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Abstract. This paper provides a construction of a quantum statistical mechanical sys-
tem associated to knots in the 3-sphere and cyclic branched coverings of the 3-sphere,
which is an analog, in the sense of arithmetic topology, of the Bost–Connes system, with
knots replacing primes, and cyclic branched coverings of the 3-sphere replacing abelian ex-
tensions of the field of rational numbers. The operator algebraic properties of this system
differ significantly from the Bost–Connes case, due to the properties of the action of the
semigroup of knots on a direct limit of knot groups. The resulting algebra of observables
is a noncommutative Bernoulli product. We describe the main properties of the associated
quantum statistical mechanical system and of the relevant partition functions, which are
obtained from simple knot invariants like genus and crossing number.

1. Introduction

This paper addresses a question asked to the first author by Masanori Morishita, on the
possibility of adapting to 3-manifolds the Bost–Connes construction [5] of a quantum sta-
tistical mechanical system associated to the abelian extensions of Q, and its generalizations
to number fields [13], [14], [24], [33], along the lines of the general “arithmetic topology”
program. The latter can be seen as a broad dictionary of analogies between the geometry of
knots and 3-manifolds and the arithmetic of number fields, with knots as analogs of primes
and 3-manifolds, seen as branched coverings of the 3-sphere, viewed as analogs of number
fields. In this paper we answer Morishita’s question by providing explicit constructions of
quantum statistical mechanical systems associated to (alternating) knots, to knot groups,
and to cyclic branched covers of the 3-sphere, with the latter providing our analog of the
abelian extensions of Q in the Bost–Connes construction. The structure of the resulting
quantum statistical mechanical systems is different from the Bost–Connes case and it leads
to an algebra of observables that can be expressed in the form of a Bernoulli crossed product,
of the type studied in noncommutative Bernoulli actions in the theory of factors. We relate
the geometry and dynamics of our system to known invariants of knots and 3-manifolds.

1.1. The principle of Arithmetic Topology. Arithmetic topology originates from in-
sights by John Tate and Michael Artin on topological interpretations of class field theory.
The analogy between primes and knots, which is the founding principle of Arithmetic Topol-
ogy, was first observed by Barry Mazur, David Mumford, and Yuri Manin. The subject
developed over the years, with various contributions, such as [19], [30], [32], [42], [43], [49],
[51], [54], as a powerful guiding principle outlining parallel results and analogies between
the arithmetic of number fields and the topology of 3-manifolds. The basic analogy sees
number fields as analogs of compact oriented 3-manifolds, with Q playing the role of the
3-sphere S3. Here the main idea is that, while number fields are finite extensions of Q, ram-
ified at a finite set of primes, all compact oriented 3-manifolds can be described as branched
coverings of the 3-sphere, branched along a link. A major point where this analogy does not
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carry over is the fact that, while the description of a number field as ramified covering of Q
is unique, there are many inequivalent ways of describing 3-manifolds as branched covers of
the 3-sphere, branched along knots or links (or more generally embedded graph). While this
lack of uniqueness for 3-manifolds can be used to make the construction dynamical, see [40],
the same dynamics does not apply to number fields. However, the corresponding analogy
between knots and primes, that results from this first analogy between number fields and
3-manifolds, has been very fruitful, leading to many new results, ranging from arithmetic
analogs for higher linking numbers [42], [43], to arithmetic Chern–Simons theory, [32].

Over the past two decades, the connection between number theory and quantum sta-
tistical mechanics was also widely explored, starting with early constructions of statistical
systems associated to the primes, [29], [57], the more refined Bost–Connes system [5] which
also involves the Galois theory of abelian extensions of Q, and subsequent generalizations
of this construction to arbutrary number fields, obtained in [24] and further studied in [14],
[15], [33], [45]. The purpose of the present paper is to recast the Bost–Connes construc-
tion in the setting of arithmetic topology, with the semigroup of knots with the connecting
sum operation replacing the multiplicative semigroup of positive integers, and the cyclic
branched coverings of the 3-spheres replacing the abelian coverings of Q.

1.2. Bost–Connes system. We recall briefly the construction of the Bost–Connes algebra
and quantum statistical mechanical system from [5] (see also [11] and §3 of [12]). Consider
the group ring Q[Q/Z] with generators e(r) with r ∈ Q/Z. The maps {σn}n∈Nρ given by

(1.1) σn(e(r)) := e(nr)

determine an action of the semigroup N by endomorphisms of the group ring Q[Q/Z]. These
endomorphisms have partial inverses αn : Q[Q/Z]→ Q[Q/Z],

(1.2) αn(e(r)) =
1

n

∑
s:ns=r

e(s)

with σn ◦ αn(e(r)) = e(r) and αn ◦ σn(e(r)) = en · e(r), with en = n−1
∑

s:ns=0 e(s) an
idempotent in Q[Q/Z]. Thus, one can define the semigroup crossed product. This is the
(rational) Bost–Connes algebra ABC,Q = Q[Q/Z] ⋊ N with generators µn and e(r) and
relations

(1.3) µ∗nµn = 1, µnµ
∗
n = en, µnµm = µnm, µnµ

∗
m = µ∗mµn for (n,m) = 1,

(1.4) µne(r)µ
∗
n = αn(e(r)), µ∗ne(r)µn = σn(e(r)).

The complexification ABC,C = ABC,Q ⊗Q C has a C∗-algebra completion given by the
semigroup crossed product ABC = C∗(Q/Z) × N, with the same generators and relations.
The time evolution of the Bost–Connes system is defined by σt(µn) = nitµn and σt(e(r)) =
e(r). The algebra ABC has representations on the Hilbert space ℓ2(N), parameterized by

the choice of an element u ∈ Ẑ∗, of the form

(1.5) πu(e(r))ϵm = u(r)m ϵm, πu(µn)ϵm = ϵnm,

where u(r) is a root of unity in C determined by the embedding of Q/Z ↪→ C specified by

the choice of u ∈ Ẑ∗, where we identify Ẑ = Hom(Q/Z,Q/Z).
Given a pair (A, σ) of a C∗-algebra and a time evolution σ : R→ Aut(A), a KMSβ state

for (A, σ) is a continuous linear functional φβ : A → C satisfying normalization φβ(1) = 1
and positivity φβ(a

∗a) ≥ 0 (that is, a state on A) such that, for all a, b ∈ A there is a
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function Fa,b(z) that is holomorphic on the strip Iβ = {z ∈ C : 0 < ℑ(z) < β} and
continuous on the boundary ∂Iβ of the strip, such that

(1.6) Fa,b(t) = φβ(aσt(b)), Fa,b(t+ iβ) = φ(σt(b)a).

In other words, the failure of a KMSβ to be a trace is measured by interpolation by a
holomorphic function.

The KMS states of the Bost–Connes system (ABC , σ) are completely classified and given
by the following list of cases (see [5]):

• for every 0 < β ≤ 1 there is a unique KMSβ state φβ determined by

φβ(e(
a

b
)) =

f−β+1(b)

f1(b)

where fk(b) =
∑

d|b µ(d)(b/d)
k, with µ the Möbius function;

• for every β > 1, the extremal KMSβ states are given by Gibbs states determined
by

(1.7) φβ,u(e(r)) =
Liβ(u(r))

ζ(β)
,

where Liβ is the polylogarithm function, u(r) is a root of unity, for a given u ∈ Ẑ∗,
and ζ(β) is the Riemann zeta function;
• for β =∞ the extremal KMSβ states are determined by φ∞,u(e(r)) = u(r).

The Bost–Connes system is related to the arithmetic of Q and the Galois theory of its
abelian extensions. Generalizations of this quantum statistical mechanical system were
constructed for arbitrary number fields in [24], [33], [45], and further studied in [14], [15].

1.3. Structure of the paper. In §2 we develop a quantum statistical mechanics of knots.
There is a natural semigroup structure on knots. It is given by the operation of connected
sum defined on equivalence classes of oriented knots. This operation gives rise to an abelian
semigroup (K,#), which is infinitely generated, with generators the prime knots. Each
knot has a unique prime decomposition K = K1# · · ·#Km for some m, with Kj prime
knots. We focus on knot invariants that behave well with respect to the connected sum
operation. In particular, we focus on simple invariants such as the genus and the crossing
number. In the latter case, it is at present an open conjecture whether the invariant is
additive over connected sums for all knots, but the result is known to hold for alternating
knots. Therefore, in the paper we often restrict our attention to alternating knots, purely
for the purposes of using these results about the crossing number. Conditionally to the
above mentioned conjecture, one can reformulate them in terms of the larger semigroup of
knots. We construct a Hamiltonian based on genus and crossing number and we estimate
in Theorem 2.3 the range of convergence of the partition function using results of [61], [62]
on the rate of growth of multiplicities. We show the uniqueness of KMS states for this
system of knots without interaction in Proposition 2.6 and we discuss the type III nature
of the high temperature state in Proposition 2.6 and Theorem 2.9.

In §2.3 we return to the original system without interaction of [29] and [5], with prime
numbers contributing independent oscillators (in the form of Toeplitz operators) and we
discuss how one can try to extend it from the multiplicative semigroup N of positive integer
to the group Q∗

+ of positive rational numbers. We show that the Hamiltonian can be
extended so that the corresponding partition function is again expressible in terms of the
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Riemann zeta function. We show in §2.4 that the same construction extends to the case of
the Grothendieck group of the semigroup of (alternating) knots with the connected sum.
Again, this result relies on estimates of [61], [62] on the number of alternating knots with
fixed genus and crossing number. However, at the level of the algebra of observables of
the system, this generalization of the Hamiltonian requires an extension of the algebra by
the spectral projections of the Hamiltonian, in order to remain invariant under the time
evolution. This extension has the effect of making the time evolution inner, which is not
desirable from the operator algebra perspective. We bypass this problem by considering
more general systems with interaction involving both knots and 3-manifolds.

In §3, we introduce cyclic branched coverings of S3, branched along a knot. We discuss
the behavior of knot groups under connected sums of knots, and we construct a directed
system of knot groups over the semigroup of knots ordered by “divisibility” with respect to
the connected sum operation. We interpret the resulting direct limit as the knot group of
a wild knot. We also consider a projective limit, related to changing the order of the cyclic
branched cover.

In §4 we construct a more refined system, which is more similar in nature to the Bost–
Connes system and which involves not only knots but also the cyclic branched covers of
S3. We begin by investigating the action of the semigroup of knots with connected sum
on the group algebra of the direct limit of the system of knot groups considered in the
previous section. We show that, unlike the Bost–Connes case, the endomorphisms σK are
injective and not surjective. The resulting crossed product system is then more similar to
the generalization of the Bost–Connes considered in [38], in relation to the Habiro ring. In
particular, we show that the resulting crossed product algebra is in fact a noncommutative
Bernoulli shift ⊗

g∈GK

C∗
r (π) ⋊ GK,

where GK is the Grothendieck group of the semigroup of knots (K,#) and π = lim−→K
πK

is the direct limit of the system of knot groups. The action of GK is the Bernoulli action
that permutes the terms in the crossed product ⊗gC∗

r (π). We then include the datum of
the branched covers, in the form of a group homomorphism ρ : π → Q/Z. We construct
a projective limit of groups π̂K,n and π̂n, which correspond to adding n-th roots of the
generators of the knot group. This construction is modelled on the construction of roots
of Tate motives in [36]. This construction allows us to replace the algebra C∗

r (π), which
encodes the information about the knot groups, but not about the coverings, with the more
refined C∗

r (π̂ρ) ⋊α Nρ, where π̂ρ is the projective limit of the system of the πn and Nρ is
a subsemigroup of N, given by those integers that are relatively prime to nρ, which is the
order of the root of unity that is the image under the morphism ρ of the generators of the
group π. The semigroup action of Nρ on C∗

r (π̂ρ) is modeled on the Bost–Connes action, by
viewing π̂ρ as a fibered product inside π ×Q/Z.

We then construct time evolutions, first on the algebra C∗
r (π̂ρ) ⋊α Nρ, induced by the

Bost–Connes time evolution on C∗(Q/Z)⋊N, and then on the tensor product ⊗gBg, with
g ∈ GK and Bg = C∗

r (π̂ρ)⋊αNρ. In this tensor product case, we take on each factor a version
σt,g of the Bost–Connes time evolution, with the Hamiltonian HBC scaled by a factor f(g),
for a function f : GK → N. In Proposition 4.26, we identify a summability condition on the
function f(g) that guarantees that the Hamiltonian has a well defined partition function,
which is convergent for β > 1. Here the trace of the operator e−βH in the partition function
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is a combination of the operator trace on ℓ2(Nρ) and the von Neumann trace on the group
algebra of π̂ρ. We also show how the KMS states of the Bost–Connes determine KMS
states for the system (⊗gBg,⊗gσt,g). In particular the low temperature states give rise
to KMS states Ψβ,f for this system that are Gibbs states with respect to the partition
function and the trace described in Proposition 4.26. We then consider the crossed product
(⊗gBg) ⋊ GK and we show that the KMS states Ψβ,f transform, under the action αh of
h ∈ GK as Ψβ,f ◦ αh = Ψβ,αh−1 (f).

Restricting to the subsemigroup Ka of alternating knots, we show that the same estimates
of [61], [62] on the number of alternating knots with fixed genus and crossing number that
we used in §2.4, and the result of Theorem 2.3, imply that a function satisfying the desired
convergence properties can be constructed using the crossing number and the genus of
knots.

2. Quantum statistical mechanics of knots

Consider the semigroup (K,#) or ambient isotopy classes of oriented knots with the
connected sum operation. The primary decomposition of knots states that every K ∈ K
can be decomposed into a direct sum of prime knots. There are infinitely many prime
knots, hence the semigroup K is a countably generated free abelian semigroup. A choice
of an enumeration of the prime knots gives a (non-canonical) semigroup isomorphism of
(K,#) with (N, ·) by mapping prime knots to the prime numbers. The identification is
non-canonical as prime knots, unlike prime numbers, have no natural ordering. However,
this identification suggests that the quantum statistical mechanics of creation-annihilation
operators constructed out of the primary decomposition in N (see [29], [57], and §2 of [5])
can be directly adapted to the semigroup of knots.

Let PK denote the set of prime knots. As in the case of the semigroup N, we can
identify ℓ2(K) with the bosonic Fock space ℓ2(K) = ⊕∞

n=1S
nℓ2(PK), where SnH is the n-th

symmetric power of a Hilbert space H, see §2 of [5]. The C∗-algebra C∗(K) is generated
by isometries µK , for K ∈ PK, with µ∗KµK = 1, and such that, for K = K1# · · ·#Kn,
µK = µK1 · · ·µKn . The C

∗-algebra C∗(K) is an infinite tensor product of Toeplitz algebras
C∗(K) = ⊗K∈PτK .

Let λ : K → N be a knot invariant that behaves multiplicatively under connected sums,
λ(K1#K2) = λ(K1)λ(K2). Any such invariant determines a semigroup homomorphism
λ : (K,#)→ (N, ·).

Example 2.1. The Alexander polynomial ∆K(t) ∈ Z[t, t−1] of a knot K is multiplica-
tive under connected sums. Thus, for instance, setting λ(K) to be the absolute value of
the coefficient of the top degree term of ∆K(t) provides an example of such a semigroup
homomorphism λ : K → N.

Simpler examples can be obtained by considering additive invariants. Let κ : K → Z+

be a non-negative integer invariant of knots satisfying κ(K1#K2) = κ(K1) + κ(K2). For a

choice of a positive integer q ∈ N (for example, q = 2), the invariant λ(K) = qκ(K) satisfies
the multiplicative property as above.

Example 2.2. There are several examples of knot invariants with values in non-negative
integers that behave additively under connected sums: for example, the knot genus g(K)
satisfy additivity g(K1#K2) = g(K1) + g(K2).
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2.1. Alternating knots, crossing number, and genus. A more interesting example is
the crossing number Cr(K), the minimum number of crossings over all planar diagrams
D(K). While it is clear that Cr(K1#K2) ≤ Cr(K1) + Cr(K2), it is an open conjecture
that the crossing number is in fact additive, Cr(K1#K2) = Cr(K1)+Cr(K2). It is known
that additivity is satisfied for alternating knots [52], and for certain classes of knots, like
connected sums of torus knots. A larger class of knots on which additivity is satisfied is
identified in [20]. Thus, we can either use Cr(K) on the entire semigroup K, conditionally,
or restrict to a subsemigroup Ka of alternating knots, or Kt generated by those prime knots
that are torus knots, or one corresponding to the subclass of [20].

Theorem 2.3. Let PK,a ⊂ PK be the set of prime knots that are alternating, and consider
the bosonic Fock space ℓ2(Ka) = ⊕nSnℓ2(PK,a). The C∗-algebra C∗(Ka) = ⊗K∈PK,a

τK acts

by bounded operators on the Hilbert space ℓ2(Ka), with µKϵK′ = ϵK#K′. For a fixed q ∈ N,
with q ≥ 2, and for all t ∈ R, setting σt(µK) = qit(Cr(K)+g(K))µK defines a time evolution
σ : R → Aut(C∗(Ka)), with Hamiltonian HϵK = (Cr(K) + g(K)) log(q) ϵK . The partition
function is given by the series

(2.1) Za(β) = Tr(e−βH) =
∑
K∈Ka

q−β(Cr(K)+g(K))

converges in the range β ≥ β+ = log 220

36
−6 log log 2 and diverges for β < β−, where β = β−

is the unique solution of

β − 6 log

(
q−β

1− q−β

)
= 2 log(20)− 6 log log 2,

with β− = β−(q) ≤ 1.9391 · · · for all q ∈ N with q ≥ 2.

Proof. The adjoint µ∗K acts as µ∗KϵK′ = 0 of K does not divide K ′ in the semigroup (Ka,#)
and µ∗KϵK′ = ϵK′′ if K ′ = K#K ′′ in Ka. These satisfy the relation µ∗KµK = 1, while µKµ

∗
K

is the orthogonal projection on the subspace of ℓ2(Ka) generated by all K ′ that are divisible
by K in (Ka,#). Thus, setting µKϵK′ = ϵK#K′ determines a representation of C∗(Ka) on
ℓ2(Ka). For K = K1#K2, we have µK = µK1µK2 C

∗(Ka) and the time evolution satisfies

σt(µK) = qit(Cr(K)+g(K))µK = qit(Cr(K1)+g(K1))qit(Cr(K2)+g(K2))µK1µK2 = σt(µK1)σt(µK2),
since both Cr and the genus are additive on connected sums of alternating knots. It also
clearly satisfies σt+s(X) = σt(σs(X)) for X ∈ C∗(Ka) and for all t, s ∈ R. Thus, the
time evolution is indeed a 1-parameter family of automorphisms of the algebra, that is,
a group homomorphism σ : R → Aut(C∗(Ka)). The Hamiltonian H is determined (up
to an arbitrary additive constant) by the covariance relation R(σt(X)) = eitHR(X)e−itH ,
for all X ∈ C∗(Ka) and all t ∈ R, where R : C∗(Ka) → B(ℓ2(Ka)) is the representation
described above. The densely defined self-adjoint unbounded operator defined by HϵK =
(Cr(K) + g(K)) log(q) ϵK satisfies

eitHR(µK)e−itHϵK′ = q−it(Cr(K
′)+g(K′))eitHϵK#K′

= q−it(Cr(K
′)+g(K′))q−it(Cr(K#K′)+g(K#K′))ϵK#K′

= qit(Cr(K)+g(K))R(µK)ϵK′

= R(σt(µK))ϵK′ .
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We have

Tr(e−βH) =
∑
K∈Ka

⟨ϵK , e−βHϵK⟩ =
∑
K∈Ka

q−β(Cr(K)+g(K))

=

∞∑
n=0

∞∑
g=0

Nn,g q
−β(n+g),

where Nn,g is the number of alternating knots K with Cr(K) = n and g(K) = g. It was
shown in Corollary 3.1 of [60] that

Nn,g = O(npg), for n→∞,
for some pg ∈ N. A more precise estimate is given in Theorem 1.2 of [61] and in Theorem
1.1 of [62], which show that

Nn,g ∼ Cg n6g−4 for n→∞,
where the an ∼ bn means that an/bn → 1 for n→∞. The behavior of Cg when g →∞ can

be estimated from below and above by expressions of the form Cg

(6g)! , for constants C > 0,

see Theorem 1.1 of [62] for a more precise statement. We first consider the summation in
the crossing number Cr(K) = n, for a fixed genus g(K) = g, that is, the series

1 +
∞∑
n=1

Nn,g q
−βn.

Using the estimate above, the behavior of this series is controlled by that of the polyloga-
rithm series

Li4−6g(q
−β) =

∞∑
n=1

n6g−4q−βn,

which converges for all β > 0. We then consider the summation in the genus g(K) = g.
The polylogarithm function satisfies

Li−m(z) = (z
∂

∂z
)m

z

1− z
=

m∑
k=0

k!S(m+ 1, k + 1) (
z

1− z
)k+1

=
1

(1− z)m+1

m−1∑
k=0

⟨ m
k
⟩zm−k,

where S(a, b) are the Stirling numbers of the second kind

S(a, b) =
1

b!

b∑
j=0

(−1)b−j
(
b

j

)
ja,

while

⟨ m
k
⟩ =

k+1∑
j=0

(−1)j
(
m+ 1

j

)
(k − j + 1)m

are the Eulerian numbers. The Stirling numbers of the second kind have upper and lower
bounds of the form [50]

1

2
(b2 + b+ 2)ba−b−1 − 1 ≤ S(a, b) ≤ 1

2

(
a

b

)
ba−b,
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and, for fixed b, the asymptotic behavior of S(a, b) for a→∞ is of the form S(a, b) ∼ ba/b!.
Moreover, the ordered Bell numbers ba =

∑a
b=0 b!S(a, b) behave for a→∞ like [58]

ba ∼
a!

2(log(2))a+1
.

When q−β ≤ 1/2, that is, when β > log 2
log q , we have q−β ≤ (1− q−β), hence(

q−β

1− q−β

)6g−3

≤
(

q−β

1− q−β

)k+1

≤ q−β

1− q−β
,

for all k = 0, . . . , 6g − 4. Thus, the result of the first summation in n = Cr(K) can be
approximated, for large g = g(K), by upper and lower bounds of the form

Li4−6g(q
−β) ≤ b6g−4

q−β

1− q−β
∼ (6g − 4)!

2(log 2)6g−4

q−β

1− q−β

(6g − 4)!

2(log 2)6g−4

(
q−β

1− q−β

)6g−3

∼ b6g−4

(
q−β

1− q−β

)6g−3

≤ Li4−6g(q
−β).

Then, in this range of values of β, the series defining the partition function Z(β) =∑
K e

−βHK , with HK = ⟨ϵK , HϵK⟩, is controlled from above by the behavior of

∞∑
g=1

Cg
(6g − 4)!

2(log 2)6g−4
q−βg.

Using Cg ∼ Cg

(6g)! we obtain

(2.2) Cg
(6g − 4)!

2(log 2)6g−4
q−βg ∼ (log 2)4

2

eg(logC−β−6 log log 2)

(6g − 3)(6g − 2)(6g − 1)6g
.

When β ≥ logC − 6 log log 2 the above series converges, with convergence in the case
β = logC − 6 log log 2 ensured by the polynomial in the denominator. Thus, in the range
β ≥ log 2

log q , the partition function Z(β) = Tr(e−βH) converges for all

β ≥ max{ log 2
log q

, logC − 6 log log 2}.

On the other hand, in this same range, the series defining the partition function is controlled
from below by a series of the form

∞∑
g=1

Cg
(6g − 4)!

2(log 2)6g−4
λ6g−3
β q−βg,

where λβ = q−β/(1− q−β). In this case we have

(2.3) Cg
(6g − 4)!

2(log 2)6g−4
λ6g−3
β q−βg ∼ (log 2)4

2λ3β

eg(logC−β−6 log log 2+6 log λβ)

(6g − 3)(6g − 2)(6g − 1)6g
.

The corresponding series converges for β−6 log λβ ≥ logC−6 log log 2 and diverges for β−
6 log λβ < logC−6 log log 2. Notice that, since in this range we have λβ ≤ 1, the convergence
condition β ≥ logC − 6 log log 2 for the upper bound also implies this convergence, as it
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should, while the divergence condition β − 6 log λβ < logC − 6 log log 2 gives a range of
divergence for the series defining the partition function Z(β): we have divergence for

log 2

log q
≤ β < 6 log λβ + logC − 6 log log 2.

Consider then the case where β < log 2
log q . In this case we have q−β > (1 − q−β), that is,

λβ > 1, and, for all k = 0, . . . , 6g − 4,

q−β

1− q−β
≤
(

q−β

1− q−β

)k+1

≤
(

q−β

1− q−β

)6g−3

.

In this case, the result of the first summation can be approximated from above, for large
g = g(K), with

Li4−6g(q
−β) ≤ b6g−4 λ

6g−3
β ∼ (6g − 4)!

2(log 2)6g−4
λ6g−3
β ,

and from below with

(6g − 4)!

2(log 2)6g−4
λβ ∼ b6g−4 λβ ≤ Li4−6g(q

−β).

Thus, in this case, the series that determines the partition function is controlled from above
by the behavior of the series

∞∑
g=1

Cg
(6g − 4)!

2(log 2)6g−4
λ6g−3
β .

As above, we can estimate this with (2.3). Again, the resulting series converges for β −
6 log λβ ≥ logC − 6 log log 2. Here λβ > 1, so this inequality also implies the inequality
β ≥ logC − 6 log log 2, which in this case gives the convergence of the lower bound, here
of the form (2.2). The divergence of the lower bound happens for β < logC − 6 log log 2.

Thus, in the range β < log 2
log q we have convergence when

6 log λβ + logC − 6 log log 2 ≤ β < log 2

log q
,

and divergence for

β < min{ log 2
log q

, logC − 6 log log 2}.

As in Theorem 1.1 of [62], we can take the constant C to be C = 400 for the lower bound
on Cg and C = 220/36 ∼ 1438.38 for the upper bound on Cg. Using these values we can

estimate that the series Z(β) =
∑

K⟨ϵK , e−βHϵK⟩ defining the partition function converges
for

β ≥ max{ log 2
log q

, log
220

36
− 6 log log 2}

and for

β − 6 log λβ ≥ log
220

36
− 6 log log 2 and β <

log 2

log q

while it diverges for

β < min{ log 2
log q

, 2 log(20)− 6 log log 2}
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and for

β − 6 log λβ < 2 log(20)− 6 log log 2 and β ≥ log 2

log q
.

Consider the condition that the integer q ∈ N satisfies

log 2

log q
< 2 log 20− 6 log log 2.

We have log 2 = (2 log 20 − 6 log log 2) log(x) for x ∼ 1.0883, hence for all q ∈ N with
q ≥ 2 the condition above is satisfied. Then the convergence range above reduces to

just the first condition β ≥ log 220

36
− 6 log log 2, since in the second case the conditions

β < log 2
log q and β ≥ β− 6 log λβ ≥ log 220

36
− 6 log log 2 cannot be simultaneously realized since

log 2
log q < log 220

36
−6 log log 2. Let β+ := log 220

36
−6 log log 2. Similarly, the estimate of the range

of divergence gives β < log 2
log q or log 2

log q ≤ β < 6 log λβ +2 log 20− 6 log log 2. Note that, in the

range β ≥ log 2
log q , the function β−6 log λβ is non-negative and monotonically increasing, with

a zero at β = log 2
log q . Let β− be the unique value of β where β−6 log λβ = 2 log 20−6 log log 2 ∼

8.1905. The dependence on q of β− = β−(q) is monotonically decreasing, with β−(q = 2) ∼
1.9391, and with for example λ−(q = 102) ∼ 0.3362 and λ−(q = 103) ∼ 0.2262. Then
we obtain that the series defining the partition function is divergent in the range β < β−.
Note that the function F (q) = β+ − 6 log λβ+(q) − (2 log 20 − 6 log log 2) is monotonically
increasing in the variable q, with F (2) ∼ 40.6574, hence β− < β+. Summarizing, we
conclude that, for any choice of q ∈ N with q ≥ 2, the series defining the partition function
Z(β) is convergent for β ≥ β+ and divergent for β < β−. □

Remark 2.4. The approximation method we used here, based on the estimates of [62],
does not give information on the behavior of the series defining the partition function in the
range β− ≤ β < β+, but it is reasonable to expect that there will be a point βc ∈ [β−, β+]
where a phase transition occurs, so that the series defining the partition function converges
for all β > βc and diverges for all β < βc.

Lemma 2.5. In the range β ≥ β+, where the series (2.1) is convergent, the partition
function Z(β) has an Euler product expansion

(2.4) Za(β) =
∏

K∈PK,a

(1− q−β(Cr(K)+g(K)))−1.

Proof. This is a general fact about bosonic Fock spaces and the trace and determinant
of operators. As in §2 of [5], we identify ℓ2(Ka) = Sℓ2(PK,a) := ⊕∞

n=0S
nℓ2(PK,a), the

bosonic Fock space given by the sum of the symmetric powers of ℓ2(PK,a). Let T be the

densely defined operator on ℓ2(PK,a) with TϵK = q−β(Cr(K)+g(K))ϵK , and let ST be the in-
duced densely defined operator on the Fock space ℓ2(Ka). On a basis element ϵK1#···#Km =

ϵK1 · · · ϵKm , this satisfies STϵK1#···#Km = q−β(Cr(K1)+g(K1)) · · · q−β(Cr(Km)+g(Km))ϵK1#···#Km .
Thus, when the trace of ST is finite it satisfies

Tr(ST ) =
1

det(1− T )
.

By direct inspection, we see that ST = e−βH and that 1/ det(1 − T ) is the Euler product
of (2.4). □
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2.2. Statistical mechanics of knots without interaction. We then have, for the C∗-
dynamical system (C∗(Ka), σt) described above, the analog of Proposition 8 of [5].

Proposition 2.6. For every β > 0 there is a unique KMSβ state for (C∗(Ka), σt), which
is the infinite tensor product of unique KMSβ states ϕβ,K for K ∈ PK,a, on the Toeplitz
algebra τK with the induced time evolution, with eigenvalue list

(2.5) Σ(ϕβ,K) = {(1− q−β(Cr(K)+g(K)))q−βn(Cr(K)+g(K))}n∈N.
For β ≥ β+ the KMS state is a Gibbs state of the form

ϕβ(X) =
1

Z(β)
Tr(Xe−βH), ∀X ∈ C∗(Ka),

while for β < β− the KMS state is of type III.

Proof. On the Toeplitz algebra τK , for some K ∈ PK,a, the induced time evolution is

determined by σt(µK) = qit(Cr(K)+g(K))µK . A KMSβ state on (τK , σt) will necessarily
vanish on all eigenvectors of the time evolution with σt(X) = λitX where λ ̸= 1, while by
the KMS condition it will satisfy

φβ,K(µKµ
∗
K) = φβ,K(µ∗Kσiβ(µK)) = q−β(Cr(K)+g(K))φβ,K(µ∗KµK)

= q−β(Cr(K)+g(K))φβ,K(1) = q−β(Cr(K)+g(K)).

The complementary projection 1−µKµ∗K then has φβ,K(1−µKµ∗K) = 1− q−β(Cr(K)+g(K)).
On powers µnK(µ∗K)m the KMS state vanishes unless n = m, in which case φβ,K(µnK(µ∗K)n) =

q−βn(Cr(K)+g(K)), by the same argument. Note that, since we are working with alternating
knots n(Cr(K)+g(K)) = Cr(K# · · ·#K)+g(K# · · ·#K), with the connected sum taken
n times. The same argument used in Proposition 8 of [5] then shows that this determines
uniquely the KMSβ state ϕβ,K , and the fact that this implies the uniqueness of the KMSβ
state on the tensor product C∗-algebra C∗(Ka) = ⊗K∈PK,a

τK . As in case (b) of Proposition

8 of [5] the finiteness of Z(β) = Tr(e−βH) for β ≥ β+ shows that the KMSβ state is of the
Gibbs form (by uniqueness, since the Gibbs state is clearly a KMSβ state). In the range
β < β− where the series defining the partition function is divergent, one uses the same
argument used in [5], based on the result of [2]. Namely, as in Lemma 2.14 of [2], if {λν,i}
is the eigenvalue list of an infinite tensor product M = ⊗νMν of type I factors, then M is
of type I if and only if

∑
ν |1 − λν1| < ∞; of type II if and only if nν < ∞ for all ν and∑

ν,i |n
−1/2
ν − λ1/2νi |2 < ∞; and, when λν,1 ≥ δ for some δ for all ν, M is of type III if and

only if ∑
ν,i

λν,i inf{|
λν1
λνi
− 1|2, C} =∞

for some (hence all) C > 0. In our case, with the eigenvalue list (2.5), we have λν,1 =

1 − q−β(Cr(K)+g(K)) hence |1 − λν,1| = q−β(Cr(K)+g(K)). In the range β < β− the series∑
K q

−β(Cr(K)+g(K)) is divergent, hence type I is excluded. Similarly, type II is excluded

because nν =∞. For a fixed β, the condition λν,1 ≥ δ is satisfied with δ = 1− q−β, and we
have ∑

ν,j

λν,j inf{|
λν1
λνj
− 1|2, C} ∼

∑
K,j

(1− q−β(Cr(K)+g(K)))q−βj(Cr(K)+g(K)) =∞

hence the factor is type III. □
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Remark 2.7. Notice that, since we do not have in this case a complete analysis of the
behavior of the partition function in the intermediate range β− ≤ β < β+, we do not have
in this case the direct analog of case (c) of Proposition 8 of [5].

Lemma 2.8. For a fixed q ∈ N, q ≥ 2, there is a unique solution β̃− = β̃−(q), with

β̃− > log 2
log q , to the equation

(2.6) β − 6 log λβ + 6 log β = logC − 6 log log q,

where C = 400 and

λβ =
q−β

1− q−β
.

The value β̃−(q) satisfies β̃−(q) < β−(q), where β−(q) is, as in Theorem 2.3, the unique
solution of β − 6 log λβ = logC − 6 log log 2.

Proof. For β = log 2/ log q we have (β − 6 log λβ)|β= log 2
log q

= log 2
log q hence

(β − 6 log λβ + 6 log β)|
β= log 2

log q
=

log 2

log q
+ 6 log log 2− 6 log log q < logC − 6 log log q,

since we have seen in Theorem 2.3 that, for all q ∈ N with q ≥ 2,

(2.7)
log 2

log q
< logC − 6 log log 2.

For β ≥ log 2/ log q the function f(β, q) := β− 6 log λβ +6 log β is monotonically increasing

and unbounded for β →∞ (see the plot in Figure 1, hence there will be a unique β̃− = β̃−(q)
where (2.6) holds. Finally, we see that at β = β−(q) we have

(β − 6 log λβ + 6 log β)|β=β−(q) = logC − 6 log log 2 + 6 log β−(q).

Notice that we have β−(q) > log 2/ log q because of (2.7), hence we find β− − 6 log λβ− +

6 log β− > logC − 6 log log q, hence β−(q) > β̃−(q). □

Thus, the range β < β̃−(q) is contained in the range of divergence of the series defining
the partition function, as we have seen in Theorem 2.3.

Theorem 2.9. Let β̃− = β̃−(q) be as in Lemma 2.8. For β < β̃−(q), the unique KMSβ
state is of type IIIq−β .

Proof. The argument is similar to Lemma 4.5.1 of [27] and Lemma 2.4 of [45]. We need
to show that q−β belongs to the asymptotic ratio set, see Definition 3.2 and Lemma 3.6 of
[2]. As in Lemma 4.5.1 of [27], for given β, let N ∈ N be chosen so that βN > β+ and, for
a chosen K ∈ PK,a, consider the projector eK = 1− µNK(µ∗K)N in the Toeplitz algebra τK ,
and the projection e =

∏
K∈PK,a

eK , as weak limit of projections in the tensor product von

Neumann algebra. Since βN > β+ we have, using the Euler product of Lemma 2.5,

ϕβ(e) =
∏

K∈PK,a

(1− q−βN(Cr(K)+g(K))) = Z(βN)−1 ̸= 0,
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Figure 1. The function f(β, q) for β > log 2
log q and q = 11.

hence e ̸= 0. Setting ϕ̃β,e(X) = ϕβ(X)/ϕβ(e) determines a KMS state on the compression
of the algebra with the projection e. For each prime knot K ∈ PK,a we similarly have

ϕ̃β,e,K(X) = ϕβ,K(X)(1− q−βN(Cr(K)+g(K)))−1. The eigenvalue list of ϕ̃β,e,K is then

Σ(ϕ̃β,e,K) = {(1− q
−β(Cr(K)+g(K)))q−βn(Cr(K)+g(K))

(1− q−βN(Cr(K)+g(K)))
}n∈N.

By the results of [62], the number of knots K in Ka with a given value Cr(K) + g(K) = n
is given by

(2.8) N(n) = #{K ∈ Ka |Cr(K) + g(K) = n} ∼
n∑
g=1

Cg

(6g)!
(n− g + 1)6g−4.

Thus, we have N(n) knots K1, . . . ,KN(n) for which q
β(Cr(Ki)+g(Ki)) = q−βn. Consider two

disjoint sets X1(n) = {K1, · · · ,KN(2n)}, the set of knots with qβ(Cr(Ki)+g(Ki)) = q−β2n

and a subset X2(n) = {K ′
1, . . . ,K

′
N(2n)} of the same cardinality of the set of knots with

qβ(Cr(Ki)+g(Ki)) = q−β(2n+1). Consider the set Fn of functions from the set X (n) = X1(n)∪
X2(n) to the set N = {0, . . . , , N − 1}, namely Fn = F(X (n), N). In this set, consider the
delta functions δKi and δK′

i
for i = 1, . . . , N(2n). Setting

µ(f) =

N(2n)∏
i=1

λKi,f(Ki)λK′
i,f(K

′
i)
,

where

λKi,j =
(1− q2nβ)

(1− q−2nNβ)
q−β2nj ,
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defines a measure on the set Fn. This satisfies

µ(δKi) = µ(δK1) =

(
(1− q2nβ)

(1− q−2nNβ)

)N(2n)

·

(
(1− q(2n+1)β)

(1− q−(2n+1)Nβ)

)N(2n)

· q−β2n =: µ(n).

The measure of the set {δKi} is equal to µ({δKi}) = N(2n)µ(n).

By (2.8), the behavior of the series
∑

nN(2n)µ(n) can be estimated in terms of the
behavior of ∑

n

N(2n)q−β2n =
∑
n

∑
k+g=2n

Nk,gq
−β(k+g),

where Nk,g is the number of alternating knots with Cr(K) = k and g(K) = g. Note that

this is a subseries of the series
∑

g

∑
kNk,gq

−β(k+g), whose behavior we analyzed in Theorem

2.3. In particular, we know that for β < β− the series
∑

g

∑
kNk,gq

−β(k+g) diverges. We
now need to check whether the subseries corresponding to the terms with k + g even also
diverges. We first show that we can express this series in terms of the Lerch transcendents,
replacing the polylogarithms used in the case of the full series in Theorem 2.3.

Let Φ(z, s, α) be the Lerch transcendent

(2.9) Φ(z, s, α) =
∑
ℓ≥0

zℓ

(α+ ℓ)s
.

We can then write the series above as∑
k,g≥0 : k+g even

Nk,gq
−β(k+g) ∼

∑
g≥0

q−2βg Cg

(6g)!

∑
ℓ≥0

q−2βℓ(g + 2ℓ)6g−4

(2.10) =
∑
g≥0

Cg26g−4q−2βg

(6g)!
Φ(q−2β, 4− 6g,

g

2
).

The Lerch transcendent Φ(z, s, α) has a Taylor expansion

(2.11) Φ(z, s, α) = z−α

Γ(1− s)(− log(z))s−1 +
∑
j≥0

ζ(s− j, α) log
j(z)

j!

 ,

which is valid for | log(z)| < 2π, s /∈ N and α /∈ Z≤0. In our setting we have z = q−2β, hence
| log(z)| = 2β log(q). One can check that the function

H(q) := (β − 6 log λβ + 6 log β)|β= π
log q
− (logC − 6 log log q)

is positive for q ≥ 2 (see the plot in Figure 2), hence π
log q > β̃−(q). Thus, in the range

β < β̃−(q) the Taylor expansion above applies.

Then we have

Φ(q−2β, 4− 6g,
g

2
) = qβg

 (6g − 4)!

(2β log(q))6g−3
+
∑
j≥0

ζ(4− 6g − j, g
2
)
(−2β log(q))j

j!

 .

Thus, the general term of series above has a leading contribution of the form

(2.12)
Cgq−βg

(6g)(6g − 1)(6g − 2)(6g − 3)
· 26g−4

(2β log(q))6g−3
.
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Figure 2. The function H(q) for q ≥ 2.

Notice that this is the analog of the leading term of the form

Cgq−βg

(6g)(6g − 1)(6g − 2)(6g − 3)
· 1

2(log 2)6g−4

for the full series, as in (2.2) of Theorem 2.3. Arguing in a similar way, we then see that
the series ∑

g

Cgq−βg

(6g)(6g − 1)(6g − 2)(6g − 3)2(β log(q))6g−3

is divergent in the range β < β̃−(q), hence so is the series (2.10). Thus, we obtain the
divergence result ∑

n≥n0

N(2n)µ(n) =∞.

We then proceed in the same way as in Lemma 4.5.1 of [27]. The bijection Ψn : X1(n)→
X2(n) determines a bijection of the set of delta functions, and we have

µ(Ψn(δKi))

µ(δKi)
=
λKi,0λK′

i,1

λKi,1λK′
i,0

=
q−β(2n+1)

q−β2n
= q−β,

which shows that q−β is in the asymptotic ratio set. □
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2.3. Intermezzo: statistical physics of Q∗
+. In preparation for the construction we will

illustrate in the following section, we discuss here a toy model, based on the multiplicative
group Q∗

+ and its reduced group algebra C∗
r (Q∗

+) acting on the Hilbert space ℓ2(Q∗
+). Here

we regard Q∗
+ as the discrete infinitely generated abelian group, generated by the primes,

Q∗
+ =

∏
p∈P p

Z. We want to construct a quantum statistical mechanical system whose

algebra of observables contains C∗
r (Q∗

+), with Hilbert space of states ℓ2(Q∗
+) and with a

Hamiltonian generator densely defined on ℓ2(Q∗
+), so that the partition function Z(β) =

Tr(e−βH) is finite for sufficiently large β > 0.

It is easy to construct such a system for the multiplicative semigroup N and the C∗-
algebra C∗

r (N) acting on ℓ2(N). For instance by considering the “system without in-
teraction” of [5] with time evolution σt(µn) = nitµn and with Hϵn = log(n)ϵn. How-
ever, the natural extension of this system from the semigroup N to the group Q∗

+ by

σt(µa/b) = (a/b)itµa/b will no longer satisfy the condition Tr(e−βH) <∞ for large β.

We proceed in a slightly different way, motivated by the analogies between quantum
statistical mechanical systems and spectral triples discussed in [23]. We consider first the
case of a single prime p and the group pZ ≃ Z, and then the case of the group Q∗

+.

Recall that a spectral triple (A,H, D) is the datum of an involutive algebra A, a repre-
sentation of A by bounded operators on H and a self-adjoint operator D, densely defined
on H, with compact resolvent (D2+1)−1/2 ∈ K and such that the commutators [D, a] with
all a ∈ A are bounded operators on H, see [10].

Lemma 2.10. Consider the algebra C[pZ] ⊂ C∗(pZ) ≃ C(S1), acting on ℓ2(pZ), and the
operator defined by Dpϵpn = n log(p)ϵpn. The datum (C[pZ], ℓ2(pZ), Dp) is a spectral triple.

Proof. It is easy to check that all properties are satisfied. We check explicitly the bounded
commutator condition. Let δpm be the operator on ℓ2(pZ) corresponding to the delta func-
tion δpm ∈ C[pZ]. It acts by δpmϵpn = ϵpn+m . Thus, we have

(Dpδpm − δpmDp)ϵpn = ((m+ n) log(p)− n log(p))ϵpm+n = m log(p)ϵpm+n ,

hence the bounded commutator condition is satisfied for all element of the dense subalgebra
C[pZ] of C∗

r (p
Z). □

Remark 2.11. Notice that, in the case of the group Q∗
+, the operator D acting on a basis

element ϵr of ℓ
2(Q∗

+) asD ϵr = (n1 log(p1)+· · ·+nk log(pk))ϵr, for r = pn1
1 · · · p

nk
k ∈ Q∗

+, with
ni ∈ Z has bounded commutators with elements of the dense subalgebra C[Q∗

+] of C
∗
r (Q∗

+),
by the same argument of Lemma 2.10. However, D does not have compact resolvent, since

the set {
∑k

i=1 ni log(pi) |ni ∈ Z, pi ∈ P, k ∈ N} is dense in R, hence D does not determine
a spectral triple for C∗

r (Q∗
+).

We now modify the operator above, using the polar decomposition of the Dirac operator
Dp = |Dp|F , with F the sign operator.

Lemma 2.12. Consider the operator Hp = |Dp| acting on a basis ϵpn of ℓ2(pZ) as

(2.13) Hp ϵpn = |n| log(p)ϵpn .
The operator e−βHp is trace class for all β > 0 with

(2.14) Tr(e−βHp) = 1 + 2
∑
n∈N

p−βn =
(1− p−2β)

(1− p−β)2
.
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Proof. For all β > 0, we have

Tr(e−βHp) =
∑
n∈Z
⟨ϵpn , e−βHpϵpn⟩ = 1 + 2

∑
n∈N

p−βn = 1 +
2p−β

(1− p−β)

=
1

1− p−β
+

p−β

1− p−β
=

1 + p−β

1− p−β
=

(1− p−2β)

(1− p−β)2

where the first term corresponds to Ker(Hp) = Cϵ1. □

This in turn determines an operator H on ℓ2(Q∗
+) with the following properties.

Lemma 2.13. Consider the operator H acting on the basis elements ϵr of ℓ2(Q∗
+), for

r = pn1
1 · · · p

nk
k ∈ Q∗

+, with ni ∈ Z, as

(2.15) H ϵr = (|n1| log(p1) + · · ·+ |nk| log(pk))ϵr.

Then for β > 1 the operator e−βH is trace class with

(2.16) Tr(e−βH) =
ζ2(β)

ζ(2β)
,

where ζ(β) is the Riemann zeta function.

Proof. We have Ker(H) = Cϵ1, with ϵ1 the basis vector of ℓ2(Q∗
+) corresponding to the

unit in Q∗
+. The spectrum of H is given by Spec(H) = {log(n) |n ∈ N}. The trace is then

computed by

Tr(e−βH) =
∑
r∈Q∗

+

⟨ϵr, e−βHϵr⟩ =
∑

λ∈Spec(H)

mλe
−βλ,

where mλ is the multiplicity. For λ = n1 log(p1) + · · · + nk log(pk) = log(n) with ni ∈ N
and pi ∈ P, and n = pn1

1 · · · p
nk
k , the multiplicity is mλ = 2k, with k the number of distinct

prime factors in r = p±n1
1 · · · p±nk

k , since for each ni we have two choices of ±ni ∈ Z. Thus,
we can rewrite the series computing the partition function as

Tr(e−βH) =
∑
n∈N

2ω(n)

n−β
,

where ω(n) is the number of distinct prime factors of n ∈ N. It is known by Theorem 301,
p.335 of [25] that this series converges for β > 1 with sum∑

n∈N

2ω(n)

n−β
=
ζ2(β)

ζ(2β)
,

with ζ(β) =
∑

n∈N n
−β the Riemann zeta function. This can be seen easily by the form

(2.14) of the Euler factors, since we have

ζ2(β)

ζ(2β)
=
∏
p

(1− p−2β)

(1− p−β)2
=
∏
p

(1 + 2
∑
k∈N

p−βk) =
∑
n≥1

2ω(n) n−β.

□
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Consider the algebra of bounded operators B(ℓ2(Q∗
+)). The operator H described above

determines a time evolution of the form

(2.17) σt(T ) = eitHTe−itH , ∀t ∈ R, ∀T ∈ B(ℓ2(Q∗
+)),

with partition function as in (2.16)

Z(β) = Tr(e−βH) =
ζ2(β)

ζ(2β)
.

The subalgebra C∗
r (Q∗

+) ⊂ B(ℓ2(Q∗
+)) is not preserved by the time evolution (2.17). We

have the following result, which is analogous to Lemma 5.7 of [23].

Proposition 2.14. The smallest C∗-subalgebra A ⊂ B(ℓ2(Q∗
+)) that contains C∗

r (Q∗
+) is

invariant under the time evolution (2.17) is generated by C∗
r (Q∗

+) and by projections

Π(k,ℓ)ϵa/b =

{
ϵa/b k|a and ℓ|b
0 otherwise

The time evolution (2.17) acts on the algebra A by inner automorphisms.

Proof. Consider a generator δr, for r ∈ Q∗
+, of the algebra C

∗
r (Q∗

+). The operator e
itHδre

−itH

acts on a basis element ϵr′ as

eitHδre
−itHϵr′ = n(rr′)itn(r′)−itδrϵr′ ,

where for r = pn1
1 · · · p

nk
k in Q∗

+, with ni ∈ Z, we have n(r) = p
|n1|
1 · · · p|nk|

k in N. If r′ = a/b,
with a, b ∈ N with (a, b) = 1, and r = u/v with u, v ∈ N with (u, v) = 1, then

n(r′r)

n(r′)
= n(r) · (b, u) · (a, v).

Thus, for r = u/v, we can rewrite the operator above as

eitHδre
−itH =

∑
k|u

∑
ℓ|v

n(r)itkitℓitδrΠ(k,ℓ),

where Π(k,ℓ)ϵr′ = ϵr′ if k|a and ℓ|b and zero otherwise, where r′ = a/b. The term of the

sum with k = 1 and ℓ = 1 corresponds to the operator n(r)itδr. Thus, this shows that the
smallest C∗-subalgebra A ⊂ B(ℓ2(Q∗

+)) that contains C∗
r (Q∗

+) and that is invariant under
the time evolution (2.17) is the C∗-subalgebra A ⊂ B(ℓ2(Q∗

+)) generated by the δr and by
the projections Π(k,ℓ). Let Πn be the spectral projections of the operator H corresponding
to the eigenvalues log(n) with n ∈ N. We see that these are in the algebra A generated by
the δr and the Π(k,ℓ). Indeed we have Πnϵr = ϵr when n = n(r) and zero otherwise, so that

we have Πn =
∑

k,ℓ : kℓ=nΠ(k,ℓ). The unitary operator eitH is a bounded operator that is in

the C∗-algebra generated by the spectral projections of H. Thus, the time evolution (2.17)
acts on the algebra A by inner automorphisms. □
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2.4. Semigroup and Grothendieck group. We will see later in the paper that, in addi-
tion to the abelian semigroup (K,#) of oriented knots with the connected sum operation,
we also need to consider the associated Grothendieck group.

Let GK denote the universal enveloping abelian group (Grothendieck group) of the semi-
group (K,#). The decomposition into prime knots shows that (K,#) is a free abelian
semigroup on a countable set of generators given by the prime knots. Thus, (K,#) is
non-canonically isomorphic to the semigroup (N, ·), and its enveloping group GK is non-
canonically isomorphic to the multiplicative group Q∗

+. The universal enveloping abelian
group GK of (K,#) can be identified with pairs (K,K ′), up to the equivalence relation
(K,K ′) ∼ (K#K ′′,K ′#K ′′) for all K ′′ ∈ K. We write the equivalence classes of pairs as
formal differences, denoted by K ⊖K ′.

In the case of the semigroup Ka of alternating knots with the connected sum operation,
freely generated by the set PK,a of alternating prime knots, we similarly construct the
enveloping abelian group GK,a. It is also non-canonically isomorphic to Q∗

+.

2.5. Statistical physics of the group GK,a. We show that the construction presented
above of a quantum statistical mechanical system forQ∗

+ with partition function ζ2(β)/ζ(2β),
with ζ(β) the Riemann zeta function, can be generalized to the case of the group GK,a.

LetK⊖K ′ = (a1K1# · · ·#ajKj)⊖(b1K ′
1# · · ·#bℓK ′

ℓ) be an element of GK,a with primary
decompositions K = a1K1# · · ·#amKm and K ′ = b1K

′
1# · · ·#bℓK ′

ℓ, where the Ki and K
′
j

are all distinct prime knots, with multiplicities ai and bj . Let ϵK⊖K′ be the corresponding
basis element of ℓ2(GK,a). For a knot K, let ω(K) denote the number of distinct prime
knots in its primary decomposition, namely ω(K) = m for K = a1K1# · · ·#amKm with
the Ki prime.

Proposition 2.15. Consider the operator H acting on ℓ2(GK,a), which acts on basis ele-
ments as

(2.18) H ϵK⊖K′ =

 m∑
i=1

(ai(Cr(Ki) + g(Ki)) +
ℓ∑

j=1

bj(Cr(K
′
j) + g(K ′

j)))

 log(q) ϵK⊖K′ .

This is an unbounded densely defined operator, such that e−βH is trace class for all β ≥ β+,
satisfying

(2.19) ZGK,a
(β) := Tr(e−βH) =

Z2
a(β)

Za(2β)
,

where Za(β) is the partition function of Theorem 2.3.

Proof. The argument is very similar to the case of Q∗
+ discussed above. By Lemma 2.5, we

can write
Z2
a(β)

Za(2β)
=

∏
K∈PK,a

1− q−2β(Cr(K)+g(K))

(1− q−β(Cr(K)+g(K)))2
.

We then write this as∏
K∈PK,a

1 + q−β(Cr(K)+g(K))

1− q−β(Cr(K)+g(K))
=

∏
K∈PK,a

(
1

1− q−β(Cr(K)+g(K))
+

q−β(Cr(K)+g(K))

1− q−β(Cr(K)+g(K))
)
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=
∏

K∈PK,a

(1 + 2
∑
n≥1

q−βn(Cr(K)+g(K))).

On the other hand, we have

Tr(e−βH) =
∑

K⊖K′∈GK,a

⟨ϵK⊖K′ , e−βHϵK⊖K′⟩ =
∑

λ∈Spec(H)

mλe
−βλ,

where mλ are the multiplicities. By (2.18) the operator is diagonal on the basis ϵK⊖K′

with eigenvalues q−β((Cr(K)+g(K))+(Cr(K′)+g(K′)). The multiplicities are 2m+ℓ for K =
a1K1# · · ·#amKm and K ′ = b1K

′
1# · · ·#bℓK ′

ℓ, since all the other basis vectors in the
same eigenspace are obtained by moving some of the Ki and K

′
j factors to the other side

of ⊖, hence for each primary term in the decomposition there are two choices. Thus, we
obtain

Tr(e−βH) =
∑
K∈Ka

2ω(K) q−β(Cr(K)+g(K)).

We then see by rewriting this in the Euler product form that the identity (2.19) holds. □

We have the analog of Proposition 2.14, which is proved by the same argument.

Proposition 2.16. The smallest C∗-subalgebra A ⊂ B(ℓ2(GK,a)) that contains C∗
r (GK,a)

and is invariant under the time evolution

(2.20) σt(T ) = eitHTe−itH , T ∈ B(ℓ2(GK,a)),
with H as in (2.18), is generated by C∗

r (GK,a) and by projections

Π(K1,K2)ϵK⊖K′ =

{
ϵK⊖K′ K1|K and K2|K ′

0 otherwise

The time evolution (2.20) acts on the algebra A by inner automorphisms.

The fact that this time evolution is inner is undesirable from the operator-algebraic
point of view. We will return to discuss this problem in the following sections. A first step
towards improving the system described in this section is to introduce interaction terms
in the quantum statistical mechanical system, as one does in the case of the Bost–Connes
system by passing from the algebra C∗

r (N) to the crossed product algebra C∗
r (Q/Z)⋊N. In

our setting the analogous step will consist in passing from a quantum statistical mechanical
system associated to knots to one associated to 3-manifolds.

3. Knot groups, 3-manifolds, and cyclic branched covers

3.1. Cyclic branched coverings of the 3-sphere. Let K denote the set of ambient
isotopy classes of (oriented) knots in S3. For simplicity of notation, in the following we will
write K for a knot and also for its equivalence class up to ambient isotopy.

It is well known, [1], [26], [44], that every smooth oriented closed 3-manifold can be real-
ized (non-uniquely) as a branched cover of the 3-sphere, branched along a knot. Moreover,
it is also well known that an n-fold branched covering of the 3-sphere, branched along a
knot K, is entirely determined by the datum of a representation

(3.1) ρ : π1(S
3 ∖K)→ Sn,

where π1(S
3∖K) is the fundamental group of the knot complement, and Sn is the symmetric

group of permutations of n elements, [1].
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An n-fold branched covering of the 3-sphere S3, branched along a knot K, is said to be
cyclic or abelian if the corresponding homomorphism (3.1) factors through the abelianiza-
tion π1(S

3 ∖K)ab = H1(S
3 ∖K,Z) = Z, as a homomorphism ρ : H1(S

3 ∖K,Z) → Z/nZ
with values in the subgroup of cyclic permutations Z/nZ ⊂ Sn. In particular, for a
given knot K, there is a unique connected cyclic branched covering Yn(K). We write
πK,n : Yn(K) → S3 for the corresponding projection map. The remaining elements in
Hom(H1(S

3 ∖K,Z),Z/nZ) correspond to coverings that have multiple components.

It is known, [4], [65], that, if one knows the cyclic coverings Yp(K) for three distinct
primes p, this uniquely identifies the knot K. In other words, given a knot K, there are
at most two distinct primes p ̸= p′ for which there exist some inequivalent knot K ′ with
homeomorphic branched cyclic coverings, Yp(K) ≃ Yp(K ′) and Yp′(K) ≃ Yp′(K ′).

To the purpose of building an analog of the Bost–Connes system in the setting of arith-
metic topology, we think of cyclic branched coverings of the 3-sphere S3 as an analog of
abelian extensions of Q.

3.2. Knots semigroup. For the purpose of our construction, we will consider a semigroup

(3.2) S = K × N,

where K = (K,#) is the semigroup of oriented knots with the direct sum operation, as in
the previous section, and N is the multiplicative semigroup of positive integers. The idea
behind this choice is that an element (K,n) ∈ S specifies the branch locus and of the order
of a cyclic branched covering of S3. The semigroup S is generated by the pairs (K, p) where
K is a prime knot and p is a prime number.

The quantum statistical mechanical model we discussed in the previous section for the
semigroup Ka and its group completion GK,a extend to the product Ka × N as follows.

Lemma 3.1. Let N : Ka × N → R∗
+ be a semigroup homomorphism. Then setting

σt(µK,n) = N(n,K)itµK,n defines a time evolution of C∗
r (Ka × N). In particular, taking

N(K,n) = n q(Cr(K)+g(K))

determines a time evolution with partition function ζ(β)Za(β), where ζ(β) is the Riemann
zeta function and Za(β) is as in Theorem 2.3, for β > max{β+(q), 1}.

Proof. The argument is analogous to Theorem 2.3. The time evolution σt(µK,n) = N(n,K)itµK,n
with N(K,n) = n q(Cr(K)+g(K)) is implemented by a Hamiltonian of the form

HϵK,n = ((Cr(K) + g(K)) log(q) + log(n))ϵK,n

on the canonical basis of ℓ2(Ka × N), with partition function

ZKa×N(β) = Tr(e−βH) =
∑
K,n

⟨ϵK,n, e−βHϵK,n⟩ =
∑
K,n

q−β(Cr(K)+g(K))n−β = Za(β) · ζ(β),

where Za(β) is the partition function of Theorem 2.3 and ζ(β) is the Riemann zeta function.
The operator e−βH is trace class in the range β > max{β+(q), 1}. □
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3.3. Wirtinger presentations and connected sums. The fundamental group π1(S
3 ∖

K) of a knot complement has an explicit presentation, associated to the choice of a pla-
nar diagram D(K) representing the knot K. It is given by the Wirtinger presentation
W(D(K)). Let ND be the number of crossings in the planar diagram D = D(K). Then in
the presentation W(D(K)) there are N generators ai, identified with loops circling around
the oriented arcs given by the two parts of the lower branch at each crossing (drawn as two
arcs in the planar diagram). At each crossing one imposes a relation, which is either of the
form aia

−1
j a−1

i+1aj = 1 or aiaja
−1
i+1a

−1
j = 1, depending on the orientations at the crossing,

see §4.2.3 of [59] for more details. The following fact is well known. We reproduce it here
for the reader’s convenience.

Lemma 3.2. Let K = K1#K2 be a connected sum. Then the fundamental groups satisfy

(3.3) π1(S
3 \ (K1#K2)) = π1(S

3 \K1) ∗Z π1(S3 \K2).

Proof. Choose planar diagrams D1 = D(K1) and D2 = D(K2). Let Ni be the number of
crossings in Di. In these diagrams, let us number the arcs so that a1 and b1 are, respectively,
the arcs where the connected sum operation is performed. Let D = D(K1#K2) be the re-
sulting planar diagram for the connected sum knot. LetW(D1) = ⟨a1, . . . , aN1 | r1, . . . , rN1⟩
and W(D2) = ⟨b1, . . . , bN2 | s1, . . . , sN2⟩ be the Wirtinger presentations of π1(S

3 ∖Ki) as-
sociated to these planar diagrams. Let fi : Z → π1(S

3 ∖Ki) denote the homomorphisms
that map the generators of Z to the generators, in the respective Wirtinger presentations
as above, given by the arcs chosen for the connected sum: f1(1) = a1 and f2(1) = b1. The
amalgamated product in (3.3) is the resulting pushout diagram of groups

(3.4)

Z π1(S
3 \K1)

π1(S
3 \K2) π1(S

3 \K1) ∗Z π1(S3 \K2)

f1

f2

where π1(S
3 \K1) ∗Z π1(S3 \K2) has a presentation of the form

⟨a1, · · · , aN1 , b1, · · · , bN2 | r1, · · · , rn, s1, · · · , sm, a1b−1
1 ⟩,

which agrees with the Wirtinger presentationW(D) of D = D(K1#K2), hence the pushout
group is isomorphic to π1(S

3 \ (K1#K2)). □

Corollary 3.3. The groups π1(S
3 ∖K) form a direct system, with respect to the directed

set K, partially ordered by divisibility with respect to the direct sum operation, with maps

(3.5) φK′,K : π1(S
3 ∖K ′)→ π1(S

3 ∖K), for K ′|K,

Proof. A knot K ′ divides a knot K in the semigroup (K,#) if there is some other knot K ′′

such that K = K ′#K ′′. Defining a partial order by setting K ′ ≤ K if K ′ divides K makes
K into a directed set. As in the previous lemma, we then have a group homomorphism
φK′,K : π1(S

3∖K ′)→ π1(S
3∖K) given by the corresponding map in the pushout diagram

(3.4). These morphisms satisfy φK,K = 1 and φK2,K3 ◦ φK1,K2 = φK1,K3 when K1|K2 and
K2|K3, hence the groups π1(S

3 ∖K) form a direct system. □

We can then consider the direct limit of this direct system,

(3.6) π := lim−→
K∈K

π1(S
3 ∖K) = lim−→

K∈K
πK ,
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where we use the shorthand notation πK := π1(S
3 ∖ K). The direct limit π is given by

equivalence classes of elements γK ∈ πK , under the relation γK ∼ γK′ if there is some K ′′

in K such that K|K ′′ and K ′|K ′′ with φK,K′′(γK) = φK′,K′′(γK′). Setting [γK ] · [γK′ ] :=
φK,K#K′(γK) ·φK′,K#K′(γK′), with the product in πK#K′ determines a product on π that
is independent of representatives.

In addition to considering the direct limit π of the directed system of the groups πK with
the homomorphisms φK,K#K′ , it will be convenient for our purposes to also consider the
direct product

(3.7) π̃ :=
∏
K∈K

π1(S
3 ∖K) =

∏
K∈K

πK ,

without imposing the equivalence relations of the direct limit. There are then induced
morphisms

(3.8) φK′ : π̃ → π̃, φK′ = (φK,K#K′)K∈K

given coordinatewise by the morphisms γK 7→ φK,K#K′(γK) of the direct system.

3.4. Wild knots and fundamental groups. Wilder knots are a class of wild knots with
a single wild point, obtained as infinite connected sums of a sequence Kn of tame knots.
It is well known (see [16], [37]) that such Wilder knots have knot group isomorphic to the
infinite amalgamated product π∞ := π1(S

3 ∖K∞) = πK1 ∗Z πK2 ∗Z πK3 · · · ∗Z πKN
∗Z · · · .

More generally wild knots have knot groups that are obtained as direct limits of knot
groups of tame knots, [16]. The direct limit π = lim−→K

πK described above has a similar
interpretation.

Lemma 3.4. The direct limit π = lim−→K
πK is the knot group π = π1(S

3 ∖K∞) of a wild
knot K∞ with a Cantor set of wild points.

Proof. The construction of the wild knot K∞ is modeled on the direct system of groups πK
under the order relation in the semigroup K given by divisibility. Choose an enumeration of
the prime knots. Any such choice determines a bijection between the set of prime knots and
the set of prime numbers, and a corresponding isomorphisms of semigroups (K,#) ≃ (N, ·).
We write the chosen enumeration of the prime knots as {Kp} where p ranges over prime
numbers. Starting with the unknot in S3, construct a Wilder knot given by the infinite
connected sum of all the prime knots Kp. This has a single wild point lying on the initial
unknot. At the successive step repeat the procedure in each of the prime knots of the
previous level, namely insert in each the full sequence of prime knots Kp, with a single
tame point for each knot of the previous level, which we locate at the intersection of those
knots with the original unknot. In the limit the resulting wild knot K∞ has set of wild
points that is compact, totally disconnected, with each wild point an accumulation point of
other wild points. The fundamental group of the knot complement of K∞ is then obtained
as in [16] as the direct limit π. □

Remark 3.5. In a rooted tree, we say that a vertex has level N if it is connected to the
root by a path of N edges. Let T be the non-locally-finite labelled rooted tree with root
vertex labelled by the unknot. The root vertex (level zero) is connected to a countable
infinity of vertices labelled by the prime knots (level one). in turn each of these vertices is
connected to another countable set of vertices labelled by the prime knots (level two), and
so on, with each vertex at level N connected to a countable set of vertices at level N + 1,
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labelled by the prime knots. The number of vertices at a given level N is a countable union
of countable sets, hence countable. Let ET be the resulting infinite set of edges. The wild
knot K∞ of Lemma 3.4 can be described as obtained by performing a connected sum along
each of the edges of the tree T .

3.5. Projective limits and cyclic coverings. For an arbitrary knot K, the abelianiza-
tion of the fundamental group πK = π1(S

3 ∖ K) is always just the infinite cyclic group
generated by the meridian

(3.9) π1(S
3 ∖K)ab = H1(S

3 ∖K) = Z.

In particular, by the form of the relations in the Wirtinger presentation, one sees that
any representation of the group πK into an abelian group H will necessarily map all the
generators of πK to a same element of H.

Let us consider again the representation ρ = ρK,n : π1(S
3∖K)→ Z/nZ that corresponds

to the unique connected cyclic branched cover Yn(K) of S3, branched along K. This
representation sends all the generators of πK to a primitive n-th root of unity, and it
corresponds to the quotient homomorphism ρK,n : Z = π1(S

3 ∖K)ab → Z/nZ.
Consider again the maps σm : Z/nmZ → Z/nZ that raise to the m-th power and de-

termine the projective system of the Z/nZ, with the indices n ∈ N ordered by divisibility,
with limit the profinite completion of Z,

lim←−
n∈N

Z/nZ = Ẑ.

We have the simple compatibility condition of the maps ρK,n,

(3.10)

Z = H1(S
3 \K,Z) Z/nmZ

Z/nZ.

ρnm

ρn σm

The induced map to the projective limit is just the canonical map ρ : Z→ Ẑ of the integers
to their pro-finite completion.

Using the identification Ẑ = Hom(Q/Z,Q/Z), we can think of the resulting map ρ : Z =

H1(S
3 \K,Z)→ Ẑ as describing a locally trivial fibration over S3 ∖K with fiber the set of

all roots of unities, identified with Q/Z, extended to S3 with branch locus K. This space
can be regarded as a limit, in the category of topological spaces, of the cyclic branched
coverings Yn(K). We denote it by YẐ(K).

When we consider simultaneously the inverse limit of the fibers, and direct limit of the
branch loci knots, we obtain a space YẐ(K∞), which is a branched cover of S3 branched
along the wild knot K∞ with fiber the set of roots of unity. The covering is specified by a
representation of the direct limit group π to Ẑ. The space YẐ(K∞) is the geometric object
underlying the construction of the quantum statistical mechanical system that we describe
in the coming section.
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4. Quantum Statistical Mechanics of 3-manifolds

In this section we combine the constructions of the previous section with the quantum
statistical mechanics of knots, to construct an analog of the Bost–Connes system associated
to cyclic branched coverings of the 3-sphere. We show that the properties of the resulting
quantum statistical mechanical system are significantly different from the Bost–Connes case
and are related to noncommutative Bernoulli crossed products.

4.1. Group rings. Thus, in order to construct a replacement for the algebra C∗(Q/Z) =
C(Ẑ) of the Bost–Connes system, which will account for all the possible choices of a knot
K and a cyclic branched cover of some order n, we need to introduce appropriate group
rings. We first deal with the part of the information that concerns the knot complements
and the knot groups πK = π1(S

3∖K) and then, in §4.6 below, we combine this part of the
construction with the information on the choice of the cyclic branched coverings coming
from the Ẑ datum.

We consider group rings Q[πK ], for each knot group πK = π1(S
3 ∖ K), and also the

group ring Q[π̃], with π̃ the direct product of the πK as in (3.7), and the group ring Q[π],
with π the direct limit of the πK .

Note that, unlike the group ring Q[Q/Z] of the Bost–Connes system, the group rings
Q[πK ], Q[π̃] and Q[π] are noncommutative, hence the corresponding C∗-algebra comple-
tions, which we will discuss later, can no longer be written as algebras of continuous function
on a dual group. If one considers the abelianization πab, all the maps of the direct system of
the groups πK induce the identity on the homology groups, hence πab = Z, and one would
simply obtain the commutative group ring Q[πab] = Q[Z] = Q[t, t−1].

4.2. Semigroup action and crossed product. In the following, we consider the semi-
group K acting as endomorphisms of Q[π̃] via the morphisms

(4.1) σK : γK′ 7→ φK′,K#K′(γK′),

for γK′ in πK′ ⊂ π̃.
As we have seen in Corollary 3.3, the maps φK,K#K′ satisfy φK#K′,K#K′#K′′◦φK,K#K′ =

φK,K#K′#K′′ . Thus, the homomorphism σK : π̃ → π̃ defined by (4.1) is indeed a semigroup
action, since we have

σK1#K2(γK′) = φK′,K1#K2#K′(γK′)

= φK1#K′,K1#K2#K′(φK′,K1#K′(γK′)) = σK2(σK1(γK′)).

We use the same notation for the induced morphism of the group ring σK : Q[π̃]→ Q[π̃].

By direct inspection of the respective Wirtinger presentations, as in Lemma 3.2, we see
that the generators {a, a2, . . . , aN1 , b2, . . . , bN2} of πK1#K2 satisfy a = φK1,K1#K2(a1) =
φK2,K1#K2(b1). The remaining generators ai = φK1,K1#K2(ai) have a preimage in πK1 but
no preimage in πK2 , and vice versa for the bi. Thus, an element γK1#K2 ∈ πK1#K2 has either
one preimage or none in πK1 and πK2 . Let RK denote the range of the homomorphism
σK acting on Q[π̃]. As a subring of Q[π̃], RK is generated by all the elements γK#K′ in
some πK#K′ ⊂ π̃ that are in the range of φK′,K#K′ . Then, by the observation above,
there is a ring homomorphism ηK : RK → Q[π̃] given by ηK(γK#K′) = γK′ for γK#K′ =
φK′,K#K′(γK′), satisfying σK ◦ ηK = id|RK

and ηK ◦ σK = id|Q[π̃].
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Remark 4.1. The behavior of the endomorphisms σK here is significantly different from
the case of the endomorphisms σn of the Bost–Connes system. Indeed, the σK are injective,
while the σn are surjective. The case we are looking at here resembles closely the adaptation
of the Bost–Connes system to the Habiro ring considered in [38], where a similar injectivity
condition is satisfied by the σn. Our construction here follows closely the setting of [38]
and of §4.7 of [39].

Let GK denote the universal enveloping abelian group (Grothendieck group) of the semi-
group (K,#), as in §2.4.

Lemma 4.2. The direct limit of the ring homomorphisms σK : Q[π̃]→ Q[π̃] satisfies

(4.2) lim−→
K∈K

(σK : Q[π̃]→ Q[π̃]) ∼=
⊗
h∈GK

Q[π].

Proof. First note that, since π is the direct limit of the groups πK , the group ring Q[π] is the
direct limit of the group ringsQ[πK ]. Moreover, because π̃ is the direct product of the groups
πK , the group ring is a tensor product Q[π̃] = ⊗K∈KQ[πK ]. Let ψK : πK → π be the maps
to the direct limit determined by the direct system. They satisfy ψK#K′ ◦ φK,K#K′ = ψK ,
for all K,K ′ ∈ K. We denote by the same symbol the resulting morphisms on the group
rings. We have commutative diagrams

(4.3)

⊗KQ[πK ] ⊗KQ[π]

⊗KQ[πK ] ⊗KQ[π],

ψ=(ψK)

σK′ σ̂K′

ψ=(ψK)

where on the right hand side the morphism σ̂K′ : ⊗KQ[π] → ⊗KQ[π] shifts the indices,
mapping the copy of Q[π] in the K-th position to the copy in the K#K ′-th position. Since
the maps ψK are the maps to the direct limit of the system of the πK , the direct limit of the
system on the left column reduces to that of the right column, or equivalently, the induced
morphism between the direct limits is an isomorphism

ψ : lim−→
K′∈K

(σK′ : Q[π̃]→ Q[π̃])
∼=−→ lim−→

K′∈K
(σ̂K′ : ⊗KQ[π]→ ⊗KQ[π]) .

Elements in the limit on the right hand side are rational combinations of equivalence
classes of elements gK,K′ ∈ π with K,K ′ ∈ K under the equivalence relation induced
by the maps σ̂K′′ , given by the shifting of indices gK,K′ ∼ gK#K′′,K′#K′′ , where (K,K ′) ∼
(K#K ′′,K ′#K ′′) is the relation that defines the elements h = K⊖K ′ in the Grothendieck
group GK of the abelian semigroup K. Thus, we can identify

lim−→
K′∈K

(σ̂K′ : ⊗KQ[π]→ ⊗KQ[π]) = ⊗h∈GKQ[π].

□

We now consider a crossed product construction analogous to the version of the Bost–
Connes construction given in [38].

Definition 4.3. Let Aπ̃,K be the Q-algebra generated by Q[π̃] and generators µK , µ∗K for
K ∈ K with the relations µ∗KµK = 1 and

(4.4) µKσK(γK′) = γK′µK , µ∗KγK′ = σK(γK′)µ∗K .
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Remark 4.4. Unlike what happens with the Bost–Connes algebra, the elements eK =
µKµ

∗
K does not belong to the algebra Q[π̃]. However, as we see below, these elements

belong to the direct limit lim−→K∈K (σK : Q[π̃]→ Q[π̃]) described above.

Let AK be the rings generated by all the elements of the form µKγK′µ∗K with γK′ ∈ π̃.
When K is the unknot we just have Q[π̃]. A direct analog of Lemma 2.2 of [38] shows
that the endomorphisms σK : Q[π̃] → Q[π̃] extend to morphisms σK : AK′ → AK′ when
K ∤ K ′ and to morphism σK : AK′ → AK′′ when K|K ′ with K ′ = K#K ′′. Setting
αK(a) = µKaµ

∗
K gives homomorphisms (since µ∗KµK = 1) mapping αK : AK′ → AK#K′

satisfying
αK(σK(a)) = eKaeK , σK(αK(a)) = a,

where the idempotents eK = µKµ
∗
K mapQ[π̃] by γK′ 7→ eKγK′eK to the subring eKRKeK ⊂

AK , with RK the range of σK as above. All this can be seen easily by essentially the same
argument as in Lemma 2.2 of [38]. Moreover, as in Lemma 2.3 of [38] we then have the
following identification.

Lemma 4.5. The algebra Aπ̃,K described above is the direct limit lim−→K∈K (σK : Q[π̃]→ Q[π̃]).

Proof. There are homomorphisms AK ↪→ AK′ whenever K ′ = K#K ′′ in K, determined
by identifying µKaµ

∗
K = µK′σK′′(a)µ∗K′ . Thus, we can identify the algebra Aπ̃,K with the

direct limit
Aπ̃,K = lim−→

K∈K
AK = ∪K∈KAK .

The morphisms σK and αK described above are compatible with the direct system of the
AK and determine an invertible morphism between the direct limits, hence giving the
identification

lim−→
K∈K
AK ∼= lim−→

K∈K
(σK : Q[π̃]→ Q[π̃]) .

□

In particular, as in Lemma 2.3 of [38] we see that the morphisms induced by the σK on
the direct limit become invertible.

Lemma 4.6. The maps induced on the direct limit ⊗GKQ[π] by the σK : Q[π̃] → Q[π̃] are
isomorphisms.

Proof. In terms of the algebra Aπ̃,K, the elements eK = µKµ
∗
K are idempotents, hence we

can write them as eK = 1 − pK for some projection pK . Using the relations (4.4) we see
that these satisfy σK(pK) = µ∗K(1− µKµ∗K)µK = 0. By the injectivity of the σK this gives
eK = 1. Thus, the µK satisfy both µ∗KµK = 1 and µKµ

∗
K = 1 are therefore unitaries, not

just isometries. The σK are then automorphisms with inverses αK . Equivalently, in terms
of the direct system σK : Q[π̃] → Q[π̃], elements in the direct limit are sequences gK⊖K′ ,
with formal differences K ⊖K ′ ∈ GK, where gK⊖K′#K′′ = σ̂K′′(gK⊖K′), hence in the direct
limit the maps induced by the σK are surjective as well as injective. □

Thus, the resulting crossed product algebra is a group crossed product, which is just
given by the Bernoulli action that shifts the tensor factors indices,

(4.5)
⊗
h∈GK

Q[π] ⋊ GK.
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4.3. Operator algebras: von Neumann algebra. Given a discrete group Γ, one can
consider the action by bounded operators on the Hilbert space ℓ2(Γ) given by the left
(or right) action of the group on itself. This determines a representation of the algebra
C[Γ] = Q[Γ]⊗QC on ℓ2(Γ). We drop the explicit labeling of the left/right regular represen-
tation, and simply write R : C[Γ]→ B(ℓ2(Γ)). The reduced group C∗-algebra C∗

r (Γ) is the
norm completion of R(C[Γ]) in B(ℓ2(Γ)) and the von Neumann algebra N (Γ) is the double
commutant R(C[Γ])′′. The group von Neumann algebra N (Γ) has a finite trace given by
τ(R(γ)) = 1 if γ = 1 and τ(R(γ)) = 0 otherwise. Every von Neumann algebra can be
decomposed as a direct integral of factors. A group von Neumann algebra N (Γ) is a factor
if and only if Γ has the infinite conjugacy classes (ICC) property, namely the conjugacy
classes of all nontrivial elements γ ̸= 1 in Γ are infinite.

The question of whether the knot groups πK (in the non-torus case) satisfy the ICC
property was stated as an open problem (Problem 3) in [17]. It was then proved in Corollary
11.1 of [18] that indeed the knot groups πK are ICC if and only if the knot K is not a torus
knot. A direct product of groups is ICC if and only if each of its factors is, hence the group
π̃ is not ICC because the factors πK corresponding to torus knots are not ICC.

Lemma 4.7. The countably generated group π = lim−→K
πK has the ICC property.

Proof. First observe that the groups πK , for any non-prime knot K, have the ICC property.
This follows immediately from the topological property that all torus knots are prime knots,
hence by the characterization of Corollary 11.1 of [18] the knot group of every non-prime
knot is ICC. Moreover, by Proposition 5.1 of [18], if Γ = Γ1∗Γ0Γ2 is an amalgamated product
of discrete groups, with respect to a common subgroup Γ0 that is not of index 2 (non-
degenerate case), then Γ has the ICC property if at least one of the two groups Γ1, Γ2 is ICC.
(For a more general characterization of the ICC property for amalgamated products see §5.6
of [48].) As in Lemma 3.4, we identify the direct limit π with the knot group π1(S

3 ∖K∞)
of a wild knot K∞ obtained from a tree of connected sums. As we have seen in Lemma 3.4,
after choosing an enumeration Kp of the prime knots, we can describe K∞ as the result of
constructing a necklace given by the infinite connected sumKp1#Kp2# · · ·#Kpn# · · · of the
prime knots in the chosen order, followed iteratively by repeatedly inserting by connected
sum similar necklaces into each of the knots at the previous stage, see Remark 3.5. Consider
a finite subset Kpi , i = 1, . . . , N of prime knots and the tame knot obtained as their direct

sum K = Kp1# · · ·#KpN . Let K̂i, i = 1, . . . , N be the wild knots consisting of all the

successive iterative level to be inserted by connected sum into each of the Kpi , and let K̂ be
the remaining wild knot given by the infinite connected sum of the remaining prime knots
K̂ = KpN+1#KpN+2# · · · and all the successive iterative levels inserted into these. Then

we can describe the resulting wild knot as K∞ = K#K̂#K̂1# · · ·#K̂N . By the previous
observations πK has the ICC property hence the amalgamated product πK#K̂ = πK ∗Z πK̂
also does, and the same applies to the remaining connected sums with the K̂i. □

Remark 4.8. As mentioned above, the ICC property for a group Γ corresponds to N (Γ)
being a II1 factor. Moreover, it is known [9] that if the group Γ is amenable then N (Γ) is
isomorphic to the hyperfinite type II1 factor R. However, knot groups are non-amenable
(see [22]), even though they are K-amenable (Theorem 5.18 of [41]).
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After changing to C-coefficients, the crossed product (4.5) also has a von Neumann
algebra completion

(4.6)
⊗
h∈GK

N (π) ⋊ GK,

which is a special case of the class of Bernoulli crossed products first studied in [9], and
more recently in [47], [63]. For simplicity of notation, here we just write ⊗ instead of the
commonly used ⊗, for tensor products in the von Neumann algebra context. The algebra
(4.9) is represented on the Hilbert space L2(N (π), τ)⊗ℓ2(GK) or equivalently ℓ2(π)⊗ℓ2(GK).
Other representations can be constructed using a unitary representation V of π and replacing
ℓ2(π) with ℓ2(π) ⊗ V. An explicit example of how this twisting by a representation V can
be obtained is discussed briefly in the following §4.4.

4.4. Twisting by de Rham representations. Because the abelianizations of the knot
groups are all equal to πabK = Z, one-dimensional representations of πK by unitary operators
correspond to character homomorphisms

Hom(πK , U(1)) = Hom(Z, U(1)) = U(1).

For each K ∈ K, consider then a choice of a phase θK ∈ R/Z. With the above identification,
this determines a homomorphism, which we still denote by θK : πK → U(1), which sends
all the generators of πK to the same element λK = exp(2πiθK) ∈ U(1).

While the 1-dimensional representations of πK are only of this trivial nature, with all
generators acting as the same phase factor λK , it is well known that the knot groups πK have
interesting higher dimensional representations. In particular, already in the 2-dimensional
case, one has an interesting family of representations, the so called de Rham representations.
In general, representations of πK are related to roots of the Alexander polynomial.

The de Rham representations of knot groups are homomorphisms πK → GL2(C). For
each root rK of the Alexander polynomial ∆K(t) of the knotK, there are, up to conjugation,
2kr de Rham representations of πK , where kr is the largest k such that the k-th order
Alexander polynomial (that is, the greatest common divisor of the determinants of the
(n− k + 1)× (n− k + 1) minors of the Alexander matrix) satisfies ∆k(r) ̸= 0, see [21]. In
a de Rham representation associated to a root r of the Alexander polynomial ∆K(t) the
generators of πK are represented as 2× 2-matrices of the form( √

r x
0 1√

r

)
.

In order to avoid the abelian representations where x is the same for all generators, one
only considers based representations, where one of the x, say for the first generator in a
given Wirtinger presentation of K, is equal to zero, while all the others are nonzero. the
list of the elements x associated to a set of the remaining generators of πK gives a vector
in the kernel of the Alexander matrix AK(t) at t = r, see [7], [21].

For a knot K let VK be the representation of πK given by the complex vector space
VK = ⊕rVK,r, where r ranges over roots of the Alexander polynomial ∆K(t) and VK,r
is a 2-dimensional de Rham representation of πK , constructed as above. We denote by
RK = ⊕rRK,r the resulting representation of πK on the vector space VK .

Lemma 4.9. For a connected sum K = K1#K2, the representation satisfies VK1#K2 =
VK1 ⊕ VK2 with RK1#K2 = RK1 ⊕ RK2. Let ΦKi,K1#K2, i = 1, 2, denote the inclusions of
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the direct factors VKi in VK1#K2. Under the direct system of homomorphisms φKi,K1#K2 :
πKi → πK1#K2, the representations satisfy the compatibility condition

(4.7) ΦKi,K1#K2 ◦RKi(γKi) = RK1#K2(φKi,K1#K2(γKi)) ◦ ΦK1,K1#K2

Proof. The Alexander polynomial is given by the determinant ∆K(t) = det(VK − tV τ
K),

where VK is a Seifert matrix of the knot. For a connected sum K = K1#K2, given
Seifert matrices VK1 and VK2 , the direct sum VK = VK1 ⊕ VK2 is a Seifert matrix for K.
Correspondingly, the Alexander matrix AK(t) = VK − tV τ

K also satisfies AK(t) = AK1(t)⊕
AK2(t) forK = K1#K2. Thus, the set of roots of ∆K1#K2(t) is the union of the sets of roots
of ∆Ki , which implies that the vector space is a direct sum VK = VK1⊕VK2 . The vectors in
the kernel of the Alexander matrix at a given root also correspond to those of AK1(t) and
AK2(t), depending on the root, hence the representations also split as RK = RK1⊕RK2 . To
check the compatibility conditions, notice that we are working with based representations.
We can always assume that the generator in the given Wirtinger presentation of πK1 with
x = 0 in the de Rham representation corresponds to the arc where the connected sum is
performed, which matches then with the action of the corresponding generator of πK2 , so
that the resulting representation given by RK1 ⊕ RK2 on VK is indeed a representation of
the amalgamated product πK = πK1 ∗Z πK2 . □

Remark 4.10. If we want the elements of πK to be represented as unitary, rather than
just as invertible operators, then we should consider SU(2) representations of the knot
group πK , as in [31], rather than GL2(C) representations as above. For our purposes two-
dimensional representations will suffice, but the construction we obtain can be generalized
to the higher dimensional representations obtained as in [3], [28], [55].

Corollary 4.11. The compatibility condition (4.7) satisfied by the de Rham representations
VK implies that they induce a representation of the direct limit π = lim−→K

πK on the space
V = lim−→K

VK , obtained as the direct limit under the direct sytem of morphisms ΦK,K#K′.

Proof. An element in V is an equivalence class of elements vK ∈ VK under the relation vK ∼
ΦK,K#K′(vK). Defining the action [γK ] ∈ π on [vK ] ∈ V as R([γK ])[vK ] := [RK(γK)vK ] is
well defined, since the compatibility condition (4.7) implies that

ΦK,K#K′(RK(γK)vK) = RK#K′(φK,K#K′(γK))ΦK,K#K′vK .

□

4.5. Operator algebras: C∗-algebra. We now consider the reduced C∗-algebras of the
knot groups πK and of the direct limit π.

Lemma 4.12. The reduced group C∗ algebra of the direct limit π = lim−→K
πK satisfies

(4.8) C∗
r (π) = lim−→

K∈K
C∗
r (πK) = ⋆C∗

r (Z),T C
∗
r (πK),

where ⋆C∗
r (Z),T C

∗
r (πK) denotes the infinite amalgamated product of the reduced C∗-algebras

C∗
r (πK) along the common subalgebra C∗

r (Z) = C(S1), performed as in the amalgamated
products of groups, along the tree T , in Remark 3.5.
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Proof. By Proposition 2.5 of [53], the reduced C∗-algebra of the direct limit π is an amalga-
mated product of C∗-algebras. More precisely, by Lemma 3.4, we identify the direct limit
π with the knot group π1(S

3∖K∞) of the wild knot K∞ obtained from a tree of connected
sums obtained by successively inserting with connected sums in each of the knots of a neck-
lace given by the infinite connected sum of the prime knots additional necklaces of the same
kind, and so on iteratively, see Remark 3.5. Thus, the direct limit group can be identified
as an infinite sequence of amalgamated products πK ∗Z πK′ , over a common subgroup Z,
corresponding to each successive connected sum K#K ′. As shown in Proposition 2.5 of
[53], the reduced C∗-algebra of a countably infinite amalgamated product of discrete count-
able groups, all performed along a same common subgroup, is an amalgamated product of
C∗-algebras, C∗

r (π) = ⋆C∗
r (Z),T C

∗
r (πK), where the amalgamated products are performed in

the same way as for the groups, using the notation π = ∗Z,T πK to indicate the infinite amal-
gamated product as in Lemma 3.4 and Remark 3.5, with the connected sums performed
along the edges of the tree T as in Remark 3.5. The reduced amalgamated free product of
reduced group C∗-algebras is taken with respect to the conditional expectations. Namely,
by Theorem 2.2 of [53], given a family of unital C∗-algebras Aj all containing a sub-C∗-
algebra B with 1 ∈ B. If there are conditional expectations Ej : Aj → B with faithful
GNS representations, then there is a unique C∗-algebra A, the amalgamated product of the
Aj along B, with the properties that B ⊂ A with 1A ∈ B, with a conditional expectation
E : A→ B with a faithful GNS representation; with inclusions Aj ⊂ A extending the inclu-
sion B ⊂ A, so that A is generated as a C∗-algebra by the Aj , which form a free family of
subalgebras, with the expectations given by restrictions E|Aj = Ej . The freeness condition
means that E(a1 · · · an) = 0 whenever ai ∈ Aji with ji ̸= ji+1 and all ai ∈ Ker(E). It is
shown in Theorem 2.3 and Proposition 2.5 of [53] that these conditions hold in the case of
amalgamated products of reduced group C∗-algebras as above. Lemma 2.6 of [53], together
with Lemma 3.4 above, also shows that C∗

r (π) = lim−→K∈K C
∗
r (πK). □

At the level of C∗-algebras, one can similarly consider the crossed product

(4.9)
⊗
h∈GK

C∗
r (π) ⋊ GK,

acting on the same Hilbert space ℓ2(π)⊗ ℓ2(GK). As in the case of von Neumann algebras
above, we simply write ⊗ for the completed tensor products in the operator algebra context.

4.6. The combined system. We now combine the previous construction, based on the
direct system of the knot groups πK and the action of the semigroup K, with the information
on the choice of the cyclic branched cover, by combining the algebra constructed above with
the Bost–Connes algebra, via the representations ρK,n : πK → Z/nZ that specify the unique
connected cyclic branched cover Yn(K) of S3 of order n, branched along K.

Let r∞ be the group of all roots of unity of arbitrary order, which we identify with
r∞ ≃ Q/Z. For any n, let rn ≃ Z/nZ be the group of roots of unity of order n, with
rn ⊂ r∞.

Remark 4.13. Notational warning: we avoid the more standard notation µn and µ∞ for
the groups of roots of unity, to avoid a conflict with the Bost–Connes notation, that we
follow below, where µn is used for the isometries in the crossed product algebra.

Any group homomorphism ρK : πK → r∞ or ρ : π → r∞ factors through the abelianiza-
tions πabK = Z and πab = Z, hence it maps all the generators to an element ζ ∈ r∞, of some
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order n. Thus, the homomorphisms ρK and ρ determine representations ρK,n : πK → Z/nZ
and ρn : π → Z/nZ. Let R ⊂ Hom(π, r∞) and RK ⊂ Hom(πK , r∞) be the subsets of
homomorphisms such that the corresponding ρK,n and ρn determine the unique connected
cyclic branched cover.

Consider then the pullback diagrams of groups

(4.10)

π̂K,n r∞

πK r∞

σn

ρK

and

(4.11)

π̂n r∞

π r∞

σn
ρ

where σn : r∞ → r∞ is the endomorphism σn : ζ 7→ ζn, that is, the homomorphism
σn : Q/Z→ Q/Z mapping σn : r 7→ nr. The pullback groups are given by π̂K,n = {(γ, ζ) ∈
πK × r∞ | ρ(γ) = ζn} and π̂n = {(γ, ζ) ∈ π × r∞ | ρ(γ) = ζn}.

Lemma 4.14. Let S ⊂ N be a subsemigroup, with the partial ordering defined by the
divisibility relation. The groups π̂K,n and π̂n form projective systems with respect to n ∈ S,
with epimorphisms σ̂n/m : π̂K,n → π̂K,m for m|n in S, and similarly for the π̂n, with
respective projective limits π̂K,ρK ,S and π̂ρ,S , which depend both on the initial choice of the
morphism ρK ∈ RK (respectively, ρ ∈ R) and on the semigroup S.

Proof. We illustrate the argument for πK ; the case of the direct limit π is analogous. When
m|n in S we have a commutative diagram

(4.12)

π̂K,n r∞

π̂K,m r∞

πK r∞

σ̂n/m
σn/m

σm

ρK

where the arrow σ̂n/m : π̂K,n → π̂K,m is determined by the universal property. We have
σ̂n/m(γ, ζ) = (γ, σn/m(ζ)), with ρ(γ) = ζn = (σn/m(ζ))

m, hence we obtain a projective
system of epimorphisms σ̂n/m : π̂K,n ↠ π̂K,m for m|n. The construction of these pullback
diagrams and the groups π̂K,n of the projective system depend on the initial choice of the
homomorphism ρK ∈ RK ⊂ Hom(πK , r∞) and on the semigroup S, hence the resulting
projective limit π̂K,ρK ,S = lim←−n∈S π̂K,n also depends on ρK and S. □

As mentioned above, the representation and ρK ∈ RK maps the generators of πK to
a single element ζ in the set P(nρK ) of primitive roots of unity of some order nρK . An
arbitrary element γ ∈ πK maps to some ρ(γ) = ζ

nγ
nρK
∈ rnρK

⊂ r∞. Similarly for ρ ∈ R.

Definition 4.15. Given ρ ∈ R (respectively, ρK ∈ RK), Let Nρ ⊂ N (respectively, NρK ⊂
N) be the subsemigroup of n ∈ N with (n, nρ) = 1 (respectively, (n, nρK ) = 1), that is,
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the multiplicative semigroup generated by those primes p ∈ P that do not occur in the
primary decomposition of nρ (respectively, nρK ). We use the notation π̂ρ := π̂ρ,Nρ and
π̂K,ρK := π̂K,ρK ,NρK

for the corresponding projective limits.

Remark 4.16. The effect of passing to the pullbacks π̂K,n and π̂n is to introduce n-th
roots for the elements of the knot groups πK and of their limit π. Indeed, for each element
γ of πK , with ρ(γ) = ζ

nγ
nρK

, there are n corresponding elements in π̂K,n of the form (γ, ζ)

with ζn = ζ
nγ
nρK

. The projective limits π̂K,ρK and π̂ρ contain roots of the elements of πK
(or of π) for arbitrary order in NρK (respectively, Nρ).

Remark 4.17. The construction of the pullbacks π̂K,n and π̂n and projective limits π̂K,ρK
and π̂ρ is analogous to the construction of formal roots of Tate motives in §4.2 of [36].

Proposition 4.18. For all n ∈ Nρ, there are homomorphisms σn : π̂ρ → π̂ρ given by

(4.13) σn(γ, ζ) := (γ, ζn).

The maps {σn}n∈Nρ of (4.13) determine an action of the semigroup Nρ by endomorphisms
of the group ring Q[π̂ρ]. The endomorphisms σn have partial inverses αn : Q[π̂ρ]→ Q[π̂ρ],

(4.14) αn(δ(γ,ζ)) =
1

n

∑
η : ηn=ζ

δ(γ,η)

satisfying σn◦αn(δ(γ,ζ)) = δ(γ,ζ) and αn◦σn(δ(γ,ζ)) = en·δ(γ,ζ), where en = n−1
∑

ξ : ξn=1 δ(1,ξ)
is an idempotent in Q[π̂ρ]. The case of π̂K,ρK is analogous.

Proof. An element (γ, ζ) belongs to π̂n when ρ(γ) = ζn, that is, ζn = ζ
nγ
nρ . An element

(γ, ζ) with γ ∈ π and ζ ∈ r∞ is in π̂ρ when there is some m ∈ Nρ such that ζm = ζ
nγ
nρ .

That is, ζ ∈ ∪m∈Nρσ
−1
m (rnρ). Suppose given (γ, ζ) ∈ π̂ρ and n ∈ Nρ. We need to check that

the element σn(γ, ζ) := (γ, ζn) is also in π̂ρ. Let m ∈ Nρ be such that ζm = ρ(γ) = ζ
nγ
nρ .

We need to check whether there exists an N ∈ Nρ such that ζnN = ζ
nγ
nρ . Observe that,

since (n, nρ) = 1, there is a unique solution k to the congruence equation nk = 1 mod nρ.
This is obtained by reducing modulo nρ the relation nk + nρℓ = 1, which is satisfied by a
pair of k, ℓ ∈ Z, because (n, nρ) = 1. Such k is unique modulo nρ, since if k′ is another
solution, n(k − k′) = 0 mod nρ implies nρ|(k − k′) since (n, nρ) = 1. Note that (k, nρ)
divides nk + nρℓ, hence (k, nρ) = 1. Then N = mk satisfies ζnN = ζm. For (γ, ζ) ∈ π̂ρ,
let δ(γ,ζ) be the corresponding generator of the group ring Q[π̂ρ]. The maps (4.13) extend
to endomorphisms of Q[π̂ρ] by σn(δ(γ,ζ)) = δ(γ,ζn). Since we clearly have σn ◦ σm = σnm,
the maps (4.13) determine a semigroup action of Nρ by endomorphisms of Q[π̂ρ]. For the
endomorphisms αn : Q[π̂ρ] → Q[π̂ρ] of (4.14) we also need to check that, for (γ, ζ) ∈ π̂ρ
and n ∈ Nρ, if η ∈ r∞ is such that ηn = ζ, then (γ, η) is also in π̂ρ. This can be seen
immediately, since we know that there is some m ∈ Nρ, such that ζm = ρ(γ), hence we also
have ηnm = ζm = ρ(γ), hence (γ, η) ∈ π̂ρ. Thus, the αn of (4.14) are well defined. It is
then also immediate to verify that we have

σn ◦ αn(δ(γ,ζ)) =
1

n

∑
η : ηn=ζ

σn(δ(γ,η)) =
1

n

∑
η : ηn=ζ

δ(γ,ζ) = δ(γ,ζ),
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αn ◦ σn(δ(γ,ζ)) =
1

n

∑
η : ηn=ζn

δ(γ,η) =
1

n

∑
ξ : ξn=1

δ(1,ξ) · δ(γ,ζ),

since solutions of ηn = ζn are of the form ξζ. The element en = n−1
∑

ξ : ξn=1 δ(1,ξ) is an
idempotent since we have

en · en =
1

n

∑
ξ1 : ξn1 =1

1

n

∑
ξ2 : ξn2 =1

δ(1,ξ1ξ2) =
1

n

∑
χ :χn=1

δ(1,χ) = en.

□

Thus, we can form the semigroup crossed product algebra as in the Bost–Connes case,
as a direct consequence of the previous proposition.

Corollary 4.19. The semigroup crossed product algebra Aπ̂ρ,Q := Q[π̂ρ]⋊α Nρ has gener-
ators unitaries δ(γ,ζ), for (γ, ζ) ∈ π̂ρ, and isometries µn, for n ∈ Nρ, satisfying

µ∗nµn = 1, µnµ
∗
n = en, µnµm = µnm, µnµ

∗
m = µ∗mµn for (n,m) = 1,

µnδ(γ,ζ)µ
∗
n = αn(δ(γ,ζ)), µ∗nδ(γ,ζ)µn = σn(δ(γ,ζ)).

The C∗-algebra C∗
r (π̂ρ) ×α Nρ, with the same generators and relations, is a C∗-algebra

completion of Aπ̂ρ,Q ⊗Q C.

We can now combine this construction with the one described in the previous subsections
and define the C∗-algebra of observables of the combined system to be the following.

Definition 4.20. The C∗-algebra of observable of the quantum statistical mechanical system
of cyclic branched coverings of S3 and knots is given by the Bernoulli crossed product

(4.15)
⊗
g∈GK

(C∗
r (π̂ρ)⋊α Nρ)⋊ GK.

Remark 4.21. In the following we will refer to C∗
r (π̂ρ)⋊α Nρ and its associated quantum

statistical mechanics as “the inner system”, and to (4.15) as “the combined system” or the
“total system”.

4.7. Quantum statistical mechanics of the inner system. By Lemma 4.14 and Defi-
nition 4.15, we have π̂ρ ⊂ π×Q/Z and Nρ ⊂ N. In order to construct a quantum statistical
mechanical system on C∗

r (π̂ρ)⋊αNρ that incorporates the usual Bost–Connes dynamics, we
start by considering the algebra

(4.16) C∗
r (π)⊗ C∗(Q/Z)⋊N,

where N acts on C∗(Q/Z) with the Bost–Connes endomorphisms (1.1), with ABC =
C∗(Q/Z) ⋊ N given in terms of generators and relations as in (1.3), (1.4). On the algebra
(4.16), we consider the time evolution σt(γ ⊗ a) = γ ⊗ σt(a), with γ ∈ π and a ∈ ABC ,
where σt(a) is the Bost–Connes time evolution. We consider then representations of (4.16)
on the Hilbert space H = L2(π, τ)⊗ ℓ2(N), where τ is the von Neumann trace on the group
von Neumann algebra, with τ(1) = 1 and τ(γ) = 0, for γ ̸= 1, given by

(4.17) πu(γ ⊗ a) ξ(γ′)⊗ ϵm = R(γ)ξ(γ′)⊗ πu(a)ϵm,
for ξ ∈ L2(π, τ) and ϵm the standard basis of ℓ2(N), where R(γ) is the right regular repre-
sentation of C∗

r (π) on L2(π, τ) and πu(a) is the Bost–Connes representation (1.5) of ABC
on ℓ2(N).
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Lemma 4.22. In the representation (4.17), the time evolution σt is implemented by the
Hamiltonian H = 1⊗HBC , where HBC is the Hamiltonian of the Bost–Connes system.

Proof. For H ξ(γ′)⊗ ϵm = log(m) ξ(γ′)⊗ ϵm, we have

eitH πu(γ ⊗ a) e−itH = R(γ)⊗ eitHBC πu(a) e
−itHBC = R(γ)⊗ πu(σt(a)) = πu(σt(γ ⊗ a)).

□

Proposition 4.23. The functionals ψβ := τ ⊗ φβ, with τ the von Neumann trace and φβ
a KMSβ state of the Bost–Connes system are KMS states of (C∗

r (π)⊗ABC , σ). Indeed, all
KMS states are of this form.

Proof. To see that the functionals ψβ = τ ⊗ φβ satisfy the KMSβ condition, consider
elements X,Y ∈ C∗

r (π)⊗ABC of the form X = c⊗a and Y = c′⊗a′, with c, c′ ∈ C∗
r (π) and

a, a′ ∈ ABC . Then set F̃X,Y (z) := τ(cc′)Faa′(z), where Faa′(z) is the holomorphic function

expressing the KMSβ condition for the state φβ on the algebra ABC . The function F̃X,Y is
clearly holomorphic on Iβ and continuous on ∂Iβ because Faa′(z) is. Moreover, it satisfies

F̃X,Y (t) = τ(cc′)φβ(aσt(a
′)) = ψβ(Xσt(Y ))

F̃X,Y (t+ iβ) = τ(cc′)φβ(σt(a
′)a) = τ(c′c)φβ(σt(a

′)a) = ψβ(σt(Y )X),

hence it expresses the KMSβ condition for ψβ. Conversely, suppose given a KMSβ state
ψβ for (C∗

r (π) ⊗ ABC , σ). It is known (see for instance §5.3.1 of [6]), that the KMS con-
dition expressed as above, in terms of interpolation of ψβ(Xσt(Y )) and ψβ(σt(Y )X) by a
holomorphic function FX,Y (z), is equivalent to the property that, for all X,Y in a dense
involutive subalgebra Aan of “analytic elements” (also called “entire elements”) the state
satisfies ψβ(XY ) = ψβ(Y σiβ(X)). In particular, for elements in Aan of the form c⊗ 1 and
c′⊗ 1, we have ψβ(cc

′⊗ 1) = ψβ(c
′c⊗ 1). Indeed, since σt(c⊗ 1) = c⊗ 1 for t ∈ R, elements

of the form c ⊗ 1 are always in Aan with the analytic extension of the time evolution still
trivially given by σz(c⊗ 1) = c⊗ 1. Thus, the KMS state ψβ restricted to elements of the
form c ⊗ 1 has to be a trace, and therefore it has to agree with the unique von Neumann
trace τ . Consider then elements of Aan of the form X = 1 ⊗ a and Y = 1 ⊗ b, with
a, b ∈ ABC . Then σt(X) = 1 ⊗ σt(a) with σt(a) the Bost–Connes time evolution. Thus,
the analytic continuation is also of the form σz(X) = 1 ⊗ σz(a), that is, a ∈ Aan,BC is an
analytic element of the Bost–Connes algebra with the corresponding analytic continuation
of the time evolution. Thus, we have ψβ(1 ⊗ ab) = ψβ(1 ⊗ bσiβ(a)), which implies that,
when restricted to 1 ⊗ ABC , the state satisfies ψβ(1 ⊗ a) = φβ(a) for some KMSβ state
φβ of the Bost–Connes system. Thus, for elements of the form c ⊗ a, with c ∈ C∗

r (π) and
a ∈ ABC one obtains ψβ(c⊗ a) = τ(c)φβ(a). □

Remark 4.24. When restricted to C∗
r (πρ)⋊αNρ, the KMSβ states ψβ = τ⊗φβ of (C∗

r (π)⊗
ABC , σ) define KMS states of the system (C∗

r (πρ)⋊αNρ, σ) with the induced time evolution.

4.8. Properties of the algebra of observables of the combined system. We consider
here the C∗-algebra (4.15) and the corresponding von Neumann algebra

(4.18)
⊗
g∈GK

(N (π̂ρ)⋊α Nρ)⋊ GK,

where N (π̂ρ) is the group von Neumann algebra of π̂ρ. This von Neumann algebra belongs
to the class of noncommutative Bernoulli crossed products [8].
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4.8.1. Tensor product system. In order to construct a quantum statistical mechanical sys-
tem for this algebra, compatible with the construction considered above for the inner system,
we first extend the construction of the inner system to the tensor product

⊗g∈GKC
∗
r (πρ)⋊α Nρ.

Let Bg = C∗
r (πρ)⋊α Nρ denote the g-th factor in the above tensor product algebra. An

element g ∈ GK is an equivalence class g = K ⊖ K ′ of pairs (K,K ′) of knots, up to the
equivalence defining the Grothendieck group GK of the semigroup (K,#).

On the algebra BK⊖K′ we consider a time evolution similar to the one considered in §4.7,
induced on C∗

r (πρ)⋊αNρ from a time evolution σt(γ⊗a) = γ⊗σt,K⊖K′(a) on C∗
r (π)⊗ABC ,

where for a ∈ ABC we now take σt,K⊖K′(a) to be a scaled version of the Bost–Connes time
evolution of the form σt,K⊖K′(e(r)) = e(r) and

(4.19) σt,K⊖K′(µn) = nit f(K⊖K′) µn,

where f : GK → R∗
+ is a function, whose properties we specify below. On the tensor product

⊗g∈GKBg we consider the time evolution σt = ⊗gσt,g.

Definition 4.25. For bounded linear operators on L2(π, τ)⊗ ℓ2(Nρ) of the form R(γ)⊗T ,
we define Trτ (R(γ) ⊗ T ) := τ(γ)Tr(T ), where Tr is the operator trace on B(ℓ2(Nρ)). The
operator R(γ) ⊗ T is Trτ -class if Trτ (R(γ) ⊗ T ) is finite, that is, if T is trace-class. In
particular, for a Hamiltonian of the form 1⊗H as in Lemma 4.22, we define the partition
function as

(4.20) Zτ (β) = Trτ (1⊗ e−βH).

Proposition 4.26. Let H = ⊗g∈GKHg be the Hilbert space with Hg = L2(π, τ) ⊗ ℓ2(Nρ),
with the algebra ⊗g∈GKBg acting on H with the action πu,g of Bg on Hg as in (4.17). Let
H be the Hamiltonian implementing the time evolution σt = ⊗gσt,g in this representation.
Consider a function f : GK → N with f(g) = 1 for g the class of the unknot and f(g) ≥ 2
for all other g ∈ GK. Also assume that f satisfies

(4.21)
∑
g∈GK

f(g)−1 <∞.

Then the operator e−βH is Trτ -class if and only if β > 1 and the partition function of the
system is given by

(4.22) Zτ (β) =
∏
g∈GK

ζnρ(f(g)β) <∞,

where ζm(s) is the Riemann zeta function with the Euler factors of primes p with p|m
removed.

Proof. For ⊗g∈GKBg represented on H = ⊗gHg by the representation ⊗gπu,g, the time
evolution σt = ⊗gσt,g is implemented on H by a Hamiltonian of the form H = ⊗g(1 ⊗
Hg), where Hgϵm = f(g) logmϵm, on the standard orthonormal basis {ϵm} of ℓ2(Nρ).
Definition 4.25 extends to the case of a tensor productH = ⊗gHg with eachHg = L2(π, τ)⊗
ℓ2(Nρ) and a Hamiltonian of the form H = ⊗g(1⊗Hg). For such an operator we write in
shorthand notation

(4.23) e−βH = ⊗g(1⊗ e−βHg).
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The trace is then given by

(4.24) Trτ (e
−βH) =

∏
g

Trτ (1⊗ e−βHg) =
∏
g

Tr(e−βHg).

On a given Hg the Hamiltonian Hg has

Tr(e−βHg) =
∑
n∈Nρ

n−f(g)β,

which converges for β > f(g)−1, since the sum is less than or equal to
∑

n≥1 n
−f(g)β, which

converges for β > f(g)−1 to ζ(f(g)β) with ζ(s) the Riemann zeta function. Since the
summation is only on Nρ instead of N, the sum of the series is equal to∑

n∈Nρ

n−f(g)β = ζnρ(f(g)β),

where
ζm(s) =

∏
p ̸|m

(1− p−s)−1 =
∑

n∈N : (n,m)=1

n−s.

Thus, the operator 1 ⊗ e−βHg is Trτ -class for β > f(g)−1 and satisfies Trτ (1 ⊗ e−βHg) =
ζ(f(g)β). Thus, the partition function of the system is given by the infinite product

Trτ (e
−βH) =

∏
g

Trτ (1⊗ e−βHg) =
∏
g

ζnρ(f(g)β).

The convergence of this depends on each of the factors 1 ⊗ e−βHg being Trτ -class and on
the convergence of the infinite product

∏
g ζnρ(f(g)β) in the range of β where the Trτ -class

condition is satisfied. Since f(g) ≥ 1 for all g ∈ GK, and each 1 ⊗ e−βHg is Trτ -class for
β > f(g)−1, then all these operators are simultaneously Trτ -class in the range β > 1. In
particular, since ming f(g) = 1, then β > 1 is exactly the range where Trτ -class condition
holds. We then use the fact that the Riemann zeta function satisfies

ζ(s) =
∑
n≥1

n−s = 1 +
∑
n≥2

n−s ≤ 1 +

∫ ∞

2

dx

x
= 1− 1

2(s− 1)
≤ 1.

This gives, for f(g) ≥ 1 and β > 1,

0 < ζnρ(f(g)β) ≤ ζ(f(g)β) ≤ 1− 1

2(f(g)β − 1)
.

Thus, the convergence of the infinite product
∏
g ζ(f(g)β) is controlled by the convergence

of the infinite product ∏
g

(
1− 1

2(f(g)β − 1)

)
.

The convergence assumption (4.21) implies the convergence of
∑

g(f(g)β − 1)−1. Recall

that, for aℓ a sequence of complex numbers with
∑

ℓ |aℓ|2 <∞ the convergence of the infinite
product

∏
ℓ(1 + aℓ) is equivalent to the convergence of the series

∑
ℓ aℓ. Since f(g) ≥ 2

for all g except the unknot, for β > 1 we also have (f(g)β − 1)−1 < 1 for all g except
the unknot. Thus, the convergence of

∑
g(f(g)β − 1)−1 also implies the convergence of∑

g(f(g)β− 1)−2. Thus the convergence of the series
∑

g(f(g)β− 1)−1 is in fact equivalent

to the convergence of the product
∏
g(1 −

1
2(f(g)β − 1)−1). Thus, under the convergence
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assumption (4.21), we obtain that the operator e−βH of (4.23) is Trτ -class in the range
β > 1 and the partition function satisfies (4.22). □

We have seen in Proposition 4.23 how to obtain KMSβ states ψβ = τ ⊗φβ on the algebra
Bg = C∗

r (π̂ρ)⋊αNρ from KMS states φβ of the Bost–Connes system and the von Neumann
trace τ . We focus now in particular on the extremal low temperature KMS states of the
Bost–Connes system, φβ = φβ,u of (1.7), with u ∈ Ẑ∗. Let φβ,u,g denote an extremal low
temperature KMS state for the Bost–Connes system with Hamiltonian Hg = f(g)HBC ,
where HBC is the restriction to ℓ2(Nρ) of the usual Bost–Connes Hamiltonian, acting on
ℓ2(N) by HBCϵm = log(m)ϵm. Let ψβ,u,g = τ ⊗φβ,u,g be the corresponding KMSβ state on
the system (Bg, σt,g).

Given a function F : GK → B(H), for a fixed Hilbert space H, consider the operator
⊗g∈GKF (g) acting on the product ⊗g∈GKHg with Hg = H, for all g ∈ GK. In particular, we
can write elements in the algebra ⊗g∈GKBg in the form of functions

F : GK → B(L2(π, τ)⊗ ℓ2(Nρ)).

Then Proposition 4.26 implies that we obtain a KMSβ state on the tensor product system
(⊗g∈GKBg, σt = ⊗gσt,g) as follows.

Corollary 4.27. Let f : GK → N be a function satisfying the same hypotheses as in
Proposition 4.26. Then Ψβ,u,f = ⊗gψβ,u,g is a KMSβ state on the crossed product system
(⊗g∈GKBg, σt = ⊗gσt,g). It is explicitly given in the Gibbs form

(4.25) Ψβ,u,f (F ) =
Trτ (e

−β f HBCF )

Zτ (β)
,

with Zτ (β) as in (4.22).

Proof. As in Proposition 4.26, we have

Trτ (e
−β f HBCF ) =

∏
g

Trτ ((1⊗ e−βHg)F (g)).

Moreover, for an element F (g) = 1⊗ ag, with ag ∈ ABC represented via the representation

πu, the above is equal to
∏
g Tr(e

−βHgπu(ag)) and one obtains∏
g

Tr(e−βHgπu(ag))

ζ(f(g)β)
=
∏
g

φβ,u,g(ag).

□

4.8.2. Bernoulli crossed product. As above, given a function F : GK → B(H), we consider
the operator ⊗g∈GKF (g) on ⊗g∈GKHg, with Hg = H, for all g ∈ GK. Consider the action of
the group GK on the set of functions F : GK → B(H) given by

(4.26) αh(F )(g) := F (h−1g), for h, g ∈ GK.

As above, we write elements in the algebra ⊗g∈GKBg in this way.
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Proposition 4.28. The time evolution determined by (4.19) on the algebra ⊗gBg extends
to the crossed product algebra (⊗gBg)⋊ GK by setting

(4.27) σt(Uh) = eit(f−αh(f))HBCUh,

where Uh, for h ∈ GK are the unitaries implementing the crossed product action αh(F ) =
UhFU

∗
h for F = ⊗gF (g) ∈ ⊗gBg.

Proof. Let H : GK → B(H) be the function H(g) = 1 ⊗Hg = 1 ⊗ f(g)HBC , with HBC ∈
B(ℓ2(Nρ)) the Bost–Connes Hamiltonian. We then write the time evolution on functions
F : GK → B(H) as

(4.28) σt(F )(g) = eitH(g)F (g)e−itH(g).

For h ∈ GK, let Uh be the unitary operator on ⊗g∈GKHg, with Hg = L2(π, τ) ⊗ ℓ2(Nρ),
which acts as (Uhξ)g = ξhg, where we write elements of ⊗g∈GKHg as ξ = ⊗gξg, with
ξg ∈ L2(π, τ)⊗ ℓ2(Nρ). We then have UhFU

∗
hξ = αh(F )ξ. This action satisfies

Uhσt(F )U
∗
h = Uhe

itHFe−itHU∗
h = αh(e

itHFe−itH),

where (αh(e
itHFe−itH)ξ)g = eitf(h

−1g)HBCF (h−1g)e−itf(h
−1g)HBCξg. On the other hand, we

have
σt(UhFU

∗
h) = eitHUhFU

∗
he

−itH = eitHαh(F )e
−itH,

where (eitHαh(F )e
−itHξ)g = eitf(g)HBCF (h−1g)e−itf(g)HBCξg. This implies that the action

of GK transforms the time evolution as σh,t := αh(σt) with

(4.29) σh,t(F )(g) = eitαh(H)(g)F (g)e−itαh(H)(g).

Moreover, we obtain (4.27), since

σt(Uh) = eitHUhe
−itH = eitHe−itαh(H)Uh = eitf HBCe−itαh(f)HBCUh.

This determines how the time evolution extends to the crossed product (⊗gBg)⋊ GK. □

Let ψβ,g denote a KMSβ state, obtained as in Remark 4.24, for the system (Bg, σt,g),
where σt,g is the time evolution (4.19) with Hamiltonian H(g) = f(g)HBC , and the algebra
is Bg = C∗

r (π̂ρ) ⋊α Nρ as above. We denote by Ψβ,u,f the KMSβ state on the system
(⊗gBg,⊗gσt,g) determined by the ψβ,u,g as in Corollary 4.27.

Lemma 4.29. Under the action αh of h ∈ GK, the KMSβ state Ψβ,u,f of Corollary 4.27
satisfies

(4.30) Ψβ,u,f ◦ αh = Ψβ,u,αh−1 (f).

Proof. We have

Ψβ,u,f (αh(F )) = Ψβ,u,f (UhFU
∗
h) = Ψβ,u,f (σ−iβ(U

∗
h)UhF ) = Ψβ,u,f (e

−β(αh−1 (f)−f)HBCF ).

On the other hand, we also have

Ψβ,u,αh−1 (f)(F ) =
Trτ (e

−βαh−1 (f)HBCF )

Zτ (β)

=
Trτ (e

−β f HBCe−β(αh−1 (f)−f)HBCF )

Zτ (β)
= Ψβ,u,f (e

−β(αh−1 (f)−f)HBCF ).

□
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4.9. Knot invariants and the function f(g). We now show how to construct a function
f : GK → N that satisfies the hypotheses of Proposition 4.26 and Corollary 4.27, using
knot invariants. As in §2.5, we write elements of GK in terms of primary decomposition.
Let K ⊖K ′ = (a1K1# · · ·#ajKj)⊖ (b1K

′
1# · · ·#bℓK ′

ℓ) be an element of GK with primary
decompositions K = a1K1# · · ·#amKm and K ′ = b1K

′
1# · · ·#bℓK ′

ℓ, where the Ki and K
′
j

are all distinct prime knots, with multiplicities ai and bj . Since we eliminate all possible
common factors from the primary decomposition of K and K ′, this description of elements
g = K ⊖ K ′ ∈ GK is unique. We also use, as in §2.5, the notation ω(K) for the number
of distinct prime knots in its primary decomposition of a knot K. It is then convenient to
consider knot invariants that are additive under connected sums, and for which there is a
good estimate of the rate of growth of the multiplicities.

To this purpose, we proceed as in §2.5, and we restrict from the Grothendieck group GK
of the semigroup (K,#) of all knots with the connected sum operation, to the subsemigroup
(Ka,#) of alternating knots and its Grothendieck group GK,a, so that we can again use the
genus and the crossing numbers as invariants. This means that, for the purpose of this
section, we will be restricting to the Bernoulli crossed product

(4.31) (⊗g∈GK,a
Bg)⋊ GK,a,

where, as before, Bg = C∗
r (π̂ρ)⋊α Nρ.

Proposition 4.30. For K ⊖ K ′ ∈ GK,a, represented through its primary decomposition
K ⊖ K ′ = (a1K1# · · ·#ajKj) ⊖ (b1K

′
1# · · ·#bℓK ′

ℓ) with no common prime factors, the
function

(4.32) f(K ⊖K ′) = q⌈β+⌉(
∑m

i=1 ai(Cr(Ki)+g(Ki))+
∑ℓ

j=1 bj(Cr(K
′
j)+g(K

′
j))),

with ⌈β+⌉ the smallest integer greater than or equal to the value β+ of Theorem 2.3, satisfies
the hypotheses of Proposition 4.26 and Corollary 4.27.

Proof. The function f(g) takes values in N, since q ≥ 2 is a fixed integer, and it takes
value f(g) = 1 only when g is the unknot, since only in that case the exponent is zero.
Thus, we only need to check that the convergence property

∑
g f(g)

−1 <∞ is satisfied. By
Theorem 2.3 we know that ∑

K∈Ka

f(K)−1 <∞,

where f(K) = q⌈β+⌉(Cr(K)+g(K)), while by (2.19) and Proposition 2.15 we see that also∑
K⊖K′∈GK,a

f(K ⊖K ′)−1 <∞.

□

In particular, we can then see more explicitly the action f 7→ αh−1(f) that determines
the transformation property of the KMSβ state Ψβ,u,f as in Lemma 4.29.

Corollary 4.31. For h = ±K in Pa, the action f(g) 7→ αh−1(f)(g) raises or lowers by
one the multiplicity of the prime factor K in the primary decomposition of g = K ⊖K ′ =
(a1K1# · · ·#ajKj)⊖ (b1K

′
1# · · ·#bℓK ′

ℓ).
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Proof. It suffices to see the effect of the action of an element h ∈ GK,a given by a single
prime knot K ∈ Pa with either a positive or a negative exponent. This gives either

αK(f)(K1 ⊖K2) = f(K1#K ⊖K2),

or, respectively,

α−K(f)(K1 ⊖K2) = f(K1 ⊖K2#K).

Since the definition of the function f depends on the primary decomposition of K1 ⊖ K2

without common factors, the result depends on whether K is a prime factor of either K1 or
K2. By analogy to the case of integers, for a knot K, we denote by (Ki,K) the connected
sum of all the prime factors (with multiplicity) common to Ki and K and we denote by
Ki/(Ki,K) the result of removing (Ki,K) from the primary decomposition of Ki. Since K
is a single prime knot, (Ki,K) = K if it is non-trivial, that is, if K|Ki and it is the trivial
knot otherwise. Similarly Ki/(Ki,K) = Ki/K in the first case and Ki/(Ki,K) = Ki in the
second. Note that, if K1 ⊖K2 is represented in a primary decomposition without common
factors, then K can divide either K1 or K2 or neither, but it cannot divide both. Thus, the
result of α±K(f)(K1⊖K2) is simply to lower or rise by one the power of K in the primary
decomposition. □

Remark 4.32. It would be interesting to see if the construction presented in this paper
can be extended to incorporate other, more sophisticated invariants of knots. For example,
the type of (twisted) L2-Alexander-Conway invariants of knots considered in [34], [35] are
naturally defined in terms of the von Neumann algebraN (πK) of the knot group and appear
to be suitable for the quantum statistical mechanical setting considered here.
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