THE EXPLICIT LOCAL LANGLANDS CORRESPONDENCE FOR G, II:
CHARACTER FORMULAS AND STABILITY
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ABSTRACT. We write down character formulas for representations of G2 considered in [AX22al,
and show that stability for L-packets uniquely pins down the Local Langlands Correspondence
constructed in [AX22a], thus proving unique characterization of the LLC loc.cit.

CONTENTS
1. Introduction 1
2. Preliminaries 1
3. Size 2 mixed packets 3
4. Size 3 mixed packets 10
Appendix A. Character Table of SO4(F,) 14
References 21

1. INTRODUCTION

In this article, we complete the unique characterization of the explicit local Langlands correspon-
dence for p-adic G2 constructed in [AX22a]. More precisely, we use stability property of L-packets
to uniquely pin down the choices of twists in the L-packets from [AX22a].

The rough idea is as follows: we explicitly calculate Harish-Chandra characters for the repre-
sentations (including non-supercuspidals) in certain neighborhoods of semisimples in G2 (see for
example §3.4, §3.5, §4.3 and §4.4). In particular, stability property 2.1.1 (as formulated by De-
Backer and Kaletha) implies the stability of the sum of characters in an L-packet locally around
each semisimple. Using [DKO06] (which builds on some works of Waldspurger), we deduce that the
sum of two specific characters (one for a non-supercuspidal and another one for a singular super-
cuspidal) are stable, thus pinning down the size 2 mixed packets in [AX22a] (see Theorem 3.5.2).
The size 3 mixed packets are pinned down similarly (see Theorem 4.4.1 and Theorem 4.4.2). Our
computations involve a refinement of Roche’s Hecke algebra isomorphisms (see §2.3).

2. PRELIMINARIES

Let m be an admissible representation of G, which gives rise to a distribution Ch, on C$°(G3).
Then [HC99, Theorem 16.3] shows that Ch, can be represented by a locally constant function on
G5®, the regular semisimple locus in G.

2.1. Stability of L-packets.

Property 2.1.1 (DeBacker, Kaletha). Let ¢ be a discrete L-parameter. There exists a non-zero
C-linear combination

(2.1.2) > dim(px)Chy, for zr € C,
well,
1
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FIGURE 1. The parahoric subgroups G, and Gg

which is stable. In fact, one can take z; = dim(p,) where p, is the enhancement of the L-parameter.
Moreover, no proper subset of II, has this property.

2.2. Parahoric subgroups. We fix the choice of the following parahoric subgroups in Gy(F), as
in Diagram 1 where the blue nodes are the roots multiplied by p in the unipotent radical G, .
Non-canonically (i.e., given a choice of uniformizer) there are isomorphisms G,/Gq4 = SL3(F,)
and Gﬁ/G5+ = S04(Fy),
More canonically, we can identify G /Gq+ the reductive quotient of the parahoric of SLs:

o o p!
(2.2.1) H, = {ge o o p! :detgzl}.
pp o
Similarly,
- 0 o o ph _ x
(2.2.2) Hy = {(g, h) € <0 0) x (p . ) . det(g) —det(h)}/oF

is a parahoric subgroup of SO4(F'), and there is a canonical isomorphism Hg/Hg, = Gg/Gga;
induced by the inclusion SO4(F) C Ga(F).

2.3. Refining Roche’s isomorphism. Let G be a connected split reductive group over F' with
maximal torus T, and let Ty C T be the maximal compact subgroup. Given a character y: Ty — C*,
let xV: 05 — TV(C) be the dual, and let H be a split reductive group over F with maximal torus
T such that HY = Zgv(im(x")), where we assume Zgv (im(x")) is connected.

Roche [Roc98, Thm 8.2] produces a support-preserving isomorphism H(G//I,x) = H(H//J,1)
where I is an Iwahori subgroup of G and J is an Iwahori subgroup of H, but it is non-canonical.
We make the isomorphism more canonical by slightly modifying the right-hand side:

Proposition 2.3.1. There is a unique support preserving isomorphism H(G//1,x) = H(H//J, x)
such that the following diagram commutes:

H(T// Ty, x) == H(T//Tb, X)

of [u

H(G//T,x) —— H(H//J, x),
where ty =ts 172 is as in [Roc98, pg 399].
B



LOCAL LANGLANDS CORRESPONDENCE FOR G2 3

Unipotent pairs | Representations of W & ,u%
(00,0) (1,1),1
(0e, C) 1 ®sgn
(e0,C) sgn ®1
(ee,C) sgn ® sgn
(ee, L) cuspidal

TABLE 1. Springer Correspondence for SO4(C)

Proof. Let H' := HV/Z(HY), so we have a cover H = H. Let T' := T" /im(x") be a maximal
torus of FV, which gives rise to a maximal torus T C H. For some finite discrete group g we have
the exact sequence of algebraic groups

1577 —>T5T—1

where since im(x") C Zgv the composition 7 ox": 0 — T is trivial, we also have that yom = 1.
Thus, x factors through Hglal(F, Z7), and so can be viewed as a character of H, since H/m(H) =
HY\(F, Z).

By [Roc98, Thm 6.3] there is a unique support-preserving homomorphism H(H //J, 1) < H(G//I,x),
which extends! to a support-preserving isomorphism i: H(H//.J,x) = H(G//I,%). The restriction
of i to H(T// Ty, x) is then trivial on H(T //To, 1), so it is given by twisting by a character of T/7(T).
Since T/7(T) = H/n(H) such twists extend to the entire Hecke algebra H(H//.J,x). Thus we have
constructed an isomorphism H(G//I,x) = H(H//J, x) satisfying the properties given.

Uniqueness is a general observation on automorphisms of Iwahori Hecke algebras H(H//J,1)
being determined by its restriction to C[T'/Ty] = H(T//Tv, 1). O

3. SIZE 2 MIXED PACKETS

Recall the size 2 depth-zero mixed packets from [AX22a], where 7(72) is the principal series
representation in Table 17 loc.cit.. It is the unique (tempered) sub-representation of the parabolic
induction Ig2 (n2 ® vna), where 75 is a ramified quadratic character of F*.

3.1. Preliminaries on SO4(F). We let SO4(F) := {(g,h) € GLa(F) x GLo(F) : det(g) =
det(h)}/F*, where F* is diagonally embedded as {(alz,al2) : a € F*}. It has a standard rank 2
maximal torus T := {(diag(ai,az),diag(by,b2)) : ajaga = bibo}/F*. Given characters x1, x2, ¥1, 2
of F'* such that x1x2 = @12, we let x1 ® x2 ® 1 ® o denote the character

X1 ® X2 ® o1 ® pa(diag(a1, az), diag(by, b2)) = x1(a1)x2(az)e1(b1)w2(b2).

Note that for any character 6 of F*, we have x1 ® x2 ® 1 ® po = Ox1 ® Ox2 @ Op1 @ Opa.

By abuse of notation, let det: SO4(F) — F*/(F*)? be defined by det(g, h) := det(g) = det(h).
Thus, for any order 2 character n of F*, we obtain a character 7 o det of SO4(F). The same
conventions apply for SO4(0r) and SO4(Fy).

The generalized Springer correspondence for SOy is given in Table 1 (see [CM93, §10.1, p. 166]),
where e denotes the regular unipotent of SLo, and £ denotes the unique nontrivial cuspidal local
system on the orbit of ee. Let Gsg, denote the generalized Green function associated to the cuspidal

local system (ee, £), as in [DKO06, §5.2.2].

3.2. Calculating parahoric invariants for 7(n).

1a priori the extension is non-canonical, but there is a unique choice making the diagram commute
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3.2.1. Calculating 7(n2)%%+. By [Bonll, §4.3], there are two reducible Deligne-Lusztig inductions
of SLa(F,): the principal series representations R+ (ap) and the cuspidal representations R/, (o),
where ap and 6 are the unique order 2 character of Fy and pg11, respectively (in [Lus78, §2],
R! (6p) is denoted H! and H!).

Remark 3.2.1. [Bonll, Table 5.4] gives the following, for z # 0 € Fy:
1 =z 1 "
(3.2.1) tr( 1 ,Ri(ap)) = 5(1 + e(x)\/q%)
1 =z / 1 "
(3.22) tr<( 1) RL00) = (-1 () /),
where ¢* := (—I)Lglq =1 (mod 4).
Definition 3.2.2. Let Hg be the parahoric defined in (2.2.2), which contains the index 2 subgroup

(3.2.3) HY = {(g,h) e (" °> x <° "1>  det(g) = det(h) = 1}/11.

0o o0 p o

For a ramified quadratic character 1y of F*, let @ € F be a uniformizer such that ns(w) = 1. We
define the following irreducible representations of Gg/Ggy = Hg/Hpy:

G iag(wo
(3.24) Witin = Indcg (R4 (o) ® Ry (ag)Beet=1)
(3.2.5) w?ﬁsp = Indgg (R/-F(QO) X R/_F(Qo)diag(w,l))

This is independent of the choice of the uniformizer w.

72

Remark 3.2.3. The representation Worine

is an irreducible constituent of the length two represen-
tation Rr?po‘l(e o dAe/t), for T' C SO4 a split torus. Similarly wgﬁsp is an irreducible constituent of the
length two representation R??‘*(e odet), where 77 C SOy is a maximal anistropic torus. There are

multiple ways to characterize the representations wgfinc and wdasp in the Deligne-Lusztig inductions:

(1) By Remark 3.2.1, for a regular unipotent u = (<1 T) , <1 31/)) € Hg with = € o\p and

y € p~1\o, we have

1 *
(3.2.6) b0, e) = (0, 00) = 5 (1 -+ ma(2)”).

(2) By [Bonll, pg 55], they are characterized as irreducible components of the Gelfand-Graev
representation I'g o (notation as in [BM97, Thm 4.5]) associated to the nilpotent orbit
O = Of (notation as in [DK06, §7.1]).

We use the following Hecke algebra isomorphism from [AX22b, AX22a, Roc98]: consider two
copies of SO4(F') which are Weyl group conjugates to each other. Let SOS) have roots +a, +(3a+
203), and let SOEE) have roots +(a+ ), =(3a+ ). The following is a corollary of Proposition 2.3.1.

Corollary 3.2.4. Let I be the standard Iwahori of Go. There exist canonical support-preserving
isomorphisms of Hecke algebras

(3.2.7) H(Go /)T, e@e) = H(SOW //TD e o det)
(3.2.8) H(Go )T, e @ 1) = H(SOP /TP €0 det),
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under which the representation mw(n2) corresponds to the representation ng Stso,, where JO =

In SOEP is an Iwahori subgroup of SOSj)(F). The isomorphisms are characterized by the following
commutative diagrams

H(T//To, e ® €) === H(T//Tp, € o det)

(3.2.9) j i

H(Go /T, e @ e) — H(SOY //JD e o det),

H(T//To,e ® 1) === H(T//Tp, ¢ o det)

(3.2.10) J“ i“

H(Go /T, e® 1) — H(SOP //T®) e odet),
where t, =t 12 is as in [Roc98, pg 399].
B

Proof. For brevity we write down the proof for the first isomorphism; the proof for the second
isomorphism is entirely analogous. By [Roc98, Thm 6.3 and Thm 8.2], there is a canonical injection

H(SLy x SLo(F)//J,1) < H(G2//I,e @ €)

which extends (a priori) non-canonically to an isomorphism H(SOy4(F)//J,1) = H(G2//I,€ ® €).
There is, however, a unique extension to H(SO4(F")//J, 1) which makes 7(72) correspond to 72 Stso,
as in Proposition 2.3.1.

The commutative diagrams follow from looking at the Jacuget modules: the representation 7 (12)
is identified with a homomorphism H(G2//1,e ® €) — C, and the (normalized) Jacquet restriction
rgm(n2) = vNe@n2+r@ne+n2@v by [AX22a, §9] (see also [Mui97, Prop 4.1]). By [Roc98, Thm 9.2],
the restriction of the homomorphism to H(7'//Tp,e ® € ® 1 ® 1) corresponds to the € ® e-isotypic
component vz & ns.

Analogously, the (un-normalized) Jacquet restriction of 7, Stgoe Is rg(n2 St =v 12 e
4

sofj))
v/ 2772 @v~ 2@ 112, These two characters are equal as the maximal torus of G5 and the maximal

torus of SOEP are canonically identified. O

By the Mackey formula, we have an isomorphism of representations of Gg/Gg1 = SO4(F,),

(21 IRemem®r = @ mAETE 6, e (90"
weB\G2/Ga

where

(3.2.12) B\G2/G = W(G2)/W(S04) = W/(Sa, S3a+8) = {1, 58, S3a+8}-

The intersections Gg N wBw™! are shown in the following diagram 1, where the blue nodes corre-
spond to the reductive quotient of the parahoric. (Note that in Gg;, the blue nodes are multiplied
by p.) Therefore, the Gg-invariants of I (v ® 172)%5+ gives

(3.2.13) IgZ(I/T]Q @ 1)+ o~ Ind%o4 (e®e®1®1)+ IndSBO4(e 21®ex1)?

Analogously, computing the Gg,-invariants of I, (resp. Ig) from [AX22a, §9] gives us the following
(3.2.14) L(v %5 St) %5+ ~ Ind304 (e St) + Ind}P* (@ 1@ e® 1)

(3.2.15) I5(vY %0 St) 95+ o~ Tnd P (eSt) + Ind (e @ 1@ e® 1)

We pin down the Gg,-invariance of 7(n2) in Corollary 3.2.6.
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Proposition 3.2.5. The I -invariants of w(n2) is
)+t 2e@et1@etex 1.
Proof. A priori we know that
m(m)* = I )™ = P =(c0'+ (10" + (c@ 1)
weW
By Lemma 3.2.4, the multiplicity of e®e in 7(72), which is the same as the multiplicity of e®e®1®1
in the representation 12 Stso,, is one. Thus the same holds for all of the Weyl group orbits of the
character. O
Corollary 3.2.6. There is an isomorphism of G /G g -representations

G Y
7T(772) = StGB/GB+ EBWg?inc

Proof. Let N = I, /Gy C Gg/Gp+ be a maximal unipotent subgroup of SO4(F,;). Let w’ and
w” be the irreducible constituents of IndSBO4(1 ®e® 1 ®e). By Proposition 3.2.5, the SO4(F,)-
representation 7 (77)4+ has N-invariants e ® e ® 1 ® 1 +e®1®e®1+e®1®1® €. Thus
(3.2.16) m(n2) 8+ = Ly St)%e+ N Ig('/ 2y St)C6+
(3.2.17) C €Stso, +w' +w”
must contain either just w’ or w” (but not both), since

WV (W Zeplperl+erlel®e
Thus either 7(n2) = € Stso, +w’ or m(n2) = € Stgo, +w” as abstract representations of SO4(Fy).

To further pin down the choice, let j =7 X <<w 1> (w 1>> be the stabilizer of an alcove in

the Bruhat-Tits building of SO4(F). Then we have the following commutative diagram involving
the support-preserving isomorphism of Lemma 3.2.4:

H(G2//T, e ®1) —=— H(SO4//T,€)

(3.2.18) ] T

H(Gs//T,e®1) —— H(T//T,e€)

Indeed, since (3.2.7) is support-preserving, the image of H(Gg//Z,e ® 1) under the isomorphism
consists of functions supported on GgNSO4(F'). Certainly JcaG 3N SO4(F), since elements of T,
which fixes an alcove of SO4(F"), must also fix the vertex § in the building of G2. Equality follows
from observing that both H(Gg//Z, e®1) and H(J // T, €) have dimension 2. By the characterization
in Lemma 3.2.4, the restriction of 7 Star, to #(J//J,€) is the representation 7, o det on 7. Via
the bottom isomorphism, 72 o det corresponds to the representation wgfinc of Gg.

2

. . . G
Thus, we conclude that wy;  is a constituent of m(n)~5+. O

3.2.2. Calculating 7(n9)¢

G ot Ga/Ga
157 (vnp @ o) Cot = @ Indcaéwz;wfl/(aamwa*l)(6 ® €)¥
(3.2.19) weW/W (SLs)
= IndjsgLS (6)2.

o+ Analogous to (3.2.11), we have

Moreover, we have isomorphisms
(3.2.20) Ia(ljl/gng StGL2)G‘1+ = Ind?ng (e StGL2)2
(3.2.21) I(Y /%19 Star, ) 6o = Ind3 (e),
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where P C SLj3 is the parabolic subgroup with Levi GLy. The intersection is

(3.2.22) m(n2) %+ = IndP" (€ Star,)-

3.2.3. Calculating 7(n2)%5+. Again by a Mackey theory calculation, we have:

(3.2.23) I(vny ® 12)%%+ = Ind (IE, 3’)(6 ® €)
(3.2.24) I, (v 1/2 12 StGL, )G‘S'*' = In d E ;(EStGLQ)
(3.2.25) Is(v"/?my Star, )%+ = In dG2(< (e Star,),

where P, and Ps denote parabolic subgroups of Ga(F,). Thus, 7(n2)%+ is the intersection of

G2 (Fq)

Ind} Po(F )(e Star,) and II1dP2((IF ;(e Star, ), denoted wh;,,.. In terms of Lusztig’s equivalence [Lus84,

Theorem 4.23], if s € G2(Fy) is of order 2 such that Zg,r,)(s) = SO4(F;), we have
(3.2.26) E(Ga(Fy), s) = E(SO4(Fy), 1),
and ws ;. corresponds to Stgo,(r,) under (3.2.26). Thus we have the following:

princ

Proposition 3.2.7. Let w(n2) be the unique sub-representation of I(ny @ vny). Then,

(3.2.27) m(12) S5 22 Whiine
(3.2.28) 7 (n2) %o+ = Ind P (€ Star,)
(3229) 7I-(7]2)GﬁjL = GStGg/GgH_ _H*jg?lnc

3.3. The supercuspidal representation 7. (12).
We denote the following depth-zero supercuspidal representation of Gao(F) as

(331) Ts.c. (7]2) = C- IndG2 (wgasp)

We may readily calculate the G,4-invariants of the supercuspidal representations g (12), for
various vertices x in the Bruhat-Tits building as follows:

Lemma 3.3.1. Let w5 (n2) be as defined in (3.3.1). We have

(332) 7Ts.c.(772)Ga+ =0
(333) 71-s.c.(772)GBJr = W?ﬁsp
(334) 7Ts.c.(772)G6+ =0

Proof. For each vertex x, by Mackey theory we have

-1
71's.c.(772)Gac+ = @ Indgzmg—lcﬁg((wg]ﬁsp)g)Gw+mg Gpg

(3.3.5) 9€GE\G2/Ga
= @ Indgszgfm((WQSSP)Q)GHQGQA’B'
9gEGE\G2 /Gy
Here,

G ﬂGf ~ GgNG
(wiiep)?) = Tomte 22 (Wil )77 om

which is 0 unless 8 = gx since otherwise Gg N Gyr4 Will contain the unipotent radical of some

parabolic subgroup of Gg, so (wgﬁsp)GﬂmGW* = 0 since wegsp is cuspidal. O
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3.4. Characters on a neighborhood of 1. In this section, we express 7(n9)%*+ in terms of
generalized Green functions (notations as in [DK06]), for z = 4, a, . To each Weyl group conjugacy
class [w] € W(GQ), let Sy, be the unique torus in G such that Frobenius acts as w (i.e. the image of
w under the bijection of [Car93, Prop 3.3.3]). We denote R := R%w. Firstly, note that

1
(3.4.1) Ch(Star,) = §(R% - R%l2))-

(1) When F = Fg, (i.e. corresponding to the vertex ¢), we have that 7(ng)%s+ = brine COTTE-
sponds to Stgo,(r,) under Lusztig’s equivalence (3.2.26). By (3.4.1), we have

L 1 1 1 1
(342) ChStSO(4) = Z(RAIX/L - RA1 - Rgl + Rl)
Since Lusztig’s equivalence (3.2.26) preserves multiplicities, we have
— 1 € € € €
(343) Chﬂ;rinc — Z( A1><Z1 - RAl - Rgl + Rl)

Restricting to the unipotent locus, for u € Go(IF,) unipotent we have

B 1 Fa, Fa, Fa, Fa,
Chrg,,, () = 1(Q,7 5 = Qui* = Q" + ™).

(2) When F' = Fj, (i.e. corresponding to the vertex o), we have that m(ny) %+ = Ind%z” (eStar,) €

-1
E(SLs, -1 ) corresponds, under Lusztig’s equivalence, to Stgr, € £(GLg,1). By
1
(3.4.1), we have
SL3 1 € €
(344) Ch(IndP (6 StGLg)) = §(R1 — Al)'

Restricting to the unipotent locus, we have

1, _Fa Fa
Chlnd?,L?’(eStGLz) - §(Q1 ‘- QA12)'

n2
princ*

(3) When F' = F 7 (i.e. corresponding to the vertex ), we have that 7(n2)¢F+ = € Stso, +w
On the unipotent locus of SO4(F,) we have (in the notation of §3.1):

p}"inc) = R%
Ch(wgih’m) - Ch(w’g?inc) - q*gsgn

where ¢* is as defined in Remark 3.2.1. This implies that on the unipotents,

i

{Ch(wgﬁim) + Ch(w™

1 Fy i *
(3.4.5) Chym = 5(QlAl ML " Gegn).
Together with (3.4.2), we obtain:
1 Fy i * 1 Fy xi Fy i Fyxa L
(3.4.6) Chﬁ(n2)GF+ = §(Q1A1 A :I:q gsgn) + Z(QA?;IZA; _ QATI Al ngl A + QlAl Al)'
(4) When F = Fy, or F)y , we have m(n)%r+ = %QfAl - %Qi?l on unipotents.
Fj Fj
(5) When F = F , then again m(n)Cr+ = %QlAl —1 AAl on unipotents.
1

(6) When F = Fj then 7(172)%"+ = e ® e +1® ¢ + € ® 1, so the character on unipotents is
3 =3Q!.
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Similarly, we have

1, F, .5 .
(3.4.7) Ch(wi,,) = 5(QAfl‘lX gAf + ¢"Gsgn)-

Therefore, we have the following:

Proposition 3.4.1. For any ramified quadratic characters ng and nj, the sum w(n2) + 7s.c.(nh) has
a stable character on the topologically unipotent elements.

Proof. From the discussion above, in the notation of [DK06, Table 4], we see that for some explicitly
computable constants c¢;,

1

t t t
Chﬂ(?m) 8 (D‘Z ><Al - DZHSXA ) - CQD? A1 xAq, gsgn) T C3DA1 + C4D + C5D{€}
1 t t t
Chﬂ-s'c'(ng) 8 (D21><A1 o DZHSXA ) + C2D? A1 xAq, gsgn)
Thus, by [DK06, Lemma 6.4.1] the sum is always stable. O

3.5. Characters on a neighborhood of s € Gy. Let s € G2 be order 2 such that Zg,(s) =
SO4. By the construction in [AKO07, §7], the distributions Chy(,,) and Ch,__,,) on G2 induce
distributions O,,) and O (;,) on (SO4)0+, the topologically unipotent elements in SO4, such
that the attached locally constant functions are compatible (see [AK07, Lemma 7.5]). We hope to
see when the sum O (,,) + Or__ () is a stable distribution on (SO4)o+-

We now look at the characters on an element of the form su for u topologically unipotent. They
follow from computations in §3.4.

(1) When F = Fg,, by (3.4.3) and [DL76, Thm 4.2], we have for u € SO4(FF,) unipotent:

Cha,,. (su) =5 (RS, (su) — RS, (su) ~ RS, (su)+ B, (su))

T prine Ay x Ay
1 _
:4‘SC)IF< Z €(gsg 1)Q§04 (u) = Z €(gsg~ )Q§24( )
1SO4( q)| 1 } ApxAy = 1
gsg GSAlel gsg—tESa,
(3.5.1) — Z e(gsg! SO4 Z e(gsg™ SO4(“))
gsgleSy, gsg~'eS
1 ~ ~
@R - e - ) + o (W)
1 a—1 1
+ 5D QM W) + S ()T QY (),

where the last equality folows from the observation that gsg~' € S must be an order 2
element; there are 3 such elements for the tori .S Ay x Ay and S7, while there is a unique such
element for the tori S4, and Sy, .
(2) When F'=F, _ 1, since s € Gp is central, we simply have:
(3.5.2)

g=1 1 F XA * 1 F « A F i o Wi F i
Ch,_ (. yor (su) = (=1) 2 §(Q1A1 Nt 0*Ggn) + Z(QAflxﬁl _ g QZTI Ay gl
Similarly, we have
1] N .
(8:5:3) ChﬂsAcA(n2)GF+ (su) = (_1) : E(QA?IXAA; 7" Gsgn)-
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Since we already know that the character of Stgo, is stable, we hope to see whether ©,(,,) +
Ory () — ChStSO4 or Or(y,) + @wsc‘(ng) — Ch8t504 is stable. Note that

(3.5.4) @ﬂ(m) —i-@ﬂ-slc‘(m) _ChStso4 =D i, +coD FAlXAl)j:q*gsgn:tq*gsgm

(FA1XA17QA1><A1 (FA1><A~17 1
where notations are as in [DK06, Definition 5.1.3].

Lemma 3.5.1. The distribution D(p
1

4y iy Gosn) O SO4(F) is not stable. Similarly, no linear com-

bination of the distributions D(p,, g ,y and D(p, g ,,) on SL3(F) are stable.

Proof. A distribution on SO4(F) is stable if and only if it is stable under conjugation by PGLa(F) x
PGLy(F). Thus all stable distributions on SO4 must be restricted from invariant distributions on
PGLy(F) x PGLa(F'). But the only invariant distributions on PGLy(F') x PGLy(F') are spanned

by semisimple orbital integrals, and D( Fu o 4 Gegn) is linearly independent from them (as can be
1 177
O

seen by evaluating against Gggn). An identical argument works for Dp 4y Gt and Dp g Gt
Now, since D(FAIXAIvgsgn) o
is stable are those for which +¢*Gsen & ¢*Gsgn = 0 (there are four possibilities). Remark 3.2.3 tells
us the only such combinations are Oy (,,) + Or_ . (4,) — ChStSO4 (one for 7y and one for n5). Thus,

we have:

is not stable, the only linear combination of O,,) and ©,__,,) that

Theorem 3.5.2. For ramified quadratic characters ny and nh, the character Chy(yy) + Chﬂslcl(né)
is stable in a neighborhood of s if and only if na = nh. Thus, {m(n2), Ts.c.(n2)} is an L-packet, for
each ramified quadratic character ns.

4. SIZE 3 MIXED PACKETS

Let ¢ be an order 3 character of F . We will repeatedly use the following Hecke algebra isomor-
phisms, which is the analogue of Lemma 3.2.4.

Corollary 4.0.1. Let I be the standard Twahori of Go. There exist a canonical support-preserving
isomorphism of Hecke algebra

(4.0.1) H(Go//1, (5! @ ¢F1) 2 H(PGL3//J, (! o det),

under which the representation w(ns) corresponds to the representation 773i1 StpgLs, where J is an
Twahori subgroup of PGL3(F'). The isomorphism is characterized by the commutative diagram

H(T//To, ¢ @ (') === H(T'//To, (" o det)
(4.0.2) ju ju
H(G2//I, (T @ (P —2 H(PGL3//J, ¢*! o det),

where t, =1t 172 s as in [Roc98, pg 399].
B

0

Proof. Same proof as in Lemma 3.2.4. O
The lemma immediately gives:

Corollary 4.0.2. Let I be the pro-unipotent radical of the Twahori subgroup I of Go. Then

m(ns)* =C@C+ ¢

4.1. Calculating parahoric invariants for 7(73).
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4.1.1. Calculating 7(n3)%e+. Similar to §3.2.1, we have an isomorphism of representations of G /G oy =
SL3 (Fq)7

~ Ga/Ga w
(4.1.1) If (s @)t = P Indoar/wwgwfl/(c;amwmfl)(C ®Q)",
weW/W (SL3)

Therefore, the G, -invariants of Igz (vn3 ® n3) gives

(4.1.2) 152 (vmz @ 13)Cor > Ind3 (o1 ¢) + Indis (o1 ®().
Likewise, computing the G, -invariants of I, gives us the following

(4.1.3) I, (V23 St) %ot ~ Ind3# (¢ @ 1@ ¢)

(4.1.4) L3t St)Cer ~ Ind P (@1 ® ().

The representation Ind%L3 ("' ® 1 ® () has length 3 and decomposes into three representations
Xst'(0), xst(1), and xs(2) in the notations of [SF73, Table 1b, §7]. These representations are
conjugate under conjugation by PGL3(F,). Similarly, the Deligne-Lusztig induction RS , where T' C
SL3(F,) is an anisotropic torus, decomposes into three cuspidal representations x,24(0), x,24(1),
and x,24(2) that form an orbit under conjugation by PGL3(F,).

The representation xg(0) (resp., x,2¢(0)) is characterized by the character value

16 1 6
Ch ¢| = ch 2 Y S 1
Xor'(0) L 6% =Chy, 0 160" ) = adw — —5—
1 1
where 0 € F, is such that 3 # 1.

Definition 4.1.1. Let 13 be a ramified cubic character of F'*. Then there is a uniformizer w such
that n3(w) = 1. We let

(4.1.5) nginc ‘= Yapr (O)diag(l,l,w)
(416) wgl?;sp — XTZS,(O)diag(l,l,w)
be representations of G /Gay = Hy/Ho .
—1 _
Remark 4.1.2. Note that W;’iinc = ng'inc and wlisp = wgﬁsp. These are the only overlaps in the

definition above.

Remark 4.1.3. As in [DM20], the representations wgiinc and wdisp are common components of the

reducible Deligne-Lusztig induction R% and the Gelfand-Graev representation I'g » (notation as in
[BM97, Thm 4.5]) associated to the nilpotent orbit O = Of (notation as in [DK06, §7.1]).
Proposition 4.1.4. There is an isomorphism of G, /G -representations

(gs) ot 2

princ*®

Proof. Let N = 11 /Got+ C G4 /Gt be a maximal unipotent subgroup. By Proposition 4.0.2, the
G o/ G oy -representation m(ng)%e+ has N-invariance ("' ®1® ¢ +(®1® ¢!, Thus

(4.1.7) m(n2) 97+ = Lo (v"/ 3 St) o+
(4.1.8) =d}*(('e1e()
must be of the form x,24(u) for some v (as abstract representations of SL3(F,)), since

Xy 2 (el c+¢eleh
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Consider the isomorphism Lemma 3.2.4
(4.1.9) H(Ga /)T, ¢ ®1) = H(PGL3//J, ¢ o det),

1
which is support-preserving. Let j = J x{ 1|) be the stabilizer of an alcove in the
w
building of PGL3(F'). Then we have the following commutative diagram,

H(G2//T,¢© () —— H(PGL3// T, o det)

(4.1.10) I T

H(Go//T,®C) —— H(T//T.C o det)

The representation m(n3) is viewed as a homomorphism H(G2//Z,{ ® () — C. Under the top
isomorphism we obtain the representation 13 Stpgr,, whose restriction to H(J/J, ¢ o det) is the

character 13 o det. Now under the bottom isomorphism we obtain wgiinc, so wgfinc must be a
constituent of 7(n3)&e+
In fact, by the discussion above, 7(n3)%a+ = einc:
O
4.1.2. Calculating m(n3)%#+. As usual, Mackey theory gives:
(4.1.11) 152 (s @ vm) e+ =Ind3* (@ ¢ @1e1) +Indi* (@10 ¢ ®1)?
(4.1.12) I (V%13 Star, ) €6+ = Ind P (¢ © ¢! © Star,) + di (@10 (1)
(4.1.13) L (051 Stap, )99+ = nd3P4 (¢ © ¢ @ Star,) + Ind3X (CTr @ 1o o).

Thus, as SO4(F,) = Gg/Gsi-representations, we have
m(3) 9 C IndP* (¢ @ ¢ ® Star,) + IndP (@ 1@ (@ 1),

where now both summands are irreducible. Moreover, the invariants of these representation with
respect to the standard maximal unipotent subgroup N C SO4(IF,) gives:

(4.1.14) Id}*(C® ¢ @ Sta,)Y o lolol+(tecolol
(4.1.15) mdi* (@10 )V2e10(1+(@1211¢
(4.1.16) +10¢R¢(R1+10¢R1(.

Thus, by Lemma 4.0.2 we must have 7 (n3)%s+ = Ind%o“(c ® ("t @ Star,)-

4.1.3. Calculating m(n3)%*+. Mackey theory gives the isomorphism of Gs/Gsy = Go(F,):

(4.1.17) 15 (13 ® vigs) O+ = Tnd et (€ ©C)
(4.1.18) L(V ! Star,) %+ = In df;'?&ﬁq (¢! Star,).

Thus, 7(n3)%+ is the intersection in Ind B?]F (C ®¢ ) of the two sub-representations Ind Q(Fq (C Star,)

and Inde(EQ)(C StgL,), which we denote by wprmc In terms of Lusztig’s equ1valence [Lus84,

Thm 4.23], if s € Ga(Fy) is of order 3 such that Zg,r,)(s) = SL3(F;), we have
(4.1.19) E(Ga(Fy), s) = E(PGL3(Fy), 1),

and wprmc corresponds to Stpgr,(r,) under (4.1.19). Thus, in conclusion:
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Proposition 4.1.5. Let w(ns3) be the unique sub-representation of I(ns ® vns). Then,

(4120) 77(773)G5+ = wgrinc
(4.1.21) (1) %% = Wit
(4.1.22) ()0t = ndP* (¢ @ (7' @ Staw,)

4.2. The supercuspidal representation 7. (n3). We consider the following depth-zero super-
cuspidal representation of Ga(F):

(4.2.1) T.c.(n3) = c-Indg? (WB,).

cusp

By the same argument as in Lemma 3.3.1, we obtain

Lemma 4.2.1. Let w5 (n3) be as defined in (4.2.1).

(4.2.2) e (13) 970 =0
(423) 7TS.C.(T/B) ot = ng)isp
(4.2.4) e (13) 72+ = 0.

4.3. Characters on a neighborhood of 1. Similar arguments as in §3.4 gives the following
characters for 7(n3) in terms of Green functions:

(1) For F = Fg,, we have

1
Ch . = 6(R§ — 3RS, +2RS),

princ

thus for u € G2(F,) unipotent, we have Ch ¢ (u) = %(QFG2

princ

(2) For F' = Fy, we have, for u € GF/GF+ unipotent,

Ch, s (u) = (Q

princ

(u) —3Qy,,

Fa,

(v) + WGy (u) + u’2g><” (u))

for some w a cube root of unity (umquely determined by 73).
(3) For F =F, i, we have

1
_ Ll ¢
Chlndi°4(<®<*1®StGL2) - Q(Rl R3):

thus for v € G unipotent, we have

1, Fa i Fu i
(4.3.1) ChIndio“((@C—l@StGLQ)(u) — 5(Q1A1 Aq (u) _ Q/{fl Ay (u))

(4) For F = Fy,, we have m(n3)Cr+ = IndgLQ(C ® (1), so on unipotent elements, we have
Ch, () Grt = o,

(5) For F' = F; , we have m(n3)¥F+ = ¢ Star, +¢ ! Star,, so on unipotent elements, we have
Ch(yore = Q" — QF.

(6) Finally for F' = Fy we have m(m3)6r+ = (@ ¢ ¢ @ ¢! (as in Corollary 4.0.2), so the
character on unipotent elements is QQ@}.

Similarly, for msc.(n3) we have

(43.2) Ch, g, () = (@2 (1) + Gy () + Gy (w)

Weusp

where w is a cube root of unity (unlquely determined by 73) and G,/,G,~ are generalized Green
functions as in [DKO06, §5.2.2]. Let ms.c.(73)" denote the dual representation of ms ¢ (173). We have:
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Proposition 4.3.1. All combinations m(ng) + Ts.c.(n) + ms.c.(n3)" for any (possibly equal) ramified
cubic characters ns, 1, and nf have stable Harish-Chandra characters on the topologically unipotent
elements of Gs.

Proof. From the discussion above, in the notation of [DK06, Table 4], we see that for some explicitly
computable® constants ¢; and some cube roots of unity w; (uniquely determined by 73, 15, and 75,
respectively),

1 . ‘ ‘
Char) = g1(DR; +2D5%) + e2(wrDip,, 5 ) + @i Dk, 5 ) — €D, + Dy

1 X N .
Chﬂs,c,(né) = §CI(DZ{2 - Di;t) + Cz(w2DSt ) T w%Dbt ))

(FAQ,QX/ (FA27QX//
Ch iy = 16 (Dst _ Dunst) s (w Dst —I—(,UQDSt )
71-5'(3'(773) - 9 1 Az Az 2\%3 (FAQ,QX/) 3 (FAQ,QX//)
Thus, by [DK06, Lemma 6.4.1] the sum Chy(,,) + Chy, . () + Chy,  (z)v is always stable. O

4.4. Characters on a neighborhood of s € G5. Let s € G be order 3 such that Zg,(s) = SL3.
The same construction as in §3.5 gives rise to invariant distributions O (,,), O, . (1) and O _ (55)v
on the topologically unipotent elements of SL3 such that they are represented by compatible locally
constant functions (for each ramified cubic 73). Similar calculations as in §3.5 gives:

Theorem 4.4.1. For ramified cubic characters 13, 13, and 03, the sum Chy,,y + Chr, . () +
Chr,  (qy)v is stable in a neighborhood of s if and only if n3 = ns =n4. Thus, {m(n3), Ts.c.(n3), Ts.c.(n3)¥ }
is an L-packet, for each ramified cubic character ns.

Proof. By Lemma 3.5.1 (together with [DK06, Lemma 6.4.1]), a character on the topologically
unipotent locus (SL3(F))o+ in SL3(F') is stable if and only if it is in the span of semisimple orbital
integrals. By [SF73, Table 1b], for v € H,/H,+ unipotent, we have

. F F
(nginc + wgﬁsp + (wggsp)\/)(su) = Ql 2 (u) + 2QA22 (u)7

which is the only linear combination of wgfinc, wensp, and (wdasp)Y for which the generalized Green
functions G,s and G, do not appear. Thus, by [DK06, Lemma 5.2.10], the sum Chy(yy)+Chy, ()t
O

Chr, . (n)v 1s the only stable combination.
In fact:

Theorem 4.4.2. For a ramified cubic character n3, the sum Chy(,,) + Chy,  (py) + Chr, sV @8
stable. Similarly, for a ramified quadratic character nz, the sum Chy(,,) + Chy, () 15 stable.

Proof. We have calculated distributions Chy(,,), Chy,  (y,), and Chy g,y (resp., Chy(,,) and
Chy, . (n,)) on topologically unipotent neighborhoods of 1 and s. A similar (but easier) calculation
gives explicit formulae for the distributions on neighborhoods of other (thus arbitrary) topologically
semisimple elements v € Ga.

These calculations are enough to prove stability of the characters of Chy(,,) + Chr, _ (,,) and
Chy(ny) + Chyy () + Chy  (ny)v on compact elements. By [Cas77, Theorem 5.2] (by an argument
similar to [DR09, Lemma 9.3.1]), we conclude full stability, i.e. Property 2.1.1. O

APPENDIX A. CHARACTER TABLE OF SOy4(F,)

A.1. Classifying conjugacy classes in SO4(F,). We introduce the following notation:

o ci(z) = (x az) where x € Ff

2They are calculable via formulae in [DKO06]; for brevity we do not include them here.
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o co(z,y) = (ac Z) where z € Fy and v # 0 € Fy'. When v =1 let cao(z) := c2(z, 1)

o c3(z,y) = (x y) where 2 # y € F)*. When 2y = 1 let ¢3(z) := c3(x, 27 "), where 2 # +1.
e c4(z) for the matrix with eigenvalues z and 29, for z € F 2 \F,.

Moreover, choose and element A € F) \ (F;)? and an element o € FZQ such that a?~ ! = —1, a

choice of which is unique up to scaling by F.

Lemma A.1.1. Let q be odd. The conjugacy classes in SO4(F,) are one of:

(1) c1(1) x c1(£1). There are 2 such conjugacy classes.

(2) c1(1) X ca(£1). There are 2 such conjugacy classes.

(3) e1(1) x c3(z2) for x2 # £1 € F)\. Since c3(x2) = c3(z5 ') in SLa(F,), there are (¢ — 3)/2
such conjugacy classes.

(4) c1(1) X c4(22) for z2 € F2\F, such that qu = 1. Since c4(2z2) = ca(z5 ") in SLa(FF,) there
are (¢ — 1)/2 such conjugacy classes.

(5) ca(£1) x c1(1) = ca(1) X e1(£1). There are 2 such conjugacy classes.

(6) ca(1) X ca(F£1,72) for v2 € {1,A}. There are 4 such conjugacy classes.

(7) c2(1) x c3(z2) for x2 # £1 € F)\. Since c3(x2) = c3(z5 ') in SLa(F,), there are (¢ — 3)/2
such conjugacy classes.

(8) ca(1) x ca(z2) for zo € Fp2\F, with qu = 1. Since ca(22) = ca(z5 ') there are (q —1)/2
such conjugacy classes.

(9) c3(w1) x c1(1) for x1 # +1 € Fy. Since c3(z1) = cs(zyt) in GLo(F,) there are (q — 3)/2
such conjugacy classes.

(10) c3(x1) % ca(1) for 1 # +1 € F. Since c3(z1) = cs(xyY) in SLa(F,) there are (¢ — 3)/2
such conjugacy classes.
(11) 3 x c3. There are the following cases:
(a) c3(x1) x c3(xe) where 22 # —1 or a3 # —1, then since c3(x1) = c3(x]") and c3(w2) =
c3(x5t) in SLa(Fy), and c3(x1) X c3(w2) = 03( 1) X c3(—m2) there are

W g=1 (mod4)
{((183)2 g=-1 (mod4)
such conjugacy classes.
(b) 03(:1:1,Ax1_1) X 03(1‘2,Ax21) where z1,z2 € Fy and 22 # —A or 23 # —A. Since
c3(x1, Axyl) = c3(Axyt, x1) and c3(x2) = 03(Aa?2 ) in SLa(Fy) there are
)
)

@D =1 (mod 4)
(q—182 1 g=-1 (mod 4)
such conjugacy classes.
(c) cs(—1,1) x e3(—1,1). There is one such conjugacy class.
(12) ¢35 x ¢4. There are the following cases:
e c3(x1) X 04(22) for x1 € F and z € F2\Fy such that P AR
° (ml,Axl )xcq(22) forl‘l € F and 23 € Fy2 such that qu A. Since 03(x1,Aac1_1) =
c3(AxT x1) and cy(z) = C4(A22 ), there are

q2471 =1 (mod 4)
7(‘1_1)4@—"3) ¢g=—-1 (mod 4)

such conjugacy classes.
13) c4(z1) x c1(1) for z; € FLA\{£1}. There are (¢ —1)/2 such conjugacy classes.
q
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cq(21) X 2 orx,y € and z1 € F 2 with 277 = 1. There are (¢ — such conjugacy
14 1 FY and Fp with 27" =1. Th 1)/2 such conj
classes.
c4(z1) X c3(x2) for xo S ana z1 € It 2 such that z =1. ere are (q—1)(q—
15 +1 € F) and 2, € Fp\Fy such that 2{*" =1. Th 1
3)/4 such conjugacy classes.
(16) ca(21) X c3(w2, Axy ) for g € FX and 21 € IF';Z such that 27" = A. There are

{q241 ¢g=1 (mod4)

7(’1_1)4@—'“3) g=-1 (mod 4)

such conjugacy classes.

(17) cs(z1) X ca(z2) for z1,20 € Fp\Fy with (2122)9%" = 1 and 2 4 1 or 28T £ -1
The since c4(z1) X ca(z2) = calaz1) X ca(azz) for any a € Fx, and ca(z1) = ca(z]) and
64(2’2) = 04(2’(2]) mnm SLQ(FQ).

(18) ca(a) x ca(a™t). There is a unique such conjugacy class.

A.2. Classifying representations in SO4(F;). Let GLas(F,) := {(g,h) € GL2(F,) x GLa(Fy) :
det(g) = det(h)}. Then there is an isomorphism SO4(FF;) = GL2o(F,)/Fy. Let T denote the split
maximal torus of GLa(Fy).

Now, the centralizer of a semisimple element (g, h) € GL22(F,) in SO4(F,) is

ZSO4(Fq)(g, h) = {(s,t) € GLa2(Fy) : (sgsfl,thtfl) = a(g, h) for some a € F;}/qu
= {(s,t) € GLy(Fy) : (sgs™ ', tht™') = £(g, )} /F,

where the last equality is by observing det(g) = det(sgs™!) = det(ag) = a®det(g), so a = +1.
Thus, the centralizer depends on whether —g is conjugate to g and whether —h is conjugate to h
under GLy(Fy).
The conjugacy classes of semisimple elements s = (g, h) of SO4(FF,) fall into one of the following
possibilities:
(1) e1(1) x ¢1(1), then Zgo,(s) = SO4(F,). Since unipotent representations are independent of
isogenies by [DL76, Prop 7.10] we have

g(SO4(IFq>, 1) = S(PGLQ(Fq) X PGLQ(Fq), 1) = {1 X 1, 1X SthL2, SthL2 &1, SthL2 X SthLQ}.

The representation 1pgr,,X1par, corresponds to the representation 1o, and Stpgr, X Stpar,
corresponds to the representation Stgo,. There are 4 such representations.

(2) c1(1) x ¢1(—1), then again Zgo,(s) = SO4(F,). The representations in £(SOy, s) are of the
form m ® ¢ where m € £(SO4, 1) and ((g,h) := €(det(g)) is the unique order 2 character of
SO4(F,). There are 4 such representations.

(3) 01(1) X 63(x2) for i) 75 +1 € ]F;, then ZSO4(S) = (GLQ(Fq) X T)l/F; = GLQ(]F[]). Here,
GLa(Fy) has two unipotent representations, 1 and the Steinberg Stqy,(r,), of dimensions 1
and q, respectively.

Letting P = (GLa x B)! /F* € SO4(F,) be the parabolic subgroup with Levi (GLy(F,) x
T)l/IFqX, the representations correspond to Ind]%O4 (xlaL,) and ImdgO4 (x StgL,), for a char-
acter x of F with 2 # 1.

Note that these are irreducible since the Weyl group action replaces x with x~!'. There
are a total of 2+ (¢ — 3)/2 = g — 3 representations.

(4) c1(1) x ca(22) then Zgo,(s) = (GLa(FFy) x RFQQ/Fqu)l/F;. This has two cuspidal unipo-
tents, 1pgr, and Stpgr,, inflated via (GLa(F,) x R]FqQ/Fqu)l/IFqX — PGLy(Fy).

They correspond to representations 1gr, M pg of GLa x GLa, restricted to GLgo and
factored through SO4. Here, 6 is a regular character of IE‘qX2 with 9’]17; =1.



LOCAL LANGLANDS CORRESPONDENCE FOR G2 17

(5) es(z1,y1) X c3(xa,y2) for w1 # Fy1, 2 # Fyo € FY then Zgo,(s) = (T x T)'/FX, the
maximal split torus of SO4(F,). This has a unique unipotent, 1.

They correspond to induced representations Ind]SBO‘*(Xl ® X2 ® X3 ® X4), where B is the

split Borel subgroup of SO4(F,), where x; are characters of Fg with x1x2x3x4 = 1 and

X3 # x3 and x3 # x3. Here,
a’ d / / / !
X1 ® X2 ® x3 ® xa( b ) J ) = xa(a)x2()x3(c)xa(d).

These representations are irreducible since the Weyl group acts by swapping x1 with xa2,
and swapping xs with x4. The number of such representations is:

(g+1)2+4 g=1 (mod 4)
(g+1)2 ¢g=3 (mod 4).

(6) c3(1,—1) x c3(1,—1). This has two unipotents, 1 and sgn.
These are the irreducible components of the length 2 representation Imd%o‘JL (IRerl®e),
where € is the unique order 2 character of F;* and X3x3 = 1. Explicitly, they are induced
representations from the index 2 subgroup SLa(FF,) x SLa(F,)/ &1 C SO4(Fy):

wh. = Ind>o (w Kwh),w

._ SO4 + —
princ (SLaxSLga)/+1 = Ind (we X We )7

;rinc . (SLaxSL2)/p2
in the notation of Remark A.2.2. In particular, the restriction to SLa(FF,) x SLo(F,)/ £1 is
wiRwh ®w, Kw, and wl Kw, & w, Kwl, respectively.
(7) es(w1,y1) X ca(z2) where x1,y1 € F and 23 € Fo\F, with z1y; = ng. Then Zgo,(s) =
(T x RFqZ/Fqu)l/FqX. This has a unique unipotent, 1.
Let P = (BxGLg)!' /FX C SO4(F,) be the parabolic subgroup with Levi (TxGLy(F,))! /F =
GL2(F,). These are the induced representations I]nd](B;’L2 (x1Xx2) X pg of GLa(F,) x GLo(Fy),
restricted to GLg 2 and factored through SO4. Here, x1 and x2 are characters of IF‘qX with
X3 # X3 and 6 is a regular character of F qXQ, where x1 XQ&‘F; =1.
(8) ca(z1) x ca(z2) where z‘f“ = ng and z‘f—l 4 —1lor 281 £ —1. Here. Zgo,(s) =
(RFQ2 JF,Gm X R]Fq2 JF, Gm)t/ F. This has a unique unipotent, 1.
They correspond to representations pg, Kpg, of GLa(Fy) x GL2(F,), restricted to GLa 2(F,)
and inflated to SO4(F,). Here, 9192|qu =1 and 62 or 3 is nontrivial on F;Q.
(9) ca() x ca(a™t). Here Zgo,(s) = (RquQ/IFqu X RFq2/Fqu)1/IF; X p2. This has two unipo-
tents, 1 and sgn.
They correspond to the two induced representations
SO - SO —
(A.2.1) Wihep = IndSL;xSLQ/il(war Xwd) and Weusp *= IndSL;xSLQ/il(wJ Mwy),

using the notation of Remark A.2.3.

Remark A.2.1. The Steinberg representation of GLa(IF,) has character values:

c(r) | q

co(z) | 0
03($7 y) 1

eq(z) | -1

Remark A.2.2. The principal series representation IndISBLQ(e ® 1) of SLy(F,) has length two, and
splits as w” @ w, , where as usual € # 1 is the unique order 2 character of F;*. The character tables
are:
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: we.
—I aHle(—1) Hle(-1)
Cz(il,v),(v)e {1,A} | 3(e(=1) + (( ))\/ e(=1)q) | 5(e(£1) —6((7)) e(—=1)q)
04(z),3zq+1 =1 0 0

Remark A.2.3. Let 6y # 1 be the unique order 2 character of IE‘;2, so the restriction of the cuspidal

representation pg, of GLa(

[F,), restricted to SLa(F

), splits as wi ® wy .

The character tables are:

LL)+ w
I T ‘1201
2
—I —I5e(—1) Ite(—1 )
02(11,7),(7)6 {1, A} || £5(—e(£1) +06(7) e(=1)q) | +5(~ (il) 6(7 ~1)q)
04(z),3z € ]F;2 —0o(2) —90( )

Now, we can calculate the character table for SO4(
by outer automorphisms (coming from SO4 C O4), which swaps the two GLo-factors:

F,). Here, we ignore twists of representations



Representations of SO4(F,), cases 1-3
1s0, ¢ 1par, X Stpar, | (IparL, X Stpar,) ® ¢ | Stso, | Stso, ®C Ind;()‘ (xlgLy) Ind]‘;m(x StarL,)
a1(1) x e (£1) 1 1 q q ¢ ¢ q+1 qlg+1)
e1(1) x ea(£1) 1 1 0 0 0 0 1 q
ci(1) x c3(x2) 1 1 1 1 q q Xo(w2) +x 2 (@2) | a0 (wa) + X (22))
c1(1) x eq(z2) 1 1 -1 -1 —q —q 0 0
ca(1) x 1 (£1) 1 1 q q 0 0 qg+1 0
(32(1) X Cg(il,’yz) 1 1 0 0 0 0 1 0
o) xes(es) | 1| 1 1 1 0 | 0| )+ 0
(1) x ca(22) 1 1 -1 -1 0 0 0 0
cz(z1) x er(1) 1 1 q q q q qg+1 q+1
C;;(l’]) X 02(1) 1 1 0 0 0 0 1 1
es(wr,y1) X es(@z,92) | 1| e(mian) 1 e(z1y1) 1| elzyn) | x(zayn ') +x(ey'ye) | x(zayy ) + x(a3 o)
c3(w1,y1) X ca(z2) 1| e(ziyr) -1 —e(z1y1) -1 | —e(z1y1) 0 0
ca(z1) x e1(1) 1 1 q q —q —q q+1 —(q+1)
(34(21) X Cz(l) 1 1 0 0 0 0 1 -1
ca(z1) X e3(x2,72) L | e(zays) 1 €(z2y2) —1 | —elzyn) | x(ways ") + x5 y2) | —x(@2y; ') — x(23 'y2)
ca(z1) X ca(22) 1 e(z‘f“) -1 —e(z‘lﬁl) 1 e(zi”l) 0 0

61

Here, the representations Stpgr, Klpgr, and (Stpgr, Xlpgr,) ® ¢ are twists of 1pgr, X Stpagr, and (1pgr, X Stpar,) ® ¢, respectively,
under the unique outer automorphism.



0T

C4 (Zl) X C4(22)

(01(21) + 01(21)) (02(22) + 02(23))

{

290((2122)(11 1)/2) Z((Hl)/? ¢ ]FX

{

Representations of SO4(F,), cases 4-6
lar, M py Ind3”* (1 ® x2 ® X3 ® X4) w:,rmm Worine
er(1) x ea(1) g1 (g+1)*x1xa (1) W (41) il e(+1)
(1) x ea(£1) -1 (a+ Dxixa(+1) (21 I5he(£1)
01(1) x c3(w2) 0 (¢+ 1)(x5 "xalwz) + x3x7 ' (2)) (g + 1)e(z2) (q+ )e(z2)
c1(1) x ca(22) —0(z2) — 6(z3) 0 0 0
ea(1) x 1 (£1) q-1 (a4 Dxaxa(+1) Tre(£1) Thhe(£1)
6‘2(1) x ca(£1,72) -1 X1xa(£1) 3 (e (il) +e(=12)q) $(e(x1) — e(—12))
(1) x c3(w2) 0 X3 xa(w2) + xaxq ' (w2) €(z2) e(x2)
c2(1) X ca(22) —0(z2) — 0(29) 0 0 0
ca(wr) x (1) q—1 (g4 DO xa@) + xaxg H(x) (g + e(x1) (q+ 1e(x1)
e3(@1) x ca(1) 1 X1 xa(1) + xaxg (@) e(z1) e(z1)
e(r12 11 x)2 e(z1x T X2
cs(@1,91) % c3(22, y2) 0 O @)xa () + xae)xg () (G (@2)xa(ye) + xa(w2)xs ' (v2)) {z (@122) TlZi ; Eiéiz {(2) (i) Iiﬁ ; Eg};?
03(:1:1,y1) X 04(22) 79(22) — 9(42) 0 0 0
ca(z1) x e1(1) qg—1 0 0 0
84(21) X ()2(1) -1 0 0 0
64(2’1) X C3(I2,y2) 0 0 0 0
04(21) X (,‘4(22) 9(22) — 9(22) 0 0 0
Representations of SO4(F,), cases 7-9
Indg ™ (x1 © x2) © py po, X po, wZLSP Wansp
e1(1) x ey (£1) (g2 — 1)0(+1) (¢ — 1)20,(%1) +U D¢ (41) +@= (1)
(1) X ea(£1) —(g+1)6(%1) —(g— 1)oi(+1) jFTf(il) Thte(£1)
01(1) X Cg((LQ) 0 0 0 0
c1(1) x ca(22) —(g+1)(0(22) + 0(=3)) (g = 1)(B2(22) + 62(23)) —(q— 1)90(22) —(a = 1)fo(22)
(1) x er(£1) (g —1)0(£1) —(g—1)01(£1) $Te(i1) ¥%e(il)
c2(1) x c2(£1,72) —0(£1) 01 (1) 4 (e(£1) + e(—12)9) +5(e(£1) — e(—12)9)
(,2(1) X 63(1‘2) 0 0 0
ea(1) x ca(22) —(0(22) +0(23)) 02(22) + 02(23) 360(2)(1 — v/q%) 360(2)(1 + V)
e3(z1) x e1(1) (¢ = DO xelen) + xaxz (1)) 0 0 0
ealar) x ea(1) Xz (@) + g () 0 0 0
ca(w1,y1) % c3(22,Y2) 0 0 0 0
es(x1,y1) % calz2) | —(xa(@n)xa(y) + xa(1)x1(y1))(0(22) + 6(=3)) 0 0 0
ea(z1) x e (1) 0 —(g = 1)(01(21) + 01 (1)) —(g = 1)fo(22) —(q = 1)fo(z2)
ca(z1) x (1) 0 01 (22) + 01(25 300(21)(1 — V@) 300(21)(1 + V@)
64(2’1) X 03(x2,y2) 0 0 0 0
0 (Q+1)/2 c ]FX 0 (Q+1)/2 c ]FX

290((2122)(11 1)/2) Z(a+1)/2 ¢ ]FX

Here, we let ¢* :=

e(—1)g=1

(mod 4). The last three representations are cuspidal.
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