All (possibly noncommutative) rings are assumed to have an identity element.

1. **Suppose \(V \) is a finite-dimensional vector space over a field \(F \). Let \(R = \text{End}(V) \) be the ring of linear maps from \(V \) to \(V \). Find all left ideals in \(\text{End}(V) \).**

 By easy facts from linear algebra, \(V \) is a simple module for \(R \). If \(\lambda \) is a nonzero linear functional on \(V \), we get an inclusion
 \[
 \phi^\lambda: V \hookrightarrow R, \quad v \mapsto T_v^\lambda
 \]
 where \(T_v^\lambda \) is the linear transformation
 \[
 T_v^\lambda(w) = \lambda(w)v.
 \]
 It’s clear that
 \[
 V^\lambda = \phi^\lambda(V) \subset R
 \]
 is a left ideal isomorphic to \(V \), since
 \[
 r \cdot T_v^\lambda = T_{r \cdot v}^\lambda.
 \]
 If \(\lambda_1, \ldots \lambda_n \) is a basis of \(V^* \), then the identification of linear transformations with matrices shows that
 \[
 R = V^{\lambda_1} \oplus V^{\lambda_2} \oplus \cdots \oplus V^{\lambda_n}
 \]
 as a left \(R \)-module. This is just the usual isomorphism
 \[
 R \simeq V^* \otimes_F V;
 \]
 the point is to say that it identifies \(R \) as a direct sum of \(n \) copies of the simple module \(V \).

 This identification provides a description of all \(R \)-submodules (that is, left ideals) \(I \subset R \): they correspond bijectively to \(F \)-subspaces \(W \subset V^* \),
 \[
 I = W \otimes_F V.
 \]
 Of course this correspondence respects inclusions.

 Another way to say the same thing (given the description of the maps \(\phi^\lambda \)) is that to each left ideal \(L \subset \text{End}(V) \) you can attach a subspace
 \[
 W^\perp = \{ v \in V \mid L \cdot v = 0 \} = \{ v \in V \mid \lambda(v) = 0 \mid \lambda \in W \}.
 \]
 Obviously the map \(L \mapsto W^\perp \) reverses inclusion.

2. **Prove that if \(V \) is finite-dimensional and nonzero, then \(R = \text{End}(V) \) is a simple ring.**

 Same argument proves that right ideals \(J \) in \(R \) correspond to subspaces \(E \subset V \),
 \[
 J = V^* \otimes E = \{ r \in R \mid r \cdot V \subset E \}.
 \]
Problem (1) shows that every nonzero left ideal I satisfies $I \cdot V = V$. If J is a right ideal not equal to R, then this problem shows that $J \cdot V \neq V$. Conclusion is that a nonzero two-sided ideal must be all of R.

3. Let $A = \mathbb{C}[x, \frac{d}{dx}]$, the ring of differential operators with polynomial coefficients. If $p \in \mathbb{C}[x]$ is a nonzero polynomial, prove that

$$\text{Ann}_A(p) = \{D \in A \mid Dp = 0\}$$

is a maximal left ideal in A. Find a maximal left ideal not of this form.

It's easy or well known that $M = \mathbb{C}[x]$ is a simple A-module; so the annihilator of every nonzero polynomial is a maximal left ideal. (That's what it means to be simple.) Each of these maximal ideals obviously contains $\frac{d^N}{dx^n}$ all sufficiently large N, and does not contain x^M for any M.

Among the linear functionals on M are the values of rth derivatives (of a polynomial) at zero. The span of these linear functionals (which is most naturally a right A-module) can be made into a left A module, using the antiautomorphism of A defined by

$$\left(\frac{x^n d^m}{dx^m}\right)^\vee = \frac{d^m}{dx^m} x^n,$$

$$[D \cdot \lambda](p) = \lambda(D^\vee p).$$

That is, if λ_r is the rth derivative,

$$\lambda_r(p) = \frac{d^r p}{dx^r}(0),$$

then

$$\left[\left(\frac{x^n d^m}{dx^m}\right) \cdot \lambda_r \right](p) = \lambda_r \left(\frac{d^m}{dx^m} x^n p\right) = \left(\frac{d^{m+r}}{dx^{m+r}} x^n p\right)(0),$$

which is some linear combination of λ_qs that I won’t try to compute.

The conclusion is that the λ_q span a simple A module. Therefore the annihilator of any nonzero derivative λ in this simple module must be a maximal left ideal. The formulas I didn’t compute make it clear that such a maximal left ideal contains x^M for all sufficiently large M (greater than the order of the derivative λ), and does not contain $\frac{dx^N}{dx^n}$ for any N. So these ideals are different from those constructed in the problem.

4. Prove that every maximal two-sided ideal is primitive.

By Zorn’s lemma, the maximal two-sided ideal I is contained in a maximal (proper) left ideal J. Then $M = R/J$ is a simple R-module, so $\text{Ann} M$ is primitive. Obviously $\text{Ann} M \supset I$ (since $I \subset J$), and $\text{Ann} M \neq R$ (since J is proper). Since I is maximal, it follows that $I = \text{Ann} M$.

5. Prove that if A is commutative, then every primitive ideal is maximal.

We more or less discussed this in class: any simple A-module is A/I, with I a maximal left ideal. If A is commutative, then it follows immediately that $I = \text{Ann} M$, so a primitive ideal is maximal.