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1 Introduction

On a modular curve X0(N), Gross–Kohnen–Zagier prove [2] that certain
generating series of Heegner points are modular forms of weight 3/2 with
values in Jacobian as a consequence of their formula for Néron-Tate height
pairing of Heegner points. Such a result is an analogue of an earlier result of
Hirzebruch–Zagier ([5]) on intersection numbers of Shimura curves on Hilbert
modular surfaces, and has been extended to orthogonal Shimura varieties in
various settings:
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• cohomological cycles over totally real fields by Kudla–Millson ([8]) by
using their theory of cohomological theta lifting;

• divisor classes in Picard group over Q by Borchesds ([1]) as an appli-
cation of his construction of singular theta lifting;

• high-codimensional Chow cycles over Q by one of us, Wei Zhang ([14])
as a consequence of his criterion of modularity by induction on the
codimension.

The main result of this paper is a further extension of the modularity
to Chow cycles on orthogonal Shimura varieties over totally real fields. For
planning applications of our result, we would like to mention our ongoing
work on the Gross–Zagier formula [4] and the Gross–Kudla conjecture on
triple product L-series [3] over totally real fields. Our result is also necessary
for extending work of Kudla, Rapoport, and Yang [9] to totally real fields.

Different from the work of Gross–Kohnen–Zagier and Borcherds, our main
ingredients in the proof are some product formulae, and the modularity of
Kudla–Millson. In codimension one case, our result is new only in the case of
Shimura curves and their products, as Kudla–Milson’s result already implies
the modularity in Chow groups when the first Betti numbers of ambient
Shimura varieties vanish. Both the modularity and product formulae for
certain special cycles are proposed by Steve Kudla in [6, 7]. In the following,
we will give details of his definitions and our results.

Let F be a totally real field of degree d = [F : Q] with a fixed real
embedding ι. Let V be a vector space over F with an inner product 〈·, ·〉
which is non-degenerate with signature (n, 2) on Vι,R and signature (n+2, 0)
at all other real places. Let G denote the reductive group ResF/QGSpin(V ).

Let D ⊂ P(V ∨
C ) be the Hermitian symmetric domain for G(R) as follows:

D = {v ∈ Vι,C : 〈v, v〉 = 0, 〈v, v̄〉 < 0} /C×

where the quadratic form extends by C-linearity, and v −→ v̄ is the involution
on VC = V ⊗F C induced by complex conjugation on C. Then, for any open
compact subgroup K of G(Q̂), we have a Shimura variety with C-points

MK(C) = G(Q)\D ×G(Q̂)/K.

It is known that MK(C) has a canonical model MK over F as a quasi-
projective variety for K sufficiently small. In our case, MK is actually com-
plete if F 6= Q. Let LD be the bundle of lines corresponding to points on
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D. Then LD descends to an ample line bundle LK ∈ Pic(MK) ⊗ Q with Q
coefficients.

For an F -subspace W of V with positive definite inner product at all real
place of F , and an element g ∈ G(Q̂), we define a Kudla’s cycle Z(W, g)K

represented by points (z, hg) ∈ D × G(Q̂), where z ∈ DW is in the subset

of lines in D perpendicular to W , and h ∈ GW (Q̂) is in the subgroup of

elements in G(Q̂) fixing every points in Ŵ = W ⊗ Q̂. The cycle Z(W, g)

depends only the K-class of the F -subspace g−1W of V̂ := V ⊗F F̂ .
For a positive number r, an element x = (x1, · · · , xr) ∈ K\V (F )r, and

an element g ∈ G(Q̂), we define a Kudla’s Chow cycle Z(x, g)K in MK as
follows: let W be the subspace of V (F ) generated by components xi of x,
then

Z(x, g)K :=

{
Z(W, g)Kc1(L∨K)r−dim W if W is positive definite

0 otherwise

For any Bruhat-Schwartz function φ ∈ S(V (F̂ )r)K , we define Kudla’s
generating function with coefficients in the Chow group Ch(MK) ⊗ Q as
follows:

Zφ(τ) =
∑

x∈G(Q)\V r

∑
g∈Gx(bQ)\G(bQ)/K

φ(g−1x)Z(x, g)Kq
T (x), τ = (τk) ∈ (Hr)

d

where Hr is the Siegel upper-half plane of genus r, and T (x) = 1
2
〈xi, xj〉 is

the intersection matrix

qT (x) = exp(2πi
d∑

k=1

τkιk(T (x))),

where ι1 := ι, · · · ιd are all real embeddings of F . Notice that Zφ(τ) does not
depend on the choice of K when we consider the sum in the direct limit of
Ch(MK) via pull-back maps of cycles.

Theorem 1.1 (Product formula). Let φ1 ∈ S(V (F̂ )r1), and φ2 ∈ S(V (F̂ )r2)
be two Bruhat-Schwarts functions. Then in Chow group:

Zφ1(τ1) · Zφ2(τ2) = Zφ1⊗φ2

((
τ1

τ2

))
.
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For a linear functional ` on Chr(MK)⊗Q, we define a series with complex
coefficients:

`(Zφ)(τ) =
∑

x∈G(Q)\V r

∑
g∈Gx(bQ)\G(bQ)/K

φ(g−1x)`(Z(x, g)K)qT (x).

Theorem 1.2 (Modularity). Let ` be a linear functional on Chr(MK) ⊗ Q
such that the generating function `(Zφ(τ)) is convergent. Then `(Zφ(τ)) is a
Siegel modular form of weight n

2
+ 1, i.e., it satisfies the following equation

`(Zφ)(γτ) = `(Zω(γ−1)φ)(τ) det j(γ, τ)n/2+1, γ ∈ Spr(F ).

Here γτ is the usual action of γ ∈ Spr(F∞) on the Siegel domain via the
natural projection Mpr(R) −→ Spr(R), and ω(γ)φ is the Weil representation

on S(V (F̂ )r).

Here we use the following identifications:

Mpr(R) =

{
(g, det(j(g, τ))1/2) : g =

(
a b
c d

)
∈ Spr(R), j(g, τ) = cz + d

}
,

Mpr(A) = (Mpr(F∞)×Mpr(F̂ ))/± (1,−1).

Then the preimage Mpr(F ) of Spr(F ) in Mp(A) has a unique splitting:

Mpr(F ) = {±1} × Spr(F ).

And the Weil representation is attached to the additive character of AF

defined by ψF = ψQ ◦ TrF
Q for the standard character ψQ of AQ.

Remarks
1. We conjecture that the series `(Zφ) is convergent for all `. A good

example is the functional coming from a cohomological class as follows. For
a cohomological cycle α ∈ H2r(Mk,Q), we may define a functional `α by
taking intersection pairing between cohomological class [Z] of Z ∈ Chr(MK)
and α:

`α(Z) := [Z] · α.

In this case, generating series `α(Zφ) is convergent and modular by the fun-
damental work of Kudla–Milson ([8]).
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2. Let N r(MK)Q and Chr(MK)0
Q be the image and kernel of the class

map Chr(MK)Q −→ H2r(MK) respectively. We expect there is a canonical
decomposition of modules over the Hecke algebra of MK :

Chr(MK)Q ' Chr(MK)0
Q ⊕N r(MK)Q.

In this way, for any α ∈ Chr(MK)0
Q, we can define a functional `α by taking

(a conjectured) Beilinson–Bloch’s height pairing between projection Z0 of
Z ∈ Chr(MK) and α:

`α(Z) := Z0 · α.

The convergence problem is reduced to estimating height paring.
3. Beilison and Bloch has conjectured that the cohomologically trivial

cycles Chr(MK)0⊗Q will map injectively to the r-th intermediate Jacobian.
Thus when H2r−1(MK ,Q) = 0, combination of this conjecture with Kudla–
Millson’s work implies the modularity of the general series `(Zφ).

For Kudla divisors, we have an unconditional result:

Theorem 1.3. For any φ ∈ S(V̂ ), the generating function Zφ(τ) of Kudla
divisor classes is convergent and defines a modular form of weight n

2
+ 1.

Remark
The Shimura variety MK has vanishing Betti number h1(MK) unless MK

is a Shimura curve or the product of two Shimura curves. In this case,
Ch1(MK)0

Q = 0 and the modularity in Chow group Ch1(MK) ⊗ Q follows
from Kudla-Milson’s modularity for cohomology group H2(MK ,Q).

Now we would like to describe the contents of paper. In §1-2, we prove
some intersection formulae for Kudla cycles in Chow groups and then some
product formulae for generating series. The modularity Theorem 1.2-3 will
be proved in §3. For modularity for divisors (Theorem 1.3), we use Kudla-
Millson’s modularity for generating functions of cohomological classes and
an embedding trick that relies on the vanishing of the first Betti number of
our Shimura varieties by results of Kumaresan and Vogan-Zuckerman. For
modularity of high-codimensional cycles, we use an induction method in [14].
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2 Intersection formulae

Our aim is to study the intersections of Kudla cycles Z(W, g)K in Chow
group Ch∗(MK) of cycles modulo the rational equivalence. We first prove
some scheme-theoretic formula and then some intersection formulae in Chow
groups.

First we need a more intrinsic definition of Kudla cycles. We say a F -
vector subspace W of V̂ is admissible if the inner product on W takes F -
rational values and is positive definite.

Lemma 2.1. An F -vector subspace W of V̂ is admissible if and only if
W = gW ′ with W ′ is a subspace of V and g ∈ G(Q̂).

Proof. Indeed, for any element w ∈ W with non-zero norm, the F -rational
number ‖w‖2 is locally a norm of vectors in Vv for every place v of F . Thus,
it is a norm of v ∈ V by Hasse-Minkowski theorem (See Serre [10], P41,
Theorem 8). Now we apply Witt’s thorem (see Serre [10], Page 31, Theorem

3) to get an element g ∈ G(Q̂) such that gw = v. Replacing W by gW we
may assume that v = w. Let V1 be the orthogonal complement of v in V and
W1 be the orthogonal complement of v in W . Then we may use induction to
embed W1 into V1. This induces an obvious embedding from W to V .

For an admissible subspace W = g−1W ′, W ′ ⊂ V and g ∈ G(Q̂), we have
a well defined Kudla cycle Z(W )K := Z(W ′, g)K . For an open subgroup K ′

of K, the pull-back of cycle Z(W )K on MK′ has a decomposition

(2.1) Z(W )K =
∑

k

Z(k−1W )K′

where k runs though a set of representatives of the coset KW\K/K ′ with
KW the stabilizer of W .

Proposition 2.2. Let Z(W1)K and Z(W2)K be two Kudla cycles. The
scheme-theoretic intersection is the union of Z(W ) indexed by admissible
classes W in K\(KW1 +KW2).

Proof. Assume that Wi = g−1
i Vi with Vi ⊂ V . Then the scheme theoretic

intersection is represented by (z, g) ∈ D×G(Q̂) such that for some γ ∈ G(Q),
k ∈ K,

z ∈ DV1 ∩ γDV2 , g ∈ GV1(Q̂)g1 ∩ γGV2(Q̂)g2k.
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It is easy to see that

γDV2 = DγV2 , γGV2 = GγV2 · γ.

Thus we can rewrite the above condition as

z ∈ DV1 ∩DγV2 = DV1+γV2 , g ∈ GV1(Q̂)g1 ∩GγV2(Q̂)γg2.,

It follows that the intersection is a union of Z(V1 + γV2, g)K indexed by

γ ∈ G(Q) and g ∈ G(Q̂) such that

g ∈ GV1+γV2(Q̂)\(GV1(Q̂)g1K ∩GγV2(Q̂)γg2K)/K.

For such a g, we may write

g = h1g1k1 = h2γg2k2

with elements in the corresponding components. Then

g−1(V1 + γV2) = k−1
1 g−1

1 V1 + k−1
2 g−1

2 V2 = k−1
1 W1 + k−1

2 W2.

Thus the intersection is parameterized by admissible classes in

K\(KW1 +KW2).

The following lemma gives the uniqueness of admissible class with fixed
generators under small levels:

Proposition 2.3. Let x1, · · ·xr be a basis of an admissible subspace W of V .
Then there is an open normal subgroup K ′ in K such that for any k ∈ K,
the only possible admissible class in

K ′\
∑

K ′k−1(xi)

is
∑

i k
−1(xi), where (xi) denote the subspace Fxi of V .

Proof. We proceed the proof in several steps.
Step 0: let us reduce to the case k = 1. Assume that K ′ is a normal

subgroup. Then we have an bijection of classes:

K ′\
∑

K ′k−1(xi) −→ K ′\
∑

i

K ′(xi), t 7→ kt.
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Thus we may assume k = 1 to prove the Proposition.
Step 1: we will work on congruence group for a fixed lattice. Pick up a

lattice VZ stable under K and taking integral valued inner products. Then for
each positive integer N , we have open subgroups K(N) of G(Q̂) consisting
of elements h such that

hx− x ∈ NVZ, ∀x ∈ VZ.

Now we take K ′ = K(N) for N big so that K ′ is a normal subgroup of K.
Assume that for some hi ∈ K(N), the class

∑
i Fhixi is admissible. We

are reduced to show that there is a k ∈ K ′ such that kxi = hix when N is
sufficiently large.

Step 2: let us reduce to a problem of extending maps. Without loss of
generality, assume that x1, · · · , xr ∈ VZ and generate WZ := W ∩ VZ. Then
we have the following properties for the inner product of hixi:

• for some ti,j ∈ Z

(hixi, hjxj) = (xi, xj) +Nti,j;

• Schwartz inequality (as the pairing on
∑

i Qhixi is positive definite):

|(hixi, hjxj)| ≤ ‖hixi‖‖hjxj‖ = ‖xi‖‖yj‖.

It follows that for N big, ti,j = 0. In other words, there is a an isometric
embedding

ξ : W −→ V, xi 7→ hixi.

Thus we reduce to extend this embedding to an isomorphism k : V̂ −→ V̂ by
an k ∈ K for N sufficiently large.

Step 3: work with an orthogonal basis. Write W = g−1W ′ and take
an orthogonal basis f1, · · · fn+2 of VZ over Z such that f1, · · · , fm is s basis
W ′ ∩ VZ. Write ei = g−1fi and e′i = ξ(ei) for 1 ≤ i ≤ m. Notice that ei is

an integral combination of xi, thus ei − e′i ∈ N ′V̂Z for an integer N ′ which
can be arbitrarily larger as N goes to infinity. Thus we are in a situation to
find an element k ∈ K such that kei = ξei = e′i for i between 1 and m. We
reduce question to find local component of kp for each p.

Step 4: work with good primes. Let S be a finite set of primes in Z
consisting the factors of 2N , and the norms of ei’s. If p is not in S, we claim
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that one of (e1 ± e′1)/2 has invertible norm. Otherwise, the sum of their
norms, (‖e1‖2 + ‖e2‖2)/2 is in pZp. This is contradiction because e1 and e′1
have the same norm. Thus we may have a decomposition VZp into a sum of
Zp(e1 ± e′1)/2 and its complement V ′. We may take k1 which is ±1 on the
first fact and ∓1 on the second factor. Then k1 ∈ G(Zp) such that k1e

′
1 = e1.

Now we may replace e′i by k1ei and then reduce to the case where e1 = e′1.
We may continue this process for Zpe

⊥
1 etc until all em = e′m. In other words,

we find that an kp ∈ G(Zp) such that kpei = e′i.
Step 5: work with bad prime. If p /∈ S, we may replace N by Np` so

that the order α of p in N be arbitrarily large. We define e′i for i > m by
induction such that 〈e′i, e′j〉 = 〈ei, ej〉 for all j ≤ i, and ei is close to e′i. This
is done by applying Schmidt process for the elements:

e′1, · · · , e′m, em+1, · · · , en+2.

More precisely, assume that e′1, · · · , e′i−1 are defined then we define e′i by

e′′i := ei −
i−1∑
j=1

(ei, e
′
j)

(e′j, e
′
j)
e′j,

e′i :=

√
(ei, ei)

(e′′i , e
′′
i )
· e′′i .

Notice that when the order of p in N is sufficiently large, e′′ is arbitrarily
close to ei thus (ei, ei)/(e

′′
i , e

′′
i ) is arbitrarily close to 1. Thus the square root

is well defined. In summary we find a kp ∈ K(pβ) for β arbitrarily large when
ordp(N) is arbitrarily large.

As an application, we want to decompose the cycle Z(W, g)K as complete
intersection after rasing levels K.

Proposition 2.4. Let x1, · · ·xr be a basis of W over F . Then there is
an open normal subgroup K ′ in K such that the pull-back of Z(W )K′ is
a (rational) multiple of unions of the complete intersection∑

k∈K′\K

∏
i

Z(k−1xi)K′ .
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Proof. For an open subgroup K ′ of K, the cycle Z(W )K has a decomposition

Z(W )K =
∑

k∈KW \K/K′

Z(k−1W )K′ .

Here KW is the subgroup of K consists of elements fixing every elements in
W .

We want to compare the right hand side with
∑

k∈K/K′
∏

i Z(k−1xi)K′ .

By Proposition 2.2, the components of
∏

i Z(k−1xi)K′ correspond to the ad-
missible classes in

K ′\
∑

i

K ′k−1(xi).

By Proposition 2.3, when K ′ is small, the only admissible class in the above
coset is

∑
k−1(xi) = k−1W . Thus∏

i

Z(xi)K′ =
∑

j

Z(k−1
j W )K′

for some kj ∈ K. Now we translate both sides by k ∈ K/K ′ to obtain∑
k∈K/K′

∏
i

Z(k−1xi)K′ = c1
∑

k∈K/K′

Z(k−1W )K′ = c2Z(W )K

where c1 and c2 are some positive rational numbers.

By comparing the codimensions, we conclude that the intersection of
Z(W1)K and Z(W2)K in Proposition 2.2 is proper if and only if k1W1∩k2W2

is 0 for all admissible class k1W1 + k2W2. In this case, the set theoretic
intersection gives the intersection in Chow group. In the following we want
to study what happen if the intersection is not proper. First, we need to
express the canonical bundle of MK in terms of LK :

Lemma 2.5. Let ωK = det Ω1
K denote the canonical bundle on MK. Then

for K small, there is a canonical isomorphism

ωK ' Ln
K ⊗ detV ∨.
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Proof. We need only to prove the statements in the lemma for the bundle
LD on D with an isomorphism

ωD ' Ln
D ⊗ detV ∨

which is equivariant under the action of G(R). Fix one point p on D corre-
sponding to one point v ∈ Vι,C, then Vι,R has an orthogonal basis given by
Re(v), Im(v), e1, · · · en and Vι,C has a basis v, v̄, e1, · · · , en. After a rescaling,
we may assume that 〈ω, ω̄〉 = −1, and 〈ei, ei〉 = 1. Then we can define local
coordinates z = (z1, · · · , zn) near p such that the vector v extend to a section
of LD in a neighborhood of p:

vz := v +
1

2

∑
i

z2
i v̄ +

∑
i

ziei.

For a point p ∈ D corresponding to a line ` in VC, the tangent space of D
at p is canonically isomorphic to Hom(`, `⊥/`). In term of coordinators z for
` = Cv, this isomorphism takes ∂

∂zi
⊗ v to the class of ei in `⊥/`. In terms of

bundles, one has an equivaraiant isomorphism:

TD ' Hom(LD,L⊥D/LD) = L⊥D ⊗ L∨D/OD.

Write ωD = detT∨D for the canonical bundle on D. Then we have an equiv-
ariant isomorphism

ωD = (detL⊥D)∨ ⊗ L1+n
D .

In terms of coordinator z, this isomorphism is given by

dz1 · · · dzn ⊗ (e1 ∧ e2 · · · en ∧ v) 7→ v⊗(n+1).

Notice that the pairing 〈·, ·〉 induces an equivariant isomorphism between
L∨D and VD/L⊥D which is represented by Cv̄ in our base of VC. This gives an
isomorphism detL⊥D ' LD ⊗ detV which is given by

e1 ∧ e2 · · · en ∧ v 7→ v ⊗ (e1 ∧ e2 · · · en ∧ v ∧ v̄.

Thus we have a canonical isomorphism

ωD ' Ln
D ⊗ detV ∨

which is given by

dz1 ∧ dz2 · · · dzn 7→ vn ⊗ (e1 ∧ e2 · · · en ∧ v ∧ v̄).

This completes the proof of the lemma.
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Now we have a version of Proposition 2.2 in Chow group. For positive
number r and an element x = (x1, · · · , xr) ∈ K\V (F̂ )r, recall that the
Kudla cycle Z(x)K in MK is defined as follows: let W be the subspace of

V (F̂ ) generated by components xi of x. Then we define

Z(x)K =

{
Z(W )Kc1(L∨)r−dim W if W is admissible

0 otherwise

Proposition 2.6. Let Z(W1)K and Z(W2)K be two Kudla cycles. The in-
tersection in Chow group is given as a sum of Z(W )K indexed by admissible
class W in

K\(KW1 +KW2).

Proof. First we treat the case where W2 is one dimensional. Then the
set theoretic intersection is indexed by admissible classes k1W1 + k2W2 in
K\KW1+KW2. There is nothing need to prove if this intersection is proper.
Otherwise, k2W2 ⊂ k1W1 and Z1 ⊂ Z2 for some components Z1 of Z(W1)
and component Z2 of Z(W2). Let Z be a connected component of MK con-
taining Z2. Let i denote the embedding i : Z2 −→ Z. Then the intersection
in Chow group has an expression:

Z1 · Z2 = i∗(Z1 · i∗c1(O(Z2))).

Let I be the ideal sheaf of Z2 on Z. Then O(Z2) = I−1 and i∗c1(Z(W2)) =
−c1(i∗I) is the first Chern class of the bundle i∗I−1. From the exact sequence

0 −→ I/I2 −→ ΩZ |Z2 −→ ΩZ2 −→ 0

we obtain the following isomorphism from the determinant

i∗(I)⊗ ωZ2 ' i∗ωZ .

Thus, we have shown the following equality in Chow group:

(2.2) Z1 · Z2 = i∗(Z1 · c1(ωZ2 ⊗ i∗ωZ)).

Now we use the canonical isomorphism in the Proposition 2.5:

ωZi
' Ldim Zi

Zi
, LZ |Zi

= LZi
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to conclude that

(2.3) i∗L∨ ' ωZ2 ⊗ i∗ωZ

Combining equations (2.2) and (2.3), we obtain that

Z1 · Z2 = i∗(Z1 · i∗c1(L)) = Z1 · c1(L∨).

Thus we have the proposition when W2 is one dimensional. Now we want
to prove the proposition for general case. We use Proposition 2.4 to write
Z(W2)K as a sum:

Z(W2)K = c
∑

k∈K/K′

∏
i

Z(k−1xi)K′ .

By working on the intersections of Z(k−1xi) with schema theoretic compo-
nent of Z(W1)

∏
j<i Z(k−1xi), we found that the intersection of Z(W1) and

Z(W2) in Chow group in level K ′ is simply the sum of

Z(W )c1(L∨)dim W1+dim W2−dim W

where W runs through admissible classes in∐
k∈K′\K

K ′\(KW1 +
∑

i

K ′k′(xi)).

In other words, in level K ′, the Chow intersection is the Zariski intersection
with correction by powers of first Chern class of c1(L∨). As L is invariant
under pull-back, and the dimension does not change under push-forward, we
have the same conclusion in level K.

Proposition 2.4 is still true in this case.

Proposition 2.7. Let x = (x1, · · · , xr) ∈ K\V̂ r. Then there is an open
normal subgroup K ′ in K such that in Chow group, the pull-back of Z(x)K

is a (rational) multiple of a sum of complete intersections∑
k∈K′\K

∏
i

Z(k−1xi)K′

Proof. By Proposition 2.3, we may choose K ′ such that for any k ∈ K, the
only admissible class in

K ′\
∑

K ′k−1(xi)

is
∑
Fk−1xi. By Proposition 2.6, the product

∏
i Z(k−1xi)K′ is simply

Z(k−1x)K′ . Their sum is simply Z(x)K .
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3 Product formulae

In this section, we want to apply the formulae in the last section to obtain
some product formula for Kudla’s generating series. The first one is the
product formula in Theorem 1.1 which has been conjectured by Kudla [7]
and then the pull-back formula for embedding of Shimura varieties.

Proof of product formula

By definition,

Zφ1(τ1) · Zφ2(τ2) =
∑

(x1,x2)

Z(x1)KZ(x2)Kφ1(x1)φ2(x2)q
T (x1)qT (x2).

By Proposition 2.6,

Z(x1)KZ(x2)K =
∑
W

Z(W )

where W runs through the admissible classes in

K\K(x1) +K(x2)

where (xi) denote the subspaces of V̂ generated by components xij of xi. It
is clear that such W is generated by αx1i and βx2i for some α, β in K. Thus
we write x = (αx1, βx2). On the other hand, it is easy to see that for such
an x,

φ1(x1)φ2(x2)q
T (x1)qT (x2) = (φ1 ⊗ φ2)(x)q

T (x).

Thus we have shown the following:

Zφ1(τ1) · Zφ2(τ2) =
∑

x

Z(x)K(φ1 ⊗ φ2)(x)q
T (x) = Zφ1⊗φ2

((
τ1

τ2

))
.

A pull-back formula

The rest of this section is devoted to prove a pull-back formula for generating
functions for Kudla cycles with respect to an embedding of Shimura varieties.
First let us describe the generating series as a function on adelic points.
Recall that Mpr(R) is the double cover of Spr(R). LetK ′ denote the preimage
of the compact subgroup{(

a b
−b a

)
: a+ ib ∈ U(r)

}
14



of Spr(R). The group K ′ has a character det1/2 := j(·, ir)1/2 whose square
descends to the determinant character of U(n). Write

Zφ(g
′) = Zω(g′f )φ(g

′ir)j(g
′, ir)

−n/2−1.

Then Zφ(g
′) has a Fourier expansion

Zφ(g
′) =

∑
x∈K\V (bQ)r

(ωf (g
′
f )φ)(x)Z(x)KWT (x)(g

′
∞)

where Wt(g
′
∞) is the t-th “holomorphic” Whittaker function on Mpr(R) of

weight r
2

+ 1: for each g′ ∈ Mpr(R) with Iwasawa decomposition

g =

(
1 u

1

) (
a

ta−1

)
k, a ∈ GLr(R)+, k ∈ K ′

we have
Wt(g) = | det(a)|n/2+1e(trtτ) det(k)n/2+1.

Here
τ = u+ ia ·t a.

Now the modularity of Zφ is equivalent to that

Zφ(g
′) = Zφ(γg

′), ∀γ ∈ Spr(F ).

Let W ⊆ V be positive definite F -subspace of dimension d and let W ′

be its orthogonal complement. Then we have a decomposition S(V (A)r) =
S(W ′(A)r)⊗ S(W (A)r). Consider the embedding map:

i : MK,W = GW (Q)\DW ×GW (Q̂)/KW →MK = G(Q)\D ×G(Q̂)/K,

where KW = GW (Q̂) ∩K. Then we have a pull-back map

i∗ : Chr(MK) → Chr(MK,W ).

Now we prove a pull-back formula for

i∗(Zφ)(g
′) =

∑
x∈K\V ( bF )r

ω(g′f )φf (x)i
∗(Z(x)K)WT (x)(g

′
∞).

15



Proposition 3.1. Let φ = φ1 ⊗ φ2 ∈ S(V (A)r) = S(W ′(A)r) ⊗ S(W (A)r)
and suppose that φ1, φ2 are K-invariant. Then, we have an equality in the
Chow group

(3.1) i∗(Zφ)(g
′) = Zφ1(g

′)θφ2(g
′)

where θφ1(g
′) is the generating function with coefficients in Chr(MK,W ,C)

Zφ1(g
′) =

∑
y∈KW \W ′( bF )r

ωf (g
′
f )φ(y)Z(y)KWT (y)(g

′
∞)

and
θφ2(g

′) =
∑

z∈W (F )r

ω(g′)(φ2 ⊗ φ2∞)(z)

is the usual theta function, where φ2∞ is the standard spherical function on
W ′(R).

Proof. Let x ∈ K \V (F̂ )r. By Proposition 2.6, the intersection of Z(x)K and
Z(W )K is indexed by admissible classes in K \KW +Kx. For an admissible

class (W, kx), the projection, denoted by z, of kx to Ŵ must lie in W by the

definition of admissibility. Thus, y := kx− z ∈ W ′(F̂ )r. And conversely, for

y + z ∈ W ′(F̂ )r,ad ⊕W (F )r, (W, y + z) must be admissible.
Therefore, we have in the Chow group of MW the following identity:

(3.2) i∗ Z(x)K =
∑
(y,z)

Z(y)KW

where the sum is over all admissible y ∈ KW \W ′(F̂ )r, and all z ∈ W (F )r

such that
KW (y + z) = KWy + z ⊇ Kx.

By the discussion above, we have

i∗Zφ(g
′)

=
∑

x∈K\V ( bF )r

ω(g′f )φ(x)i∗Z(x)KWT (x)(g
′
∞)

=
∑

y∈KW \W ′( bF )r

ω(g′f )φ1(y)ZW ′(y)WT (y)(g
′
∞)

∑
z∈W (F )r

ω(g′)φ2(z)WT (z)(g
′
∞)

=Zφ1(g
′)θφ2(g

′).

This completes the proof of the proposition.
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4 Modularity in Chow groups

In this section, we want to prove the modularity (Theorem 1.2 and 1.3) of
generating series for a linear functional on Chow groups. We will first treat
the case of codimension one. Quite different from Borcherds’ proof in [1],
our proof does not use Borcherds “singular theta lifting”, which is actually
unavailable on totally real field except F = Q. Roughly speaking, the modu-
larity for large n follows from Kudla–Millson’s modularity for cohomological
class and the vanishing of the first Betti number of our Shimura varieties.
For small n, we use a pull-back trick which deduce the desired modularity
from that of large n.

Proof of Theorem 1.3

Suppose that φ is K-invariant. The group of cohomologically trivial line
bundles, up to torsion, is parameterized by the connected component of Pi-
card variety of MK . The tangent of the Picard is H1(MK ,O). For n ≥ 3,
dimCH

1(MK ,O) = 0 since it is half of the first Betti number of MK , which
is zero by Kumaresan’s vanishing theorem and Vogan-Zuckerman’s explicit
computation in [11], Theorem 8.1. Thus, the cycle class map is injective up to
torsion and the theorem follows from the modularity of Kudla–Millson (The-
orem 2 in [8]) where the statement extends obviously to the adelic setting by
their proof.

Now we assume that n ≤ 2. We can embed V into a higher dimension
quadratic space V ′ = V ⊕W such that dimF V

′ ≥ 5 and with the desired
signature at archimedean places. By Proposition 3.1, for any φ′ ∈ S(Ŵ ), we
have

i∗Zφ⊗φ′(g
′) = Zφ(g

′)θφ′(g
′).

Since both Zφ⊗φ′(g
′) and the usual theta function θφ′(g

′) are convergent and
SL2(F )-invariant, we deduce the convergence of Zφ(g

′) and invariance under
SL2(F ), provided that, for each g′, we can choose φ′ such that θφ′(g

′) 6= 0.
But we can make such choice since, otherwise, for some g′, θφ′(g

′) = 0 for
all choices of φ′. This would imply that θφ′(g

′gf ) = θω(gf )φ′(g
′) = 0 for any

gf ∈ Mp(F̂ ). Contradiction! This complete the proof of the theorem.

Remark
When dimFV = 3, the theorem above generalize Gross-Kohnen-Zagier

theorem about Heegner points on modular curves to CM points on Shimura
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curves. The pull-back trick was already used, as explained in Zagier’s paper
[12] and the introduction of [2], to deduce Gross–Kohnen–Zagier theorem
in a special case from the theorem of Hirzebruch–Zagier [5]. There, a key
ingredient is the simply connectedness of Hilbert modular surfaces.

Combining their computation of Néron-Tate pairing and a result of Wald-
spurger, Gross–Kohnen–Zagier in [2] also proved that eigen-components of
Heegner divisors on X0(N) are co-linear in the Mordell-Weil group. This
can be viewed as a “multiplicity one” result. We can give a representation-
theoretical proof of this result along the same line as in [14]. Let B be a
quaternion algebra over F such that it ramifies at exactly at one archimedean
place of F . Let V be the trace free subspace of B. Together with the reduced
norm, we obtain a three dimensional quadratic space, and G = GSpin(V ) =
B×. Let MK be the Shimura curve for an open compact subgroup K ⊆
G(Af ). Let ξ be the Hodge class defined as in [13]. Consider the subspace
MK of Jac(MK)(F ) generated by CM-divisors Z(x)K − deg(Z(x)K)ξ for all

x ∈ K \ V̂ . Consider the direct limit M of MK for all K and consider it
as a G(Af )-module. For a G(Af )-module πf , let σf be the representation
of GL2(Af ) associated by Jacquet-Langlands correspondence. Let σ∞,(2,2,...,2)

be the homomorphic discrete series of GL2(F∞) of parallel weight (2, 2, ..., 2).

Theorem 4.1. For a G(Af )-module πf with trivial central character,

dimHomG(Af )(M, πf ) ≤ 1.

If HomG(Af )(M, πf ) is non-trivial, the product σ = σf ⊗ σ∞,(2,2,...,2) is a
cuspidal automorphic representation of GL2(A).

Proof. For the first assertion, we sketch the proof and the complete detail can
be found in [14] Section 6. Let ρf be the representation of S̃L2(Af ) defined

by the local Howe’s duality for the pair (SO(V ), S̃L2) by the work of Wald-

spurger. Let ρ∞,(3/2,...,3/2) be the homomorphic discrete series of S̃L2(F∞) of
parallel weight (3/2, ..., 3/2). Note that we have equivariance of Hecke action
on the space M and the space S(V (Af )). In our case, Theorem 1.3 actually
implies that generating functions valued in M are all cuspidal forms. Then,
HomG(Af )(M, πf ) vanishes unless ρ = ρf ⊗ ρ∞,(3/2,...,3/2) is a cuspidal auto-

morphic representation of S̃L2(A), and the dimension of HomG(Af )(M, πf )
is bounded by the multiplicity of ρ in the space of cuspidal automorphic
forms on S̃L(2). The “multiplicity one” for cuspidal automorphic represen-

tations on S̃L(2) holds by Waldspurger’s work. For the second assertion, the
automorphy of ρ implies that of σ again by Waldspurger’s work.
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High-codimensional cycles

In the following we want to prove the modularity in Theorem 1.2 along the
same line as in [14]. Now that we have already assumed the convergence of
generating series, we only need to verify the automorphy.

Step 0: Modularity when r = 1.

When r = 1, the assertion is implied by Theorem 1.3. And we actually know
that generating functions converge for all linear functionals `.

Step 1: Invariance under Siegel parabolic subgroup.

It is easy to see that the series Zφ(g) is invariant under the Siegel parabolic
subgroup of Spr(F ). It suffices to consider the γ of the form

n(u) :=

(
1 u

1

)
, m(a) =

(
a

ta−1

)
By definition, we have

ω(n(u)g′f )φ(x)WT (x)(n(u)g′∞) = ω(g′)φ(x)WT (x)(g
′
∞)

Thus every term in Zφ(g) is invariant under n(u). Also by definition,

ω(m(a)g′f )φ(x)WT (x)(m(a)g′∞) = ω(g′f )φ(xa)WT (xa)(g
′
∞)

Since Z(x)K = Z(xa)K , thus the sum does not change after a substitution
x→ xa.

Step 2: Invariance under w1.

We want to show that Zφ(g) is invariant under w1, the image of

(
1

−1

)
under the embedding of SL2 into Sp2r. This is the key step of the proof.

Firstly, we can rewrite the sum as

Zφ(τ) =
∑

y∈K\bV r−1

∑
x∈Ky\bV

φ(x, y)Z(x, y)Kq
T (x,y)
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where Ky is the stabilizer of y. One can write

Z(x, y)K =
∑
x1,x2

iy ∗Z(x1)Ky

where
iy : MK,y →MK

and the sum is over all

x1 ∈ y⊥ :=
{
z ∈ V̂ : 〈z, yi〉 = 0, i = 1, 2, ..., r − 1

}
and x2 ∈ Fy :=

∑r−1
i=1 Fyi satisfying that Ky(x1 + x2) = Kyx (also see the

equation 3.2).
Thus, the sum becomes

Zφ(τ) =
∑

y∈K\bV r−1,ad

∑
x1∈Ky\y⊥

∑
x2∈Fy

φ(x1 + x2, y)iy∗(Z(x1)Ky)q
T (x1)
1 ξ〈x2,y〉q

T (y)
2

where

ξ〈x2,y〉 = exp(2πi
d∑

k=1

r−1∑
i=1

(zk,i〈x2, yi〉)),

and we have a natural decomposition

qT (x) = q
T (x1)
1 ξ〈x2,y〉q

T (y)
2 , τk =

(
τk,1 zk
tzk τk,2

)
, k = 1, ..., d.

where τk,1 ∈ H1, zk ∈ Cr−1, τk,2 ∈ Hr−1. Here, we simply write Z(x, y), Z(x1)
etc. to mean actually cycle classes shifted by appropriate powers of tauto-
logical line bundles on ambient Shimura varieties. But all these tautological
bundles are compatible with pull-backs (with respect to various compact sub-
groups K, Ky), or restrictions (from MK to MK,y). We therefore suppress
them in the following exposition to avoid messing up notations.

For fixed y, applying the modularity for divisors (proved in Step 0) to
φ(x1 + x2, y) as a function of x1, we know that under the substitution τ 7→
w−1

1 τ , ∑
x1∈Ky\y⊥

φ(x1 + x2, y)Z(x1)Kyq
T (x1)
1
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becomes ∑
x1∈Ky\y⊥

φ̂1(x1 + x2, y)Z(x1)Kyq
T (x1)
1

where φ̂1(x1 + x2, y) is the partial Fourier transformation with respect to x1.
Note that here we implicitly used the convergence of this partial series (by
Theorem 1.3). By Poisson summation formula, we also know that, under the
same substitution, ∑

x2∈Fy

φ̂1(x1 + x2, y)Z(x1)Kyξ
〈x2,y〉q

T (y)
2

becomes ∑
x2∈Fy

φ̂1,2(x1 + x2, y)Z(x1)Kyξ
〈x2,y〉q

T (y)
2 .

Note that ω(w1)φ(x, y) = φ̂x(x, y) is the partial Fourier transformation
with respect to the first coordinate x. It is easy to see that for x = x1 + x2,
φ̂1,2(x1 + x2, y) = φ̂x(x, y), too. This proves that

Zφ(w
−1
1 τ) = Zω(w1)φ(τ).

This prove that Zφ(g
′) is invariant under w1.

Step 3: Invariance under Sp2r(F ).

We claim that the Siegel parabolic subgroup and w1 generate Sp2r(F ). In
fact, SL2(F )r and the Siegel parabolic subgroup generate Sp2r(F ). Obvi-
ously, one needs just one copy of SL2(F ) since others can be obtained by
permutations which are in the Siegel parabolic subgroup. Further, one copy
of SL2(F ) can be generated by w1 and the Siegel parabolic subgroup. This
proves the claim. Thus we have finished the proof of Theorem 1.2 by Step 0,
1 and 2.
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