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Abstract. Let f and g be two cuspidal modular forms and let F be a Coleman family passing through

f , defined over an open affinoid subdomain V of weight space W. Using ideas of Pottharst, under certain

hypotheses on f and g we construct a coherent sheaf over V ×W which interpolates the Bloch-Kato Selmer
group of the Rankin-Selberg convolution of two modular forms in the critical range (i.e the range where the

p-adic L-function Lp interpolates critical values of the global L-function). We show that the support of this
sheaf is contained in the vanishing locus of Lp.
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1. Introduction

In [LLZ14] (and more generally [KLZ15]) Kings, Lei, Loeffler and Zerbes construct an Euler system for the
Galois representation attached to the convolution of two modular forms. This Euler system is constructed
from Beilinson–Flach classes, which are norm-compatible classes in the (absolute) étale cohomology of the
fibre product of two modular curves. It turns out that these Euler system classes exist in families, in the
sense that there exist classes

cBF [F,G]
m,1 ∈ H1

(
Q(µm), Dla(Γ,M(F)∗⊗̂M(G)∗)

)
which specialise to the Beilinson–Flach Euler system at classical points. Here F and G are Coleman families
with associated Galois representations M(F) and M(G) respectively, and Dla(Γ,−) denotes the space of
locally analytic distributions on Γ ∼= Z×p .

The above classes are constructed in [LZ16] and shown to satisfy an “explicit reciprocity law” relating the
bottom class (m = 1) to the three variable p-adic L-function constructed by Urban [Urb14]. This relation can
then be used to prove instances of the Bloch–Kato conjecture for the Galois representation attached to the
convolution of two modular forms (including the case of an elliptic curve twisted by an Artin representation).

Building on the work of Nekovář, Pottharst [Pot13] describes how one can put the Bloch–Kato Selmer
group of a Galois representation into a family. More precisely, given a family of GQ-representations over a
rigid analytic space X, he constructs a coherent sheaf S on X which specialises to the Bloch-Kato Selmer
group at certain “crystalline” points of X, i.e. points where the Galois representation is crystalline at p.
This gives rise to the natural question:

• Do the Beilinson–Flach classes cBF [F,G]
m,1 (and hence the three-variable p-adic L-function) control the

behaviour of S?
1
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In this paper, we provide a partial answer to this question.

1.1. Summary of results. Fix an odd prime p ≥ 5. To explain the results we introduce the following
notation. Let N ≥ 1 be an integer prime to p and let f and g be two normalised cuspidal newforms of levels
Γ1(N1) and Γ1(N2) and weights k+ 2 and k′+ 2 respectively, such that N1, N2 both divide N and k′, k ≥ 0.

We assume that k 6= k′, and that one of the p-stabilisations of f and both of the p-stabilisations of g are
noble (Definition 3.2.2). This implies that all three of these modular forms can be put into Coleman families.
We denote the weight space parameterising all continuous characters Z×p → C×p by W and for an integer i,

we denote the character x 7→ xi simply by i.
Let E be a p-adic field and F and G two Coleman families over affinoid domains V1 ⊂ WE and V2 ⊂ WE

passing through p-stabilisations of f and g respectively (see Definition 3.1.2 for the definition of WE). We
impose the following hypotheses on f and g:

(1) The image of the Galois representation attached to the convolution of f and g is big (see (BI) §7.3).
(2) The inertia invariants at ramified primes of the Galois representation attached to the convolution of

f and g is free (flatness of inertia, see §8.1).
(3) f and g are not congruent modulo p to forms of a lower level (minimally ramified, see §8.1).
(4) The p-adic L-function attached to the convolution of f and g does not have a trivial zero, which is

a condition on the Fourier coefficients of f and g (condition (NLZ) for the point x corresponding to
f and g in §7.3).

Under these hypotheses, there exists a coherent analytic sheaf S on X := V1 × V2 × W, such that for all
x = (k1, k2, j) ∈ X with k1, k2, j integers and 1 ≤ k2 + 1 ≤ j ≤ k1, the specialisation of S satisfies

Sx ∼= H1
f (Q, [M(Fk1)⊗M(Gk2)](1 + j))∗

where M(−) denotes the Galois representation attached to a modular form (in the sense of Deligne) and
the right-hand side is the (dual of the) Bloch–Kato Selmer group. We recall the construction of this sheaf
in section 8 following [Pot13, §3.4]; the construction relies on the machinery of Selmer complexes developed
by Nekovář [Nek06] and Pottharst [Pot13].

To be more precise, one can construct a family D of overconvergent (ϕ,Γ)-modules corresponding to
the representation M := [M(F)∗⊗̂M(G)∗](−j), where −j denotes the twist by the inverse of the universal
character of W, and it is shown in [Liu15] that this family has a canonical triangulation (provided that V1

and V2 are small enough). In section 8, we define a Selmer complex with unramified local conditions away

from p, and at p we choose local conditions defined by the cohomology of a family D
+

of two-dimensional sub
(ϕ,Γ)-modules appearing in the triangulation of D; at classical weights, the local condition at p specialises

to a so-called Panchishkin submodule, i.e. the Hodge-Tate weights for D
+

x (resp. Dx/D
+

x ) are positive (resp.
non-positive). Then, under some very mild conditions, this local condition corresponds to the Bloch–Kato
local condition for the specialisation of the representation M . We define S to be H2 of this Selmer complex.

In [Urb14] (and [AI17, Appendix II]) Urban constructs a three variable p-adic L-function, denoted Lp,
associated to F and G over X := V1×V2×W. This p-adic L-function is constructed via the theory of families
of nearly overconvergent modular forms and interpolates the critical values of the Rankin–Selberg L-function
at classical specialisations. We recall the interpolation property of Lp in section 3.6. In analogy with the
Bloch–Kato conjecture – which predicts that the Bloch–Kato Selmer group is controlled by the L-function
for the corresponding representation – we expect that the sheaf S is controlled by the three variable p-adic
L-function.

More precisely, the ring O(X) is a disjoint union of p − 1 integral domains indexed by characters η of

the group (Z/pZ)
×

(each of which correspond to an irreducible component of W). For each character η,
let eη denote the corresponding idempotent of O(X) projecting to the domain indexed by η. Since X is
quasi-Stein, a coherent sheaf on X is determined by its global sections, so we will pass between these two
perspectives freely. We expect the analogue of [KLZ17, Theorem 11.6.4] to hold in our situation, namely

Conjecture. Suppose that eη · Lp 6= 0. Under the hypotheses on f and g above, we expect that:

• eη · S is a torsion eη · O(X)-module.
• The 0th Fitting ideal

Fitt0(eη · S)

divides the ideal sheaf generated by the p-adic L-function eη · Lp.
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Note that the factor Ω appearing in loc.cit. is unnecessary for our formulation since it is invertible in
O(X). A particular case of this conjecture is that the support of the sheaf is contained in the vanishing
locus of the p-adic L-function. We prove a partial result in this direction.

Theorem A. Let Sk′ denote the specialisation of the above sheaf at k′ in the second variable. If V1 is small
enough and the above hypotheses hold for f and g, then

suppSk′ ⊂ {x ∈ V1 × {k′} ×W : Lp(x) = 0}

where “ supp” denotes the support of a sheaf.

Remark 1.1.1. By Krull’s principal ideal theorem, the vanishing locus of the three-variable p-adic L-function
has codimension ≤ 1 in X. Furthermore, since Lp 6= 0, there exists a character η such that eη · Lp 6= 0.
In this case, the vanishing locus of eη · Lp has codimension one in V1 × V2 × Wη, where Wη denotes the
component of weight space indexed by η.

To prove Theorem A, we actually show that if x is a point in V1×{k′}×W and Lp(x) 6= 0 then the group

H̃
2

f (Q,Mx) vanishes. Here H̃
2

f (Q,Mx) is the cohomology in degree 2 of a certain Selmer complex attached to

the representation Mx (see §7.2), which will be shown to coincide with the specialisation of S at x. To show
that this group vanishes, we generalise the proof of Theorem 8.2.1 in [LZ16] to non-classical specialisations;
this relies heavily on the theory of (ϕ,Γ)-modules and involves a careful analysis of the Perrin-Riou logarithm
(see section 6).

Unfortunately, with the current methods we were unable to prove a three-variable version of this result.
Indeed, a crucial step in the proof relies on the fact that Gk′ is the p-stabilisation of a classical modular form
of level N2, whose other p-stabilisation is noble. By putting the other p-stabilisation into a Coleman family,
we obtain two linearly independent Euler systems which can be used to bound the Bloch-Kato Selmer group,
rather than just the strict Selmer group (this is also the technique used in the proof of [LZ16, Theorem 8.2.1]).
For a general (non-classical) weight k2, the specialisation Gk2 will be the unique point on the eigencurve with
associated Galois representation M(Gk2), so the above strategy will not work.

1.2. Notation. Throughout the paper fix a prime p ≥ 5. If K is a field then we often denote its absolute
Galois group by GK = Gal(Ksep/K), where Ksep denotes a fixed maximal separable closure of K.

Let R be a topological ring and G a topological group. We say M is a G-module over R (or an R[G]-
module) if M is a continuous R-module equipped with a continuous homomorphism ρ : G → AutRM . We
will often work within the category of R[G]-modules. This is not an abelian category in general, but it is
additive and has kernels and cokernels, so we can still talk about its derived category. If M is an R[G]-module
and the action is commutative (i.e. the map ρ factors through Gab), then we write M ι to mean the module
M with the action given by g ·m = ρ(g−1)m for all g ∈ G and m ∈M .

We will often take R to be a Qp-Banach algebra (or more generally, the global sections of a rigid analytic
space). In this case we write R◦ for the subring of power-bounded elements. When R is a reduced affinoid
algebra, this coincides with the unit ball with respect to the supremum norm.

For an R[G]-module M , let M∗ := Homcont(M,R) denote the dual representation of M and, where
appropriate, we write M(n) to mean the representation M tensored with the n-th Tate twist. We fix a
compatible system of p-th power roots of unity in Q̄p, so in the case where M is a Galois representation,
M(1) is just M twisted by the cyclotomic character χcycl. In this paper, the cyclotomic character will always
have Hodge-Tate weight 1.

If M is an R[G]-module, then we denote its i-th group cohomology by Hi(G,M). If GK is the absolute
Galois group of a field K then we will also sometimes write Hi(K,M) for Hi(GK ,M).

When talking about left (resp. right) exact functors F , we write RF (resp. LF ) for the right (resp. left)
derived functors of F . In particular, if M is a R[G]-module then we write RΓcont(G,M) for the image of
the complex of continuous cochains of M in the derived category of R-modules.

If X is an object defined over a ring R and we have a homomorphism R → R′, then we denote the base
change of X to R′ by XR′ .

For a positive integer m, we let µ◦m denote the group scheme (over Q) of m-th roots of unity.
Finally, we note that throughout the paper, any étale cohomology group refers to continuous étale coho-

mology in the sense of Jannsen [Jan88].
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2. Modular curves

In this section we will define the modular curves that will be used throughout the paper. Let H± := C−R
denote the upper and lower complex half-space and denote the finite adeles of Q by Af . For a compact open
subgroup K ⊂ GL2(Af ), we let

(2.0.1) YK := GL2(Q)\
[
H± ×GL2(Af )/K

]
.

We assume that K is sufficiently small so that YK has the structure of a Shimura variety. This Shimura
variety has a canonical model over Q (which we will also denote by YK) and we will refer to this as the
modular curve of level K. In this paper, we are interested in the following choices of K.

Let m,N be two positive integers such that m(N + 1) ≥ 5. Then the subgroup

Km,N :=

{(
a b
c d

)
∈ GL2(Ẑ)

∣∣∣∣∣ a ≡ 1, b ≡ 0 mod mẐ
c ≡ 0, d ≡ 1 mod mN Ẑ

}
is sufficiently small and we denote the corresponding modular curve by Y (m,mN) := YKm,N . If m = 1
we simply denote this curve by Y1(N). The modular curve Y (m,mN) represents the contravariant functor
taking a Q-scheme S to the set of isomorphism classes of triples (E,P,Q), where E/S is an elliptic scheme,
P is a torsion section of order m and Q is a torsion section of order mN , such that P and Q are linearly
independent, in the sense that the map Z/mZ × Z/mNZ → E(S) given by (a, b) 7→ aP + bQ is injective.
There is a natural morphism Y (m,mN)→ µ◦m given by the Weil pairing on the points P,NQ, and the fibres
of this map are smooth, geometrically connected curves.

For an integer N ≥ 1 not divisible by p, we also set

K1(N(p)) :=

{(
a b
c d

)
∈ GL2(Ẑ)

∣∣∣c ≡ 0 mod pN Ẑ, d ≡ 1 mod N Ẑ
}
.

This is a sufficiently small subgroup and we denote the corresponding modular curve by Y1(N(p)). This has
a moduli interpretation as the contravariant functor taking a Q-scheme S to the set of isomorphism classes
of triples (E,P,C), where E/S is an elliptic scheme, P is a torsion section of order N and C is a finite flat
subgroup scheme of E[p] (the p-torsion of E) of order p.

It will also be useful to introduce several maps between these modular curves.

• For a positive integer d, we define the following map

(2.0.2) Ξd : Y (dm, dmN)→ Y (m,mN)

as the morphism which sends a triple (E,P,Q) to the triple (E/〈mP 〉, P mod mP, dQ mod mP ),
where 〈mP 〉 denotes the cyclic subgroup generated by mP .

• Recall µ◦m denotes the group scheme (over Q) of m’th roots of unity. We define the following map

(2.0.3) tm : Y (m,mN)→ Y1(N)×Q µ
◦
m

as the morphism given by (E,P,Q) 7→ ((E/〈P 〉,mQ mod P ), 〈P,NQ〉), where 〈−,−〉 denotes the
Weil pairing on E[m] and 〈P 〉 is the subgroup generated by P .
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• Let N ′ be a positive integer dividing N . We define the following map

(2.0.4) sN ′ : Y1(Np)→ Y1(N ′(p))

to be the morphism sending (E,Q) to
(
E, NpN ′ ·Q, 〈N ·Q〉

)
, where 〈N ·Q〉 denotes the cyclic group

scheme generated by the p-torsion section N ·Q.

The first two maps are compatible in the following sense.

Lemma 2.0.5. Let m,N be two positive integers with m(N + 1) ≥ 5 and let d be a positive integer. Then
we have the following commutative diagram

Y (dm, dmN) Y (m,mN)

Y1(N)× µ◦dm Y1(N)× µ◦m

tdm

Ξd

tm

where the bottom map is induced from the d-th power map µ◦dm → µ◦m.

Proof. Immediate from the definitions. �

3. Families of modular forms and Galois representations

3.1. Weight space.

Definition 3.1.1. Let Λ := Zp
q
Z×p

y
. The weight space W is defined to be the rigid generic fibre of the

formal spectrum Spf Λ. It represents the functor taking a rigid analytic space X over SpQp to the set
Homcont(Z×p ,OX(X)×). Let

κ : Z×p → Λ× ⊂ OW(W)×

denote the tautological character.

The space W is isomorphic to a union of p− 1 wide open discs (recall that we have assumed p > 2).

Definition 3.1.2. Let E be a finite extension of Qp with ring of integers OE , and let U be a wide open disc
in WE := W ×Sp(Qp) Sp(E). Define ΛU := OW(U)◦, the subring of power-bounded elements of OW(U) (so
Λ is non-canonically isomorphic to OE JtK), and write

κU : Z×p → Λ×U

for the map induced by κ.

Definition 3.1.3. The m-accessible part of the weight space, denoted Wm, is the union of wide open discs
defined by the inequality ∣∣κ(1 + pm+1)− 1

∣∣p−1
< |p| .

We will eventually restrict our attention to W0.

Definition 3.1.4. A classical point of W is a point corresponding to the character z 7→ zk for some
nonnegative integer k.

Remark 3.1.5. The previous definition is an abuse of notation, since the weight z 7→ χ(z)zk, for χ a finite
order character, can be the weight of a point on the eigencurve corresponding to a classical modular form.
But we will not need to consider this more general class of weights.

3.2. Families of overconvergent modular forms.

Definition 3.2.1. Let E be a finite extension of Qp with ring of integers OE , and let U ⊆ (W0)E be a wide
open disc containing a classical point. A Coleman family F over U (of tame level N) is formal power series∑∞
n=1 an(F)qn ∈ qΛU JqK satisfying the following properties:

(1) a1(F) = 1 and ap(F) ∈ ΛU [ 1
p ]×.

(2) For all but finitely many classical weights k contained in U , the restriction of F to k is the q-expansion
of a classical modular form of weight k + 2 and level Γ1(N) ∩ Γ0(p) that is a normalized eigenform
for the Hecke operators (away from Np).
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We denote the character associated to F by εF , so that for all but finitely many classical weights k in U the
specialisation of εF at k coincides with the nebentypus of Fk.

The following definition gives a criterion for when a modular form lies in a Coleman family.

Definition 3.2.2. We say that a cuspidal eigenform f of level Γ1(N) ∩ Γ0(p) and weight k + 2 is noble if
the following two conditions are satisfied.

• f is the p-stabilisation of normalised cuspidal newform f ′ of level Γ1(N) such that the roots {αf ′ , βf ′}
of the Hecke polynomial

X2 − ap(f ′)X + pk+1εf ′(p)

are distinct. Here ap(f
′) is the p-th Fourier coefficient of f ′ and εf ′ is the nebentypus.

• If the Up-eigenvalue of f has p-adic valuation k + 1 then the local Galois representation attached to
f ′ at p is not the direct sum of two characters.

Lemma 3.2.3. Let f be a noble eigenform of weight k + 2. Then for any sufficiently small U 3 k in W,
there is a unique Coleman family F over U such that Fk = f .

Proof. This is essentially proved in [Bel12, Lemma 2.8]. In particular, the lemma shows that if x is an
E-point on the eigencurve of weight k + 2, then there is a neighborhood V 3 x and an open disc U ⊆ W
such that V → U is finite flat of degree dimM†k+2,(x), where M†k+2,(x) is the space of overconvergent modular

forms of weight k + 2 that are Hecke eigenforms with eigenvalues given by x. Suppose x is noble; then it

has slope less than k + 1, so Coleman’s control theorem [Col96, Thm. 6.1] implies that M†k+2,(x) consists of

classical modular forms. Moreover, x corresponds to a newform, so the subspace of classical modular forms
is one-dimensional (see for example [Lan95, Thm. VIII.3.3]). �

3.3. Locally analytic distribution modules. Now we begin defining a family of Galois representations
on W as in [LZ16, §4].

Let Y = Y1(N(p)) be the modular curve at level Γ1(N)∩Γ0(p), and let π : E → Y be the universal elliptic
curve over Y . Let

H := R1π∗Zp(1)

be the relative Tate module of E . We will define several pro-sheaves of “functions and distributions on
H .” By this, we mean the following. Let Y (p∞, p∞N) denote the pro-scheme lim←−n Y (pn, pnN) and

t : Y (p∞, p∞N) → Y the natural projection; it is a Galois covering, and its Galois group can be identi-
fied with the Iwahori subgroup U0(p) ⊂ GL2(Zp) (with respect to the standard Borel).

The pro-sheaf t∗H is canonically isomorphic to the constant pro-sheaf H, where H = Z2
p. We will

define several spaces of functions and distributions on subsets of H that are equipped with actions of U0(p).
Since a U0(p)-module determines a U0(p)-equivariant pro-sheaf on Y (p∞, p∞N), these spaces will descend
to pro-sheaves on Y .

Firstly, we recall the definition of two locally analytic distribution modules following [LZ16, §4.2].

Definition 3.3.1. Let T0, T ′0 be the subsets of H defined by

T0 := Z×p × Zp, T ′0 := pZp × Z×p
and let Σ0(p), Σ′0(p) be the submonoids of M2(Zp) defined by

Σ0(p) :=

(
Z×p Zp
pZp Zp

)
, Σ′0(p) :=

(
Zp Zp
pZp Z×p

)
.

The monoids Σ0(p) and Σ′0(p) act on the right on T0 and T ′0, respectively.

Let R be a complete topological Zp-algebra, and let w : Z×p → R× be a continuous homomorphism.

Suppose there exists an integer m ≥ 0 such that the restriction of w to 1 + pm+1Zp is analytic. We are
primarily interested in the following cases:

(1) R = ΛU , w = κU for some finite extension E/Qp and some U ⊂ (Wm)E .
(2) R = OE , w(z) = zk for some finite extension E/Qp and some nonnegative integer k.

Definition 3.3.2. Let T be either T0 or T ′0. Let A◦w,m(T ) denote the space of functions f : T → R satisfying
the following properties:
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(1) The function f is homogeneous of weight w, i.e. f(λv) = w(λ)f(v) for any v ∈ T , λ ∈ Z×p .

(2) The function f is analytic on discs of radius p−m, i.e. for any v ∈ T , the restriction of f to v+ pmT
is given by a power series with coefficients in R.

Let
D◦w,m(T ) := HomR,cont(A

◦
w,m(T ), R)

Dw,m(T ) := D◦w,m(T ) [1/p] .

When R = ΛU , w = κU , we will denote the modules by

A◦U,m, D◦U,m, DU,m.

When R = OE , w(z) = zk, we will denote the modules by

A◦k,m, D◦k,m, Dk,m.

The modules A◦w,m(T ), D◦w,m(T ), Dw,m(T ) inherit an action of Σ0(p) or Σ′0(p) from the action on T .

If the disc U contains the point corresponding to the homomorphism z 7→ zk, then the specialization map
ΛU → Zp induces a homomorphism

D◦U,m → D◦k,m
and similarly there are specialization maps with D◦ replaced by A◦ or D.

As mentioned at the beginning of this subsection, each of the modules defined above determines a pro-sheaf
on Y . We let D◦w,m(H0), D◦w,m(H ′

0 ), be the pro-sheaves corresponding to D◦w,m(T0), D◦w,m(T ′0), respectively.

3.4. Galois representations. Now we define families of Galois representations coming from the cohomology
of the sheaves defined above. For a wide open disc U ⊂ (W0)E we set BU := ΛU [ 1

p ].

Definition 3.4.1. As before, let Y = Y1(N(p)) denote the modular curve of level Γ1(N) ∩ Γ0(p). Set

M◦w,m(H0) := H1
ét(YQ,D

◦
w,m(H0))(−κU )

M◦w,m(H ′
0 ) := H1

ét(YQ,D
◦
w,m(H ′

0 ))(1).

Proposition 3.4.2 ([LZ16, Thm. 4.6.6]). Let f0 be a noble eigenform of weight k0 + 2, and let F be the
Coleman family passing through f0. If the disc U 3 k0 is sufficiently small, then:

(1) The modules
MU (F) := MU,0(H0) [Tn = an(F) ∀n ≥ 1]

MU (F)∗ := MU,0(H ′
0 ) [T ′n = an(F) ∀n ≥ 1]

are direct summands (as BU -modules) of MU,0(H0) and MU,0(H ′
0 ) respectively, where [−] stands

for isotypic component and T ′n is the transpose of the usual Hecke operator. Each is free of rank 2
over BU .

(2) The Ohta pairing (see [LZ16, §4.3]) induces an isomorphism of BU [GQ]-modules

MU (F)∗ ∼= HomBU (MU (F), BU ) .

Given two Coleman families F and G defined over U1,U2 ⊂ WE , respectively, we will write M :=
MU1(F)∗⊗̂MU2(G)∗ for the family of Galois representations on U1 × U2 given by the BU1⊗̂BU2 -module

MU1(F)∗⊗̂EMU2(G)∗

and to ease notation, we will often omit the subscripts when the spaces U1 and U2 are clear. Furthermore
we will often restrict this representation to open affinoids V1 ⊂ U1 and V2 ⊂ U2; in this case M is a Banach
module over the affinoid algebra OW(V1 × V2) that is free of rank four.

Definition 3.4.3. Let A be a Qp-affinoid algebra and M an A-valued (continuous) representation of GQ.
Let Dla(Γ, A) denote the space of locally analytic distributions with values in A; this comes equipped with
an action of GQ given by

(3.4.4)

∫
Γ

f d(g · µ) :=

∫
Γ

f([g]−1x) dµ(x)

where [g] denotes the image of g ∈ GQ in Γ = Gal(Q(µp∞)/Q), and is isomorphic (as A[GQ]-modules) to
OW(W)ι⊗̂A. The cyclotomic deformation of M is defined to be

M(−κ) := Dla(Γ,M) := M⊗̂QpD
la(Γ, A).
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with the diagonal Galois action.
Similarly, for any λ ∈ R≥0, let Dλ(Γ,Qp) be the space of Qp-valued distributions on Γ of order λ as in

[Col10, §II.3], with Galois action given by the same formula in (3.4.4). Define Dλ(Γ,M) := Dλ(Γ,Qp)⊗̂QpM .

3.5. Some properties of locally analytic distribution modules. We mention some properties of the
modules defined above that will be useful in section 4.

Definition 3.5.1. Define Λ(H) to be the space of continuous Zp-valued distributions on H, and let Λ(H )
be the corresponding pro-sheaf on Y . This coincides with the sheaf of Iwasawa modules for H , i.e. Λ(H ) is
the pro-system of étale sheaves corresonding to the inverse system (Z/pnZ[H /pnH ])n≥1 with the natural
transition maps.

For any nonnegative integer k, let TSymkH be the space of degree k symmetric tensors over H, i.e. it is
the subgroup of H⊗k that is invariant under the action of the symmetric group Sk. Let TSymk H be the
corresponding pro-sheaf on Y .

For j ≥ 0, set Λ[j](H ) := Λ(H )⊗ TSymj H and Λ[j,j] = Λ[j](H ) � Λ[j](H ). Then there is a Clebsch-
Gordon map (see [LZ16, §3.2])

CG[j] : Λ(H )→
(

Λ[j](H )⊗̂Λ[j](H )
)

(−j).

For any U , m, there is a natural restriction map

Λ(H )→ D◦U,m(T )

and for any nonnegative integer k, TSymkH can be identified with the space of distributions on homogeneous
degree k polynomial functions on H. Hence there is a natural surjection

D◦k,m(T )→ TSymk H .

3.6. The three-variable p-adic L-function. Let f and g be two normalised cuspidal eigenforms of weights
k + 2, k′ + 2 and levels Γ1(N1) and Γ1(N2) respectively, where k > k′ ≥ 0. Let χ be a Dirichlet character of
conductor Nχ and suppose that p does not divide N1 ·N2. To this data one has the associated (imprimitive)
Rankin–Selberg L-function, defined as

L(f, g, χ, s) = L(N1N2Nχ)(εfεgχ
2, 2s− 2− k − k′) ·

∑
n≥1

(n,Nχ)=1

an(f)an(g)χ(n)n−s

for Re(s) sufficiently large. Here the subscript (N1N2Nχ) denotes the omission of the Euler factors at primes
dividing N1N2Nχ. This L-function differs from the automorphic L-function attached to the representation
πf ⊗ πg ⊗ χ by only finitely many Euler factors. Since we have assumed k 6= k′, the function L(f, g, χ,−)
has analytic continuation to all of C (see [Loe18, §2.1]).

Using the theory of nearly overconvergent families of modular forms as described in [AI17], Urban has
constructed a three-variable p-adic L-function which interpolates critical values of the above Rankin–Selberg
L-function. More precisely, suppose that there exist noble p-stabilisations of f and g (as in Definition 3.2.2)
and let F and G be Coleman families over affinoid domains V1 and V2, passing through these p-stabilisations.
We can shrink V1 and V2 to ensure that all classical specialisations of F and G are noble (see Remark 8.2.5)
– if Fk1 denotes such a specialisation then we let F◦k1 denote the associated newform, and similarly for G.

Theorem 3.6.1 (Urban). There exists an element Lp(F ,G, 1 + j) ∈ O(V1×V2×W) satisfying the following
interpolation property:

• For all integers k1, k2, j satisfying ki ∈ Vi and 0 ≤ k2 + 1 ≤ j ≤ k1, and all Dirichlet characters χ of
p-power conductor, we have

Lp(Fk1 ,Gk2 , 1 + j + χ) = C(Fk1 ,Gk2 , 1 + j + χ) · j!(j − k2 − 1)!ik1−k2

π2j+1−k222j+2+k1−k2〈F◦k1 ,F
◦
k1
〉N1

L(F◦k1 ,G
◦
k2 , χ

−1, 1 + j)

where C(Fk1 ,Gk2 , 1 + j + χ) is an explicit product of Euler factors and Gauss sums.

Proof. This follows from the interpolation property in [Urb14, Theorem 4.4.7] (which is valid by the results
of [AI17, Appendix II]). The calculation is only for N = 1 but its generalisation is immediate. See also the
computation of the Rankin–Selberg period in [Loe18, Prop 2.10]. �
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In the following section we will recall the construction of the Beilinson–Flach classes in families. It turns
out that this p-adic L-function Lp is closely related to the images of these Beilinson–Flach classes under
Perrin-Riou’s “big logarithm”. This will be important in Proposition 6.2.2 later on.

4. Beilinson–Flach classes

In this section we recall the construction of classes

cBF [F,G]
m,1 ∈ H1(Q(µm), Dla(Γ,M))

where M = MV1(F)∗⊗̂MV2(G)∗ following [LZ16]. These classes are obtained from so-called Rankin–Iwasawa
classes under the pushforward of a certain sequence of morphisms. In particular we show that these classes
satisfy certain norm relations which interpolate the (tame) Euler system relations at classical weights.

None of the results in this section are new, apart from perhaps Proposition 4.3.1 and §4.4, although we
suspect this is already known to the experts.

4.1. Rankin–Iwasawa classes. Let (E , P,Q) denote the universal triple over the curve Y := Y (m,mN)
as defined in section 2, and recall that

H = HZp := R1π∗Zp(1)

denotes the relative p-adic Tate module of E/Y . Here π : E → Y denotes the structure map and Zp(1) is the
Tate twist by the cyclotomic character. This is a locally free étale pro-sheaf on Y of rank 2.

Let c ≥ 1 be an integer prime to 6mN . In [Kin16], Kings constructs Eisenstein classes c EiskQp arising

from motivic classes whose de Rham realisations recover the usual Eisenstein series of weight k+ 2 (see also
[KLZ15, §4]). In addition to this, he constructs so-called Eisenstein–Iwasawa classes

cEIm,mN ∈ H1
ét(Y (m,mN),Λ(H )(1))

which interpolate c EiskQp via the “moment maps”

momk : Λ(H )→ TSymk H .

From these classes one obtains Rankin–Iwasawa classes in the following way.

Definition 4.1.1. Let c ≥ 1 be an integer that is coprime to 6mN . We define the Rankin–Iwasawa class to
be

cRI [j]
m,mN,1 :=

[
(u1)∗ ◦∆∗ ◦ CG[j]

]
(cEIm,mN )

which lies in the cohomology group H3
ét(Y (m,mN)2,Λ[j,j](2− j)). Here

• CG[j] is the Clebsch–Gordon map described in Definition 3.5.1.
• ∆: Y (m,mN)→ Y (m,mN)2 denotes the diagonal embedding where, by abuse of notation, we write
Y (m,mN)2 for the fibre product

Y (m,mN)×µ◦m Y (m,mN).

• u1 : Y (m,mN)2 → Y (m,mN)2 denotes the automorphism which is the identity on the first factor
and acts on the moduli interpretation as

(E,P,Q) 7→ (E,P +NQ,Q)

on the second factor.

The Rankin–Iwasawa classes satisfy the following norm compatibility relations.

Proposition 4.1.2. Let c ≥ 1 be an integer prime to 6Np and let m be an integer prime to 6cN . Let l
be a prime not dividing 6cNp and recall that we have defined the following morphism Ξl : Y (lm, lmN) →
Y (m,mN) in (2.0.2).

(1) If l divides m then the Rankin–Iwasawa classes satisfy the following norm compatibility relation

(Ξl × Ξl)∗(cRI [j]
lm,lmN,1) = (U ′l , U

′
l ) · cRI

[j]
m,mN,1.
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(2) If l does not divide m then the Rankin–Iwasawa classes satisfy the following norm compatibility
relation

(Ξl × Ξl)∗(cRI [j]
lm,lmN,1) = Q̃l · cRI [j]

m,mN,1

where Q̃l is the operator

−ljσl + (T ′l , T
′
l ) + ((l + 1)lj(〈l〉−1[l]∗, 〈l〉−1[l]∗)− (〈l〉−1[l]∗, T

′2
l )− (T ′2l , 〈l〉−1[l]∗))σ

−1
l

+(〈l−1〉[l]∗T ′l , 〈l−1〉[l]∗T ′l )σ−2
l − l

1+j([l2]∗〈l−2〉, [l2]∗〈l−2〉)σ−3
l

and
• T ′l (resp. U ′l ) is the transpose of the usual Hecke operator Tl (resp. Ul) on Y (m,mN).

• [a]∗ : Λ[j](H ) → Λ[j](H ) is the map induced from multiplication by a on the first factor and
the identity on the second.

• 〈b〉 is the diamond operator on Y (m,mN) which acts on the moduli interpretation as (E,P,Q) 7→
(E, b−1P, bQ).

• σl is the automorphism of Y (m,mN) which acts on the moduli interpretation as (E,P,Q) 7→
(E, lP,Q).

Proof. In the notation of [KLZ17, §5], the map (Ξl ×Ξl)∗ is the composition (pr1×pr1)∗(p̂r2 × p̂r2)∗ and if
l|m one can check that (pr1×pr1)∗ commutes with (U ′l , U

′
l ). The first part then follows by combining the

norm relations in Theorem 5.3.1 and Theorem 5.4.1 in op. cit. For the second part, this is just Proposition
5.6.1 in op. cit. �

4.2. Beilinson–Flach classes in families. Let E be a finite extension of Qp with ring of integers OE , and
U1,U2 ⊂ (W0)E two wide open discs, where W0 ⊂ W is the wide open subspace of 0-accessible weights (see
Definition 3.1.3). Recall that Λ(H ′

0 ) and D◦Ui(H
′

0 ) := D◦Ui,0(H ′
0 ) are the sheaves of continuous (resp. locally

analytic) Zp-valued (resp. ΛUi-valued) distributions on H ′
0 , the subsheaf of H which is locally isomorphic

to T ′0.
Consider the map of sheaves

(4.2.1) Λ[j,j](H ′
0 )→ D[U1,U2](H

′
0 ) :=

(
D◦Ui(H

′
0 ) �D◦U2(H ′

0 )

)[
1

p

]
induced from the composition

(4.2.2) Λ(H ′
0 )⊗ TSymj H → D◦Ui−j(H

′
0 )⊗ TSymj H

δ∗j−→ DUi(H ′
0 )

described in [LZ16, Definition 5.3.1]. We will not need an explicit description of these maps, but we do note
that we have the following commutative diagram.

Lemma 4.2.3. We have the following commutative diagram of sheaves

Λ(H ′
0 )⊗ TSymj H DUi(H ′

0 )

Λ(H ′
0 )⊗ TSymj H DUi(H ′

0 )

[l]∗⊗ id lκi−j

where the horizontal arrows are the composition in (4.2.2) and, as usual, l is a prime not dividing Np and
κi is the universal character of Ui.

Proof. One can check this étale locally and this follows from the homogeneity condition in the definition of
D◦Ui and the fact that δ∗j ◦ ([l]∗ ⊗ id) = l−j([l]∗ ⊗ id) ◦ δ∗j . �

We are now in a position to define the Beilinson–Flach classes. Consider the following composition, which
we will denote by τm

τm : Y (m,mNp)2 tm×tm−−−−→ Y1(Np)2 × µ◦m → Y1(N1(p))× Y1(N2(p))× µ◦m
where tm : Y (m,mNp) → Y1(Np) × µ◦m is the map defined in (2.0.3) and the second map is induced from
the maps sNi : Y1(Np)→ Y1(Ni(p)) as defined in (2.0.4).
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Definition 4.2.4. We define the Beilinson–Flach class

cBF [U1,U2,j]
m,1 ∈ H3

ét(Y1(N1(p))× Y1(N2(p))× µ◦m,D[U1,U2](H
′

0 )(2− j))

to be the pushforward of cRI [j]
m,mNp,1 under τm composed with the map in (4.2.1).

Let F and G be Coleman families over U1 and U2 respectively. To specialise the Beilinson–Flach classes
at F and G one introduces the following differential operators

(∇i
j

)
on ΛUi [1/p] given by the formula(

∇i
j

)
:=

1

j!

j−1∏
k=0

(∇i − k)

where ∇i is given by (∇if)(x) = d
dtf(tx)

∣∣
t=1

(see [LZ16, Proposition 5.1.2] for more details). Let V1 and V2

be open affinoid subdomains in U1 and U2 respectively and j ≥ 0 an integer not contained in either V1 or
V2. Then the operators

(∇1

j

)
and

(∇2

j

)
are injective and there exist unique classes

cBF [F,G,j]
m,1 ∈ H1

(
Q(µm), [MV1

(F)∗⊗̂MV2
(G)∗](−j)

)
such that

(∇1

j

)(∇2

j

)
cBF [F,G,j]

m,1 equals the image of cBF [U1,U2,j]
m,1 under the Abel–Jacobi map AJF,G defined

below.

Definition 4.2.5. The Abel–Jacobi map AJF,G is defined to be the composition

H3
ét(Y1(N1(p))× Y1(N2(p))× µ◦m,D[U1,U2](H

′
0 )(2− j))

−→ H1
(
Q(µm),H2

ét(Y1(N1(p))Q̄ × Y1(N2(p))Q̄,D[U1,U2](H
′

0 )(2− j)
)

∼−→ H1(Q(µm),H1
ét(Y1(N1(p))Q̄,DU1(H ′

0 )(1))⊗̂H1
ét(Y1(N2(p))Q̄,DU2(H ′

0 )(1))(−j))
−→ H1

(
Q(µm),

[
MV1

(F)∗⊗̂MV2
(G)∗

]
(−j)

)
where the first map arises from the Leray spectral sequence (using the fact that Y1(N1(p))Q̄ × Y1(N2(p))Q̄
is an affine scheme, so its étale cohomology vanishes in degree 3 and above); the second isomorphism is the
Künneth formula (again using the fact that Y1(Ni(p))Q̄ is affine) and the third map is the projection down
to the Galois representations associated to F and G.

The Beilinson–Flach classes associated to F and G satisfy norm compatibility relations similar to those
for the Rankin–Iwasawa classes.

Proposition 4.2.6. Let c ≥ 1 be an integer prime to 6Np and let m be an integer prime to 6cN . Let l be a
prime not dividing 6cNp and let F and G be two Coleman families over the affinoid subdomains V1 and V2

respecively. Suppose that j ≥ 0 is an integer not contained in V1 or V2.

(1) If l divides m then the Beilinson–Flach classes satisfy the following norm-compatibility relation

cores
Q(µml)
Q(µm)

(
cBF [F,G,j]

ml,1

)
= (al(F)al(G)) cBF [F,G,j]

m,1

(2) If l doesn’t divide m then the Beilinson–Flach classes satisfy the following norm-compatibility relation

cores
Q(µml)
Q(µm)

(
cBF [F,G,j]

ml,1

)
= Ql(l−jσ−1

l ) · cBF [F,G,j]
m,1

where Ql(X) ∈ O(V1 × V2)[X,X−1] is the polynomial

Ql(X) =−X−1 + al(F)al(G)

+ ((l + 1)lκ1+κ2εF (l)εG(l)− lκ1εF (l)al(G)2 − lκ2εG(l)al(F)2)X

+ lκ1+κ2εF (l)εG(l)al(F)al(G)X2 − l1+2κ1+2κ2εF (l2)εG(l2)X3

where, as before, σl is the image of the arithmetic Frobenius at l in Gal(Q(µm)/Q).
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Proof. Consider the composition

H3
ét(Y (m,mNp)2,Λ[j,j](2− j))

τm,∗−−−→ H3
ét(Y1(N1(p))× Y1(N2(p))× µ◦m,Λ[j,j](H ′

0 ))

−→ H3
ét(Y1(N1(p))× Y1(N2(p))× µ◦m,D[U1,U2](H

′
0 )).

By applying Lemma 2.0.5, the morphisms (Ξl)∗ and cores
Q(µlm)
Q(µm) are compatible under the map

(4.2.7) H3
ét(Y (m,mN)2,Λ[j,j](2− j))→ H1(Q(µm), [M(F)∗⊗̂M(G)∗](−j))

obtained by composing the above map with AJF,G .
Immediately we see that if l divides m then(

∇1

j

)(
∇2

j

)
cores

Q(µml)
Q(µm) cBF [F,G,j]

lm,1 = cores
Q(µml)
Q(µm)

(
∇1

j

)(
∇2

j

)
cBF [F,G,j]

lm,1

= (al(F)al(G))

(
∇1

j

)(
∇2

j

)
cBF [F,G,j]

m,1

where the second equality follows from part 1 of Proposition 4.1.2 and the fact that T ′l acts as multiplication
by al(F) (resp. al(G)) on M(F)∗ (resp. M(G)∗). Note that under the morphism tm the operators U ′l and

T ′l are compatible. Since j is not contained in V1 or V2, the operator
(∇1

j

)(∇2

j

)
is invertible and we have the

required relation.
For the second part, recall that by part 2 in Proposition 4.1.2, the Rankin–Iwasawa classes satisfy (Ξl ×

Ξl)∗(cRI [j]
lm,lmN,1) = Q̃l · cRI [j]

m,mN,1. We have the following commutative diagram:

H3
ét(Y (m,mpN)2,Λ[j,j](2− j)) H1(Q(µm), [M(F)∗⊗̂M(G)∗](−j))

H3
ét(Y (m,mpN)2,Λ[j,j](2− j)) H1(Q(µm), [M(F)∗⊗̂M(G)∗](−j))

Q̃l Ql(l−jσ−1
l )

where the horizontal arrows are the maps in (4.2.7). Indeed, M(F)∗ can be described as the quotient of

H3
ét(Y1(N1(p))Q̄,DV1

(1))

such that T ′l acts as multiplication by al(F) and 〈l〉 acts as multiplication by εF (l)−1. We have a similar
description for M(G)∗. Furthermore, the action of σl becomes the natural action of σl under the horizontal
map in the above diagram (this is an application of the push-pull lemma for étale cohomology). Finally, by
Lemma 4.2.3, [l]∗ becomes multiplication by lκi−j . This shows that the above diagram is commutative and
completes the proof of the proposition. �

4.3. Interpolation in the cyclotomic variable. In this section we recall how to interpolate the Beilinson–

Flach classes cBF [F,G,j]
m,1 in the cyclotomic variable j. As a consequence, we show that the three-variable

Beilinson–Flach classes satisfy a norm-compatibility relation closely related to the Euler system relations.
Let p−λ1 = ||ap(F)|| (resp. p−λ2 = ||ap(G)||) where || · || denotes the canonical supremum norm on

O(Vi) (which exists because we have restricted our Coleman families to reduced affinoid subdomains). Let
λ = λ1 + λ2 and h ≥ λ a positive integer. Define the following elements

xn,j := (ap(F)ap(G))−n
cBF [F,G,j]

mpn,1

(−1)jj!

for 0 ≤ j ≤ h, n ≥ 1, and set

x0,j :=

(
1− pj

ap(F)ap(G)

)
cBF [F,G,j]

m,1

(−1)jj!

for 0 ≤ j ≤ h. These elements are compatible under corestriction and satisfy a certain growth bound (see
[LZ16, Proposition 5.4.1]), so by Proposition 2.3.3 in op. cit. there exists a unique element

cBF [F,G]
m,1 ∈ H1(Q(µmp∞), Dλ(Γ,M))Γ ∼= H1(Q(µm), Dλ(Γ,M))
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satisfying ∫
Γn

χjcycl cBF
[F,G]
m,1 = xn,j

for all n, j. Here M = MV1
(F)∗⊗̂MV2

(G)∗ and Γn ⊂ Γ is the unique subgroup of index pn−1(p− 1) (we set

Γ0 = Γ). The class cBF [F,G]
m,1 is independent of the choice of h.

Proposition 4.3.1. The Beilinson–Flach classes cBF [F,G]
m,1 satisfy the following norm compatibility relations:

• If l divides m then

cores
Q(µlm)
Q(µm)

(
cBF [F,G]

lm,1

)
= (al(F)al(G)) · cBF [F,G]

m,1 .

• If l doesn’t divide m then

cores
Q(µlm)
Q(µm)

(
cBF [F,G]

lm,1

)
= Ql(l−jσ−1

l ) · cBF [F,G]
m,1

where Ql(X) is the polynomial defined in Proposition 4.2.6 and j is the universal character Γ →
Dλ(Γ, E) (i.e. the homomorphism taking x 7→ evx where evx is the evaluation-at-x map).

Proof. Let Ql(X) denote the polynomial appearing in Proposition 4.2.6 and let l be a prime not dividing
6mpNc. Set

νm = Ql(l−jσ−1
l ) · cBF [F,G]

m,1 − cores
Q(µlm)
Q(µm)

(
cBF [F,G]

lm,1

)
.

Then for all n, j ≥ 0 the specialisation
∫

Γn
χjνm is zero; so νm interpolates only zero classes. By uniqueness,

this implies that νm = 0. A similar argument works for l|m. �

4.4. Euler system relations in families. In Proposition 4.3.1, we showed that the Beilinson–Flach classes
satisfy norm compatible relations. It turns out that we can adjust these classes so that we obtain cohomology
classes satisfying the Euler system relations.

As before, let M = MV1(F)∗⊗̂MV2(G)∗ and let Pl(X) denote the polynomial det
(
1− Frob−1

l X|M∗(1)
)
,

where Frobl denotes any lift of the arithmetic Frobenius at l. Then one can observe that

Ql(X) = X−1
(
(l − 1)(1− lκ1+κ2+2εF (l)εG(l)X2)− lPl(X)

)
so in particular Ql(X) ≡ −X−1Pl(X) modulo l − 1. Such a congruence allows us to adjust the classes

cBF [F,G]
m,1 so that we obtain Euler system relations.

Proposition 4.4.1. Let c ≥ 1 be an integer prime to 6pN and let A denote the set of all square-free

positive integers which are coprime to 6pNc. Then for all m ∈ A, there exist cohomology classes cZ [F,G]
m ∈

H1(Q(µm), Dla(Γ,M)) such that

(1) The bottom class satisfies cZ [F,G]
1 = cBF [F,G]

1,1 .

(2) If l is a prime such that lm ∈ A (so in particular l - m), we have the following Euler system relation

cores
Q(µlm)
Q(µm) cZ [F,G]

lm = Pl(l−jσ−1
l ) · cZ [F,G]

m

Note that Pl(l−jX) = det
(
1− Frob−1

l X|M∗(1 + j)
)
.

Moreover, cZ [F,G]
m differs from cBF [F,G]

m,1 by an element of O(V1 × V2 ×W)◦[(Z/mZ)×].

Proof. This follows from the same argument in [LLZ14, §7.3]. �

Unfortunately, in general, there is no way to force these classes to lie in a Galois stable lattice inside
Dla(Γ,M), so we do not get an Euler system for this representation. However, this is possible after special-
isation so long as we use a weaker notion of an Euler system.

Corollary 4.4.2. Let x = (k1, k2, η) ∈ V1 × V2 ×W defined over a finite extension E/Qp, and let T (η−1)
be a Galois stable lattice inside ME(Fk1)∗ ⊗ME(Gk2)∗(η−1). Assume that k1 6= k2. Let c ≥ 1 be an integer
prime to 6Np and let N be a finite product of primes containing all primes dividing 6cNp. Let S denote
the set of positive integers divisible only by primes not dividing N . Then for m ∈ S and V1 and V2 small
enough, there exist cohomology classes

cm ∈ H1
(
Q(µm), T (η−1)

)
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which satisfy

cores
Q(µlm)
Q(µm) clm =

{
cm if l|m

Pl(η
−1(l)σ−1

l ) · cm if l - m

where l is a prime not dividing N and Pl(η
−1(l)X) is the specialisation of Pl(l−jX) at (k1, k2, η). Further-

more, the bottom class c1 is a non-zero multiple of cBF [F,G]
1,1 .

Proof. Firstly, note that H0(Q(µmp∞),Mx) = 0 for all m ∈ S, where

Mx = ME(Fk1)∗ ⊗ME(Gk2)∗(η−1).

Indeed this is true because we have assumed k1 6= k2, for the following reason. Shrinking V1 and V2 if
necessary, we can assume that Mx is (absolutely) irreducible. Hence any twist of Mx by a character is also
irreducible. But if Mx has any non-trivial invariants under the group GQab then there is a one-dimensional
submodule of Mx on which GQ acts via a character. This is a contradiction to irreducibility.

Therefore, by applying Proposition 2.4.7 in [LZ16], there exists a constant R > 0 independent of m such

that R · cBF [F,G]
m,1 specialised at x lands in the cohomology of the Galois stable lattice T (η−1).

But since cZ [F,G]
m differs from cBF [F,G]

m,1 by an element of O(V1 × V2 ×W)◦[(Z/mZ)×], this implies that

the specialisation of R · cZ [F,G]
m lands in the cohomology of the Galois stable lattice T (η−1). We set cm to

be the specialisation of R · cZ [F,G]
m at x.

By Proposition 4.4.1, we obtain the Euler system relations for the classes cm, and this proves the Corollary
for all m ∈ A, where A is the subset of S consisting of all square-free integers.

But we can extend the classes {cm : m ∈ A} to a collection of classes indexed over the set S by defining
cm to be

cm :=
∏
l|m

1

lvl(m)−1
res

Q(µm)
Q(µm′ )

cm′

where m′ is the radical of m (i.e. the product of all prime factors that divide m) and vl(m) is the l-adic
valuation of m. We don’t lose integrality of the classes because all integers in S are coprime to p. �

5. Preliminaries on (ϕ,Γ)-modules

5.1. Period rings. In this section we (briefly) recall the period rings that will be used throughout the paper.
Since we only work with representations of GQp , we specialise immediately to this case and refer the reader
to [Ber03] for the definitions over more general p-adic fields; proofs and their corresponding references for
all of the assertions in this section can also be found in op. cit..

Let Cp denote a fixed completed algebraic closure of Qp and let vp denote the unique valuation on Cp
such that vp(p) = 1. Set O[Cp := lim←−OCp/p, where the inverse limit is over the p-th power map, and fix

ε := (εn) ∈ O[Cp a compatible system of p-th roots of unity, i.e. εn is a pn-th root of unity such that

εpn+1 = εn.

Let Ã+ denote the (p-typical) Witt vectors of O[Cp and let B̃+ = Ã+[ 1
p ]. One has a canonical homomor-

phism

θ : B̃+ → Cp
whose kernel is a principal ideal of B̃+ generated by ω := ([ε] − 1)/([ε′] − 1) where ε′ = (εn+1)n≥0 and [·]
denotes the Teichmüller lift. We set t := log([ε]) to be the period of Fontaine.

We define the de Rham period rings B+
dR and BdR to be the (ker θ)-adic completion of B̃+ and the fraction

field of B+
dR respectively. Similarly we define the crystalline period rings B+

cris and Bcris to be the divided-

power envelope of B̃+ (with respect to ω) and Bcris = B+
cris[t

−1] respectively. The field BdR comes equipped

with a decreasing filtration given by Fili BdR = tiB+
dR and since Bcris ⊂ BdR, the ring Bcris also inherits a

filtration from BdR. Furthermore, Bcris comes equipped with a Frobenius endomorphism ϕ extending the

natural Frobenius on B̃+.
In addition to these constructions, we define overconvergent period rings as follows. For r, s two positive

rational numbers, let Ã[r,s] denote the p-adic completion of Ã+
[

p
[ε−1]r ,

[ε−1]s

p

]
and set B̃[r,s] = Ã[r,s][1/p].
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We define B̃†,rrig to be the intersection B̃†,rrig := ∩r≤s<+∞B̃[r,s] and if we set π = [ε]−1, then this ring contains
the following subring

B†,rrig,Qp :=

{
f(π) =

∞∑
k=−∞

akπ
k :

ak ∈ Qp
f(x) converges for 0 < vp(x) ≤ 1

r

}
.

Note that the period t defined previously is equal to log(1 + π).

The union of these rings, namely B†rig,Qp := lim−→B†,rrig,Qp , is the Robba ring associated to the p-adic field

Qp and can be identified with all power series in Qp
q
π, π−1

y
that converge on an annulus of the form

{x ∈ Cp : 0 < vp(x) ≤ 1/r} for some positive rational number r. We let B+
rig,Qp ⊂ B†rig,Qp denote the subring

of power series which converge on the whole open unit disc, i.e. f(x) converges for all vp(x) > 0. Both of
these rings come equipped with an action of Frobenius given by the formula

(ϕ · f)(π) = f((1 + π)p − 1)

and Γ := Gal(Qp(µp∞)/Qp) given by the formula

(γ · f)(π) = f((1 + π)χcycl(γ) − 1)

where γ ∈ Γ and χcycl : Γ→ Z×p is the cyclotomic character. The morphism ϕ has a left inverse, denoted by
ψ, which satisfies the following relation

(ϕψ · f)(π) =
1

p

∑
ξp=1

f((1 + π)ξ − 1)

where the sum is over all p-th roots of unity.
If A is an affinoid Qp-algebra, we define the Robba ring over A to be the completed tensor product

B†rig,Qp⊗̂A, and similarly we denote the subring of bounded power series by B+
rig,Qp⊗̂A. As above, both of

these rings come equipped with an action of ϕ, ψ and Γ by the exact same formulae.

5.2. Overconvergent (ϕ,Γ)-modules over affinoid algebras.

Definition 5.2.1. Let A be an affinoid algebra over Qp. We say that D is a (ϕ,Γ)-module over B†rig,Qp⊗̂A if

D is a finite projective (B†rig,Qp⊗̂A)-module with commuting semilinear actions of ϕ and Γ, such that ϕ(D)

generates D as a (B†rig,Qp⊗̂A)-module.

If M is a Galois representation over an affinoid algebra A (i.e. a finite projective A-module with a
continuous A-linear action of GQ) then Berger and Colmez [BC08] (and more generally Kedlaya and Liu
[KL10]) have constructed a functor

M 7→ D†rig(M)

which associates to a Galois representation a (ϕ,Γ)-module over the Robba ring B†rig,Qp⊗̂A. This agrees

with the usual functor as constructed by Berger [Ber02] when A is a finite field extension of Qp.
For the rest of this section let A = E be a finite field extension of Qp and let D be a (ϕ,Γ)-module over

B†rig,Qp⊗̂E. By taking the “stalk at ζpn − 1” one can define a Qp(µp∞)((t))-module Ddif with a semilinear

action of Γ (see [Nak14]). We set

DdR := DΓ
dif and Dcris := D[t−1]Γ

and note that both DdR and Dcris are finite-dimensional vector spaces over E.

Definition 5.2.2. Let E/Qp be a finite extension and D a (ϕ,Γ)-module over B†rig,Qp⊗̂E.

(1) We say that D is de Rham (resp. crystalline) if the E-dimension of DdR (resp. Dcris) is equal to the

rank of D as a B†rig,Qp⊗̂E-module.

(2) If D is de Rham then DdR comes equipped with a decreasing filtration induced from the t-adic
filtration on Qp(µp∞) JtK. The Hodge–Tate weights of D are defined to be the negatives of the jumps
in the filtration on DdR (so in particular the cyclotomic character has Hodge–Tate weight 1).
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If D is a crystalline (ϕ,Γ)-module then one can associate a sub-(B+
rig,Qp⊗̂E)-module of D, denoted

Nrig(D), that is free of rank equal to the rank of D and is stable under Γ. Furthermore ϕ restricts to
a morphism

ϕ : Nrig(D)→ Nrig(D)[q−1]

where q = ϕ(π)/π; and if D has non-negative Hodge–Tate weights, then Nrig(D) is in fact stable under ϕ.
This submodule is called the Wach module associated to D and will be important in section 6 when we recall
the construction of the Perrin-Riou logarithm. For more details on the construction and properties of this
module, see [Pot12, §3]. Note that if D comes from a crystalline p-adic representation V and N(V ) denotes
the usual Wach module (over B+

Qp) associated with V , then Nrig(D) satisfies the relation

Nrig(D) = N(V )⊗B+
Qp

B+
rig,Qp .

Here B+
Qp is a period ring which can be identified with the subring Zp JπK [1/p] ⊂ B+

rig,Qp .

5.3. Cohomology of (ϕ,Γ)-modules. If D is a (ϕ,Γ)-module over B†rig,Qp⊗̂A, then we define the Herr

complex

C•ϕ,γ(D) := D
ϕ−1,γ−1−−−−−−→ D ⊕D 1−γ,ϕ−1−−−−−−→ D

concentrated in degrees 0, 1, 2, where γ is a choice of topological generator for Γ (such an element exists
because we have assumed p > 2). We define RΓcont(Qp, D) to be the corresponding object in the derived
category of bounded complexes of (continuous) A-modules, and we denote the cohomology of this complex
by Hi(Qp, D) := Hi(C•ϕ,γ(D)).

By [Pot13, Thm. 2.8], for any A-representation M of GQp there is a canonical quasi-isomorphism

RΓcont(Qp,M) ∼= RΓcont(Qp,D†rig(M)) .

Since ϕ(D) generates D as an B†rig,Qp⊗̂A-module, the map ϕ : D → D has a unique semilinear left inverse

ψ. As the following lemma shows, the cohomology of D can be computed with ψ in place of ϕ.

Lemma 5.3.1 ([KPX14, Proposition 2.3.6]). Let C•ψ,γ(D) be the bottom row of the commutative diagram

D D ⊕D D

D D ⊕D D

ϕ−1,γ−1

id

1−γ,ϕ−1

−ψ⊕id −ψ

ψ−1,γ−1 1−γ,ψ−1

(here the top row is C•ϕ,γ(D)). Then the map C•ϕ,γ(D)→ C•ψ,γ(D) defined above is a quasi-isomorphism.

We finish this section by stating an Euler–Poincaré characteristic formula for (ϕ,Γ)-modules, which will
be used in the proof of Theorem 7.3.3.

Proposition 5.3.2 ([Liu08, Theorem 5.3]). Let A = E be a finite field extension of Qp and D a (ϕ,Γ)-module

over B†rig,Qp⊗̂E. Then, for i = 0, 1, 2, Hi(Qp, D) are finite-dimensional vector spaces over E and

χ(D) :=

2∑
i=0

(−1)i dimE Hi(Qp, D) = − rankD

where rankD is the rank of D as a (B†rig,Qp⊗̂E)-module.

5.4. Iwasawa cohomology. Recall that for an affinoid algebra A, we denote its unit ball by A◦. Let M be
a Galois representation over A and let T be a Galois stable lattice inside M (i.e. a sub-A◦-module that is
stable under the action of GQ and satisfies T [1/p] = M). The classical Iwasawa cohomology of M is defined
to be

Hi
cl.Iw(Q∞,M) :=

(
lim←−
n

Hi(Q(µpn), T )

)[
1

p

]
where the inverse limit is over the corestriction maps, and the (analytic) Iwasawa cohomology of M is

Hi
Iw(Q∞,M) := Hi(Q, Dla(Γ,M))
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where Dla(Γ,M) denotes the space of locally analytic distributions on Γ, valued in M . For a finite place v
of Q, the Iwasawa cohomology groups Hi

cl.Iw(Qv,∞,M) and Hi
Iw(Qv,∞,M) are defined analogously. These

two constructions satisfy the relation

Hi
Iw(Q∞,M) = Hi

cl.Iw(Q∞,M)⊗̂ZpJΓKD
la(Γ, A).

Remark 5.4.1. Our notation for Iwasawa cohomology differs from that in [LZ16]; in op. cit. HIw denotes
classical Iwasawa cohomology, whereas in this paper it refers to analytic Iwasawa cohomology.

Definition 5.4.2. Let D be a (ϕ,Γ)-module over B†rig,Qp⊗̂A. The Iwasawa Herr complex is defined to be

C•Iw(D) : D
ψ−1−−−→ D

concentrated in degrees 1 and 2, where ψ is the left inverse to ϕ as discussed in the previous section. We
denote the cohomology of this complex by Hi

Iw(Qp, D).

We have the following relation between Iwasawa cohomology for M and Iwasawa cohomology for D†rig(M).

Proposition 5.4.3. Let M be a Galois representation over an affinoid algebra A. Then one has the following
isomorphism

Hi
Iw(Qp,∞,M) ∼= Hi

Iw(Qp,D†rig(M)).

In particular Hi
Iw(Qp,∞,M) vanishes for i 6= 1, 2.

Proof. See Corollary 4.4.11 in [KPX14]. �

6. Some p-adic Hodge theory

In this section we recall the construction of the Perrin-Riou logarithm following [Pot12, §3] and use this
map to show that if the p-adic L-function doesn’t vanish then we obtain two linearly independent classes in
H1(Qp, D−(η−1)), where D−(η−1) is a certain 2-dimensional (ϕ,Γ)-module defined in (6.2.1). Throughout

this section, E is a finite extension of Qp and D will denote a (ϕ,Γ)-module over the Robba ring B†rig,Qp⊗̂E.

Recall from section 5.2 that if D is a crystalline (ϕ,Γ)-module then one can associate to D the Wach
module Nrig(D). This is a sub (B+

rig,Qp⊗̂E)-module of D that is free of rank equal to the rank of D and is

stable under Γ. It will be useful to impose the following hypothesis on D:

(H) The Hodge–Tate weights of D are non-negative and pn is not an eigenvalue of ϕ on Dcris for all
integers n ≥ 0.

The reason for imposing this hypothesis is to ensure that the “big logarithm” as constructed in [Pot12, §3]
lands in the lattice Dcris ⊗ Λ∞.

Lemma 6.0.1. Let D be a crystalline (ϕ,Γ)-module satisfying hypothesis (H). Then

(1) The inclusion Nrig(D)→ D induces an isomorphism Nrig(D)ψ=1 ∼= Dψ=1, where ψ is the left inverse
to ϕ coming from the trace map (see §5.2).

(2) Let ϕ∗Nrig(D) denote the sub (B+
rig,Qp⊗̂E)-module of D generated by ϕ(Nrig(D)). Then there is an

inclusion

(ϕ∗Nrig(D))ψ=0 ⊂ Dcris ⊗E (B+
rig,Qp⊗̂E)ψ=0

(3) We have an inclusion

Nrig(D) ⊂ qh1ϕ∗Nrig(D) ⊂ ϕ∗Nrig(D)

where h1 is the smallest Hodge–Tate weight of D and q = ϕ(π)/π.

Proof. Let h1 ≤ h2 ≤ · · · ≤ hd be the Hodge–Tate weights of D. Since D has non-negative Hodge–Tate
weights and pn is not an eigenvalue for ϕ for all n ≥ 0, the quantity a(D) := max{−h1, λ(D) + 1} is non-
positive, where λ(D) is the largest integer (or −∞ if there is no such one) such that ϕ−pλ(D) is not bijective
on Dcris. The first part then follows from [Pot12, Theorem 3.3].

For the second part, we note that from the second bullet point in Theorem 3.1 in op. cit.

Nrig(D) ⊂
(
t

π

)h1

(Dcris ⊗ (B+
rig,Qp⊗̂E)) ⊂ (Dcris ⊗ (B+

rig,Qp⊗̂E))
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where the last inclusion follows because the Hodge–Tate weights are non-negative. Since ϕ is an isomorphism
on Dcris, ψ is also an isomorphism and we have ϕ∗(Dcris⊗ (B+

rig,Qp⊗̂E)) = (Dcris⊗ (B+
rig,Qp⊗̂E)). Combining

these facts we obtain the inclusion in part 2.
Similarly the third part follows from the third bullet point in Theorem 3.1 in loc. cit., using the fact that

h1 ≥ 0 and that q ∈ B+
rig,Qp . �

6.1. Perrin-Riou’s big logarithm. Let Λ∞ denote the global sections of WE - this can be identified with
a subring of the ring of power series E[∆] Jγ − 1K, where ∆ is the torsion subgroup of Γ and γ is a topological
generator of Γ/∆. The ring (B+

rig,Qp⊗̂E)ψ=0 has an action of Γ which extends to an action of Λ∞ via the

Mellin transform:

M : Λ∞
∼−→ (B+

rig,Qp⊗̂E)ψ=0

f(γ − 1) 7→ f(γ − 1) · (1 + π)

Therefore (B+
rig,Qp⊗̂E)ψ=0 can be viewed as a free Λ∞-module of rank one.

Definition 6.1.1. Suppose that D is a crystalline (ϕ,Γ)-module satisfying hypothesis (H). The Perrin-Riou
logarithm L = LD : H1

Iw(Qp, D)→ Dcris⊗̂Λ∞ is defined as the composition of the following maps:

H1
Iw(Qp, D) ∼= Dψ=1 = Nrig(D)ψ=1

1−ϕ−−−→ (ϕ∗Nrig(D))ψ=0

→ Dcris⊗̂E(B+
rig,Qp⊗̂E)ψ=0 ∼−→ Dcris⊗̂EΛ∞

where the second, third and fourth maps exist by Lemma 6.0.1. Here the last map is given by the inverse
of the Mellin transform described above. Since all of the maps above are functorial in D, we see that L is a
map of Λ∞-modules that is also functorial in D.

In the case that D comes from a crystalline p-adic representation, the map L is a special case of a
more general construction by Perrin-Riou ([PR00]) which was later interpreted using (ϕ,Γ)-modules by Lei,
Loeffler and Zerbes ([LLZ11]). This was generalised to potentially crystalline (ϕ,Γ)-modules by Pottharst
([Pot12]) and to de Rham (ϕ,Γ)-modules by Nakamura ([Nak14]). The key property of this map is that it
interpolates the Bloch–Kato logarithm and dual exponential maps at certain classical specialisations. More
precisely, let η : Γ → (E′)× be a continuous character, where Γ = Gal(Qp(µp∞)/Qp), and consider the
induced map Λ∞ → E′ which we will also denote by η. Then we have two specialisation maps: the first on
Iwasawa cohomology

H1
Iw(Qp, D)

prη−−→ H1(Qp, DE′(η
−1))

induced from the map on the Herr complexes C•Iw(D) → C•ψ,γ(D(η−1)) which in degree one is given by

x 7→ (0, x) (recall that by Lemma 5.3.1 the cohomology of a (ϕ,Γ)-module can be calculated with ψ in place
of ϕ). The second specialisation map is

Dcris⊗̂Λ∞
evη−−→ Dcris ⊗Qp E

′

induced from η : Λ∞ → E′. Then for classical η (i.e. η = χjcycl for some integer j) there is a commutative
diagram

H1
Iw(Qp, D) Dcris⊗̂Λ∞

H1(Qp, DE′(η
−1)) Dcris ⊗ E′

prη

L

evη

where the dotted arrow is (up to some Euler factors) the Bloch–Kato logarithm in the range j < h1, and the
dual exponential map in the range j ≥ h1, where h1 is the smallest Hodge–Tate weight of D (see [Nak14]).
We will study this map at non-classical specialisations.

Proposition 6.1.2. Let D be a crystalline (ϕ,Γ)-module that satisfies hypothesis (H). The map L = LD
satisfies the following properties:
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(1) Let k ≥ 0 be an integer and let ω−k denote the automorphism of Λ∞ which sends γ ∈ Γ to the
element χcycl(γ)−kγ. Then we have a commutative diagram

ω∗−k H1
Iw(Qp, D) H1

Iw(Qp, D(k))

ω∗−k
(
Dcris⊗̂Λ∞

)
D(k)cris⊗̂Λ∞

∼

ω∗−kLD LD(k)

∼

where for a Λ∞-module M , ω∗−kM denotes the pull-back M ⊗Λ∞,ω−k Λ∞.

(2) For any character η : Γ → (E′)× there exists a Λ∞-linear morphism making the following diagram
commute:

H1
Iw(Qp, D) Dcris⊗̂Λ∞

im(prη) Dcris ⊗ E′
prη

L

evη

where E′ is a finite extension of E.

Proof. The first part follows from carefully tracing through the definitions.
For the second part it is enough to show that if prη(x) = 0 then evη(L(x)) = 0, because then we can just

define the map by taking a lift to H1
Iw(Qp, D). If prη(x) = 0 then there exists y ∈ Dψ=1 such that

x = (γ − η(γ))y.

But L is Λ∞-linear so (after base-changing D and Λ∞ to DE′ and (Λ∞)E′ respectively)

L(x) = (γ − η(γ))L(y).

But this is precisely mapped to zero under evη. �

From the above proposition we obtain the following corollary which will be useful in later sections.

Corollary 6.1.3. Let D be a (ϕ,Γ)-module satisfying hypothesis (H) and D1, D2 ⊂ D two sub-(ϕ,Γ)-modules
satisfying Dcris = (D1)cris ⊕ (D2)cris. Let x1 and x2 be two elements of H1

Iw(Qp, D) that lie in the images of

the maps H1
Iw(Qp, D1) → H1

Iw(Qp, D) and H1
Iw(Qp, D2) → H1

Iw(Qp, D) respectively. Then for any character
η : G → E× the elements prη(x1) and prη(x2) are linearly independent if both evηL(x1) and evηL(x2) are
non-zero.

Proof. This follows from functoriality of L and the existence of the bottom map in part (2) of Proposition
6.1.2. Indeed, if both evηL(x1) and evηL(x2) are non-zero, then because they lie in different direct summands
of Dcris they must be linearly independent in Dcris⊗̂Λ∞. �

6.2. Application to Beilinson–Flach classes. Returning to the situation in the paper, let f and g denote

eigenforms satisfying the assumptions in section 1.1, so we have Coleman families F ,Gα,Gβ over V1, V
α
2 , V

β
2

passing through the p-stabilisations fα, gα, gβ respectively. Here fα denotes the p-stabilisation of f that
satisfies Upf = αf ; and similarly for gα and gβ . Since we have assumed that the weights of f and g are
not equal, we can choose V1 such that it doesn’t contain the character k′. In this subsection G and V2 will

denote either Gα and V α2 or Gβ and V β2 respectively.

Let MV1
(F) and MV2

(G) denote the Galois representations associated to F and G and let D†rig(F)∗ and

D†rig(G)∗ denote the (ϕ,Γ)-modules of MV1
(F)∗ and MV2

(G)∗ respectively. If V1 and V2 are small enough,
both of these modules come with a canonical triangulation which we will denote as

0→ F+D†rig(?)∗ → D†rig(?)∗ = F oD†rig(?)∗ → F−D†rig(?)∗ → 0

for ? = F or ? = G. In fact there is an explicit description for both the kernel and the cokernel (see [LZ16,
Theorem 6.3.2]).

Let k1 be a (not necessarily classical) weight in V1 and η a character of Γ = Gal(Qp(µp∞)/Qp), and let
E be a finite extension of Qp that contains the fields of definition of k1 and η. Recall that k′ + 2 denotes
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the weight of g. Let M(Fk1) and M(Gk′) denote the specialisations of MV1(F) and MV2(G) at k1 and k′

respectively, and note that we have isomorphisms

M((Gα)k′)
prα−−→ ME(g)

M((Gβ)k′)
prβ−−→ ME(g)

both of which follow from the fact that g is classical and the Galois representation doesn’t change after p-

stabilisation. We let D†rig(Fk1)∗, D†rig(Gk′)∗ and D†rig(g)∗ denote the (ϕ,Γ)-modules associated to M(Fk1)∗,

M(Gk′)∗ and ME(g)∗ respectively. By specialising the triangulation above and applying prα or prβ if
necessary, we obtain triangulations for these three (ϕ,Γ)-modules.

Let D− be the (ϕ,Γ)-module

(6.2.1) D− = F−D†rig(Fk1)∗ ⊗F oD†rig(g)∗.

Since g is classical, D− is crystalline with Hodge–Tate weights 0, 1 + k′ and by the explicit description in
[LZ16, Theorem 6.3.2], pn is not an eigenvalue for ϕ on D−cris for any integer n ≥ 0 (so D− satisfies hypothesis
(H)). Consider the following submodules

D1 = Dα = prα
(
F−D†rig(Fk1)∗ ⊗F+D†rig((Gα)k′)

∗
)

D2 = Dβ = prβ
(
F−D†rig(Fk1)∗ ⊗F+D†rig((Gβ)k′)

∗
)

where prα and prβ are the isomorphisms described above. Again, by the explicit description in loc. cit.,
(D1)cris and (D2)cris are both rank one sub ϕ-modules of D−cris on which ϕ acts by multiplication by α−1

Fk1
β−1
g

and α−1
Fk1

α−1
g respectively. Since we have assumed that g is p-regular (i.e. αg 6= βg) we must have D−cris =

(D1)cris ⊕ (D2)cris.
Let c > 6 be an integer that is coprime to 6Np and let zα1 be the image of the Beilinson–Flach class

cBF [F,Gα]
1,1 (see §4.3) under the composition

H1(Q, Dla(Γ,M(Fk1)∗ ⊗M((Gα)k′)
∗))→ H1

Iw(Qp,∞,M(Fk1)∗ ⊗M(g)∗)→ H1
Iw(Qp, D−)

and similarly for zβ1 , where the first map is restriction to the decomposition group at p composed with the
isomorphism prα. Recall that Lp(F , g, 1 + j) is the two-variable p-adic L-function associated to the Coleman
family F and the universal twist j (see [Urb14] or [LZ16, §9]).

Proposition 6.2.2. We can choose the auxiliary integer c such that, if Lp(Fk1 , g, 1 + η) 6= 0 then prη(zα1 )

and prη(zβ1 ) are linearly independent in H1(Qp, D−(η−1)).

Proof. Recall that D− is a crystalline (ϕ,Γ)-module satisfying hypothesis (H). Therefore we have the Perrin-
Riou logarithm

L : H1
Iw(Qp, D−)→ D−cris⊗̂Λ∞.

By part (1) in Proposition 6.1.2, this map agrees with the map (also denoted by L) constructed in [LZ16,
Theorem 7.1.4] after specialising at (k1, k

′). Indeed the map in loc. cit. is defined as the pull back of
LD−(−1−k′) under the automorphism ω−1−k′ .

By the “explicit reciprocity law” of Theorem 7.1.5 in op. cit. we see that evη(L(zα1 )) and evη(L(zβ1 )) are
both non-zero if the quantity

(6.2.3)
(
c2 − c−(k1+k′−2η)εFk1 (c)−1εg(c)

−1
)

(−1)1+ηλN (Fk1)−1Lp(Fk1 , g, 1 + η)

is non-zero, where λN (Fk1) denotes the specialisation of the Atkin–Lehner pseudo-eigenvalue of F (see
[KLZ17, §2.5] for the definition of the Atkin–Lehner operators). Since our assumption at the start of §6.2
implies that k1 6= k′, we can choose the integer c such that the first factor in (6.2.3) is non-zero. The result
then follows by applying Corollary 6.1.3. �
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7. Bounding the Selmer group

Let f and g be two cuspidal new eigenforms satisfying the assumptions in section 1.1, and let F be a
Coleman family over V1 ⊂ WE passing through a p-stabilisation of f . In this section we show that, if V1

is taken to be small enough and certain hypotheses are satisfied, then the cohomology group H̃
2

f (Q,Mx)

vanishes if Lp(x) = 0. Here x = (k1, k
′, η) ∈ V1×{k′}×W is a tuple of weights, Mx denotes the representation

[M(Fk1)∗ ⊗M(g)∗](η−1) and H̃
2

f (Q,Mx) is the second cohomology group of the Selmer complex defined in
section 7.2 below.

7.1. Cohomological preliminaries. In [Nek06], Nekovář defined the concept of a Selmer complex - an
object in a certain derived category whose cohomology is closely related to the usual definition of Selmer
groups. This construction is useful because the resulting complex has nice base-change and duality properties;
attributes that one doesn’t necessarily have for the classical Selmer groups. In [Pot13], Pottharst extends
this construction to families of Galois representations over well-behaved rigid analytic spaces. This is the
tool we will use to construct a sheaf interpolating the Bloch–Kato Selmer groups. We now summarise this
construction.

Let A be an affinoid algebra over Qp and let M be an A-valued representation of GQ = Gal(Q̄/Q) (i.e.
a finitely generated, projective A-module with a continuous action of GQ). Let Σ be a set of places of Q
containing p,∞ and all primes where M is ramified, and assume that Σ is finite. Let GΣ denote the Galois
group of the maximal algebraic unramified-outside-Σ extension of Q and, for a place v ∈ Σ, let Gv denote a
fixed decomposition group in GΣ associated to the place v.

Definition 7.1.1. A collection of local conditions ∆ for M is a set of pairs {(∆v, ιv) : v ∈ Σ} where ∆v is
an object in the derived category of bounded complexes of (continuous) A-modules, and ιv is a morphism

∆v
ιv−→ RΓcont(Gv,M).

One defines the Selmer complex RΓ̃(GΣ,M ; ∆) in the following way.

Definition 7.1.2. Let ∆ be a set of local conditions for M . Then the Selmer complex RΓ̃(GΣ,M ; ∆) is the
mapping fibre

RΓ̃(GΣ,M ; ∆) := Cone

(
RΓcont(GΣ,M)⊕

⊕
v∈Σ

∆v
resv −ιv−−−−−→

⊕
v∈Σ

RΓcont(Gv,M)

)
[−1].

We denote the i-th cohomology of this complex by H̃i(GΣ,M ; ∆).
If ∆v is quasi-isomorphic to a complex of finitely generated A-modules concentrates in degrees [0, 2] (all

our local conditions in this paper will satisfy this), then RΓ̃(GΣ,M ; ∆) is quasi-isomorphic to a complex of
finitely generated A-modules, concentrated in degrees [0, 3] (see [Pot13, §1.5]).

This construction also works in more general situations. For example, if X is a quasi-Stein rigid analytic

space then RΓ̃(GΣ,M ; ∆) is quasi-isomorphic to a complex of coherent OX -modules, concentrated in degrees
[0, 3] (this is situation (4) described in [Pot13, §1.5]).

Proposition 7.1.3. Selmer complexes satisfy the following properties:

(1) (Duality, [Pot13, Theorem 1.16]) Suppose that the local condition ∆v is quasi-isomorphic to a perfect
complex of A-modules concentrated in degrees [0, 2], for all v ∈ Σ. We define the dual local conditions
∆∗(1) to be {(∆∗v(1), j∗v [−2])}, where

∆∗v(1) := Q∗v[−2]
j∗v [−2]−−−−→ RΓcont(Gv,M)∗[−2] ∼= RΓcont(Gv,M

∗(1))

and Qv is the mapping cone of ιv, we write jv : RΓcont(Gv,M)→ Qv for the natural map and (−)∗

denotes the dual (in the underived sense).
One has an isomorphism

RΓ̃(GΣ,M
∗(1); ∆∗(1)) ∼= RΓ̃(GΣ,M ; ∆)∗[−3].
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(2) (Comparison of local conditions) If ∆′ = {(∆′v, ι′v) : v ∈ Σ} is another set of local conditions and
{τv} are morphisms such that ι′v is equal to the composition

∆′v
τv−→ ∆v

ιv−→ RΓcont(Gv,M)

then we obtain a Poitou–Tate style long exact sequence⊕
v∈Σ

H0(Qv)→ H̃1(GΣ,M ; ∆′)→ H̃1(GΣ,M ; ∆)
ξ−→
⊕
v∈Σ

H1(Qv)→

→ H̃2(GΣ,M ; ∆′)→ H̃2(GΣ,M ; ∆)→
⊕
v∈Σ

H2(Qv)

where Qv is the mapping cone of τv.

Proof. For the second part, this is immediate from the definition of the Selmer complexes associated to the
local conditions ∆ and ∆′. �

In §7.3 we will use the Poitou–Tate long exact sequence described above to show that the cohomology of
the Selmer complex vanishes in degree two if the corresponding value of the p-adic L-function is non-zero.
In particular we will use the following result:

Proposition 7.1.4. If the map ξ in part (2) of Proposition 7.1.3 is surjective then we have an injective map

H̃2(GΣ,M ; ∆′) ↪→ H̃2(GΣ,M ; ∆).

In particular, if H̃2(GΣ,M ; ∆) vanishes then so does H̃2(GΣ,M ; ∆′).

7.2. Convolution of two Coleman families. Let x = (k1, k
′, η) ∈ V1 × {k′} × W be a tuple of weights

defined over a finite extension E/Qp.
Let Mx denote the representation [M(Fk1)∗⊗M(g)∗](η−1) and let Σ be a finite set of places of Q that con-

tains p,∞ and all the primes where Mx ramifies. Let Dx := D†rig(Mx) denote the (ϕ,Γ)-module associated

to Mx and recall that we have a two dimensional quotient D†rig(Mx)→ D−(η−1) =: D−x , where D− is defined

as in (6.2.1). We denote the kernel of this quotient by D+
x . For v ∈ Σ\{p} we call (RΓcont(Gv/Iv,Mx

Iv
), ιv)

the unramified local condition at v, where ιv is the natural map induced by inflation. We are interested in
the following examples of local conditions:

• (Relaxed) For v ∈ Σ take ∆rel to be the set of unramified local conditions for v 6= p and

∆rel,p := RΓcont(Gp,Mx)
∼−→ RΓcont(Gp,Mx).

We denote the cohomology of the associated Selmer complex by H̃
i

rel(Q,Mx).
• (Strict) For v ∈ Σ take ∆str to be the set of unramified local conditions for v 6= p and

∆str,p := 0→ RΓcont(Gp,Mx).

We denote the cohomology of the associated Selmer complex by H̃
i

str(Q,Mx).
• (Panchishkin) For v ∈ Σ take ∆f to be the set of unramified local conditions for v 6= p and

∆f,p := RΓcont(Gp, D
+
x )→ RΓcont(Qp,D†rig(Mx)) ∼= RΓcont(Gp,Mx).

We denote the cohomology of the associated Selmer complex by H̃
i

f (Q,Mx). The reason for choosing
this local condition is because it is closely related to the Bloch–Kato local condition when x lies in
the critical range (the range where the p-adic L-function interpolates critical values of the global
L-function). We will discuss this relation in §7.4.

Remark 7.2.1. (1) All three of the above Selmer complexes do not change if we enlarge the set Σ, so we
suppress this auxiliary set from the notation.

(2) The relaxed and strict conditions are dual to each other. The dual of the Panchishkin local condition

is a Panchishkin local condition for D†rig(Mx)∗(1) = D†rig(Mx
∗
(1)).
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Let c > 6 be an integer prime to 6Np and recall from §4.3 that, for an integer m coprime to 6Ncp, there
is a Beilinson–Flach class

cBF [F,G]
m,1 ∈ H1(Q(µm), Dla(Γ,M))

where M = MV1(F)∗⊗̂MV2(G)∗. By specialising these Beilinson–Flach classes at x and identifying M((Gα)k′)
and M((Gβ)k′) with ME(g) as before, we obtain classes in H1(Q(µm),Mx).

In section 4.4 we showed that these classes satisfy certain norm relations and that we could produce an
Euler system from these classes. More precisely, let Tx be a Galois stable lattice inside Mx. Then there exist
collections {cαm ∈ H1(Q(µm), Tx) : m ∈ S} and {cβm ∈ H1(Q(µm), Tx) : m ∈ S} satisfying the Euler system

relations, and cα1 and cβ1 are equal to non-zero multiples of the specialisations of cBF [F,Gα]
1,1 and cBF

[F,Gβ ]
1,1 at

x respectively.
We choose the integer c in such a way that the conclusion of Proposition 6.2.2 holds at the point x (this

choice may depend on x). After making this choice, the classes cαm, c
β
m satisfy the following local conditions.

Proposition 7.2.2. Keeping the same notation as above, the classes cαm, c
β
m satisfy the following properties:

(1) Both cαm and cβm are unramified outside p. In particular, both cα1 and cβ1 lie in H̃
1

rel(Q,Mx). This
implies that the collection {cm : m ∈ S} forms an Euler system in the sense of Definition 2.1.1 in
[Rub00], with condition (ii) replaced by (ii)’(b) (see §9.1 in op. cit.).

(2) Let c̄α1 , c̄
β
1 denote the images of cα1 , c

β
1 under the map

H̃
1

rel(Q,Mx)
ξ−→ H1(Qp, D−x )

where ξ is given by first restricting to p and then mapping to the quotient (this map is the same map
as in Proposition 7.1.4 if we compare the relaxed and Panchishkin local conditions defined above).

Then, if c̄α1 and c̄β1 are both non-zero, they are linearly independent. In particular this happens when
Lp(Fk1 , g, 1 + η) 6= 0.

Proof. The first part is the same proof as in [LZ16, Theorem 8.1.4]. For the second part, note that c̄α1 and

c̄β1 are two elements satisfying the conditions of Corollary 6.1.3. The result then follows from Proposition
6.2.2. �

7.3. A vanishing result. Let F be a Coleman family over an affinoid domain V . For ease of notation we
set αF := ap(F) and similarly for specialisations of F . Moreover, recall that if the specialisation of F at k1

is a noble eigenform (so it is the p-stabilisation of an eigenform h) then αFk1 = αh and βh denote the roots

of the Hecke polynomial at p associated to h, and satisfy αhβh = pk1+1εh(p). In this case, we will also write
βFk1 := βh (although the notation βF is of course meaningless).

The goal of this section is to show that if the p-adic L-function doesn’t vanish at x then the Selmer group

H̃
2

f (Q,Mx) is trivial. The strategy is to combine Propositions 7.1.4 and 7.2.2 by comparing the Panchishkin
and relaxed local conditions. In particular, we must show that the hypothesis in Proposition 7.1.4 is satisfied.
Unfortunately this is not true in general and fails when Mx has a “local zero”, i.e. the local Euler factor of
Mx at p vanishes at s = 1. Therefore we impose the following hypothesis on Mx:

(NLZ) None of the products

{αFk1αg, αFk1βg, α−1
Fk1

εFk1 (p)αg, α−1
Fk1

εFk1 (p)βg}

are equal to pj for some integer j (recall that x = (k1, k
′, η)).

Remark 7.3.1. The (NLZ) hypothesis is an open condition, i.e. if it holds at the point x then it also holds for
all specialisations in an open neighbourhood of x. In particular, if F is a Coleman family passing through
a p-stabilisation of f defined over an affinoid subdomain V1 ⊂ WE , and if the (NLZ) hypothesis holds for f
and g, i.e. none of the products

{αfαg, αfβg, βfαg, βfβg}
are equal to a power of p, then we can shrink V1 so that the (NLZ) hypothesis holds for all specialisations
of M at x = (k1, k

′, η) ∈ V1 × {k′} ×W.

The second ingredient to proving the vanishing result is to apply the “Euler system machine” to the
representation Mx. To be able to apply this we need to assume the following “Big Image” hypothesis.
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(BI) There exists an element σ ∈ Gal(Q̄/Q(µp∞)) such that Mx/(σ− 1)Mx is one-dimensional (over E).

Remark 7.3.2. It turns out that for the “Big Image” hypothesis to hold we only need to assume that the
image of the mod p representation of Mx is sufficiently large, and this is almost always the case provided
that Fk1 and g are not of CM type and Fk1 is not Galois conjugate to a twist of g. In particular, since the
mod p representation of a Coleman family is locally constant, this implies that the “Big Image” hypothesis
will hold in an open neighbourhood of the point x. We provide justifications for this in the appendix (§A).

Under these two assumptions we have the following vanishing result.

Theorem 7.3.3. Keeping the same notation at the start of section 7.2, assume that the (NLZ) and (BI)

hypotheses hold. If Lp(Fk1 , g, 1 + η) 6= 0 then H̃
2

f (Q,Mx) = 0.

Proof. Consider the local conditions ∆ = ∆rel and ∆′ = ∆f and suppose for the moment that, as in the
statement of Proposition 7.1.4, the map ξ is surjective. Then there is an injective map

H̃
2

f (Q,Mx) ↪→ H̃
2

rel(Q,Mx)

so it is enough to show that H̃
2

rel(Q,Mx) = 0.

Let Tx be a Galois stable lattice inside Mx and set A = M
∗
x(1)/T

∗
x(1). Then by the duality of the relaxed

and strict local conditions we see that H̃
2

rel(Q, Tx)∨ := HomOE (H̃
2

rel(Q, Tx), E/OE) is equal to H̃
1

str(Q, A)

(see [Nek06] for more details). Furthermore, since H̃
2

rel(Q,Mx) = H̃
2

rel(Q, Tx)[1/$], where $ is a uniformiser

for OE , it is enough to show H̃
1

str(Q, A) is finite.
Recall that {cαm} forms an Euler system for Tx and the bottom class cα1 is non-zero because Lp(Fk1 , g, 1+η)

is non-zero. Coupling this with the (BI) assumption, we can apply [Rub00, Theorem 2.2.3] and conclude that

H̃
1

str(Q, A) is finite. Indeed, by comparing the strict and relaxed local conditions, the group H̃
1

str(Q, A) differs

from the strict Selmer group in op.cit. by the group H0(Qp, A), which is finite because H0(Qp,M
∗
x(1)) = 0.

So we are left to show the map ξ is surjective.
The mapping cone Qp is precisely the same thing as the image of the Herr complex C•ϕ,γ(D−x ) and by the

local Euler characteristic formula (Proposition 5.3.2) for (ϕ,Γ)-modules, we have χ(D−x ) = −2. Therefore
if we show that H0(Qp, D−x ) and H2(Qp, D−x ) both vanish, then this would imply that H1(Qp, D−x ) is two-
dimensional. Combining this with part 2 of Proposition 7.2.2, this would imply that the map ξ is surjective.

By duality we have H2(Qp, D−x ) ∼= H0(Qp, (D−x )∗(1))∗ and from the explicit description of the triangulation
([LZ16, Theorem 6.3.2]) we have the following short exact sequences:

0 −→ [B†rig,Qp⊗̂E](α−1
Fk1

αgεg(p)
−1)(χ1+k′

cycl · η
−1) −→ D−x −→ [B†rig,Qp⊗̂E](α−1

Fk1
α−1
g )(η−1) −→ 0

0 −→ [B†rig,Qp⊗̂E](αFk1αg)(χcycl · η) −→ (D−x )∗(1) −→ [B†rig,Qp⊗̂E](αFk1α
−1
g εg(p))(χ

−k′
cycl · η) −→ 0

where we denote by [B†rig,Qp⊗̂E](λ)(ω) the one-dimensional (ϕ,Γ)-module over B†rig,Qp⊗̂E with a basis e

such that ϕ(e) = λe and γ · e = ω(γ)e for all γ ∈ Γ.
From the above sequences, one sees that if either H0(Qp, D−x ) or H2(Qp, D−x ) didn’t vanish then this would

contradict the (NLZ) hypothesis. �

Remark 7.3.4. To prove the above theorem, we only needed to assume that the two products αFk1αg and

αFk1βg are not equal to a power of p. However, in the following section we will relate H̃
2

f (Q,Mx) to the
usual Bloch–Kato Selmer group at classical specialisations, and for this we will need to assume that all four
products in the statement of (NLZ) are not equal to a power of p.

Furthermore, for most non-classical specialisations we do not have to impose a (NLZ) condition. Indeed
by Proposition 2.1 and Théorème 2.9 in [Col08], it is often the case that H1(D−x ) is automatically two-
dimensional unless the weights in x are classical.

7.4. Relation to the Bloch–Kato Selmer group. Theorem 7.3.3 is a generalisation of [LZ16, Theorem

8.2.1] to non-classical specialisations. Indeed, suppose that k1 and η = χjcycl are classical and we have

k′ + 1 ≤ j ≤ k1. Then by the duality property of Selmer complexes and the fact that the Panchishkin
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condition is self-dual, we have H̃
2

f (Q,Mx)∗ ∼= H̃
1

f (Q,M∗x(1)). But by the (NLZ) hypothesis, we have the
following equalities:

• H0(Qp, (D+
x )∗(1)) = 0.

• H0(Qp, Dx/D
+
x ) = H0(Qp, D−x ) = 0.

Indeed, by the conditions on the Hodge–Tate weights, we have

• H0(Qp, (D+
x )∗(1)) = (D+

x )∗(1)ϕ=1
cris .

• H0(Qp, Dx/D
+
x ) = (Dx/D

+
x )ϕ=1

cris .

But ϕ has eigenvalues {p−1−jβFk1αg, p
−1−jβFk1βg} and {pjα−1

Fk1
α−1
g , pjα−1

Fk1
β−1
g } on (D+

x )∗(1)cris and (Dx/D
+
x )cris

respectively, and these products can never be equal to 1 by the (NLZ) hypothesis. Therefore, by [Pot13,
Proposition 3.7], we see that

H̃
1

f (Q,M∗x(1)) = H1
f (Q,M∗x(1))

where the latter is the Bloch–Kato Selmer group. This recovers Theorem 8.3.1 in [LZ16]. In fact the proof
of Theorem 7.3.3 is modelled on the proof in loc. cit..

8. The Selmer sheaf

In the previous section we showed that (under certain hypotheses) if the specialisation of Lp is non-

zero then H̃
2

f (Q,Mx) = 0. It turns out that we can package together all of these cohomology groups into a
coherent sheaf over V1×V2×W using the machinery of Selmer complexes. We follow closely the construction
in [Pot13].

8.1. Assumptions. Recall thatW/Qp denotes the rigid analytic space parameterising continuous characters
Γ = Gal(Q(µp∞)/Q)→ C×p . Let V1 and V2 be two affinoid subdomains of (W)E and set X = V1 × V2 ×W.
Then X has admissible cover U = (Yn)n≥1 given by

Yn = V1 × V2 ×Wn

whereWn is the open affinoid subdomain ofW parameterising all characters η that satisfy |η(γ)p
n−1 −1|p ≤

p−1, where γ is a topological generator of Γ/Γtors. The restriction maps O(Yn+1) → O(Yn) have dense
image. Hence X is a quasi-Stein space.

Let A∞ := O(X), An := O(Yn). Note that for all n ≥ 1, An is flat over A∞.
Let F and G be two Coleman families over V1 and V2 passing through p-stabilisations of f and g respec-

tively, and let M denote the representation M(F)∗⊗̂M(G)∗. Fix a Galois stable lattice T inside M , i.e. a
free rank four O(V1 × V2)◦-submodule that is stable under the action of GQ.

Let M = Dla(Γ,M) denote the cyclotomic deformation of M , and for any n ≥ 1 we set Mn = M(−κn),
where (−κn) denotes the twist by the inverse of the universal character ofWn. Then we also obtain a Galois
stable lattice Tn := T (−κn) inside Mn.

Let Σ be a finite set of places containing p,∞ and all primes where M ramifies. Then M is a family of
GΣ-representations over the space X and we place ourselves in situation (4) in [Pot13, §1.5].

By an OU -module we mean a compatible system of An-modules. Let RΓcont(GΣ,M) denote the image
of the complex of continuous cochains C•cont(GΣ,M) in the derived category of OU -modules. Explicitly,
C•cont(GΣ,M) is defined by the rule

Yn 7→ C•cont(GΣ,Mn)

where we note that Mn = Γ(Yn,M).

Lemma 8.1.1. (1) RΓcont(GΣ,M) is a perfect complex, in the sense that it is quasi-isomorphic to a
complex D•, concentrated in finitely many degrees, such that Γ(Yn, D

•) is a finite projective An-
module.

(2) Let ιn : Yn ↪→ X denote the inclusion. Then

Lι∗nRΓcont(GΣ,M) ∼= RΓcont(GΣ,Mn).

Proof. For the first part, this follows from the discussion in [Pot13, §1.2], and the second part is just Theorem
1.6 in op.cit.. �
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Since X is a quasi-Stein space we also have an alternative description of RΓcont(GΣ,M), namely as the
image of the complex lim←−n C

•
cont(GΣ,Mn) in the derived category of A∞-modules. By the above lemma

and Kiehl’s theorem, RΓcont(GΣ,M) is quasi-isomorphic to a complex of locally free (of finite rank) OX -
modules, so in particular its cohomology groups are coherent sheaves on X. Furthermore, since X is quasi-
Stein, a coherent sheaf on X is determined by its global sections, so we will often use these two descriptions
interchangeably. We say an A∞-module is coadmissible if it arises as the global sections of a coherent sheaf
on X.

As in §7.1, for a collection ∆ = {∆v}v∈Σ of local conditions

∆v
ιv−→ RΓcont(Gv,M) ∆v ∈ D

[0,2]
ft (A∞-Mod)

where D
[0,2]
ft (A∞-Mod) is the derived category of complexes of A∞-modules concentrated in degrees [0, 2]

whose cohomology groups are coadmissible, we can construct the Selmer complex RΓ̃(GΣ,M ; ∆) which is
an object in the derived category of A∞-modules, concentrated in degrees [0, 3], whose cohomology groups
are coadmissible (see [Pot13, §1.5]).

We impose the following assumptions on f and g. Let x0 = (k, k′, 0) ∈ X, where k+ 2 and k′ + 2 are the
weights of f and g respectively, and choose n such that x0 ∈ Yn.

(1) (Flatness of inertia) If p0 denotes the prime ideal of A◦n corresponding to the point x0, then we let
A◦n,p0

and Tn,p0
denote the localisations of A◦n and Tn at p0. For every place v ∈ Σ not equal to p,

we let Iv denote the inertia subgroup of the fixed decomposition group at v.
Then we assume that T Ivn,p0

is a flat A◦n-module, for all v ∈ Σ\{p}. Since A◦n is a commutative

Noetherian local ring, this is equivalent to T Ivn,p0
being free.

In particular, by generic flatness this implies that there exists a Zariski open subset U of Yn
containing x0 such that (Tn)IvU is a flat O(U)◦-module.

(2) (Minimally ramified) Let m0 denote the maximal ideal in A◦n containing a uniformiser $ of E and
the prime ideal p0 corresponding to x0. Then A◦n/m0 = k, where k is the residue field of OE , and
the “mod p representation” of Tn at the point x0 is defined to be

TF̄p := (Tn ⊗A◦n F̄p)ss

where ss stands for semi-simplification and the tensor product is via the map A◦n → A◦n/m0 ↪→ F̄p.
We assume that we have the following equality

dimk T
Iv
n /m0 = dimF̄p(TF̄p)Iv

for all v ∈ Σ\{p}. In other words, f and g are not congruent to forms of a lower level.

Remark 8.1.2. We give examples of pairs of modular forms satisfying the above assumptions in the appendix
(§A.2).

Lemma 8.1.3. Assume that the conditions (1) and (2) above hold. Then, after possibly shrinking V1 and
V2, we have

• For all n ≥ 1 and v ∈ Σ\{p}, T Ivn is a flat A◦n-module.
• Let η ∈ Wn be a closed point and let x = (k, k′, η) (so x ∈ Yn). If m denotes the maximal ideal of
A◦n containing $ and the prime ideal associated to x, then for all v ∈ Σ\{p}

dimk T
Iv
n /m = dimF̄p

(
(Tn ⊗A◦n F̄p)ss

)Iv
where k = A◦n/m and the tensor product in the right-hand side is via the map A◦n → k ↪→ F̄p.

Proof. By shrinking V1 and V2 if necessary, we can assume that the set U in (1) above contains V1×V2×U ′
for some open affinoid U ′ ⊂ Wn. The lemma then follows from the fact that any character of Γ restricted to
Iv is trivial, for v 6= p. �

8.2. The Selmer sheaf. We first fix some notation. If D1 and D2 are rank two (ϕ,Γ)-modules over

B†rig,Qp⊗̂E equipped with a triangulation

0→ F+Di → Di → F−Di → 0
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where F±Di are rank one (ϕ,Γ)-modules, then we set

F♦♣D = F♦D1⊗̂F♣D2

for ♦,♣ ∈ {+,−, o}, where D = D1⊗̂D2.

Let D†rig(M) denote the (ϕ,Γ)-module over B†rig,Qp⊗̂A associated to the representation M , where A =

O(V1)⊗̂O(V2). As in section 6.2, assuming V1 and V2 are small enough we have two possible triangulations

for D†rig(M), namely

{0} ⊂ F++D†rig(M) ⊂ F+oD†rig(M) ⊂ F+oD†rig(M) + F o+D†rig(M) ⊂ D†rig(M)

and
{0} ⊂ F++D†rig(M) ⊂ F o+D†rig(M) ⊂ F+oD†rig(M) + F o+D†rig(M) ⊂ D†rig(M)

differing only by the middle term in the filtration.
Let x = (k1, k2, j) be a classical point in X satisfying 0 ≤ k2 < k1 and denote the specialisation of M at

x by Mx. The Hodge–Tate weights of Mx are

−j, k2 + 1− j, k1 + 1− j, k1 + k2 + 2− j
We want to define a sheaf that interpolates the classical Bloch–Kato Selmer group; the correct local condition
that we will need to take will therefore depend on the range we want to interpolate over. For example

• Suppose that x lies in the geometric range, i.e. one has 0 ≤ j ≤ min{k1, k2}. Then one can take the
local condition at p to be the cohomology of F+o + F o+. Indeed, this specialises to a Panchishkin
submodule at x (recall that a Panchishkin submodule of a de Rham (ϕ,Γ)-module D is a submodule
D+ such that D+ (resp. D/D+) has positive (resp. non-negative) Hodge–Tate weights).

• Suppose that x lies in the critical range, i.e. one has k2 + 1 ≤ j ≤ k1. Then one can take the local
condition at p to be the cohomology of F+o.

In this paper we are interested in interpolating in the critical range, since it is precisely the range where the
p-adic L-function interpolates (critical) values of the global L-function.

We denote by D†rig(M) the family of (ϕ,Γ)-modules over X satisfying Γ(Yn,D
†
rig(M)) = D†rig(Mn). This

comes equipped with the triangulations F♦♣D†rig(M) defined previously, i.e. F♦♣D†rig(M) is the family of

(ϕ,Γ)-modules satisfying

Γ(Yn,F
♦♣D†rig(M)) = F♦♣D†rig(M)(−κn)

where (−κn) denotes the twist by the inverse of the universal character of Wn.
We consider the following set of local conditions ∆ = {∆v}v∈Σ where

• For v 6= p, ∆v is the unramified condition, i.e. ∆v is the complex

∆v := RΓcont(Gv/Iv,M
Iv

)→ RΓcont(Gv,M)

• For v = p we take ∆p to be the Panchishkin local condition given by

∆p := RΓcont(Gp,F
+oD†rig(M))→ RΓcont(Gp,D

†
rig(M)) ∼= RΓcont(Gp,M)

where RΓcont(Gp,F+oD†rig(M)) denotes the image of the family of Herr complexes C•ϕ,γ(F+oD†rig(M))
in the derived category of OU -modules, as defined in §5.3.

By Lemma 8.1.3, if V1 and V2 are small enough (which we will assume from now on) then the above local

conditions lie in D
[0,2]
ft (A∞−Mod) so we can talk about the corresponding Selmer complex.

Remark 8.2.1. We have defined the local conditions in terms of OU -modules, but this is equivalent to
specifying local conditions in terms of coadmissible modules by [Pot13, Theorem 1.13] and the discussion
preceding it.

Definition 8.2.2. Let RΓ̃f (GΣ,M) denote the Selmer complex associated to M and the local conditions

∆, with cohomology groups denoted by H̃i
f (Q,M).

As explained in the paragraph preceding Proposition 7.1.3, the groups H̃i
f (Q,M) are coherent sheaves on

X and satisfy H̃i
f (Q,M) = 0 for i 6= 0, 1, 2, 3.

Theorem 8.2.3. We can take V1 and V2 small enough such that the following hold:
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(1) For each n ≥ 0, An is a flat A∞-module and the natural map

RΓ̃f (GΣ,M)⊗A∞ An → RΓ̃f (GΣ,Mn)

is an isomorphism, where RΓ̃f (GΣ,Mn) denotes the Selmer complex associated to Mn = Γ(Yn,M)

with unramified local conditions at v 6= p and the Panchishkin condition C•ϕ,γ(F+oD†rig(Mn)) at p.

(2) Let x be an E′-valued point in Yn and v a prime in Σ not equal to p. Then the natural map

(M Iv
n )x → (Mx)Iv

is an isomorphism and hence we have an isomorphism

RΓ̃f (GΣ,Mn)⊗L
An,x E

′ ∼= RΓ̃f (GΣ,Mx)

where RΓ̃f (GΣ,Mx) is the Selmer complex associated to Mx with unramified local conditions away

from p and the Panchishkin condition C•ϕ,γ(F+oD†rig(Mx)) at p (compare with the definition in

section 7.2).

We will prove this theorem in the next section. Combining this with Theorem 7.3.3, we obtain the
following corollary.

Corollary 8.2.4. Let f and g be two modular forms as in section 1.1 and let F and G be Coleman families
over V1 and V2 passing through p-stabilisations of f and g respectively. Let M denote the cyclotomic defor-

mation of M(F)∗⊗̂M(G)∗ as above, and let S = H̃
2

f (Q,M) denote the coherent sheaf obtained as the second

cohomology group of the Selmer complex attached to M .

(1) Suppose that the (NLZ) hypothesis holds for f and g and that the “flatness of inertia” and “minimally
ramified” hypotheses hold for M and x0 = (k, k′, 0). Then, shrinking V1 and V2 if necessary, for all
x = (k1, k2, j) ∈ X with k1, k2, j integers satisfying 1 ≤ k2 + 1 ≤ j ≤ k1, the specialisation of S
satisfies

Sx ∼= H1
f (Q, [M(Fk1)⊗M(Gk2)](1 + j))∗

where the right-hand side is the (dual of the) Bloch–Kato Selmer group.
(2) (Theorem A) Suppose that the (NLZ) hypothesis holds for f and g, and that the (BI), “flatness of

inertia” and “minimally ramified” hypotheses hold for M and x0 = (k, k′, 0). Then, shrinking V1 if
necessary, we have the following inclusion

suppSk′ ⊂ {Lp = 0}
where “ supp” denotes the support of a sheaf, Lp is the three-variable p-adic L-function and Sk′
denotes the specialisation of S at k′ in the second variable.

Remark 8.2.5. If we take V2 to be small enough then the conclusion of part (2) of the above Corollary holds
for all classical specialisations in V2 (provided that the same hypotheses also hold). More precisely, if k2 is
a classical weight in V2 then

suppSk2 ⊂ {Lp = 0},
or to put it another way, the “slices” of S in the second variable are controlled by the p-adic L-function Lp
provided that the weight in the second variable is classical.

The reason for this is as follows. By [Bel12, Lemma 2.7], if V2 is small enough then any classical spe-
cialisation of G is the p-stabilisation of a new eigenform h of level Γ1(N2), and both p-stabilisations of h are
noble. This allows us to prove the analogue of Theorem 7.3.3 for the pair f, h of modular forms (instead of
f and g). Here we are crucially using the fact that k 6= k′.

Proof. Let x ∈ X be an E′-valued point. By Theorem 8.2.3, we have the following isomorphism

RΓ̃f (GΣ,M)⊗L
A∞,x E

′ ∼−→ RΓ̃f (GΣ,Mx)

which gives the following Tor-spectral sequence

Ei,j2 : TorA∞−i

(
H̃j
f (Q,M), E′

)
⇒ H̃i+j

f (Q,Mx).

If x does not lie in the support of H̃3
f (Q,M) then, since H̃i

f (Q,M) = 0 for i ≥ 4, we see that

H̃2
f (Q,M)⊗A∞,x E′ ∼= H̃2

f (Q,Mx).
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If x = (k1, k2, j) where k1, k2, j are integers satisfying 1 ≤ k2 + 1 ≤ j ≤ k1, then by the discussion in section
7.4 we see that the right hand side of the above isomorphism is isomorphic to the dual of the Bloch–Kato

Selmer group for the representation M
∗
x(1). This proves part 1 assuming that x does not lie in the support

of H̃3
f (Q,M).

Now let x = (k1, k
′, η) ∈ X with k1 and η not necessarily classical. Assume that Lp(x) 6= 0. Then we can

apply Theorem 7.3.3, which says that H̃2
f (Q,Mx) = 0.

Let m denote the kernel of the map A∞ → E′ and let A∞,m denote the localisation of A∞ at m. Since

S = H̃2
f (Q,M) is a coadmissible module

S ⊗A∞ A∞,m

is a finitely generated A∞,m-module; so by Nakayama’s lemma we must have S ⊗A∞ A∞,m = 0. But this
precisely means that x is not in the support of S (because the set of points where the stalk of a coherent
sheaf is non-zero is automatically closed). This proves part 2 for the points that don’t lie in the support of

H̃
3

f (Q,M).

But since M(F) and M(G) are irreducible, we have H̃3
f (Q,M) = 0. Indeed by duality

H̃3
f (Q,Mn)∗ ∼= H̃0

f (Q,M∗n(1)) ⊂ H0(Q,M∗n(1))

and H0(Q,M∗n(1)) = HomGQ(M(F)∗,M(G)(κn + 1)). If this group is non-zero then because M(F)∗ and
M(G)(κn + 1) are irreducible, they must be isomorphic as representations. But (taking V1 and V2 to be
small enough) the generalised Hodge–Tate weights of these representations can never be the same (because
k 6= k′). �

8.3. Proof of Theorem 8.2.3. We start by proving the following lemma.

Lemma 8.3.1. Suppose that V1 and V2 are small enough so that T Ivn is a flat A◦n-module, and suppose that
the “minimally ramified” hypothesis is satisfied. Then for any maximal ideal m in An, the natural map

(M Iv
n )/m→ (Mn/m)Iv

is an isomorphism.

Proof. As explained previously (see Lemma 8.1.3 following the “minimally ramified” assumption), the result
is invariant under twisting in the third variable, so we may assume that we’re working over the space

V = V1 × V1 × {0}.

Shrinking V1 and V2 if necessary, we may assume that V is an irreducible affinoid space over E. Let R denote
its global sections - this is an integral domain. Let I = Iv be an inertia group and set M = M(F)∗⊗̂M(G)∗,
thought of as a representation over R. It is enough to prove that the natural map

(M I)/m→ (M/m)I

is an isomorphism, for all maximal ideals m of R.
Let | · |E denote the norm on E (normalised so that |p|E = 1/p) and for any finite field extension E′ of

E, let | · |E′ denote the unique norm on E′ extending | · |E . Since R is a reduced affinoid algebra it comes
with a Banach norm given by

||f || := supm |f mod m|k(m)

where k(m) denotes the residue field of m.
Let R◦ denote the unit ball inside R and from now on E′ will denote the residue field of a maximal ideal m

inside R. If R→ E′ is the continuous surjective homomorphism corresponding to m then, by the description
of || · || above, we see that R◦ is mapped into the unit ball OE′ inside E′. Let p = m ∩ R◦. We also let m0

denote the maximal ideal corresponding to the point (k, k′, 0), and let p0 = m0 ∩R◦.
Since OE embeds isometrically into R◦ we have

OE ↪→ R◦/p ↪→ OE′ .

Now R◦/p is an integral domain with fraction field E′, so R◦/p is an OE-algebra that is finite free of rank
[E′ : E] as an OE-module (R◦/p is torsion-free and OE is a principal ideal domain). Let $′ be a uniformiser
of E′ and set J = ($′) ∩R◦/p. This corresponds to a maximal ideal of R◦ which we will denote by n.
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Let k and k′ denote the residue fields of OE and OE′ respectively. Then we have

k ↪→ R◦/n ↪→ k′

Take T ⊂M to be a Galois stable R◦-lattice (which exists by compactness). The representation T/pT ⊗OE′
is a Galois stable lattice inside M/mM and the “mod p representation” attached to M/mM is(

((T/pT ⊗OE′)⊗OE′/$′)⊗ F̄p
)ss

=
(
T/nT ⊗R◦/n F̄p

)ss
where ss stands for semi-simplification. Since the “mod p representation” for a Coleman family is constant,
we have (

T/nT ⊗R◦/n F̄p
)ss ∼= (T/n0T ⊗R◦/n0

F̄p
)ss

.

Here we are using the property that if ν and ν′ are two representations then (ν ⊗ ν′)ss = (νss ⊗ (ν′)ss)ss.
Now consider the short exact sequence

0 −→ nT −→ T −→ T/nT −→ 0

Taking inertia invariants and using the fact that (nT )I = nT I , we see that

(8.3.2) T I/nT I ↪→ (T/nT )
I
.

Similarly we have two more injective maps

T I/pT I ↪→ (T/pT )
I

(8.3.3)

(T/pT )
I
/J ↪→ (T/nT )

I
.(8.3.4)

The map in (8.3.2) factors as (8.3.3) modulo J followed by (8.3.4), i.e. it factors as

T I/nT I → (T/pT )
I
/J ↪→ (T/nT )

I

and the first map is injective. We then have

T I/nT I ⊗R◦/n F̄p ↪→ (T/nT )I ⊗ F̄p ↪→ (T/nT ⊗ F̄p)I

and we obtain the following sequence of inequalities:

dimR◦/n T
I/nT I ≤ dimR◦/n(T/nT )I

≤ dimF̄p
(
T/nT ⊗ F̄p

)I
≤ dimF̄p

(
(T/nT ⊗ F̄p)ss

)I
= dimF̄p

(
(T/n0T ⊗ F̄p)ss

)I
.(8.3.5)

All of these inequalities become equalities when n = n0 by the “minimially ramified” assumption.
Now we use the fact that T I is a flat R◦-module. In particular, the localisation (T I)n is free and so

dimR◦/n T
I/n = dimR◦/n(T I)n/n = dimK T

I ⊗R◦ K

where K denotes the fraction field of R◦ (recall that R◦ is an integral domain). Hence the quantity
dimR◦/n T

I/n is constant and so all inequalities in (8.3.5) become equalities, for general n. This implies
that the map

T I/nT I ↪→ (T/pT )
I
/J

is an isomorphism.
Consider the exact sequence

0 −→ T I/pT I −→ (T/pT )I −→W −→ 0

where W is a finitely generated R◦/p-module. Then we have W/JW = 0, which implies that W [ 1
$ ] = 0.

Indeed, W is a finitely generated OE-module and $ ∈ J . Since inverting $ commutes with taking inertia
invariants, we localise the above sequence and we see that the natural map

M I/mM I → (M/mM)
I

is an isomorphism, as required. �

We are now in a position to prove Theorem 8.2.3.
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Proof of Theorem 8.2.3. It is clear from the definition of An as the global sections of Yn that An is a flat
A∞-module. So for the first part we need to check that taking cohomology and constructing the local
conditions both commute with −⊗A∞ An.

By part 2 in Lemma 8.1.1 and finiteness, we have

RΓcont(G,M)⊗A∞ An ∼= RΓcont(G,Mn)

for G = GΣ or G = Gv. Similarly M
Iv

is a family of representations over X of the group Gv/Iv and, after

shrinking V1 and V2, we can assume that M
Iv

is a flat family, in the sense that

Γ(Yn,M
Iv

) = M Iv
n

is a flat An-module, for all n. The pair (Gv/Iv,M
Iv
n ) satisfies “hypothesis A” in [Pot13], so in fact (by the

same proof) the conclusion in part 2 of Lemma 8.1.1 holds for Gv/Iv and M
Iv

in place of Gv and M , i.e.

Lι∗nRΓcont(Gv/Iv,M
Iv

) ∼= RΓcont(Gv/Iv,M
Iv
n ).

Again by finiteness this implies that

RΓcont(Gv/Iv,M
Iv

)⊗A∞ An ∼= RΓcont(Gv/Iv,M
Iv
n ).

To complete the proof of part 1, we just need to check that the local condition at p commutes with

base change to An. By [Pot13, Theorem 2.5], the Herr complex C•ϕ,γ(F+oD†rig(M)) is quasi-isomorphic to a
complex C• of coadmissible A∞-modules. Since An is a flat A∞-module we have

C•⊗̂A∞An ∼= C•⊗̂L
A∞An

∼= C•ϕ,γ(F+oD†rig(Mn)).

By finiteness of cohomology, this implies that the natural map

RΓcont(Qp,F+oD†rig(M))⊗A∞ An → RΓcont(Qp,F+oD†rig(Mn))

is an isomorphism.
Let x be an E′-valued point in Yn. We now restrict ourselves to the setting where we have a representation

Mn over An which comes from a A◦n-lattice Tn ⊂ Mn. Shrinking V1 and V2 if necessary, we can assume
that T Ivn is a flat A◦n-module for all v ∈ Σ not equal to p. Furthermore, by Lemma 8.3.1, specialisation
at x commutes with taking inertia invariants. The result then follows from [Pot13, §3.4] (see in particular
equation (3.3)). �

Appendix A. Justification of hypotheses

In this appendix we give justifications for the hypotheses made throughout the paper.

A.1. The “Big Image” hypothesis. Let f and g be normalised new cuspidal eigenforms of levels Γ1(N1)
and Γ1(N2), weights k + 2, k′ + 2 and characters εf and εg respectively. Let Lf and Lg be the coefficient
fields of f and g. Assume that f and g are not of CM type and that f is not a Galois twist of g, i.e. there
doesn’t exist an embedding γ : Lf → C and a Dirichlet character χ such that fγ = g ⊗ χ.

Let V be a p-adic representation of GQ with coefficients in a finite extension E of Qp. Recall the “Big
Image” hypothesis from section 7.3:

(BI) There exists an element σ ∈ Gal(Q̄/Q(µp∞)) such that V/(σ − 1)V is one-dimensional (over E).

Let p be a prime in the compositum L = LfLg and consider the representation V = MLp
(f)∗⊗MLp

(g)∗.
Then it is shown in [Loe17] that for all but finitely many primes p, the “Big Image” hypothesis holds for
the representation V . Let p be such a prime (lying above a prime p ≥ 7 say) and suppose that we have a
Coleman family F defined over V1 passing through a p-stabilisation of f . Then it is not immediately obvious
whether we can shrink V1 such that the “Big Image” hypothesis holds for the representation

M(Fk1)∗ ⊗M(g)∗

for all specialisations k1 ∈ V1, even if we were to restrict k1 to just classical weights. In this section we
show that this is indeed possible by using the fact that the mod p reduction of the above representation is
constant, for V1 small enough.
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Lemma A.1.1. Let G be a profinite group, let ρ : G → GLn(OE) be a continuous representation, and let
ρ̄ : G→ GLn(kE) be the corresponding residual representation. Suppose there exists g0 ∈ G so that ρ̄(g0) has
eigenvalue 1 with multiplicity one. Then there exists g ∈ G such that ρ(g) has eigenvalue 1 with multiplicity
one.

Proof. Take g = limn→∞(g0)p
n!

. Indeed, to show this sequence converges in G it is enough to show that
its image in any finite quotient of G is eventually constant, and this is a routine check. Furthermore, the
eigenvalues of ρ(g) are the Teichmüller lifts of the eigenvalues of ρ̄(g0), so 1 is an eigenvalue for ρ(g) with
multiplicity one. �

In particular, the above lemma can be applied to the tensor product of a pair of Galois representations
whose residual representations are “good” in the following sense.

Definition A.1.2. For i = 1, 2 let σi : GQ → GL2(F̄p) be (continuous) Galois representations. We say the
pair (σ1, σ2) is good if

• χi := det ◦σi : GQ(µp∞ ) → F̄×p is a Dirichlet character of conductor Ni, and p doesn’t divide the

order of the group (Z/NZ)×, where N is the lowest common multiple of N1 and N2.
• There exists an element u ∈ (Z/NZ)× such that the group

{(σ1(g), σ2(g)) ∈ GL2(F̄p)×GL2(F̄p) : g ∈ GQ(µp∞ )}

contains the subgroup generated by SL2(Fp)× SL2(Fp) and the element((
1 0
0 χ1(u)

)
,

(
1 0
0 χ2(u)

))
.

If we want to specify the element u we also call (σ1, σ2, u) good.

Lemma A.1.3. Assume p ≥ 7 and let E be a finite extension of Qp. Let ρ1, ρ2 : GQ → GL2(OE) be two
p-adic representations, and let ρ̄1, ρ̄2 denote the corresponding residual representations. If there exists an
element u ∈ (Z/NZ)× such that (ρ̄1, ρ̄2, u) is good and χ1(u)χ2(u) 6= 1, then ρ1 ⊗E ρ2 satisfies condition
(BI).

Proof. Since p ≥ 7, there exists x ∈ F×p such that x−2χ1(u) and x2χ2(u) are different from 1. Since (ρ̄1, ρ̄2, u)
is a good triple, there exists an element g0 ∈ GQ(µp∞ ) such that

ρ̄1(g0) =

(
x 0
0 x−1χ1(u)

)
ρ̄2(g0) =

(
x−1 0

0 xχ2(u)

)
.

The eigenvalues of ρ̄1(g0)⊗ρ̄2(g0) are {1, x−2χ1(u), x2χ2(u), χ1(u)χ2(u)}, so the eigenvalue 1 has multiplicity
one and we may apply Lemma A.1.1. �

A.1.1. Examples of good triples (σ1, σ2, u). Returning to the situation at the start of section A.1, let p be a
prime of the compositum L = LfLg lying above a prime p ≥ 7. We have Galois representations

ρ∗f,p : GQ → GL(MLp
(f)∗)

ρ∗g,p : GQ → GL(MLp
(g)∗)

which satisfy det ◦ρ∗f,p = ε−1
f χ1+k

cycl and det ◦ρ∗g,p = ε−1
g χ1+k′

cycl . Let σ1 and σ2 denote the reductions modulo p
of ρ∗f,p and ρ∗g,p respectively.

Then it is shown in [Loe17] that, for a very large amount of primes p, (σ1, σ2) is a good pair.1 In
particular, for all but finitely many p which split completely in L/Q the triple (σ1, σ2, u) is a good triple for
any u ∈ (Z/NZ)×, where N = 4 lcm(N1, N2).

Now suppose that F and G are two Coleman families over open affinoids V1, V2 passing through p-
stabilisations of f and g respectively. Let

M = MV1
(F)∗⊗̂MV2

(G)∗

1The Galois representations considered in [Loe17] are actually ρf,p and ρg,p but the results easily carry over to our situation.
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be the tensor product of the Galois representations attached to F and G and take V1 and V2 to be small
enough such that M is constant modulo p. Note that the representations

ρ∗F : GQ → GL(MV1
(F)∗)

ρ∗G : GQ → GL(MV2
(G)∗)

satisfy det ◦ρ∗F (g) = ε−1
F (g) and det ◦ρ∗G(g) = ε−1

G (g), for all g ∈ GQ(µp∞ ). In particular, we can shrink V1

and V2 so that εFk1 = εf and εGk2 = εg for all specialisations x = (k1, k2) ∈ V1 × V2.

Then, assuming εf (u)εg(u) 6≡ 1 modulo p, by Lemma A.1.3 we have that the (BI) condition holds for the
representation Mx for any specialisation at x ∈ V1 × V2.

A.2. The “flatness of inertia” and “minimally ramified” hypotheses. An example of a pair of
modular forms f and g that satisfy the “flatness of inertia” and “minimally ramified” hypotheses are as
follows. Let `1 and `2 be two distinct primes ≥ 7 both different from p, and let f and g be two normalised
cuspidal new eigenforms of levels Γ1(`1) and Γ1(`2), weights k + 2 and k′ + 2, and characters εf = ε1 and
εg = ε2 respectively. Suppose that ε1 and ε2 are both non-trivial modulo p. Let E be a p-adic field containing
an(f), an(g) and the images of ε1 and ε2, and suppose that a`1(f) and a`2(g) are both non-zero.

Let ρ1 and ρ2 denote the restriction of ME(f) and ME(g) to the inertia group at `1 and `2 respectively. By
[LW12, §5], the local components at `i of the automorphic representations associated to f and g are prinicipal
series representations; therefore by the local Langlands correspondence (and local-global compatibility) we
have

ρi ∼= 1⊕ ε−1
i

where 1 is the trivial character.
Let F and G be Coleman families over V1 and V2 passing through p-stabilisations of f and g respectively.

Let M denote the representation MV1(F)∗⊗̂MV2(G)∗ and let Mi denote the restriction of M to the inertia
group I`i .

Since inertial types are locally constant, we can shrink V1 and V2 so that for every classical weight
k = (k1, k2) ∈ V1 × V2 the specialisation of M satisfies

Mi,k
∼= 1⊕ 1⊕ εi ⊕ εi

for i = 1, 2. It is not hard to see that the action of I`i on M factors through a finite quotient isomorphic to

(Z/`iZ)
×

(it is true on a Zariski dense subset) and that Mi must decompose as

Mi
∼= 1⊕ 1⊕ εi ⊕ εi.

Indeed the action factors though a finite group and we can define idempotents corresponding to each di-
rect summand. Taking Σ = {`1, `2, p,∞} we see that the “flatness of inertia” and “minimally ramified”
hypotheses hold for f and g (provided that V1 and V2 are small enough).

A similar argument can be applied if either (or both) of εi are trivial, except now the local component
can be an unramified twist of the Steinberg representation and the action of inertia factors through a (not
necessarily finite) abelian quotient. However we are primarily interested in the case ε1 · ε2 6= 1 anyway,
otherwise the “Big Image” hypothesis would not hold for the representation ME(f)∗ ⊗ME(g)∗.
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[Jan88] Uwe Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), no. 2, 207–245, https://doi.org/10.1007/

BF01456052.

https://arxiv.org/abs/1708.02785
https://doi.org/10.1007/s00222-011-0358-z
https://doi.org/10.1007/s00222-011-0358-z
https://doi.org/10.1007/s002220100202
http://eudml.org/doc/124694
https://doi.org/10.1007/BF01456052
https://doi.org/10.1007/BF01456052


34 ANDREW GRAHAM, DANIEL R. GULOTTA, AND YUJIE XU

[Kin16] Guido Kings, On p-adic interpolation of motivic Eisenstein classes, Elliptic curves, modular forms and Iwasawa
theory, Springer Proc. Math. Stat., vol. 188, Springer, Cham, 2016, pp. 335–371.

[KL10] Kiran S. Kedlaya and Ruochuan Liu, On families of (ϕ,Γ)-modules, Algebra Number Theory 4 (2010), no. 7, 943–967,

https://doi.org/10.2140/ant.2010.4.943.
[KLZ15] Guido Kings, David Loeffler, and Sarah Livia Zerbes, Rankin–Eisenstein classes for modular forms, Amer. J. Math.

(2015), to appear, https://arxiv.org/abs/1501.03289.

[KLZ17] , Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math. 5 (2017), no. 1, 1–122, https:

//doi.org/10.4310/CJM.2017.v5.n1.a1.

[KPX14] Kiran S. Kedlaya, Jonathan Pottharst, and Liang Xiao, Cohomology of arithmetic families of (ϕ,Γ)-modules, J. Amer.
Math. Soc. 27 (2014), no. 4, 1043–1115, https://doi.org/10.1090/S0894-0347-2014-00794-3.

[Lan95] Serge Lang, Introduction to modular forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles

of Mathematical Sciences], vol. 222, Springer-Verlag, Berlin, 1995, With appendixes by D. Zagier and Walter Feit,
Corrected reprint of the 1976 original.

[Liu08] Ruochuan Liu, Cohomology and duality for (φ,Γ)-modules over the Robba ring, Int. Math. Res. Not. IMRN (2008),

no. 3, Art. ID rnm150, 32, https://doi.org/10.1093/imrn/rnm150.
[Liu15] R. Liu, Triangulation of refined families, Comment. Math. Helv. 90 (2015), no. 4, 831–904, https://doi.org/10.

4171/CMH/372.

[LLZ11] Antonio Lei, David Loeffler, and Sarah Zerbes, Coleman maps and the p-adic regulator, Algebra & Number Theory
5 (2011), no. 8, 1095–1131, https://doi.org/10.2140/ant.2011.5.1095.

[LLZ14] Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Euler systems for Rankin-Selberg convolutions of modular forms,
Ann. of Math. (2) 180 (2014), no. 2, 653–771, https://doi.org/10.4007/annals.2014.180.2.6.

[Loe17] David Loeffler, Images of adelic Galois representations for modular forms, Glasg. Math. J. 59 (2017), no. 1, 11–25,

https://doi.org/10.1017/s0017089516000367.
[Loe18] , A Note on p-adic Rankin–Selberg L-functions, Canadian Mathematical Bulletin 61 (2018), no. 3, 608–621,

https://doi.org/10.4153/CMB-2017-047-9.

[LW12] David Loeffler and Jared Weinstein, On the computation of local components of a newform, Math. Comp. 81 (2012),
no. 278, 1179–1200, https://doi.org/10.1090/s0025-5718-2011-02530-5.

[LZ16] David Loeffler and Sarah Livia Zerbes, Rankin-Eisenstein classes in Coleman families, Res. Math. Sci. 3 (2016),

Paper No. 29, 53, https://doi.org/10.1186/s40687-016-0077-6.
[Nak14] Kentaro Nakamura, Iwasawa theory of de Rham (ϕ,Γ)-modules over the Robba ring, J. Inst. Math. Jussieu 13 (2014),

no. 1, 65–118, https://doi.org/10.1017/S1474748013000078.
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