Circle homeomorphisms and shears with ℓ^2 structure

Catherine Wolfram
(joint work with Dragomir Saric and Yilin Wang)
March 7, 2023

Massachusetts Institute of Technology
Plan of the talk

Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

\[
\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset WP(\mathbb{T}) \subset S
\]

if and only if \(\alpha > 1/2 \).
Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

\[
C^{1,\alpha} \subset \mathcal{H} \subset \text{WP}(\mathbb{T}) \subset S
\]

if and only if \(\alpha > 1/2 \).

Outline of the talk:
Plan of the talk

Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

\[C^{1,\alpha} \subset \mathcal{H} \subset WP(\mathbb{T}) \subset S \]

if and only if \(\alpha > 1/2 \).

Outline of the talk:

- Shears and shear coordinates for circle homeomorphisms
Plan of the talk

Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

\[C^{1,\alpha} \subset \mathcal{H} \subset WP(\mathbb{T}) \subset S \]

if and only if \(\alpha > 1/2 \).

Outline of the talk:

- Shears and shear coordinates for circle homeomorphisms
- Definitions of the *Weil-Petersson class* and other circle homeomorphisms
Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

\[C^{1,\alpha} \subset \mathcal{H} \subset WP(\mathbb{T}) \subset S \]

if and only if \(\alpha > 1/2 \).

Outline of the talk:

- Shears and shear coordinates for circle homeomorphisms
- Definitions of the *Weil-Petersson class* and other circle homeomorphisms
- Look at circle homeomorphisms with finitely supported shears to motivate the definition of *diamond shear* coordinates
- Some ideas of proof
Plan of the talk

Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

\[\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset \text{WP}(\mathbb{T}) \subset S \]

if and only if \(\alpha > 1/2 \).

Outline of the talk:

- Shears and shear coordinates for circle homeomorphisms
- Definitions of the *Weil-Petersson class* and other circle homeomorphisms
- Look at circle homeomorphisms with finitely supported shears to motivate the definition of *diamond shear* coordinates
- Some ideas of proof

See preprint at arXiv:2211.11497 for more details and references!
Shears and shear coordinates
Shear in terms of cross ratio

The cross ratio of four points a, b, c, d along a circle or line is

$$\text{cr}(a, b, c, d) = \frac{(b - a)(d - c)}{(c - b)(d - a)} \in \mathbb{R}.$$

The cross ratio is invariant under Möbius transformations and has the symmetry $\text{cr}(a, b, c, d) = \text{cr}(c, d, a, b)$.

Example. $\text{cr}(\infty, -1, 0, \lambda) = \lambda$ for $\lambda \in (0, \infty)$.
Shear in terms of cross ratio

The cross ratio of four points a, b, c, d along a circle or line is

$$
\text{cr}(a, b, c, d) = \frac{(b - a)(d - c)}{(c - b)(d - a)} \in \mathbb{R}.
$$

The cross ratio is invariant under Möbius transformations and has the symmetry $\text{cr}(a, b, c, d) = \text{cr}(c, d, a, b)$.

Example. $\text{cr}(\infty, -1, 0, \lambda) = \lambda$ for $\lambda \in (0, \infty)$.

Definition. The shear of a quadrilateral Q with vertices $a, b, c, d \in \mathbb{T}$ along its diagonal $e = (a, c)$ is defined

$$
\text{s}(Q, e) = \log \text{cr}(a, b, c, d).
$$
Shear in terms of hyperbolic length

The shear $s(Q, e)$ can also be computed as (signed) hyperbolic length:

$$s(Q, e) = \pm d_{\text{hyp}}(m_b(e), m_d(e)).$$

Here $m_b(e)$ is the intersection of the geodesic through b perpendicular to e and $m_d(e)$ is the intersection of the geodesic through d perpendicular to e.

The shear $s(Q, e)$ measures how the two triangles on either side of e are glued together to construct Q.
\(\mathcal{F} = (V, E) \) tessellation of \(\mathbb{D} \) starting from \(\tau_0 = \{-1, i, 1\} \) generated by hyperbolic reflections. Vertices \(V = \mathbb{T} \cap \mathbb{Q}^2 \). The dual tree \(\mathcal{F}^* \) (where each triangle corresponds to a vertex, etc) is a trivalent tree.
Farey tessellation

\(\mathcal{F} = (V, E) \) tessellation of \(\mathbb{D} \) starting from \(\tau_0 = \{-1, i, 1\} \) generated by hyperbolic reflections. Vertices \(V = \mathbb{T} \cap \mathbb{Q}^2 \). The dual tree \(\mathcal{F}^* \) (where each triangle corresponds to a vertex, etc) is a trivalent tree.

Conjugating to \(\mathbb{H} \) by a Möbius transformation sending \(\{-1, i, 1\} \mapsto \{0, 1, \infty\} \), \(V \) is sent to \(\mathbb{Q} \). There is an edge \((p/q, r/s) \in E \) if and only if \(pr - qs = 1 \), and tessellation is invariant under the action of \(\text{PSL}(2, \mathbb{Z}) \) action.
Farey tessellation in \mathbb{D} and shears

The *Farey quad* Q_e around $e \in E$ is the pair of triangles in \mathcal{F} with diagonal e.

Since \mathcal{F} is generated by reflection, in terms of shears

$$s(Q_e, e) = 0 \quad \forall e \in E.$$
Tessellation from homeomorphism

A Möbius transformations is determined by its action on three points, so

\[\text{Homeo}^+(\mathbb{T})/\text{Möb} \cong \{ h \in \text{Homeo}^+(\mathbb{T}) : h \text{ fixes } \pm 1, i \}. \]

Given a homeomorphism \(h \) fixing \(\pm 1, i \), we can define a tessellation \(h(\mathcal{F}) \) which contains the triangle \(\tau_0 \) and has vertices \(h(V) \) and edges

\[h(E) = \{(h(a), h(b)) : (a, b) \in E \}. \]
Shear coordinates

Definition. If h is a homeomorphism, its shear coordinate $s_h : E \rightarrow \mathbb{R}$ is

$$s_h(e) = s(h(Q_e), h(e)) \quad \forall e \in E.$$

Remark. Not all functions $s : E \rightarrow \mathbb{R}$ encode homeomorphisms. (There exist shear functions where the image of V is not dense.)
Circle homeomorphisms
Quasisymmetric homeomorphisms $QS(\mathbb{T})$

A map $f : \mathbb{D} \to \mathbb{D}$ is quasiconformal if f solves the Beltrami equation

$$f_z = \mu f_z,$$

for some Beltrami coefficient μ with $||\mu||_{\infty} < 1$.
Quasisymmetric homomorphisms \(QS(\mathbb{T}) \)

A map \(f : \mathbb{D} \to \mathbb{D} \) is quasiconformal if \(f \) solves the Beltrami equation

\[
f_z = \mu f_z,
\]

for some Beltrami coefficient \(\mu \) with \(||\mu||_\infty < 1 \).

A homeomorphism \(h : \mathbb{T} \to \mathbb{T} \) is quasisymmetric if and only if it is the boundary value of a quasiconformal map of \(\mathbb{D} \).
Quasisymmetric homomorphisms $\text{QS}(\mathbb{T})$

A map $f : \mathbb{D} \rightarrow \mathbb{D}$ is quasiconformal if f solves the Beltrami equation

$$f_{\bar{z}} = \mu f_z,$$

for some Beltrami coefficient μ with $||\mu||_{\infty} < 1$.

A homeomorphism $h : \mathbb{T} \rightarrow \mathbb{T}$ is quasisymmetric if and only if it is the boundary value of a quasiconformal map of \mathbb{D}.

Shears for quasisymmetric maps are totally classified (Saric). One model of universal Teichmüller space is $\text{QS}(\mathbb{T})/\text{Möb}$, where $\text{Möb} = \text{PSU}(1, 1)$ is the Möbius transformations preserving the disk.
Weil-Petersson homeomorphisms $\text{WP}(\mathbb{T})$

Weil-Petersson Teichmüller space $\text{WP}(\mathbb{T})/\text{Möb}$ is a subspace of universal Teichmüller space that has received a lot of interest lately. The class now has at least 26 definitions, often with L^2 structure.
Weil-Petersson homeomorphisms $\text{WP}(\mathbb{T})$

Weil-Petersson Teichmüller space $\text{WP}(\mathbb{T})/\text{Möb}$ is a subspace of universal Teichmüller space that has received a lot of interest lately. The class now has at least 26 definitions, often with L^2 structure.

Definition 1. A homeomorphism $h : \mathbb{T} \to \mathbb{T}$ is Weil-Petersson if there exists an extension $f : \mathbb{D} \to \mathbb{D}$ such that:

- f is quasiconformal, i.e. f solves $f_z = \mu f z$ for μ with $||\mu||_\infty < 1$.
- The Beltrami coefficient μ is in L^2 for the hyperbolic metric on the disk, i.e.

$$
\int_{\mathbb{D}} \frac{|\mu(z)|^2}{(1 - |z|^2)^2} \, dA(z) < \infty.
$$
Weil-Petersson homeomorphisms WP(\(\mathbb{T}\))

Weil-Petersson Teichmüller space WP(\(\mathbb{T}\))/Möb is a subspace of universal Teichmüller space that has received a lot of interest lately. The class now has at least 26 definitions, often with \(L^2\) structure.

Definition 1. A homeomorphism \(h : \mathbb{T} \to \mathbb{T}\) is Weil-Petersson if *there exists* an extension \(f : \mathbb{D} \to \mathbb{D}\) such that:

- \(f\) is quasiconformal, i.e. \(f\) solves \(f_Z = \mu f_z\) for \(\mu\) with \(||\mu||_\infty < 1\).
- The Beltrami coefficient \(\mu\) is in \(L^2\) for the hyperbolic metric on the disk, i.e.

\[
\int_{\mathbb{D}} \frac{|\mu(z)|^2}{(1 - |z|^2)^2} \, dA(z) < \infty.
\]

Definition 2 (Shen). A homoemorphism \(h\) is Weil-Petersson if and only if it is absolutely continuous and \(\log h' \in H^{1/2}\), i.e.

\[
\iint_{\mathbb{T} \times \mathbb{T}} \left| \frac{\log h'(x) - \log h'(y)}{x - y} \right|^2 \, dx \, dy < \infty.
\]
We define Hölder classes

\[C^{1,\alpha} = \{ h : \mathbb{T} \to \mathbb{T} : \log h' \text{ is } \alpha\text{-Hölder} \}. \]
We define Hölder classes

\[C^{1,\alpha} = \{ h : \mathbb{T} \to \mathbb{T} : \log h' \text{ is } \alpha-\text{Hölder} \}. \]

Corollary (of the \(H^{1/2} \) characterization of WP). The inclusion \(C^{1,\alpha} \subset WP(\mathbb{T}) \) holds if and only if \(\alpha > 1/2 \).
We define Hölder classes

\[C^{1,\alpha} = \{ h : \mathbb{T} \to \mathbb{T} : \log h' \text{ is } \alpha\text{-Hölder} \}. \]

Corollary (of the \(H^{1/2} \) characterization of WP). The inclusion \(C^{1,\alpha} \subset WP(\mathbb{T}) \) holds if and only if \(\alpha > 1/2 \).

If \(\log h' \) is \(\alpha \)-Hölder, then

\[
\iint_{\mathbb{T} \times \mathbb{T}} \left| \frac{\log h'(x) - \log h'(y)}{x - y} \right|^2 \, dx \, dy \leq \text{const.} \iint_{\mathbb{T} \times \mathbb{T}} |x - y|^{2\alpha - 2} \, dx \, dy,
\]

which is finite if and only if \(2\alpha - 2 > -1 \) hence if and only if \(\alpha > 1/2 \).
Square summable shears

We define the set of \textit{square summable shear functions}

\[S = \{ s : E \rightarrow \mathbb{R} : \sum_{e \in E} s(e)^2 < \infty \} \]
We define the set of square summable shear functions

$$S = \{ s : E \to \mathbb{R} : \sum_{e \in E} s(e)^2 < \infty \}$$

Question. How close is S to $WP(\mathbb{T})$?
Square summable shears

We define the set of square summable shear functions

$$\mathcal{S} = \{ s : E \rightarrow \mathbb{R} : \sum_{e \in E} s(e)^2 < \infty \}$$

Question. How close is \mathcal{S} to $\text{WP}(\mathbb{T})$?

Turns out \mathcal{S} is “far” from (much bigger than) $\text{WP}(\mathbb{T})$, and this can be seen by looking at circle homomorphisms with finitely supported shears.
Square summable shears

We define the set of square summable shear functions

\[S = \{ s : E \to \mathbb{R} : \sum_{e \in E} s(e)^2 < \infty \} \]

Question. How close is \(S \) to \(WP(\mathbb{T}) \)?

Turns out \(S \) is “far” from (much bigger than) \(WP(\mathbb{T}) \), and this can be seen by looking at circle homomorphisms with finitely supported shears.

This will motivate the definition of *diamond shear* coordinates, and the space \(\mathcal{H} \) (square summable diamond shears), which we show is much closer to \(WP(\mathbb{T}) \).
Circle homeomorphisms with finitely supported shears
Finitely supported is piecewise Möbius

A shear function $s : E \to \mathbb{R}$ is *finitely supported* if $s(e) \neq 0$ for only finitely many $e \in E$.

Example

A finitely supported shear function is always induced by a piecewise Möbius circle homeomorphism with “breakpoints” in the vertices V of \mathcal{F}.

edges e in the support of S.
Finitely supported shears and Weil-Petersson

For \(v \in V \), \(\text{fan}(v) \) is the edges \(e \in E \) incident to \(v \).

Lemma. If \(h : \mathbb{T} \rightarrow \mathbb{T} \) has \(s_h : E \rightarrow \mathbb{R} \) finitely supported, TFAE:

1. \(h \) is Weil Petersson;
2. \(h \) is \(C^{1,1} \) with breakpoints in \(V \);
3. The shear function \(s_h \) satisfies the *finite balance condition*, i.e. for all \(v \in V \), \(\sum_{e \in \text{fan}(v)} s(e) = 0 \).

Note: The shear function \(s : E \rightarrow \mathbb{R} \) supported on one edge is *not* WP.
Definition of diamond shear

Definition. Fix $e \in E$ (with dual edge e^*), and let e_1, e_2, e_3, e_4 be the edges around Q_e. The *diamond shear* basis element Δ_e corresponds to the shear function with $s(e_1) = s(e_3) = +1$, $s(e_2) = s(e_4) = -1$, and all other shears 0.

Δ_e is the shear coordinate of a piecewise Möbius map with 4 pieces.

\[
\text{Ex} \quad \Delta_e \\
\text{for} \\
e = (-1, 1)
\]

\[
\begin{align*}
\theta(e^*) &= 1 \\
s(e_1) &= s(e_3) = +1 \\
s(e_2) &= s(e_4) = -1
\end{align*}
\]

Definition. If a homeomorphism h has a shear coordinate $s : E \to \mathbb{R}$ such that $s = \sum_{e^* \in E^*} \vartheta(e^*) \Delta_e$ then h has *diamond shear coordinate* $\vartheta : E^* \to \mathbb{R}$.

Note: not all shear functions can be written as diamond shears.
Lemma. If h has s_h finitely supported, then h is Weil-Petersson if and only if h has a diamond shear coordinate.

Proof sketch. “Pruning the tree.” By the previous Lemma, h is Weil-Petersson if and only if s_h satisfies the finite balanced condition.
Definition of \mathcal{H}

Not all shear functions can be written as diamond shears. We let $\mathcal{P} \subset \mathbb{R}^E$ be the subset of shear functions s such that s can be written in terms of diamond shear coordinates ϑ, $\Psi : \mathcal{P} \to \mathbb{R}^{E^*}$ sends $s \mapsto \vartheta$.

Definition. The set of *square summable diamond shears* is

$$\mathcal{H} = \{ s \in \mathcal{P} : \vartheta = \Psi(s), \sum_{e^* \in E^*} \vartheta(e^*)^2 < \infty \}.$$
Definition of \mathcal{H}

Not all shear functions can be written as diamond shears. We let $\mathcal{P} \subset \mathbb{R}^E$ be the subset of shear functions s such that s can be written in terms of diamond shear coordinates ϑ, $\Psi : \mathcal{P} \rightarrow \mathbb{R}^{E^*}$ sends $s \mapsto \vartheta$.

Definition. The set of square summable diamond shears is

$$\mathcal{H} = \{s \in \mathcal{P} : \vartheta = \Psi(s), \sum_{e^* \in E^*} \vartheta(e^*)^2 < \infty \}.$$

Remark. From the condition for a shear function to encode a quasisymmetric homeomorphism, it follows that

$$\mathcal{H} \subset QS(\mathbb{T}).$$

In particular, all $s \in \mathcal{H}$ induce homeomorphisms.
Main theorems

Theorem (SWW).

\[\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset WP(\mathbb{T}) \subset S \]

if and only if \(\alpha > 1/2 \).
Main theorems

Theorem (SWW).

\[C^{1,\alpha} \subset \mathcal{H} \subset \text{WP}(\mathbb{T}) \subset S \]

if and only if \(\alpha > 1/2 \).

The space \(\text{WP}(\mathbb{T}) \) has a metric (the Weil-Petersson metric), and \(\mathcal{H} \) has a natural topology coming from its \(\ell^2 \) structure.
Main theorems

Theorem (SWW).

\[C^{1,\alpha} \subset \mathcal{H} \subset \text{WP}(\mathbb{T}) \subset S \]

if and only if \(\alpha > 1/2 \).

The space \(\text{WP}(\mathbb{T}) \) has a metric (the Weil-Petersson metric), and \(\mathcal{H} \) has a natural topology coming from its \(\ell^2 \) structure.

Theorem (SWW). Suppose that \(h, (h_n)_{n \geq 1} \in \mathcal{H} \) with diamond shear coordinates \(\vartheta, \vartheta_n \) respectively. If

\[
\lim_{n \to \infty} \sum_{e^* \in E^*} (\vartheta_n(e^*) - \vartheta(e^*))^2 = 0
\]

then \(h_n \) converges to \(h \) in the Weil-Petersson metric.
Main theorems

Theorem (SWW).

\[C^{1, \alpha} \subset \mathcal{H} \subset \text{WP}(\mathbb{T}) \subset S \]

if and only if \(\alpha > 1/2 \).

The space \(\text{WP}(\mathbb{T}) \) has a metric (the Weil-Petersson metric), and \(\mathcal{H} \) has a natural topology coming from its \(\ell^2 \) structure.

Theorem (SWW). Suppose that \(h, (h_n)_{n \geq 1} \in \mathcal{H} \) with diamond shear coordinates \(\vartheta, \vartheta_n \) respectively. If

\[
\lim_{n \to \infty} \sum_{e^* \in E^*} (\vartheta_n(e^*) - \vartheta(e^*))^2 = 0
\]

then \(h_n \) converges to \(h \) in the Weil-Petersson metric.

Corollary. Piecewise-Möbius, \(C^1 \) maps with rational breakpoints are dense in \(\mathcal{H} \) and \(\text{WP}(\mathbb{T}) \).
Proof ideas
Given $h \in \mathcal{H}$, we explicitly construct an extension $f : \mathbb{D} \to \mathbb{D}$ and show it is quasiconformal and has Beltrami coefficient $\mu \in L^2(\mathbb{D}, d_{hyp})$.
Proof ideas: $\mathcal{H} \subset WP$

Given $h \in \mathcal{H}$, we explicitly construct an extension $f : \mathbb{D} \to \mathbb{D}$ and show it is quasiconformal and has Beltrami coefficient $\mu \in L^2(\mathbb{D}, d_{\text{hyp}})$.

The dual tree \mathcal{F}^* subdivides \mathbb{D} into cells $\{C_v : v \in V\}$. Based on a construction by Kahn and Markovic, we construct f extending h that sends cells to cells.

Step 1. Extend over \mathcal{F}^* by hyperbolic stretching.

Step 2. Extend over a single cell $C_v, v \in V$.

Step 3. Stitch cells together again.
Proof ideas: extending over a cell C_v

For any $v \in V$, conjugating by appropriate Möbius transformations $\mathbb{H} \to \mathbb{D}$, we can send $h : \mathbb{T} \to \mathbb{T}$ to $\varphi : \mathbb{R} \to \mathbb{R}$ fixing ∞ and C_v to C_{∞}. Suffices to explain how to extend over C_{∞}.
Proof ideas: extending over a cell C_ν

For any $\nu \in V$, conjugating by appropriate Möbius transformations $\mathbb{H} \to \mathbb{D}$, we can send $h : \mathbb{T} \to \mathbb{T}$ to $\varphi : \mathbb{R} \to \mathbb{R}$ fixing ∞ and C_ν to C_∞. Suffices to explain how to extend over C_∞.

![Diagram showing extension of φ](image)

Extension ψ (conjugate to f) of φ sends $x + i u(x)$ (boundary of C_∞) by hyperbolic stretching to the curve $\alpha(x) + i \beta(x)$. We extend over the rest of the cell on vertical lines:

$$\psi(x + iy) = \alpha(x) + i(\beta(x) - u(x) + y) \quad x + iy \in C_\infty.$$
Proof ideas: $C^{1,\alpha} \subset \mathcal{H}$

Analytic definition of diamond shears. If h has a diamond shear coordinate ϑ_h and $e = (a, b) \in E$, then

$$
\vartheta_h(e) = \frac{1}{2} \log h'(a)h'(b) - \log \frac{h(a) - h(b)}{a - b}.
$$

Summability of Farey lengths. Let $\ell(a, b)$ be the length of the shorter circular arc from a to b.

$$
\sum_{(a,b)\in E} \ell(a, b)^r < \infty
$$

if and only if $r > 1$.
Proof ideas: $C^{1,\alpha} \subset \mathcal{H}$

Analytic definition of diamond shears. If h has a diamond shear coordinate ϑ_h and $e = (a, b) \in E$, then

$$
\vartheta_h(e) = \frac{1}{2} \log h'(a) h'(b) - \log \frac{h(a) - h(b)}{a - b}.
$$

Summability of Farey lengths. Let $\ell(a, b)$ be the length of the shorter circular arc from a to b.

$$
\sum_{(a, b) \in E} \ell(a, b)^r < \infty
$$

if and only if $r > 1$.

Proof sketch. Suppose $h \in C^{1,\alpha}$. By the mean value theorem*, there is $c \in (a, b)$ so that

$$
\vartheta_h(e) = \frac{1}{2} (\log h'(a) - \log h'(c)) + \frac{1}{2} (\log h'(b) - \log h'(c)).
$$

Since $\log h'$ is α-Hölder, $|\vartheta_h(e)|^2 \leq \text{const.} \ell(a, b)^{2\alpha}$, and the right hand side is summable if and only if $\alpha > 1/2$.

*
Comments on WP ∉ ℋ and WP ⊂ S

It turns out that for \(h : \mathbb{T} \rightarrow \mathbb{T} \) to even have diamond shear coordinate, \(h \) must have left and right derivatives at all \(v \in V \). But Weil-Petersson maps are allowed to have points of non-differentiability.
Comments on WP $\not\in \mathcal{H}$ and WP $\subset S$

It turns out that for $h : \mathbb{T} \to \mathbb{T}$ to even have diamond shear coordinate, h must have left and right derivatives at all $v \in V$. But Weil-Petersson maps are allowed to have points of non-differentiability.

Example. $\varphi : \mathbb{R} \to \mathbb{R}$ defined by $\varphi(x) = x \log |x| - x$ outside $(-2, 2)$, and smoothed out in-between. The function $\log \varphi'(x) = \log \log |x|$ outside $(-2, 2)$ is in $H^{1/2}(\mathbb{R})$ so $\varphi \in WP(\mathbb{R})$. However since φ does not have derivative at ∞, it does not have a diamond shear coordinate.
Comments on WP \(\not\in \mathcal{H} \) and WP \(\subset S \)

It turns out that for \(h : \mathbb{T} \to \mathbb{T} \) to even have diamond shear coordinate, \(h \) must have left and right derivatives at all \(v \in V \). But Weil-Petersson maps are allowed to have points of non-differentiability.

Example. \(\varphi : \mathbb{R} \to \mathbb{R} \) defined by \(\varphi(x) = x \log |x| - x \) outside \((-2, 2)\), and smoothed out in-between. The function \(\log \varphi'(x) = \log \log |x| \) outside \((-2, 2)\) is in \(H^{1/2}(\mathbb{R}) \) so \(\varphi \in \text{WP}(\mathbb{R}) \). However since \(\varphi \) does not have derivative at \(\infty \), it does not have a diamond shear coordinate.

Remark. However one can compute that for \(n > 1 \),

\[
s_\varphi((n, \infty)) = \frac{1}{n \log n} + O\left(\frac{1}{n^2}\right).
\]

This is square summable, corresponding to the fact that \(\text{WP}(\mathbb{T}) \subset S \). The proof that \(\text{WP}(\mathbb{T}) \subset S \) uses a necessary condition for WP due to C. Wu.
Thank you for listening!