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Abstract. The recent work [YZZ] completes a general Gross–Zagier formula

for Shimura curves. Meanwhile an arithmetic version of Gan–Gross–Prasad

conjecture proposes a vast generalization to higher dimensional Shimura va-
rieties. We will discuss the arithmetic fundamental lemma arising from the

author’s approach using relative trace formulae to this conjecture.

Contents

1. Introduction 1
2. Restriction problem: period and height 2
3. Gross-Zagier formula for Shimura curves 5
4. Relative trace formula 7
5. Arithmetic fundamental lemma 10
References 13

1. Introduction

In this survey article we discuss some global restriction problems for automor-
phic representations proposed by Gan–Gross–Prasad and their arithmetic version.
The global restriction problem is a generalization of a result of Waldspurger (among
other works). The arithmetic version is on certain algebraic cycles on unitary
Shimura varieties and it is a natural generalization of the Gross–Zagier formula
for modular and Shimura curves. It will have numerous arithmetic applications
such as to the Beilinson–Bloch conjecture which is a generalization of the Birch–
Swinnerton-Dyer conjecture. For the restriction problem, Jacquet–Rallis proposed
an approach using relative trace formula to attack the unitary case of Gan–Gross–
Prasad conjecture. Later on the author proposed a strategy to attack the arithmetic
version for unitary Shimura varieties. In this article, we will only discuss the first
step of this approach, namely, an arithmetic fundamental lemma which is an equal-
ity between certain intersection numbers and the first derivatives of some relative
orbital integrals. The fundamental lemma arising from Jacquet–Rallis’s approach
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2 WEI ZHANG

has been settled by Yun. The arithmetic fundamental lemma however remains
open except in some lower dimensional cases which were verified by the author by
explicit computations.

We outline the contents of the article. We will first describe the global re-
striction problems. Then we recall the joint work with X. Yuan and S. Zhang
on Gross–Zagier formula ([YZZ]) which serves as a prototype of the more gen-
eral arithmetic restriction problems (stated in e.g., [Zh4]). We then present the
relative trace formula approach to the restriction problems. In the last section we
state the intersection problem on unitary Rapoport–Zink spaces and the arithmetic
fundamental lemma.

Some important issues are untouched in this survey article. For example, we
choose only to present results of equivalence of non-vanishing of periods/heights
and L-values. An equality between them will be also crucial for further number
theoretical investigation. In the case of periods, Waldspurger’s formula ([Wa])
is a prototype and Ichino–Ikeda ([II]) proposed a refined version of the global
conjecture of Gan–Gross–Prasad ([GGP]). Some other important work related to
the questions in this survey include [I],[GJR1],[GJR2] etc..

Acknowledgement The author would like to thank Professor Shouwu Zhang
for some comments on an early version. The author thanks the Morningside Center
of Mathematics and Mathematical Sciences Center of Tsinghua University for their
hospitality where some part of the work was done.

2. Restriction problem: period and height

2.1. Automorphic period. We may start with a classical question. Let F
be a number filed and let A be the ring of adeles. Let G be a reductive group over
F , and let H ⊂ G be a (reductive) subgroup. Let ZG be the center of G and let
Z = H ∩ ZG. Let A0(G) be the space of cuspidal automorphic forms on G(A).
Then the automorphic H-period is defined by

`H : A0(G)→ C

φ 7→
∫

[H]

φ(h)dh.

where

[H] := Z(A)H(F )\H(A).

Let π be a cuspidal automorphic representation with an embedding π ⊂ A0(G).
For simplicity, we assume the multiplicity m(π) is one so that the embedding is
unique. We consider the restriction OF `H to π and the question we may ask is
when it does not vanish:

`H,π 6= 0 ?

One obvious obstruction for the nonvanishing of H-period is the nonvanishing
of the space of H-invariant linear functionals

`H,π ∈ HomH(A)(π,C) 6= 0.

Sometimes it is also necessary to consider a twisted version. Namely, we insert
a character of H(A) in the definition of H-period and we call the new integral `H,χ
the (H,χ)-period.

The subgroup H need not to be reductive but we will assume so since only
reductive subgroups will appear in all examples of this article.
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Example 2.1. This was a special case studied by Waldspurger ([?]) and revis-
ited by Jacquet ([J]). Let E/F be a quadratic extension of number fields. Let B
be a quaternion algebra over F together with an embedding E ⊂ B. We then the
induced embedding of torus T = E× into G = B×. For a cuspidal automorphic
representation π of G(A), the restriction problem is to determine when the toric
period `T,π does not vanish.

Example 2.2. The major example we will discuss is one of the restriction
problems of Gan–Gross–Prasad. Let E/F be a quadratic extension of number
fields. Let V be a(non-degenerate) Hermitian space and let W ⊂ V be a subspace
of codimension one. Denote by U(V ), U(W ) the unitary groups respectively with
an embedding U(W ) ⊂ U(V ). Then the restriction problem concerns the pair
G = U(W )×U(V ) and its subgroup H of the diagonal embedding of U(W ). Gan–
Gross–Prasad made a conjecture on when the period is non-zero in terms of the
central value of a suitable Rankin–Selberg L-function. Later we will recall Jacquet–
Rallis’s approach to this conjecture using relative trace formulae.

2.2. Heights of cycles on Shimura varieties. We now discuss the arith-
metic version of the global restriction problems. Suppose that both the reductive
group G and its subgroup H can define Shimura varieties and the Shimura data
are compatible so we have an embedding

ShH −→ ShG.

The Shimura variety ShG is a projective system ShG,K indexed by open compact
K ⊂ G(A∞). For simplicity we assume both are projective over a number field.
Otherwise we may take some smooth compactification. On the Shimura variety ShG

there is an action of G(A∞) where A∞ denotes the finite adeles. We then have a
cycle class map from the Chow group (with rational coefficient) to the cohomology
group

cl∗ : Ch∗(ShG)→ H2∗(ShG)

compatible with the G(A∞)-action. Here we may take as H2∗(ShG) any Weil coho-
mology with suitable coefficients. And the Chow group and cohomological group
are inductive limits of that of ShG,K indexed by open compact K ⊂ G(A∞). we
then have a two-step filtration on the Chow group

(?) 0 ⊂ Ch∗(ShG)0 ⊂ Ch∗(ShG)

where Ch∗(ShG)0 is the kernel of the cycle class map. For a G(A∞)-module π, we
are interested in the π-isotypical component

Ch∗(ShG)0[π] := HomG(A∞)(π,Ch∗(ShG)0)⊗ π

which will be naturally considered as a subspace of Ch∗(ShG)0.
According to a series of conjectures of Beilinson and Bloch on the filtration of

Chow groups of a smooth projective variety X defined over a filed k, Chi(X)Q has
a filtration of i+ 1 steps

• The j-th graded piece is “controlled” by H2i−j(X).
• the 0-th graded piece of this filtration is the image of the cycle class

map which is controlled by H2i(X) by the Hodge-type (or Tate-type)
conjecture for the corresponding Weil cohomology.
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Moreover, they conjecture that this filtration has only two steps if k is a number
field, namely given by (?) defined above! Assuming the conjecture of Beilinson
and Bloch, since our Shimura varieties are certainly defined over number fields,
the Ch∗(ShG)0 should be controlled by H2∗−1(ShG). This has the following conse-
quence:

For a G(A∞)-module π, the π-isotypical component Ch∗(ShG)0[π] is zero unless
H2∗−1(ShG)[π] 6= 0.

Now we assume further that

• The Shimura subvariety ShH is in the arithmetical middle dimension of
ShG, i.e.:

dim ShH =
1

2
(dim ShG − 1).

• The G(A∞)-equivariant exact sequence

0 −→ Ch∗(ShG)0 −→ Ch∗(ShG) −→ Im(cl∗) −→ 0

split (after extending coefficients to a large field, say C) when ∗ is the
codimension of ShH.

Similarly we may consider Ch∗(ShG), the projective limit of the homological Chow
group (for more details see [Zh4]). And ShH defines a class in Ch∗(ShG) for ∗ =
dim Ch∗(ShG). We denote by [ShH] ∈ Ch∗(ShG)0 the projection of the class of ShH.
We do not need the full strength of the second part; all we need is the cohomological
trivialization [ShH] of ShH.

Then using the (conditionally defined) Beilinson–Bloch height pairing, we may
define a linear functional which by abuse of notation is still denoted by `H

`H : Ch∗(ShG)0 → C
z 7→ 〈z, [ShH]〉.

This is the arithmetic version of the automorphic period.
Then the arithmetic version of the restriction problems asks: for π appearing

in the cohomology H2∗−1(ShG), when is the restriction nonvanishing

`H |Ch∗(ShG)0[π] 6= 0 ?

According to Beilinson–Bloch’s generalization of Birch–Swinnerton-Dyer conjec-
ture, the rank of HomG(A∞)(π,Ch∗(ShG)0) should be the vanishing order of a suit-
able L-function attached to π at the center of its functional equation. In our
case, it is expected (at least for the two examples below) that the non-vanishing
of `H |Ch∗(ShG)0[π] is equivalent to the nonvanishing of the first derivative of the

L-function and the nonvanishing of the space HomH(A∞)(π,C).
Corresponding to the two examples for periods, we have two examples for

heights.

Example 2.3. Let E be a quadratic CM extension of a totally real field F . Let
B be a quaternion algebra over F together with an embedding E ⊂ B. Assume that
B∞ is indefinite at one place and definite at all other places. We then the induced
embedding of torus T = E× into G = B× which will induces an embedding of a
zero-dimensional Shimura variety ShT into a Shimura curve ShG with images called
CM points. In the special case F = Q and B = M2,Q is the matrix algebra (and
under the Heegner conditions), this was studied by Gross–Zagier. We will discuss
this example in more details in the next section.
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Example 2.4. This is the arithmetic version of the global Gan–Gross–Prasad
conjecture for unitary groups. Let E/F be the same as in the previous example.
Let V be a(non-degenerate) Hermitian space of dimension n such that V∞ has
signature (n− 1, 1) at one place and positive definite at all others. Let v ∈ V be a
vector whose norm is totally positive and let W be the orthogonal complement of
v. Then W∞ has signature (n−2, 1) at one place and positive definite at all others.
We still denote the pair G = U(W ) × U(V ) and its subgroup H of the diagonal
embedding of U(W ). Then we have an arithmetic version of the Gan–Gross–Prasad
conjecture in the unitary case. An approach to this conjecture was first proposed
by the author. In this survey, we will only discuss the first step of this approach,
namely, the arithmetic fundamental lemma.

3. Gross-Zagier formula for Shimura curves

In this section we recall the joint work with Xinyi Yuan and Shouwu Zhang
([YZZ]) on Gross–Zagier formula. In 1984, Gross and Zagier [GZ] proved a formula
that relates the Néron–Tate heights of Heegner points to the central derivatives
of some Rankin L-series under certain ramification conditions. Since then some
generalizations are given in various papers [Zh1, Zh2, Zh3]. The methods of
proofs of the Gross–Zagier theorem and all its extensions depend on some newform
theories. There are essential difficulties to remove all ramification assumptions by
these methods. In [YZZ] by refining the methods of previous works, we remove
all ramification condition to arrive at a complete Gross–Zagier formula for Shimura
curves. Such a general formula is an arithmetic analogue of the central value formula
of Waldspurger [Wa] and has been speculated by Gross [Gr] in 2002 in term of
representation theory.

Let σ be a cuspidal automorphic representation of GL2(A) with finite order
central character ω. Let T = E× as an algebraic group over F . Let χ a Hecke
character of T (A) = A×E . We assume that

χ|A× · ω = 1.

Denote by L(s, σ, χ) the Rankin-Selberg L-function. More precisely it is the L-
function of the base change of σ to E then twisted by χ. It has a functional
equation

L(s, π, σ) = ε(s, σ, χ)L(1− s, σ, χ).

At the center, one has a decomposition

ε(
1

2
, σ, χ) =

∏
v

ε(σv, χv).

Denote

Σ = { place v of F : ε(σv, χv) 6= χv(−1)ηv(−1)} ,
where η : F×\A× → {±1} is the quadratic character associated to the extension
E/F by class field theory. Then Σ is a finite set and the global root number is
given by

ε

(
1

2
, σ, χ

)
=
∏
v

ε(σv, χv) = (−1)#Σ.
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We define for each v a quaternion algebra Bv over Fv which is division if and only
if v ∈ Σ. Then by Theorem of Saito–Tunnell ([Sa],[Tu]), we can embed Ev ↪→ Bv
and σv has a non-zero Jacquet–Langlands correspondence πv on B×v such that

dim HomTv (πv, χv) = 1.

The collection {Bv}v of algebras form a quaternion algebra B over A, i.e., B is
the unique A-algebra which is free of rank 4 as an A-module and whose localization
Bv := B⊗A Fv is isomorphic to Bv at any place v. Such an algebra exists uniquely
up to isomorphism. In fact, it is a restricted product of {Bv}v in the sense that

B =

′∏
v

Bv =
∏
v∈Σ

Bv ×M2(AΣ).

We also form a representation π =
∏
v πv of B×. Note that by choosing this π,

we have killed all local obstructions, namely HomT (A)(π, χ) 6= 0.
Case one: #Σ even. Then there exists a unique up to isomorphism quater-

nion algebra B over F such that B⊗A ' B. Then π is in fact a cuspidal automor-
phic representation. Then a theorem of Waldspurger asserts that the following are
equivalent

(i) The (T, χ)-period of π does not vanish: `T,χ,π 6= 0.
(ii) The first central value does not vanish L(1/2, σ, χ) 6= 0.

Remark 3.1. As mentioned earlier, Waldspurger actually proved an exact for-
mula relating the period and the L-value.

Case two: #Σ odd. We need some assumptions:

• F be a totally real field and E a CM extension of F .
• For all v|∞, πv is discrete series of weight two. In particular, Σ contains

all archimedean places and the Jacquet–Langlands correspondence πv for
v|∞ is the trivial representation.

Then the adelic quaternion algebra B does not arise from the base change of
any quaternion algebra over the number field F . Following Kudla’s terminology we
call such B an incoherent quaternion algebra.

In this case, we have a Shimura curve ShB defined over the totally real field F .
For the construction we refer to [YZZ]. And ShT is a zero dimensional Shimura
variety which is embedded into the Shimura curve ShB. In this case, all assump-
tions in the previous section become unconditional so we have a well-defined linear
functional `H,χ of Ch1(ShB)0 for a finite order character χ of T (A). Here the
Beilinson–Bloch height is reduced to the Néron–Tate height pairing.

Theorem 3.2. The following are equivalent:

• The Néron-Tate height does not vanish: `T,χ,π 6= 0.
• The first central derivative does not vanish: L′(1/2, σ, χ) 6= 0.

Just like the Waldspurger’s case, we also have an exact formula. See [YZZ].

Remark 3.3. Under various conditions, this was proved earlier by Gross–Zagier
and S. Zhang.

Remark 3.4. The assumption on weights of π∞ are not essential. But the
assumption that all Σ containing all archimedean places is essential. It is a folklore
open problem to look for a Gross–Zagier type formula for Maass forms. Our method
does not offer any insight to this problem.
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4. Relative trace formula

4.1. Relative trace formula (RTF). To study automorphic periods, one
natural tool is the relative trace formula. Let G be a reductive group with two
subgroups H1, H2. For f ∈ C∞c (G(A)), we may consider the operator R(f) on the
Hilbert space L2(G(F )\G(A)) (or with a fixed central character). It is an integral
operator represented by the kernel function

Kf (x, y) :=
∑

δ∈G(F )

f(x−1δy)

which is G(F )-invariant for both x, y ∈ G(A). We then define a distribution on
G(A) by

I(f) :=

∫
[H1]

∫
[H2]

Kf (h1, h2)dh1dh2.

For a cuspidal automorphic representation π, we let

Iπ(f) :=
∑

φ∈B(π)

`H1
(π(f)φ)`H2

(φ)

for an orthonormal basis B(π) of π. Then we expect to have a relative trace formula
identity of the following form∑

δ∈H(F )\G(F )rs/H(F )

τ(δ)O(δ, f) + ... =
∑
π

Iπ(f) + ....

Here the RHS is the spectral side which sums over all cuspidal automorphic repre-
sentations and the omitted part is the spectrum contribution from others. In the
LHS, “rs” indicates “regular semisimple” in a relative sense which will be defined
below. And τ(γ) will be a certain volume factor and O(γ, f) is a relative orbital
integral. The identity can be made rigorous if we use some simplified version of
relative trace formula, at least in the example below.

Therefore, to produce such a trace formula identity, we only need to input a
triple (G,H1, H2) as above. Usually it will also be useful if we allow to insert a
character of H1(A)×H2(A), as we will see in our example of Jacquet–Rallis’s RTFs.

Example 4.1 (Arthur–Selberg trace formula). Let G = H ×H and let H1 =
H2 = ∆(H) be the diagonal embedding of H. Then the relative trace formula
associated to this triple is essentially reduced to the Arthur–Selberg trace formula
associated to H.

Our central interest is to relate some period to a suitable L-value. For this,
we first hope to find another period on a different group which will essentially give
the L-value. Then the question is reduced to relating two periods on two different
groups. This can usually be achieved by comparing two relative trace formulae. In
general, it is still quite mysterious when two RTFs are comparable. The forthcoming
works of Sakellaridis ([S]) and Sakellaridis–Venkatesh ([SV]), among other things,
aim to provide criterions when we can compare two RTFs.

Example 4.2. In the theorem of Waldspurger, we may compare the following
two RTFs. Let E/F be a quadratic extension.

(i) (GL2, A,A) and insert a quadratic character in the first A. Here A is the
subgroup of diagonal matrices.
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(ii) (B×, E×, E×). Here B is a quaternion algebra and E can be embedded
into B.

Example 4.3. Now we present the construction of relative trace formulae by
Jacquet-Rallis to attack the Gan–Gross–Prasad conjecture for unitary group.

(i) Unitary side: for a pair W ⊂ V , let G = U(V )× U(W ) and let H1 = H2

be the diagonal embedding of U(W ) into G.
(ii) Linear side:

– G′ = ResE/F (GLn−1 ×GLn)
– H1 = ResE/FGLn−1, H2 = GLn−1,F ×GLn,F .

Moreover we need to insert a quadratic character of H1(A)→ {±1} given
by (hn−1, hn) 7→ η(det(hn−1)) (η(det(hn)), resp.) if n is odd (even, resp.).
The quadratic character appears due to the period characterization of the
image of quadratic base change from unitary group.

4.1.1. Invariant theory. We recall some notions from [AG]. Let F be a local
field of characteristic zero. Let H be reductive group and V an affine F -variety
together with an action of H. The categorical quotient (V//H, π) is the affine
variety V//H := Spec(O(V )H) together with the natural (surjective) morphism
π : V → Spec(O(V )H). However, in the level of F -rational points π(F ) : V (F ) →
(V//H)(F ) need not to be surjective.

Definition 4.4. Let x ∈ V (F ). We say that x is

• H-semisimple (or semisimple relative to H) if Hx is Zariski closed in V (or
equivalently, H(F )x is closed in V (F ) for the analytic topology induced
from F .)

• H-regular if the stabilizer of x has minimal dimension.

Example 4.5. The notions coincide with the usual ones when we consider the
adjoint representation of a reductive H on its Lie algebra V = h.

A stable regular semisimple orbit is by definition the preimage of a point in
the categorical quotient. Any two points within one stable regular semisimple orbit
are H(F̄ )-equivalent, but may not H(F )-equivalent. In any way, a stable regular
semisimple orbit contains at most finitely many H(F )-orbits.

In a RTF associated to a (reductive) triple (G,H1, H2) as above, we consider
the action of H := H1 × H2 on G given by (h1, h2) ◦ g = h−1

1 gh2. Then we may
have notions of “semisimple” and “regular” (H is omitted if no confusion arises).

To compare two RTFs, we usually would like to match their (at least, stable
regular semisimple) orbits. In practice, this can be achieved by identifying the
categorical quotients. In each of the two examples below, the categorical quotients
of the two RTFs involved are naturally isomorphic. A stable regular semisimple
orbit has trivial stabilizer, in particular, consists of a single H(F )-orbit.

Example 4.6. We first describe the categorical quotient appeared in the RTF
associated to (B×, E×, E×). There is a unique decomposition B = B+ +B− where
B+ is the image of the embedded E and B− is the “orthogonal complement” of B+

for the quadratic form given by the reduced norm N on B. Then we may define a
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morphism to the affine line A1
F over F :

πB,E : B× → A1

b 7→ Nb+
Nb

.

It is a surjective morphism between varieties. Then the pair (πB,E ,A1) is a cat-
egorical quotient for B×//(E× × E×). This construction also works for the case
E = F × F in which case B = M2,F is unique. We then obtain the categorical
quoteint for GL2//(A × A). In both cases, a point is regular semisimple if and
only if its image is not 0, 1 in the affine line A1. In the level of F -rational points,
πB,E(F ) : B× → A1(F ) = F is not surjective if E is a genuine quadratic field
extension of F and surjective if E = F × F . However, if we take all (isomorphism
classes of) quaternion algebras B which E is embedded into, then we have a disjoint
union ∐

B

πB,E(B×rs) = A1(F )− {0, 1} = F − {0, 1} = P1(F )− {0, 1,∞}

where the RHS is precisely the image of πM2,F ,F×F (F ) of regular semisimple ele-
ments. Then for a γ ∈ GL2(F ) regular semisimple relative to A × A, and δ ∈ B×
regular semisimple relative to E××E×, we say they match each other and we write
γ ↔ δ if the images of γ, δ coincide under the respective quotient maps. This only
depends on the orbit of respective subgroups and defines a bijection

A(F )\GL2(F )rs/A(F ) =
∐
B

E×\B×rs/E×.

Example 4.7. We now discuss the two RTFs of Jacquet–Rallis ([Z]). In the
unitary side, assume that W ⊂ V is the orthogonal complement of a vector v ∈
V with norm (v, v) = 1. We immediately see that G//(H × G) is isomorphic
to U(V )//U(W ) where U(W ) acts by conjugation. Then ring of U(W )-invariant
regular functions on U(V ) is generated by: for g ∈ U(V ),

tr ∧i g, (gjv, v), i = 1, 2, ...,dimV, j = 0, 1, ...,dimV − 1.

And g is regular semisimple if and only if det(giv, gjv)0≤i,j≤dimV−1 6= 0 (or equiv-
alently gjv for 0 ≤ j ≤ dimV − 1 is a basis of V ). On the linear side, we define an
symmetric space over F

Sn = {s ∈ GLn,E : ss̄ = 1}
where n = dimV . Then by Hilbert 90, we have an isomorphism of F -varieties:
ResE/FGLn/GLn,F ' Sn. Then we see that the quotient G//H ' Sn//GLn−1,F

where GLn−1,F acts on Sn ⊂ ResE/FGLn by conjugation. Then the ring of invari-
ants on Sn is generated by

tr ∧i s, esje∗, i = 1, 2, ..., n, j = 0, 1, ..., n− 1

where e = (0, ..., 0, 1) and e∗ the transpose of e. Similarly, s is regular semisimple
if and only if det(esi+je∗)0≤i,j≤n−1 6= 0. We similarly define a notion of matching
orbits. One can show that this defines a bijection

Sn(F )rs//GLn−1(F ) '
∐
W⊂V

U(V )(F )rs//U(W )(F )

where the disjoint union in RHS runs over all pair W ⊂ V such that the orthogonal
complement of W in V is isometric to the one dimensional hermitian space which
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represents one (in particular, the isomorphism class of V is determined by that of
W ).

4.1.2. The fundamental lemma of Jacquet–Rallis. We now recall the fundamen-
tal lemma appeared in the Jacquet–Rallis relative trace formulae. Let E/F be a
unramified quadratic extension of non-archimedean local fields with odd residue
characteristic. On the linear side, we have the local orbital integral for γ ∈ Sn(F ):

O(γ, 1Sn(OF ) =

∫
GLn−1(F )

1Sn(OF )(h
−1γh)(−1)v(det(h))dh.

We normalize the measure such that the maximal compact open subgroupGLn−1(OF )
has volume one. In this case, we have two isomorphism classes of hermitian space,
denoted by W , W ′ respectively so that W has a self-dual lattice denoted by λ.
Let Eu be a one dimensional hermitian space such that the norm of u is equal to
one. Then the direct sum V := W ⊕ Eu has a self-dual lattice denoted by Λ. Its
stabilizer denoted by U(Λ) is a hyperspecial maximal open subgroup of U(V ). We
similarly consider an orbital integral

O(δ, 1U(Λ)) =

∫
U(W )(F )

1U(Λ)(h
−1δh)dh

where the Haar measure on U(W )(F ) is normalized such that the volume of U(λ) ⊂
U(W ) is one.

Then the fundamental lemma (FL, for short) essentially conjectured by Jacquet–
Rallis is as follows.

Theorem 4.8. Let δ be an orbit matching γ. Then when the residue charac-
teristic is large, we have

O(γ, 1Sn(OF ) =

{
±O(δ, 1U(Λ)), δ ∈ U(W ⊕ Eu);

0, δ ∈ U(W ′ ⊕ Eu).

This was proved by Zhiwei Yun when F is of positive characteristic p > n ([Y]).
J. Gordan transferred the result of Yun to the characteristic zero case when the
residue characteristic is large. Note that the ambiguity of the sign ± can also be
made precise as in [Y]. We will give an equivalent formulation of the FL without
this ambiguity.

5. Arithmetic fundamental lemma

Inspired by the early joint work [YZZ] on Gross–Zagier formula and the rel-
ative trace formulae of Jacquet–Rallis, the author proposed a strategy to attack
the arithmetic version Gan–Gross–Prasad conjecture for unitary Shimura varieties
([Z]). We now present the arithmetic fundamental lemma (AFL, for short) which
plays the role of the FL in the Jacquet–Rallis approach.

5.1. Unitary Rapoport–Zink space. The Rapoport–Zink space in our set-
ting serves as a sort of “local Shimura variety”. We only discuss the case F = Qp.
For a general finite extension of Qp, a parallel theory should exist but has been writ-
ten in the literature. We first recall briefly the definition the unitary Rapoport–Zink
space. For more details we refer to [VW]. Let W = W (Fp) be the Witt ring of
the algebraic closure Fp of the finite field of p-elements and let Nn be the formal
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scheme over W that classifies quadruple (X,λ, ι, ρ) over a scheme S (over which p
is locally nilpotent) over W :

• X is a p-divisible group over S of relative dimension n.
• λ : X → X∨ prime-to-p principal polarization.
• ι : OE → EndS(X).
• ρ : X ×W Fp → Xn is a quasi-isogeny of height zero.

with a Kottwitz signature (n− 1, 1)-condition. The data should also be compatible
with each other. Here (Xn, λ0, ι0) is a supersingular basic object over Fp. It is essen-
tially the formal completion of similar global moduli variety along the supersingular
locus.

Example 5.1. When n = 1, the universal object X1 → N1 is the canonical
lifting of X1 (a supersingular p-divisible group of dimension one) studied by Gross
([Gr86]).

We list some basic properties of Nn:

• Nn is formally smooth of relative dimension n − 1 over Spf W , locally
formally of finite type.

• The reduced scheme N red
n is a scheme of dimension [n−1

2 ] over Fp.
The proof can be found in [RZ] and [VW]. What is nice about the signature-
(n − 1, 1) case is that N red

n has a Bruhat-Tits stratification following Vollaard-
Wedhorn ([VW]). Let V ′ be the n-dimensional hermitian space of odd determinant.
Consider the set of vertices

Vert := {Λ ⊂ V ′ lattice|p (Λ∗/Λ) = 0}

where Λ∗ is the hermitian dual of Λ.
Then we have a disjoint union

N red
n =

∐
Λ∈V ert

V(Λ)◦

where V(Λ)◦ is a certain Deligne–Lusztig variety associated to the unitary group
of the reduction Λ∗/Λ viewed as a hermitian space over the residue field. The
combinatorics of this stratification is controlled by the building of SU(V ′).

On the formal scheme Nn there is a natural action by the automorphism group

G′n := {g ∈ End0
E(Xn) | gg† = 1}.

Here † is the Rosati involution induced by the polarization λ. The action of g ∈ G′
on Nn by changing ρ. The group G′n can be naturally identified with the unitary
group U(V ′).

5.2. Arithmetic Fundamental lemma. We now recall the statement of the
arithmetic fundamental lemma [Z].

Fix an integer n ≥ 2. We consider the product N = Nn−1 ×Spf W Nn. Note
that there is a natural embedding Nn−1 → Nn. This induces a diagonal embedding
∆ : Nn−1 → N whose image is denoted by ∆Nn−1 . We let W ′ be the (n − 1)-
dimensional hermitian space of odd determinant. Then we can write V ′ = W ′⊕Eu
for a vector u of norm one. Then U(W ′) × U(V ′) acts on N so we may consider
the intersection for g ∈ U(V ′):

(∆Nn−1
, (1, g)∆Nn−1

)N .
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On the other hand we may modify the orbital integral of Jacquet–Rallis as
follows. We define for s ∈ C and a regular semisimple γ ∈ Sn(F )rs:

O(γ, 1Sn(OF , s) =

∫
GLn−1(F )

1Sn(OF )(h
−1γh)(−1)v(det(h))|det(h)|sdh.

It is a polynomial of q±s for where q is the cardinality of the residue of OF . Then by
the FL in the previous section, when γ ↔ g ∈ U(V ′), we have O(γ, 1Sn(OF , 0) = 0.
Hence we are lead to considering the first derivative O(γ, 1Sn(OF , s) at s = 0.

Then the arithmetic fundamental lemma as in [Z] can be stated as:

Conjecture 5.2. When γ ↔ g ∈ U(V ′), we have

(∆Nn−1
, (1, g)∆Nn−1

)N · log q = ±O′(γ, 1Sn(Zp), 0).

Again the ambiguity of the sign ± can be made precise.
Usually such orbital integrals can be interpreted as counting the number of

certain lattices. We now give such an interpretation for the AFL, at least in the
best case of intersection.

We start with the fundamental lemma. We consider the following data:

• W : (n−1)-dimensional hermitian space of even determinant, V = W⊕Eu,
(u, u) = 1.

• Let g ∈ U(V ) and denote by L =
∑
i≥0OE · giu. The regular semisim-

plicity of g is equivalent to that L is a lattice in V .
• FixgL := {Λ|L ⊂ Λ ⊂ L∗, gΛ = Λ}.
• Define an E-anti-linear involution τ on V characterized by τ(giu) = g−iu

for i = 0, 1, ..., n− 1.

Then the FL can be restated as:∑
Λ∈FixgL,Λ

∗=Λ

1 =
∑

Λ∈FixgL,Λ
τ=Λ

(−1)`(Λ/L).

To state the AFL, we consider similar data replacing W by W ′. Then at least
in the case of proper intersection, the AFL is equivalent to∑

Λ∈FixgL,pΛ
∗/Λ=0

mult(Λ) =
∑

Λ∈FixgL,Λ
τ=Λ

(−1)`(Λ/L)`(Λ/L)

where mult(Λ) is the intersection multiplicity along the strata V(Λ)◦. When the
scheme theoretical intersection of ∆Nn−1 and (1, g)∆Nn−1 is artinian, we may define

mult(Λ) :=
∑

x∈V(Λ)◦(F)

length(g|x)

where length(g|x) is a certain length of deformation of endomorphism g of p-
divisible group corresponding to the point x. Note that the condition pΛ∗/Λ = 0
can be thought as some “almost self-duality” for the lattice Λ.

5.3. Evidence. At this moment, the AFL remains open except in some lower
dimensional cases. The main result of [Z] is

Theorem 5.3. When n = 2, 3, the arithmetic fundamental lemma holds.
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When n = 2, the AFL is essentially proved in the original paper of Gross–
Zagier ([GZ]) using Gross’s theory of canonical lifting. When n = 3, the proof is
by explicit computation of both sides. Either side is by no mean easy. To calculate
the intersection number, we have to use the previous work of Gross, Keating and
Kudla–Rapoport ([KR]).

Remark 5.4. We may also formulate an AFL for Example 2.3. Moreover in
this case, together with other ingredients, we may reprove the Gross–Zagier formula
in the case χ = 1 (χ as in sec. 3) . We refer to [TYZ] for more details.
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