ) = δ̂. Since (δ̂∗ES)S′ = (δ̂′)∗ES′ ,

the quasi-isogeny δ̃′ over S′ lifts uniquely to a quasi-isogeny δ̃ : E → δ̂∗ES over S by rigidity of quasi-

isogenies for global G-shtukas; see [ARH14, Proposition 5.9]. It satisfies L∞,Mβ−1 (δ̃) = idL∞,M
β−1

(E)

by the uniqueness of the quasi-isogeny lifting L∞,Mβ−1 (δ̃
′) = id to S. This shows that δ̃ is a quasi-

isogeny which is an isomorphism over ∞ and identifies Θ̃E(L∞,Mβ−1 (E), δ̂, γ′H) := (δ̂∗ES , V̌−1
δ ◦ γ

′H)

with (E , γH) in Sht
Z(µ,β)
G,H,∞̂×∞(S′). This finishes the proof that Θ̃E is formally étale.

Since the quotient morphism(
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H
)
→→ IE(Q)

∖(
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H
)

is étale by Proposition 3.1.11(b) and Θ̃E is formally étale, also ΘE is formally étale. And since the
morphism (3.3.6) is formally étale, also ΘE,X is formally étale.

Since M is parahoric, RZ≤µ
M,L is ind-proper over Ŏµ,β by Remark 2.9.35. Therefore, Θ̃E is ind-

proper. The morphism ΘE is ind-proper, because Θ̃E is ind-proper and(
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H
)
→→ IE(Q)

∖(
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H
)

is surjective. Finally ΘE,X is ind-proper, because the morphism (3.3.6) is ind-proper. □

Lemma 3.4.4. We use the abbreviations Y1 := RZ≤µ
M,L × Isom⊗(ω, V̌E)/H and Y2 := X≤µ

M (b) ×
Isom⊗(ω, V̌E)/H. Then for j = 1 or 2, the action of IE(Q) on Yj induces an isomorphism of stacks

(3.4.5) IE(Q)× Yj :=
∐
IE(Q)

Yj
∼−→ Yj ×

Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Ŏµ,β

Yj ,

where the map to the first copy of Yj is the identity and the map to the second copy is given by the
action of IE(Q) on Yj. In particular, ΘE is a monomorphism in the sense stated in Theorem 3.3.3.

Proof. By [Sta20, Tag 04Z7], the two definitions of a monomorphism given in Theorem 3.3.3 are

equivalent. By the IE(Q)-equivariance of Θ̃E, the morphism (3.4.5) is well defined. To describe its
inverse, consider a connected scheme S ∈ N ilpŎµ,β

and two S-valued points of Yj

y :=
(
(L, δ̂), γH

)
and y′ :=

(
(L′, δ̂′), γ′H

)
.

Under Θ̃E, they are mapped to global G-shtukas (E , V̌−1
δ γH) and (E ′, V̌−1

δ′ γ
′H) with H-level structures,

where δ : E → ES and δ′ : E ′ → ES are the canonical quasi-isogenies which are isomorphisms outside

∞ with L∞,Mβ−1 (δ) = δ̂ and L∞,Mβ−1 (δ
′) = δ̂′. Suppose that (E , V̌−1

δ γH) and (E ′, V̌−1
δ′ γ

′H) are

isomorphic in Sht
Z(µ,β)
G,H,∞̂×∞(S) via a quasi-isogeny ψ : E → E ′ which is an isomorphism above ∞ and

compatible with the H-level structures, i.e. V̌ψ ◦ V̌−1
δ γH = V̌−1

δ′ γ
′H (see Definition 2.10.13). Consider

the quasi-isogeny η := δ′ψδ−1 from ES to itself. By Proposition 3.1.2 we may view η as an element of
IE(Q).
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Consider the corresponding quasi-isogenies between the associated localM-shtukas

(3.4.6) L
L∞,M

β−1
(ψ)
//

δ̂
��

L′

δ̂′

��
LS

L∞,M
β−1

(η)
// LS

Since ψ : E → E ′ is an isomorphism above∞, the quasi-isogeny L∞,Mβ−1 (ψ) is an isomorphism. There-

fore, η·(L, δ̂) := (L, L∞,Mβ−1 (η)◦δ̂) ∼= (L′, δ̂′) inRZ≤µ
M,L(S). Moreover, η sends γH ∈ Isom⊗(ω, V̌E)/H

to V̌η ◦ γH = V̌δ′ ◦ V̌ψ ◦ V̌−1
δ ◦ γH = γ′H. This proves that η · y = y′, i.e. (η, y) maps to (y, y′) under

(3.4.5). Thus ΘE is a monomorphism. □

Next we turn to the proof of Theorem 3.3.7(a). To shorten notations, we write

R := IE(Q)
∖(
RZ≤µ

M,L × Isom⊗(ω, V̌E)/H
)

and

S := Sht
Z(µ,β)
G,H,∞̂×∞ /X

for the source and target of the morphism ΘE,X . These are locally noetherian, adic formal algebraic
Deligne-Mumford stacks. For R, this was proven in Proposition 3.1.11, and for S, this follows from
Proposition 2.10.19 and [Har05, Proposition A.14]. Thus both R and S have unique largest ideals

of definition IR ⊂ OR and IS ⊂ OS containing the maximal ideal m̆µ,β of Ŏµ,β. For positive inte-
gers m, the closed substacks Rm := V(ImR ) ⊂ R and Sm := V(ImS ) ⊂ S are algebraic by [Har05,
Proposition A.8].

Lemma 3.4.7. (a) Rm and Sm are Deligne-Mumford stacks locally of finite type over Spec Ŏµ,β/m̆m
µ,β.

We have R = lim−→
m

Rm and S = lim−→
m

Sm. Moreover, S1 = XE and R1 = IE(Q)
∖
X≤µ

M (b)× Isom⊗(ω, V̌E).

(b) The morphism ΘE,X induces a morphism Rm → Sm for every m, which is locally of finite

presentation as a morphism between Deligne-Mumford stacks locally of finite type over Spec Ŏµ,β/m̆m
µ,β.

Proof. For Rm, this follows since R is a formal algebraic Deligne-Mumford stack locally formally
of finite type over Spec Ŏµ,β. For Sm, it follows because Sm is a closed substack of the Deligne-

Mumford stack Sht
Z(µ,β)
G,H,∞̂×∞×Ŏµ,β

Spec Ŏµ,β/m̆m
µ,β which is locally of finite type over Spec Ŏµ,β/m̆m

µ,β

by Proposition 2.10.19.
By definitions of IS and IR, form = 1, the stacks S1 = Sred andR1 = Rred are reduced. Recall that

XE is reduced by Lemma 3.3.5(b), we have XE = S1. Moreover, it is clear that R1 = IE(Q)
∖
X≤µ

M (b)×
Isom⊗(ω, V̌E).

Moreover, ΘE,X induces a morphism ΘE,X : R1 → S1, because if P →→R1 is a presentation, then P
is a reduced scheme, and hence ΘE,X induces a morphism P → XE = S1 which descends to a morphism
ΘE,X : R1 → S1. In particular, Θ∗

E,X (IS) ⊂ IR. □

Lemma 3.4.8. For every m, the induced morphism ΘE,X : Rm → Sm is quasi-compact and surjective.

Proof. The assertion only depends on the underlying topological spaces |Sm| = |S1| and |Rm| = |R1|
(see [LMB00, Chapitre 5]), so we may assume that m = 1. The morphism ΘE,X : R1 → S1 is surjective
by the definition of XE as the image of Θ̃E.

We show that the morphism is quasi-compact. Let S be a quasi-compact scheme and let f : S → S1
be a morphism. We must show that S ×S1 R1 is quasi-compact. Consider the topological space |XE|
underlying XE, and the set {Tj}j∈N of representatives of IE(Q)-orbits of the irreducible components

of the scheme X≤µ
M (b)× Isom⊗(ω, V̌E)/H from Lemma 3.3.5. By Lemma 3.3.5(a), every point z ∈ |XE|
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lies only in finitely many Θ̃E(Tj). Let N(z) ⊂ N be the set of j ∈ N(z) such that z ∈ Θ̃E(Tj). The
open substack

Uz :=
⋃

j∈N(z)

Θ̃E(Tj) ∖
⋃

j /∈N(z)

Θ̃E(Tj) ⊂ XE

contains z, and hence XE is covered by the Uz for all z ∈ |XE|. Let s ∈ S be a point and set
z = f(s) ∈ |XE|. The preimage f−1(Uf(s)) of Uf(s) in S contains s. We choose an affine open

neighborhood Ss of s in S which is contained in f−1(Uf(s)). Then the Ss cover S, and since S is
quasi-compact, we have S = Ss1 ∪ . . . ∪ Ssr for finitely many points sk ∈ S, k = 1, . . . , r. Since

Θ̃E : Tj → XE is proper by Lemma 3.4.1, Ssk ×XE Tj is proper over the affine scheme Ssk . The scheme

S′ defined as the finite disjoint union

S′ :=
r∐

k=1

∐
j∈N(f(sk))

Ssk ×
f,XE,Θ̃E

Tj

is quasi-compact. Since every point s ∈ S lies in one Ssk , and then f(s) ∈ Uf(sk) ⊂
⋃
j∈N(f(sk))

Θ̃E(Tj)

has a preimage in one of the Tj , we conclude that the projection S′ → S is surjective. Therefore, the
projection S′ →

∐
k,j

Tj defines the upper horizontal morphism in the following commutative diagram

(3.4.9) S′

����

// X≤µ
M (b)× Isom⊗(ω, V̌E)/HΘ̃E

��
vv

S
f
// S1 ιX

// Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β

where ιX is as defined in Lemma 3.3.5(b), through which Θ̃E factors.
Then we can consider the surjective morphisms

(3.4.10) S′ ×
Sht

Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β

X≤µ
M (b)× Isom⊗(ω, V̌E)/H

����

IE(Q)× S′∼oo

��
S′ ×S1 R1

// // S ×S1 R1

in which the isomorphism in the upper row comes from Lemma 3.4.4. The left downward map is defined
by taking the identity on S′, multiplied by the surjective quotient map by IE(Q), and observing that
IdS′ and the quotient map form a fiber product over S1. Hence the left downward map is surjective. By

the IE(Q)-equivariance of Θ̃E, the composite surjective map IE(Q)×S′ ↠ S ×S1 R1 gives a surjective
map S′ ↠ S ×S1 R1, and hence S ×S1 R1 is quasi-compact by [Sta20, Tag 04YC]. □

Lemma 3.4.11. We have Θ∗
E,X (IS) = IR. In particular, the morphism ΘE,X : R → S of formal

algebraic stacks is adic.

Proof. Let P ′ ↠ S1 = V(IS) be an atlas. By Lemmas 3.4.1, 3.4.4 and 3.4.7, we see that ΘX ,m : Rm×S
P ′ = Rm ×Sm P ′ → P ′ is a monomorphism locally of finite presentation satisfying the valuative
criterion for properness. Since ΘX ,m is quasi-compact by Lemma 3.4.8, it is a proper monomorphism,
hence a closed immersion of schemes by [LMB00, Corollaire A.2.2]. Since ΘX ,m is surjective by
Lemma 3.4.8 and P ′ is reduced, it must be an isomorphism for all m. Therefore Rm ×S P ′ = P ′ =
R1×SP ′, and thusR×SP ′ = lim

−→
Rm×SP ′ = P ′ = R1×SP ′. This shows that V(Θ∗

E,XIS) = R×SS1 =
R1 ×S S1 ⊂ R1 = V(IR) as closed substacks of R. Therefore IR ⊂ Θ∗

E,X (IS) as the corresponding
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ideals. With the opposite inclusion established in Lemma 3.4.7, we have IR = Θ∗
E,X (IS), and hence

ΘE,X is adic. □

Proof of Theorem 3.3.7(a). By Lemma 3.4.11, we have Θ∗
E,X (IS) = IR. Then Rm → Sm is obtained

from R → S by base change via Sm → S, and hence is a formally étale morphism locally of finite
presentation of algebraic stacks by Lemma 3.4.1. Since ΘE is a monomorphism by Lemma 3.4.4
and (3.3.6) is a monomorphism, thus Rm → Sm is a monomorphism. In particular, Rm → Sm
is relatively representable by an étale monomorphism of schemes; see [LMB00, Corollaire 8.1.3 and
Théorème A.2]. In addition, Rm → Sm is surjective by Lemma 3.4.8, hence an isomorphism by [EGA
IV4, Théorème 17.9.1] . As this holds for all m, we conclude that ΘE,X : R → S is an isomorphism of
stacks. □

Proof of Theorem 3.3.7(b). Recall from earlier that Θ̃E is equivariant for the action of the center
Z(Q∞) given in (3.2.8) and (3.2.10), and the action of G(A∞) through Hecke correspondences given

in (3.2.2) and (3.2.3). Thus it suffices to check that Θ̃E is compatible with Weil descent data and
Frobenius endomorphism structure.

First we show that the morphism Θ̃E is compatible with the Weil descent data (3.2.14) and (3.2.15).
Let (S, θ) ∈ N ilpŎµ,β

and S[λ] = (S, λ◦θ) ∈ N ilpŎµ,β
where λ is defined in (3.2.12). The S-valued point

(L, δ̂, γH), respectively the S[λ]-valued point (L, θ∗(φ̂[κµ,β : Fq ]
L ) ◦ δ̂, γH), of the source of Θ̃E are sent

to (E , V̌−1
δ θ∗(γ)H) and (E ′, V̌−1

δ′ (λ ◦ θ)∗(γ)H), respectively, where E := δ̂∗ES and E ′ := (θ∗φ̂
[κµ,β : Fq ]
L ◦

δ̂)∗ES[λ]
, and δ : E → ES := θ∗E and δ′ : E ′ → ES[λ]

:= (λ ◦ θ)∗E = θ∗λ∗E = θ∗(τ
[κµ,β : Fq ]E) are the

quasi-isogenies with L∞,Mβ−1 (δ) = δ̂ and L∞,Mβ−1 (δ
′) = θ∗(φ̂

[κµ,β : Fq ]
L ) ◦ δ̂, which are isomorphisms

outside∞. Then ψ := δ−1 ◦θ∗(Φ−[κµ,β : Fq ]
E )◦ δ′ : E ′ → E is a quasi-isogeny by Definition 2.10.10, which

by Corollary 2.10.11 satisfies L∞,Mβ−1 (ψ) = idL and V̌ψ ◦ V̌−1
δ′ ◦ θ

∗λ∗(γ)H = V̌−1
δ θ∗(γ)H, because

λ∗(γ) = τ
[κµ,β : Fq ]

γ = V̌
Φ

[κµ,β : Fq ]
E

◦γ. Therefore, ψ identifies (E ′, V̌−1
δ′ (λ◦ θ)∗(γ)H) with (E , V̌−1

δ θ∗(γ)H),

and this establishes the compatibility of Θ̃E with the Weil descent data (3.2.14) and (3.2.15).

Since the Weil descent datum on the source of Θ̃E commutes with the action of IE(Q), this also
proves the compatibility of ΘE with the Weil descent data (3.2.14) and (3.2.18).

Finally, the target Sht
Z(µ,β)
G,H,∞̂×∞ /X carries theWeil descent datum (3.2.14) induced from Sht

Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β.
To see this: if a morphism Sred → Sht

Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β given by (E , γH) factors through

XE = im(Θ̃E), then the morphism (S[λ])red → Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β given by (E , γH) also factors

through XE = im(Θ̃E), because Θ̃E commutes with the Weil descent data. This shows that ΘE,X is
also compatible with the Weil descent data (3.2.14) and (3.2.18).

We also prove that Θ̃E commutes with the qm-Frobenius endomorphisms Φm from (3.2.22) and

(3.2.23). Let y := (L, δ̂, γH) be an S-valued point of(
RZ≤µ

M,L ×̂Ŏµ,β
SpecF∞

)
× Isom⊗(ω, V̌E)/H.

The images of this point and of Φm(y) = (τ
mL, φ̂ −m

L ◦ τmδ̂, γH) in Sht
Z(µ,β)
G,H,∞̂×∞ are given by Θ̃E(y) =

(E , V̌−1
δ γH) and Θ̃E ◦Φm(y) = (E ′, V̌−1

δ′ γH), respectively, where E := δ̂∗ES and E ′ := (φ̂ −m
L ◦ τmδ̂)∗ES ,

and δ : E → ES and δ′ : E ′ → ES are the quasi-isogenies with L∞,Mβ−1 (δ) = δ̂ and L∞,Mβ−1 (δ
′) =

φ̂ −m
L ◦ τmδ̂, which are isomorphisms outside∞. We obtain the image Φm ◦ Θ̃E(y) = (τ

mE , τm(V̌−1
δ γ)H),

which comes with the quasi-isogeny τmδ : τ
mE → τmES . Then ψ := τmδ−1 ◦ ΦmE ◦ δ′ : E

′ → τmE is

a quasi-isogeny by Definition 2.10.10 which by Corollary 2.10.11 satisfies L∞,Mβ−1 (ψ) = idτmL and
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V̌ψ ◦ V̌−1
δ′ γH = V̌−1

τmδ
◦ V̌Φm

E
◦ γH = τm(V̌−1

δ γ)H, because V̌Φm
E
◦ γ = τm(γ). Therefore, ψ identifies

(E ′, V̌−1
δ′ γH) with (τ

mE , τm(V̌−1
δ γ)H), and this proves Θ̃E ◦ Φm = Φm ◦ Θ̃E.

Since Φm commutes with the action of IE(Q), this also proves that ΘE commutes with the qm-

Frobenius endomorphisms Φm. Finally, the target Sht
Z(µ,β)
G,H,∞̂×∞ /X carries the qm-Frobenius endomor-

phism ΦmE induced from (3.2.23) on Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β. The reason is that if a morphism

Sred → Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β given by (E , γH) factors through XE = im(Θ̃E), then the mor-

phism Sred → Sht
Z(µ,β)
G,H,∞̂×∞ ×̂Oµ,β

Spf Ŏµ,β given by (τ
mE , τm(λ)H) also factors through XE = im(Θ̃E),

because Θ̃E commutes with the Φm. This shows that also ΘE,X is compatible with the qm-Frobenius
endomorphisms Φm from (3.2.23) and (3.2.22). This completes the proof of Theorem 3.3.7(b). □

3.5. Application to the Langlands-Rapoport Conjecture. We finish this section with an ap-
plication of our main theorem 3.3.7 to the Langlands-Rapoport Conjecture over function fields.
Consider the following category Mot∞X (Fq), which generalizes Anderson’s t-motives [And86]. Write

Q̆ := Q⊗Fq Fq.

Definition 3.5.1. The category of X-motivesMot∞X is defined as

Mot∞X (Fq) := { (F , φ) : F is a vector bundle on XFq
, and

φ : F|(X∖{∞})Fq
∼−→ τF|(X∖{∞})Fq

is an isomorphism of vector bundles},
(3.5.2)

with morphisms in this category given by

(3.5.3) HomMot∞X (Fq)
((F , φ), (F̃ , φ̃)) := {f ∈ HomQ̆(F ⊗OX

Q, F̃ ⊗OX
Q) : φ̃ ◦ f = τf ◦ φ}.

The motivic Galois gerbe is the Tannakian fundamental group

(3.5.4) P := Aut⊗(ω|Mot∞X (Fq))
corresponding to the fiber functor ω.

Remark 3.5.5. A X-motive F = (F , φ) of rank r is just the same as a global GLr-shtuka in
ShtGLr,∅,∞×∞(F∞) over F∞. But note that the category ShtGLr,∅,∞×∞(F∞) is a groupoid with all its

morphisms being isomorphisms, while Mot∞X (Fq) is abelian and contains morphisms which may fail
to be isomorphisms, and even morphisms between X-motives of different rank are allowed.

In [ARH22, Theorem 1.5], Arasteh Rad and the first author proved the following result.

Lemma 3.5.6. Mot∞X (Fq) is a semi-simple Q-linear Tannakian category, with a canonical fiber func-

tor ω over Q̆ given by ω : (F , φ) 7→ F ⊗OX
Q = F ⊗OXFq

Q̆. The motivic Galois gerbe is an extension

1→ P∆ → P→ Gal(Q̆/Q)→ 1,

where the kernel group P∆ is a pro-reductive group over Q̆.

Note that ω is not the only fiber functor forMot∞X (Fq).

Definition 3.5.7. For any closed point v ∈ X∖{∞}, there is a fiber functor given by the v-adic dual
Tate module (also called v-adic étale cohomology) of F
H1
v,ét :Mot∞X (Fq) −→ Qv-Vect, F 7→ H1

v,ét(F ,Ov) := {m ∈ F ⊗OXFq
Ŏv : φ(m) = τm} ⊗Ov Qv.

The fiber functor H1
v,ét corresponds to a homomorphism of Galois gerbs ξv : Hv → P, where Hv =

Gal(Q̆/Q) is the trivial Galois gerbe, i.e. the Tannakian fundamental group of the category of Qv-
vector spaces. At ∞ there is a fiber functor given by the “crystalline cohomology” of F

H1
∞,crys :Mot∞X (Fq) −→ Q̆∞-Vect, F 7→ F ⊗OXFq

Q̆∞ .
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The fiber functor H1
∞,crys corresponds to a homomorphism of Galois gerbs ξ∞ : H∞ → P, where H∞ is

the “Dieudonne gerbe”, which is the Tannakian fundamental group of the category of F -crystals for
Q∞.

Definition 3.5.8. For a smooth affine group scheme G with connected fibers over X and reductive
generic fiber G, a G-motive is a tensor functorMG : RepQ(G)→Mot∞X (Fq). Equivalently, a G-motive

is a homomorphism of Galois gerbes h : P→ GG, where GG := G(Q̆)⋊Gal(Q̆/Q) is the neutral Galois
gerbe of G. We denote by GMot∞X (Fq) the category of G-motives.

For any morphism h : P→ GG of Galois gerbes, we let hv := h ◦ ξv : Hv → GG and h∞ := h ◦ ξ∞ :
H∞ → GG be the compositum. The morphism h∞ defines a “local G-isoshtuka”

(
(L∞M)Fq

, b)
)
over

Fq; see [ARH16]. We define

X∞(h) := {(gv)v ̸=∞ ∈ G(A∞) : int(gv) ◦ ξv = ξv}.

X∞(h) := {g ∈ (L∞M/L+
∞M)(F∞) : τM (g)−1bg is bounded by µ}.

There is a functor ShtG,∞×∞(Fq)→ GMot∞X (Fq) given by sending a global G-shtuka E = (E , E ′, φ, φ′)
to the tensor functor

(3.5.9) ME
G : (V, ρ) 7→

(
E
G
× V, (φ′ ◦ φ)× 1

)
,

where ρ : G→ GL(V ). We denote its associated homomorphism from Definition 3.5.8 of Galois gerbes
P→ GG by hE .

Lemma 3.5.10. We have an equality of the isogeny groups IE = IhE . We have X∞(hE) = X≤µ
G (b)

and X∞(hE) = Isom⊗(ω, V̆E).

Proof. This follows directly from the definitions. □

Corollary 3.5.11. The F∞-points of the Shtuka space Sht
Z(µ,β)
G,H,∞̂×∞ has the form predicted by the

Langlands-Rapoport conjecture, i.e. Sht
Z(µ,β)
G,H,∞̂×∞(F∞) =

∐
h

Ih(Q)\X∞(h)×X∞(h)/H compatible with

Hecke correspondences, Frobenius, action of the center.

Proof. This follows by combing Lemma 3.5.10 and Theorem 3.3.7. □
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