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Abstract. We study the endomorphism algebras attached to Bernstein compo-
nents of reductive p-adic groups and construct a local Langlands correspondence
with the appropriate set of enhanced L-parameters, using certain “desiderata”
properties for the LLC for supercuspidal representations of proper Levi subgroups.
We give several applications of our LLC to various reductive groups with Bernstein
blocks cuspidally supported on general linear groups.

In particular, for Levi subgroups of maximal parabolic of the split exceptional
group G2, we compute the explicit weight functions for the corresponding Hecke
algebras, and show that they satisfy a conjecture of Lusztig’s. Some results from
§4 are used by the same authors to construct a full local Langlands correspondence
in [AX22]. Moreover, we also prove a reduction to depth zero case result for the
Bernstein components attached to regular supercuspidal representations of Levi
subgroups.
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1. Introduction

1.1. Background. Let F be a non-archimedean local field. Let G be a connected
reductive group defined over F , and G its group of F -points. Let M be the Levi
subgroup of a parabolic subgroup P of G.

Let s = [M,σ]G be the inertial class attached to the pair (M,σ), where σ is
a supercuspidal irreducible representation of M . Recall that this means that s is
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the G-conjugacy class of (M,Xnr(M) · σ), where Xnr(M) · σ is the orbit of σ under
Xnr(M) –the group of unramified characters of M . Let B(G) be the set of such s’s.
We denote by Irrs(G) the Bernstein series of irreducible representations of G whose
cuspidal support lies in s (see §2.1 for a precise definition).

Let W s
G denote the extended finite Weyl group NG(sM )/M , where sM = [M,σ]M ,

and let W s,x
G be the stabilizer of x ∈ IrrsM (M) in W s

G. By [Sol22], there exists a
collection (♮x)x of 2-cocycles for x ∈ IrrsM (M),

(1.1.1) ♮x : W
s,x
G ×W s,x

G −→ C×,

such that we have a bijection

(1.1.2) ξsG : Irrs(G) −→ (IrrsM (M)//W s
G)♮,

where (IrrsM (M)//W s
G)♮ is a twisted extended quotient in the sense of [ABPS17a,

§2.1] (see 1.3.1 for the precise definition).
A parallel picture to (1.1.2) exists on the Galois side. Let WF be the absolute

Weil group of F and IF its inertia subgroup. LetM∨ be the Langlands dual group of
M , i.e. it is a complex Lie group with root datum dual to that of M . It is equipped
with an action of WF , and we write LM := M∨ ⋊WF . The group M∨ acts on the
set of cuspidal M -relevant enhanced L-parameters for M–a terminology based on
Lusztig’s notion of cuspidal pairs (see Definition 3.1.8 for more details). Let Φc

e(M)
be the set of M∨-conjugacy classes of cuspidal enhanced L-parameters for M .

Let ZM∨⋊IF be the center ofM∨⋊IF . The group Xnr(
LM) := (ZM∨⋊IF )

◦
WF

, which

is naturally isomorphic to the group Xnr(M) (see [Hai14, §3.3.1]), acts naturally
on the set of cuspidal M -relevant enhanced L-parameters for M . We denote by
s∨ = [LM,φc, ϱc]G∨ the G∨-conjugacy class of the orbit of (φc, ϱc) ∈ Φc

e(M) under
the action of Xnr(

LM). Let B∨(G) be the set of such s∨.
In [AMS18], the first author, with Moussaoui and Solleveld, constructed a partition–

à la Bernstein–of the set Φe(G) of G-relevant enhanced Langlands parameters:

(1.1.3) Φe(G) =
⊔

s∨∈B∨(G)

Φs∨
e (G),

where Φs∨
e (G) consists of enhanced Langlands parameters for G whose cuspidal sup-

port lies in s∨. Let M be a Levi subgroup of G and let s∨M := [LM,φc, ϱc]M∨ ∈
B∨(M). Analogous to the group side W s

G, we denote by W s∨
G∨ the stabilizer of s∨M

in NG∨(M∨)/M∨, and by W s∨,y
G∨ the stabilizer of y ∈ Φ

s∨M
e (M) in W s∨

G∨ . By [AMS18,
Theorem 9.3], there is a bijection

(1.1.4) ξs
∨

G∨ : Φs∨
e (G) −→ (Φ

s∨M
e (M)//W s∨

G∨)L♮,

where the right-hand side (Φ
s∨M
e (M)//W s∨

G∨)L♮ is a twisted extended quotient with

respect to a collection (L♮y)y of 2-cocycles

(1.1.5) L♮y : W
s∨,y
G∨ ×W s∨,y

G∨ → C×.
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1.2. Main Results. Axiomatic setup: we suppose the existence of a map

(1.2.1)
LsM : IrrsM (M) −−→ Φc

e(M)
σ 7→ (φσ, ϱσ)

such that the following properties are satisfied for any σ ∈ IrrsM (M):

(1) For any χ ∈ Xnr(M), we have

(φχ⊗σ, ϱχ⊗σ) = χ∨ · (φσ, ϱσ),

where χ 7→ χ∨ is the canonical isomorphism Xnr(M)
∼→ Xnr(

LM).
(2) For any w ∈W (M), we have

w∨
(φσ, ϱσ) ≃ (φwσ, ϱwσ),

where w 7→ w∨ is the canonical isomorphism W (M)
∼→W (M∨).

We suppose that the collections of 2-cocycles ♮ and L♮ satisfy the following

(1.2.2) L♮χ∨ = ♮χ for any σ ∈ s and any χ ∈ Xnr(M)/Xnr(M,σ).

We establish the following result.

Theorem 1. (Theorem 3.1.32)

(1) There is a natural isomorphism

(1.2.3) e : IrrsM (M)//W s
G

∼−→ Φ
s∨M
e (M)//W s∨

G∨ .

(2) The map

(1.2.4) L := (ξs
∨

G∨)−1 ◦ e ◦ ξsG : Irrs(G) −→ Φs∨
e (G)

is a bijection.

We suppose in the rest of this introduction that the group G splits over a tamely
ramified extension of F and that the residual characteristic p of F does not divide
the order of the Weyl group of G. Then there exists a compact mod center subgroup

K̃M of M and an irreducible representation ρdM of it such that σ = indM
K̃M

ρdM .

Let Hs(G) denote the endomorphism algebra of the Bernstein progenerator of s
(see (2.1.5)) and let H(G, ρD) be the intertwining algebra of an s-type (KD, ρD). We
prove in Proposition 2.1.58 that the algebras Hs(G) and H(G, ρD) are isomorphic.

From now on, we suppose that σ is regular in the sense of [Kal19a], which allows
us to attach a supercuspidal Langlands parameter φσ : WF → LM to σ. Applying
Theorem 1 to the map LsM : σ 7→ (φσ, 1) as in (1.2.1), we obtain the following result:

Proposition 1.2.5. When the L-packet of σ is a singleton, the properties (1) and
(2) are always satisfied.

On the other hand, the construction of K̃M involves notably a depth zero su-
percuspidal irreducible representation σ0 of a Levi subgroup M0 of a twisted Levi
subgroup G0 of G. We denote by s0 = [M0, σ0]G0 the inertial class of σ0.

Suppose that p is good for G (in the sense of [Car93]) and does not divide the
order of the fundamental group of Gder, and that the representation σ is regular.
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Theorem 2. (Theorem 2.2.14) There is a bijection

(1.2.6) ϱss0 : Irrs(G) −−→ Irrs
0
(G0),

which induces a bijection

(1.2.7) Irr(Hs(G)) −−→ Irr(Hs0(G0))

between the sets of equivalence classes of simple modules for the algebras Hs(G) and

Hs0(G0).

Theorem 2 proves the validity of [AM21, Conjecture 1.1], under the above as-
sumption on p, for all regular supercuspidal representations of M . The bijection ϱss0
is defined as

(1.2.8) ϱss0 := (ξs
0

G0)
−1 ◦ lσ ◦ ξsG,

where (IrrsM0 (M0)//W s0

G0)♮0 is the twisted extended quotient with respect to a certain

collection ♮0 of 2-cocycles, the definition of which is recalled in (2.2.13), and

(1.2.9) lσ : (Irr
sM (M)//W s

G)♮ −→ (IrrsM0 (M0)//W s0

G0)♮0

is the isomorphism constructed in [AM21].

In Section 4, we study in greater detail the case when G is the exceptional group
of type G2. Recall that for split p-adic groups, the principal series case, i.e. M = T ,
is due to [Roc98], therefore it suffices to consider the cases where M ≃ GL2(F ) is
a maximal Levi subgroup. The G2(F )-covers of the supercuspidal types in M were
computed explicitly in [Blo99] whenM corresponds to the long simple root of G2, and
in [Des21] when M corresponds to the short simple root of G2, but the intertwining
algebras of these types were still unknown. We compute these intertwining algebras
later in §4.2.2, and in particular, by computing their parameters explicitly, we show
that they satisfy a conjecture of Lusztig’s in [Lus20, 1.(a)].

Acknowledgements. The authors would like to thank Maarten Solleveld for
valuable comments on a previous version of the manuscript. Y.X. was supported by
the National Science Foundation under Award No. 2202677 at MIT.

1.3. Notations and Definitions. Let F be a non-archimedean local field. Let oF
denote the ring of integers of F , pF the maximal ideal in oF and kF := oF /pF the
residue field of F . We assume that kF is finite and denote by qF its cardinality. Let
valF : F → Z ∪ {∞} be a valuation of F and let νF the character of F× defined by

νF (a) := q
−valF (a)
F for any a ∈ F×.

We fix a separable closure Fsep of F . Denote by WF ⊂ Gal(Fsep/F ) the absolute
Weil group of F and IF its inertia subgroup. We denote by Fnr the maximal unram-
ified extension of F inside Fsep and by FrF the element of Gal(Fnr/F ) that induces

the automorphism a 7→ aq on the residue field kF of Fnr. Then WF = IF ⋊ ⟨FrF ⟩.
Let I+F denote the wild inertia group of F (i.e. the maximal pro-p open normal sub-

group of IF ). We have ItF = Gal(Fsep/Ft) ≃ IF /I+F , where Ft is the tame closure of
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F in Fsep. The group ItF is pro-cyclic and we denote by ζF a generator of it. Let
W ′

F :=WF × SL2(C) be the Weil-Deligne group of F .
Let G be a connected reductive algebraic group defined over F , and G := G(F ) its

F -rational points. We denote by Gder the derived group of G. Let Gsc (resp. Gad)
be the simply connected cover (resp. adjoint quotient) of Gder. Let ZG be the center
of G, and AG the maximal F -split torus contained in ZG.

Fix a maximal torus T of G, and let (X,R, Y,R∨) denote the root datum of G
with respect to T. Thus X = X∗(T) is the character group of T, and R ⊂ X is
the set of weights of T on the Lie algebra g of G. Fix ∆ ⊂ R a system of simple
roots. When R is irreducible, the root with maximal height (with respect to ∆) will
be denoted α̃. Write α̃ =

∑
γ∈∆ cγγ for positive integers cγ . A prime number p is

said to be good for G if it does not divide any cγ . We may simply list the bad, i.e.
not good, primes: p = 2 is bad unless R is of type A, p = 3 is bad if R is of type G2,
F4, En, and p = 5 is bad if R is of type E8. The prime p is good for a general R just
in case it is good for each irreducible component of R.

Suppose that H is a group, H1 a subgroup of H and h an element of H. We set
hH1 := hH1h

−1. If π is a representation of H1, we denote by hπ the representation
h1 7→ π(h−1h1h) of hH1. We denote by Irr(H) the set of of equivalence classes of
irreducible representations of H.

The category of right modules over an algebra A is denoted A−Mod. We write
Irr(A) for the set of equivalence classes of simple modules of A.

1.3.1. Twisted extended quotients. Let Γ be a group acting on a topological space X
and let Γx denote the stabilizer in Γ of x ∈ X. Let ♮ = (♮x)x∈X be a collection of
2-cocycles

♮x : Γx × Γx → C×,

such that ♮γx and γ∗♮x define the same class in H2(Γγx,C×), where γ∗ : Γx → Γγx

sends α to γαγ−1. Let C[Γx, ♮x] be the group algebra of Γx twisted by ♮x. We set

X̃♮ := {(x, τ) : x ∈ X, τ ∈ Irr C[Γx, ♮x]} ,

and topologize X̃♮ by decreeing that a subset of X̃♮ open if its projection to the first
coordinate is open in X.

We require, for every (γ, x) ∈ Γ×X, an algebra isomorphism

ϕγ,x : C[Γx, ♮x]→ C[Γγx, ♮γx]

satisfying the conditions

(a) if γx = x, then ϕγ,x is conjugation by an element of C[Γx, ♮x]
×;

(b) ϕγ′,γx ◦ ϕγ,x = ϕγ′γ,x for all γ′, γ ∈ Γ and x ∈ X.

Define a Γ-action on X̃♮ by γ · (x, τ) := (γx, τ ◦ ϕ−1
γ,x). The spectral twisted extended

quotient of X by Γ with respect to ♮ is defined to be

(1.3.1) (X//Γ)♮ := X̃♮/Γ.

In the case when the 2-cocycles ♮x are trivial, we write simply X//Γ for (X//Γ)♮ and
refer to it as the spectral extended quotient of X by Γ.
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2. Hecke algebras and Bernstein Center

2.1. General framework.

2.1.1. Let R(G) denote the category of all smooth complex representations of G. It
is an abelian category admitting arbitrary coproducts. Let M be a Levi subgroup
of a parabolic subgroup P of G. We denote by M1 the subgroup of M generated by
all its compact subgroups. Recall that a character of M is said to be unramified if it
is trivial on M1, and let Xnr(M) be the group of unramified characters of M . Let σ
be an irreducible supercuspidal smooth representation of M . We write s := [M,σ]G
for the G-conjugacy class of the pair (M,Xnr(M) ·σ), it is called a Bernstein inertial
class. Let B(G) denote the set of Bernstein inertial classes s. We set sM := [M,σ]M .

We denote by Rs(G) the full subcategory of R(G) whose objects are the represen-
tations (π, V ) such that every G-subquotient of π is equivalent to a subquotient of
a parabolically induced representation iGP (σ

′), where iGP is the functor of normalized
parabolic induction and σ′ ∈ Xnr(M) ·σ. We write Irrs(G) for the class of irreducible
objects in Rs(G), i.e. representations whose supercuspidal support lies in s.

2.1.2. The categories Rs(G) are indecomposable and split the full smooth category
R(G) in a direct product (see [Ber84, Proposition 2.10]):

R(G) =
∏

s∈B(G)

Rs(G).

If Πs is a progenerator of Rs(G), then the functor V 7→ HomG(Π
s, V ) is an equiva-

lence from Rs(G) to the algebra EndG(Π
s) (see for instance [Roc02, § 1.1]).

Let s = [M,σ]G ∈ B(G) and let V be the underlying vector space for the super-
cuspidal representation σ of M and σ1 an irreducible component of the restriction
of σ to M1. We denote by indMM1

the functor of compact induction. As noticed in
[Roc02, § 1.2], the isomorphism class of

(2.1.3) ΠsM
M := indMM1

(σ1)

is independent of the choice of σ1. It was shown by Bernstein that

(2.1.4) Πs
G := iGP (Π

sM
G )

is a progenerator of Rs(G) (see [Roc02, §1.6]). We write

(2.1.5) Hs(G) := EndG(Π
s
G).

Hence we have an equivalence of categories of right modules

(2.1.6) Rs(G) ≃ Hs(G)−Mod .

Let B := C[M/M1] and VB := V ⊗C B. Then iGP (VB) is also a progenerator of
Rs(G), and we have an equivalence of categories of right modules given by

(2.1.7)
E : Rs(G) −→ EndG(i

G
P (VB))−Mod

V 7→ HomG(i
G
P (VB),V)

.
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2.1.8. Consider

(2.1.9) Xnr(M,σ) := {χ ∈ Xnr(M) : χ⊗ σ ≃ σ},
which is a finite subgroup of Xnr(M).

Remark 2.1.10. In the case where M = GLn(F ) with n a positive integer, there is
a simple type (J, λ) in the sense of [BK93, (5.5.10)] such that the restriction of the
supercuspidal representation σ to J contains λ. The order of Xnr(M,σ) is n/e(L|F ),
where e(L|F ) is the ramification index of the extension L/F involved in the definition
of (J, λ) (see [BK93, (6.0.1) and (6.2.5)].

We denote by O the orbit of σ under the action of Xnr(M). The map χ 7→ χ⊗ σ
defines a bijection

(2.1.11) Xnr(M)/Xnr(M,σ)
∼−→ O = {χ⊗ σ : χ ∈ Xnr(M)} = IrrsM (M).

We set W (M) := NG(M)/M and define

(2.1.12) W s
G :=W (M,O) := {n ∈ NG(M) : nO ≃ O} /M.

Recall that AM is the maximal split torus contained in the center of M. We
denote by Σ(AM ) ⊂ X∗(AM ) the set of nonzero weights occurring in the adjoint
representation of AM on the Lie algebra of G, and by Σred(AM ) be the set of indi-
visible elements therein. (Recall that a root γ in a root system Σ is called indivisible
if 1

2γ /∈ Σ.)
For every γ ∈ Σred(AM ), let Mγ ⊃ M denote the centralizer of ker γ in G (it is

a Levi subgroup of G whose semisimple rank is one larger than that of M). Let
µG be the Harish-Chandra µ-function for G (see [Sil79, §1] or [Wal03, §V.2]). The
restriction of µG to O is a rationalW (M,O)-invariant function on O [Wal03, Lemma
V.2.1]. By [Hei11, Proposition1.3], the set

(2.1.13) ΣO,µ :=
{
γ ∈ Σred(AM ) : µMγ has a zero on O

}
is a root system. Let WO denote the Weyl group of ΣO,µ.

Let P =MN be a parabolic subgroup of G with Levi factor M . Denote by Σ(P )
the subset of Σ(AM ) of roots which act on the Lie algebra of N . Let ΣO,µ(P ) :=
ΣO,µ ∩ Σ(P ). By [Hei11, 1.12], the group W (M,O) decomposes as

(2.1.14) W (M,O) =WO ⋊R(O),
where

(2.1.15) R(O) := {w ∈W (M,O) : w(ΣO,µ(P )) = ΣO,µ(P )} .
The action of every element w of W s

G can be lifted to a transformation w̃ of Xnr(M).
LetW (M,σ,Xnr(M)) be the group of permutations of Xnr(M) generated by Xnr(M,σ)
and the w̃’s. We have

(2.1.16) W (M,σ,Xnr(M))/Xnr(M,σ) ≃W s
G.

Let K(B) := C(Xnr(M)) denote the quotient field of B := C[Xnr(M)]. Let

C[W (M,σ,Xnr(M)), κ]
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be the twisted group algebra of W (M,σ,Xnr(M)) with basis elements tw that mul-
tiply as twtw′ = κ(w,w′)tww′ . By [Sol22, Corollary 5.8], there is a 2-cocycle

(2.1.17) κ : W (M,σ,Xnr(M))×W (M,σ,Xnr(M))→ C×,

such that we have an algebra isomorphism

(2.1.18) K(B)⊗B EndG(i
G
P (VB) ≃ K(B)⋊C[W (M,σ,Xnr(M)), κ].

Here the symbol ⋊ denotes the crossed product: as a vector space, it just means the
tensor product, with multiplication rules determined by the action ofW (M,σ,Xnr(M))
on K(B). Note that the cocycle κ is trivial on WO.

Remark 2.1.19. If R(O) has order at most 2, the intertwining operators can be
normalized such that the cocycle κ is trivial (see [Sol22, Proposition 5.2 & above
Lemma 5.7]). This is indeed the case for G = G2(F ).

For any χ ∈ Xnr(M), let W s,χ⊗σ
G denote the stabilizer of χ⊗ σ in W s

G. Let ♮χ be
the 2-cocycle denoted ♮σ′ in [Sol22, (9.13)]. Let (IrrsM (M)//W s

G)♮ denote the twisted
extended quotient (as in §1.3.1) with respect to the collection ♮ of the 2-cocycles ♮χ.

Proposition 2.1.20. There is a bijection

(2.1.21) ξsG : Irrs(G) −→ (IrrsM (M)//W s
G)♮.

Proof. By [Sol22, Theorem 9.7], there are bijections

Irrs(G)
E←→ Irr(EndG(i

G
P (VB))

ζ←→ Irr(C[Xnr(M)]⋊C[W (M,σ,Xnr(M)), κ],

where E is induced by the equivalence of categories defined in (2.1.7). On the other
hand, by [Sol22, Lemma 9.8], Irr(C[Xnr(M)]⋊C[W (M,σ,Xnr(M)), κ] is canonically
isomorphic to (IrrsM (M)//W s

G)♮, where sM := [M,σ]M . □

Corollary 2.1.22. Let s = [M,σ]G ∈ B(G). There is a bijection

(2.1.23) Irr(Hs(G))
1−1−−→ (IrrsM (M)//W s

G)♮.

Proof. The result follows from the proof of Proposition 2.1.20 by using (2.1.6). □

Remark 2.1.24. As observed in [Sol22, (10.12)], if the restriction of σ to M1 is
multiplicity free, we have

(2.1.25) Πs
G =

(
iGP (VB)

)Xnr(M,σ)
and EndG(i

G
P (VB)) ≃ Hs(G)⊗CMat[M :Mσ ](C),

where Mat[M :Mσ ](C) is the algebra of square matrices of size [M :Mσ] (the index of
Mσ in M) with entries in C. Note that if σ is generic, then its restriction to M1 is
multiplicity free (see [Roc09, Remark 1.6.1.3]). In particular, if σ is a supercuspidal
irreducible representation of a proper Levi subgroupM of G2, sinceM is isomorphic
to either F××F× or GL2(F ), the representation σ is generic, and hence its restriction
to M1 is multiplicity free.
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2.1.1. Theory of types. We fix a Haar measure on G. Let H(G) be the space of
locally constant, compactly supported functions f : G → C and view H(G) as a C-
algebra via convolution relative to the Haar measure. The algebra H(G) is called
the Hecke algebra of G.

Let (ρ, Vρ) be a smooth representation of a compact open subgroup K of G, and
let (ρ̃, Vρ̃) denote its contragredient. We define H(G, ρ) to be the space of compactly
supported functions f : G→ EndG(Vρ̃) such that

(2.1.26) f(kgk′) = ρ̃(k)f(g)ρ̃(k′), where k, k′ ∈ K and g ∈ G.
The convolution product gives H(G, ρ) the structure of a unitary associative C-
algebra. The algebra H(G, ρ) is called the ρ̃-spherical Hecke algebra or the inter-
twining algebra of (K, ρ).

Let eρ ∈ H(G) be the function defined by

(2.1.27) eρ(g) :=

{
dim ρ

meas(K) tr(ρ(g
−1)) if g ∈ K,

0 if g ∈ G, g /∈ K.

Then eρ is idempotent, and eρ ⋆H(G) ⋆ eρ is a sub-algebra of H(G) with unit eρ. By
[BK98, (2.12)], there is a canonical isomorphism

(2.1.28) H(G, ρ)⊗C EndC(Vρ) → eρ ⋆H(G) ⋆ eρ.
The algebras H(G, ρ) and eρ ⋆H(G) ⋆ eρ are therefore canonically Morita equivalent.
Hence, we get an equivalence of categories:

(2.1.29) H(G, ρ)−Mod ≃ eρ ⋆H(G) ⋆ eρ −Mod .

Let Rρ(G) be the full subcategory of R(G) whose objects are those V satisfying
V = H(G) ⋆ eρ ⋆ V , i.e. Rρ(G) is generated over G by the subspace eρ ⋆ V .

Definition 2.1.30. (1) The pair (K, ρ) is called an s-type for G if the category
Rρ(G) is closed under subquotients.
(2) A supercuspidal type for G is an s-type where s = [G, σ]G.

If (K, ρ) is an s-type for G, then Rρ(G) = Rs(G) by [BK98, (4.1)–(4.2)], where
Rs(G) is equivalent to the category of modules for H(G, ρ) by [BK98, Theorem 3.5]:

(2.1.31) Rs(G) ≃ H(G, ρ)− Mod .

Combining (2.1.31) and (2.1.6), we obtain an equivalence

(2.1.32) Hs(G)−Mod ≃ H(G, ρ) − Mod .

Let (KM , ρM ) be an sM -type for sM ∈ B(M). If the pair (K, ρ) is a G-cover of
(KM , ρM ) as defined in [BK98, Definition 8.1], then K decomposes with respect to
M in the sense of [BK98, Definition 6.1] (in particular,KM = K∩M and ρM = ρ|KM

)
and the equivalence of categories (2.1.31) commutes with parabolic induction and
parabolic restriction in the appropriate sense (see [BK98, Corollary 8.4]).

Proposition 2.1.33. Let (KM , ρM ) be an sM -type for sM ∈ B(M), such that ΠsM
M ≃

c-IndMKM
(ρM , VρM ). Let (K, ρ) be a G-cover of (KM , ρM ). Then

(2.1.34) Πs
G ≃ c-IndGK(ρ, Vρ).
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As a consequence, we have

(2.1.35) Hs(G) := EndG(Π
s
G) ≃ H(G, ρ).

Proof. See [BS20, Lemma B.3]. □

2.1.36. In this section, in order to be able to apply the constructions of [Yu01] and
[KY17], we assume that G splits over a tamely ramified extension of F , and that p
does not divide the order of the Weyl group of G. By a Levi subgroup of G, we mean
an F -subgroup of G which is a Levi factor of a parabolic F -subgroup of G. Let L/F
be a finite extension. By a twisted L-Levi subgroup of G, we mean an F -subgroup
G′ of G such that G′⊗F L is a Levi subgroup of G⊗F L. If L/F is tamely ramified,
then G′ is called a tamely ramified twisted Levi subgroup of G. A tamely ramified

twisted Levi sequence in G is a finite sequence G⃗ = (G0,G1, · · · ,Gd) of twisted
E-Levi subgroups of G, with E/F tamely ramified (see [Yu01, p 586]).

Let B(G, F ) denote the (enlarged) building of G:

(2.1.37) B(G, F ) = B(G/ZG, F )×X∗(ZG)⊗Z R,
where X∗(ZG) is the set of F -algebraic cocharacters of ZG. Recall that when G′ is a
tamely ramified twisted Levi subgroup of G, there is a family of natural embeddings
of B(G′, F ) into B(G, F ).

For x a point in B(G, F ), let Gx,0 denote the associated parahoric subgroup, and
let Gx,0+ denote the pro-p unipotent radical of Gx,0. In general, for r a positive real
number, Gx,r is the corresponding Moy-Prasad filtration subgroup of Gx,0.

Definition 2.1.38. [KY17, § 7.1] A depth-zero G-datum is a triple

(2.1.39) ((G,M), (y, ι), (KM , ρM ))

satisfying the following

• G is a connected reductive group over F , and M is a Levi subgroup of G;
• y is a point in B(M) such that My,0 is a maximal parahoric subgroup of
M , and ι : B(M) ↪→ B(G) is a 0-generic embedding relative to y (see [KY17,
Definition 3.2]);
• KM is a compact open subgroup ofM containingMy,0 as a normal subgroup,
and ρM is an irreducible smooth representation of KM such that ρM |My,0

contains the inflation to My,0 of a cuspidal representation of My,0/My,0+ .

Let G⃗ = (G0,G1, · · · ,Gd) be a tamely ramified twisted Levi sequence in G. To

G⃗, we associate a sequence of Levi subgroups M⃗ = (M0, · · · ,Md), where Mi is a
Levi subgroup of Gi given as the centralizer of AM0 in Gi, with AM0 the maximal
F -split torus of the center ZM0 of M0.

Definition 2.1.40. A G-datum is a 5-tuple

(2.1.41) D = ((G⃗,M0), (y, {ι}), r⃗, (KM0 , ρM0), ϕ⃗)

satisfying the following:

D1. G⃗ = (G0,G1, · · · ,Gd) is a tamely ramified twisted Levi sequence in G, and

M0 a Levi subgroup of G0. Let M⃗ be associated to G⃗ as above;
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D2. y is a point in B(M0), and {ι} is a commutative diagram of s⃗-generic embed-
dings of buildings relative to y in the sense of [KY17, Definition 3.5], where
s⃗ = (0, r0/2, · · · , rd−1/2);

D3. r⃗ = (r0, r1, · · · , rd) is a sequence of real numbers satisfying 0 < r0 < r1 <
· · · < rd−1 ≤ rd if d > 0, and 0 ≤ r0 if d = 0;

D4. (KM0 , ρM0) is such that D0 := ((G0,M0), (y, ι), (KM0 , ρM0)) is a depth zero
G0-datum;

D5. ϕ⃗ = (ϕ0, ϕ1, · · · , ϕd) is a sequence of quasi-characters, where ϕi is a quasi-
character of Gi such that ϕi is G

i+1-generic of depth ri relative to x for all
x ∈ B(Gi) in the sense of [Yu01, § 9].

The construction. For a given G-datum D as in (2.1.41), we write

(2.1.42) KD0 := KM0G0
ι(y),0.

We recall that G0
ι(y),0 is the parahoric subgroup of G0 associate to the building point

ι(y). Let G0
ι(y),0+ be the pro-p unipotent radical of G0

ι(y),0.

By [KY17, Proposition 4.3(b)], we have

(2.1.43) KD0/G0
ι(y),0+ ≃ KM0/M0

y,0+,

and we define ρD0 to be the representation of KD0 obtained by composing the iso-
morphism (2.1.43) with ρM0 .

Definition 2.1.44. A Kim-Yu type in the sense of [KY17, §7.4], which builds on
earlier construction in [Yu01], is a pair (KD, ρD) where

• KD is an open compact subgroup given by

(2.1.45) KD := KD0G1
ι(y),s0

· · · Gd
ι(y),sd−1

• ρD is an irreducible representation of KD.

To G⃗, we associate a tamely ramified twisted Levi sequence M⃗ = (M0, . . . ,Md)
of M, where Mi is the centralizer of AM in Gi. Consider

(2.1.46) DM := (M⃗, y, r⃗, ρM0 , ϕ⃗).

When KM0 =M0
y the datum DM gives a supercuspidal type in M as follows.

Let Kd
M := KD ∩M . Let K̃d

M denote the normalizer in M of Kd
M . This group

K̃d
M is a compact modulo center subgroup of M . Let ρdM := ρD|Kd

M
and consider

(2.1.47) σDM
:= indM

K̃M
ρdM .

Theorem 2.1.48. [KY17] Suppose that KM0 =M0
y . Then

(1) (Kd
M , ρ

d
M ) is a supercuspidal type on M (as in Definition 2.1.30), and σDM

is an irreducible supercuspidal representation of M ;
(2) (KD, ρD) is a G-cover of (Kd

M , ρ
d
M ), thus it is an s-type for s = [M,σDM

]G.
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Proposition 2.1.49. Let D and Ḋ be two G-data

D = ((G⃗,M0), (y, ι), r⃗, (KM0 , ρM0), ϕ⃗) and Ḋ = (( ⃗̇G, Ṁ0), (ẏ, ι̇), ⃗̇r, (KṀ0 , ρṀ0),
⃗̇
ϕ )

such that KM0 =M0
y and KṀ0 = Ṁ0

ẏ . Let s := [M,σDM
]G, and ṡ = [M,σḊM

]G.

Then we have s = ṡ if and only if there exists g ∈ G such that

(2.1.50) gKM0 = KṀ0 and g(ρM0 ⊗ ϕ) ≃ ρṀ0 ⊗ ϕ̇,

where ϕ :=
∏d

i=0(ϕi|M0) and ϕ̇ :=
∏d

i=0(ϕ̇i|M0).

Proof. It is a reformulation of [KY17, Theorem 10.3]. Indeed, when KM0 =M0
y and

KṀ0 = Ṁ0
ẏ,0, we have s = ṡ if and only if the types (KD, ρD) and (KḊ, ρḊ) are

equivalent in the sense of [KY17, Definition 10.1]. Note that [KY17, Theorems 10.2

and 10.3] still hold without assuming the hypothesis C(G⃗) of [HM08, Remark 2.49
& above], since [Kal19a, §3.5] shows that [HM08, Theorems 6.6 and 6.7] are valid

without assuming C(G⃗). □

Remark 2.1.51. If G = M , it follows from [HM08, Theorems 6.6 and 6.7] that

sM = ṡM if and only the data DM = (M⃗, y, r⃗, ρM0 , ϕ⃗) and ḊM = (M⃗, ẏ, ⃗̇r, ρṀ0 ,
⃗̇
ϕ)

are equivalent in the sense of [HM08, Definition 5.3].

2.1.52. For any s = [M,σ]G ∈ B(G), consider

(2.1.53) Ns
G := {n ∈ NG(M)(F ) : nσ ≃ χ⊗ σ for some χ ∈ Xnr(M)} .

Corollary 2.1.54. We suppose that p does not divide the order of the Weyl group of
G. Let s ∈ B(G) be an arbitrary Bernstein inertial class. For every n ∈ Ns

G, there
exists an m ∈M such that

mnKM0 = KM0 and mn(ρM0 ⊗ ϕ) ≃ ρM0 ⊗ ϕ,

where ϕ :=
∏d

i=0(ϕi|M0).

Proof. By [Fin21], we have σ = σDM
, for someM -datumDM = (M⃗, y, r⃗, ρM0 , ϕ⃗). Let

n ∈ Ns
G. Thus

nσ ≃ χ⊗σ for some χ ∈ Xnr(M). Let ḊM := (M⃗, y, r⃗, ρM0⊗χ|KM0 , ϕ⃗).

By (2.1.47), we have

(2.1.55) χ⊗ σ = (indM
K̃M

ρdM )⊗ χ ≃ indM
K̃M

(ρdM ⊗ χ|K̃M
).

Since χ is unramified, we have indM
K̃M

(ρdM ⊗ χ|K̃M
) = σḊM

. Therefore χ⊗ σ ≃ σḊM
.

Applying Remark 2.1.51 to the M -data nDM and ḊM , one can see that these data
are equivalent. Hence there exists an m ∈M such that

mnKM0 = KM0 and mn(ρM0 ⊗ ϕ) ≃ ρM0 ⊗ χ|KM0 ⊗ ϕ = ρM0 ⊗ ϕ,

where the last equality holds because χ is trivial on KM0 . Here ϕ :=
∏d

i=0(ϕi|M0).
□
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2.1.56. As shown in [HM08], it follows from the original construction in [Yu01] that
ρdM is of the form ρdM = ρM0 ⊗ κ, where the representation κ = κG depends only on

ϕ⃗. Suppose KM0 =M0
y . Let K̃M0 denote the normalizer of KM0 in M0. Consider

(2.1.57) σ0 := indM
0

K̃M0
ρM0 .

The representation σ0 is a depth-zero irreducible supercuspidal representation ofM0.

Let s0 := [M0, σ0]G0 . Let Πs0

G0 be defined as in (2.1.4), i.e. it is a progenerator for

the category Rs0(G0). Set Hs0(G0) := End(Πs0

G0).

Proposition 2.1.58. (1) The algebras Hs0(G0) and H(G0, ρD0) are isomorphic.
(2) The algebras Hs(G) and H(G, ρD) are isomorphic.

Proof. We verify the assumptions in Proposition 2.1.33. Firstly, (KD0 , ρD0) is a G0-
cover of (KM0 , ρM0) (see [KY17, §7.1]) and (KD, ρD) is a G-cover of (K

d
M , ρ

d
M ) (see

[KY17, Theorem 7.5]).
Secondly, since σ0 and σ are supercuspidal irreducible representations, an element

m0 of M0 intertwines ρM0 if and only if m0 ∈ K̃M0 , and an element m of M

intertwines ρM if and only if m ∈ K̃M . Then the proof of [BS20, Lemma B.4]
applies, and shows that ΠsM

M ≃ c-IndMKM
(ρM , VρM ). Then the result follows from

Proposition 2.1.33. □

Proposition 2.1.59. If W s
G = {1}, then there is an algebra isomorphism

H(G, ρD) ≃ H(M,ρdM ),

which preserves support of functions, and the algebra H(G, ρD) is commutative.

Proof. Since W s
G = {1}, we have NG(s) ⊂ M . Then the first assertion follows from

[BK98, (12.1)]. On the other hand, the algebra H(M,ρdM ) is commutative (see for
instance [BK98, (5.6)]). □

Remark 2.1.60. Applying Proposition 2.1.59 to the group G0, we see that ifW s0

G0 =
{1}, then there is an algebra isomorphism

(2.1.61) H(G0, ρD0) ≃ H(M0, ρ0M0)

that preserves support of functions; thus the algebraH(G0, ρD0) is also commutative.

2.2. Bernstein blocks. We assume that G splits over a tamely ramified extension,
and that the residual characteristic p of F is odd, good for G and does not divide the
order of the fundamental groups of Gder. Let M be an F -rational Levi subgroup of
an F -rational parabolic subgroup of G. Then p satisfies the same assumptions with
respect to M, i.e. p is good for M and does not divide the order of the fundamental
groups of Mder.

Let (S, θ) be a pair consisting of a tamely ramified torus S in M, and a character
θ : S → C×. For any positive real number r, consider

(2.2.1) ΣS,θ
r :=

{
γ ∈ Σ(M,S) : (θ ◦NE/F )(γ

∨(E×
r )) = 1

}
.
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We have ΣS,θ
s ⊂ ΣS,θ

r for s < r. Set ΣS,θ
r+ :=

⋂
s>r Σ

S,θ
s . Then r 7→ ΣS,θ

r defines a
Gal(Fsep/F )-invariant filtration. Let rd−1 > rd−2 > · · · > r0 > 0 denote the breaks

of the filtration, i.e. the r’s such that ΣS,θ
r ̸= ΣS,θ

r+ . We set r−1 := 0, and let rd be
the depth of θ. We have rd ≥ rd−1. For each i such that 0 ≤ i ≤ d, we denote by
Mi the connected reductive subgroup of M with maximal torus S and root system

ΣS,θ
ri−1+

. By definition, the root system of Md is Σ(M,S), and thus Md = M. The

Mi’s are tame twisted Levi subgroups of M by [Kal19a, Lemma 3.6.1]. Moreover,

the root system of M0 is ΣS,θ
0+ ; if the latter is empty, we have M0 = S.

Denote M i := Mi(F ). By [Kal19a, Proposition 3.6.7], the pair (S, θ) has a
Howe factorization with respect to a sequence (ϕ−1, ϕ0, . . . , ϕd) of characters, where
ϕ−1 : S → C× and ϕi : M

i → C× for 0 ≤ i ≤ d. More precisely, we have

(2.2.2) θ =

d∏
i=−1

ϕi,

• for any i ∈ {0, . . . , d}, the character ϕi is trivial on (Mi)sc, has depth ri and
is Mi+1-generic for any i ̸= d;
• ϕd is trivial if rd = rd−1, and has depth rd otherwise.

2.2.3. From now on, we make the following assumptions: S is an elliptic maximal
torus of M; the splitting extension of S is tamely ramified; S is maximally unrami-
fied inside M0, i.e. S coincides with its maximal unramified subtorus as in [Kal19a,
Definition 3.4.2]; θ is kF -regular with respect to M0, in the sense of [Kal19b, Defi-
nition 3.1.1].

For any point x in the building ofM , let [x] be the projection of x onto the reduced
building Bred(M). Let Mx (resp. M[x]) be the subgroup of M fixing x (resp. [x]).
Recall that M[x] = NM (Mx,0) by [Yu01, Lemma 3.3]. As in [Kal19a, Lemma 3.4.3],
we can then associate to S a vertex [y] of Bred(M), which is the unique Gal(F nr/F )-
fixed point in the apartment Ared(S, F

nr) of Bred(M).
Let Sb be the unique maximal bounded subgroup of S (which is also the unique

maximal compact subgroup of S). Denoting by S◦ the connected Néron model of S,
we write S0 := S◦(of ) ⊂ Sb (see [Kal19a, §3.1] for more details). Let M0

y,0 be the
connected reductive kF -group such that

(2.2.4) M0
y,0 := M0

y,0(kF ) =M0
y,0/M

0
y,0+.

There exists an elliptic maximal kF -torus S of M0
y,0 such that for every unramified

extension F ′ of F , the image of S(F ′)0 in M(F ′)y,0/M(F ′)y,0+ is equal to S(kF ′)
(see [Kal19a, Lemma 3.4.4]). By [Kal19a, Lemma 3.4.14], the character ϕ−1|S0 fac-
tors through a regular character ϕ−1 of S := S(kF ) as defined in [Kal19a, Defini-
tion 3.4.16]. In particular, ϕ−1 is in general position in the sense of [DL76, Defi-
nition 5.15]. Then it follows from [DL76, Proposition 7.4, Theorem 8.3] that the
Deligne-Lusztig character

(2.2.5) (−1)r(M
0
y,0)−r(S)R

M0
y,0

S (ϕ−1)
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can be represented by a cuspidal, i.e. which cannot be obtained from a proper
parabolic induction, M0

y,0-module κS,ϕ−1 , where r(?) denotes the kF -rank of ?. Then

κS,ϕ−1 is irreducible (see [DL76, Definition 5.15]), and its pull-back to M0
y,0 extends

uniquely to a representation κS,ϕ−1 of SM0
y,0. We define

(2.2.6) ρS,θ := Ind
M0

[y]

SM0
y,0
κS,ϕ−1 and σ0 := c-IndM

0

M0
[y]
ρS,θ.

Then σ0 is a depth-zero irreducible regular supercuspidal representation of M0 (see
[Kal19a, Definition 3.4.19 & Proposition 3.4.20]). Set sM0 := [M0, σ0]M0 .

More generally, we define an irreducible supercuspidal representation σ of M by
using the twisted Yu construction of [FKS21]. As observed in [Kal19b, §3.4], it
has the same effect as using the original Yu construction from [Yu01] applied to

the character θ · ϵ, where ϵ : S → {±1} is the product of the characters ϵ
M i/M i−1

y

of [FKS21, Theorem 3.4]. The representation σ is regular, i.e. satisfies [Kal19a,
Definition 3.7.13]. Then χ ⊗ σ is regular for any χ ∈ Xnr(M), and we say that the
inertial class s = [M,σ]G is regular.

2.2.7. For sM = [M,σ]M and sM0 = [M0, σ0]M0 , the map

(2.2.8)
f : IrrsM (M) −→ IrrsM0 (M0)

σ ⊗ χ 7→ σ0 ⊗ χ|M0
, χ ∈ Xnr(M),

is an isomorphism of varieties by [Mis19, Theorem 6.1]. Let O0 be the orbit of

σ0 under the action of Xnr(M
0). Let W s0

G0 = WO0 ⋊ R(O0) be the decomposition
analogous to (2.1.14). Then (2.2.8) and (2.1.11), applied to both sM and sM0 , show
that the orbits O and O0 are isomorphic. The following is a consequence of [AM21,
7.3, 9.3].

Lemma 2.2.9 (Adler-Mishra). Suppose that p is good for G and does not divide
the order of the fundamental group of Gder. Let s = [M,σ]G ∈ B(G) be a regular
inertial class. Then (1) there is a group isomorphism

(2.2.10) wσ : W
s
G −→W s0

G0 ,

where s0 = [M0, σ0]G0, and f is equivariant with respect to wσ.
(2) there is an isomorphism

(2.2.11) lσ : (Irr
sM (M)//W s

G)♮ −→ (IrrsM0 (M0)//W s0

G0)♮0 .

The collection ♮0 of 2-cocycles is defined as follows. For x ∈ IrrsM (M), let W s,x
G

denote the stabilizer of x in W s. Since f is equivariant with respect to wσ, the latter
restricts to an isomorphism

(2.2.12) wσ|W s,x
G

: W s,x
G −→W

s0,f(x)
G0 ,

and every 2-cocycle ♮x : W
s,x
G ×W s,x

G −→ C× defines a 2-cocycle

(2.2.13) ♮0f(x) : W
s0,f(x)
G0 ×W s0,f(x)

G0 −→ C×.

Consequentially, we obtain in Theorem 2.2.14(2) new cases of [AM21, Conjecture 1.1].
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Theorem 2.2.14. Suppose that p is good for G and does not divide the order of the
fundamental group of Gder. Let s = [M,σ]G ∈ B(G) be a regular inertial class.

(1) Then

(2.2.15) (ξs
0

G0)
−1 ◦ lσ ◦ ξsG : Irrs(G) −→ Irr(G0)s

0

is a bijection.
(2) We have a bijection

(2.2.16) Irr(Hs(G)) −→ Irr(Hs0(G0)).

Proof. (1) This follows from the fact that the map ξG defined in (2.1.21) and the
analogous map

(2.2.17) ξs
0

G0 : Irr(G)s
0 −→ (IrrsM0 (M0)//W s0

G0)♮.

are isomorphisms.
(2) By [Sol22, Theorem 9.7] applied to both G and G0, we have

Irrs(G) ∼= Irr(End(iGP (VB)) and Irrs
0
(G0) ∼= Irr(End(iG

0

P0
(VB0)).

Thus by (1), we have Irr(End(iGP (VB))
∼= Irrs(G) ∼= Irrs

0
(G0) ∼= Irr(End(iG

0

P 0(VB0)).

Then the result follows by applying Corollary 2.1.22 to both s and s0. □

Remark 2.2.18. The algebras Hs(G) and Hs0(G0) are not always isomorphic, as
shown in [GR05, Example 11.8] for G = SLn(F ). However, we show in Theo-
rem 4.2.23 that they are isomorphic when G = G2 and M is a maximal Levi sub-
group.

2.2.19. We end this section with brief recollections on non-singular supercuspidals
in the sense of [Kal19b], as we will consider non-singular Bernstein blocks in §3.1.50.

Let θ : S(kF )→ Qℓ be a non-singular character. Let NG(S)(kF )θ denote the sta-
bilizer of the pair (S, θ). By [Kal19b, Proposition 2.3.3], the character θ extends
to the group NG(S)(kF )θ. Let U ⊂ G be the unipotent radical of a kF -rational
Borel subgroup of G, containing S, and let YU be the corresponding Deligne-Lusztig
variety. Let κ(S,θ) be the isomorphism class of the representation HdU

c (YU,Qℓ)θ. For
simplicity of expositions, we only describe the depth-zero situation. The represen-
tation π(S,θ) := c-IndGGx

infGx
Gx
κ(S,θ) is supercuspidal but not necessarily irreducible.

When it is indeed irreducible, we return to the case where θ is regular as in [Kal19a].
When π(S,θ) is reducible (e.g. when θ is non-singular non-regular), it decomposes as
[Kal19b, 3.3.3]

(2.2.20) π(S,θ) =
∑

ϱ∈Irr(NG(S)(kF )θ,θ)

dim(ϱ)πϵ(S,θ,ϱ),

where the constituents πϵ(S,θ,ρ) := c-IndGGx
infGx

Gx
κϵ(S,θ,ϱ), constructed from κϵ(S,θ,ϱ) as in

[Kal19b, Definition 2.7.6], are irreducible non-singular supercuspidal representations.
Here Irr(NG(S)(kF )θ, θ) denotes the set of irreducible representations of NG(S)(kF )θ
whose restriction to S(kF ) is θ-isotypic ϵ is a fixed coherent splitting of the family
of 2-cocycles {ηΨ,U} as in [Kal19b, §2.4]. The positive-depth supercuspidals can
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be described similarly, by applying Yu’s construction [Yu01] to the representation
π(G0,S,ϕ−1) of G

0 associated to the pair (S, ϕ−1) [Kal19b, (3.2)].

3. Local Langlands correspondence for Bernstein blocks

3.1. Axiomatic construction of the correspondence. Let G∨ denote the Lang-
lands dual group of G, i.e. the complex Lie group with root datum dual to that of
G. Let ZG∨ be the center of G∨ and G∨

ad the quotient G∨/ZG∨ . The L-group of G

is defined to be LG := G∨ ⋊WF . Similarly, M∨ denotes the Langlands dual group
of M . Let ZM∨⋊IF be the center of M∨ ⋊ IF , and define

(3.1.1) Xnr(
LM) := (ZM∨⋊IF )

◦
WF

.

The group Xnr(
LM) is naturally isomorphic to the group Xnr(M). We denote the

isomorphism Xnr(M)
∼−→ Xnr(

LM) by χ 7→ χ∨.

3.1.2. An L-parameter is a continuous morphism φ : W ′
F → LG such that

• φ(w) is semisimple for each w ∈WF ;
• the restriction φ|SL2(C) is a morphism of complex algebraic groups.

An L-parameter φ is said to be discrete if φ(W ′
F ) is not contained in any proper Levi

subgroup of G∨. The group G∨ acts on the set of L-parameters. We denote by Φ(G)
the set of G∨-classes of G-relevant L-parameters. Attached to each L-parameter φ
for G, we define several (possibly disconnected) complex reductive groups as follows.

Set ZG∨(φ) := ZG∨(φ(W ′
F )). Let Z

1
G∨

sc
(ϕ) be the inverse image of ZG∨(ϕ)/ZG∨(ϕ)∩

ZG∨ (viewed as a subgroup of G∨
ad) under the quotient map G∨

sc → G∨
ad. Then we set

(3.1.3) Gφ := Z1
G∨(φ|WF

).

We also define the following component group

(3.1.4) Sφ := Z1
G∨(φ)/Z1

G∨(φ)◦.

An enhancement of φ is an irreducible representation ϱ of Sφ. Pairs (φ, ϱ) are called
enhanced L-parameters (for G and its inner forms).

3.1.5. Let G∨ act on the set of enhanced L-parameters via

(3.1.6) g · (φ, ϱ) = (gφg−1, g · ϱ).
We denote by Φe(G) the set G∨-conjugacy classes of enhanced L-parameters. We
define an action of Xnr(

LM) on Φe(M) as follows. Given (φ, ϱ) ∈ Φe(M) and ξ ∈
Xnr(

LM), we define (ξφ, ϱ) ∈ Φe(M) by ξφ := φ on IF × SL2(C) and (ξφ)(FrF ) :=

ξ̃φ(FrF ). Here ξ̃ ∈ Z◦
M∨⋊IF

represents z.

For an L-parameter φ of G, we denote by uφ the image of (1, ( 1 1
0 1 )) under φ. By

[AMS18, (92)], we have uφ ∈ G◦φ and

(3.1.7) Sφ ≃ ZGφ(uφ)/ZGφ(uφ)
◦ := AG◦

φ
(uφ).

Let ϱ be an irreducible representation of AG◦
φ
(uφ). The pair (uφ, ϱ) is said to be

cuspidal if there is an G◦-equivariant cuspidal (in the sense of Lusztig [Lus84]) local
system on the G◦φ-conjugacy class of uφ.
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Definition 3.1.8. An enhanced L-parameter (φ, ϱ) is said to be cuspidal if φ is
discrete and (uφ, ϱ) is a cuspidal pair in Gϕ.

3.1.9. From now on, we use the subscript c to denote “cuspidal”. Let (φc, ϱc) be a
cuspidal enhanced L-parameter for M , we denote by

(3.1.10) s∨ := [LM,φc, ϱc]G∨

the G∨-conjugacy class of (LM,O∨), where O∨ is the orbit of (φc, ϱc) under the
action of Xnr(

LM). Let B∨(G) be the set of such s∨. Set s∨M := [LM,φc, ϱc]M∨ . Let
(3.1.11)

Ns∨
G∨ :=

{
n ∈ NG∨(M∨) : n(φc, ϱc) ≃ (φc, ϱc)⊗ χ∨ for some χ∨ ∈ Xnr(

LM)
}
.

Denote

(3.1.12) W s∨
G∨ :=W (M∨,O∨) := Ns∨

G∨ /M∨.

The group W s∨
G∨ is a finite extended Weyl group, i.e. it decomposes as

(3.1.13) W s∨
G∨ =WO∨ ⋊R(O∨),

where WO∨ is a finite Weyl group, and R(O∨) is a finite abelian group (see (3.2.8)).

3.1.14. Let Φc
e(M) denote the set of M∨-conjugacy classes of cuspidal enhanced

L-parameters for M . By [AMS18, (115)], there is a decomposition of Φe(G) into
series of enhanced L-parameters indexed by the set B∨(G):

(3.1.15) Φe(G) =
⊔

s∨∈B∨(G)

Φs∨
e (G),

where Φs∨
e (G) consists of enhanced L-parameters whose cuspidal support lies in s∨.

Moreover, for any (φc, ϱc) ∈ Φc
e(M), we have

(3.1.16) Φ
s∨M
e (M) = Xnr(

LM) · (φc, ϱc).

For s∨ = [LM,φc, ϱc]G∨ ∈ B∨(G), there exists a bijection [AMS18, Theorem 9.3]

(3.1.17) ξs
∨

G∨ : Φs∨
e (G) −→ (Φ

s∨M
e (M)//W s∨

G∨)L♮,

where L♮ = (L♮z)z∈Xnr(LM)/Xnr(LM,(φc,ρc)) is a collection of 2-cocycles, and

(3.1.18) Xnr(
LM, (φσ, ϱσ)) :=

{
z ∈ Xnr(

LM) : z · (φσ, ϱσ)) = (φσ, ϱσ)
}
.

3.1.19. Let η : M → M̃ be an F -morphism of connected reductive F -groups with
abelian kernel and cokernel. Then by [Bor79, §1.4], η induces a map from the root

datum ofM∨ to that ofM∨. We denote by η∨ : M̃∨ →M∨ the associated morphism
of algebraic groups as in [Bor79, §2.1].

Lη : LM̃ → LM

(m̃, w) 7→ (η∨(m̃), w) for m̃ ∈M∨.(3.1.20)

We recall [Bor79, Desideratum 10.3(5)]: Let φ̃ : WF ×WF → M̃∨ be an L-parameter

for M̃ and set φ := Lη ◦ φ̃. Then for any π̃ ∈ Πφ̃, the representation π̃ ◦ η is the
direct sum of finitely many irreducible representations belonging to Πφ.
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3.1.21. Let Irrsc(M) ⊂ Irr(M) denote the set of equivalence classes of irreducible
supercuspidal representations of M . Let g ∈ NG(M)(F ). For any σ ∈ Irrsc(M), we
have gσ ∈ Irrsc(M). We denote by cg the isomorphism

(3.1.22) cg : (M,σ)
∼→ (M, gσ).

Let Lcg :
LM → LM be the morphism defined by (3.1.20). Let w 7→ w∨ be the

canonical isomorphism from W (M) := NG(M)(F )/M to W (M∨) := NG∨(M∨)/M∨

defined in [ABPS17a, Proposition 3.1]. Let nw (resp. nw∨) be a representative
of w (resp. w∨) in NG(M)(F ) (resp. NG∨(M∨)). With these notations, we have
c∨nw

(m∨) = nw∨m∨.
For σ ∈ Irr(M), since the equivalence class of nwσ does not depend on the choice of

the representative nw, we will simply denote it by wσ. Similarly, we use the notation
w∨, instead of nw∨ , to denote the action of NG∨(M∨) on Φe(M).

Property 3.1.23. Let M be a Levi subgroup of G. Let sM := [M,σ]M ∈ B(M).
There exists a map

(3.1.24)
LsM : IrrsM (M) −−→ Φc

e(M)
σ 7→ (φσ, ϱσ)

such that the following properties are satisfied for any σ ∈ IrrsM (M):

(1) For any χ ∈ Xnr(M), we have

(3.1.25) (φχ⊗σ, ϱχ⊗σ) = χ∨ · (φσ, ϱσ),

where χ 7→ χ∨ is the canonical isomorphism Xnr(M)
∼→ Xnr(

LM).
(2) For any w ∈W (M), we have

(3.1.26) w∨
(φσ, ϱσ) ≃ (φwσ, ϱwσ),

where w 7→ w∨ is the canonical isomorphism W (M)
∼→W (M∨).

Remark 3.1.27. (1) Property 3.1.23(1) is closely related to [Bor79, Desidera-
tum 10.3.(2)].

(2) Property 3.1.23(2) is a stronger version of [Bor79, Desideratum 10.3.(5)] for
η = cg, and can be viewed as an analogue of [Hai14, Conjecture 5.2.4] for
enhanced L-parameters for supercuspidal representations. In the special case
where the L-packet of σ is a singleton, Property 3.1.23(2) is in fact equivalent
to [Bor79, Desideratum 10.3.(5)] for η = cg.

Lemma 3.1.28. Let s = [M,σ]M ∈ B(G) satisfy Property 3.1.23. Then there is a
group isomorphism

(3.1.29) r : W s
G

∼→W s∨
G∨ , where s∨ := [LM,LsM (σ)]G∨ .

Moreover, LsM is equivariant with respect to r.

Proof. Let w ∈ W s
G ⊂ W (M). By the definition of W s

G, we have wσ ≃ χ ⊗ σ for
some χ ∈ Xnr(M). By Property 3.1.23, we have

(3.1.30) w∨
(φσ, ϱσ) ≃ (φwσ, ϱwσ) ≃ (φχ⊗σ, ϱχ⊗σ) ≃ χ∨ · (φσ, ϱσ).
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Thus w∨ ∈ W s∨
G∨ , and the map w 7→ w∨ gives a group morphism from W s

G to W s∨
G∨ .

Reversing the argument, we see that it is an isomorphism. □

We suppose that Property 3.1.23 holds, and that the collections of 2-cocycles ♮
and L♮ satisfy the following

(3.1.31) L♮χ∨ = ♮χ for any σ ∈ s and any χ ∈ Xnr(M)/Xnr(M,σ),

Theorem 3.1.32. (1) We have a canonical isomorphism

(3.1.33) e : (IrrsM (M)//W s
G)♮

∼−→ (Φ
s∨M
e (M)//W s∨

G∨)L♮.

(2) There is a bijection

(3.1.34) L := (ξs
∨

G∨)−1 ◦ e ◦ ξsG : Irrs(G) −→ Φs∨
e (G).

Proof. Let s = [M,σ]G. Consider (φσ, ϱσ) := LsM (σ). Then the isomorphism
Xnr(M) ≃ Xnr(

LM) combined with (3.1.16) shows that

(3.1.35) Φ
s∨M
e (M) =

{
χ∨ ⊗ (φσ, ϱσ) : χ ∈ Xnr(M)

}
.

By Property 3.1.23(1) and (2.1.11), we have

(3.1.36) Φ
s∨M
e (M) = {(φχ⊗σ, ϱχ⊗σ) : χ ∈ Xnr(M)} ≃ IrrsM (M).

Recall that W s,χ⊗σ
G denotes the stabilizer of χ ⊗ σ in W s

G. By construction of the
extended quotients in (1.3.1), we have

(3.1.37) (IrrsM (M)//W s
G)♮ =

⊔
χ∈Xnr(M)/Xnr(M,σ)

(Irr(C[W s,χ⊗σ
G , ♮χ])/W

s
G.

For χ ∈ Xnr(M), let W
s∨,χ∨·(φσ ,ϱσ)
G∨ denote the stabilizer of χ∨ · (φσ, ϱσ) in W

s∨
G∨ . By

Property 3.1.23(1), we have

(3.1.38) Xnr(M
∨, (φσ, ϱσ)) ≃ Xnr(M,σ).

Again by (1.3.1), we have
(3.1.39)

(Φ
s∨M
e (M)//W s∨

G∨)L♮ =
⊔

χ∨∈Xnr(M∨)/Xnr(M∨,(φσ ,ϱσ))

Irr(C[W s∨,χ∨·(φσ ,ϱσ)
G∨ , L♮χ∨ ])/W s∨

G∨ .

For any w ∈W s,χ⊗σ
G , by Property 3.1.23, we have

(3.1.40) w∨
(χ∨ · (φσ, ϱσ)) =

w∨
(φχ⊗σ, ϱχ⊗σ) = (φw(χ⊗σ), ϱw(χ⊗σ) = (φχ⊗σ, ϱχ⊗σ).

Thus the morphism r from (3.1.29) restricts to an isomorphism

(3.1.41) W s,χ⊗σ
G

∼−→W
s∨,χ∨·(φσ ,ϱσ)
G∨ .

Combined with (3.1.37) and (3.1.39), we obtain an isomorphism

(3.1.42) e : (IrrsM (M)//W s
G)♮ −→ (Φ

s∨M
e (M)//W s∨

G∨)L♮.

Then (2) follows from the combination of (1) with Proposition 2.1.20 and (3.2.15).
□
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Remark 3.1.43. When G is a split classical group, F has characteristic zero and
LsM is the LLC defined by Arthur in [Art13], then Lemma 3.1.28 was proved in
[Mou17a, Theorem 4.1], and Theorem 3.1.32 follows from [Mou17b, §3.2 & 3.3].

Remark 3.1.44. The 2-cocycles in ♮ and L♮ are expected to be often trivial: (1)
They are trivial if the groups R(O) from (2.1.14) and R(O∨) from (3.1.13) have
cardinality at most 2, and hence when M is a Levi subgroup of a maximal parabolic
subgroup of G.

(2) The 2-cocycles are also trivial when G is a symplectic group or a split special
orthogonal group by [Hei11, Theorem 7.7] on the group side and [Mou17b, §4.5] on
the Galois side. They are trivial for principal series representations of split groups
by [Roc98, Corollary 7.9 and Theorem 8.2] on the group side and [ABPS17c, Theo-
rem 13.1] on the Galois side.

(3) However, there exist cases when these 2-cocycles are not trivial: e.g. see
[ABPS17b, Example 5.5] for an example where ♮ is non-trivial, and [AMS18, Ex-
ample 9.4] for an example where L♮ is non-trivial.

3.1.45. Let σ be a regular supercuspidal irreducible representation of M . Let
φσ : WF → LM be the L-parameter of σ as constructed in [Kal19b].

Proposition 3.1.46. Let s = [M,σ]G be such that the L-packet for σ is a singleton.
Let s∨ = [M∨, (φσ, 1)]G∨. Assume that the collections of 2-cocycles ♮ and L♮ are both
trivial. We have the following bijection

(3.1.47) L : Irrs(G) −−→ Φs∨
e (G).

Proof. Let LsM be the map

(3.1.48) LsM : σ 7→ (φσ, 1).

By Proposition 3.1.51, Property 3.1.23(1) is satisfied.
The validity of [Bor79, Desideratum 10.3(5)] has been established in [BM21, The-

orem 1.1] when the L-parameter φ̃ is supercuspidal, and G is quasi-split. Since the
L-packet for σ is a singleton, Property 3.1.23 (2) holds by Remark 3.1.27. The result
thus follows from Corollary 3.1.32. □

Remark 3.1.49. Proposition 3.1.46 is sufficient for the case of G = G2 (as also
exemplified in [AX22]), since M is either GL2 or a torus, both only having singleton
L-packets for their supercuspidals.

3.1.50. Suppose now σ is a non-singular supercuspidal irreducible representation
of M . Let φσ : WF → LM be the L-parameter of σ defined in [Kal19b, §4.1], with
enhancement ϱσ.

More precisely, consider the πϵ(S,θ,ϱ) recalled in §2.2.19. We fix a coherent splitting

ϵ. We recall the construction of the non-singular L-parameter φ(S,θ) in [Kal19b,
§4.1] (we drop ϱ from the notation as the L-parameter does not depend on ϱ), which

is given as a composition WF
φS−−→ LS

Lj−→ LG. Here φS : WF → LS is Langlands
parameter for the character θ, and Lj : LS → LG is a certain L-embedding arising
from the χ-data as part of some torally wild L-packet datum (S, ĵ, χ0, θ) as loc.cit..
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Proposition 3.1.51. The map LsM : σ 7→ (φσ, ϱσ) satisfies Property 3.1.23 (1).

Proof. By [Kal19b, Proposition 3.4.6], we have χ ⊗ πϵ(S,θ,ϱ) = πϵ(S,χ·θ,χ⊗ρ). On the

other hand, by [Kal15, Proposition 4.5.3], we have φ(S,χ·θ) = (φχ · φS) ◦ Lj (since

the L-embedding Lj stays the same after twisting by χ), where φχ : WF → Z
Ĝ
is the

corresponding 1-cocycle as defined loc.cit. □

Remark 3.1.52. Property 3.1.23 (2) of the map LsM : σ 7→ (φσ, ϱσ) follows from
[Kal22, Conjecture 2.12], which is expected to hold for LLC for non-singular super-
cuspidal representations. The authors intend to return to this question in future
work.

3.2. Matching of simple modules of extended affine Hecke algebras. In
this section, we use Corollary 3.1.32 to obtain a bijection between simple modules
of extended affine Hecke algebras for the p-adic group and Galois sides, assuming
Property 3.1.23. Note that this is a completely reasonable assumption, as many
groups satisfy this property. Therefore, our main results give a new approach to
constructing local Langlands correspondances “inductively”, building from LLC’s
on the Levi subgroups’.

3.2.1. We now recall the construction of a (possibly twisted) extended affine Hecke

algebra Hs∨(G∨) constructed in [AMS17]. Consider

(3.2.2) Mφc := ZM∨(φc(WF )).

Let Aφc be the identity component of the center ofMφc . We set

(3.2.3) Jφ = J G∨
φ := ZG∨(φ(IF )).

Let Σ(J ◦
φ ,Aφc) be the set of α ∈ X∗(Aφc)\{0} which appear in the adjoint action of

Aφc on the Lie algebra of J ◦
φ . It is a root system by [AMS17, Proposition 3.9]. Let

Σ(J ◦
φ ,Aφc)

+ be the positive root system defined by an F -rational Borel subgroup of
J ◦
φ . Let ∆ be a basis of the reduced root system Σ(J ◦

φ ,Aφc)red. Let a ∈ Aφc be such

that α(a−1) is an eigenvalue of Ad(φ(Fr)) for any α ∈ ∆. We define φa ∈ Φ(M) by

(3.2.4) φa|IF×SL2(C) := φc|IF×SL2(C) and φa(FrF ) := a · φc(FrF ).

By [AMS17, Proposition 3.9], we have Σ(Gφa ,Aφc)red = Σ(J ◦
φ ,Aφc)red, where Gφa =

ZG∨(φa(WF )). Consider

(3.2.5) Xnr(M
∨, φa) :=

{
x ∈ Xnr(M

∨) : (zφa)M∨ = (φa)M∨
}
.

Set TO∨ := Xnr(M
∨)/Xnr(M

∨, φa). For each α ∈ Σ(J ◦
φ ,Aφc)red, let mα ∈ Z>0 be

the smallest integer such that

(3.2.6) ker(mαα) ⊃
{
a′ ∈ Aφc : (a′φa)M∨ = (φa)M∨

}
.

We set

(3.2.7) ΣO∨ :=
{
mα : α ∈ Σ(J ◦

φ ,Aφc)red
}
⊂ X∗(TO∨).

Then WO∨ from (3.1.13) is the finite Weyl group of ΣO∨ , and

(3.2.8) R(O∨) :=
{
w ∈W (M∨,O∨) : w · Σ(J ◦

φ ,Aφc)
+ = Σ(J ◦

φ ,Aφc)
+
}
.
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Let

(3.2.9) λ∨ : ΣO∨ → Z≥0 and λ∗∨ :
{
mαα ∈ ΣO∨ : (mαα)

∨ ∈ 2X∗(Ts∨)
}
→ Z≥0

be the two parameter functions defined in the proof of [AMS17, Lemma 3.12]. Recall
from [AMS17, (28)] that λ∗∨(α) = λ∨(α) unless α is a short root in a type B root
subsystem of RO∨ .

The algebra Hs∨(G∨) is defined to be

(3.2.10) Hs∨(G∨) := Haff(O∨,ΣO∨ , λ∨, λ∨∗, z)⋊C[R(O∨), κ∨],

where z is a positive real number, Haff(G
∨, s∨) := Haff(O∨,ΣO∨ , λ∨, λ∗∨, z) is the

corresponding affine Hecke algebra with affine Weyl group WO∨ ⋉X∗(TO∨), and κ∨

a 2-cocycle on R(O∨).

Theorem 3.2.11. We suppose that the collections of 2-cocycles ♮ and L♮ are both
trivial. Let s = [M,σ]G and s∨ = [LM,φσ, 1]G∨. There is a bijection

(3.2.12) Irr(Hs(G)) ←→ Irr(Hs∨(G∨)).

Proof. By Corollary 2.1.22, we have a bijection

(3.2.13) Irr(Hs(G)) −→ (IrrsM (M)//W s
G)♮.

By Corollary 3.1.32, we have

(3.2.14) IrrsM (M)//W s
G ≃ Φ

s∨M
e (M)//W s∨

G∨ .

On the other hand, by (3.1.17) we have a bijection

(3.2.15) Φ
s∨M
e (M)//W s∨

G∨ −→ Φs∨
e (G).

Finally, by [AMS17, Theorem 3.18], there is a bijection

(3.2.16) Φs∨
e (G)

∼−−→ Irr(Hs∨(G∨)).

Combining equations (3.2.13), (3.2.14), (3.2.15) and (3.2.16), we obtain the desired
bijection. □

Corollary 3.2.17. With the same assumption as in Theorem 3.2.11.

Irr(Hs∨(G∨)) −→ Irr(H(s0)∨((G0)∨)).

Proof. This follows from combining Theorems 3.2.11 and 2.2.14. □

4. Applications to G2

In this section, we introduce notations and background specifically for the G2 case.
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4.0.1. General background.

4.0.1. Let aM be the real Lie algebra of AM, and a∗M its dual. Let a∗M,C be the

complexification of a∗M . Let | · |F be the modulus of F . Let HM : M → aM be such

that q−⟨HM (m),α⟩ = |α(m)|F for every rational character α of M and every m ∈ M .
Note that the kernel of HM is equal to M1 (recall from §2.1.1). Consider

(4.0.2) Mσ :=
⋂

χ∈Xnr(M,σ)

kerχ,

which has finite index in M1. Recall Xnr(M,σ) from (2.1.9), and we have
(4.0.3)

Irr(Mσ/M1) ≃ Xnr(M)/Xnr(M,σ) and C[Mσ/M1] ≃ C[Xnr(M)/Xnr(M,σ)].

Set (Mσ/M1)
∨ := HomZ(Mσ/M1,Z). Composing HM with the R-linear extension of

HM (Mσ/M1)→ Z gives an embedding

(4.0.4) H∨
M : (Mσ/M1)

∨ → a∗M .

For m ∈ M , let bm be the element of C[Xnr(M)] defined by bm(χ) := χ(m) for any
χ ∈ Xnr(M). Let hα be the unique generator of Mσ/M1 such that valF (α(hα)) > 0.
We define Xα ∈ C(Xnr(M)/Xnr(M,σ) by

(4.0.5) Xα(χ) := χ(hα),

for χ ∈ Xnr(M)/Xnr(M,σ).

4.0.6. For a complex number s, let χs be the character defined by

(4.0.7) χs(m) := | det(m)|sF for any m ∈M .

In particular, χs ∈ Xnr(M), and we have

(4.0.8) Xα(χs) = |det(hα)|sF .
Let α̃ be the element of a∗M defined by α̃ := ⟨ρP , α∨⟩−1ρP , where ρP is half the sum
of the roots of AM in LieN , with P =MN . Then sα̃ ∈ a∗M ⊗R C.

We recall the description of the Plancherel measure from [Sil79] (see also [Sol21]
or [Hei11] for the notations used here): for α ∈ ΣO,µ, where ΣO,µ is the root system
defined in (2.1.13), there exist qα, qα∗ ∈ R≥1, c

′
sα ∈ R>0 for α ∈ ΣO,µ, such that

(4.0.9) µMα(σ ⊗ ·) = c′sα
(1−Xα)(1−X−1

α )

(1− q−1
α Xα)(1− q−1

α X−1
α )
· (1 +Xα)(1 +X−1

α )

(1 + q−1
α∗Xα)(1 + q−1

α∗X−1
α )

.

4.0.10. For α ∈ ΣO,µ, by [Sol22, Proposition 3.1] there is a unique α♯ ∈ (Mσ/M1)
∨

such that H∨
M (α♯) ∈ Rα and ⟨hα, α♯⟩ = 2. We set

ΣO :=
{
α♯ : α ∈ ΣO,µ

}
and Σ∨

O :=
{
α♯ : hα ∈ ΣO,µ

}
.

The quadruple (Σ∨
O,Mσ/M1,ΣO, (Mσ/M1)

∨) is a root datum with Weyl group WO.
It has a natural action of the group W (M,O), and R(O) is the stabilizer of its basis
determined by P (see loc.cit.). We endow this based root datum with the parameter
qF and the labels

(4.0.11) λ(α) := log(qαqα∗)/ log(qF ) and λ∗(α) := log(qαq
−1
α∗ )/ log(qF ).
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To the above data we associate the affine Hecke algebra

(4.0.12) Hs
aff(λ, λ

∗, qF ) := Haff(Σ
∨
O,Mσ/M1,ΣO, (Mσ/M1)

∨, λ, λ∗, qF ).

It is defined as the vector space C[WO]⊗CC[Mσ/M1] with the following multiplication
rules:

• C[WO] = span{Tw : w ∈WO} is embedded as H(WO, q
λ
F ), the Iwahori-Hecke

algebra of WO, i.e.

(4.0.13)
TwTv = Twv if ℓ(w) + ℓ(v) = ℓ(ww),

(Tsα + 1)(Tsα − q
λ(α)
F ) = 0 if α ∈ ∆O,µ,

where ℓ(w) is the word length of w1;
• C[Mσ/M1] ≃ C[O] is embedded as a subalgebra;
• for α ∈ ∆O,µ and x ∈Mσ/M1 (corresponding to θx ∈ C[Mσ/M1]):

θxTsα − Tsαθsα(x) =
(
q
λ(α)
F − 1 +X−1

α (q
λ(α)+λ∗(α)

2 − q
λ(α)−λ∗(α)

2 )

)
θx − θsα(x)
1−X−2

α
.

4.0.14. We set

(4.0.15) W s
aff :=WO ⋉ ZΣ∨

O.

From now on we assume that the parabolic subgroup P is maximal. Then we have
Mα = G, and W (M) is either trivial or of order 2.

Remark 4.0.16. (1) The groups W (M,O), WO, and R(O) are either trivial or
of order 2. In particular, ΣO,µ is either empty or {α,−α}.

(2) For G = G2, if σ ̸≃ σ∨, then W (M,O) = 1. It suffices to only check the case
where σ ≃ σ∨.

In general, if W (M,O) = 1, then the parabolically induced representation
is irreducible, so we do not need to work with the case. In the case of G2, the
condition W (M,O) ̸= 1 happens to be characterized by the condition that
σ is self-dual. See [Sha89] for more details.

4.0.17. If ΣO,µ ̸= ∅, thenW (M) ̸= {1} and the groupWO is generated by the unique
non-trivial element of W (M), say sM . Then we have WO =W (M,O) =W (M). In
particular, if ΣO,µ ̸= ∅, we have R(O) = {1}.

The condition ΣO,µ = ∅ is equivalent to the following

(4.0.18) µG(χ⊗ σ) ̸= 0 for any χ ∈ Xnr(M).

We recall the following Harish-Chandra theorem.

Theorem 4.0.19. (Harish-Chandra) [Sil79, 5.4.2.2 and 5.4.2.3] Let M be a Levi
subgroup of a maximal parabolic subgroup of G and let σ be a supercuspidal irreducible
representation of M .
(a) If µG(σ) = 0, then W (M) = {1, sM} ≠ {1}, and sMσ ≃ σ.
(b) Suppose W (M) ̸= {1}. Then µG(σ) ̸= 0 if and only if the representation iGP (σ)
is reducible. In this case, the representation iGP (σ) is the direct sum of two non-
isomorphic irreducible representations.

1i.e., ℓ(w) is the smallest integer ℓ ≥ 0 such that w is a product of ℓ generators sα.
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Corollary 4.0.20. Suppose W (M) ̸= {1}. Then WO = {1} if and only if, for any
χ ∈ Xnr(M), the representation iGP (χ⊗ σ) is reducible.

4.0.2. Some background on G2. In the case where G is the split G2, we obtain
more precise results than in previous sections. Let T be a maximal split torus in G.
Let R be the set of roots of G with respect to T . Let (ϵ1, ϵ2, ϵ3) be the canonical basis
of R3, equipped with the scalar product ( | ) for which this basis is orthonormal.
Then {α := ε1 − ε2, β := −2ε1 + ε2 + ε3} defines a basis of R, and

(4.0.21) R+ = {α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}
is a subset of positive roots in R. We have

(4.0.22) (α|α) = 2, (β|β) = 6 and (α|β) = −3.
Hence α is a short root, while β is a long root.

4.0.23. As in [Mui97], we fix an isomorphism:

ηα : T
∼−−→ F× × F×(4.0.24)

t 7−→ ((2α+ β)(t), (α+ β)(t)).(4.0.25)

Under this identification we have

(4.0.26) α∨(a) = η−1
α (a, a−1) and β∨(a) = η−1

α (1, a) for any a ∈ F×.

Let G∨ be the dual group of G over C, obtained via an identification of the roots of
G∨ with the coroots of G2 and vice versa. Then G∨ is a complex reductive group
of type G2, with simple roots α∨ and β∨. Note that α∨ (resp. β∨) is the long
(resp. short) root of G∨. Consider the torus T∨ dual to T . Then T∨ is a maximal
torus of G∨. We fix an isomorphism:

ηβ∨ : T
∼−−→ C× × C×(4.0.27)

t 7−→ ((α∨ + 2β∨)(t), (α∨ + β∨)(t)).(4.0.28)

We have

(4.0.29) α∨(a) = η−1
β∨ (1, a) and β∨(a) = η−1

β∨ (a, a
−1) for any a ∈ F×.

4.0.30. For each root γ ∈ R(G), we fix root group homomorphisms xγ : F → G and
Z-homomorphisms ζγ : SL2(F )→ G as in [BT72, (6.1.3) (b)]. We have
(4.0.31)

xγ(u) = ζγ

(
1 u
0 1

)
, x−γ(u) = ζ−γ

(
1 0
u 1

)
and γ∨(t) = ζγ

(
t 0
0 t−1

)
.

For γ ∈ {α, β}, let Pγ be the maximal standard parabolic subgroup of G generated
by γ. Let Mγ be the centralizer of the image of (γ′)∨ in G, where γ′ is the unique
positive root orthogonal to γ, i.e.

(4.0.32) γ′ :=

{
3α+ β if γ = α,

3α+ 2β if γ = β.

Then Mγ is a Levi factor for Pγ . Moreover, Mα and Mβ are representatives of the
two conjugacy classes of maximal Levi subgroups of G.
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We extend ζγ : SL2(F )→Mγ to an isomorphism ζγ : GL2(F )→Mγ by

(4.0.33) ζγ

((
t 0
0 1

))
:= ζγ′

((
t 0
0 t−1

))
, for t ∈ F×.

Then the restriction of ζ−1
γ to T coincides with the isomorphism

(4.0.34) ηγ : T → F× × F×,

where ηα has been defined in (4.0.24), and

(4.0.35) ηβ : t 7→ ((α+ β)(t), α(t)).

4.1. Explicit Hecke algebra parameters.

4.1.1. The long root case. Let ψ be a fixed nontrivial additive character of F , and
ψ be the dual of ψ. Assume for now the Levi factor M of P = MN is generated
by the long root of G. Let σ be an irreducible unitary supercuspidal representation
of M . We denote by ω := ωσ the central character of σ. Let L/F be a quadratic
extension. Let χ be a character of L×. Let χ′ be the conjugate of χ, i.e. χ′(a) = χ(a).
Let Π(σ) denote the Gelbart-Jacquet lift of σ as defined in [GJ78]. Our notations
follow [Sha89]. The Plancherel measure µ(sα̃, σ) has the following four possibilities
([AEF+21]).

4.1.1. Case I. If ω is unramified, and if σ = σ(τ) with τ = IndWF
WL

χ, with χ2χ′

unramified, then

µ(sα̃, σ) = γ(G/P )2q
n(ω)+n(σ×Π(σ))−n(σ)
F

(1− ω(ϖ)q−2s
F )(1− ω−1(ϖ)q2sF )

(1− ω−1(ϖ)q−1+2s
F )(1− ω(ϖ)q−1−2s

F )

(4.1.2)

·
(1− χ2χ′−1(ϖL)q

−s
L )(1− χ−2χ′(ϖL)q

s
L)

(1− χ2χ′−1(ϖL)q
−1−s
L )(1− χ−2χ′(ϖL)q

−1+s
L )

(4.1.3)

Comparing (4.1.2) with the Plancherel formula in (4.0.9), we have

(4.1.4)

{
Xα(s) = ω(ϖF )q

−2s
F

Xα(s) = −χ2χ′−1(ϖL)q
−s
L ,

which implies that

(4.1.5) ω(ϖF )q
−2s
F + χ2χ′−1(ϖL)q

−s
L = 0.

Since qL = qf(L/F ), (4.1.5) only has a solution when f(L/F ) = 2 and

(4.1.6) ω(ϖF ) + χ2χ′−1(ϖL) = 0,

which is satisfied in our case. In particular, we have

(4.1.7) qα = qF , qα∗ = qL = q
f(L/F )
F .

Therefore we have

(4.1.8)
λ(α) = log(qαqα∗)/ log(qF ) = 1 + f(L/F ),

λ∗(α) = | log(qαq−1
α∗ )/ log(qF )| = |1− f(L/F )|.
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Hence the parameters for the extended affine Hecke algebra in this case are q
1+f(L/F )
F

and q
|1−f(L/F )|
F .

4.1.9. Case II. If ωσ is ramified and σ = σ(τ) with τ = IndWF
WL

χ, and χ2χ′ unram-
ified,
(4.1.10)

µ(sα̃, σ) = γ(G/P )2q
n(σ×Π(σ))−n(σ)
F

(1− χ2χ′−1(ϖL)q
−s
L )(1− χ−2χ′(ϖL)q

s
L)

(1− χ2χ′−1(ϖL)q
−1−s
L )(1− χ−2χ′(ϖL)q

−1+s
L )

We compare (4.1.10) to the Plancherel formula (4.0.9) and obtain

(4.1.11) qα∗ = 1, qα = qL = q
f(L/F )
F

Recall the definition of Xα as

(4.1.12) Xα(χ) := χ(h∨α)

where χ ∈ Xnr(M)/Xnr(M,σ). Since the map ψs : m 7→ |det(m)|sF is an unramified
character of M , we have

(4.1.13) Xα(ψs) = (χ2χ′−1)(ϖL)q
−s
L

Recall from (4.0.11) that

(4.1.14) q
λ(α)
F = qαqα∗ ∈ R>1.

Thus by (4.1.11), we have q
λ(α)
F = qL = q

f(L/F )
F , where f(L/F ) is the residue degree

and is thus 1 if L/F is ramified, and 2 if L/F is unramified. In particular

(4.1.15) λ(α) = f(L/F ), λ∗(α) = f(L/F ).

Note that for w ∈W (M,O), one may check that

(4.1.16) w(Xα) = Xw(α)

Since w(α) = α for w ∈ W (M,O) when G = G2, (4.1.16) is simply w(Xα) = Xα.
On the other hand, by [Sol21, Prop 1.1] we have

wXα(χ) = w(Xα(χ)) = w(χ(h∨α)) = χ(w(h∨α)) = χ(h∨w(α)) = χ(h∨α) = Xα(χ)

Thus wXα = Xα = Xw(α). This reduces to check, in the long root case, that

(4.1.17) s2α+β(χ
2χ′−1(ϖL)q

−s
L ) = χ2χ′−1(ϖL)q

−s
L

Since Σ∨
O = {1, 2α+ β} in the long root M =Mβ case, we have

(4.1.18) W (Σ∨
O) = {1, s2α+β}.

Thus the Iwahori-Hecke algebra of W (Σ∨
O), as defined in (4.0.13), is given by

(4.1.19) H(W (Σ∨
O), q

λ
F ) =

{
H({1, s2α+β}, qF ), L/F is ramified

H({1, s2α+β}, q2F ), L/F is unramified

Therefore, the affine Hecke algebra in this case is given by

(4.1.20) Haff(M
β) = H({1, s2α+β}, q

f(L/F )
F )⋉C[O]
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4.1.21. Case III. If ω is unramified and σ ̸= σ(τ) or χ2χ′ is ramified,
(4.1.22)

µ(sα̃, σ) = γ(G/P )2q
n(ω)+n(σ×Π(σ))−n(σ)
F

(1− ω(ϖ)q−2s
F )(1− ω−1(ϖ)q2sF )

(1− ω−1(ϖ)q−1+2s
F )(1− ω(ϖ)q−1−2s

F )

In this case, we have

(4.1.23)
Xα(s) = ω(ϖ)q−2s

F
qα∗ = 1, qα = qF

Thus λ(α) = 1 and λ∗(α) = 1. The parameters in this case are simply qF .

4.1.24. Case IV. If ω ramified and σ ̸= σ(τ) or χ2χ′ is ramified,

(4.1.25) µ(sα̃, σ) = γ(G/P )2q
n(σ×Π(σ)))−n(σ)
F

In this case, we have

(4.1.26) qα = 1, qα∗ = 1

Thus λ(α) = 0 and λ∗(α) = 0. Thus the parameters in this case are trivial.

4.1.2. The short root case. Now we give the explicit computation in the short
root case. Assume the Levi factor M of P = MN is generated by the short root
of split G2. Let σ be an irreducible unitary supercuspidal representation of M . Let
ω = ωσ be its central character. Then by [Sha91, Proposition 6.2] the Plancherel
measure µ(sα̃, σ) is given by the formula
(4.1.27)

µ(sα̃, σ) =

γ(G/P )2q
n(σ)+n(σ⊗ω)
F

(1−ω(ϖ)q−2s
F )(1−ω(ϖ)−1q2sF )

(1−ω(ϖ)q−1−2s)(1−ω(ϖ)−1q−1+2s
F )

if ω is unramified

γ(G/P )2q
n(σ)+n(ω)+n(σ⊗ω)
F otherwise

Here n(σ), n(ω) and n(σ ⊗ ω) are the corresponding conductors.

4.1.28. Case I. If ω is unramified,

(4.1.29) µ(sα̃, σ) = γ(G/P )2q
n(σ)+n(σ⊗ω)
F

(1− ω(ϖ)q−2s
F )(1− ω(ϖ)−1q2sF )

(1− ω(ϖ)q−1−2s
F )(1− ω(ϖ)−1q−1+2s

F )

Comparing (4.1.29) with (4.0.9) implies that

(4.1.30) qα = qF , qα∗ = 1

Since χs is an unramified character of M , we have

(4.1.31) Xα(χs) = ω(ϖ)q−2s
F .

Recall from (4.0.11) that q
λ(α)
F = qαqα∗ ∈ R>1. Thus by (4.1.30), we have q

λ(α)
F = qF

and thus λ(α) = 1 and λ∗(α) = 1. Note that for w ∈W (M,O), one may check that

(4.1.32) w(Xα) = Xw(α).

Since w(α) = α for w ∈ W (M,O) for G = G2, (4.1.32) is simply w(Xα) = Xα. On
the other hand, by [Sol21, Prop 1.1] we have
(4.1.33)

wXα(χ) = w(Xα(χ)) = w(χ(hα)) = χ(w(hα)) = χ(hw(α)) = χ(hα) = Xα(χ).
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Thus wXα = Xα = Xw(α). Since Σ∨
O = {3α + 2β} in the short root M = Mα case

(see [Sha91, p.389]), we have

(4.1.34) W (Σ∨
O) = {1, s3α+2β}

Therefore we have the affine Hecke algebra

(4.1.35) Haff(Mα) = H({1, s3α+2β}, qF )⋉C[O].

4.1.36. Case II. In the other case,

(4.1.37) µ(sα̃, σ) = γ(G/P )2qn(σ)+n(ω)+n(σ⊗ω)

Comparing (4.1.37) and (4.0.9) gives us

(4.1.38) qα = 1, qα∗ = 1.

Therefore we have qλF = 1 and thus λ(α) = 0 and λ∗(α) = 0. Therefore the affine
Hecke algebra in this case is given by

(4.1.39) Haff(Mα) = H({1, s3α+2β}, 1)⋉C[O].

Remark 4.1.40. The computations of Hecke algebras with explicit parameters in
this section will be collected into tables in §4.2.2.

4.2. Intertwining algebras.

4.2.1. For b ∈ F×/F×2, let Ub(1, 1) be the quasi-split unitary group, and Ub(2) the

compact unitary group in two variables in F (
√
b). We write F×/F×2 = {1, ε,ϖ, εϖ},

and the possible unitary groups in 2 variables are:

Uε(1, 1), Uε(2), Uϖ(1, 1), Uϖ(2), Uεϖ(1, 1), Uεϖ(2).

The group Uϵ(1, 1) is an unramified group. The group Uϖ′(1, 1) is ramified, where
ϖ′ ∈ {ϖ, εϖ}.

4.2.2. We now classify the twisted Levi sequences in G2 (up to conjugacy) for M =
Mγ with γ ∈ {α, β}:

(1) Essentially depth zero case: If ρΣM
is an essentially depth-zero supercuspidal

type on M , then ΣM is of the form (M,y, ϕ, r, ρM ) (hence in particular
M0 = M), where KΣM

= My,0 ≃ GL2(oF ) is a maximal compact subgroup
of GL2(F ) and r = depth(ρΣM

) is an integer. If r = 0, we may assume that
ϕ = 1 without loss of generality.

(a) G⃗ = (G) (here G0 = G, it is a depth zero case: r = 0),

(b) G⃗ = (M0,G) (here G0 = M = M0 and r ̸= 0).
(2) Positive depth cases [AEF+21]:

(a) G⃗ = (Uε(1, 1),G),

(b) G⃗ = (Uϖ′(1, 1),G), with ϖ′ ∈ {ϖ, εϖ},
(c) G⃗ = (M0,G),

(d) G⃗ = (M0,M,G),
where M0 is a torus in G0.
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When M = Mγ , we have three possibilities for M0, denoted Tγ,ε, Tγ,ϖ and Tγ,ϖ. If
ϕ0 has trivial restriction to Z◦

M , then it can be extended to to a character of Ub and
we use the same notation ϕ0 to denote the extended character.

Let G0
y denote the reductive quotient of G0

y. Let ϖ
′ ∈ {ϖ, εϖ}. We have

(4.2.3) G0
y =

{
U(1, 1) if G0 = Uε(1, 1),

SO2 if G0 = Uϖ′(1, 1).

Remark 4.2.4. The central character ωσ of σ can be either ramified or unramified.
It is unramified if and only if ωσ0 is trivial. When ωσ is ramified, ωσ0 is quadratic.

Lemma 4.2.5. We have

(4.2.6) W s
G ≃W s0

G0 .

Proof. The representation σ is regular and p is good for G, i.e. p ̸= 2, 3 and does
not divide the order (= 1) of the fundamental group of Gder. Hence Lemma 2.2.9
applies and gives the desired isomorphism. □

4.2.1. The intertwining algebras of types attached to G0.

4.2.7. The case G0 = M0. It occurs in both the essentially depth-zero case with
r ̸= 0 and in the positive depth cases. We have two possibilities for M0: either
M0 ≃ GL2(F ) orM

0 is a torus. In both cases, the algebraH(G0, ρD0) = H(M0, ρD0)
is commutative by [BK98, 5.5,5.6].

4.2.8. The case G0 = Uε(1, 1). If W s0

G0 = {1}, then H(G0, ρD0) is commutative,

as seen in Remark 2.1.60. From now on we suppose that W s0

G0 ̸= {1}. Let a 7→ a be
the non-trivial element of Gal(L/F ). Set

(4.2.9) w0 :=

(
0 1
1 0

)
, w1 :=

(
0 ϖ−1

L
ϖL 0

)
, and P :=

(
o×L oL
pL o×L

)
∩G0.

Recall that ρ̃D0 denotes the contragredient representation of ρ0. By [Bad20, §3.1],
the Iwahori-Matsumoto presentation ofH(Uε(1, 1), ρD0) is given by: H(Uε(1, 1), ρD0)
is the space spanned by functions

(4.2.10) Twi : G
0 → EndG(Vρ̃D0

), for i ∈ {0, 1},
satisfying

(4.2.11) Twi(pgp
′) = ρ̃D0(p)Twi(g)ρ̃D0(p′), where p, p′ ∈ P and g ∈ G0.

Here Twi is supported on PwiP, and satisfies the quadratic relation

(4.2.12) (Twi − qF )(Twi + 1) = 0.

One can then deduce the Bernstein presentation of H(Uε(1, 1), ρD0) using [Lus89,

§3]. In particular, we have q
λ(α)
F = qF .

4.2.13. The case G0 = Uϖ′(1, 1). Let ϖ′ ∈ {ϖ, εϖ}. Since Uϖ′(1, 1) is ramified,
by [Bad20, §5.1.1], the algebraH(Uϖ′(1, 1), ρD0) has trivial parameters withR(O0) ̸=
1 and WO0 = 1 if ωσ|o×F ̸= 1; and the Hecke algebra has parameter qF otherwise, in

which case WO0 ̸= 1 and R(O0) = 1.
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4.2.2. The intertwining algebras of types attached to G.

4.2.14. Long root essentially depth zero case.

(a) r = 0, χ3 = 1 case and σ = σ(τ) for τ = IndWF
WL

χ:

We have ρM self-dual, σ and τ correspond via LLC for GL2(F ). Since σ has depth
zero, L/F is unramified (so e(L/F ) = 1 and f(L/F ) = 2). We have the following
four cases:

• The central character ωσ = 1 and χ2χ′−1 unramified. This corresponds to
Case 4.1.1, in which case the Plancherel formula has a zero, and the Hecke
algebra is affine non-commutative, with parameters q3F and qF . We have
WO ̸= 1 and R(O) = 1. Since G = G0 in this case, WO = WO0 and
R(O) = R(O0).
• The central character ωσ ̸= 1 is ramified, and χ2χ′−1 is unramified. This
corresponds to Case 4.1.9, in which case the Plancherel formula has a zero,
and the Hecke algebra is affine non-commutative, with parameters q2F . We
have WO ̸= 1 and R(O) = 1. Since G = G0 in this case, WO = WO0 and
R(O) = R(O0).
• The central character ωσ = 1 and χ2χ′−1 ramified. This corresponds to
Case 4.1.21, in which case the Plancherel formula has a zero, and the Hecke
algebra is affine non-commutative, with parameter qF . We have WO ̸= 1 and
R(O) = 1. Since G = G0 in this case, WO =WO0 and R(O) = R(O0).
• The central character ωσ ̸= 1 is ramified, and χ2χ′−1 is ramified. This
corresponds to Case 4.1.24, in which case the Plancherel formula has no
zero, and the Hecke algebra is affine commutative of the form C[R(O)] plus
the translation part C[O]. We have WO = 1 (and we don’t know what R(O)
is in this case). Since G = G0 in this case, WO =WO0 and R(O) = R(O0).

(b) r = 0 and σ ̸= σ(τ): We have σ = σ(τ ′) where τ ′ = IndWF
WL

ζ for ζ such

that ζ−1 = ζ (the Galois conjugate). Since σ is still depth zero, we still have L/F
unramified.

• The central character ωσ = 1. This corresponds to Case 4.1.21, in which
case the Plancherel formula has a zero, and the Hecke algebra is affine non-
commutative, with parameters qF . We have WO ̸= {1} and R(O) = {1}.
Since G = G0 in this case, WO =WO0 and R(O) = R(O0).
• The central character ωσ ̸= 1 ramified. This corresponds to Case 4.1.24, in
which case the Plancherel formula has no zero, and the Hecke algebra is affine
commutative of the form C[R(O)] plus the translation part C[O]. we have
WO = {1} (and we don’t know what R(O) is in this case). Since G = G0 in
this case, WO =WO0 and R(O) = R(O0).

(c) r ̸= 0 essentially depth zero case: Recall from §4.2.7 that G0 =M =M0. Thus
we have

W s0

G0 ⊂ NG0(M0)/M0 = NM (M)/M = {1}.
By Lemma 4.2.5, we get W s

G = {1}. In this case, W (M,O) = W (M0,O0) = 1.
Thus the algebras H(G, ρ) and H(G0, ρ0) are both of the form C[O], and they are
isomorphic.
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4.2.15. Table for long root essentially depth zero cases.

r D ωσ χ2χ′−1 R(O) R(O0) L/F #Xnr(M,σ) WO WO0 H(G, ρ) H(G0, ρ0)

r = 0 ((G,M), (y, ι), (My,0, ρM ))

= 1
unramified
χ cubic

= 1 = 1 unramified 2 ̸= 1 ̸= 1 non-comm, q3F , qF non-comm, q3F , qF

̸= 1
unramified
χ cubic

= 1 = 1 unramified 2 ̸= 1 ̸= 1 non-comm, q2F , q
2
F non-comm, q2F , q

2
F

= 1
ramified
χ cubic

= 1 = 1 unramified 2 ̸= 1 ̸= 1 non-comm, qF , qF non-comm, qF , qF

̸= 1
ramified
χ cubic

∗ ∗ unramified 2 = 1 = 1 C[R(O)]⋉C[O] C[R(O)]⋉C[O]

= 1 χ not cubic
N/A

= 1 = 1 unramified 2 ̸= 1 ̸= 1 non-comm,qF ,qF non-comm,qF ,qF
̸= 1 ∗ ∗ unramified 2 = 1 = 1 C[R(O)]⋉C[O] C[R(O)]⋉C[O]

r ̸= 0 (((M,G),M), (y, ι), (r, 0), (ϕ, 1), (My,0, ρM )) ̸= 1 N/A = 1 = 1 unramified 2 = 1 = 1 C[O] C[O]

Table 4.2.15.

4.2.16. Long root positive depth case
(a) Uϖ′(1, 1) case: σ = σ(τ ′) ̸= σ(τ), where τ ′ is induction of some quadratic
character. (Note that the cubic character only occurs in depth zero, because we
are assuming p ̸= 2, 3. There are two possibilities, ϕ0|Z0

M
could be either trivial or

non-trivial:

• When ϕ0|Z0
M

= 1 unramified, since σ = σ(τ ′) ̸= σ(τ), this corresponds to

Case 4.1.21, in which case the Plancherel formula has a zero, and the Hecke
algebra is affine non-commutative, with parameters qF . We have WO ̸= {1}
and R(O) = 1. By 4.2.13, the Hecke algebra for G0 also has qF parameter.
Thus we have WO0 ̸= {1} and R(O0) = 1.
• When ϕ0|Z0

M
= sign character ramified, since σ = σ(τ ′) ̸= σ(τ), this cor-

responds to Case 4.1.24, in which case the Plancherel formula has no zero,
and the Hecke algebra is of the form C[R(O)] ⋉ C[O]. We have WO = {1}.
By 4.2.13, we have WO0 = {1} and R(O0) ̸= 1. Thus R(O) ∼= R(O0) ̸= 1 by
Lemma 2.2.9.

(b) Uϵ(1, 1) case: σ = σ(τ ′) ̸= σ(τ), where τ ′ is the induction of some quadratic
character.

• When ϕ0|Z0
M

= 1 unramified, since σ = σ(τ ′) ̸= σ(τ), this corresponds to

4.1.21, in which case the Plancherel formula has a zero, and the Hecke algebra
for G is affine non-commutative, with parameters q. We have WO ̸= {1} and
R(O) = {1}. From 4.2.8, we have WO0 ̸= {1} and R(O0) = {1}. Note that
the cardinality of Xnr(M,σ(τ ′)) is 2 (see Remark 2.1.10).

4.2.17. Table for long root positive depth cases. We summarize the above in
the following table:
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M0 ϕ0|Z0
M

ϕ1 G⃗ R(O) R(O0) L/F #Xnr(M,D) WO WO0 H(G, ρ) H(G0, ρ0)

Tβ,ϖ′

= sign
character

̸= 1 (Uϖ′(1, 1), G) ̸= 1 ̸= 1 ramified 1 = 1 = 1 C[R(O)]⋉C[O] C[R(O)]⋉C[O]

̸= 1
̸= sign character

= 1 (M0, G) = 1 = 1 ramified 1 = 1 = 1 C[O] C[O0]

both ̸= 1 (M0,M,G) = 1 = 1 ramified 1 = 1 = 1 C[O] C[O0]

Tβ,ε

= 1 = 1 (Uε(1, 1), G) = 1 = 1 unramified 2 ̸= 1 ̸= 1
non-comm.
qF , qF

non-comm.
qF , qF

̸= 1 = 1 (M0, G) = 1 = 1 unramified 2 = 1 = 1 C[O] C[O0]

both ̸= 1 (M0,M,G) = 1 = 1 unramified 2 = 1 = 1 C[O] C[O0]

Table 4.2.17.

4.2.18. Short root essentially depth zero case.
(a) r = 0, there are only two cases:

• When ρM |Z◦
M

= 1, this corresponds to the central character being unramified
case, and in this case the Plancherel formula in 4.1.28 has a zero. Thus
thus WO ̸= 1 and thus R(O) = 1. In this case the Hecke algebra is non-
commutative, and the q-parameter is just q = qF . The case for G0 again
follows from 4.2.13.
• When ρM |Z◦

M
̸= 1, this corresponds to the central character being ramified

case, and in this case the Plancherel formula in 4.1.36 has no zero, and
thus WO = {1}. In this case the Hecke algebra is commutative, and the
q-parameter is trivial.

(b) r ̸= 0 essentially depth zero case. The same argument as in §4.2.14(c) applies.

4.2.19. Table for short root essentially depth zero cases.
r D ωσ R(O) R(O0) L/F #Xnr(M,σ) WO WO0 H(G, ρ) H(G0, ρ0)

r = 0 ((G,M), (y, ι), (My,0, ρM ))
= 1 = 1 = 1 unramified 2 ̸= 1 ̸= 1 non-comm, qF , qF non-comm, qF , qF
̸= 1 ∗ ∗ unramified 2 = 1 = 1 C[R(O)]⋉C[O] C[R(O)]⋉C[O]

r ̸= 0 (((M,G),M), (y, ι), (r, 0), (ϕ, 1), (My,0, ρM ))
= 1

= 1 = 1 unramified 2 = 1 = 1 C[O] C[O0]̸= 1

Table 4.2.19.

4.2.20. Short root positive depth case.
(a) G0 = Uϖ′(1, 1) case:

• When ϕ0|Z0
M

= 1, the Plancherel formula on the G2 side in 4.1.28 has a

zero, and thus WO ̸= {1} and thus R(O) = {1}. In this case the Hecke
algebra H(G, ρ) is non-commutative, and the q-parameter is just q = qF . By
Lemma 2.2.9, we have W (M0,O0) ̸= 1, and since WO0 ̸= 1 by 4.2.13, we
have R(O0) = 1. Moreover, the Hecke algebra H(G0, ρ0) has parameter qF
by 4.2.13.
• When the central character (of GLshort

2 ) ϕ0|Z0
M

= sign character ̸= 1 is ram-

ified, the Plancherel formula on the G2 side in 4.1.36 has no zero, and thus
WO = {1}. In this case the Hecke algebra H(G, ρ) = C[R(O)] ⋉ C[O] has
trivial q-parameter. On the other hand, since I(σ) is reducible by [Sha91,
Proposition 6.2], we have Rσ ̸= 1. Since Wσ ⋊Rσ =W (M,σ) ⊆W (M,O) =
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WO ⋊ R(O) and WO = 1, we have Rσ ⊆ R(O) and thus R(O) ̸= 1. By
Lemma 2.2.9, we also have R(O0) ̸= 1 since WO0 = 1 by 4.2.13.

(b) G0 = Uϵ(1, 1) case: When ϕ0|Z0
M

= 1 the Plancherel formula on the G2 side in

4.1.28 has a zero, and thus WO ̸= {1} and thus R(O) = {1}. In this case the Hecke
algebra H(G, ρ) is non-commutative, and the q-parameter is just q = qF . From 4.2.8,
we have WO0 ̸= {1} and R(O0) = {1}.
4.2.21. Table for short root positive depth cases. We summarize the above in
the following table:

M0 ϕ0|Z0
M

ϕ1 G⃗ R(O) R(O0) L/F Xnr(M,σ) WO WO0 H(G, ρ) H(G0, ρ0)

Tα,ϖ′

= 1 = 1
(Uϖ′(1, 1), G)

= 1 = 1 ramified 1 ̸= 1 ̸= 1 non-comm, qF non-comm, qF
= sign
character

̸= 1 ̸= 1 ̸= 1 ramified 1 = 1 = 1 C[R(O)]⋉C[O] C[R(O)]⋉C[O0]

̸= 1
̸= sign character

= 1 (M0, G) = 1 = 1 ramified 1 = 1 = 1 C[O] C[O0]

both ̸= 1 (M0,M,G) = 1 = 1 ramified 1 = 1 = 1 C[O] C[O0]

Tα,ε

= 1 = 1 (Uε(1, 1), G) = 1 = 1 unramified 2 ̸= 1 ̸= 1
non-comm.

qF

non-comm.
qF

̸= 1 = 1 (M0, G) = 1 = 1 unramified 2 = 1 = 1 C[O] C[O0]

both ̸= 1 (M0,M,G) = 1 = 1 unramified 2 = 1 = 1 C[O] C[O0]

Table 4.2.21.

4.2.22. We keep the notations of §2.1. The following theorem establishes the va-
lidity, for G2, of a generalization of a conjecture of Yu’s [Yu01, Conjecture 0.2] for
supercuspidal types, which was proved by Ohara in [Oha21]. The following result
shows that a stronger version of Theorem 2.2.14(2) holds for the group G2.

Theorem 4.2.23. Let p ̸= 2, 3. The algebras Hs(G) := EndG(Π
s
G) and Hs0(G0) :=

EndG0(Πs0

G0) are isomorphic.

Proof. By Proposition 2.1.58, it is equivalent to show that the algebras H(G, ρD) and
H(G0, ρD0) are isomorphic. The latter can be read directly from the tables 4.2.15,
4.2.17, 4.2.19 and 4.2.21. □

The following corollary is a stronger version of Lemma 4.2.5 for G = G2.

Corollary 4.2.24. The groups R(O) ≃ R(O0) and WO ≃WO0.

Proof. This can be read directly from our tables 4.2.15, 4.2.17, 4.2.19 and 4.2.21,
with explanations given in the sections immediately preceding the tables. □

4.2.25. On Lusztig’s conjecture. Let Ls : W s
aff → N be the weight function2 on

W s
aff defined by

(4.2.26) Ls(sα) := λ(α) and Ls(s′α) := λ∗(α).

In [Lus20, §1.a], Lusztig made the following conjecture.

2i.e., Ls(w) > 0 for all w ∈ W s
aff −{1}, and Ls(ww′) = Ls(w) +Ls(w′) for any w,w′ ∈ W s

aff such
that ℓ(ww′) = ℓ(w) + ℓ(w′).
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Conjecture 4.2.27. (Lusztig) The function Ls on the affine Weyl group W s
aff is in

the collection of weight functions described in [Lus91, Lus95, Lus02].

Many cases of Conjecture 4.2.27 have been proved in [Sol21], e.g. for principal
series representations of G.

Theorem 4.2.28. Conjecture 4.2.27 holds for the group G2.

Proof. It follows from Tables 4.2.15, 4.2.17, 4.2.19 and 4.2.21. □

5. Applications to other groups

Let N be a positive integer. Let J ′
N denote the N×N -matrix

 1
1

.
.

.
1

. When

N = 2n, let JN :=
(

0 In
− In 0

)
.

5.1. Symplectic group. The F -rational points of the symplectic group Sp2n are
given by

(5.1.1) Sp2n(F ) =
{
g ∈ GL2n(F ) : tgJ2ng = J2n

}
.

Let P be the maximal parabolic subgroup of GSp2n(F ), consisting of matrices whose
lower left n× n-block is zero. The Levi factor of P is isomorphic to GLn(F ).

5.2. General symplectic group. The F -rational points of the algebraic group
GSp2n are given by

(5.2.1) GSp2n(F ) =
{
g ∈ GL2n(F ) : tgJ2ng = µn(g)J2n, µn(g) ∈ F×} .

Let P be the maximal parabolic subgroup of GSp2n(F ), consisting of matrices whose
lower left n×n-block is zero. The Levi factor of P is isomorphic to GLn(F )×GL1(F ).

5.3. Special orthogonal group. The F -rational points of the algebraic group SON

are given by

(5.3.1) SON (F ) =
{
g ∈ GLN (F ) : tgJ ′

Ng = J ′
N , det(g) = 1

}
.

Let P be the maximal parabolic subgroup of SON (F ), consisting of matrices whose
lower left N ×N -block is zero. The Levi factor of P is isomorphic to GLn(F ), where
N = 2n+ 1 or N = 2n.

The LLC for GLn(F ), established in [HT01, Hen00, Sch13], shows that the L-
packets are always singletons in this case. Thus, by Proposition 1.2.5, the properties
(1) and (2) are satisfied in the three cases above.



HECKE ALGEBRAS FOR p-ADIC GROUPS 37

References

[ABPS17a] Anne-Marie Aubert, Paul Baum, Roger Plymen, and Maarten Solleveld, Conjectures
about p-adic groups and their noncommutative geometry, Around Langlands correspon-
dences (Orsay, 2015), Contemp. Math., vol. 691, Amer. Math. Soc., 2017, pp. 15–51.

[ABPS17b] , Hecke algebras for inner forms of p-adic special linear groups, J. Inst. Math.
Jussieu 16 (2017), no. 2, 351–419.

[ABPS17c] , The principal series of p-adic groups with disconnected center, Proc. London
Math. Soc. 114 (2017), 798–854.

[AEF+21] Anne-Marie Aubert, Melissa Emory, Maria Fox, Ju-Lee Kim, and Yujie Xu, Notes from
WIN5.

[AM21] Jeffrey Adler and Manish Mishra, Regular Bernstein blocks, J. reine angew. Math.
(2021), no. 775, 71–86.

[AMS17] Anne-Marie Aubert, Ahmed Moussaoui, and Maarten Solleveld, Affine Hecke algebras
for Langlands parameters, arXiv:1701.03593 (2017).

[AMS18] , Generalizations of Springer correspondence and cuspidal Langlands parameters,
Manuscripta Math. 157 (2018), 121–192.

[Art13] James Arthur, The endoscopic classification of representations: orthogonal and sym-
plectic groups, Colloquium Publications, vol. 61, American Mathematical Society, 2013.

[AX22] Anne-Marie Aubert and Yujie Xu, The explicit local langlands correspondence for g2,
2022.

[Bad20] Peter Badea, Hecke algebras for covers of principal series Bernstein components in
quasisplit unitary groups over local fields, PhD. thesis Radboud Universiteit Nijmegen
(2020).

[Ber84] J. N. Bernstein, Le “centre” de Bernstein, Representations of reductive groups over a
local field, Travaux en Cours, Hermann, Paris, 1984, Edited by P. Deligne, pp. 1–32.
MR 771671

[BK93] Colin Bushnell and Philip Kutzko, The admissible dual of GL(N) via compact open sub-
groups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton,
N.J., 1993.

[BK98] Colin J. Bushnell and Philip C. Kutzko, Smooth representations of reductive p-adic
groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), no. 3, 582–
634. MR 1643417
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2017, pp. 337–357.

[Lus84] George Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math.
(1984), no. 75, 205–272.

[Lus89] , Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989),
no. 3, 599–635. MR 991016

[Lus91] , Intersection cohomology methods in representation theory, Proc. Int. Congr.
Math. (Kyoto 1990), Math. Soc. Japan, Springer Verlag, 1991, pp. 155–174.

[Lus95] , Classification of unipotent representations of simple p-adic groups, Int. Math.
Res. Notices (1995), no. 11, 517–589.

[Lus02] , Classification of unipotent representations of simple p-adic groups. ii, Repre-
sent. Theory (2002), no. 6, 243–289.

[Lus20] , Open problems on Iwahori-Hecke algebras, arXiv:2006.08535 (to appear in the
European Math.Soc. Newsletter) (2020).

[Mis19] Manish Mishra, Bernstein center of supercuspidal blocks, J. reine angew. Math. (2019),
no. 748, 297–304.

[Mou17a] Ahmed Moussaoui, Centre de Bernstein dual pour les groupes classiques, Representation
Theory (2017), no. 21, 172–246.

[Mou17b] , Proof of the Aubert-Baum-Plymen-Solleveld conjecture for split classical groups,
Around Langlands correspondences (Orsay, 2015), Contemp. Math., vol. 691, Amer.
Math. Soc., 2017, pp. 257–281.
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