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Abstract. We develop a general strategy for constructing explicit Local Lang-
lands Correspondences for p-adic reductive groups via reduction to LLC for super-
cuspidal representations of proper Levi subgroups, using Hecke algebra techniques.

As an example of our general strategy, we construct explicit Local Langlands
Correspondence for the exceptional group G2 over a nonarchimedean local field,
with explicit L-packets and explicit matching between the group and Galois sides.
We also give a list of characterizing properties for our LLC. For intermediate
series, we build on our previous results on Hecke algebras. For principal series, we
improve previous works of Muic etc. and obtain more explicit descriptions on both
group and Galois sides.

Moreover, we show the existence of non-unipotent singular supercuspidal rep-
resentations of G2, and exhibit them in mixed L-packets mixing supercuspidal
representations with non-supercuspidal ones. Furthermore, our LLC satisfies a
list of expected properties, including the compatibility with cuspidal support.
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1. Introduction

Let F be a non-archimedean local field and G a connected reductive algebraic
group over F . Let G∨ be the group of C-points of the reductive group whose root
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datum is the coroot datum of G. The Local Langlands Conjecture predicts a sur-
jective map1 irred. smooth

repres. π of G(F )

 /iso. −→


L-parameters

i.e. cont. homomorphisms

φπ : WF × SL2(C)→ G∨ ⋊WF

 /G∨-conj.,

where WF is the Weil group of F . The fibers of this map, called L-packets, are
expected to be finite. In order to obtain a bijection between the group side and
the Galois side, the above Conjecture was later enhanced. On the Galois side, one
considers enhanced L-parameters.
Many cases of the Local Langlands Conjecture have been established, notably:

• for GLn(F ): [HT01, Hen00, Sch13];
• for SLn(F ): [HS12] for char(F ) = 0 and [ABPS16b] for char(F ) > 0;
• for GSp4(F ): [GT11] for char(F ) = 0 and [Gan15] for char(F ) > 0;
• quasi-split classical groups for F of characteristic zero: [Art13, Moe11] etc.

For classical groups, the main methods in literature are either (1) to classify repre-
sentations of these groups in terms of representations of the general linear groups
via twisted endoscopy, and to compare the stabilized twisted trace formula on the
general linear group side and the stabilized (twisted) trace formula on the classical
group side, or (2) to use the theta correspondence.

In this article, we take a completely different approach–from the above exist-
ing literature–to the construction of explicit Local Langlands Correspondences for
p-adic reductive groups via reduction to LLC for supercuspidal representations of
proper Levi subgroups. We apply this general strategy and construct explicit Lo-
cal Langlands Correspondence for the exceptional group G2 over an arbitrary non-
archimedean local field of residual characteristic ̸= 2, 3, with explicit L-packets and
explicit matching between the group and Galois sides. Our methods are inspired by
previous works such as [Mou17, AMS18, AMS21, FOS21, Sol18].

More precisely, we use a combination of the Langlands-Shahidi method, (extended
affine) Hecke algebra techniques, Kazhdan-Lusztig theory and generalized Springer
correspondence–in particular, the AMS Conjecture on cuspidal support [AMS18,
Conjecture 7.8]. For intermediate series, i.e. Bernstein series with supercuspidal
support “in between” a torus and G itself (in our case, the supercuspidal support
has to lie in a Levi subgroup isomorphic to GL2), we use our previous result on
Hecke algebra isomorphisms and local Langlands correspondence for Bernstein series
obtained in [AX22], which builds on the work of many others such as [Ber84, Sol22,
Sol20, Hei11]. For principal series (i.e. Bernstein series with supercuspidal support
in a torus), we improve on previous work of Muic’s [Mui97] and obtain more explicit
description on the group side; and we use [Roc98, Ree02, ABPS16a, ABP11, Ram03]
to match the group and Galois sides.

1To avoid overunning the margins, we use abbreviations “irred.” for “irreducible”, “repres.” for
“representations”, “iso.” for “isomorphism”, “cont.” for “continuous” and “conj.” for “conjugacy”.
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For supercuspidal representations, we make explicit the theory of [Kal19, Kal21]
for the non-singular supercuspidal representations and their L-packets. For singular2

supercuspidal representations, which are not covered in loc.cit. , we use [AMS18,
Conjecture 7.8] (see Property 10.1.9) to exhibit them in mixed L-packets with non-
supercuspidal representations. These mixed L-packets are drastically different from
the supercuspidal L-packets of [Kal19, Kal21].

Furthermore, our LLC satisfies several expected properties, including the expec-
tation that Irr(Sφ) parametrizes the internal structure of the L-packet Πφ(G), where
Sφ is the component group of the centralizer of the (image of the) L-parameter φ.

1.1. Main results. We now state our main results. Let Irrs(G) be the Bernstein
series attached to the inertial class s = [L, σ] (for more details, see (3.3.2)). Let
Φe(G) denote the set of G∨-conjugacy classes of enhanced L-parameters for G. Let

Φs∨
e (G) ⊂ Φe(G) be the Bernstein series on the Galois side, whose cuspidal support

lies in s∨ = [L∨, (φσ, ρσ)], i.e. the image under LLC for L of s (for more details, see
§2.4). For any s = [L, σ]G ∈ B(G), the LLC for L given by σ 7→ (φσ, ρσ) is expected
to induce a bijection (see [AMS18, Conjecture 2] and Conjecture 10.1.12):

(1.1.1) Irrs(G)
∼−→ Φs∨

e (G).

For the group G2, by [AX22, Main Theorem], we have such a bijection (1.1.1) for each
Bernstein series Irrs(G) of intermediate series. On the other hand, the analogous
bijection to (1.1.1) holds for principal series Bernstein blocks thanks to [Roc98,
Ree02, ABPS16a, AMS18].

Let G = G2(F ) and p ̸= 2, 3. Combined with the detailed analysis in all of §5
through §9, we construct an explicit Local Langlands Correspondence

LLC: Irr(G)
1-1−−→ Φe(G)

π 7→ (φπ, ρπ),
(1.1.2)

and obtain the following result (see Theorem 10.2.1).

Theorem 1.1.1. The explicit Local Langlands Correspondence (1.1.2) verifies

Πφπ(G)
∼−→ Irr(Sφπ) for any π ∈ Irr(G), and satisfies (1.1.1) for any s ∈ B(G),

where s∨ = [L∨, (φσ, ρσ)]G∨, as well as a list of properties (see §10.1) that uniquely
determine it (up to very few minor choices3).

In other words,

(1) to each explicitly described π ∈ Irr(G), we attach an explicit L-parameter
φπ and determine its enhancement ρπ explicitly;

(2) to each φ ∈ Φ(G), we describe (the shape of) its L-packet Πφ(G), and give
an internal parametrization in terms of ρ ∈ Irr(Sφ);

(3) Moreover, for non-supercuspidal representations, we specify the precise par-
abolic induction that it occurs in.

2which we define to be simply the ones that are not non-singular in the sense of [Kal21]
3specified in Theorem 10.2.1
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We now comment on several works related to our paper.
A few weeks after our paper first appeared, Gan and Savin had also claimed a

construction of a local Langlands correspondence using completely different meth-
ods. For the convenience of the reader, we briefly comment on the differences between
our work and theirs:

(1) Our LLC is completely explicit, with explicit tables, explicit Kazhdan-Lusztig
triples, explicit information on the L-packets and their packet members, etc.
In particular, explicit computations of unipotent classes (in Kazhdan-Lusztig
triples) such as the ones in our paper have found many important applications
in number theory (see for example [Tho22]).

(2) Our construction and proofs of LLC are purely local, whereas Gan-Savin’s
construction is a consequence of the global construction of Kret-Shin [KS16]
(and the earlier works of Chenevier etc.). As such, our construction and
proofs work for cases even in the lack of global constructions; yet on the
other hand, due to the explicit nature of our construction, it is not hard to
check local-global compatibility when, indeed, global constructions are made.

(3) It is still unclear whether Gan-Savin’s construction gives the LLC nor the
right unique characterization. Contrary to what is claimed, Gan-Savin’s con-
struction involves many choices. For example, Gan-Savin’s construction re-
lies on Bin Xu’s construction of L-packets for PGSp6, which are not known
to be canonical. Moreover, Gan-Savin’s characterization does not establish
stability.

(4) On the other hand, our construction is compatible with that of [Kal19,
Kal16], for which stability is known [FKS19].

(5) Our strategy for constructing the LLC works for arbitrary reductive groups
and does not rely on the existences of theta correspondences.

(6) Furthermore, our methods provide explicit local Langlands correspondence
in a uniform way, independent of the characteristic of F .

We also note the construction of an LLC for generic supercuspidal representations
for G2 in [HKT19] using global methods and theta correspondences. It would be
very interesting to compare our construction with that of loc. cit..

Moreover, as mentioned earlier, our work complements that of [Kal19, Kal21] as
our constructions cover even the non-supercuspidal representations, and specifically
the L-packets that mix supercuspidal representations with non-supercuspidal ones,
i.e. the L-packets that do not appear in loc. cit.. Note that such “mixed” L-packets
necessarily consist of singular supercuspidal representations not addressed in the
constructions of loc. cit..

Lastly, it would also be interesting to compare our construction with those of
[Zhu20], [FS21] and [GL17].

Notation. Let F be a local non-archimedean field. Let oF denote the ring of
integers of F , pF the maximal ideal in oF and kF := oF /pF the residue field of F .
The group of units in oF will be denoted o×F . We assume that kF is finite and denote
by q = qF its cardinality. Let νF := || ||F denote the normalized absolute value of F .
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We fix a separable closure Fsep of F and denote byWF ⊂ Gal(Fsep/F ) the absolute
Weil group of F . Let IF = Gal(Fsep/F ) be the inertia group of F , and PF the wild
inertia group (i.e., the maximal pro-p open normal subgroup of IF ). We denote by
Fnr the maximal unramified extension of F inside Fsep and by FrF the element of

Gal(Fnr/F ) that induces the automorphism Fr: a 7→ aq on the residue field kF of Fnr.
Then WF = IF ⋊ ⟨FrF ⟩. Let W der

F denote the closure of the commutator subgroup of

WF , and write W ab
F = WF /W

der
F . We take W ′

F := WF ×SL2(C) for the Weil-Deligne
group of F .

For n a positive integer, let µn denote the group on nth roots of unity and let ζn
be a primitive nth root of the unity.

For b ∈ F×/F×2, let Ub(1, 1) be the quasi-split unitary group, and Ub(2) the

compact unitary group in two variables in F (
√
b).

For H any reductive algebraic group, we denote by H◦ the identity component
of H and by ZH the center of H. Let h be an element of H. We denote by ZH(h)
the centralizer of h in H and by AH(h) := ZH(h)/ZH(h)◦ the component group of
ZH(h).

Let G be a connected reductive algebraic group defined over F , let Gad = G/ZG

be the adjoint group of G and let AG denote the maximal split central subtorus of
G. Let WG = WG(T) denote the Weyl group of G with respect to a maximal torus
T. By a Levi subgroup of we mean an F -subgroup L of G which is a Levi factor
of a parabolic F -subgroup of G. We denote by G, A, T , L the groups of F -rational
points of G, A, T, L, respectively. Let X∗(L) := X∗(L)F be the group of all rational
characters χ : L→ GL1.

Let B(G, F ) denote the (enlarged) building of G. For x a point in B(G, F ), let Gx

denote the subgroup of G fixing x, and Gx,0 ⊂ Gx the associated parahoric subgroup.
Let Gx,0+ denote the pro-p unipotent radical of Gx,0, and Gx,0 the reductive quotient
of Gx,0. If τ is a representation of Gx,0 we denote by τ = τT,θ its inflation to Gx,0.
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2. Review on enhanced L-parameters

Let G be a connected reductive algebraic group defined over F , and G := G(F )
the group of F -rational points of G. The main purpose of this section is to recall
in §10.1 a list of properties that are expected to be satisfied by the local Langlands
correspondence for G. In later sections, we will use these properties to build an
explicit local Langlands correspondence for the exceptional group G2.

2.1. Definitions and Examples. Let G∨ be the complex reductive group with root
datum dual to that of G. We suppose that the group G is F -split.

A Langlands parameter (or L-parameter) for G is a continuous morphism φ : WF×
SL2(C)→ G∨ such that φ(w) is semisimple for each w ∈WF , and that the restriction
φ|SL2(C) of φ to SL2(C) is a morphism of complex algebraic groups. Since G is F -
split, the Weil group WF acts trivially on G∨. Hence the L-group of G is the direct
product G∨ ×WF and L-parameters may be taken with values in G∨. The group
G∨ acts on the set of L-parameters, and we denote by Φ(G) the set of G∨-conjugacy
classes of L-parameters for G.

Definition 2.1.1. [Vog93] The infinitesimal parameter of an L-parameter φ for G
is a morphism λφ : WF → G∨ defined by

(2.1.1) λφ(w) := φ
(
w,
(

||w||1/2 0

0 ||w||−1/2

))
for any w ∈WF .

Obviously, if φ has trivial restriction to SL2(C), then it coincides with its infini-
tesimal parameter.

Definition 2.1.2. An L-parameter φ (resp. its infinitesimal parameter λφ) is

(1) bounded if φ(WF ) is bounded;
(2) discrete if φ(W ′

F ) (resp. λφ(WF )) is not contained in any proper Levi sub-
group of G∨;

(3) supercuspidal if it is discrete and has trivial restriction to SL2(C).

Remark 2.1.3. An L-parameter is supercuspidal if and only if its infinitesimal
parameter is supercuspidal (since they coincide). On the other hand, if λφ is discrete,
then φ is also discrete. Indeed, if φ is a non-discrete L-parameter, then φ(W ′

F ) ⊂ L∨

for some proper Levi subgroup L∨ of G∨. Then, (2.1.1) implies that λφ(WF ) is
contained in L∨, thus λφ is also non-discrete. However, in general there exist discrete
L-parameters with non-discrete infinitesimal parameters.

Let Irr(G) be the set of isomorphism classes of irreducible smooth representations
of G. A supercuspidal irreducible representation π of G is compact modulo cen-
ter, and so a fortiori, it is square integrable modulo center. Let Irrscusp(G) denote
the subset of Irr(G) formed by the isomorphism classes of supercuspidal irreducible
representations of G. The Langlands correspondence for G is expected to partition
Irr(G) into finite sets, called L-packets, indexed by Φ(G). If π ∈ Irr(G), and φπ

denotes the L-parameter of π, we denote by Πφ(G) the L-packet attached to φ:

(2.1.2) Πφ(G) := {π ∈ Irr(G) : φπ = φ} .
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In order to both characterize the images of supercuspidal representations under the
LLC and parametrize the elements of every L-packet, we need to enhance the L-
parameter by a representation of a certain finite group (as explained in Defini-
tion 2.1.10). In order to to do this, we start by recalling in §2.1.1 the notion of
cuspidal unipotent pair introduced by Lusztig in [Lus84b, Definition 2.4].

2.1.1. Cuspidal unipotent pairs. Let G be a complex Lie group, u a unipotent element
in G and ρ an irreducible representation of AG(u), which is the group of component
of the centralizer of u in G. The pair (u, ρ) is called cuspidal if it determines a
G-equivariant cuspidal local system on the G-conjugacy class of u in the sense of
Lusztig [Lus84b]. We denote by B(Ue(G) the set of G-conjugacy classes of cuspidal
unipotent pairs. The pairs (u, ρ) such that ρ is cuspidal are called cuspidal unipotent
pairs. If (u, ρ) is cuspidal, then u is a distinguished unipotent element in G (that is, u
does not meet the unipotent variety of any proper Levi subgroup of G), see [Lus84b,
Proposition 2.8]. However, in general, there exist distinguished unipotent elements
whose conjugacy classes do not support cuspidal local systems.

Example 2.1.4. The case G = T∨: The pair (T∨, triv) is the unique cuspidal
unipotent pair in T∨.

For GLn(C) and SLn(C), the unipotent conjugacy classes are completely described
by the sizes of the Jordan blocks of the elements in these classes. Therefore, the
unipotent conjugacy classes correspond to partitions of n. We denote by Cν (or just
ν for abbreviation) the unipotent class corresponding to the partition ν: it consists of
unipotent matrices with Jordan blocks of sizes equal to the parts of the partition ν.
For example, the trivial class is parametrized by the partition (1n) := (1, 1, . . . , 1),
and the regular unipotent class corresponds to the partition (n). Note that the
centralizer of a unipotent element of GLn(C) is always connected.

Example 2.1.5. The pair ((1), triv) is a cuspidal unipotent pair in GL1(C), and
there is no cuspidal unipotent pair in GLn(C) for n ≥ 2. Any Levi subgroup of
GLn(C) is isomorphic to a product of the form GLn1(C)×GLn2(C)× · · · ×GLnr(C)
with n1+n2+· · ·+nr = n, thus admits a cuspidal pair only if n1 = n2 = · · · = nr = 1,
i.e. is a maximal torus T. The pair ((1n), triv) is a cuspidal unipotent pair in T.

Example 2.1.6. The cuspidal unipotent pairs in SLn(C) are the pairs (C(n), ρ),
where ρ is an order-n character of µn (see [Lus84b, (10.3.2)]).

Example 2.1.7. A Levi subgroup of SLn(C) is isomorphic to a product of the form
S(GLn1(C)×GLn2(C)× · · · ×GLnr(C)), i.e. the subgroup of GLn1(C)×GLn2(C)×
· · · ×GLnr(C) consisting of elements with determinant equal to 1. We will denote it
as Mn1,...,nr .

The case where n = 3 will be of special interest to us, as we have SL3 as a pseudo-
Levi subgroup of G2,C. Denote by ρ[ζ3] and ρ[ζ23 ] the two order-3 characters of µ3.
Thus the cuspidal unipotent pairs in M(3) = SL3(C) are (C(3), ρ[ζ3]) and (C(3), ρ[ζ

2
3 ]).

The group M2,1 has no cuspidal unipotent pair (see the proof of [Lus84b, (10.3.2)]),
and the unique cuspidal unipotent pair in the maximal torus M(13) of G is ((13), triv).
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2.1.2. L-packets. We shall use the following notations:

(2.1.3) ZG∨(φ) := ZG∨(φ(W ′
F )) and Gφ := ZG∨(φ(WF )).

We also consider the following component groups

(2.1.4) Aφ := ZG∨(φ)/ZG∨(φ)◦ and Sφ := ZG∨(φ)/ZG∨ · ZG∨(φ)◦.

We recall that AGφ(uφ) denotes the component group of ZGφ(uφ). By [Mou17, § 3.1],

(2.1.5) Aφ ≃ AGφ(uφ),where uφ := φ (1, ( 1 1
0 1 )).

Remark 2.1.8. In the case where G = G2, we have ZG∨ = {1}. Thus Sφ =
ZG∨(φ)/ZG∨(φ)◦ = Aφ.

Definition 2.1.9. An enhancement of φ is an irreducible representation ρ of Sφ.
The pairs (φ, ρ) are called enhanced L-parameters for G.

The group G∨ acts on the set of enhanced L-parameters in the following way

(2.1.6) g · (φ, ρ) = (gφg−1, g · ρ).
We denote by Φe(G) the set of G∨-conjugacy classes of enhanced L-parameters.

Definition 2.1.10. An enhanced L-parameter (φ, ρ) ∈ Φe(G) is called cuspidal if φ
is discrete and (uφ, ρ) is a cuspidal unipotent pair in Gφ.

We denote by Φe,cusp(G) the subset of Φe(G) consisting of G∨-conjugacy classes
of cuspidal enhanced L-parameters.

Example 2.1.11. The proper Levi subgroups of SO4(C) are isomorphic to one of
the following groups: GL2(C), GL1(C)× SO2(C), GL1(C)×GL1(C).

The group SO4(C) has a unique cuspidal unipotent pair: ((3, 1), ρ) (see [Lus84b,
Corollary 13.4]). The group GL1(C) × SO2(C) has no cuspidal unipotent pair, and
((12), triv) is the unique cuspidal unipotent pair in GL1(C)×GL1(C).

The construction of enhanced L-parameters (φ, ρ) for G is based on the generalized
Springer correspondence for the group Gφ, which we now recall in §2.2.1.

2.2. Complex groups. In this subsection, we recall several results involving com-
plex reductive groups. Let G be a connected reductive group over C, and let U(G)
denote the unipotent variety of G.

2.2.1. Generalized Springer Correspondence. Let Db
G(U(G)) be the constructible G-

equivariant derived category on U(G), and PervG(U(G)) its subcategory of G-equivariant
perverse sheaves. We denote by Ue(G) the set of G-conjugacy classes of pairs (u, ρ),
with u ∈ G unipotent and ρ ∈ Irr(AG(u)), where AG(u) := ZG(u)/ZG(u)

◦. The
elements of Ue(G) are called enhanced unipotent classes.

Let IC(C,E) be the Deligne-Goresky-MacPherson intersection cohomology com-
plex (see [BBD82], [GM83] or [Lus84b, (0.1)]) of the closure of C with coefficients
in E. The simple objects in PervG(U(G)) are the IC(C,E), where C is a unipotent
class in G and E is an irreducible G-equivariant Qℓ-local system on C. We recall that
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there is a canonical bijection ρ 7→ Eρ between Irr(AG(u)), where u ∈ C, and the set
of isomorphism classes of irreducible G-equivariant local systems on C.

Let P = LU be a parabolic subgroup of G, with Levi factor L and unipotent radical
U. By a P-resolution of an algebraic variety X, we mean a variety Y endowed with
a free P-action and a smooth P-equivariant morphism Y → X. From [BL94, §3.7],
we recall the integration functor

(2.2.1) γGP : D
b
P(U(G))→ Db

G(U(G)),

given by: for any object A of Db
P(U(G)) and Y a G-resolution of U(G),

(2.2.2) (γGPA)(Y ) := (qY )!A(Y )[2 dimG/P],

where qY : P\Y → G\Y is the quotient functor and A(Y ) is defined by regarding Y
as a P-resolution of U(G). Let

(2.2.3) m : U(P) ↪→ U(G) and p : U(P)→ U(L)

denote the inclusion and projection, respectively. Then the parabolic induction func-
tor is the functor

(2.2.4) IGL⊂P := γGP ◦ m! ◦ p∗ : PervL(U(L))→ PervG(U(G)).

If FL is a simple object in PervL(U(L)), then iGL⊂P(FL) is semisimple. A simple object
F in PervG(U(G)) is called cuspidal if for any simple object FL in PervL(U(L)), F

does not occur in iGL⊂P(FL) (equivalently, if rGL⊂P(F) = 0) for any proper parabolic

subgroup P of G with Levi factor L. The functor iGL⊂P is left adjoint to rGL⊂P := p! ◦m∗.
Let Fρ := IC(C,Eρ), where (C, ρ) ∈ Ue(G). Then Fρ occurs as a summand of

iGL⊂P(IC(Ccusp,Ecusp)), for some quadruple (P,L,Ccusp,Ecusp), where P is a parabolic
subgroup of G with Levi subgroup L and (Ccusp,Ecusp) is a cuspidal enhanced unipo-
tent class in L (see [Lus84b, § 6.2]). Moreover, the triple (P,L,Ccusp,Ecusp) is unique
up to G-conjugation (see [Lus84b, Proposition 6.3]). We denote by ϵ := ρEcusp the
(equivalence class of) irreducible representation of AG(u) which corresponds to Ecusp,
and by t := (L, (Ccusp, ϵ))G the G-conjugacy class of (L, (Ccusp, ϵ)). We call t the cus-
pidal support of (C, ρ) and denote by B(Ue(G)) the set of cuspidal supports for the
group G. Then the cuspidal support map for Ue(G) is defined to be the map

(2.2.5) ScG : Ue(G)→ B(Ue(G)),

which sends the G-conjugacy class of (C, ρ) to its cuspidal support t = (L, (Ccusp, ϵ))G.
For simplicity, we often refer to the unipotent class Ccusp in L by a unipotent element
v in it.

By [Lus84b, Theorem 9.2], the fiber of (2.2.5) is in bijection with Irr(Wt), where
Wt := NG(L)/L is a finite Weyl group, i.e.

(2.2.6) Sc−1
G (t) ≃ Irr(Wt) for any cuspidal support t = (L, (Ccusp, ϵ))G.
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2.3. Cuspidal support map of enhanced L-parameters. Let (φ, ρ) be an en-
hanced L-parameter for G. Recall that uφ := φ (1, ( 1 1

0 1 )). Then uφ is a unipotent
element of the (possibly disconnected) complex reductive group Gφ defined in (2.1.3),
and ρ ∈ Irr(AGφ(uφ)) by (2.1.5). Let tφ := (Lφ, (vφ, ϵφ)) denote the cuspidal support
of (uφ, ρ), i.e.

(2.3.1) (Lφ, (vφ, ϵφ)) := ScGφ(uφ, ρ).

In particular, (vφ, ϵφ) is a cuspidal unipotent pair in Lφ.
Upon conjugating φ with a suitable element of ZG◦

φ
(uφ), we may assume that the

identity component of Lφ contains φ
((
1,
(
z 0
0 z−1

)))
for all z ∈ C×. Recall that by the

Jacobson–Morozov theorem (see for example [Car93, § 5.3]), any unipotent element
v of Lφ can be extended to a homomorphism of algebraic groups

(2.3.2) jv : SL2(C)→ Lφ satisfying jv ( 1 1
0 1 ) = v.

Moreover, by [Kos59, Theorem 3.6], this extension is unique up to conjugation in
ZLφ(v)◦. We shall call a homomorphism jv satisfying these conditions to be adapted
to φ.

By [AMS18, Lemma 7.6], up to G∨-conjugacy, there exists a unique homomor-
phism jv : SL2(C)→ Lφ which is adapted to φ, and moreover, the cocharacter

(2.3.3) χφ,v : z 7→ φ
(
1,
(
z 0
0 z−1

))
· jv
(
z−1 0
0 z

)
has image in Z◦

Lφ . We define an L-parameter φv : WF × SL2(C)→ ZG∨(Z◦
Lφ) by

(2.3.4)

φv(w, x) := φ(w, 1) · χφ,v(||w||1/2) · jv(x) for any w ∈WF and any x ∈ SL2(C).

Remark 2.3.1. Let w ∈WF and xw :=
(

||w||1/2 0

0 ||w||−1/2

)
. By (2.1.1), we have

(2.3.5)
λφv(w) = φv(w, xw) = φ(w, 1) · χφ,v(||w||1/2) · jv(xw)

= φ(w, 1) · φ(1, xw) · jv(x−1
w ) · jv(xw) = φ(w, xw) = λφ(w).

Definition 2.3.2. [AMS18, Definition 7.7] The cuspidal support of (φ, ρ) is

(2.3.6) Sc(φ, ρ) := (ZG∨(Z◦
Lφ), (φvφ , ϵ

φ)).

2.4. Bernstein series of L-enhanced paramters. Let L∨ be the Langlands dual
group of L and ιL∨ : L∨ ↪→ G∨ the canonical embedding. Define

(2.4.1) Xnr(L
∨) := {ζ : WF /IF → Z◦

L∨} .

There is a canonical bijection between Xnr(L
∨) and Xnr(L) (see [Hai14, §3.3.1]).

The group Xnr(L
∨) acts on the set of cuspidal enhanced L-parameters for L in the

following way: Given (φ, ρ) ∈ Φe(L) and ξ ∈ Xnr(
LL), we define (ξφ, ϱ) ∈ Φe(L) by

ξφ := φ on IF × SL2(C) and (ξφ)(FrF ) := ξ̃φ(FrF ). Here ξ̃ ∈ Z◦
L∨⋊IF

represents z.

We denote by Xnr(L
∨).(φσ, ρσ) the orbit of (φσ, ρσ) ∈ Φe(L).
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Definition 2.4.1. Let s∨ := [L∨, (φσ, ρσ)]G∨ be the G∨-conjugacy class of

(L∨,Xnr(L
∨).(φσ, ρσ)).

Let B(G∨) be the set of such s∨.

We define
(2.4.2)

NG∨(s∨L∨) :=
{
n ∈ NG∨(L∨) : n(φc, ϱc) ≃ (φc, ϱc)⊗ χ∨ for some χ∨ ∈ Xnr(

LL)
}
,

where s∨L∨ = [L∨, (φσ, ρσ)]G∨ ∈ B(L∨) and denote by W s∨
G∨ the extended finite Weyl

group W (L∨) := NG∨(s∨L∨)/L∨.
By [AMS18, (115)], the set Φe(G) is partitioned into series à la Bernstein as

(2.4.3) Φe(G) =
∏

s∨∈B(G∨)

Φ(G)s
∨
,

where for each s∨, the subset Φe(G)s
∨
is defined to be the fiber of s∨ under the

supercuspidal map Sc defined in (2.3.6).

2.5. Explicit Construction of enhanced L-parameters. We give a construc-
tion of enhanced L-parameters for the irreducible constituents of any parabolically
induced representations from any supercuspidal pair (L, σ)G for which the “crude lo-
cal Langlands correspondence” is established. We emphasize that it does not require
knowledge of the internal structure of the corresponding L-packets for L, but only the
definition of φσ. Our construction extends–and is inspired by–[KL87], [Ree02, §4.2],
[ABPS16a, §4.1] and [ABPS17b, §5], which all treat principal series cases (i.e. when
L is a torus).

Let L be a Levi subgroup of G and let σ be an irreducible supercuspidal represen-
tation of L. Suppose that an L-parameter φσ : WF × SL2(C) → L∨ for L has been
constructed. Then we define

(2.5.1) t := φσ(FrF , 1) and H∨
σ := ZG∨(φσ|IF ).

Let u be a unipotent element of H∨
σ such that tut−1 = uq. Similar to (2.3.2), the

unipotent element u can be extended to a morphism

(2.5.2) ju : SL2(C)→ H∨
σ satisfying ju ( 1 1

0 1 ) = u.

Definition 2.5.1. We attach to the pair (σ, u) an L-parameter φσ,u : WF×SL2(C)→
G∨ defined by

φσ,u (w, ( 1 0
0 1 )) := φσ(w) · ju

(
||w||1/2 0

0 ||w||−1/2

)−1
, for any w ∈WF .

φσ,u (1, ( 1 1
0 1 )) := u.

(2.5.3)

We define the group

(2.5.4) Gσ,u := Gφσ,u = ZG∨(φσ,u(WF )),

and we observe that H∨
σ = Gφσ,u|IF

.
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2.5.1. Loop groups.

Proposition 2.5.2. [Ree10, Proposition 3.8] Suppose G is a connected reductive
group over C and σ is a semisimple automorphism of G. Then (Gσ)◦ is a reductive
quotient of the twisted loop group LθG where θ is a pinned automorphism of G in the
same outer class as σ. Moreover Gσ = (Gσ)◦ is connected if G is simply connected.

Proof. By a classical result of Steinberg’s [Ste68, p.51], σ stabilizes a Borel subgroup
and a maximal torus T ⊂ B ⊂ G. Thus we may write by [Ree10, Lemma 3.2]
σ = θ◦ct, where θ preserves some pinning for (B,T), t ∈ Tθ and ct is the conjugation
by t. Write t = s · tuni, where s ∈ X∗(T

θ) ⊗ R+ and tuni ∈ X∗(T
θ)⊗ S1. By taking

σuni := θ ◦ ctuni , we have (Gσ)◦ = ((Gσuni)◦)cs .

Consider R/Z ∼= S1 with which we take a lift t̃uni ∈ X∗(T
θ) ⊗ R of tuni. Then

t̃uni corresponds to a point on some facet F on the apartment in the building of
LθG associated to the maximal untwisted loop (i.e. C((ϖ))-split) torus Lθ((Tθ)◦) =
L((Tθ)◦). We have that (Gσuni)◦ is the reductive quotient at this facet F. Consider

R exp−−→
∼

R+, and let s̃ ∈ X∗(T
θ)⊗R be the pullback of s. Let F′ be the facet containing

F+ϵs̃ for all 0 < ϵ≪ 1. Since (Gσ)◦ = ((Gσuni)◦)cs is a Levi subgroup of (Gσuni)◦, we
have that (Gσ)◦ is the reductive quotient at F′. This proves the proposition except
for the last statement, which is also a result of Steinberg’s. □

3. Review on representations of p-adic groups

Let R(G) denote the category of all smooth complex representations of G. This
is an abelian category admitting arbitrary coproducts.

3.1. Supercuspidal support. Let π ∈ Irr(G). There exists a parabolic subgroup
P = LU of G and a supercuspidal irreducible representation σ of L such that π
embeds in iGPσ. If P ′ = L′U ′ is a parabolic subgroup of G and σ′ a supercuspidal
irreducible representation of L′, then π is isomorphic to a subquotient of iGP ′σ′ if and
only if there exists an element of G conjugating (L, σ) and (L′, σ′). The G-conjugacy
class (L, σ)G of (L, σ) is called the supercuspidal support of π. We denote by Sc the
map defined by Sc(π) := (L, σ)G.

Two supercuspidal pairs (L, σ1) and (L, σ2) are G-conjugate if and only if σ1 and
σ2 are in the same orbit under WG(L) := NG(L)/L.

3.2. Langlands classification. Let B be a Borel subgroup of G defined over F ,
and let T ⊂ B be a maximal F -torus in G. A parabolic subgroup P of G, with Levi
subgroup L is said to be standard if P ⊃ B(F ) and L ⊃ T(F ). Let a∗L := R⊗X∗(L).
We denote by ν 7→ χν the isomorphism from a∗L to the group of positive real valued
unramified characters of L as defined in [SZ18, (2)].

Definition 3.2.1. A standard triple (P, π, ν) for G consists of:

• P a standard parabolic subgroup of G;
• π an irreducible tempered representation of the standard Levi subgroup L of
P ;
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• ν ∈ a∗L a real parameter which is regular and positive, i.e. properly contained
in the positive chamber determined by P (for more details, see for instance
[SZ18, §1.3]).

Let (P, π, ν) be a standard triple for G. Let iGP : R(L)→ R(G) be the normalized
parabolic induction functor. Then iGP (π ⊗ χν) has a unique irreducible quotient

(3.2.1) J(P, π, ν) := J(iGP (π ⊗ χν)),

called the Langlands quotient of iGP (π⊗χν), and the map J defines a bijection between
the set of all standard triples for G and Irr(G) (see [Kon03, Theorem 3.5]).

Let U denote the unipotent radical of the Borel subgroup B and U := U(F ).
A character χ : U → C× is called generic if the stabilizer of χ in T(F ) is exactly
ZG(F ). Such a pair w := (U, χ) is called a Whittaker datum for G. There are only
finitely many G-conjugacy classes of Whittaker data for G, since the group Gad(F )
acts transitively on the set of these pairs.

Definition 3.2.2. A smooth irreducible representation π of G is called w-generic if
HomG(π, Ind

G
U χ) ̸= 0.

3.3. Bernstein series. Let L be a Levi subgroup of a parabolic subgroup P of
G, and let Xnr(L) denote the group of unramified characters of L. Let σ be an
irreducible supercuspidal smooth representation of L.

Notation 3.3.1. We write:

• (L, σ)G for the G-conjugacy class of the pair (L, σ);
• s := [L, σ]G for the G-conjugacy class of the pair (L,Xnr(L) · σ).

We denote by B(G) the set of such classes s. We set sL := [L, σ]L.

Let Rs(G) be the full subcategory of R(G) whose objects are the representations
(π, V ) such that every G-subquotient of π is equivalent to a subquotient of a parabol-
ically induced representation iGP (σ

′), where iGP is the functor of normalized parabolic
induction and σ′ ∈ Xnr(M) · σ. The categories Rs(G) are indecomposable and split
the full smooth category R(G) into a direct product (see [Ber84]):

(3.3.1) R(G) =
∏

s∈B(G)

Rs(G).

We denote by Irrs(G) the classes of irreducible objects in Rs(G) –i.e. irreducible
representations whose supercuspidal support lies in s– and call Irrs(G) the Bernstein
series attached to s. By (3.3.1), Bernstein series give a partition of the set Irr(G) of
isomorphism classes of irreducible smooth irreducible representations of G:

(3.3.2) Irr(G) =
⊔

s∈B(G)

Irrs(G).

For s = [L, σ]G ∈ B(G), we define

(3.3.3) NG(sL) := {g ∈ G : gL = L and gσ ≃ χ⊗ σ, for some χ ∈ Xnr(L)} ,
where sL = [L, σ]L ∈ B(L) and denote by W s

G the extended finite Weyl group
NG(sL)/L.
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3.4. Formal degrees. Let A denote the maximal F -split torus of the center of G,
and A := A(F ). Let π be an irreducible square-integrable representation of G on a
Hilbert space V . Let fdeg(π) ∈ R>0 denote the formal degree of π. By definition,
we have

(3.4.1)

∫
G/A

(π(g)v1, v
′
1)(π(g)(v2, v

′
2)dg = fdeg(π)−1 · (v1, v′1)(v2, v′2)

holds for all v1, v
′
1, v2, v

′
2 ∈ V , where (·, ·) is a G(F )-invariant inner product on V .

We remark that fdeg(π) depends on the choice of the Haar measure dg on G. We
normalize the measure dg as in [GG99]. When G splits over an unramified extension
of F , by [FOS21, (6)], the volume of the parahoric subgroup Gx,0 is then

(3.4.2) Vol(Gx,0) = q− dim(Gx,0)/2|Gx,0|p′ .

3.5. Unipotent representations. Let x ∈ B(G,F ) and let τ be an irreducible
cuspidal unipotent representation of Gx,0. Let τ∨ denote the contragredient of the
inflation τ of τ to Gx,0. Consider the algebra H(G, τ ) of locally constant locally
supported End(τ∨)-valued functions f satisfying f(p1gp2) = τ∨(p1)f(g)τ

∨(p2) for
any p1, p2 ∈ Gx,0 and g ∈ G.

We have an anti-involution onH(G, τ ) given on the Iwahori-Matsumoto basis (Tw)
by Tw := Tw−1 . It induces a Hermitian form h on H(G, τ ) defined by h(f1, f2) :=
(f1f2)(1). Let H2(G, τ ) denote the corresponding completion. A finite dimensional
simple left H(G, τ )-module πH is called square-integrable if it may be realized as
an H(G, τ )-submodule MπH of H2(G, τ ). There is a positive real number d(πH),
depending only on the isomorphism class of πH, such that

(3.5.1) h(f1, f2) · h(g1, g2) = d(πH) · h(f1g1, f2g2) for any f1, f2, g1, g2 ∈MπH .

Proposition 3.5.1. Let π be a unipotent square-integrable irreducible representation
of G such that πH := HomGx,0(τ , π) ̸= 0. We have

(3.5.2) fdeg(π) =
dim τ

Vol(Gx,0)
· d(πH).

Proof. See [Ree97, Proposition 9.1]. □

Generalizing his work with Kazhdan [KL87], Lusztig proved in [Lus95] that, when
G is simple of adjoint type, the unipotent representations of G are in bijective corre-
spondence with G∨-conjugacy classes of triples (t, u, ρ), where s ∈ G∨ is semisimple,
u is unipotent such that tut−1 = uq, and ρ is the isomorphism class of an irreducible
representation of the component group of the mutual centralizer in G∨ of t and u,
such that ρ is trivial on the center of G∨. This result was extended to an arbitrary
group G in [FOS21].

One can replace u by n = ln(u), a nilpotent element in the Lie algebra g∨ of G∨

so that an indexing triple is (t, n, ρ), where t is a semisimple element in G∨, n a
nilpotent element in g∨ such that Ad(t)n = qn, and an irreducible representation ρ
of the component group A(t, n) := ZG∨(t, n)/ZG∨(t, n)◦, where ZG∨(s, n) := ZG∨(t)∩
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ZG∨(n) and ZG∨(n) is taken with respect to the adjoint action of G∨ on g∨. We will
use this form of the indexing triples in the examples in later sections.

3.6. Supercuspidal representations. In this section, we briefly recall the general
construction of supercuspidal representations of G = G(F ), where G is an arbi-
trary tamely ramified reductive group and the residual characteristic p of F does not
divide the order of the Weyl group of G. We also describe different kinds of super-
cuspidal representations that will occur: regular (resp. non-singular) supercuspidal
representations, depth-zero supercuspidal representations and unipotent supercusp-
idal representations.

3.6.1. Deligne-Lusztig theory. Let G be a connected reductive algebraic group de-
fined over a finite field Fq. We denote by G∨ a connected reductive algebraic group
defined over Fq with root datum dual to that of G. Recall from classical Deligne-
Lusztig theory [DL76, §10] and [Lus84a, (8.4.4)] that the set of equivalence classes
of irreducible representations of G(Fq) decomposes into a disjoint union

(3.6.1) Irr(G(Fq))
∼−→
∐
(s)

E(G(Fq), s),

where (s) is the G∨(Fq)-conjugacy class of a semisimple element s of G∨(Fq), and
E(G, s) is the Lusztig series defined as below in (3.6.3). More precisely, the decompo-
sition is obtained as follows: as proved in [DL76, Corollary 7.7], for any irreducible
representation τ of G(Fq), there exists an Fq-rational maximal torus T of G and a
character θ of T(Fq) such that τ occurs in the Deligne-Lusztig (virtual) character

R
G
T (θ), i.e. such that ⟨τ,RG

T (θ)⟩G(Fq) ̸= 0, where the character of τ is also denoted by

τ , and ⟨ , ⟩G(Fq) is the usual scalar product on the space of class functions on G(Fq):

(3.6.2) ⟨f1, f2⟩G(Fq) = |G(Fq)|−1
∑

g∈G(Fq)

f1(g) f2(g).

If θ = 1 (i.e. the trivial character of T(Fq)), then the representation τ is called
unipotent.

If the pairs (T, θ) and (T′, θ′) are not G(Fq)-conjugate, then R
G
T (θ) and R

G
T′(θ′)

are orthogonal to each other with respect to ⟨ , ⟩G(Fq), but they may have a common
constituent as they are virtual characters. This has motivated the introduction of
the following weaker notion of conjugacy: the pairs (T, θ) and (T′, θ′) are called
geometrically conjugate if there exists a g ∈ G, such that T′ = gT and such that
for any non-negative integer m, we have θ′ ◦ NFrm|Fr = θ ◦ NFrm|Fr ◦ad(g), where
Fr: G→ G is the geometric Frobenius endomorphism associated to the Fq-structure

of G (hence we have GFr = G(Fq)), and NFrm|Fr : TFrm → TFr is the norm map given

by NFrm|Fr(t) := t · Fr(t) · Fr2(t) · · ·Frm−1(t).
The G(Fq)-conjugacy classes of pairs (T, θ) as above are in one-to-one correspon-

dence with the G∨(Fq)-conjugacy classes of pairs (T∨, s) where s is a semisimple
element of G∨(Fq), and T∨ is an Fq-rational maximal torus of G∨ containing s.
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Then the Lusztig series E(G, s) is defined as

(3.6.3) {τ ∈ Irr(G) : τ occurs in R
G
T (θ) where (T, θ)G corresponds to (T∨, s)G∨}.

By definition, E(G, 1) consists only of unipotent representations.
By the various works of Lusztig, there is a bijection

(3.6.4)
E(G(Fq), s)

∼−→ E(G∨
s (Fq), 1)

τ 7→ τunip,

where G∨
s := ZG∨(s) denotes the centralizer of s in G∨, and hence plays the role of

an “endoscopic” group of G:

• In the case whereG has connected center, the existence of the bijection (3.6.4)
was established in [Lus84a, Theorem 4.23].
• For an arbitrary G, the group G∨

s may be disconnected, and one needs to first
extend the notion of Deligne-Lusztig character to this case in the following
way. Let G∨,◦

s be the identity component of G∨
s . For T∨ an Fq-rational

maximal torus of G∨,◦
s and θ∨ a character of T∨(Fq), we define

(3.6.5) R
G∨

s

T∨ (θ
∨) := Ind

G∨
s (Fq)

G∨,◦
s (Fq)

(R
G∨,◦

s

T∨ (θ∨)).

Then E(G∨
s (Fq), 1) is defined as the set of irreducible coonstituents of R

G∨
s

T∨ (1)

and the equivalence (3.6.4) was established in [Lus88, §12].

Proposition 3.6.1. The bijection (3.6.4) satisfies the following properties:

(1) It sends a Deligne-Lusztig character R
G
T (θ) in G (up to a sign) to a Deligne-

Lusztig character R
G∨

s

T∨ (1), where 1 denotes the trivial character of T∨ (see

[Lus88, §12]).
(2) It preserves cuspidality in the following sense:

if τ ∈ Irr(G(Fq), s) is cuspidal, then
(a) if s ∈ G∨(Fq), then the largest Fq-split torus in the center of G∨

s coincides
with the largest Fq-split torus in the center of G∨ (see [Lus84a, (8.4.5)]),

(b) the unipotent representation τunip is cuspidal.
(3) The dimension of τ is given by

(3.6.6) dim(τ) =
|Gx0 |p′

|(ZG∨
x0
(s))(Fq)|p′

dim(τunip),

where | · |p′ is the largest prime-to-p factor of | · | (see [DM91, Remark 13.24]).

Let WG(T) := NG(T)/T and θ ∈ Irr(T(Fq)). We define

(3.6.7) WG(T, θ)Fr := {w ∈WG(T)Fr : wθ = θ}.

By [DL76, Theorem 6.8], we have

(3.6.8) ⟨RG
T (θ), R

G
T (θ)⟩G(Fq) = |WG(T, θ)Fr|,
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where ⟨ , ⟩G(Fq) is as in (3.6.2). We recall that θ is said to be in general position if

WG(T, θ)Fr = {1} (see [DL76, Definition 5.15]).

Lemma 3.6.9. Let τ ∈ E(G(Fq), s) be such that G∨
s := ZG∨(s) is a torus. Then

τ = ±RG
T (θ), where θ is in general position.

Proof. When G∨
s := ZG∨(s) is a torus, we have τunip = 1 = R

ZG∨ (s)

T∨ (1). By Proposi-

tion 3.6.1(1), we obtain τ = ±RG
T (θ). Therefore

(3.6.10) ⟨RG
T (θ), R

G
T (θ)⟩G = ⟨τ, τ⟩G = 1.

Then it follows from (3.6.8) that |WG(T, θ)Fr| = 1, i.e. θ is in general position. □

3.6.2. Depth-zero supercuspidal representations. Let G be a connected reductive al-
gebraic group defined over F and S an F -torus of G. Then S possesses an ft-Néron
model (a smooth group scheme over oF of finite type), the neutral connected compo-
nent of it is called the connected Néron model of S and denoted by S◦ (see [BLR90,
§10]). Let S := S(F ) and S0 := S◦(oF ).

We suppose that the torus S is a maximally unramified elliptic maximal torus
(as defined in [Kal19, Definition 3.4.2]), i.e. such that S = ZG(T), where T is the
maximal unramified subtorus of S. Since T is a maximal split torus over Fnr, we
have the apartment Ared(S, Fnr) ⊂ Bred(G, Fnr). Since S is defined over F and
elliptic, this apartment is Frobenius stable, and contains a unique Frobenius-fixed
point, which we denote by x. Then x is a vertex of Bred(G, Fnr) by [Kal19, Lemma
3.4.3]. Therefore Gx,0 is a maximal parahoric subgroup of G. We denote by Gx,0 its
reductive quotient, which is the group of Fq-points of a connected reductive algebraic

group Gx,0 over Fq.
The special fiber of the (automatically connected) ft-Neron model of T embeds

canonically as an elliptic (i.e. anisotropic modulo center) maximal torus T of the
reductive group Gx. More explicitly, T(kF ′) ⊂ Gx(kF ′) is the image in G(F ′)x,0+ of
S(F ′) ∩G(F ′)x, or equivalently of T(F ′) ∩G(F ′)x, for every unramified extension
F ′ of F [DeB06, Lemma 2.2.1(3)]. Every elliptic maximal torus of Gx,0 arises in this
way by [DeB06, Lemma 2.3.1].

In [DL76, Definition 5.15], Deligne and Lusztig defined two regularity conditions
for a character θ of T(Fq), which we now recall:

• θ is said to be in general position if its stabilizer in (NG(T)/T)(Fq) is trivial.
• θ is said to be non-singular if it not orthogonal to any coroot.

If the centre of G is connected, θ is non-singular if and only if it is in general position
by [DL76, Proposition 5.16]. The character θ is said to be regular if its stabilizer in
(NG(S)/S)(F ) is trivial (see [Kal19, Definition 3.4.16]). If θ is regular, then it is in
general position (see [Kal19, Fact 3.4.18]).

Definition 3.6.2. [Kal19, Definition 3.4.16] Let θF be a depth-zero character of S.
Then θF is said to be regular if its restriction to S0 equals the inflation of a regular
character of T(Fq).
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Let π be an irreducible depth-zero supercuspidal representation of G. Then there
exists a vertex x ∈ Bred(G,F ) and an irreducible cuspidal representation τ of Gx(Fq),
such that the restriction of π to Gx,0 contains the inflation of τ (see [Mor96, §1-2]
or [MP96a, Proposition 6.6]). The normalizer NG(Gx,0) of Gx,0 in G is a totally
disconnected group that is compact mod center, which, by [BT84, proof of (5.2.8)],
coincides with the fixator G[x] of [x] under the action of G on the reduced building
of G. The π is compactly induced from a representation of NG(Gx,0):

(3.6.11) π = c-IndGG[x]
(τ ).

Definition 3.6.3. [Kal19, Definition 3.4.19] The representation π is said to be reg-

ular if τ = ±RGx,0

T (θ) for some pair (T, θ), where T is an elliptic maximal torus of

Gx,0 and θ is a regular character of T(Fq).

Let π be an irreducible depth-zero supercuspidal representation of G. Let x ∈
Bred(G,F ) and τ ∈ Irrcusp(Gx(Fq)) such that the restriction of π to Gx,0 contains τ .

Proposition 3.6.4. If G is simply connected, then π is regular if and only if τ =

±RGx,0

T (θ), where T is an elliptic maximal torus of Gx,0 and θ is a character of T(Fq)

that is in general position.
In particular, if τ ∈ E(Gx,0(Fq), s) and ZG∨

x,0
(s) is a torus, then π is regular.

Proof. By [Kal19, Lemma 3.4.10], we have an exact sequence

(3.6.12) 1→ NGx,0(S)/S0 → NG(S)(F )/S → Gx/[Gx,0 : S]→ 1,

and the natural map

(3.6.13) NGx,0(S)/S0 −→ NGx
(T)(Fq)/T(Fq)

is bijective. Since G is simply connected, the parahoric subgroup Gx,0 coincides with
the fixator Gx in G of x (see [BT84, §5.2.9]). Combining (3.6.12) and (3.6.13), we
have

(3.6.14) NGx(S)/S0 ≃ NG(S)(F )/S ≃ NGx
(T)(Fq)/T(Fq).

Thus by (3.6.14), θ is regular if and only if it is in general position. The last assertion
follows from Lemma 3.6.9. □

Suppose G is simply connected, then G[x] = Gx,0 for any x ∈ B(G, F ). Let
π ∈ Irr(G) be a depth-zero supercuspidal representation of G. By (3.6.11), there is
τ ∈ Irr(Gx,0) such that

(3.6.15) π = c-IndGGx,0
τ =: iGGx,0

τ.

Proposition 3.6.5. The formal degree of π is given by

(3.6.16) fdeg(π) =
qdim(Gx,0)/2 dim(τunip)

|(ZGx,0
(s))∨(Fq)|p′

.
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Proof. We have (see for instance [Sch21, Lemma 18] or [DR09, § 5.3])

(3.6.17) fdeg(π) =
dim τ

Vol(Gx,0)
.

Combining (3.6.6) and (3.4.2), we have
(3.6.18)

fdeg(π) =
|Gx,0|p′ dim(τunip)

|(ZG∨
x,0

(s))(Fq)|p′ · q− dim(Gx,0)/2|Gx,0|p′
=

qdim(Gx,0)/2 dim(τunip)

|(ZG∨
x,0

(s))∨(Fq)|p′
.

□

3.6.3. Positive-depth supercuspidal representations. In this section, we assume that
G splits over a tamely ramified extension of F , and that p does not divide the order
of the Weyl group WG of G. Let E/F be a finite extension. By a twisted E-Levi
subgroup of G, we mean an F -subgroup G′ of G such that G′ ⊗F E is a Levi
subgroup of G⊗F E. If E/F is tamely ramified, then G′ is called a tamely ramified
twisted Levi subgroup of G. A tamely ramified twisted Levi sequence in G is a

finite sequence G⃗ = (G0,G1, · · · ,Gd) of twisted E-Levi subgroups of G, with E/F
tamely ramified (see [Yu01, p 586]). We recall that an anisotropic algebraic group
over F is a linear algebraic group that does not contain non-trivial F -split tori.

Definition 3.6.6. A cuspidal G-datum is a tuple D := (G⃗, y, r⃗, π0, ϕ⃗) consisting of

(1) a tamely ramified Levi sequence G⃗ = (G0 ⊂ G1 ⊂ · · · ⊂ Gd = G) of twisted
E-Levi subgroups of G, such that ZG0/ZG is anisotropic;

(2) a point y in B(G0, F ) ∩ A(T, E), whose projection to the reduced building
of G0 is a vertex, where T is a maximal torus of G0 (hence of Gi) that splits
over E;

(3) a sequence r⃗ = (r0, r1, . . . , rd) of real numbers such that 0 < r0 < r1 < · · · <
rd−1 ≤ rd if d > 0, and 0 ≤ r0 if d = 0;

(4) an irreducible depth-zero supercuspidal representation π0 of G0;

(5) a sequence ϕ⃗ = (ϕ0, ϕ1, . . . , ϕd) of characters, where ϕi is a character of Gi

which is trivial on Gi
y,ri+ and nontrivial on Gi

y,ri for 0 ≤ i ≤ d− 1, such that

• ϕd is trivial on Gd
y,rd+

and nontrivial on Gd
y,rd

if rd−1 < rd, and ϕd = 1
if rd−1 = rd (with r−1 defined to be 0).
• Moreover, ϕi is Gi+1-generic of depth ri relative to y in the sense of
[Yu01, §9] for 0 ≤ i ≤ d− 1.

All supercuspidal representations arise from cuspidal G-data if p does not divide
the order of the Weyl group of G (see [Fin21]). When G = G2, this condition says
that p ̸= 2, 3.

Let S be a maximal torus in G and be a character of depth zero. As before, let T
denote the maximal unramified subtorus of S. Let F ′/F be an unramified extension
splitting T and Rres(G,T) denote the set of restrictions to T of the absolute roots
in R(G,S).
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Definition 3.6.7. [Kal21, Definition 3.1.1] A depth-zero character θF : S(F )→ C×

is called F -non-singular if for every α ∈ Rres(G,T) the character θF ◦NF ′|F ◦α∨ : F ′ →
C× has non-trivial restriction to oF ′ .

Definition 3.6.8. [Kal21, Definition 3.4.1] Let θF : S → C× be a character. The
pair (S, θF ) is said to be tame F -non-singular elliptic in G if

• S is elliptic and its splitting extension E/F is tame;
• Inside the connected reductive subgroup G0 of G with maximal torus S and
root system

R := {α ∈ R(G,S)|θF (N(α∨(E×
0+))) = 1},

the torus S is maximally unramified.
• The character θF is F -non-singular with respect to G0 in the sense of Defi-
nition 3.6.7.

In [Kal19, Kal21], Kaletha describes how to construct supercuspidal representa-
tions πS,θF of G from tame F -non-singular elliptic pairs (S, θF ) in G. The represen-
tation πS,θF is obtained in two steps. One starts by unfolding the pair (S, θF ) into a

cuspidal G-datum DS,θF := (G⃗, y, r⃗, π0, ϕ⃗) as in Definition 3.6.6. The properties of
S and θF provided by Definition 3.6.8 allow us to go to the reductive quotient and
use the theory of Deligne-Lusztig cuspidal representations in order to construct π0,
the so-called depth-zero part of the datum DS,θF . The second step involves applying
Yu’s construction [Yu01] to the obtained G-datum.

Since p does not divide the order of the Weyl group of G, it does not divide the
order of the fundamental group of Gder.

Definition 3.6.9. [Kal19, Definition 3.7.9] A supercuspidal representation of G is
said to be regular if it arises via Yu’s construction from a cuspidal G-datum D such
that the representation π0 of G0 is regular in the sense of Definition 3.6.3.

Let S0 ⊂ S be the connected component of the intersection of kernels of all
elements of R0+, and R(G,S0) be the image of R(G,S)\R0+ under the restriction
map X∗(S)→ X∗(S0).

Definition 3.6.10. [Kal21, Definition 4.1.4] A torally wild supercuspidal L-packet
datum of G is a tuple (S, j∨, χ0, θF ), where

• S is a torus of dimension equal to the absolute rank of G, defined over F
and split over a tame extension of F ;
• j∨ : S∨ ↪→ G∨ is an embedding of complex reductive groups whose G∨-
conjugacy class is ΓF -stable;
• χ0 = (χα0)α0 are tamely ramified χ-data for R(G,S0);
• θF : S(F )→ C× is a character; subject to the condition that (S, θF ) is a tame
F -non-singular elliptic pair.

Formal degrees of arbitrary-depth tame supercuspidal representations in the sense
of [Yu01] can be computed as in [Sch21, Theorem A]. LetG be a semisimple F -group,
and letD be a cuspidalG-datum with associated supercuspidal representation π. Let
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Ri denote the absolute root system of Gi, for the twisted Levi sequence (Gi)0≤i≤d.
Let expq(t) := qt.

Proposition 3.6.11. The formal degree of π is given by
(3.6.19)

fdeg(π) =
dim ρ

[G0
[y] : G

0
y,0+]

expq

(
1

2
dimG+

1

2
dimG0

y,0 +
1

2

d−1∑
i=0

ri(|Ri+1| − |Ri|)

)
.

Remark 3.6.12. The Formal Degree Conjecture of [HII08], which describes the
formal degree fdeg(π) of any irreducible smooth representation π of G in terms of
adjoint gamma factor, has been proved for regular supercuspidals in [Sch21, Theo-
rem B], for non-singular supercuspidals in [Oha21, Theorem 9.2], and for unipotent
supercuspidals in [FOS20, Theorem 3].

4. Preliminaries on G2

Let G = G2 be the exceptional group of type G2 over F , and let G = G2(F )
denote its group of F -rational points. Let T be a maximal F -split torus in G and
(ε1, ε2, ε3) be the canonical basis of R3, equipped with the scalar product ( | ) for
which this basis is orthonormal. Then α := ε1 − ε2 and β := −2ε1 + ε2 + ε3 define a
basis of the set R(G,T) of roots of G with respect to T, and

(4.0.1) R(G,T)+ := {α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}
is a subset of positive roots in R(G,T) (see [Bou68, Planche IX]). We have

(4.0.2) (α|α) = 2, (β|β) = 6, and (α|β) = −3.
The root α is a short root, and β is a long root. Let B = TU be the corresponding
Borel subgroup in G and B = TU for the opposite Borel subgroup. For any root
γ ∈ R(G,T), we denote by γ∨ the corresponding coroot and by sγ the fundamental
reflection in W defined by γ:

(4.0.3) sγ(γ
′) := γ′ − ⟨γ′, γ∨⟩γ = γ′ − 2(γ′|γ)

(γ|γ)
γ, for any γ′ ∈ R(G,T).

We set a := sα, b := sβ and r := ba.
The group X∗(T ) of rational characters of T has the following description

(4.0.4) X∗(T ) = Z(2α+ β) + Z(α+ β).

We identify T with F× × F× by

(4.0.5)
ηα : T −→ F× × F×

t 7→ ((2α+ β)(t), (α+ β)(t)).

Let η′α : F
× × F× → T be the inverse morphism of ηα. We have

(4.0.6)

{
α(η′α(t1, t2)) = t1t

−1
2 , β(η′α(t1, t2)) = t−1

1 t22
a(η′α(t1, t2)) = (t2, t1), b(η′α(t1, t2)) = (t1, t1t

−1
2 )

.
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α

2α+ βα+ β

−2α− β −α− β

−α

3α+ 2β

−3α− 2β

β

−β−3α− β

3α+ β

5π/6

Figure 1. Diagram for G2(F )

Any pair (ξ1, ξ2) of characters of F× define a character of T that we denote by
ξ1 ⊗ ξ2. For each root γ ∈ R(G,T), we fix root group homomorphisms xγ : F → G
and Z-homomorphisms ζγ : SL2(F )→ G as in [BT72, (6.1.3) (b)]. We have
(4.0.7)

xγ(u) = ζγ

1 u

0 1

 , x−γ(u) = ζ−γ

1 0

u 1

 and γ∨(t) = ζγ

t 0

0 t−1

 .

For γ ∈ {α, β}, let Pγ be the maximal standard parabolic subgroup of G generated
by γ, and Mγ be the centralizer of the image of (γ′)∨ in G, where γ′ is the unique
positive root orthogonal to γ, i.e.

(4.0.8) γ′ :=

{
3α+ β if γ = α,

3α+ 2β if γ = β.

Then Mγ is a Levi factor for Pγ , and Mα, Mβ are representatives for the two
conjugacy classes of maximal Levi subgroups of G.

We extend ζγ : SL2(F ) → Mγ := Mγ(F ) to an isomorphism ζγ : GL2(F ) → Mγ

via

(4.0.9) ζγ

t 0

0 1

 := ζγ′

t 0

0 t−1

 , for t ∈ F×.
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Then the restriction to T of the inverse map of ζγ coincides with the isomorphism

ηγ : T
∼→F× × F×, where ηα is as in (4.0.5), while

(4.0.10)
ηβ : T −→ F× × F×

t 7−→ ((α+ β)(t), α(t)).

It follows from (4.0.6) that

(4.0.11) (ηβ ◦ η′α)(t1, t2) = (t2, t1t
−1
2 ), for t1, t2 ∈ F×.

The long roots {±β,±(3α+β),±(3α+2β)} form the root system of SL3(F ). Hence
SL3(F ) embeds in G2(F ) as the subgroup generated by the groups Uγ with γ long.

The Weyl group W of G is generated by the reflections sα and sβ satisfying
relations

(4.0.12) s2α = s2β = 1 and (sαsβ)
6 = 1.

Thus W is the dihedral group of order 12. Let r(ϑ) ∈W denote the rotation through
ϑ with center at the origin. The elements of W are described in Table 1, along with
their actions on the character ξ1 ⊗ ξ2 of T ∼= F× × F×.

w w w(ξ1 ⊗ ξ2)

1 1 ξ1 ⊗ ξ2

sα a ξ2 ⊗ ξ1

sβ b ξ1ξ2 ⊗ ξ−1
2

r(π/3) ab ξ−1
2 ⊗ ξ1ξ2

r(5π/3) ba ξ1ξ2 ⊗ ξ−1
1

s3α+β aba ξ−1
1 ⊗ ξ1ξ2

sα+β bab ξ1 ⊗ ξ−1
1 ξ−1

2

r(2π/3) abab ξ−1
1 ξ−1

2 ⊗ ξ1

r(4π/3) baba ξ2 ⊗ ξ−1
1 ξ−1

2

s2α+β ababa ξ−1
1 ξ−1

2 ⊗ ξ2

s3α+2β babab ξ−1
2 ⊗ ξ−1

1

r(π) bababa ξ−1
1 ⊗ ξ−1

2

Table 1.

The group G is simply connected. The nodes of its extended Dynkin diagram are
δ := −3α − 2β (the opposite of the highest root), α and β (in particular δ is the
extended node, and α, β are respectively short and long roots):
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The affine Weyl group of G is generated by sδ, sα and sβ. There are three G-
conjugacy classes of maximal parahoric subgroups of G, obtained by deleting one
node from the extended Dynkin diagram. We denote by Gx0 (deleting node δ), Gx1

(deleting node α) and Gx2 (deleting node β) a set of representatives of these classes.
Their reductive quotients are Gx0 ≃ G2(Fq), Gx1 ≃ SL3(Fq) and Gx2 ≃ SO4(Fq) ≃
SL2(Fq)× SL2(Fq)/{±1} ≃ SO4(Fq), see [GY03, p.338].

Remark 4.0.1. By (3.4.2) the volume of the Iwahori subgroup IG2 of G2 is

(4.0.13) Vol(IG2) =
(q − 1)2

q
,

since the reductive quotient of I is a torus isomorphic to Fq
× × Fq

×.

Let G∨ denote the Langlands dual group of G, i.e. the complex Lie group with
root datum dual to that of G. We identify T∨ with C× × C× by

ηβ∨ : T∨ −→ C× × C×

t 7−→ ((2β∨ + α∨)(t), (β∨ + α∨)(t)).
(4.0.14)

The group G∨ is an exceptional group of type G2, with positive roots the set

(4.0.15) R(G∨, T∨)+ =
{
α∨, β∨, α∨ + β∨, α∨ + 2β∨, α∨ + 3β∨, 2α∨ + 3β∨} ,

in which α∨ is a long root and β∨ a short root. Let g∨ and t∨ denote the Lie
algebras of G∨ and T∨ respectively. The adjoint action of G∨ on g∨ defines a Cartan
decomposition

(4.0.16) g∨ = t∨ ⊕
⊕

γ∨∈R(G∨,T∨)

g∨γ , with g∨γ = Ceγ∨ .

For each γ∨ ∈ R(G∨, T∨), let U∨
γ∨ be the associated root subgroup in G∨. We fix

root group homomorphisms xγ∨ : C→ U∨
γ∨ .

4.0.17. Let U(G∨) denote the unipotent variety of G∨. For two unipotent classes C,
C′ in G∨, we write C′ ≤ C if C′ is contained in the Zariski closure of C. The relation ≤
defines a partial ordering on U(G∨). In the Bala-Carter classification, the unipotent
classes in G∨ are

(4.0.18) 1 ≤ A1 ≤ Ã1 ≤ G2(a1) ≤ G2.

They are described in the following Table 2 (see [CM84, §8.4]). Amongst these five

unipotent classes, three are special: 1, G2(a1) and G2. In [Ram03], 1, A1, Ã1, G2(a1)
and G2 are referred to as the trivial, minimal, subminimal, subregular and regular
(also called principal) unipotent orbit, respectively.

By (4.0.16), for any γ ∈ R(G∨, T∨)+, we can choose eγ ∈ g∨γ , fγ ∈ g∨−γ and hγ ∈ t∨

such that

(4.0.19) [hγ′ , eγ ] = γ(hγ′)eγ , [hγ′ , fγ ] = −γ(hγ′)fγ and [eγ , fγ ] = hγ .
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Label Diagram Dimension

1 0 0 0

A1 1 0 6

Ã1 0 1 8

G2(a1) 2 0 10

G2 2 2 12

Table 2. : Bala-Carter classification for G2(C).

.

The weighted Dynkin diagram of the minimal orbit A1 shows that β∨(h) = 1 and
α∨(h) = 0, if (e, f, h) is an SL2-triple where e is a nilpotent element which corre-
sponds to A1. From the table above, we know that h = h2β∨+α∨ works. It follows
that e2β∨+α∨ is a representative of the nilpotent orbit corresponding to A1. The
root β∨ + α∨ is short. Since all the short roots are conjugate under the Weyl group
W∨ = NG∨(T∨)/T∨ of G∨, the corresponding spaces g∨γ∨ are also conjugate un-

der W∨. Since the orbits are closed under multiplication by a non-zero scalar and
dim g∨γ∨ = 1, any non-zero vector in a space g∨γ∨ with γ∨ a short root spans the

minimal nilpotent orbit of G∨.
We recall the Springer correspondence for G2(C) from [Car93, p.427] in Table 3:

to each irreducible character, it attaches a pair (u, ρ) consisting of (the conjugacy
class of) a unipotent element u in G∨ = G2(C) and an irreducible representation ρ
of the group Au := π0(ZG∨(u)). There is one ρ missing, which is the case where the
component group Au is the symmetric group S3 and ρ is the sign character of S3.

characters of W unipotent Au enhancement

ϕ1,6 triv triv triv

ϕ′′
1,3 A1 triv triv

ϕ2,2 Ã1 triv triv

ϕ2,1 G2(a1) S3 triv

ϕ′
1,3 G2(a1) S3 ρ2,1

ϕ1,0 G2 triv triv

Table 3. : Springer correspondence for G2(C).
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4.0.20. The group SO4(C): We realize the group SO4(C) ≃ SLlr
2×SLsr

2 /{±1} as the
subgroup of G2(C) generated by T∨ and the images of xα∨ and x2β∨+α∨ . Then the
Weyl group of SO4(C) with respect to T∨ is {1, sα∨ , s2β∨+α∨ , sα∨ · · · s2β∨+α∨}. The
group SO4(C) admits 4 unipotent classes that are labelled as (3, 1), (2, 2)′, (2, 2)′′,
(1) (see for instance [Lus84b, § 11.3]). A representative of the nilpotent class corre-
sponding to (2, 2)′ is eα∨ , and a representative of the nilpotent class corresponding
to (2, 2)′′ is e2β∨+α∨ . The closure order on the unipotent classes of SO4(C) is given
by the following:

(4.0.21)

(3, 1)

(2, 2)′ (2, 2)′′

(1)

.

The classes (3, 1) and (1) are said to be non-degenerate, and the classes (2, 2)′, (2, 2)′′

degenerate.

unipotent class in SO4(C) unipotent class in G2(C) ASO4(u)

(3, 1) G2(a1) µ2

(2, 2)′ A1 {1}

(2, 2)′′ Ã1 {1}

(1) 1 {1}

Table 4. Unipotent classes of SO4(C).

4.0.22. The group SL3(C): The long roots {±α∨,±(3β∨ + α∨),±(3β∨ + 2α∨)}
form the root system of SL3(C). Hence SL3(C) embeds in G2(C) as the subgroup
generated by T∨ and the images of xγ∨ with γ∨ long. We can define an explicit such
embedding j3 : SL3(C) ↪→ G2(C) as

(4.0.23) j3


1 u

1

1

 = xα∨(u), j3


1

1

u 1

 = x3β∨+α∨(u)

(4.0.24) j3


1

u 1

1

 = x−α∨(u) and j3


t1

t2

t−1
1 t−1

2

 = η′β∨(t1, t2),

where

(4.0.25) η′β∨ : C× × C× → T∨
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is the inverse morphism of ηβ∨ .
In general, the center of G := SLn(C) is isomorphic to the group µn of n-th roots

of unity of n. If u ∈ C(n) (the regular unipotent class), then the component group Au

of the centralizer of u in G is isomorphic to µn. In particular, the unipotent classes
of SL3(C) can be summarized as in Table 5.

unipotent class in SL3(C) unipotent class in G2(C) ASL3(u)

3 G2(a1) µ3

(2, 1) A1 {1}

(1, 1, 1) 1 {1}

Table 5. : Unipotent classes of SL3(C).

4.0.26. The group GL2(C): There are two different cases depending on whether
GL2(C) corresponds to a Levi subgroup of G2(C) attached to a short or a long root
γ∨. We have W s

G = {1, sγ∨}. The unipotent classes in this case are summarized in
Table 6.

unipotent class in GL2(C) representative of nilpotent orbit unipotent class in G2(C) AGL2(u)

regular eγ∨

{
Ã1 if γ∨ is long

A1 if γ∨ is short
1

trivial 0 1 1

Table 6. : Unipotent classes of GL2(C).

5. The Galois side for G2

In this section, we study Langlands parameters into G∨ = G2(C), and determine
all non-supercuspidal members in their L-packets assuming the properties in §10.1.
We assume p ̸= 2, 3.

Proposition 5.0.1. The following are equivalent for φ : WF × SL2(C)→ G∨:

(1) φ(WF ) is abelian.
(2) ZG∨(S) contains a maximal torus of G∨.

Proof. We claim that any abelian subgroup of G∨ = G2(C) is contained in a torus
except for a single exception that is a unique conjugacy class of abelian subgroups
isomorphic to µ3

2. The claim is equivalent to the statement that ZG∨(S) contains a
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maximal torus of G∨ for any S ⊂ G∨ abelian. Since closed subgroup of G∨ satisfies
the descending chain condition, it suffices to prove this for finitely generated abelian
group. Using Proposition 2.5.2, for s ∈ S non-trivial we have ZG∨(s) is isomorphic
to one of SL3(C), SO4(C), GL2(C) or GL1(C)2. The whole centralizer ZG∨(S) =
ZZG∨ (s)(S) contains a maximal torus of SL3(C), SO4(C), GL2(C) or GL1(C)2, except
for the case of SO4(C) for which an exception happens when S maps to the unique

subgroup of SO4(C)/µ2
∼= (PGL2(C))2 that is isomorphic to µ2

2. Together with s,
this implies that S is an order 8 subgroup of G∨ isomorphic to µ3

2. □

Recall that we have chosen in (4.0.15) a set of positive roots forG∨ and its maximal
torus T∨. We denote by λ : (C×)2 ∼= T∨ the isomorphism satisfying α(λ(z1, z2)) = z1
and β(λ(z1, z2)) = z2. The Weyl group WG∨(T∨) is generated by two reflections,
one sending λ(z1, z2) 7→ λ(z−1

1 , z1z2) and the other sending λ(z1, z2) 7→ λ(z1z
3
2 , z

−1
2 ).

Example 5.0.2. λ(1, ζ3) has centralizer isomorphic to SL3(C), and is conjugate to
λ(1, ζ−1

3 ), making its orbit the unique one with this centralizer.

5.0.1. There are two obvious strategies to start with:

(1) Classify φ in terms of φ|SL2(C);
(2) Classify φ in terms of φ|WF

.

The two strategies are somewhat orthogonal. As in line with standard literature, we
also use the second strategy in the cases where φ(SL2(C)) = 1. One of the upshots
in our approach is that we use a combination of both strategies.

5.1. Classification of φ in terms of φ|SL2(C). This is the first strategy. For a gen-
eral Langlands parameter φ : WF×SL2(C)→ G∨, the possible shapes for φ|SL2(C) are
in bijection with unipotent orbits of G∨ (see §4.0.17 for the notations for unipotent
orbits). We have the following cases.

(1) φ ( 1 1
0 1 ) is regular, i.e. it lies in the G2 unipotent class. In this case, we have

ZG∨(φ(SL2(C)) = {1} and the L-parameter φ is discrete, by Property 10.1.2,
we obtain a singleton L-packet consisting of the Steinberg representation
StG2 of G.

(2) φ ( 1 1
0 1 ) is subregular, i.e. it lies in the subregular unipotent class G2(a1).

In this case, ZG∨(φ(SL2(C)) ∼= S3. To see this: φ|SL2(C)) factors through
SL2(C) ↪→ SL3(C) ↪→ G∨. Up to G∨-conjugation, we may assume that
φ
((

t 0
0 t−1

))
= λ(t, 1), such that ZG∨({λ(t, 1) | t ∈ C×}) ∼= GL2(C) is given

by the short root β of G∨. This GL2(C) acts on the sum of root spaces cor-
responding to {α∨, α∨ + β∨, α∨ + 2β∨, α∨ + 3β∨}, which is a 4-dimensional
representation of GL2(C) that is isomorphic to Sym3(std). One can check
that φ (( 1 1

0 1 )) is an element in general position in Sym3(std) and thus has
centralizer S3, i.e. the permutation group of the 3 roots of a separable poly-
nomial of degree 3.

In this case, φ(WF ) is any subgroup of S3, and φ is always discrete. We
remark that the order 2 element in S3

∼= ZG∨(φ(SL2(C)) has centralizer
isomorphic to SO4(C), while the order 3 element has centralizer isomorphic
to SL3(C). The subregular unipotent φ (( 1 1

0 1 )) lies in the regular unipotent
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orbit in both SO4(C) and SL3(C) by Tables 4 and 5. Since the group φ(WF )
can have order 1, 2, 3 or 6, we have an L-packet of size 2+1, 1+1, 1+2 or 1+0
respectively (here we write the number of non-supercuspidal representations
plus the number of supercuspidal representations).
• The case where |φ(WF )| = 1 is the unipotent case, and will be addressed
in Theorem 5.1.2(3f) and Table 15. More precisely, this L-packet has
size 3: it contains two unipotent representations in the principal series,
the representations π(1) and π(1)′ from Table 15, and one unipotent
supercuspidal representation from §10.3.1(1).
• The case where |φ(WF )| = 2 will be discussed in §5.2.1(3a).
• The case where |φ(WF )| = 3 will be discussed in §5.2.1(2a).
• Lastly the case where |φ(WF )| = 6 will be discussed in §5.2.1(2c).

(3) When φ (( 1 1
0 1 )) is in the Ã1 (resp. A1) unipotent class, i.e. φ(SL2(C)) is

a short (resp. long) root SL2(C) in G∨, its centralizer ZG∨(φ(SL2(C))) ∼=
SL2(C) is a long (resp. short) root SL2(C). We have two sub-cases:
(a) φ(WF ) ⊂ ZG∨(φ(SL2(C))) is not contained in a torus of ZG∨(φ(SL2(C))),

in which case φ is discrete. This case is treated in §5.2.3.
(b) φ(WF ) is contained in a torus T∨ ⊂ ZG∨(φ(SL2(C))). In this case, either

ZG∨(φ) = T∨, or ZG∨(φ) = ZG∨(φ(SL2(C))). We always have Sφ = 1,
and the L-packet consists of a single principal series by Proposition 5.0.1.

(4) φ(SL2(C)) is trivial. We leave it to later case-by-case discussions in §5.2.1
and §5.2.2.

As a consequence of the above discussions, we immediately obtain the following.

Corollary 5.1.1. When φ is non-discrete, either φ(SL2(C)) is trivial, or φ(SL2(C))
is a short or long SL2(C) in G∨. In the latter case(s), Sφ = {1} and the L-packet
consists of a single principal series.

Let F2,2 denote the bi-quadratic extension over F with Gal(F2,2/F ) ∼= µ2
2. We

now study our LLC using Properties 10.1.1, 10.1.2, 10.1.6 and 10.1.9.

Theorem 5.1.2. A parabolically induced representation of G = G2(F ) has two or
more non-isomorphic constituents exactly in the following cases:

(1) The parabolically induced representation iGPσ from a Levi subgroup M ∼=
GL2(F ) of a supercuspidal representation σ of M s.t.
(a) The Levi M = Mβ

∼= GL2(F ) is associated to the long root and σ ∼=
σS3 ⊗ ν±1

F , where σS3 is the unique supercuspidal representation of GL2

whose corresponding L-parameter under the LLC for GL2 has image S3,
and ⊗ν±1

F denotes tensoring with ν±1
F ◦ det : GL2(F ) → C×. In this

case, the parabolic induction iGP (σ) has a discrete constituent π(σ) and
another non-tempered constituent J(σ), where π(σ) corresponds to the
L-parameter in 5.2.1(2c) such that φ|SL2(C) meets the G2(a1) unipotent
class, while J(σ) has trivial φ|SL2(C).

(b) The central character ωσ of σ has order 2 (and is non-trivial); moreover,
if σ ∼= σS3, then GL2(F ) cannot be the one attached to the long root.
In this case, iGPσ has two non-isomorphic constituents π and π′ that are
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both non-discrete and tempered, one of which is generic. Both π and π′

correspond to the L-parameters φ in 5.2.1(4c) for the depth-zero case,
or 5.2.2(2e) for the positive-depth case. In particular, we always have
φ|SL2(C) ≡ 1 in this case.

(c) The central character ωσ ≡ ν±1
F . In this case, the parabolic induction

has a discrete constituent π(σ) which corresponds to the L-parameters
in §5.2.3, and another non-tempered constituent J(σ) which has trivial
φ|SL2(C).

(2) The parabolically induced representation from the order 2 character χ of
(F×)2 such that φχ : WF → (C×)2 satisfies ker(ϕ) = WF2,2 for the bi-
quadratic extension F2,2 over F .
In this case, the parabolically induced representation has two non-isomorphic
constituents π and π′ that are both non-discrete and tempered, one of which is
generic. Both π and π′ correspond to the L-parameter φ given in 5.2.1(3c).
In particular, we have φ|SL2(C) ≡ 1.

Representations in the above two cases (1) and (2) are the only non-discrete rep-
resentations of G whose L-packets are not singleton packets. In both cases, the
L-packet has two members that are exactly the two irreducible constituents in the
same parabolic induction.

(3) The parabolically induced representation of θ : T → C× with θ ◦ λ∨ = νF for
some coroot λ : F× → T . We have the following cases:
(a) There is a unique such λ ∈ R∨(G,T). In this case, the parabolically

induced representation has two non-isomorphic constituents. They are
both non-discrete.

(b) There are exactly two such λ ∈ R∨(G,T) that are both short with 120o

angle, or both long with 60o angle. In this case, the parabolic induction
again has two non-isomorphic constituents, both non-discrete.

(c) There are two such λ ∈ R∨(G,T) and they are perpendicular to each
other. In this case, the parabolic induction has four constituents. One of
them is discrete and corresponds to an L-parameter with ZG∨(φ(WF )) =
SO4(C) and φ|SL2(C) subregular.

(d) There are exactly two such λ ∈ R∨(G,T) that are both long with 120o

angle. In this case, the parabolic induction has four constituents. One of
them is discrete and corresponds to an L-parameter with ZG∨(φ(WF )) =
SL3(C) and φ|SL2(C) subregular.

(e) There are two such λ ∈ R∨(G,T) with 150o angle in between. In this
case, the parabolic induction has the Steinberg representation as a con-
stituent, and has three other non-discrete constituents.

(f) There are four such λ ∈ R∨(G,T). In this case, the parabolic induction
has 5 constituents. Two of them are discrete and correspond to the two
non-supercuspidal members in the L-packet (which is a unipotent L-
packet of size 3 containing also the supercuspidal representation π[−1])
for the L-parameter with φ(WF ) = 1 and φ|SL2(C) subregular.
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In cases (3b), (3e) and (3f), the character θ : T → C× is unique up to the action of
the Weyl group WG (one character for each of the two configurations in (3b)). In
case (3c), we have that θ (up to WG-action) is determined by an order-2 character
F× → C×, i.e. by a quadratic extension. In case (3d), we have that θ (up to WG-
action) is determined by an order-3 character up to inversion, i.e. it is determined
up to a Galois cubic extension.

Proof. For non-discrete L-parameters, a case-by-case study conducted in §5.2.1 and
§5.2.2 shows that the only cases where Sφ ̸= 1 are: §5.2.1(3c), §5.2.1(4c) and
§5.2.2(2e). These cases belong to case (2) in Theorem 5.1.2. For discrete Langlands
parameters, Lemma 5.2.1 below implies that φ|SL2(C) ̸≡ 1 is necessary to obtain non-
supercuspidal representations. Hence one can refer to the classification of φ in §5.1,
and match them with the case-by-case study in sections §5.2.1, §5.2.2 and §5.2.3
to obtain a complete list of discrete non-supercuspidal representations of G. These
results are listed in cases (1a), (1c), (3c), (3d), (3e) and (3f).

Outside the above discussed cases, we have Sφ = {1}. Therefore, in order to
have two different constituents, we need two non-supercuspidal L-parameters with
the same supercuspidal support. We start with a Langlands parameter φ : WF ×
SL2(C)→ G∨, and consider the trivially enhanced Langlands parameter (φ, 1). Then
Property 10.1.9 specifies the supercuspidal support as follows: We take a maximal
torus T∨ ⊂ Gφ := ZG∨(φ(WF )). Let L

∨ := ZG∨(T∨). The cuspidal support Sc(φ, 1)
of (φ, 1) is the trivially enhanced Langlands parameter (φ̄, 1), where φ̄ : WF → L∨ is

(5.1.1) φ̄(w) := φ(w,
(

||w||1/2 0

0 ||w||−1/2

)
).

Suppose there exists more than one φ with the same φ̄. Denote by ϕ their common
φ̄. We have φ|SL2(C) ̸≡ 1 for at least one φ. The case where φ is discrete is considered
in the case-by-case study in sections §5.2.1, §5.2.2 and §5.2.3. We devote the rest of
this proof to the case where φ is non-discrete.

By Corollary 5.1.1, when φ is non-discrete, we have that H∨ = T∨ is a max-
imal torus. The group L∨ := T∨ · φ(SL2(C)) is a (short root or long root) Levi
subgroup isomorphic to GL2(C), for which we denote by λ∨ ∈ R∨(L∨, T∨) given by
λ∨(t) = φ

((
t 0
0 t−1

))
with λ as the corresponding root. The fact that φ|WF

: WF → T∨

commutes with φ(SL2(C)) is equivalent to the fact that λ◦φ|WF
≡ 1, which is more-

over equivalent to saying that

(5.1.2) λ ◦ ϕ ≡ || · || as characters on WF .

By Local Langlands for tori, ϕ = φ̄ : WF → T∨ corresponds to some θ : T → C×,
and (5.1.2) is equivalent to saying that θ◦λ ≡ || · ||. Every step of the argument above
is reversible, therefore, if we start with a ϕ : WF → T∨ satisfying (5.1.2) for some
root λ ∈ R(G∨, T∨), we obtain a corresponding non-discrete φ with φ|SL2(C) ̸≡ 1 and
φ̄ = ϕ. It then remains to resolve the question of whether there can be more than
one choice for such λ.

If there is only one choice for such λ, then we obtain two φ’s satisfying φ̄ = ϕ; one
of them satisfies φ|SL2(C) ≡ 1 and φ|WF

= ϕ. This is precisely case (3a).
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If, however, there are more than one such λ, then they generate a lattice

Λ := ⟨λ ∈ R(G∨, T∨) | λ ◦ ϕ ≡ || · ||⟩.

We have Λ ⊂ X∗(T∨) with index at most 3. When Λ = X∗(T∨), we have that
ϕ is uniquely determined by λ’s. There can be either two or four such λ’s of the
configuration in case (3b), (3e) or (3f). In case (3b), the two choices of λ are conjugate
under the Weyl group action, and thus there is only one possible φ satisfying φ̄ = ϕ
and φ|SL2(C) ̸≡ 1.

In case (3e), we have two different choices for λ, giving rise to two non-discrete
φ’s satisfying φ̄ = ϕ. Nevertheless, there is also a discrete φ with φ̄ = ϕ, which is
the one satisfying φ|WF

≡ 1 and φ (( 1 1
0 1 )) is the regular unipotent class.

In case (3f), we have two different choices for λ, giving rise to two non-discrete φ’s
satisfying φ̄ = ϕ. Nevertheless, there is also a discrete φ with φ̄ = ϕ, which is the one
satisfying φ|WF

≡ 1 and φ (( 1 1
0 1 )) is the subregular unipotent class. Moreover, there

is a non-trivial local system on the subregular unipotent orbit (which is the unique
one of rank 2) that lives in the principal series. This gives one another non-trivial
enhancement of the same φ giving our θ as the supercuspidal support.

In case (3c), we have two different choices for λ, giving rise to two non-discrete
φ’s satisfying φ̄ = ϕ. We also have a non-discrete L-parameter satisfying φ|WF

= ϕ
and φ|SL2(C) ≡ 1. Suppose that the two choices for λ are denoted by λ1 and λ2,

where λ1 is short. Write λ′
1 := 3

2λ1 − 1
2λ2 and λ′

2 := 1
2λ1 +

1
2λ2. Thus we also have

λ′
i ∈ R(G∨, T∨), but λ′

i ◦ ϕ is different from || · || by an order-two character. This
order-two character corresponds to η : WF → T∨ where ZG∨(η) ∼= SO4(C) such that
λ1, λ2 ∈ R(ZG∨(η), T∨). We then consider the discrete Langlands parameter φ :
WF × SL2(C)→ G∨ such that φ|WF

= η and φ(SL2(C)) ⊂ ZG∨(η) ∼= SO4(C) meets
the regular unipotent orbit in SO4(C). The trivial enhancement of this L-parameter
also has supercuspidal support ϕ (while the other enhancement is cuspidal).

Case (3d) is completely analogous to (3c), except that η now has order three and
ZG∨(η) ∼= SL3(C). We note that there exists a Weyl group element that stabilizes
everything else but sends η to η−1. This finishes the proof. □

5.1.3. Before we proceed, let us summarize the results of Theorem 5.1.2 in the
following Table 7 and Table 8.

For a character θ : T → C×, we write θ = ξ1 ⊗ ξ2, where ξ1 = θ ◦ β∨ and ξ2 =
θ ◦ (α∨ + β∨) with α∨, β∨ as in (4.0.15). We remark that this identification is
compatible with (4.0.5). Thanks to Theorem 5.1.2, we have a table for parabolic
inductions I(ξ1⊗ξ2) that contain at least two non-isomorphic irreducible constituents
that are principal series. In the second to last column of Table 7, each item begins
with φ (( 1 1

0 1 )) as its first tag, followed by tags among {d.,n.d., t.,n.t., g.,n.g.} for the
adjectives “discrete”, “non-discrete”, “tempered”, “non-tempered”, “generic”, and
“non-generic”, respectively. On the other hand, all the principal series not appearing
in Table 7 should have only one irreducible constituent up to isomorphism.
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Label Input ξ1 ⊗ ξ2 Constituents of iGP (ξ1 ⊗ ξ2) Table

(2)

§5.2.1(3c)

η22 ≡ (η′2)
2 ≡ 1,

1 ̸≡ η2 ̸≡ η′2 ̸≡ 1
η2 ⊗ η′2

(1,n.d., t., g.)

(1, n.d., t.,n.g.)
Table 23

(3a)

(3b)

η : F× → C× s.t.

η2 ̸≡ 1 ̸≡ (ηνF )
2,

η ̸≡ ν2F , η ̸≡ ν−3
F

η ⊗ νF

(Ã1, n.d.), (1,n.t.),

the first tempered

if and only if ||ην1/2F || ≡ 1

Table 13

(3a)

(3b)

η : F× → C× s.t.

η3 ̸≡ 1, ν−3
F

η ⊗ ηνF 1.51.5

(A1,n.d.), (1, n.t.),

the first tempered

if and only if ||ην1/2F || ≡ 1

Table 21

Table 22

Table 24

(3c)

§5.2.1(3a)
E/F quadratic νF ⊗ ηE/F

(G2(a1),d., g.),

(Ã1,n.t.), (A1, n.t.), (1,n.t.)

Table 16

Table 17

(3d)

§5.2.1(2a)
E/F Galois cubic ηE/F ⊗ ηE/F νF

(G2(a1),d., g.),

(A1,n.t.), (A1, n.t.), (1,n.t.)

Table 19

Table 20

(3e) None νF ⊗ ν2F
(G2,d., g.),

(Ã1,n.t.), (A1, n.t.), (1,n.t.)
Table 18

(3f) None 1⊗ νF
(G2(a1),d., g.), (G2(a1), d.,n.g.),

(Ã1,n.t.), (A1, n.t.), (1,n.t.)
Table 15

Table 7. Principal series with more than one non-isomorphic con-
stituents.

5.1.4. On the other hand, for a supercuspidal representation σ of GL2(F ), we also
consider the parabolic induction iGP (σ), whose irreducible constituents are referred
to as intermediate series. We denote by ωσ : GL1(F )→ C× the central character of
the supercuspidal representation σ. We also denote by σ ⊗ νsF the representation σ

tensored with GL2(F )
det−−→ GL1(F )

νsF−→ C, such that ωσ⊗νsF
= ωσ · ν2sF .

We shall also consider a particular supercuspidal representation of GL2(F ) that
is denoted as σS3 and is characterized by the property that: its corresponding Lang-
lands parameter WF → GL2(C) has image isomorphic to S3; such a supercuspidal
representation exists if and only if q ≡ −1(3), in which case it is unique, at depth-
zero and has central character ωσ unramified of order two. We have the following
Table 8 for parabolic inductions that contain at least two non-isomorphic irreducible
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constituents that are intermediate series.

Cases Choice of GL2(F ) Condition on σ Constituents of iGP (σ)

3(1c)

5.2.3
short ωσ ≡ ν±1

F (Ã1, d., g.), (1, n.t.)

3(1c)

5.2.3
long ωσ ≡ ν±1

F (A1, d., g.), (1, n.t.)

3(1b)

5.2.1(4c)

5.2.2(2e)

short
ω2
σ ≡ 1,

ωσ ̸≡ 1
(1,n.d., t., g.), (1, n.d., t.,n.g.)

3(1b)

5.2.1(4c)

5.2.2(2e)

long
ω2
σ ≡ 1,

ωσ ̸≡ 1, σ ̸∼= σS3

(1,n.d., t., g.), (1, n.d., t.,n.g.)

3(1a)

5.2.1(2c)
long σ ∼= σS3 ⊗ ν±1

F (G2(a1),d., g.), (1,n.t.)

Table 8. Intermediate series with more than 1 non-isomorphic con-
stituents.

5.2. L-parameters for G2.

5.2.1. Depth-zero L-parameters. In the rest of this chapter, we follow the second
strategy outlined in §5.0.1 to finish the classification of φ, i.e. we classify φ in
terms of φ|WF

. Let us denote by G∨
0 := ZG∨(φ(PF )) and S∨ := ZG∨(φ(IF )) =

ZG∨
0
(φ(IF )). Recall that Gφ := ZG∨(φ(WF )) = ZS∨(φ(Fr)), and we have Sφ =

π0(ZGφ(φ(SL2(C)))).
For each configuration of φ|WF

, we have that φ is discrete if and only if (Gφ)
◦ is

semisimple and φ(1, ( 1 1
0 1 )) is a distinguished unipotent element u = uφ in (Gφ)

o. In
this case, ρ ∈ Irr(Sφ) is cuspidal in the sense of §2.1.1. In fact, the following holds
(thanks to the small rank of G2).

Lemma 5.2.1. For discrete L-parameters, except in the case where φ|WF
is trivial

and Sφ
∼= S3, we have that u is regular unipotent in Gφ, and ρ ∈ Irr(Sφ) is cuspidal

if and only if either ρ is non-trivial or Gφ is finite.

Proof. The assertion is obvious when Gφ is finite. We now assume that dimGφ > 0.
Each connected Dynkin component for Gφ is of type A1, A2 or G2. The only non-
regular but distinguished unipotent appears in the G2 case for which φ|WF

is trivial
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and Sφ
∼= S3. For the remaining cases, u is regular. Pulling back to the simply-

connected cover of Gφ, any local system on the regular unipotent orbit of SL2(C),
SL3(C) or G2(C) is cuspidal if and only if it is non-trivial. □

We remark that when u is regular unipotent, we have Sφ = ZGφ .
We are now ready to proceed with a detailed case-by-case discussion. The central-

izer S∨ := ZG∨(φ(IF )) is the fixed subgroup of a finite-order automorphism of G∨.
Since G∨ is simply-connected, S∨ is connected. It can be one of the following cases:

(1) S∨ ∼= G∨, i.e. φ(IF ) is trivial. In this case, the L-parameter is unipotent and
an explicit LLC has been constructed by [Lus95] (see also [Ree94, p.480] and
[Mor96]).

(2) S∨ ∼= SL3(C). In this case, φ(IF ) is generated by a conjugate of λ(1, ζ3).
Since λ(1, ζ3) is also conjugate to λ(1, ζ−1

3 ), this makes φ|IF unique. By
Proposition 2.5.2, Gφ := ZS∨(φ(Fr)) can be SL3, GL2, GL2

1, Sp2, SO3 or
GL1. In the case Gφ = GL2, GL2

1 or GL1, we have that Gφ is not semisimple
and thus φ is not discrete. In these cases ZG∨(φ) is always a torus making
Sφ = {1}. In the cases Gφ = GL2 or GL2

1, Fr acts on SL3(C) by inner
automorphism, necessarily fixing ZSL3(C) = φ(IF ). Hence φ(WF ) is abelian.
By Proposition 5.0.1 the L-packet consists of only a principal series. When
Gφ
∼= GL1, φ(WF ) is non-abelian and by Proposition 5.0.1 we get an L-

packet consists of a single non-discrete constituent of a parabolic induction
from GL2(F ). We discuss the rest of the cases:
(a) Gφ = SL3. This is to say that φ(WF ) ⊂ ZG∨(SL3(C)) = φ(IF ), i.e. φ|WF

factors through Gal(E/F ) for some degree 3 ramified Galois extension,
which necessarily forces q ≡ 1(3). In such case there are 3 choices of
E. For each choice we have a unique discrete Langlands parameter
with Sφ = µ3 by Lemma 5.2.1. Any such L-packet consists of one non-
supercuspidal representation and two supercuspidal ones. When φ is
not discrete, the centralizer ZGφ(φ(SL2(C)) is either SL3(C) or GL1(C)
so that Sφ = {1}. By Proposition 5.0.1 we obtain an L-packet consisting
of a single principal series.

(b) Gφ = Sp2(C). In this case φ(Fr) acts on S∨ = SL3(C) by an outer auto-
morphism. The unique outer class for SL3 is represented by g 7→ (gt)−1

which acts as inversion on ZSL3(C) = φ(IF ). This implies q ≡ −1(3).
Moreover, such an outer automorphism with fixed subgroup Sp2(C) is
unique up to SL3(C)-conjugacy because in Proposition 2.5.2 there is a
unique Sp2 vertex of the loop group SU3 /C((t)). Hence there exists a
unique such φ that is discrete, with Sφ = ZSp2(C) = µ2. The L-packet
consists of one non-supercuspidal representation and one supercuspidal
representation. By Property 10.1.9, the non-supercuspidal is the generic
constituent of the parabolic induction from Mβ –the long root GL2(F )–
of the depth-zero supercuspidal representation of GL2(F ) corresponding

to WF
φτ

−→ (Z/3) ⋊ (Z/4) τ−→ GL2(C) with some unramified twist spec-
ified by Property 10.1.9. Here τ is the unique irreducible yet faithful
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representation of (Z/3) ⋊ (Z/4), and φτ maps IF onto Z/3 and some
lift Fr to (0, 1). More precisely, this depth-zero supercuspidal represen-
tation of GL2(F ) corresponds to the tame L-parameter WF → GL2(C)
that sends a generator of tame inertia to

(
ζ3 0

0 ζ−1
3

)
and a lift of Fr to(

0 iq1/2

iq1/2 0

)
. In fact, this L-parameter is also of long SL2-type as in

§5.2.3, and the above description is generalized there.
If otherwise φ is non-discrete, then φ(SL2(C)) = 1, Sφ = π0(Gφ) =
{1}. By Property 10.1.9, we have a singleton L-packet consisting of a
tempered representation contained in the parabolic induction from the
long root GL2(F ) given by the finite-order homomorphism τ : WF →
GL2(C) described in the previous paragraph.

(c) Gφ = SO3. Again in this case φ(Fr) acts on S∨ = SL3(C) by an outer
automorphism and hence q ≡ −1(3). There is again a unique discrete
such φ. In this case Sφ = {1} and the L-packet consists of a single
non-supercuspidal generic discrete series. Under 10.1.9 it is given by
the generic constituent of the parabolically induced representation from
the long root GL2(F ) of the depth-zero supercuspidal representation
of GL2(F ) corresponding to WF ↠ S3 ↪→ GL2(C) with some unrami-
fied twist specified by Property 10.1.9. Specifically, it is the depth-zero
supercuspidal representation corresponding to the tame L-parameter

WF → GL2(C) that sends a generator of tame inertia group to
(

ζ3 0

0 ζ−1
3

)
and a lift of Fr to

(
0 q1/2

q1/2 0

)
. We remark that compared to the non-

supercuspidal representation in (2b), the two depth-zero supercuspidal
representations of GL2(F ) differ by an order 4 unramified twist.
If otherwise φ is non-discrete, then φ(SL2(C)) = 1, Sφ = π0(Gφ) = {1}.
By the 10.1.9, we have a singleton L-packet consisting of a tempered
generic representation contained in the parabolic induction from the
long root GL2(F ) given by the finite-order homomorphism from WF to

GL2(C) that sends a generator of tame inertia to
(

ζ3 0

0 ζ−1
3

)
and some lift

of Fr to
(
0 i
i 0

)
so that φ(WF ) ∼= S3, somewhat similar to the previous

paragraph.
(3) S∨ ∼= SO4(C). In this case, φ(IF ) = ZSO4(C) is up to conjugate the unique

order 2 subgroup of G∨. This is because φ(IF ) has to be generated by either
λ(1,−1), λ(−1, 1) or λ(−1,−1), yet the above three elements are themselves
conjugate.
(a) If φ is discrete, we need the centralizer Gφ := ZS∨(φ(Fr)) to be semisim-

ple which is only possible when Gφ = S∨, i.e. φ(Fr) ∈ ZG∨(S∨) =
ZS∨ = µ2. In this case φ|WF

factors through Gal(E/F ) for some de-
gree 2 ramified Galois extension. There are two such choices. For each
choice we have a unique Langlands parameter with Sφ = ZSO4(C) = µ2.
Each L-packet consists of one non-supercuspidal representation and one
supercuspidal representation.
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(b) Suppose φ is non-discrete. Then φ(Fr) commutes with φ(IF ) = ZS∨ ∼=
µ2. The centralizer ZG∨(φ) ⊂ S∨ ∼= SO4(C) is connected except for one
case when Gφ = ZG∨(φ) = S(O2(C) × O2(C)), in which case φ(Fr) is
mapped to a non-central order 2 element in SO4(C) (and all of them
live in a single orbit). Outside the exception case, by Proposition 5.0.1
we always get a singleton L-packet consisting of a representation in the
principal series.

(c) For the exception case, we have a unique such L-packet. By Prop-
erty 10.1.9, it has two tempered members. Each of them is contained in
a principal series coming from a biquadratic order 2 character.

(4) S∨ ∼= GL2(C). In this case, Gφ = ZS∨(φ(Fr)) can be GL2, GL1, Sp2 or O2.
(a) The only discrete φ arises in the unique semisimple case Gφ = Sp2. In

this case φ is of SL2-type in §5.2.3.
(b) Otherwise φ is non-discrete. We note that φ(IF ) is contained in ZS∨ ∼=

ZGL2(C) = GL1(C). In the case when Gφ
∼= GL2(C), Sφ = {1} and φ(Fr)

commutes with ZS∨ , and hence we fall into the situation of Proposition
5.0.1. When Gφ

∼= Sp2 or GL1, φ(WF ) is non-abelian yet Sφ = {1}.
By the 10.1.9, we get an L-packet consisting of a single representation
contained in the parabolic induction from GL2(F ) (short root GL2(F )
in G if S∨ ⊂ G∨ is short root GL2(C), and both long otherwise) given by
φ|WF

which has non-abelian image and thus necessarily supercuspidal.
(c) Lastly, when Gφ = O2(C), we have φ(SL2(C)) = 1, but Sφ

∼= µ2. In this
case, S∨ ∼= GL2(C) is contained in its normalizer which is isomorphic
to SO4(C) ⊂ G∨, while φ(Fr) normalizes S∨ in an outer manner. Up to
inner conjugation, there is a unique automorphism of GL2(C) with fixed
subgroup isomorphic to O2(C). Hence within SO4(C), up to conjugation,

φ(IF ) ⊂
{( s

s
s−1

s−1

)
| s ∈ S1 ⊂ C×

}
, φ(Fr) =

(
1
1

1
1

)
.

Also, recall φ(SL2(C)) = 1. We need φ(IF ) large enough such that

ZG∨(φ) =

{( z
z−1

z
z−1

)
| z ∈ C×} ⊔ {

( z
z−1

z
z−1

)
| z ∈ C×

}
.

By Property 10.1.9, the L-packet consists of two non-discrete tempered
representations, both contained in a parabolic induction from GL2(F )
(short root GL2(F ) in G if S∨ ⊂ G∨ is short root GL2(C), and both
long otherwise) given by φ|WF

that has non-abelian image and thus
necessarily supercuspidal.
We now make a few remarks. We have ZSO4(C)(O2(C)) ∼= O2(C), while
ZSO4(C)(SO2(C)) ∼= GL2(C). In particular, the supercuspidal represen-
tation of GL2(F ) is characterized by the property that its L-parameter
has image in O2(C) where Fr is sent to the non-trivial component and
IF is sent to SO2(C). In other words, the central character of the su-
percuspidal representation of GL2(F ) is the unramified order-two char-
acter. Conversely, any supercuspidal representation of GL2(C) whose
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central character has order-two has its corresponding Langlands param-
eter mapping into some O2(C) (but not into SO2(C)) by Lemma 5.2.4.
By Property 10.1.9, its parabolic induction to G has a non-discrete con-
stituent living in an L-packet of 2 members. By Property 10.1.1, these
2 members are both tempered. See also §5.2.2(2e) for the case where
the supercuspidal representation of GL2(F ) has positive-depth, and its
central character is again of order two but possibly ramified.

(5) S∨ ∼= GL1(C)2 is a maximal torus of G∨. We have the following cases:
(a) For discrete φ, φ(Fr) acts on S∨ through an elliptic element in WG, such

that Sφ
∼= (µ2)

2, µ3 and µ1, respectively, when the Weyl group element
has order 2, 3 or 6. In this case, the Langlands parameter is regular
supercuspidal, and the Local Langlands has been determined in [Kal19].
The size of the L-packet is 4, 3 or 1 respectively.

(b) For non-discrete φ, φ(Fr) acts on S∨ through some non-elliptic element
w in the Weyl group WG, giving us a non-discrete φ. Thus we have
that w is either trivial or a reflection. When w is trivial, Sφ = π0(S

∨) is
connected and Proposition 5.0.1 applies. When w is a reflection, we have
Sφ = π0(ZS∨(Fr)) ∼= (X∗(S

∨)Fr)tor = {1}. Hence we have a singleton L-
packet consisting of an irreducible constituent of the parabolic induction
of a supercuspidal representation of GL2(F ).

5.2.2. Positive-depth L-parameters. In this case, G∨
0 is a proper Levi subgroup of

G∨, which is either GL2(C) or GL1(C)2. We have

(1) When G∨
0
∼= GL1(C)2 is a maximal torus of G∨, the whole WF acts on G∨

0

through a subgroup of the Weyl group, giving Sφ
∼= (µ2)

2, µ3, µ2 or trivial,
and thus an L-packet with 1, 2, 3 or 4 members. The members are regular
supercuspidal representations if X∗(G

∨
0 )

WF is trivial. Otherwise, WF acts
on X∗(G

∨
0 ) via at most a single reflection. In this case we have Sφ = {1}

(as in §5.2.1(5a)). When WF acts trivially on X∗(G
∨
0 ), Proposition 5.0.1 ap-

plies. Otherwise, when WF acts by a reflection we have a singleton L-packet
consisting of a constituent of the parabolic induction from a supercuspidal
representation of GL2(F ).

(2) When G∨
0
∼= GL2(C), there are several cases for which S∨ = ZG∨

0
(φ(IF )). We

first assume φ is discrete:
(a) S∨ ⊃ SL2(C). In this case we necessarily have Gφ = SL2(C) for φ to be

discrete. This implies that φ is of SL2-type, and we refer to §5.2.3.
(b) S∨ is a maximal torus, in which case Gφ = Sφ = S∨[2] ∼= (µ2)

2 is a
regular supercuspidal L-parameter with 4 members in its L-packet.

(c) S∨ is a torus of rank 1. In this case Gφ = Sφ = S∨[2] ∼= µ2 is a regular
supercuspidal L-parameter with 2 members in its L-packet.

(d) S∨ ∼= O2(C) is disconnected. In this case Gφ = Sφ
∼= (µ2)

2 is a non-
singular supercuspidal L-parameter with 4 members in its L-packet.

Lastly, we turn to the non-discrete case in which dimGφ > 0. We claim that
we always have Gφ connected and thus Sφ = {1} except when ZG∨(φ) =
Gφ = S∨ ∼= O2(C). This is done by investigating the possibilities for Gφ in
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cases (2a)(2b)(2c) above. In the last case (2d) when S∨ ∼= O2(C), to have
non-discrete L-parameter we have either Gφ

∼= SO2(C) or Gφ
∼= O2(C). In

the former case we have again Sφ = {1}. Yet in the latter case:
(e) When Gφ

∼= O2(C), the L-parameter has the same centralizer and double
centralizer (a different O2(C)) as in §5.2.1(4c). Hence the L-packet con-
sists of two non-discrete tempered constituents of parabolic inductions
of supercuspidal representations of GL2(F ) with the same properties as
described in §5.2.1(4c), except for one difference: the central character of
the supercuspidal representation of GL2(F ) may be unramified or rami-
fied. Since Gφ

∼= O2(C), we have ZG∨(Gφ) ∼= O2(C), therefore the central
character is the order-two character specified by φ : WF → π0(ZG∨(Gφ)).

5.2.3. L-parameters and representations of SL2-type.

Definition 5.2.2. We say that an L-parameter φ : WF × SL2(C)→ G∨ is of short
SL2-type, if it is discrete and φ(SL2(C)) is a short root SL2 in G∨ = G2(C). We say
that an L-parameter φ : WF × SL2(C)→ G∨ is of long SL2-type, if it is discrete and
φ(SL2(C)) is a long root SL2 in G∨ = G2(C). We say that it is of SL2-type if it is of
either short or long SL2-type.

When φ(SL2(C)) is a short (resp. long) root SL2(C), we have that ZG∨(φ(SL2(C)))
is a long (resp. short) root SL2(C), such that the two SL2(C)’s live in an SO4(C) ⊂
G∨ = G2(C). In particular, we have the following.

Lemma 5.2.3. A discrete L-parameter is of short (resp. long) SL2-type if and only
if φ(WF ) lies in a long (reps. short) SL2(C) ⊂ G∨. An L-parameter for which
φ(WF ) is contained in such an SL2(C) is discrete if and only if φ|WF

is a discrete
L-parameter into SL2(C). Moreover, two L-parameters of short (resp. long) SL2-type
are conjugate if and only if the corresponding discrete L-parameter into SL2(C) are
conjugate.

Proof. It only remains to show the last statement. Note that the normalizer of a
short or long SL2(C) in G∨ is the aforementioned SO4(C). The conjugacy actions of
this SO4(C) on SL2(C) are all inner (factoring through the corresponding PGL2(C)),
hence the claim. □

Recall from 2.1.2(3) the definition for a discrete L-parameter φ : WF → H∨ (for
some H∨) to be supercuspidal–a terminology that makes sense since it is expected,
and indeed implied by Property 10.1.9, that the L-packet Πφ(G) consists of only
supercuspidal representations. We will study the supercuspidal L-parameters φ such
that φ(WF ) is contained in SL2(C). We have the following group-theoretic result on
the LLC for GL2 (or PGL2):

Lemma 5.2.4. Suppose H ⊂ GL2(C) is a solvable subgroup with ZSL2(C)(H) finite.
Then H is contained in the normalizer of a unique maximal torus T∨ ⊂ GL2(C),
and ZSL2(C)(H) = ZSL2(C) = µ2.
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5.2.1. Hence any supercuspidal L-parameter into SL2(C) always corresponds to a
compound L-packet (i.e. a Vogan L-packet) of two members, consisting of an ir-
reducible supercuspidal representation of PGL2(F ) and another finite-dimensional
irreducible representation of the compact inner form of PGL2(F ). We observe that
for our original L-parameter φ, we have ZG∨(φ) = ZSL2(C)(φ(WF )) = µ2 by Lemma
5.2.4. Hence the L-packet Πφ(G) consists of a non-supercuspidal representation and
a supercuspidal representation by Lemma 5.2.1. Let P be a parabolic subgroup
of G with Levi subgroup isomorphic to GL2(F ). Here the GL2(F ) corresponds
to the short (resp. long) root if φ is of short (resp. long) SL2-type. By Prop-
erty 10.1.9, the non-supercuspidal member has the following supercuspidal support:
φ|WF

: WF → SL2(C), which gives us a supercuspidal τ of PGL2(F ). We consider
τs := τ ⊗ (νF ◦ det)s as a representation of GL2(F ). Then the non-supercuspidal of
G is the generic constituent in iGP τ± 1

2
(both s = ±1

2 work).

5.2.4. Table for discrete L-parameters. As a summary, we give a table for discrete
L-parameters that are neither unipotent nor supercuspidal. In each row, any Galois-
theoretic input as indicated gives a (unique) discrete L-parameter.

Label Galois-theoretic input φ(WF ) Gφ Sφ φ (( 1 1
0 1 ))

§5.2.1(2a)

§6.0.1(2c)

E/F ramified Galois cubic

(only exist when q ≡ 1(3))
Z/3 SL3 µ3 subreg.

§5.2.1(2b)

§6.0.1(1c)
q ≡ −1(3) (Z/3)⋊ (Z/4) SL2 (long) µ2 long

§5.2.1(2c) q ≡ −1(3) S3 SO3 (subreg.) 1 subreg.

§5.2.1(3a)

§6.0.1(3c)
E/F ramified quadratic Z/2 SO4 µ2 subreg.

§5.2.3
supercuspidal L-parameter

into SL2(C)

non-split extension

of {±1} by Z/n,

n ≥ 4 even

SL2 (short) µ2 short

§5.2.3
supercuspidal L-parameter

into SL2(C)

non-split extension

of {±1} by Z/n,

n ≥ 4 even

SL2 (long) µ2 long

Note that the second row is indeed a special case of the last row when the L-parameter
is tame, n = 6 and |φ(IF )| = 3.
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6. Supercuspidal representations of G2

Our goal here is to attach, to every irreducible supercuspidal representation of
G2(F ), a cuspidal enhanced Langlands parameter into G∨. When the supercuspidal
representation is unipotent, this has been done in [Lus95], and when the super-
cuspidal representation is non-singular, this has been done in [Kal19, Kal21]. In
this section, we shall focus on the cases not covered in pre-existing literature. By
[Kim07, Fin21], all supercuspidal representations of G(F ) are tame supercuspidal
representations in the sense of [Yu01] when p ̸= 2, 3.

6.0.1. Depth-zero supercuspidal representations. As recalled in §4, there are three
maximal parahoric subgroups with reductive quotient G2, SL3 and SO4 over kF =
Fq. By (3.6.11), depth-zero irreducible supercuspidal representations are in bijection
with irreducible cuspidal representations on these reductive quotients Gx. By (3.6.4)
and Proposition 3.6.1, any such cuspidal representation is labeled with

(i) a semisimple conjugacy class (s) with s an isolated element of G∨
x , i.e. ZG∨

x
(s)

is not contained in a Fq-rational Levi subgroup of any proper Fq-rational
parabolic subgroup of ZG∨

x
(s);

(ii) a unipotent cuspidal representation of the group of the kF -rational points
of the reductive algebraic group H := ZG∨

x
(s)∨, where kF = Fq. We denote

H := H(kF ).

(1) We begin with the case Gx = G2, i.e. x = x0 and Gx0 is the hyperspecial
maximal parahoric subgroup of G. By [Bon05, Prop. 4.9, Theorem 5.1 and
Table I], the group H∨ can be G2, SL3, SU3, (split) SO4, U2 or any elliptic
maximal torus. By [CR74], when H∨ is of type A2,

(6.0.1) H∨(Fq) = (ZG∨
x0
(s))(Fq) =

{
SL3(q) if q ≡ 1 mod 3,

SU3(q) if q ≡ −1 mod 3.

By the classification of unipotent cuspidal representations in [Lus78],
• neither SL3(Fq) nor SO4(Fq) has cuspidal unipotent representations. In-
deed, for m ≥ 2, the group SO2m(Fq) has a (unique) cuspidal unipotent
representation only if m is the square of an integer;
• SUn(Fq), n = k(k + 1)/2 are the only projective unitary groups that
possess unipotent cuspidal representations, and each one of them has
a unique unipotent cuspidal representation, which corresponds to the
partition (k, k − 1, . . . , 1) of n.

Thus the only possibilities for H(Fq) equipped with a cuspidal unipotent
representation are G2(Fq), SU3(Fq), or torus.
(a) In the first case, i.e. when H = G2, the corresponding supercuspidal and

cuspidal representations are unipotent. The group G2(Fq) has four cus-
pidal unipotent irreducible representations (see [Lus78, Theorem 3.28]),
denoted as G2[1], G2[−1], G2[ζ3] and G2[ζ

2
3 ]. Their dimensions are com-

puted in [Car93, p. 460] and recorded in Table 9. The corresponding
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irreducible supercuspidal unipotent representations are

(6.0.2) π[ζ3] := iGGx0
G2[ζ] for ζ ∈ {1,−1, ζ3, ζ23}.

With Haar measure on G normalized as in (3.4.2), by 3.6.16 the repre-
sentation π[ζ] has formal degree

(6.0.3) fdeg(π[ζ]) =
q

|G2(Fq)|p′
· dimG2[ζ] =

q

(q6 − 1)(q2 − 1)
· dimG2[ζ].

Representation G2[ζ] Dimension of G2[ζ] fdeg(π[ζ])

G2[1]
q(q−1)2(q3+1)

6(q+1)
q2−q+1

6(q+1)2(q4+q2+1)

G2[−1] q(q−1)(q6−1)
2(q3+1)

q2

2(q3+1)(q+1)

G2[ζ3], G2[ζ
2
3 ]

q(q2−1)2

3
1

3(q4+q2+1)

Table 9. Unipotent supercuspidal irreducible representations of
G2(F ).

Remark 6.0.1. Let P (X) :=
∑

w∈WG
Xℓ(w) be the Poincaré polynomial

of WG, with ℓ the length function on Wf . We have

(6.0.4) P (X) =
(X + 1)(X6 − 1)

X − 1
.

By (6.0.3) and (4.0.13), we have

(6.0.5) fdeg(π[ζ]) =
q

(q − 1)2 · P (q)
· dimG2[ζ] =

dimG2[ζ]

Vol(IG2) · P (q)
.

(b) In the case where H∨ is any elliptic maximal torus, the representation
τ is kF -non-singular. Since Gx0 is a hyperspecial maximal parahoric
subgroup of G, the notion of kF -non-singularity and F -non-singularity
agree in this case. Thus the supercuspidal representation π is non-
singular (equivalently it is also regular).

(c) In the last remaining case where H∨ = SU3. Note that ZSU3 = ZH∨

needs to contain s as a non-zero rational point, which implies that q ≡
−1(3). Conversely, if q ≡ −1(3), the Coxeter torus of Gx has two order-
3 elements whose centralizers are SU3. In fact, all order-3 elements
s ∈ G2(F̄q) with ZG2(s)

∼= SL3(F̄q) lie in a single geometric orbit. Since
SU3 is connected (G2 is simply connected), all such rational order-3
elements lie in a rational orbit. Hence there is one choice for H∨ ∼= SU3

when q ≡ −1(3), and no choice when q ≡ 1(3). When q ≡ −1 mod 3,
the group (ZG∨

x0
(s))(Fq) is the special unitary group SU3(Fq), and τunip

is the unique irreducible cuspidal unipotent representation of SU3(Fq),
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which is parametrized by the partition (2, 1) of 3. It is clear that in this
case, the representation τ is kF -singular, in particular, the representation
π is singular by [Kal21, 3.1.4]. Consequently, there exists one singular
non-unipotent cuspidal representation τ of Gx(Fq) when q ≡ −1(3), and
none otherwise. Therefore, when q ≡ −1(3), there is a singular depth-
zero supercuspidal representation of G, and we need to find the non-
supercuspidal representation in its L-packet. We do so by computing
the formal degree of π. By [Car93, §13.7], dim(τunip) = q(q − 1). By
(3.6.6)

(6.0.6) dim(τ) =
|Gx0 |p′

|(ZG∨
x0
(s))∨(Fq)|p′

dim(τunip).

We have

(6.0.7) |SU3(Fq)| = q6(q3/2 + 1)(q − 1)(q1/2 + 1).

By (3.4.2), we have

(6.0.8) Vol(Gx0) = q−rk(G)/2|Gx0 |p′ = q−1|Gx0 |p′ .

Since π = iGGx0
τ , by combining (3.6.6), (6.0.7) and (6.0.8), we have

fdeg(π) =
dim τ

Vol(Gx0)
=

dim(τunip)

|(ZG∨
x0
(s))∨(Fq)|p′ · q−1

.(6.0.9)

(2) Next we look at the case where Gx = SL3, i.e. x = x1. The center of
SL3, which consists of the scalar matrices a Id3 such that a3 = 1, is finite,
hence disconnected. By [Bon05, Proposition 5.2], the possibilities for H∨ are
PGL3 (i.e. when d = 1 and s = Id loc.cit.) and T∨ ⋊ µ3 (i.e. when d = 3
and s = diag

(
1, ζ3, ζ

2
3

)
mod F×

q for the primitive third root of unity ζ3, by

loc.cit. in this case the Weyl group of H◦ = ZG∨
x1
(s)◦ is trivial, thus H◦ = T∨)

or T∨ is an elliptic maximal torus of PGL3 (they are all rationally conjugate).
Let us discuss these cases:
(a) H = SL3, The group SL3 does not admit cuspidal unipotent representa-

tions, so the case H = SL3 does not occur.
(b) H∨ = T. This happens if s ∈ T(Fq) is not of order 1 or 3. In this case,

one checks that ZG∨(s) is a torus, i.e. we get only regular supercuspidal
representations.

(c) H∨ ∼= T⋊µ3. This happens if s is an order-3 element in T(Fq) ∼= F×
q3
/Fq

×.

Such an element exists if and only if q ≡ 1(3). Note that while all the
T ’s are conjugate, the two order-3 elements are not rationally conjugate
in PGL3(Fq), because they map to the two different non-trivial classes in
coker(SL3(Fq)→ PGL3(Fq)). Hence when q ≡ 1(3), we have two choices
of such s’s. The Deligne-Lusztig induction for each s is a direct sum of
3 cuspidal representations of SL3(Fq) of the same dimension. Hence we
get 2 families, of 3 singular supercuspidal representations all of the same
formal degree.
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Using (3.6.16), we compute the formal degree as follows (note that p ̸=
2, 3): we have |µ3|p′ = 3 and |T| = q3−1

q−1 = q2 + q + 1, thus

(6.0.10) fdeg(iGGx1
τ) =

q2/2 · 1
3(q2 + q + 1)

=
q

3(q2 + q + 1)
.

Hence we obtain

(6.0.11) fdeg(iGGx1
τ) =

q

3(q2 + q + 1)
.

(3) Lastly, we look at the case Gx = SO4. A centralizer subgroup in G∨
x
∼= SO4

has unipotent cuspidal representations only if its identity component is a
torus. Hence we begin with T∨ ⊂ G∨

x any representative of the unique
rational conjugacy class of elliptic maximal torus. Abstractly, T∨ ∼= U1×U1

over Fq so that T∨(Fq) ∼= (Z/(q + 1))2. We discuss three scenarios:
(a) s ∈ T∨(Fq) is not perpendicular to any coroot of G. In this case we

have non-singular supercuspidals, and in fact regular ones because G∨

is simply connected.
(b) s ∈ T∨(Fq) is perpendicular to a unique pair of coroots ±α∨ of G. The

cocharacter lattice is generated by α∨ and another λ. If α∨ is a short
coroot, then s is not perpendicular to any other coroots if and only if
(2λ)(s) = λ(s)2 ̸= 1. If α∨ is a long coroot, then s is not perpendicular
to any other coroots if and only if λ(s)2 ̸= 1 ̸= λ(s)3. The rational
conjugacy class of s is determined by {λ(s)±1}. Hence there are in

general q−1
2 such s unless q ≡ −1(3) and α∨ is a long coroot, in which

case there are q−3
2 such s. Each s gives a singular supercuspidal matched

with those in §5.2.1(4), or rather the tamely ramified L-parameters in
§5.2.3.

(c) s ∈ T∨ is perpendicular to two pairs of coroots of G, which correspond to
SO4(C) ⊂ G2(C). This is the case when s is the unique (up to rational
conjugacy) order 2 element in T∨(Fq) with ZG∨

x
(s)◦ = T∨. In this case

ZG∨
x
(s) ∼= T∨ ⋊ µ2. Indeed,

(6.0.12) (ZG∨
x2
(s))(Fq) =

{
(g1, g2) ∈ O−

2 (Fq)×O−
2 (Fq) : det(g1) = det(g2)

}
,

where O−
2 denotes the non-split form of O2. The group SO−

2 (Fq) has
a unique cuspidal unipotent representation, the trivial representation.
Thus O−

2 (Fq) admits two cuspidal unipotent representations: the trivial
one and the sign representation. So (ZG∨

x2
(s))∨(Fq) has two cuspidal

unipotent irreducible representations: 1 ⊗ 1 and sgn⊗ sgn. Both have
dimension one. In this case, one can check that ZG∨(s̃)◦ = ZG∨(s̃) =
SO4(C), and thus ZG∨(φ|IF ) = SO4(C). In particular, ZG∨(φ|WF

) is not
finite, and the corresponding supercuspidal representations of G2(F ) are
singular. The Deligne-Lusztig representation is the direct sum of two
cuspidal representations of the same dimension. Hence we get two su-
percuspidal representations to be matched in the L-packets in 5.2.1(3a).
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We have |O−
2 (Fq)| = 2(q+1), which gives |O−

2 (Fq)×O−
2 (Fq)| = 4(q+1)2

by [Car93], and hence

(6.0.13) |(ZG∨
x2
(s))(Fq)| =

|O−
2 (Fq)×O−

2 (Fq)|
2

= 2(q + 1)2.

By (3.6.16), the formal degree of iGGx2
τ is given as follows:

(6.0.14) fdeg(iGGx2
τ) =

q4/2

2(q + 1)2
=

q2

2(q + 1)2
,

which agrees with the formal degree for π(η2) from Table 17.

6.0.2. Positive-depth supercuspidals. Since p ̸= 2, 3 any supercuspidal representation
π of G is constructed via a Yu datum D. The latter includes a tamely ramified

twisted Levi sequence in G is a finite sequence G⃗ = (G0 ⊂ G1 ⊂ · · · ⊂ Gd = G)
of twisted Levi subgroups of G that splits over a tamely ramified extension E of
F (i.e., Gi

E := Gi ×F E is a split Levi subgroup of Gi+1
E for each i), such that

ZG0 is anisotropic (since ZG = {1}), a positive-depth character on G0(F ), and a
depth-zero supercuspidal of G0(F ). If the depth of π is positive then we have d ≥ 1.
The group G being F -split, we have GE = G. The only possibilities for G0

E are
G, GL2(E) or a maximal E-split torus S. Thus the only possibilities for G0 are G,
a torus or a unitary group (a priori it could be either U(1, 1) or U2, but since ZG0

is anisotropic, only the compact unitary group Ub(2), for the quadratic extension

F (
√
b) is possible)).

The representation π is regular (resp. non-singular) if and only if the depth-zero
supercuspidal of G0(F ) is. Hence the question is largely about classifying such G0

and their depth-zero supercuspidal representations. We note that G0 is determined
by Z0 := ZG0 , an anisotropic subtorus of G satisfying ZZG(Z0) = Z0. Also since we

need G0 to have some positive-depth character, 1 ≤ dimZ0 ≤ rankG = 2. We now
discuss the possibilities for Z0.

(1) dimZ0 = 2 is a maximal torus of G. In this case, we obtain only regular
supercuspidal representations of positive depths.

(2) dimZ0 = 1 such that G0/Z0
∼= PGL2 is split. In this case, all depth-zero

supercuspidals of G0 coming from cuspidals of reductive quotients of G0 are
non-singular.
(a) It is regular unless,
(b) Z0 is ramified such that G0 ∼= U2 is ramified for which the reductive

quotient Sp2 has a unique pair of non-singular (but not regular) super-
cuspidal representations. Since there are two ramified quadratic exten-
sions, we obtain two possible G0 and 4 such non-singular supercuspidal
representations in the L-packet in §5.2.2(2d).

(3) dimZ0 = 1 such that G0/Z0 is anisotropic, i.e. a compact inner form of
PGL2. In this case,
(a) G0(F ) has regular depth-zero supercuspidal representations
(b) G0(F ) also has singular depth-zero supercuspidal representations. Any

such singular depth-zero supercuspidal representation of G0(F ) has the
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property that its restriction to the derived subgroup is the trivial rep-
resentation. Since G0

der := (G0)der is simply connected, such a singular
supercuspidal representation is a character of G0(F )/G0

der(F ). They all
arise from L-parameters of SL2-type as in §5.2.3 and live in a mixed
packet together with another non-supercuspidal representation, as de-
scribed in Paragraph 5.2.1.

7. Non-supercuspidal representations of G2

Let s = [L, σ]G, where L is a proper Levi subgroup L of G = G2(F ). Let σ
be an irreducible supercuspidal representation of L. In the case of G = G2(F ),
the Levi L being isomorphic to either GL2(F ) or F× × F×, all of its irreducible
supercuspidal representations are regular. Thus σ is a regular supercuspidal, and we
can consider an L-parameter φσ : WF → L∨ for σ, as defined in [Kal19] or [BH06a].
Both constructions coincide as shown in [OT21].

Lemma 7.0.1.

(1) If M = T , we have W s
G ̸= {1} if and only if s = [T, ξ⊗ ξ]G or s = [T, ξ⊗ 1]G

with ξ an irreducible character of F×.
(2) If M = Mα or M = Mβ, we have W s

G ̸= {1} if and only if σ is self-dual.

Proof. (1) Recall the definition from 3.3.3, we have

(7.0.1) W s
G = {w ∈W : w · (ξ1 ⊗ ξ2) = χ(ξ1 ⊗ ξ2) for some χ ∈ Xun(T )} .

Let σ◦ := ξ1|o×F ⊗ ξ2|o×F . Then we have

(7.0.2) W s
G = {w ∈W : w · σ◦ = σ◦}.

Let ξ◦i := ξi|o×F . By Table 1, it follows that we have W s
G = {1} if and only if

ξ◦1 ̸= 1, ξ◦2 ̸= 1, ξ◦1ξ
◦
2 ̸= 1, ξ◦1 ̸= ξ◦2 , (ξ◦1)

2ξ◦2 ̸= 1, ξ◦1(ξ
◦
2)

2 ̸= 1.

Hence we have W s
G ̸= {1} if and only if we are in one of the following cases:

(i) We have ξ◦1 = ξ◦2 . We may and do assume that ξ1 = ξ2 = ξ.
(ii) We have ξ◦2 = 1. We may and do assume that ξ1 = ξ and ξ2 = 1.

(2) This is clear. See for example [AX22, 4.1.9] (or [Sha89]). □

Proposition 7.0.2. Suppose that W s
G ̸= {1}. Then the possibilities for s and W s

G
are as follows:

(1) s = [T, 1]G. Here W s
G = W .

(2) s = [T, ξ ⊗ 1]G with ξ ramified non-quadratic. Here W s
G ≃ Z/2Z.

(3) s = [T, ξ⊗ξ]G with ξ ramified, neither quadratic nor cubic. Here W s
G ≃ Z/2Z.

(4) s = [T, ξ ⊗ ξ]G with ξ ramified quadratic. Here W s
G ≃ Z/2Z× Z/2Z.

(5) s = [T, ξ ⊗ ξ]G with ξ ramified cubic. Here W s
G ≃ S3.

(6) s = [Mβ, σ]G with σ self-dual. Here W s
G ≃ Z/2Z.

(7) s = [Mα, σ]G with σ self-dual. Here W s
G ≃ Z/2Z.
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Proof. We first consider the case M = T and describe the W -orbits. We have

(7.0.3) W · (ξ ⊗ ξ) = {ξ ⊗ ξ, ξ−1 ⊗ ξ−1, ξ2 ⊗ ξ−1, ξ−1 ⊗ ξ2, ξ ⊗ ξ−2, ξ−2 ⊗ ξ}.

It follows that

(7.0.4) W · (ξ ⊗ ξ) =

{
ξ ⊗ ξ, ξ ⊗ 1, 1⊗ ξ if ξ is quadratic,

ξ ⊗ ξ, ξ ⊗ ξ−1, ξ−1 ⊗ ξ, ξ−1 ⊗ ξ−1 if ξ is cubic.

We have

(7.0.5) |W · (ξ ⊗ ξ)| =


1 if ξ is trivial,

3 if ξ is quadratic,

4 if ξ is cubic,

6 otherwise.

On the other hand, we have

(7.0.6) W · (ξ ⊗ 1) = {ξ ⊗ 1, 1⊗ ξ, ξ ⊗ ξ−1, ξ−1 ⊗ 1, 1⊗ ξ−1, ξ−1 ⊗ ξ}.

If ξ is quadratic, then we have

(7.0.7) W · (ξ ⊗ 1) = {ξ ⊗ ξ, ξ ⊗ 1, 1⊗ ξ}.

Thus we have

(7.0.8) |W · (ξ ⊗ 1)| =


1 if ξ is trivial,

3 if ξ is quadratic,

6 otherwise.

This gives the following possibilities for s:
(2) If ξ2 = 1 and ξ1 = ξ with ξ a ramified non-quadratic character, by (7.0.6) we
have

(7.0.9)
s = [T, ξ ⊗ 1]G = [T, 1⊗ ξ]G = [T, ξ ⊗ ξ−1]G

= [T, ξ−1 ⊗ 1]G = [T, 1⊗ ξ−1]G = [T, ξ−1 ⊗ ξ]G.

It follows from Table 1 that

(7.0.10) W s
G = {e, b} ∼= Z/2Z.

(3) If ξ1 = ξ2 = ξ with ξ a ramified character that is neither quadratic nor cubic,
by (7.0.3) we have

(7.0.11)
s = [T, ξ ⊗ ξ]G = [T, ξ−1 ⊗ ξ−1]G = [T, ξ2 ⊗ ξ−1]G

= [T, ξ−1 ⊗ ξ2]G = [T, ξ ⊗ ξ−2]G = [T, ξ−2 ⊗ ξ]G.

It follows from Table 1 that

(7.0.12) W s
G = {e, a} ∼= Z/2Z.
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(4) If ξ1 = ξ2 = ξ with ξ a ramified quadratic character, since s = [T, ξ1 ⊗ ξ2]G =
[T,w · (ξ1 ⊗ ξ2)]G, we have s = [T, ξ ⊗ ξ]G = [T, ξ ⊗ 1]G = [T, 1⊗ ξ]G. Then Table 1
gives

W s = {e, a, babab, bababa} =
{
e, a, r3, ar3

}
= ⟨sα, s3α+2β⟩ ∼= Z/2Z× Z/2Z.

(5) If ξ1 = ξ2 = ξ, with ξ a ramified character of order 3, we have

(7.0.13) s = [T, ξ ⊗ ξ]G = [T, ξ−1 ⊗ ξ−1]G = [T, ξ ⊗ ξ−1]G = [T, ξ−1 ⊗ ξ]G.

It follows from Table 1 that

(7.0.14) W s
G = {e, a, bab, abab, baba, ababa} ∼= S3.

(6)&(7) We now consider the cases M = Mα and M = Mβ. We have NG(M)/M ≃
Z/2Z. Since σ is self-dual, by [AX22, 4.1.9] we have W s

G = NG(M)/M , thus W s
G ≃

Z/2Z. □

8. The intermediate series

Let s = [M,σ]G, where σ is a supercuspidal irreducible representation of M ∈
{Mα,Mβ}. Let ωσ denote the central character of σ. Let P be a parabolic subgroup

of G with Levi subgroup M , and let iGP (σ) denote the (normalized) parabolic induc-
tion of σ. Since M ≃ GL2(F ), the representation σ is a regular supercuspidal in
the sense of Definition 3.6.9. Therefore, the L-parameter φσ has trivial restriction
to SL2(C). Thus the corresponding unipotent class in GL2(C) is trivial, and any
cuspidal local system on this class is trivial (see §2.1.1 for details).

8.0.1. The short root case. When M ≃Mα, by [Sha91, Proposition 6.2]:

(1) When ωσ ̸= 1, iGP (σ) is reducible and there are no complementary series.
(2) When ωσ = 1, iGP (σ) is irreducible, and iGP (σ ⊗ νsF ) is irreducible unless

s = ±1/2.
• iGP (σ⊗ν

1/2
F ) has has length 2: it has a unique generic discrete series sub-

representation π(σ) and a unique irreducible pre-unitary non-tempered
Langlands quotient, J(σ).
• All the representations iGP (σ ⊗ νsF ) for 0 < s < 1/2 are in the comple-
mentary series and s = 1/2 is the edge of complementary series.

Since π(σ) is a discrete series, by [Sol22, Proposition 9.3], it corresponds to a discrete
series of the Hecke algebra Hs(G). On the other hand, by [AX22, Tables 4.5.6 and
4.5.8], the Hecke algebra Hs(G) is isomorphic to an extended affine Hecke algebra

which is either of type Ã1(q, q) or has trivial parameters. In the first case, we can
apply [Ram03, Table 2.1]. Since the representation π(σ) is tempered, by [Ram03,

Table 2.1], it has unipotent class eα1 , which corresponds to Ã1 by Table 6. When
Hs(G) has trivial parameters, we obtain the enhanced L-parameters as in Table 8
(using the explicit formula in Definition 2.5.1).
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Representation indexing triple enhanced L-parameter

π(σ) (ta, eα1 , 1) (φ
σ,Ã1

, 1)

J(σ) (ta, 0, 1) (φσ,1, 1)

Table 10. : LLC for the irred. constituents of iGP (σ⊗ ν
1/2
F ) attached

to s = [Mα, σ]G where ωσ unramified.

8.0.2. The long root case. When M ≃ Mα, by [Sha90, Theorem 8.1, Proposition
8.3]:

(1) If φσ = IndWF
WK

(χ), [K : F ] = 2, χ ∈ K̂∗, then iGP (σ) is irreducible if and only

if either χ|F× = η, or χ|F× = 1 and χ3 = 1.
(2) The representation I(α̃/i, σ) is reducible with a unique χ-generic subrepre-

sentation π(σ) which is in the discrete series. Its Langlands quotient J(σ) is
never generic. It is a pre-unitary non-tempered representation.

Remark 8.0.1. Since p is odd, the case where σ is extraordinary (so-called excep-
tional in [BH06b]) mentioned in [Sha90] does not occur (see [BH06b, Theorem 34.1
and Theorem 44.1]).

Representation indexing triple enhanced L-parameter

π(σ) (ta, eα1 , 1) (φσ,A1 , 1)

J(σ) (ta, 0, 1) (φσ,1, 1)

Table 11. : LLC for the irred. constituents of iGP (σ) attached to s = [Mβ, σ]G.

Since the representation π(σ) is a discrete series, by [Sol22, Proposition 9.3], it
corresponds to a discrete series of the Hecke algebra Hs(G). On the other hand, by
[AX22, Tables 4.5.2 and 4.5.4], the Hecke algebraHs(G) is isomorphic to an extended

affine Hecke algebra which is of type Ã1(q
3, q), Ã1(q, q) or has trivial parameters. In

the Ã1(q, q) case, we can apply [Ram03, Table 2.1]. Since π(σ) is tempered, by
[Ram03, Table 2.1], it has unipotent class eα1 , which corresponds to A1 by Table 6.

WhenHs(G) has trivial parameters, similarly, we obtain the enhanced L-parameters
as in Table 8 (using the explicit formula in Definition 2.5.1). When Hs(G) is of type

Ã1(q
3, q), we use Property 10.1.9 to find the singular supercuspidal representation

that shares the same L-packet as this intermediate series representation, and then
use (2.5.1) again to explicitly construct the enhanced L-parameter. This is done in
Theorem 5.1.2.
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8.0.3. Formal degrees for depth-zero intermediate series. Consider a depth-zero rep-
resentation π ∈ Irrs(G) where s = [M,σ]G and M ∈ {Mα,Mβ}. Since the depth
is preserved via parabolic induction, the supercuspidal representation σ of M ≃
GL2(F ) has also depth-zero and we have σ = c-IndMF×My ,0

(τ ), whereMy,0 ≃ GL2(oF )

and τ denotes the extension to F×My,0 of the inflation to My,0 of a cuspidal irre-
ducible representation of My,0 ≃ GL2(Fq). By (3.6.4) the representation τ corre-
sponds to the unipotent representation τunip ∈ E(ZM∨

y,0
(s), 1). In this case, ZM∨

y,0
(s)

is either GL2(Fq) or a torus. Since GL2(Fq) carries no cuspidal unipotent representa-
tions, ZM∨

y,0
(s) can only be a torus, and thus τunip = 1. In particular, dim(τunip) = 1.

On the other hand, we have

(8.0.1) |My,0| = |GL2(Fq)| = q(q2 − 1)(q − 1).

Thus, since |T] = (q − 1)2, we have

(8.0.2) dim(τ) =
|My,0|p′
|T|p′

· dim(τunip) =
(q2 − 1)(q − 1)

(q − 1)2
= q + 1.

By [KY17], the pair (Gy,0, τ ) is an s-type in G, and a G-cover of (My,0, τ ) (see also
[Mor99] or [MP96b]). Since Gy,0 = My,0, by (3.4.2) we have

(8.0.3) Vol(Gy) = q−rk(G)/2 · |Gy,0|p′ = q−1(q2 − 1) =
q2 − 1

q
.

Therefore by a generalized version of Proposition 3.5.1, we have

(8.0.4) fdeg(π) =
dim τ

Vol(Gy)
· d(πH) =

(q + 1)q

q2 − 1
d(πH).

8.0.5. In the following table, we compute the quantity d(πH
s ) and d(πH

0 ) as in [Ree97,
§9]. Recall that if qα ̸= q0, we must have |R(O)| = 1, and the formal degrees of
square-integral modules for H(qα, q0) are given by

(8.0.6) d(πH
s ) =

qαq0 − 1

(qα + 1)(q0 + 1)
d(πH

0 ) =
|qα − q0|

(qα + 1)(q0 + 1)
.

On the other hand, if the Hecke algebra H(qα, q0) is of rank one, and qα = q0, there
are |R(O)| square-integrable H(qα, q0)-modules η ⊗ πs, one for each character η of
R(O). They all have the same formal degree

(8.0.7) d(η ⊗ πH
s ) = |R(O)|−1 qα − 1

qα + 1
.

We compute these quantities d(π) in the following table 8.0.8, following [AX22, Table
4.5.2]. To distinguish between simple modules of Hecke algebras and irreducible rep-
resentations, we use the notation d(πH) to denote formal degrees for simple modules
for Hecke algebras H(qα, q0).

8.0.8. Table for long root essentially depth zero cases.
We refer the reader to [AX22] for the notations.
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r D ωσ χ2χ′−1 R(O) WO

H(G, ρ)

q
λ(α)
F , q

λ∗(α)
F

d(πH) fdeg(π)

r = 0 ((G,M), (y, ι), (My,0, ρM ))

= 1
unramified

χ cubic
= 1 ̸= 1

non-comm,

q3F , qF

q4−1
(q3+1)(q+1)

;

(q3−q)
(q3+1)(q+1)

(q2+1)q
q3+1

q2

q3+1

̸= 1
unramified

χ cubic
= 1 ̸= 1

non-comm,

q2F , q
2
F

q2−1
q2+1

q(q+1)
q2+1

= 1
ramified

χ cubic
= 1 ̸= 1

non-comm,

qF , qF

q−1
q+1

q
q+1

̸= 1
ramified

χ cubic
∗ = 1 C[R(O)]⋉C[O] 0 0

= 1 χ not cubic

N/A

= 1 ̸= 1
non-comm,

qF , qF

q−1
q+1

q
q+1

̸= 1 ∗ = 1 C[R(O)]⋉C[O] 0 0

r ̸= 0 (((M,G),M), (y, ι), (r, 0), (ϕ, 1), (My,0, ρM )) ̸= 1 N/A = 1 = 1 C[O] 0 0

Table 8.0.8.

8.0.9. As can be seen from the table, the first row has equal formal degree as
in the singular non-unipotent supercuspidal representation from (6.0.9), i.e. they

both have formal degree q2

q3+1
. In particular, we have obtained an L-packet mixing

a singular non-unipotent supercuspidal with an intermediate series representation
with supercuspidal support being a supercuspidal representation associated to the
long root M ≃Mβ.

Remark 8.0.2. Recall that the singular supercuspidal representation from (6.0.9)
can only occur when q ≡ −1 mod 3, which is also precisely the condition for this
intermediate series representation in the first row of Table 8.0.8 to occur. Recall
from [AX22, (4.2.6)] that

(8.0.10) ωσ(ϖF ) + χ2χ′−1(ϖL) = 0,

which can only occur when q ≡ −1 mod 3.

9. The principal series

9.1. Notation and background. Let T be an F -split maximal torus in G, and
let T∨ denote its Langlands dual torus, which is a maximal torus in G∨. The
principal series consists of all G-representations that occur in parabolic inductions
of characters of T := T(F ) to G2(F ). Let T0 denote the maximal compact subgroup
of T . Since T is F -split,

(9.1.1) T ≃ F× ⊗Z X∗(T ) ≃ (o×F × Z)⊗Z X∗(T ) = T0 ×X∗(T ).

Since W = WG (the Weyl group of G with respect to T) acts trivially on F×, these
isomorphisms are W -equivariant if we endow the right hand side with the diagonal
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W -action. Thus (9.1.1) determines aW -equivariant isomorphism of character groups

(9.1.2) Irr(T ) ∼= Irr(T0)× Irr(X∗(T )) = Irr(T0)×Xnr(T ).

How Irr(T0) is embedded depends on the choice of ϖF . However, the isomorphisms

(9.1.3) Irr(T0) ∼= Hom(o×F , T
∨) and Xnr(T ) ∼= Hom(Z, T∨) = T∨.

are canonical. Let φσ be the image of σ ∈ Irr(T ) under the canonical map
(9.1.4)

Irr(T ) = Hom(F× ⊗Z X∗(T ),C×) ≃ Hom(F×,C× ⊗Z X∗(T )) ≃ Hom(F×, T∨).

We define

(9.1.5) cs := φσ|o×F : o×F → T∨.

Note that unramified twists do not modify φσ|o×F , and conversely, (9.1.4) determines

cs up to unramified twists. On the other hand, two elements of Irr(T ) areG-conjugate
if and only if they are W -conjugate, so the W -orbit of cs contains the same amount
of information as s. We define

(9.1.6) Js := ZG∨(Im(cs)).

By [Roc98, pp. 394–395], whenG has connected center, the group Js is connected and
its Weyl group is isomorphic to the group W s (see (3.3.3)). Let Js denote the group
of F -rational points of the F -split reductive algebraic F -group whose Langlands dual
is the group Js.

In [Roc98, §3], Roche constructed an s-type (Ks, τ s) in the sense of [BK98]. By
[Roc98, Theorem 8.2], the algebra H(G, τ s) and H(Js, 1I) are isomorphic via a fam-
ily of ∗-preserving, support-preserving (and hence inner-product preserving) isomor-
phisms. By [Roc98, proof of Theorem 10.7], these isomorphisms preserve square-
integrability and, for corresponding π ∈ Irr2(G) and π1 ∈ Irr2(Js), with the appro-
priate normalization of volume factors, we have

(9.1.7) fdeg(π) = dH(π1).

9.2. Principal series for G2. For γ ∈ {α, β}, we set

(9.2.1) Iγ(ξ1 ⊗ ξ2) := i
Mγ

T (U∩Mγ)
(ξ1 ⊗ ξ2).

By using (4.0.11) we obtain
(9.2.2)

Iα(ξ1⊗ξ2)⊗(νsF ◦det) = Iα(ξ1ν
s
F⊗ξ2νsF ) and Iβ(ξ1⊗ξ2)⊗(νsF ◦det) = Iβ(ξ2ν

s
F⊗ξ1ξ−1

2 ).

As recalled in [Mui97, Proposition 1.1], the principal series Iγ(ξ1⊗ ξ2) reduces if and
only if (ξ1⊗ξ2)◦γ∨ = ν±1

F . Let δ(ξ) denote the unique irreducible subrepresentation

of i
GL2(F )
B (ν

1/2
F ξ⊗ν−1/2

F ξ), it is also the unique irreducible quotient of i
GL2(F )
B (ν

−1/2
F ξ⊗

ν
1/2
F ξ). Similarly, ξ ◦ det is the unique irreducible quotient (resp. subrepresentation)

of i
GL2(F )
B (ν

1/2
F ξ⊗ν

−1/2
F ξ) (resp. i

GL2(F )
B (ν

−1/2
F ξ⊗ν

1/2
F ξ)). Thus, in the Grothendieck

groups R(Mα), R(Mβ) we have

(9.2.3) Iα(ν
1/2
F ξ⊗ ν

−1/2
F ξ) = δ(ξ)+ ξ ◦det and Iβ(ν

−1/2
F ξ⊗ νF ) = δ(ξ)+ ξ ◦det,
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(9.2.4) Iα(ν
−1/2
F ξ⊗ ν

1/2
F ξ) = δ(ξ)+ ξ ◦det and Iβ(ν

1/2
F ξ⊗ ν−1

F ) = δ(ξ)+ ξ ◦det .

Let s ∈ C. For an admissible representation π of GL2(F ), we write

Iγ(s, π) := iGPγ
(π ⊗ (νsF ◦ det)), and Iγ(π) := Iγ(0, π).(9.2.5)

When π a tempered irreducible representation and s > 0, the representation Iγ(s, π)
has a unique irreducible quotient denoted by Jγ(s, π).

We denote by I(ξ1⊗ξ2) the parabolically induced representation of σ = ξ1⊗ξ2. We
will describe the irreducible components of the parabolically induced representation
I(ξ1 ⊗ ξ2) following the methods developed in [Mui97, §3 and §4].

Remark 9.2.1. Recall (see [BZ77, Theorem 2.9]) that, for any w ∈W , the Jordan-
Hölder series of I(ξ1 ⊗ ξ2) and I(w(ξ1 ⊗ ξ2)) have the same irreducible quotients.

If ω1, ω2 are unitary characters of F× and s1 > s2 > 0, then the representation
I(νs1F ω1 ⊗ νs1F ω2) has a unique irreducible quotient denoted by J(s1, s2, ω1, ω2).

Lemma 9.2.6. [Rod75, Theorem 7] We suppose that G is F -split. Let P be a
parabolic subgroup of G with Levi subgroup L, and σ an irreducible smooth repre-
sentation of L.

(a) If σ is generic, then iGP (σ) contains a unique generic irreducible component.
(b) If σ is not generic, then no irreducible component of iGP (σ) is generic.

By transitivity of the parabolic induction we have

(9.2.7) I(ξ1 ⊗ ξ2) = iGPγ
(Iγ(ξ1 ⊗ ξ2)) = Iγ

(
s, Iγ(ξ1 ⊗ ξ2)⊗ ν−s

F ◦ det
)
).

By using (9.2.2), we get

(9.2.8) I(ξ1 ⊗ ξ2) = Iα(s, I
α(ξ1ν

−s
F ⊗ ξ2ν

−s
F )) = Iβ(s, I

β(ξ2ν
−s
F ⊗ ξ1ξ

−1
2 )).

Lemma 9.2.9.

(1) If ξ1 = νF ξ2, then we have

I(ξ1 ⊗ ξ2) = Iα(s, δ(ν
1/2−s
F ξ2)) + Iα(s, ν

1/2−s
F ξ2 ◦ det)

= Iβ(s, δ(ν
1/2−s
F ξ2)) + Iβ(s, ν

1/2−s
F ξ2 ◦ det).

(9.2.10)

(2) If ξ1 = ν−1
F ξ2, then we have

I(ξ1 ⊗ ξ2) = Iα(s, δ(ν
−1/2−s
F ξ2)) + Iα(s, ν

−1/2−s
F ξ2 ◦ det)

= Iβ(s, δ(ν
−1/2−s
F ξ2)) + Iβ(s, ν

−1/2−s
F ξ2 ◦ det).

(9.2.11)

Proof. The result follows from the combination of (9.2.8) with (9.2.3) and (9.2.4). □

For γ ∈ {α, β}, denote by rγ : R(G)→ R(Mγ) the normalized Jacquet restriction

functor rGMγ
. For γ, γ′ ∈ {α, β}, let WMγ′ ,Mγ be the subset of W defined in [BZ77,

§2.11]. By [DM91, Lemmas 5.4-5.6], it consists in the elements w ∈W satisfying

(9.2.12) ℓ(sγw) = ℓ(sγ) + ℓ(w) and ℓ(wsγ′) = ℓ(w) + ℓ(sγ′).
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Then, from Table 1, we obtain

(9.2.13) WMα,Mα = {1, sβ, sα+β, s3α+β} , WMβ ,Mα = {1, ba, baba}

(9.2.14) WMα,Mβ = {1, ab, abab} , WMβ ,Mβ = {1, sα, s2α+β, s3α+2β}

(9.2.15)

WMα,T = {1, sβ, ab, sα+β, abab, babab} , W T,Mα = {1, sβ, ba, sα+β, baba, babab} .

Lemma 9.2.16. Let ξ ∈ Irr(F×). We have
(9.2.17)

rα (Iα(s, δ(ξ))) = νsF δ(ξ)+ν−s
F δ(ξ−1)+Iα(ν2sF ξ2⊗ν1/2−s

F ξ−1)+Iα(ν
s+1/2
F ξ⊗ν−2s

F ξ−2).

(9.2.18)

rα (Iβ(s, δ(ξ))) = δ(νsF ξ)+νsF ξ◦det+Iα(ν2sF ξ2⊗ν−s−1/2
F ξ−1)+Iα(ν

s−1/2
F ξ⊗ν−2s

F ξ−2).

Proof. (1) Since Iα(s, δ(ξ)) = Iα(ν
s
F δ(ξ)) and NG(Mα)/Mα = {1, s3α+β}, by [BZ77,

Geometrical Lemma in §2.12], we get

rα (Iα(s, δ(ξ))) = νsF δ(ξ)+s3α+β(ν
s
F δ(ξ))+Iα◦sα+β◦rMα

T (νsF δ(ξ))+Iα◦sβ◦rMα
T (νsF δ(ξ)).

By [Zel80, Proposition 1.11.(b)], we know that νsF δ(ξ) is the unique submodule of

the length two representation Iα(ν
s+1/2
F ξ ⊗ ν

s−1/2
F ξ), and rMα

T (νsF δ(ξ)) = ν
s+1/2
F ξ ⊗

ν
s−1/2
F ξ. On the other hand, we have s3α+β(ν

s
F δ(ξ)) = ν−s

F δ(ξ−1). Hence, we get

rα (Iα(s, δ(ξ))) = νsF δ(ξ)+ν−s
F δ(ξ−1)+Iα◦sβ(ν

s+1/2
F ξ⊗νs−1/2

F ξ)+Iα◦sα+β(ν
s+1/2
F ξ⊗νs−1/2

F ξ).

By Table 1, we have

sβ(ν
s+1/2
F ξ⊗νs−1/2

F ξ) = ν2sF ξ2⊗ν1/2−s
F ξ−1 and sα+β(ν

s+1/2
F ξ⊗νs−1/2

F ξ) = ν
s+1/2
F ξ⊗ν−2s

F ξ−2.

Finally, we obtain (9.2.17).
(2) By (9.2.14) and [BZ77, Geometric Lemma], we have in R(Mα):

(9.2.19) rα ◦ Iβ = Iα ◦ rMβ

T + Iα ◦ ba ◦ rMβ

T + Iα ◦ baba ◦ rMβ

T .

Again by [Zel80, 1.11], we have

r
Mβ

T (νsF δ(ξ)) = ν
s+1/2
F ξ ⊗ ν

s−1/2
F ξ.

By Table 1, we have ba(ν
s+1/2
F ξ⊗ ν

s−1/2
F ξ) = ν2sF ξ2⊗ ν

−s−1/2
F ξ−1 and baba(ν

s+1/2
F ξ⊗

ν
s−1/2
F ξ) = ν

s−1/2
F ξ ⊗ ν−2s

F ξ−2. Hence, we get

(ba ◦ rMβ

T )(νsF δ(ξ)) = ν2sF ξ2 ⊗ ν
2s+1/2
F ξ−1

(baba ◦ rMβ

T )(νsF δ(ξ)) = ν
s−1/2
F ξ ⊗ ν−2s

F ξ−2

Then (9.2.19) gives

rα (Iβ(s, δ(ξ))) = Iα(ν
s+1/2
F ξ⊗νs−1/2

F ξ)+Iα(ν2sF ξ2⊗ν−s−1/2
F ξ−1)+Iα(ν

s−1/2
F ξ⊗ν−2s

F ξ−2).
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Since Iα(ν
s+1/2
F ξ ⊗ ν

s−1/2
F ξ) = δ(νsF ξ) + νsF ξ ◦ det by 9.2.3, we have

rα (Iβ(s, δ(ξ))) = δ(νsF ξ)+νsF ξ◦det+Iα(ν2sF ξ2⊗ν−s−1/2
F ξ−1)+Iα(ν

s−1/2
F ξ⊗ν−2s

F ξ−2).

□

Lemma 9.2.20. Notations as above. We have
(9.2.21)
rαI(ν

∓1
F ⊗ξ2) = Iα(ν∓1

F ⊗ξ2)+Iα(ν±1
F ⊗ν

∓1
F ξ2)+Iα(ν∓1

F ξ2⊗ξ−1
2 )+Iα(ν∓1

F ⊗ν
±1
F ξ−1

2 ).

Proof. By (9.2.8), we have

(9.2.22) I(ν∓1
F ⊗ ξ2) = Iα(s, I

α(ν∓1−s
F ⊗ ξ2ν

−s
F )).

First note that Iα(s, I
α(ν∓1−s

F ⊗ ξ2ν
−s
F ) := Iα(ν

s
F I

α(ν∓1−s
F ⊗ ξ2ν

−s
F )) = Iα(I

α(ν∓1
F ⊗

ξ2)). By [BZ77, Geometrical Lemma], we have in R(Mα):

rα
(
Iα(s, I

α(ν∓1−s
F ⊗ ξ2ν

−s
F )
)
= Iα(ν∓1

F ⊗ ξ2) + s3α+β ◦ Iα(ν∓1
F ⊗ ξ2) + iMα

T ◦ sβ ◦ rMα
T Iα(ν∓1

F ⊗ ξ2)

(9.2.23)

+ iMα
T ◦ sα+β ◦ rMα

T Iα(ν∓1
F ⊗ ξ2).(9.2.24)

The first term in (9.2.23) gives s3α+β ◦ Iα(ν∓1
F ⊗ ξ2) = Iα(ν±1

F ⊗ ν∓1
F ξ2). Since

rMα
T Iα(ν∓1

F ⊗ ξ2) = ν∓1
F ⊗ ξ2 and sβ(ν

∓1
F ⊗ ξ2) = ν∓1

F ξ2 ⊗ ξ−1
2 , we have

(9.2.25) iMα
T ◦ sβ ◦ rMα

T Iα(ν∓1
F ⊗ ξ2) = Iα(ν∓1

F ξ2 ⊗ ξ−1
2 ).

To see the last term in (9.2.24), we have

(9.2.26) iMα
T ◦ sα+β ◦ rMα

T Iα(ν∓1
F ⊗ ξ2) = iMα

T ◦ sα+β(ν
∓1
F ⊗ ξ2) = Iα(ν∓1

F ⊗ ν±1
F ξ−1

2 ).

Thus we have

rα
(
Iα(s, I

α(ν∓1−s
F ⊗ ξ2ν

−s
F )
)
= Iα(ν∓1

F ⊗ξ2)+Iα(ν±1
F ⊗ν

∓1
F ξ2)+Iα(ν∓1

F ξ2⊗ξ−1
2 )+Iα(ν∓1

F ⊗ν
±1
F ξ−1

2 ).

□

Remark 9.2.2. We observe that (9.2.17) coincides with the one computed in [Mui97,
Proof of Proposition 4.1] in the particular case where s = 1/2 and ξ is quadratic. We
have also noticed the following typos in [Mui97, §2]: in the computation of rα ◦Iα(π)
the element w2α+β must be replaced by wα+β, and moreover w3α+2β must be replaced

by w3α+β in the computation of rα ◦ Iβ(π), it should be Iα instead of Iβ.

Lemma 9.2.27. Notations as above. We have
(9.2.28)
r∅I(ν

∓1
F ⊗ξ2) = ν∓1

F ⊗ξ2+ν∓1
F ξ2⊗ξ−1

2 +ξ−1
2 ⊗ν

∓1
F ξ2+ν∓1

F ⊗ξ
−1
2 ν±1

F +ν±1
F ξ−1

2 ⊗ν
∓1
F +ξ−1

2 ⊗ν
±1
F .

Proof. By (9.2.8) again, we have

(9.2.29) r∅I(ν
∓1
F ⊗ ξ2) = r∅

(
Iα(ν

s
F I

α(ν∓1−s
F ⊗ ξ2ν

−s
F )
)
= r∅

(
Iα(I

α(ν∓F ⊗ ξ2))
)
.

By [BZ77, Geometric Lemma] applied to (9.2.15), we have

r∅I(ν
∓1
F ⊗ ξ2) = ν∓1

F ⊗ ξ2 + iTT ◦ sβ ◦ r
Mα
T Iα(ν∓F ⊗ ξ2) + iTT ◦ ab ◦ r

GLα
2

T Iα(ν∓F ⊗ ξ2)

+ iTT ◦ abab ◦ (ν∓F ⊗ ξ2) + iTT ◦ babab ◦ (ν∓F ⊗ ξ2) + iTT ◦ sα+β ◦ (ν∓F ⊗ ξ2)
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Since r
GLα

2
T Iα(ν∓1

F ⊗ ξ2) = ν∓1
F ⊗ ξ2, we have

r∅I(ν
∓1
F ⊗ ξ2) = ν∓1

F ⊗ ξ2 + sβ(ν
∓1
F ⊗ ξ2) + ab(ν∓1

F ⊗ ξ2)

+ abab(ν∓1
F ⊗ ξ2) + babab(ν∓F ⊗ ξ2) + sα+β(ν

∓1
F ⊗ ξ2)

= ν∓1
F ⊗ ξ2 + ν∓1

F ξ2 ⊗ ξ−1
2 + ξ−1

2 ⊗ ν∓1
F ξ2

+ ν±1
F ξ−1

2 ⊗ ν∓1
F + ξ−1

2 ⊗ ν±1
F + ν∓1

F ⊗ ξ−1
2 ν±1

F .

Thus we have the desired equality. □

In the following, we will classify the principal series cases according to the pos-
sibilities for s. We will use the dual figure of Figure 1 in which the role of α and
β is played by β∨ and α∨, respectively to help us analyze the roots. Note that α∨

(resp. β∨), which is long (resp. short), corresponds to the long (resp. short) root α1

(resp. α2) in the notations of [Ram03, § 6], as shown in [Ram03, Fig.6.1]. Since the
root α∨ (resp. β∨) is long (resp. short), eα∨ = eα1 (resp. eβ∨ = eα2) is a representa-

tive of A1 (resp. Ã1). Since α∨ + β∨ is short, eα∨+β∨ is a representative of Ã1 (see
[Ram03, Table 6.3].

9.3. Case s = [T, ξ⊗ξ]G. We may write σ = χ1ξ⊗χ2ξ, with ξ a ramified character
of F×, and χ1, χ2 unramified characters of F×. We write χ1 = νs1F and χ2 = νs2F for
s1, s2 ∈ C.

–If both νs1F ξ and νs2F ξ are unitary, by [Key82, Theorem G2], I(ν
s1
F ξ ⊗ νs2F ξ) is

reducible if and only if νs1F ξ and νs2F ξ are two distinct quadratic characters, in which
case it is of multiplicity 1 and length 2. In this case, the two irreducible constituents
are in the same L-packet and they are both tempered. One is generic and the other
one is not. See Theorem 3.

–Otherwise (i.e., at least one of νs1F ξ, νs2F ξ is non-unitary), by [Mui97, Proposition
3.1], I(νs1F ξ ⊗ νs2F ξ) is irreducible unless we are in one of the following situations:

(1) s1 = ±1, ξ = 1, s2 arbitrary (resp. s1 arbitrary, s2 = ±1, ξ = 1);
(2) νs1+s2

F ξ2 = ν±1
F ;

(3) s1 − s2 = ±1;
(4) ν2s1+s2

F ξ3 = ν±1
F ;

(5) νs1+2s2
F ξ3 = ν±1

F .

We now explain how cases (1) and (2) are equivalent, using Remark 9.2.1 and Table

1: in case (1), ξ1 ⊗ ξ2 = ν±1
F ⊗ νs2F = sβ (νs2±1

F ⊗ ν−s2
F ) by Table 1, which then falls

under case (2) by Remark 9.2.1. Similarly, case (5) is equivalent to case (4) by using
the action of sα.

We will treat case (2), case (3) and case (4) separately.
We recall first that the character ξ admits a polar decomposition

(9.3.1) ξ = νtFω, where t ∈ R and ω is unitary,

(see for instance [Tat79, (2.2.1)]). Writing s := s2 + t± 1/2, we obtain

(9.3.2) ω := ν
s2−s±1/2
F ξ.
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9.3.1. Case (2) within Case s = [T, ξ ⊗ ξ]G. In case (2), we have

(9.3.3) νs1F ξ = ν−s2±1
F ξ−1.

Thus we have

(9.3.4) I(ξ1 ⊗ ξ2) = I(ν−s2±1
F ξ−1 ⊗ νs2F ξ)

ababa
= I(ν∓1

F ⊗ ξ2)

(a) Case ν∓1
F ⊗ξ2 /∈

{
νF ⊗ 1, νF ⊗ ν2F , ν

−1
F ⊗ 1, ν−1

F ⊗ ν−2
F

}
: In this case, Iα(ν∓1−s

F ⊗
ξ2ν

−s
F )) is irreducible, but I(ν∓1

F ⊗ ξ2) is reducible. We compute the irreducible con-
stituents in the following.

(i) When ξ2 is quadratic, this is covered in Tables 16 and 17 (depending on
whether ξ2 is unramified or not). In this case, I(ν∓1

F ⊗ ξ2) has length 4.

(ii) When ξ2 is non-quadratic, since I(ν∓1
F ⊗ ξ2)

bababa
= I(ν±1

F ⊗ ξ−1
2 ). By Lemma

9.2.20, we have
(9.3.5)
rαI(ν

±1
F ⊗ξ

−1
2 ) = Iα(ν±1

F ⊗ξ
−1
2 )+Iα(ν∓1

F ⊗ν
±1
F ξ−1

2 )+Iα(ν±1
F ξ−1

2 ⊗ξ2)+Iα(ν±1
F ⊗ν

∓1
F ξ2).

Let π(ν∓1
F ⊗ ξ2) ∼= π(ν±1

F ⊗ ξ−1
2 ) be an irreducible subrepresentation of

I(ν∓1
F ⊗ ξ2) ∼= I(ν±1

F ⊗ ξ−1
2 ). Comparing (9.3.5) with (9.2.21), we obtain

that rαI(ν
∓1
F ⊗ ξ2) and rαI(ν

±1
F ⊗ ξ−1

2 ) share the terms Iα(ν∓1
F ⊗ν±1

F ξ−1
2 ) and

Iα(ν±1
F ⊗ ν∓1

F ξ2). Thus we have

(9.3.6) rαπ(ν
∓1
F ⊗ ξ2) = Iα(ν∓1

F ⊗ ν±1
F ξ−1

2 ) + Iα(ν±1
F ⊗ ν∓1

F ξ2) = rαπ(ν
±1
F ⊗ ξ−1

2 ).

By [Rod81, Corollary,p.419], S = {s3α+β} and I(ν∓1
F ⊗ξ2) has length 2|S| = 2.

Let J(ν∓1
F ⊗ ξ2) denote the irreducible quotient of I(ν∓1

F ⊗ ξ2), and we have

(9.3.7) I(ν∓1
F ⊗ ξ2) = π(ν∓1

F ⊗ ξ2) + J(ν∓1
F ⊗ ξ2).

In this case, we have the following two Tables depending on what ξ2 is
like.
(a) When ξ2 is ramified cubic, Js = SL3(C). By [ABP11, p. 145] this case

corresponds to case tb in [Ram03, Table 4.1]. By [Roc98, Theorem 9.4]
the representation π(ν∓1

F ⊗ξ2) corresponds to an Iwahori-spherical, non-
square-integrable, tempered representation of PGL3(F ) and hence is
tempered. It is indexed in [Ram03, Table 4.2] by the triple (tb, eα2 , 1)
with tb = s2s1t. The list of irreducible constituents is summarized in
Table 12.

Representation enhanced L-parameter

π(ν∓1
F ⊗ ξ2) (φσ,A1 , 1)

J(ν∓1
F ⊗ ξ2) (φσ,1, 1)

Table 12. : LLC for irred. constituents of I(ν∓1
F ⊗ ξ2) where ξ2 is

ramified cubic.
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(b) When ξ2 is ramified neither quadratic nor cubic, Js = GL2(C). The list
of irreducible constituents is summarized in Table 13.
More precisely, this corresponds to case ta in [Ram03, Table 2.1], where
the tempered representation corresponds to the regular unipotent class
eα1 in GL2(C). By Proposition 7.0.2, we have W s

G = {1, sβ}. Thus by

Table 6, this corresponds to the unipotent class Ã1 in G2(C).

Representation enhanced L-parameter

π(ν∓1
F ⊗ ξ2) (φ

σ,Ã1
, 1)

J(ν∓1
F ⊗ ξ2) (φσ,1, 1)

Table 13. : LLC for irred. constituents of I(ν∓1
F ⊗ ξ2) where ξ2 is

ramified neither cubic nor quadratic.

(c) When ξ2 is unramified non-quadratic, Js = G2(C). The list of irreducible
constituents is summarized in Table 14. We observe that

(9.3.8) I(ν1−s2ξ−1 ⊗ νs2ξ) = Iβ(1/2− s2, ξ
−1 ⊗ StGL2)⊕ Iβ(1/2− s2, ξ

−1 ◦ det).

It shows that π(ν∓1
F ⊗ξ2) := Iβ(1/2−s2, ξ

−1⊗StGL2) is tempered. Thus
this case corresponds to the case tg in [Ram03, Table 6.1].

Representation enhanced L-parameter

π(ν∓1
F ⊗ ξ2) (φσ,A1 , 1)

J(ν∓1
F ⊗ ξ2) (φσ,1, 1)

Table 14. : LLC for irred. constituents of I(ν∓1
F ⊗ ξ2) where ξ2 is

unramified non-quadratic.

(b) Case ν∓1
F ⊗ ξ2 ∈

{
νF ⊗ 1, νF ⊗ ν2F , ν

−1
F ⊗ 1, ν−1

F ⊗ ν−2
F

}
: Since, by Table 1, we

have I(νF ⊗ 1)
bababa
= I(ν−1

F ⊗ 1) and I(νF ⊗ ν2F )
bababa
= I(ν−1

F ⊗ ν−2
F ), we are reduced

to consider ν∓1
F ⊗ ξ2 ∈

{
νF ⊗ 1, νF ⊗ ν2F

}
. The LLC for the irreducible components

of I(νF ⊗ ν2F ) will be computed in Table 18.
By [Mui97, Proposition 4.3], the representation I(νF ⊗ 1) contains exactly two

irreducible subrepresentations π(1) and π(1)′, which are square-integrable, and we
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have in R(G)

Iα(1/2, δ(1)) = π(1)′ + Jα(1/2, δ(1)) + Jβ(1/2, δ(1))(9.3.9)

Iβ(1/2, δ(1)) = π(1) + π(1)′ + Jβ(1/2, δ(1))(9.3.10)

Iα(1/2, 1GL2) = π(1) + Jβ(1/2, δ(1)) + Jβ(1/2, π(1, 1))(9.3.11)

Iβ(1/2, 1GL2) = Jβ(1, π(1, 1)) + Jβ(1/2, δ(1)) + Jα(1/2, δ(1)).(9.3.12)

Hence I(νF ⊗ 1) has length 6: its other irreducible constituents are Jα(1/2, δ(1)),
Jβ(1/2, δ(1)), Jβ(1, π(1, 1)), the latter occurring with multiplicity 2.

Lemma 9.3.13. The representation π(1)′ is generic.

Proof. By [Rod75, Theorem 8], the representation δ(1) = StGL2 is generic. Hence
by (9.3.9), both Iα(1/2, δ(1)) and Iβ(1/2, δ(1)) contain a generic irreducible com-
ponent, and that none of the representations π(1), Jβ(1/2, δ(1)), Jβ(1, π(1, 1)) and
Jα(1/2, δ(1)) is generic. Thus, π(1)

′ is generic. □

Using [Ram03, Table 6.1] Case te, we obtain the enhanced unipotent conjugacy
classes, which give the enhanced L-parameters, and the dimensions of the involved ir-
reducible representations, as in Table 15. More precisely, Jα(1/2, δ(1)) has dimension
1 and corresponds to eα∨ , which corresponds to the minimal unipotent class A1. On
the other hand, Jβ(1/2, δ(1)) corresponds to trivial unipotent class. The two square-
integrable representations π(1) and π(1)′ correspond to eα∨+eα∨+2β∨ , which, as men-
tioned in [Ram03, Table 6.3], is a representative of the nilpotent class corresponding
to G2(a1). For any representative u of G2(a1), we have AG2(C)(u) ≃ S3, the sym-
metric group on three elements, which has irreducible representations indexed by the
partitions (3), (21), (13) of 3, where (3) is the trivial one. The generic representation
π(1)′ corresponds to (te,G2(a1), (3)), while π(1) corresponds to (te,G2(a1), (2, 1)).
There are five indexing triples, as in Table 15. Note that this table is consistent with
the list for π−1√

q(te) in [ABP11, p.143].

Indexing triple unipotent orbit representation

(te, 0, 1) 1 Jβ(1, π(1, 1))

(te, eα∨ , 1) A1 Jα(1/2, δ(1))

(te, eβ∨+α∨ , 1) Ã1 Jβ(1/2, δ(1))

(te, eα∨ + e2β∨+α∨ , (21)) G2(a1) π(1)

(te, eα∨ + e2β∨+α∨ , (3)) G2(a1) π(1)′
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Representation enhanced L-parameter dimension

π(1)′ (φσ,G2(a1), (3)) 3

π(1) (φσ,G2(a1), (21)) 1

Jβ(1, π(1, 1)) (φσ,1, 1) 3

Jβ(1/2, δ(1)) (φ
σ,Ã1

, 1) 2

Jα(1/2, δ(1)) (φσ,A1 , 1) 1

Table 15. : LLC for the irreducible components of I(νF ⊗ 1).

9.3.2. Case (3) within Case s = [T, ξ ⊗ ξ]G.
In case (3), ξ1 = νs1F ξ = νs1−s2

F ξ2 = ν±1
F ξ2. By (9.2.10) we have

I(ξ1 ⊗ ξ2) = Iα(s, δ(ν
±1/2−s
F ξ2)) + Iα(s, ν

±1/2−s
F ξ2 ◦ det)

= Iα(s, δ(ν
s2−s±1/2
F ξ)) + Iα(s, ν

s2−s±1/2
F ξ ◦ det).

(9.3.14)

By [Mui97, Theorem 3.1 (i)], if the character ω defined in (9.3.2) is unitary, then

Iα(s, δ(ν
s2−s±1/2
F ξ)) and Iα(s, ν

s2−s±1/2
F ξ ◦ det) are irreducible unless

s = ±1/2, νs2−s±1/2
F ξ is quadratic, s = ±3/2, νs2−s±1/2

F ξ = 1 or s = ±1/2, νs2−s±1/2
F ξ is cubic.

When they are irreducible, we compute the L-parameters for irreducible constituents
and record them in Table 21 (when ξ is unramified) and Table 22 (when ξ is ramified).

When they are reducible, we have in R(G):

(a) Case (s = ±1/2, νs2−s±1/2
F ξ = η2 quadratic):

I(ξ1 ⊗ ξ2) = I(ν
s±1/2
F η2 ⊗ ν

s∓1/2
F η2) = I(ν±1

F ν
s∓1/2
F η2 ⊗ ν

s∓1/2
F η2),

and thus Lemma 9.2.9 applies to this case, and we have

(9.3.15) I(ξ1 ⊗ ξ2) = Iα(s, δ(η2)) + Iα(s, η2 ◦ det).
We now plug in s = ±1/2 and obtain

I(ξ1 ⊗ ξ2) = I(ν±1
F η2 ⊗ η2) = Iα(±1/2, δ(η2)) + Iα(±1/2, η2 ◦ det).

Note that by [BDK86, Lemma 5.4(iii)], we have
(9.3.16)

Iα(−1/2, δ(η2)) ≃ Iα(1/2, δ(η2)) and Iα(−1/2, η2 ◦ det) ≃ Iα(1/2, η2 ◦ det).
Therefore in the above we treat ±1/2 cases together.

Recall from (9.3.2), we have that η2 = ω is unitary. Thus [Mui97, Proposition 4.1
(ii)] applies, and

Iα(s, δ(η2)) = π(η2) + Jα(s, δ(η2))(9.3.17)

Iα(s, η2 ◦ det) = Jβ(1, π(1, η2)) + Jβ(s, δ(η2)).(9.3.18)
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Combined with (9.3.15), we have

(9.3.19) I(ξ1 ⊗ ξ2) = π(η2) + Jβ(1, π(1, η2)) + Jβ(1/2, δ(η2)) + Jα(1/2, δ(η2)).

We observe that I(ν−2
F ⊗ ν1F )

babbaba
= I(ν2F ⊗ νF ) in R(G).

• When η2 is unramified quadratic, Js = G2(C) as in [ABP11, § 4], and the L-
parameters for irreducible constituents are recorded in Table 16. More precisely, we
are in case td in [Ram03, Table 6.1] (see also [ABP11, p.17]), there are four indexing
triples

Indexing triple unipotent orbit representation

(td, 0, 1) 1 Jβ(1, π(1, η2))

(td, eα∨ , 1) A1 Jα(1/2, δ(η2))

(td, e2β∨+α∨ , 1) Ã1 Jβ(1/2, δ(η2))

(td, eα∨ + eα∨+2β∨ , 1) G2(a1) π(η2)

Note that (td, 0, 1) corresponds to the trivial unipotent in Js. In the Langlands
classification (see for instance [SZ18]) (s1td, {1}) corresponds to the unique Jα term;
since (s1td, {1}) corresponds to eα∨ , which is a representative of the minimal nilpotent
orbit in Js. Likewise, the parameters (td, {2}) and (s2s1s2td, {2}) correspond to the
two Jβ terms. The element eα∨ + eα∨+2β∨ corresponds to the subregular unipotent
orbit G2(a1) in Js (see [Ram03, Table 6.3]).

Representation enhanced L-parameter

π(η2) (φσ,G2(a1), 1)

Jβ(1, π(1, η2)) (φσ,1, 1)

Jβ(1/2, δ(η2)) (φ
σ,Ã1

, 1)

Jα(1/2, δ(η2)) (φσ,A1 , 1)

Table 16. LLC for the irreducible components of I(νF ⊗ η2) for η2
unramified quadratic.

•When η2 is ramified quadratic, by Proposition 7.0.2, we have Js = SO4(C) as in
[ABP11, § 8]. By [ABPS16a, Theorem 4.7], we are reduced to compute the Kazhdan-
Lusztig triples for the F -split group SO4(F ). Since SO4(C) ≃ SL2(C)×SL2(C)/{±1},
we have H(SO4(C), I) ≃ (SL2(C)× SL2(C))Z/2Z by [Ree02, §1.5]. By [ABP11, proof
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of Lemma 8.3], both I(νF ⊗ η2) and I(νF η2 ⊗ η2) have length 4. The L-parameters
for irreducible constituents are recorded in Table 17. More precisely:

Lemma 9.3.20. π(η2) is generic.

Proof. The proof is very similar to that of Lemma 9.3.13. Recall from (9.3.17) that
Iα(s, δ(η2)) = π(η2)+Jα(s, δ(η2)). Since δ(η2) is generic, Iα(1/2, δ(η2)) must contain
a generic representation as an irreducible constituent. On the other hand, since
η2 ◦ det is not generic, by Lemma 9.2.6, all of the irreducible constituents occuring
in Iβ(1/2, η2 ◦ det) are non-generic. In particular, by [Mui97, 4.1(ii)], Jα(1/2, δ(η2))
is not generic. Therefore π(η2) must be generic. □

Since π(η2) is generic, it has trivial enhancement as in the first row of Table 17.
By [Roc98], we have

(9.3.21) Irr(H(G, τ s))
∼−→ Irr(H(Js, 1)).

Since π(η2) is a discrete series, its image under (9.3.21) is also a discrete series, which
by [ABP11, §8.0.3] corresponds to a Kazhdan-Lusztig triple with unipotent class in
SO4(C) the regular unipotent class, i.e. by Table 4 the subregular unipotent G2(a1) in
G2. On the other hand, consistent with the tables in [Ram03] and our previous tables,
Jβ(1, π(1, η2)) corresponds to the trivial unipotent class. It now remains to distribute
Jβ(1/2, δ(η2)) and Jα(1/2, δ(η2)) among the two unipotent classes (2, 2)′ and (2, 2)′′

in SO4(C). By the indexing triples in [Ram03, §2], Jβ(1/2, δ(η2)) corresponds to eα2 ,

which corresponds to eβ∨ , which then corresponds to Ã1.
We now compute the formal degree of π(η2): by [Roc98, Theorem 10.7], up to

normalization factors of volumes, we have

(9.3.22) fdeg(π(η2)) = d(StHSO4
),

where StSO4 is the Steinberg representation of SO4(F ). Since |Z(G∨)| = 2 and
|A(s, u)| = 1, by [CKK12, Theorem 4.1], we have

(9.3.23) d(StHSO4
) =

1

2
· q − 1

q2 − 1
· q − 1

q2 − 1
· q2 = q2

2(q + 1)2
.

Thus we have

(9.3.24) fdeg(π(η2)) =
q2

2(q + 1)2
,

which agrees with the formal degree for the singular supercuspidal computed in
(6.0.14).

(b) Case (s = ±3/2, νs2−s±1/2
F ξ = 1): ξ2 = νs2F ξ = ν

s∓1/2
F , and ξ1 = ν±F ξ2 = ν

±1/2+s
F .

I(ξ1 ⊗ ξ2) = I(ν
±1/2+s
F ⊗ ν

s∓1/2
F ) = I(ν±1

F ν
s∓1/2
F ⊗ ν

s∓1/2
F ),

and thus Lemma 9.2.9 applies to this case, and we have

(9.3.25) I(ξ1 ⊗ ξ2) = Iα(s, δ(ν
±1/2−s
F ξ2)) + Iα(s, ν

±1/2−s
F ξ2 ◦ det).
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Representation enhanced L-parameter

π(η2) (φσ,G2(a1), 1)

Jβ(1, π(1, η2)) (φσ,1, 1)

Jβ(1/2, δ(η2)) (φ
σ,Ã1

, 1)

Jα(1/2, δ(η2)) (φσ,A1 , 1)

Table 17. LLC for the irreducible components of I(νF ⊗ η2) for η2
ramified quadratic.

We now plug in s = ±3/2 and the explicit values for ξ2, and obtain

I(ξ1 ⊗ ξ2) = I(ν±2
F ⊗ ν±1

F ) = Iα(±3/2, δ(1)) + Iα(±3/2, 1GL2).

By [BDK86, Lemma 5.4(iii)], we have

(9.3.26) Iα(−3/2, δ(1)) ≃ Iα(3/2, δ(1)) and Iα(−3/2, 1GL2) ≃ Iα(3/2, 1GL2).

Therefore it suffices to treat the ±3/2 cases together. When s = 3/2, by [Mui97,
Proposition 4.4], we have the following decomposition into irreducible constituents:
(9.3.27)
Iα(3/2, δ(1)) = StG2 + Jα(3/2, δ(1)) and Iα(3/2, 1GL2) = 1G2 + Jβ(5/2, δ(1)).

We thus obtain

(9.3.28) I(ξ1 ⊗ ξ2) = I(ν±2
F ⊗ ν±1

F ) = StG2 + Jα(3/2, δ(1)) + 1G2 + Jβ(5/2, δ(1)).

In the notation of [Ram03, Table 6.1] the central character of the irreducible
components of I(ν2F ⊗ νF ) is denoted ta. Thus two representations have dimension
1 (the trivial representation 1G2 and the Steinberg representation StG2) and the two
have dimension 5. These four irreducible representations are also listed in [ABP11,
p.143] as the elements of π−1√

q(ta). For each root γ∨ in R(G∨, T∨) let denote by

eγ∨ an element of the root space g∨γ∨ . The representation StG2 is square-integrable,

hence in particular it is tempered. From [Ram03, Table 6.1], it has indexing triple
(ta, eα∨ + eβ∨ , 1). Then the first row of [Ram03, Table 6.3] shows that it is attached
to the regular unipotent class G2. By [Ram03, Table 6.1], the indexing triple of 1G2 is
(ta, 0, 1), and those of Jα(3/2, δ(1)) and Jβ(5/2, δ(1)) are (ta, eα∨ , 1) and (ta, eβ∨ , 1)
or (ta, eβ∨ , 1) and (ta, eα∨ , 1). Also, by [Ram03, Table 6.3], since β∨ is short, we
have that eβ∨ corresponds to the minimal unipotent class A1, while eα∨ corresponds

to the subminimal one Ã1. In this case, Js = G2(C) as in [ABP11, §4], and the
L-parameters for irreducible constituents are recorded in Table 18. More precisely,
we are in case ta in [Ram03, Table 6.1] and there are four indexing triples as in
Table 18 (note that this table is consistent with the case π−1√

q(ta) in [ABP11, p.143]).

Table 18 shows that there are four L-packets. Each L-packet is a singleton, hence
the attached group Gσ,u is connected.



64 ANNE-MARIE AUBERT AND YUJIE XU

Indexing triple unipotent orbit representation

(ta, 0, 1) 1 1G2

(ta, eβ∨ , 1) Ã1 Jβ(5/2, δ(1))

(ta, eα∨ , 1) A1 Jα(3/2, δ(1))

(ta, eα∨ + eβ∨ , 1) G2 StG2

Representation enhanced L-parameter

StG2 (φσ,G2 , 1)

Jα(3/2, δ(1)) (φσ,A1 , 1)

Jβ(5/2, δ(1)) (φ
σ,Ã1

, 1)

1G2 (φσ,1, 1)

Table 18. : LLC for the irreducible components of I(ν2F ⊗ νF ).

(c) Case (s = ±1/2, νs2−s±1/2
F ξ = η3 cubic):

I(ξ1 ⊗ ξ2) = I(ν
s±1/2
F η3 ⊗ ν

s∓1/2
F η3) = I(ν±1

F ν
s∓1/2
F η3 ⊗ ν

s∓1/2
F η3),

and thus Lemma 9.2.9 applies to this case, and we have the decomposition into
irreducible constituents:

(9.3.29) I(ξ1 ⊗ ξ2) = Iα(s, δ(η3)) + Iα(s, η3 ◦ det).

We now plug in s = ±1/2 and obtain

I(ξ1 ⊗ ξ2) = I(ν±1
F η3 ⊗ η3) = Iα(±1/2, δ(η3)) + Iα(±1/2, η3 ◦ det).

By [BDK86, Lemma 5.5(iii)], we have

Iα(−1/2, δ(η3)) = Iα(1/2, δ(η
−1
3 )) and Iα(−1/2, η3 ◦ det) = Iα(1/2, η

−1
3 ◦ det).

The following essentially follows from [Mui97, Proposition 4.2(ii)], for the reader’s
convenience, we include a more detailed proof than loc.cit.. When ξ2 is cubic, con-
sider the following two cases.

(1) If 3s + 1/2 = ±1, i.e. s = 1/6 or −1/2, then Iα(ν2sF ξ2 ⊗ ν
−s−1/2
F ξ−1) in

(9.2.18) becomes

Iα(ν2sF ξ2 ⊗ ν
−s−1/2
F ξ−1) = δ(ν

2s∓1/2
F ξ2) + ν

2s∓1/2
F ξ2 ◦ det,
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and the term Iα(ν
s+1/2
F ξ ⊗ ν−2s

F ξ−2) in (9.2.17) becomes

Iα(ν
s+1/2
F ξ ⊗ ν−2s

F ξ−2) = δ(ν
−2s±1/2
F ξ) + ν

−2s±1/2
F ξ ◦ det .

By [Mui97, Theorem 3.1], we only need to consider the case where s = −1/2.
In this case, we have

(9.3.30)
rα(Iα(s, δ(ξ))) = νsF δ(ξ) + ν−s

F δ(ξ−1) + νs+1
F δ(ξ) + νs+1

F ξ ◦ det+Iα(ν−1
F ξ−1 ⊗ νF ξ

−1).

Thus plugging s = −1/2 in the above and comparing with the analogous for-
mula for rα(Iα(s), δ(ξ

−1)), we obtain that rα(Iα(−1/2, δ(ξ))) and rα(Iα(−1/2, δ(ξ−1)))

share the common terms ν
1/2
F δ(ξ) + ν

1/2
F δ(ξ−1) (note that this is only true

for very specially chosen values of s), thus

(9.3.31) rα(π(ξ)) = ν
1/2
F δ(ξ) + ν

1/2
F δ(ξ−1),

and collecting the differing terms we obtain

(9.3.32) rα(Jα(−1/2, δ(ξ))) = δ(ν
−1/2
F ξ) + ν

1/2
F ξ ◦ det+Iα(ν−1

F ξ−1 ⊗ νF ξ
−1).

In summary, we have

(9.3.33) Iα(−1/2, δ(ξ)) = π(ξ) + Jα(−1/2, δ(ξ)).

(2) If 3s − 1/2 = ±1, i.e. s = 1/2 or −1/6; similarly, by [Mui97, Theorem 3.1],
we only need to consider the case where s = 1/2. In this case, we have

(9.3.34)

rα(Iα(s, δ(ξ))) = νsF δ(ξ)+ν−s
F δ(ξ−1)+ν1−s

F δ(ξ−1)+ν1−s
F ξ−1◦det+Iα(νs+1/2ξ⊗ν−2s

F ξ).

Thus plugging s = 1/2 in the above and comparing with the analogous for-
mula for rα(Iα(s, δ(ξ

−1))), we obtain that rα(Iα(1/2, δ(ξ))) and rα(Iα(1/2, δ(ξ
−1)))

share the common terms ν
1/2
F δ(ξ) + ν

1/2
F δ(ξ−1), thus

(9.3.35) rα(π(ξ)) = ν
1/2
F δ(ξ) + ν

1/2
F δ(ξ−1),

and collecting the differing terms we obtain

(9.3.36) rα(Jα(1/2, δ(ξ))) = ν
−1/2
F δ(ξ−1) + ν

1/2
F ξ−1 ◦ det+Iα(νF ξ ⊗ ν−1

F ξ).

In summary, we still have

(9.3.37) Iα(1/2, δ(ξ)) = π(ξ) + Jα(1/2, δ(ξ)).

The Jacquet restrictions for Jα(s, ξ ◦ det) can be computed similarly.

9.3.38. Returning to the specific setting involving η3, we obtain:

Iα(1/2, δ(η
±1
3 )) = π(η±1

3 ) + Jα(1/2, δ(η
±1
3 )) and

Iα(1/2, η
±1
3 ◦ det) = Jβ(1, π(δ

±1
3 , δ∓1

3 )) + Jα(1/2, δ(η
∓1
3 )).

In summary, we obtain the following decomposition into irreducible constituents:
(9.3.39)
I(ξ1⊗ξ2) = I(ν±1

F η3⊗η3) = π(η±1
3 )+Jα(1/2, δ(η

±1
3 ))+Jβ(1, π(δ

±1
3 , δ∓3 ))+Jα(1/2, δ(η

∓
3 )).
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When η3 is unramified, it follows from [ABP11, p.142] that we are in the case
of infinitesimal character tc of [Ram03, Table 6.1]. The representation π(η±1

3 ) is a
2-dimensional square-integrable representation, with non-real central character (see
[Ram03, §6]). The three other irreducible representations are non-tempered. It has
indexing triple (tc, eα∨ + e3β∨+α∨ , 1). As observed in [Ram03, p. 25], it follows from
[Stu71, Satz 1’], that eα∨ + e3β∨+α∨ is a representative of the subregular unipotent

orbit G2(a1). The representation Jβ(1, π(δ
±1
3 , δ∓3 )) has dimension 2 and its indexing

triple is (tc, 0, 1). The representations Jα(1/2, δ(η
±1
3 )) and Jα(1/2, δ(η

∓
3 )) are both

of dimension 4, with indexing triples (tc, eα, 1) and (tc, eα+3β, 1).

Indexing triple unipotent orbit representation

(tc, eα∨ + e3β∨+α∨ , 1) G2(a1) π(η±3 )

(tc, eα∨ , 1) A1 Jα(1/2, δ(η
±
3 ))

(tc, e3β∨+α∨ , 1) A1 Jα(1/2, δ(η
∓
3 ))

(tc, 0, 1) 1 Jβ(1, π(δ
±1
3 , δ±3 ))

In this case, Js = G2(C) as in [ABP11, § 4], and the enhanced L-parameters are
as in Table 19:

Representation enhanced L-parameter

π(η±1
3 ) (φσ,G2(a1), 1)

Jα(1/2, δ(η
±1
3 )) (φ′

σ,A1
, 1)

Jα(1/2, δ(η
∓
3 )) (φ′′

σ,A1
, 1)

Jβ(1, π(δ
±1
3 , δ∓3 )) (φσ,1, 1)

Table 19. : LLC for the irreducible components of I(ν±1
F η3⊗η3) for

η3 cubic unramified.

9.3.40. When η3 is ramified, the group Js is isomorphic to SL3(C) with simple roots
α∨ and 3β∨ + 2α∨. We compute the L-parameters by combining the case ta in
[Ram03, Table 4.1] with Table 5. There are four indexing triples as in the following
table.
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Indexing triple unipotent orbit representation

(ta, 0, 1) 1 Jβ(1, π(δ
±1
3 , δ∓3 ))

(ta, eα∨ , 1) A1 Jα(1/2, δ(η
±1
3 ))

(ta, e3β∨+2α∨ , 1) A1 Jα(1/2, δ(η
∓
3 ))

(ta, eα∨ + e3β∨+2α∨ , 1) G2(a1) π(η±1
3 )

By [Ram03, Table 4.2], eα∨ + e3β∨+2α∨ corresponds to the regular nilpotent orbit in
SL3(C), which gets sent to the subregular nilpotent orbit in G2(C) by Table 5. By
[Ram03, Table 4.2] again, e3β∨+2α∨ corresponds to the subregular nilpotent orbit in
SL3(C), which gets sent to the subminimal nilpotent orbit in G2 by Table 5 again.
Here u′ and u′′ are unipotent such that their conjugacy class [u′] = [u′′] = A1 in G2,
but the restriction φ|WF

depends on ′u and u′′ itself, rather than their conjugacy
class; therefore we are able to arrive at different L-parameters φ′

σ,A1
and φ′′

σ,A1
for

the two irreducible constituents Jα(1/2, δ(η
±1
3 )) and Jα(1/2, δ(η

∓
3 )).

Representation enhanced L-parameter

π(η±1
3 ) (φσ,G2(a1), 1)

Jα(1/2, δ(η
±1
3 )) (φ′

σ,A1
, 1)

Jα(1/2, δ(η
∓
3 )) (φ′′

σ,A1
, 1)

Jβ(1, π(δ
±1
3 , δ∓3 )) (φσ,1, 1)

Table 20. LLC for the irreducible components of I(ν±1
F η3⊗ η3) for

η3 cubic ramified.

We now compute the formal degree of π(η3): by [Roc98, Theorem 10.7], up to
normalization factors of volumes, we have

(9.3.41) fdeg(π(η3)) = d(StHPGL3
),

where StPGL3 is the Steinberg representation of PGL3(F ). By [Opd16, Theorem 4.11],

(9.3.42) d(StHPGL3
) = 3−1[3]−1

q = 3−1 · q
1/2 − q−1/2

q3/2 − q−3/2
=

q

3(q2 + q + 1)
.

Thus we have

(9.3.43) fdeg(π(η3)) =
q

3(q2 + q + 1)
,

which agrees with the formal degree for the singular supercuspidal in (6.0.11).
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9.3.3. Case (5) within Case s = [T, ξ ⊗ ξ]G.

In case (5), ξ1 = νs1F ξ = ν−2s2
F ξ−2ν±1

F = ξ−2
2 ν±1

F . Thus

(9.3.44) I(ξ1 ⊗ ξ2) = I(ν±1
F ξ−2

2 ⊗ ξ2)
ababa
= I(ν±1

F ξ2 ⊗ ξ2).

Thus Lemma 9.2.9 applies to this case, and we have

(9.3.45) I(ξ1 ⊗ ξ2) = I(ν±1
F ξ2 ⊗ ξ2) = Iα(s, δ(ν

±1/2−s
F ξ2)) + Iα(s, ν

±1/2−s
F ξ2 ◦ det)

Recall from (9.3.2) that ω = ξν−t
F = ξν

s2−s±1/2
F = ν

±1/2−s
F ξ2 is unitary. Therefore

[Mui97, Theorem 3.1 (i)] applies to this case, and Iα(s, δ(ν
±1/2−s
F ξ2)) and Iα(s, ν

±1/2−s
F ξ2◦

det) are irreducible unless

s = ±1/2, ν±1/2−s
F ξ2 = ξ2 is quadratic, s = ±3/2, ν±1/2−s

F ξ2 = 1 or s = ±1/2, ν±1/2−s
F ξ2 is cubic.

When they are irreducible, we compute the L-parameters for irreducible constituents
and record them in Table 21 (when ξ2 is unramified) and Table 22 (when ξ2 is
ramified).

•When ξ2 is unramified, we are in case tg of [Ram03, Table 6.1] (see also [ABP11,
§4]) and Js = G2,C, and we compute the L-parameters in Table 21. Note that

since δ(ν
±1/2−s
F ξ2) is discrete series, the induced representation Iα(s, δ(ν

±1/2−s
F ξ2))

is tempered, which thus corresponds to the eα1 unipotent class, i.e. the minimal
unipotent class A1 in G2.

Representation indexing triple enhanced L-parameter

Iα(s, δ(ν
±1/2−s
F ξ2)) (tg, eα1 , 1) (φσ,A1 , 1)

Iα(s, ν
±1/2−s
F ξ2 ◦ det) (tg, 0, 1) (φσ,1, 1)

Table 21. : LLC for irred. constituents of case (5) within I(ξ ⊗ ξ)
where ξ is unramified.

• When ξ2 is ramified, we compute the L-parameters in different cases.

(i) When ξ is neither quadratic nor cubic, we are in case (3) of Proposition
7.0.2, where W s

G = Z/2Z = {1, sα} and Js = GL2(C). We are in case ta of

[Ram03, Table 2.1]. Again since δ(ν
±1/2−s
F ξ2) is discrete series, the induced

representation Iα(s, δ(ν
±1/2−s
F ξ2)) is tempered, which thus corresponds to

the eα1 unipotent class, which corresponds to A1 in G2 by Table 6. Thus we
obtain Table 22.
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Representation indexing triple enhanced L-parameter

Iα(s, δ(ν
±1/2−s
F ξ2)) (ta, eα1 , 1) (φσ,A1 , 1)

Iα(s, ν
±1/2−s
F ξ2 ◦ det) (ta, 0, 1) (φσ,1, 1)

Table 22. : LLC for irred. constituents of I(ξ1 ⊗ ξ2) attached to
Case (5) of s = [T, ξ ⊗ ξ]G where ξ is ramified.

(ii) When ξ is quadratic, we are in case (4) of Proposition 7.0.2, where W s
G =

Z/2Z × Z/2Z and Js = SO4(C). However, this case cannot happen here
(although it’ll occur elsewhere in our other subsections), because in this case

ξ2 is quadratic and Iα(s, δ(ν
±1/2−s
F ξ2)) and Iα(s, ν

±1/2−s
F ξ2◦det) are reducible,

contradicting our assumption on irreducibility in this current subsection. (In
fact, we indeed expect to have a length 4 table rather than length 2.)

(iii) When ξ is cubic, we are in case (5) of Proposition 7.0.2, where W s
G = S3

and Js = SL3,C. Likewise, this case cannot happen here (although it’ll occur
elsewhere in our other subsections), because in this case ξ2 is cubic and

Iα(s, δ(ν
±1/2−s
F ξ2)) and Iα(s, ν

±1/2−s
F ξ2 ◦det) are reducible, contradicting our

assumption on irreducibility in this current subsection. (In fact, we indeed
expect to have a length 4 table rather than length 2.)

When they are reducible, we have in R(G):

(a) Case (s = ±1/2, ν±1/2−s
F ξ2 = η2 quadratic):

I(ξ1 ⊗ ξ2) = I(ν
s±1/2
F η2 ⊗ ν

s∓1/2
F η2) = I(ν±1

F ν
s∓1/2
F η2 ⊗ ν

s∓1/2
F η2),

and thus Lemma 9.2.9 applies to this case, and we have

(9.3.46) I(ξ1 ⊗ ξ2) = Iα(s, δ(η2)) + Iα(s, η2 ◦ det).

We now plug in s = ±1/2 and obtain

I(ξ1 ⊗ ξ2) = I(ν±1
F η2 ⊗ η2) = Iα(±1/2, δ(η2)) + Iα(±1/2, η2 ◦ det).

Note that by [BDK86, Lemma 5.4(iii)], we have
(9.3.47)

Iα(−1/2, δ(η2)) ≃ Iα(1/2, δ(η2)) and Iα(−1/2, η2 ◦ det) ≃ Iα(1/2, η2 ◦ det).

Therefore in the above we treat ±1/2 cases together. Recall from (9.3.2), we have
that η2 = ω is unitary, thus we can apply [Mui97, Proposition 4.1 (ii)] and obtain

(9.3.48) I(ξ1 ⊗ ξ2) = π(η2) + Jβ(1, π(1, η2)) + Jβ(1/2, δ(η2)) + Jα(1/2, δ(η2)).

The LLC for these irreducible constituents was already computed in Table 16 (when
η2 is unramified) and Table 17 (when η2 is ramified).
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(b) Case (s = ±3/2, νs2−s±1/2
F ξ = 1): we have ξ2 = νs2F ξ = ν

s∓1/2
F , and ξ1 =

ν±F ξ2 = ν
±1/2+s
F .4 Thus

I(ξ1 ⊗ ξ2) = I(ν
±1/2+s
F ⊗ ν

s∓1/2
F ) = I(ν±1

F ν
s∓1/2
F ⊗ ν

s∓1/2
F ),

and thus Lemma 9.2.9 applies to this case, and we have

(9.3.49) I(ξ1 ⊗ ξ2) = Iα(s, δ(ν
±1/2−s
F ξ2)) + Iα(s, ν

±1/2−s
F ξ2 ◦ det).

We now plug in s = ±3/2 and the explicit values for ξ2, and obtain

I(ξ1 ⊗ ξ2) = I(ν±2
F ⊗ ν±1

F ) = Iα(±3/2, δ(1)) + Iα(±3/2, 1GL2).

By [BDK86, Lemma 5.4(iii)], we have

(9.3.50) Iα(−3/2, δ(1)) ≃ Iα(3/2, δ(1)) and Iα(−3/2, 1GL2) ≃ Iα(3/2, 1GL2).

Therefore it suffices to treat the ±3/2 cases together. When s = 3/2, by [Mui97,
Proposition 4.4], we have the following decomposition into irreducible constituents:
(9.3.51)
Iα(3/2, δ(1)) = StG2 + Jα(3/2, δ(1)) and Iα(3/2, 1GL2) = 1G2 + Jβ(5/2, δ(1)).

We thus obtain

(9.3.52) I(ξ1 ⊗ ξ2) = I(ν±2
F ⊗ ν±1

F ) = StG2 + Jα(3/2, δ(1)) + 1G2 + Jβ(5/2, δ(1)).

The LLC for these irreducible constituents was already computed in Table 18.

(c) Case (s = ±1/2, νs2−s±1/2
F ξ = η3 cubic):

I(ξ1 ⊗ ξ2) = I(ν
s±1/2
F η3 ⊗ ν

s∓1/2
F η3) = I(ν±1

F ν
s∓1/2
F η3 ⊗ ν

s∓1/2
F η3),

and thus Lemma 9.2.9 applies to this case, and we have the decomposition into
irreducible constituents:

(9.3.53) I(ξ1 ⊗ ξ2) = Iα(s, δ(η3)) + Iα(s, η3 ◦ det).
We now plug in s = ±1/2 and obtain

I(ξ1 ⊗ ξ2) = I(ν±1
F η3 ⊗ η3) = Iα(±1/2, δ(η3)) + Iα(±1/2, η3 ◦ det).

By [BDK86, Lemma 5.5(iii)], we have

Iα(−1/2, δ(η3)) = Iα(1/2, δ(η
−1
3 )) and Iα(−1/2, η3 ◦ det) = Iα(1/2, η

−1
3 ◦ det).

By [Mui97, Proposition 4.2(ii)], we have

Iα(1/2, δ(η
±1
3 )) = π(η±1

3 ) + Jα(1/2, δ(η
±1
3 )) and

Iα(1/2, η
±1
3 ◦ det) = Jβ(1, π(δ

±1
3 , δ∓1

3 )) + Jα(1/2, δ(η
∓1
3 )).

In summary, we obtain the following decomposition into irreducible constituents:
(9.3.54)
I(ξ1⊗ξ2) = I(ν±1

F η3⊗η3) = π(η±1
3 )+Jα(1/2, δ(η

±1
3 ))+Jβ(1, π(δ

±1
3 , δ∓3 ))+Jα(1/2, δ(η

∓
3 )).

The LLC for these irreducible representations was already computed in Tables 19
and 20.

4Note that here ξ1 should be thought of as the “new” ξ1 after applying the Weyl group actions.
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9.4. Case s = [T, ξ ⊗ 1]G with ξ ramified. Consider the induced representation
I(νs1F ξ ⊗ νs2F ).

–If I(νs1F ξ ⊗ νs2F ) is unitary, by [Key82, Theorem G2], it is reducible if and only if
νs2F and νs1F ξ are distinct quadratic and unitary. When reducible, it is of length 2,
and we obtain Table 23 (notations as in [ABP11]).

Representation Kazhdan-Lusztig triple

π(νs1F ξ ⊗ νs2F ) ([si, si], [1, 1], 1)

π′(νs1F ξ ⊗ νs2F ) ([si, si], [1, 1], sgn)

Table 23. : LLC for the irreducible constituents of unitary I(νs1F ξ⊗
νs2F ) attached to s = [T, ξ ⊗ 1]G with ξ ramified.

–If I(νs1F ξ ⊗ νs2F ) is non-unitary, by [Mui97, Proposition 3.1], I(νs1F ξ ⊗ νs2F ) is
irreducible unless we are in one of the following two cases:

(1) νs2F = ν±1
F , i.e. s2 = ±1 and s1 is arbitrary

(2) ν2s1+s2
F ξ2 = ν±1

F , i.e. ξ is ramified quadratic and 2s1 + s2 = ±1.

Remark 9.4.1. The case s = [T, ξ ⊗ ξ′] for ξ ̸= ξ′ both ramified either reduces to
the case for [T, ξ⊗ 1] or the case for [T, ξ⊗ ξ], so there is no need to discuss this case
separately.

9.4.1. Case (1) within Case s = [T, ξ ⊗ 1]G with ξ ramified.
In this case,

I(ξ1 ⊗ ξ2) = I(νs1F ξ ⊗ ν±1
F ) = I(ξ1 ⊗ ν±F ).

(1) When ξ1 is quadratic, this is similar to the cases covered in Tables 16 and
17.

(2) When ξ1 is non-quadratic (already assumed to be ramified), this is similar
to the cases covered in Table 12 and Table 13.

9.4.2. Case (2) within Case s = [T, ξ⊗ 1]G with ξ ramified quadratic. When
ξ is ramified quadratic, we are in case (4) of Proposition 7.0.2 via the action of W ,
where W s

G = Z/2Z× Z/2Z and

(9.4.1) Js = SO4(C) ≃ SLlr
2 (C)× SLsr

2 (C)/{±1}.
In this case, let χ := νs1F ξ where ξ is ramified quadratic, and we have

(9.4.2)

I(ξ1⊗ ξ2) = I(νs1F ξ⊗ ν±1−2s1
F ) = I(χ⊗χ−2ν±1

F )
babab
= I(χ2ν∓1

F ⊗χ−1)
b
= I(χν∓1

F ⊗χ).

Thus Lemma 9.2.9 applies to this case, and we have

(9.4.3) I(ξ1 ⊗ ξ2) = I(νs1∓1
F ξ ⊗ νs1F ξ) = Iα(s, δ(ν

∓1/2−s
F χ)) + Iα(s, ν

∓1/2−s
F χ ◦ det).
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Recall from (9.3.2) that ω = ξν−t
F = ξν

s2−s±1/2
F is unitary, thus

(9.4.4) ν
∓1/2−s
F χ = ν

−s+s2±1/2
F ξ = ω

is unitary. Therefore [Mui97, Theorem 3.1] applies to this case and Iα(s, δ(ν
∓1/2−s
F χ))

and Iα(s, ν
∓1/2−s
F χ ◦ det) are irreducible unless

s = ∓1/2, ν∓1/2−s
F χ = χ is quadratic, s = ∓3/2, ν∓1/2−s

F χ = 1 or s = ∓1/2, ν∓1/2−s
F χ is cubic.

Clearly the second and third cases cannot happen (since ξ is ramified quadratic), thus

we are left with only the first possibility, i.e. Iα(s, δ(ν
∓1/2−s
F χ)) and Iα(s, ν

∓1/2−s
F χ ◦

det) are irreducible unless

s = ∓1/2, ω = ν
∓1/2−s
F χ = χ is quadratic.

Now, since both χ = νs1F ξ and ξ are quadratic, we have 1 = ν2s1F , and thus s1 = 0.
Thus we have ξ = χ = ω is unitary and quadratic.

(1) When they are irreducible i.e. when s ̸= ±1/2, we compute the L-parameters
for irreducible constituents and record them in Table 24. By Lemma 9.2.6 (a),

since the representation δ(ξ) of GL2(F ) is generic, Iα(s, ν
∓1/2−s
F δ(ξ)) = iGPα

(δ(ξ))
is also generic. By Lemma 9.2.6 (b), since the representation ξ◦det of GL2(F )

is not generic, Iα(s, ν
∓1/2−s
F ξ ◦ det)) = iGPα

(ξ ◦ det) is also non-generic.

Representation enhanced L-parameter

iGMα
(δ(ξ))) (φσ,A1 , 1)

iGMα
(ξ ◦ det) (φσ,1, 1)

Table 24. : LLC for the irreducible constituents of I(ξν∓1
F ⊗ ξ)

attached to Case (2) of s = [T, ξ ⊗ 1]G with ξ ramified quadratic.

(2) When they are reducible i.e. s = ∓1/2 and ω = ν
∓1/2−s
F χ = χ is quadratic,

we have in R(G):

(a) Case (s = ±1/2, ν∓1/2−s
F χ = η2 quadratic)5:

I(ξ1 ⊗ ξ2) = I(ν
s±1/2
F η2 ⊗ ν

s∓1/2
F η2) = I(ν±1

F ν
s∓1/2
F η2 ⊗ ν

s∓1/2
F η2),

and thus Lemma 9.2.9 applies to this case, and we have

(9.4.5) I(ξ1 ⊗ ξ2) = Iα(s, δ(η2)) + Iα(s, η2 ◦ det).

5Note that although we have used the same notation η2 as in the previous sections, this η2 is
not necessarily the same character as the η2 from the previous sections; here we are simply abusing
notations.
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We now plug in s = ±1/2 and obtain

I(ξ1 ⊗ ξ2) = I(ν±1
F η2 ⊗ η2) = Iα(±1/2, δ(η2)) + Iα(±1/2, η2 ◦ det).

Note that by [BDK86, Lemma 5.4(iii)], we have
(9.4.6)

Iα(−1/2, δ(η2)) ≃ Iα(1/2, δ(η2)) and Iα(−1/2, η2 ◦ det) ≃ Iα(1/2, η2 ◦ det).
Therefore in the above we treat ±1/2 cases together. As in (9.4.4), η2 = ω
is unitary, by [Mui97, Proposition 4.1 (ii)] we have

(9.4.7) I(ξ1 ⊗ ξ2) = π(η2) + Jβ(1, π(1, η2)) + Jβ(1/2, δ(η2)) + Jα(1/2, δ(η2)).

The computation of LLC for these irreducible constituents was already done
in Table 17.

(b) Case (s = ±3/2, ν∓1/2−s
F χ = 1): recall that χ = νs1F ξ. Plugging it in

we get

(9.4.8) ν
∓1/2−s
F νs1F ξ = νs1±1

F ξ = 1.

Since ξ is ramified quadratic in this case, the above equation (9.4.8) cannot
happen.

(c) Case (s = ±1/2, ν∓1/2−s
F χ = η3 cubic): This case also cannot happen

since ξ is ramified quadratic.

10. Main results

10.1. List of properties of the LLC. In this subsection, we state several proper-
ties that are expected to be satisfied by the local Langlands correspondence. Recall
from Definition 2.1.2 that the L-packet of irreducible representations of G attached
to the L-parameter φ is denoted by Πφ(G).

Property 10.1.1. [Bor79, §10.3] Let φ be an L-parameter for G.

(1) φ is bounded if and only if one element (equivalently any element) of Πφ(G)
is tempered;

(2) φ is discrete if and only if one element (equivalently any element) of Πφ(G)
is square-integrable modulo center;

(3) φ is supercuspidal if and only if all the elements of Πφ(G) are supercuspidal.

Property 10.1.2. ([Art06, §2], and [Kal16, Conjecture B]) The elements of Πφ(G)
are in bijection with Irr(Sφ).

Property 10.1.3. [SZ18, §7.2] Let (P, π, ν) be a standard triple for G. We have

(10.1.4) φJ(P,π,ν) = ιL∨ ◦ φπ⊗χν ,

where is J(P, π, ν) is the Langlands quotient defined in (3.2.1) and ιL∨ : L∨ ↪→ G∨

is the canonical embedding.

In general, the bijection mentioned in Property 10.1.2 depends on the choice of a
Whittaker datum w := (U, χ)–up to conjugation by G–(see for instance the SL2(F )-
example in [GR10, pp.484-485]). We will denote this bijection as

(10.1.5) ιw : Πφ(G)→ Irr(Sφ).
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An L-packet is called w-generic if it contains an element which is w-generic in the
sense of Definition 3.2.2.

Property 10.1.6. [Sha90, Conjecture 9.4] If φ is bounded, then the L-packet Πφ(G)
is w-generic for some Whittaker datum w. Moreover, the conjectural bijection
ιw : Πφ(G)→ Irr(Sφ) maps the w-generic representation to the trivial representation
of Sφ.

Lemma 10.1.7. Supercuspidal L-packets satisfy Property 10.1.6.

Proof. The depth-zero case follows from [Kal21, Lemma 4.2.1]. For the reader’s
convenience, we recall the argument here. By [Kal21, Lemma H.1], w determines,
uniquely up to G(F )-conjugacy, an absolutely special vertex x ∈ B(G,F ) such that
χ has depth-zero at x for some (U, χ) ∈ w. By w-genericity, the supercuspidal
π ∈ Πφ is induced from an irreducible representation of G(F )x containing a χx-
generic representation of G(F )x,0. By [Kal19, Lemma 3.4.12], up to G(F )-conjugacy,
there exists exactly one admissible embedding j : S → G such that the vertex x
corresponds to the maximal torus j(S) ⊂ G. A w-generic member of the L-packet
Πφ necessarily arises from the non-singular Deligne-Lusztig packet [π(j(S),θj)] (as

defined in [Kal21, p.35]). By [DLM92, Proposition 3.10], there exists a unique χx-
generic irreducible component of the Deligne-Lusztig character κ(j(S),θ◦j ) (as defined

in [Kal21, Definition 2.6.8 and p.34]), and hence a unique irreducible representation
of G(F )x containing it after taking the restriction. Its compact induction to G(F )
gives the unique w-generic element of the Deligne-Lusztig packet [π(j(S),θj)]. As
remarked in loc.cit., the positive-depth case can be deduced from the depth-zero
case via the local character expansions of [Spi18]. □

We now state a compatibility property of the LLC with supercuspidal supports.
First we recall the following conjecture from [Vog93, Conjecture 7.18], or equivalently
[Hai14, Conjecture 5.2.2].

Conjecture 10.1.8. Let P be a parabolic subgroup of G with Levi subgroup L and
σ a smooth irreducible supercuspidal representation of L. For any irreducible con-
stituent π of iGPσ, the infinitesimal L-parameters λιL∨◦φσ and λφπ are G∨-conjugate.

The following Property 10.1.9 generalizes Conjecture 10.1.8 (see Remark 2.3.1).
Let L(G) be a set of representatives for the conjugacy classes of Levi subgroups of G.
By [ABPS17a, Proposition 3.1], for any L ∈ L(G) there is a canonical isomorphism
between WG(L) and WG∨(L∨).

Property 10.1.9. [AMS18, Conjecture 7.8] The following diagram is commutative

(10.1.10)

Irr(G) Φe(G)

⊔
L∈L(G) Irrscusp(L)/WG(L)

⊔
L∈L(G)Φe,cusp(L)/WG(L).

Sc

LLC

1-1

Sc

LLC

1-1

.

Remark 10.1.1. When L = G, the diagram (10.1.10) collapses to the bottom hori-
zontal line, and Property 10.1.9 states that the (isomorphism classes of) irreducible
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supercuspidal representions of G correspond under the local Langlands correspon-
dence to the (G∨-conjugacy classes of) cuspidal enhanced Langlands parameters (see
also [AMS18, Conjecture 6.10] and [Aub19, Conjecture 5.2]):

(10.1.11) LLC: Irrscusp(G)
1−1−→ Φe,cusp(G).

Note that Property 10.1.9 is known to hold for unipotent representations by
[FOS20, Theorem 2], for all representations of general linear groups and split clas-
sical p-adic groups by [Mou17], and all representations of special linear groups by
[AMS18].

Conjecture 10.1.12. [AMS18, Conjecture 2] For any s = [L, σ]G ∈ B(G), the LLC
for L given by σ 7→ (φσ, ρσ) induces a bijection

(10.1.13) Irrs(G)
∼−→ Φs∨

e (G),

where s∨ = [L∨, (φσ, ρσ)]G∨ .

Conjecture 10.1.12 is proved for split classical groups [Mou17, §5.3], for GLn(F )
and SLn(F ) [ABPS16b, Theorems 5.3 and 5.6], for principal series representations
of split groups [ABPS17b, §16]. For the group G2, a bijection between Irrs(G) and

Φs∨
e (G) has been constructed in [AX22, Theorem 3.1.19].
Recall from [AX22], we have an isomorphism

(10.1.14) Irrs(G)
∼−→ Φs∨

e (G)

for each Bernstein series Irrs(G) of intermediate series. On the other hand, the bijec-
tion (10.1.14) holds for principal series blocks thanks to [Roc98, Ree02, ABPS16a,
AMS18].

Moreover, we verify the following two properties for our LLC.

Property 10.1.15. [Sha90] The quantity fdeg(π)
dim(ρ) is constant in an L-packet.

By Harish-Chandra (see [Wal03, Proposition III.4.1]), any tempered non-discrete
series irreducible representation π is a subrepresentation of iGP (δ), where P is a par-
abolic subgroup of G with Levi factor L and δ is a discrete series representation of
L, and the G-conjugacy class of pair (L, δ) is uniquely determined.

The following is a standard expected property of LLC.

Property 10.1.16. The L-parameter of π is the composition of the L-parameter of
δ with the natural inclusion L∨ → G∨ and ρπ = ρδ.

10.2. Main result. Construction of the Local Langlands Correspondence

LLC: Irr(G)
1-1−−→ Φe(G)

π 7→ (φπ, ρπ).
(10.2.1)

Recall from (3.3.2) and (2.4.3) that we have

Irrs(G) =
⊔

s∈B(G)

Irrs(G) and Φe(G) =
⊔

s∨∈B∨(G)

Φs∨
e (G).
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When π ∈ Irr(G) is not supercuspidal, we have s = [L, σ]G where L is a proper Levi
subgroup of G. Hence, L is isomorphic to either F××F× or GL2(F ). Let φσ : W

′
F →

L∨ be the L-parameter attached to σ by the Local Langlands Correspondence for
L (see [BH06b]). The L-packet Πφσ(L) is always a singleton (in particular, the
enhancement ρσ is trivial). The L∨-conjugacy class of φσ is uniquely determined
by σ, and we have φ(χ◦det)⊗σ = φσ ⊗ φχ, i.e. [AX22, Property 3.12(1)] holds. This
allows us to define

(10.2.2) s∨ := [L∨, (φσ, 1)]G∨ .

Let π 7→ (φπ, ρπ) be the bijection

(10.2.3) Irrs(G)
∼−→ Φs∨

e (G),

established in [AX22, Main Theorem] (for intermediate series) and in [ABPS16a] (for
principal series). We have given explicit Kazhdan-Lusztig triples and L-packets in
§9 and §8 (see also Tables 7 and 8).

We consider now the case where π is supercuspidal. Hence we have s = [G, π]G
for π an irreducible supercuspidal representation of G.

(a) When π is non-singular supercuspidal, we define (φπ, ρπ) to be the enhanced
L-parameter constructed in [Kal21]. In particular, when π is regular (in the
sense of Definition 3.6.9), the enhanced L-parameter (φπ, ρπ) coincides with
the one constructed in [Kal19].

When F has characteristic zero and p ≥ 7(e(F |Qp) + 2), where e(F |Qp) is
the ramification index of F/Qp (see the proof of [FKS19, Proposition 4.3.2]),
the G∨-conjugacy class of (φπ, ρπ) is uniquely determined by π [FKS19, The-
orem 4.4.4], since we have S+

φπ
= Sφπ as G2 is adjoint.

(b) When π is a unipotent supercuspidal representation of G, we define (φπ, ρπ)
to be the enhanced L-parameter constructed in [Lus95] and [Mor96, § 5.6].

(c) Let π be a non-unipotent depth-zero singular supercuspidal representation
of G. As recalled in (3.6.15), we have π = iGGx

τ , where x is a vertex of the
Bruhat-Tits building of G and τ ∈ E(Gx, s) with s ̸= 1. We have three cases:
• x = x1: From §6.0.1(1)(c), when q ≡ −1(3), we have one rational Lusztig

series E(Gx1 , s1) giving a singular depth-zero non-unipotent supercuspidal
representation π1, which by Property 10.1.9 lives in the same L-packet as
an intermediate series representation π(σ) given precisely in Table 8.0.8, as
explained in 5.2.1(2b). The L-packet in this case is given by

(10.2.4) Πφ(G) = {π1, π(σ)}.
Property 10.1.15 is verified in this case by comparing (6.0.9) and the quan-
tities in Table 8.0.8, as explained in Paragraph 8.0.9.
• x = x2: From §6.0.1(2), when q ≡ 1(3), we have two possible rational

Lusztig series E(Gx2 , s2[ζ3]) and E(Gx2 , s2[ζ
2
3 ]) for the primitive third root of

unity ζ3, where s2[ζ] = diag
(
1, ζ, ζ2

)
mod F×

q for ζ ∈ {ζ3, ζ23}. Each Lusztig

series E(Gx2 , s[ζ]) contains three cuspidal representations: τ12 [ζ], τ
2
2 [ζ], τ

3
2 [ζ].

Let ζ ∈ {ζ3, ζ23}. Let i ∈ {1, 2, 3}, and let πi
2(ζ) denote the representation

iGGx2
(τ i2[ζ]).



LOCAL LANGLANDS CORRESPONDENCE FOR G2 77

There are three (depth-zero) ramified cubic characters η13, η
2
3 η33 of F×,

corresponding to three ramified cubic extensions E1
3 , E

2
3 , E

3
3 over F . For

each i ∈ {1, 2, 3}, let σi
3 := ν±1

F ηi3 ⊗ ηi3 (a character of T ≃ F× × F×), and

let φ(ηi3) : WF × SL2(C)→ G∨ be the L-parameter for G defined by

(10.2.5) φ(ηi3) := φσi
3,u

,

using the formula (2.5.1), where the G∨-conjugacy class of u is G2(a1) (the
subregular unipotent class in G2(C)). The restriction of φ(ηi3) to WF factors
through Gal(Ei

3/F ). We define

(10.2.6) φπi
2(ζ3)

= φπi
2(ζ

2
3 )

:= φ(ηi3).

We have Gφ ≃ SL3(C), the unipotent element u is regular in Gφ (see Table 5),
and Sφ ≃ µ3. From Table 20, we have φ(ηi3) = φπ(ηi3)

, where π(ηi3) is a

discrete series representation in Irrs(G) for s = [T, σi
3]G.

Thus we obtain three L-packets of size 3, for each i = 1, 2, 3,

(10.2.7) Πφi
2
(G) := {πi

2(ζ3), π
i
2(ζ

2
3 ), π(η

i
3)}.

Each L-packet Πφ(ηi3)
(G) contains the two depth-zero singular supercuspidal

representations πi
2(ζ) for ζ ∈ {ζ3, ζ23}, and a depth-zero discrete series π(ηi3)

in the principal series such that Js = SL3(C). Here π(ηi3) is given precisely in
Table 20 with ηi3 ramified of depth-zero. Property 10.1.15 is verified in this
case by comparing (9.3.43) and (6.0.11).
• x = x3: From §6.0.1(3), we have one rational Lusztig series E(Gx3 , s3[ζ2])

for the primitive square root of unity ζ2, where s3[ζ2] = diag (1, ζ2, ζ2, 1)
mod F×

q . The Lusztig series E(Gx3 , s3[ζ2]) contains two cuspidal representa-

tions: τ13 [ζ2] and τ23 [ζ2]. Let i ∈ {1, 2}, and let πi
3(ζ2) denote the representa-

tion iGGx3
(τ i3[ζ2]).

There are two (depth-zero) ramified quadratic characters η12, η
2
2 of F×,

corresponding to two ramified cubic extensions E1
2 , E2

2 over F . For each
i ∈ {1, 2}, let σi

2 := νF ⊗ ηi2 (a character of the torus T ≃ F× ×F×), and let
φ(ηi2) : WF × SL2(C)→ G∨ be the L-parameter for G defined by

(10.2.8) φ(ηi2) := φσi
2,u

,

using the formula (2.5.1), where the G∨-conjugacy class of u is G2(a1) (the
subregular unipotent class in G2(C)). The restriction of φ(ηi2) to WF factors
through Gal(Ei

2/F ). We define

(10.2.9) φπi
2(ζ2)

:= φ(ηi2).

We have Gφ ≃ SO4(C), the unipotent element u is regular in Gφ (see Table 4),
and Sφ ≃ µ2. From Table 17, we have φ(ηi2) = φπ(ηi2)

, where π(ηi2) is a

discrete series representation in Irrs(G) for s = [T, σi
2]G.

Thus we obtain two L-packets of size 2, for each i = 1, 2,

(10.2.10) Πφ(ηi2)
(G) := {πi

3(ζ2), π(η
i
2)}.
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Each L-packet Πφ(ηi2)
(G) contains one depth-zero singular supercuspidal rep-

resentations πi
3(ζ2) and a depth-zero discrete series π(ηi2) in the principal se-

ries such that Js = SO4(C). Here π(ηi2) is given precisely in Table 17 with ηi2
ramified of depth-zero. Property 10.1.15 is verified in this case by comparing
(9.3.24) and (6.0.14).

(d) Let π be a positive-depth singular supercuspidal representation of G. As
in §6.0.2(3b), such a singular supercuspidal representation necessarily arises
from an L-parameter of SL2-type as in Definition 5.2.2, and lives in a mixed
L-packet together with another non-supercuspidal representation described
as follows. In this case, ZG∨(φ) = ZSL2(C)(φ(WF )) = µ2 by Lemma 5.2.4.
Hence the L-packet Πφ(G) consists of a non-supercuspidal representation
and a supercuspidal representation by Lemma 5.2.1. Let P be a parabolic
subgroup of G with Levi subgroup isomorphic to GL2(F ). Here the GL2(F )
corresponds to the short (resp. long) root if φ is of short (resp. long) SL2-
type. By Property 10.1.9, the non-supercuspidal member has the following
supercuspidal support: φ|WF

: WF → SL2(C), which gives us a supercuspidal
τ of PGL2(F ). We consider τs := τ ⊗ (νF ◦ det)s as a representation of
GL2(F ). Then the non-supercuspidal of G in this L-packet is the generic
constituent π(τ± 1

2
) in iGP τ± 1

2
(both s = ±1

2 work), as detailed in Tables 10

and 8.0.8. Our L-packets are given by

(10.2.11) Πφ(G) = {πsing, π(τ± 1
2
)}

Let G be the group of F -rational points of the exceptional group G2. We suppose
that the residual characteristic of F is different from 2 and 3.

Theorem 10.2.1. The Local Langlands Correspondence defined in (10.2.1) satis-
fies Properties 10.1.1, 10.1.2, 10.1.3, 10.1.9, 10.1.6 and 10.1.16, and satisfies Prop-
erty 10.1.15 for depth-zero L-packets6.

Moreover, Properties 10.1.1, 10.1.2, 10.1.3, 10.1.9 and 10.1.16 uniquely determine
the bijection (10.2.1) (up few choices7).

Proof. By Property 10.1.3, the L-parameter φπ of each irreducible non-tempered
representation π of G is uniquely determined by (10.1.4). Since the L-packets of the
representations of the proper Levi subgroups of G are all singletons, the L-packet
Πφπ(G) is a singleton (see also Theorem 5.1.2). Hence, by Property 10.1.2, we have
ρπ = 1. Thus the map (10.2.1) is uniquely characterized for non-tempered represen-
tations. This finishes the case of non-discrete series tempered representations.

Property 10.1.6 holds for supercuspidal L-packets by Lemma 10.1.7. For the mixed
L-packets, this can be seen directly from paragraph (10.2) and the tables loc.cit.,
where we specify which member in a given L-packet is generic.

Since we have already treated the discrete series in (10.2), we are done. □

10.3. Summary of L-packets.

6we certainly expect this property to hold for positive-depth L-packets as well.
7See (10.2).
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10.3.1. Unipotent L-packets. For unipotent irreducible representations, a Local Lang-
lands Correspondence was constructed by Lusztig in [Lus95] for any simple p-adic
reductive group G of adjoint type. In the special case where G = G2(F ), when
the representation is also supercuspidal, it follows from [Mor96]. Moreover, a set of
enhanced L-parameters

(10.3.1) {(φ[ζ], ρ[ζ]) : ζ ∈ {1,−1, ζ3, ζ23}}

was described by Morris in [Mor96, § 5.6]. Writing s′[ζ] := sφ[ζ] and u[ζ] := uφ[ζ],
we have

(1) ZG∨(s′[1]) ≃ G2(C), u[1] ∈ G2(a1), Sφ[1] ≃ S3, and ρ[1] is the sign represen-
tation of S3 (i.e., it sends every element to its sign: for example, (12) 7→ −1
and (132) 7→ 1);

(2) ZG∨(s′[−1]) ≃ SO4(C), u[−1] ∈ G2(a1), Sφ[−1] ≃ Z/2Z, and ρ[−1] is the
non-trivial representation of Z/2Z;

(3) ZG∨(s′[ζ]) ≃ SL3(C), u[ζ] ∈ G2(a1), Sφ[ζ] ≃ Z/3Z, and ρ[ζ] is a non-trivial

representation of Z/3Z for ζ ∈ {ζ3, ζ23}.
As remarked in [Mor96, §5.6], the unipotent class is always the subregular ones
G2(a1). However, since s

′[1] ̸= s′[−1], s′[1] ̸= s′[ζ3], and s′[−1] ̸= s′[ζ3], cases (1), (2)
and (3) give different L-packets. We describe unipotent packets in these sections:

• §6.0.1(1)(1a),
• §5.2.1(1).

The unipotent discrete series of G2(F ) belong to the following L-packets (see also
[Ree94, p. 482] and [CFZ21, Table 2.7.1]):

(1) Πφ1(G) = {StG2},
(2) Πφ2(G) = {π(1)′, π(1), π[1]},
(3) Πφ3(G) = {π(η2), π[−1]}, with η2 unramified,
(4) Πφ4(G) = {π(η3), π[ζ3], π[ζ23 ]}, with η3 unramified,

where StG2 is the Steinberg representation of G, and the representations StG2 , π(1)
′,

π(1), π(η2) and π(η3) are in the principal series of G (these representations are
Iwahori-spherical, i.e. they have non-zero Iwahori invariant vectors). Their enhanced
L-parameters are also computed in [Ree94], using the Kazhdan-Lusztig parametriza-
tion established in [KL87]. Note that {StG2} from Table 18 is a singleton L-packet,

and coincides precisely with the L-packet labeled as Ẽ2(τ1) in [Ree94, p.480]. The
enhanced L-parameters for the representations StG2 , π(1)

′, π(1), π(η2) and π(η3) be-

long to the same series Φs∨
e (G), where s∨ = [T∨, (φ0, 1)]G∨ . Here φ0 : WF /IF → T∨,

and 1 is the trivial representation of Sφ0 = {1}.

10.3.2. Explicit Supercuspidal L-packets.

(1) Depth-zero supercuspidal L-packets
• 5.2.1(5a): regular supercuspidal L-packets of sizes 4,3,1
• 6.0.1(1)(1b): regular supercuspidal L-packets
• 6.0.1(2)(2b): regular supercuspidal L-packets
• 6.0.1(3)(3a): regular supercuspidal L-packets
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(2) Positive-depth supercuspidal L-packets
• 5.2.2(1), 5.2.2(2b), 5.2.2(2c): regular supercuspidal L-packets of size
1, 2, 3, 4.
• 6.0.2(1): regular supercuspidal L-packets
• 6.0.2(2a): regular supercuspidal L-packets
• 5.2.2(2d) ←→ 6.0.2(2b): non-singular (non-regular) positive-depth su-
percuspidal L-packet of size 4.
• 6.0.2(3a): regular supercuspidal L-packets

10.3.3. Non-unipotent non-supercuspidal depth-zero packets. We only list the non-
singleton packets here. For a complete description of the singleton packets, see §5.

• 6.0.1(1c) ←→ 5.2.1(2b): In this case, we obtain one L-packet, consisting
of one singular supercuspidal representation coming from reductive quotient
Gx0 ≃ G2(Fq) and ZG∨

x0
(s) ≃ SU3(Fq), and an intermediate series representa-

tion π(σ) whose cuspidal support lives in GLl.r.
2 and corresponds to a simple

module of a Hecke algebra Hs(G) with unequal parameters {q3, q}. In this

case the formal degree for the L-packet should be q2

q3+1
. This case only occurs

when q ≡ −1 mod 3.
• 6.0.1(2c) ←→ 5.2.1(2a): In this case, we obtain three L-packets, each L-
packet consisting of two singular supercuspidal representations coming from
reductive quotient Gx1 ≃ SL3(Fq) and ZG∨

x1
(s) = T∨ ⋊ µ3, and a generic

principal series representation π(η3) from Table 20, where η3 is a ramified
cubic character. The unipotent class attached to these three L-packets is the
subregular unipotent class G2(a1), which comes from the regular unipotent
of SL3(C).
• 6.0.1(3c)←→ 5.2.1(3a): In this case, we obtain two L-packets, each L-packet
consisting of one singular supercuspidal representation coming from reductive
quotient Gx2 ≃ SO4(Fq) and ZG∨

x2
(s) ≃ S(O2 × O2)(Fq) (here we take the

non-split form of O2), and a generic principal series representation π(η2) from
Table 17, where η2 is a ramified quadratic character.

10.3.4. Non-unipotent non-supercuspidal (i.e. singular) positive-depth packets.

• 5.2.2(2a) ←→ 6.0.2(3b): size two L-packet as described in Paragraph 5.2.1,
mixing an intermediate series representation with a singular supercuspidal.
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France, Paris, 1982, pp. 5–171. MR 751966

[BDK86] Joseph Bernstein, Pierre Deligne, and David Kazhdan, Trace Paley-Wiener theorem for
reductive p-adic groups, J. Analyse Math. 47 (1986), 180–192. MR 874050

[Ber84] Joseph Bernstein, Le “centre” de Bernstein, Representations of reductive groups over
a local field, Travaux en Cours, Hermann, Paris, 1984, Edited by P. Deligne, pp. 1–32.
MR 771671

[BH06a] Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for GL(2),
Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120

[BH06b] , The local Langlands conjecture for GL(2), Grundlehren der mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-
Verlag, Berlin, 2006. MR 2234120

[BK98] Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive p-adic
groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–
634. MR 1643417

[BL94] Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in
Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527

[BLR90] Siegfried Bosch, Werner Lütkebohmer, and Michel Raynaud, Néron model, Ergebnisse
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par des réflexions. Chapitre VI: systèmes de racines, Hermann, Paris, 1968. MR 0240238

[BT72] François Bruhat and Jacques Tits, Groupes réductifs sur un corps local, I: Données
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(1988), 157–166.



84 ANNE-MARIE AUBERT AND YUJIE XU

[Lus95] , Classification of unipotent representations of simple p-adic groups, Internat.
Math. Res. Notices (1995), no. 11, 517–589. MR 1369407
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