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Abstract

We introduce and the study the space of homeomorphisms of the circle (up to Möbius
transformations) which are in ℓ2 with respect to modular coordinates called diamond shears
along the edges of the Farey tessellation. Diamond shears are related combinatorially to
shear coordinates, and are also closely related to the log Λ-lengths of decorated Teichmüller
space introduced by Penner. We obtain sharp results comparing this new class to the
Weil–Petersson class and Hölder classes of circle homeomorphisms. We also express the
Weil–Petersson metric tensor and symplectic form in terms of infinitesimal shears and
diamond shears.
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Figure 1: Farey tessellation in D (black) and the dual tree (red) up to generation 5.
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1 Introduction

The Farey tessellation F is an ideal triangulation of the disk D, characterized by the modular
invariance property that it is preserved by the action of PSL(2,Z) on the disk. Its vertices
V = Q2 ∩ T are the rational points on the circle T, and we use E to denote its edges. The
Farey tessellation has various connections to number theory [13], but our motivation comes
from Teichmüller theory, where the universal Teichmüller space

T (D) = QS(T)/Möb(T)

can be identified with quasisymmetric circle homeomorphisms fixing three points −1, i, 1.
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Any element h of the larger homogeneous space of orientation preserving circle homeomorphisms

Homeo+(S1)/Möb(T) ≃ {h ∈ Homeo+(T) : h fixes − 1, i, 1}

can be uniquely encoded by a shear coordinate on the edges of the Farey tessellation, namely
a function s : E → R. However, not all functions s : E → R encode circle homeomorphisms.
Penner posed the question of classifying which functions s : E → R encode various smoothness
classes of homeomorphisms. In [28, 30], the shear coordinates for homeomorphisms, symmetric
homeomorphisms, and quasisymmetric homeomorphisms were characterized by the first author.
In this paper we take an opposite perspective. We define two ℓ2 classes of shear functions, and
then study the regularity properties these ℓ2 conditions imply for circle homeomorphisms and
the relation to the existing Hilbert manifold structure on the universal Teichmüller space. For
precise descriptions of the Farey tessellation, shears and shear coordinates, see the preliminaries
in Section 2 or e.g. [3, Chapter 8] by Bonahon.
Naïvely, the first class to consider is the set of square summable shear functions, i.e.

S := {s : E → R :
∑
e∈E

s(e)2 < ∞}.

However, we find that not all s ∈ S even encode circle homeomorphisms. Conversely, we also
find that there are quasisymmetric homeomorphisms which are not in S . See Proposition 5.11
for simple examples to illustrate both of these facts. In summary,

T (D) ≃ QS(T)/Möb(T) ̸⊂ S and S ̸⊂ Homeo(T)/Möb(T).

These observations show that a basis of shear functions each supported on a single edge is “too
large” to define an ℓ2 space of circle homeomorphisms.
Motivated by this, we investigate shear functions supported on finitely many edges. Finitely
supported shear functions always induce homeomorphisms, which in particular are piecewise
Möbius with pieces bounded by rational points in V (see Lemma 3.1). This class of circle
homeomorphisms has been studied in, e.g., [4,8,17,18,24]. We then show that a homeomorphism
h with finitely supported shear sh is piecewise Möbius and C1 with breakpoints in V if and
only if it belongs to a linear subspace of all shear functions spanned by diamond shears. See
Lemma 3.4 and Proposition 3.6. Combinatorially, this condition is equivalent to requiring that
the shears on all edges incident to the same vertex sum up to zero (which we call the finite
balanced condition).
To define diamond shears more precisely in terms of shears, choose an edge e ∈ E, and let
e1 = (a, b), e2 = (b, c), e3 = (c, d), e4 = (d, a) in E be the boundary edges in counterclockwise
order of quadrilateral Qe = (a, b, c, d) consisting of the two triangles from F containing e =
(a, c) ∈ E. A unit of diamond shear supported at the edge e, i.e. ϑh(e) = 1 and ϑh(e′) = 0
for all e′ ∈ E and e′ ̸= e, is equivalent to four nonzero shears where sh(e1) = sh(e3) = 1
and sh(e2) = sh(e4) = −1. The name “diamond” comes from the picture that the support
of one diamond shear corresponds to a quad/diamond of regular shears. See Section 3.2
for concrete examples of the correspondence between diamond shear coordinates and circle
homeomorphisms.
When sh has infinite support, we define the diamond shear coordinate ϑh combinatorially
as an infinite sum denoted as Ψ(sh) whenever sh is in a certain subclass P (which can be
characterized analytically in terms of differentiability of h). See Section 3.3. It is often more
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convenient to define the diamond shear coordinate on the edges of the dual tree F∗. As the
edges of F and F∗ are in one-to-one correspondence, this identification should not add any
ambiguity. See Figure 1.
We show that diamond shears can be described analytically:

Proposition 1.1 (See Proposition 3.25). Assume that sh ∈ P0 ⊂ P (which implies that h is
differentiable at all v ∈ V ). The diamond shear coordinate ϑh of h is given by

ϑh(e) = 1
2 log h′(a)h′(b) − log h(a) − h(b)

a− b
(1.1)

for all e = (a, b) ∈ E.

This proposition connects diamond shears to the log Λ-lengths defined by Penner on decorated
Teichmüller space, which is a (trivial) bundle over T (D), with fiber RV

>0 over h ∈ T (D)
corresponding to choosing a horocycle at each h(v) ∈ h(V ). See [17,24,25] or the book [26].
Roughly speaking, the decoration allows one to truncate and define the “renormalized hyperbolic
length” of an infinite geodesic h(e) ∈ h(E). A homeomorphism h that is differentiable on V

gives a canonical way to fix as in [17] a decoration on h(V ), and ϑh(e) is equal to −1/2 times
the renormalized length of e.

Corollary 1.2 (See Lemma 3.30). If sh ∈ P0, then for any e = (a, b) ∈ E,

ϑh(e) = − log Λh(e) = −1
2 length(h(e))

where length(h(e)) is the signed hyperbolic length of the part of h(e) between the horocycles
centered at h(a) and h(b) chosen from the fixed decoration.

Our main object of study in this paper is the set of shear functions with ℓ2 summable diamond
shear coordinates:

H := {s : E → R :
∑
e∈E

ϑ(e)2 < ∞}.

It is relatively straightforward to show that this corresponds to a class of circle homeomorphisms.
Given this, we use the abuse of notation h ∈ H to mean sh ∈ H throughout.

Proposition 1.3 (See Corollary 3.21). If s ∈ H , then s induces a quasisymmetric circle
homeomorphism. In other words, H ⊂ QS(T)/Möb(T) ≃ T (D).

Our first main result is to characterize the Hölder classes of circle homeomorphisms that are
contained in H . Define for α ∈ (0, 1],

C 1,α := {h : T → T homeomorphism : log h′ is α-Hölder}. (1.2)

In particular, the welding homeomorphisms of C1,α Jordan curves belong to C 1,α.

Theorem 1.4 (See Theorem 4.1). If α > 1/2, then C 1,α ⊂ H .

This result is sharp as Theorem 1.5 will show that C 1,1/2 is not in H . The proof of this
result relies on Proposition 1.1 and the ℓ2α summability of the lengths of the shorter arcs in T
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between a and b for each (a, b) ∈ E. The ℓ2 summability was studied and implied by results
in [12,25], we improve it to ℓ2α summability. See Proposition 4.2.
Another main result of our work is an explicit construction of a quasiconformal extension
f : D → D of h ∈ H inspired by a construction in [15] by Kahn and Markovic. The construction
is adapted to the cell decomposition of the Farey tessellation, and is one of the places where
its discrete structure is essential. This construction crucially uses the generalized balanced
condition satisfied by shear functions that can be written in terms of diamond shears. While
characterizations of shear functions for quasisymmetric homeomorphisms are known, analogous
methods for constructing their quasiconformal extensions using the shear function are not
known. We further find that if h ∈ H , then the Beltrami differential µf = ∂̄f/∂f of the
extension f is in L2(D, dhyp).
This leads to a connection between H and the Weil–Petersson class of circle homeomorphisms
WP(T). The Weil–Petersson Teichmüller space WP(T)/Möb(T) =: T0(D) is a subspace of
T (D) defined as the completion of Diff(T)/Möb(T) under its unique homogeneous Kähler
metric (the Weil–Petersson metric) [36]. The space of Weil–Petersson homeomorphisms WP(T)
is characterized analytically by Shen [33], see Definition 2.7, and also by, e.g., [2, 6, 38, 39].
In particular one definition of Weil–Petersson homeomorphisms WP(T) is that they admit a
quasiconformal extension to the disk whose Beltrami differential µf = ∂̄f/∂f is in L2(D, dhyp)
(see [36] or Theorem 2.8). Cui [6] showed that the Douady–Earle quasiconformal extension of
a Weil–Petersson homeomorphism satisfies this property, and we remark that it is notable that
our construction using shears has the desired property for all h ∈ H .
Ultimately we prove the following relationships between H ,S and the Weil–Petersson class.

Theorem 1.5. We have H ⊂ WP(T). Additionally if h ∈ WP(T), then sh ∈ S . Both
inclusions are strict.

See Theorem 5.5 for the first inclusion, and Section 5.3 for why it is strict. See Theorem 5.12
for the last inclusion. For comparison, note that this result implies that Theorem 1.4 is sharp,
since C 1,1/2 ⊈ H as otherwise it would also be in WP(T) (which contradicts Lemma 2.9). As
smooth diffeomorphisms are dense in WP(T), so is H .
In fact, our construction of the quasiconformal extension for functions in H can be adapted to
show the following stronger result that convergence in H endowed with its ℓ2 topology implies
convergence in the Weil–Petersson metric.

Theorem 1.6 (See Corollary 5.10). Suppose that h, (hn)n≥1 ∈ H with diamond shear coordi-
nates ϑ, ϑn respectively. If

lim
n→∞

∑
e∈E

(ϑn(e) − ϑ(e))2 = 0,

then hn converges to h in the Weil–Petersson metric.

We obtain immediately the following corollary.

Corollary 1.7. The class of continuously differentiable and piecewise Möbius circle homeo-
morphisms (with break points in V ) is dense in H and in WP(T).

Indeed, this class is equal to the class of circle homeomorphisms with finitely supported diamond
shear coordinates (Lemma 3.4 and Proposition 3.6) which is dense in H for the Weil–Petersson
metric by the above theorem.
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Finally, we study infinitesimal shear and diamond shear coordinates on the tangent spaces of
H . Since H ⊂ WP(T), we compute the Weil–Petersson metric in terms of diamond shears.
Theorem 1.8 (See Corollary 6.5, Theorem 6.8 and Corollary 6.10). Each ℓ2-summable
infinitesimal diamond shear gives rise to a H3/2 vector field on T. Let u1, u2 be the H3/2

vector fields corresponding to the ℓ2-summable infinitesimal diamond shears ϑ̇1, ϑ̇2 ∈ ThH ⊂
Th WP(T). Then

⟨u1, u2⟩WP =
∑

e1∈E

∑
e2∈E

ϑ̇1(e1)ϑ̇2(e2) g(h(Qe1), h(e1), h(Qe2), h(e2)),

where for Q = (a1, a2, a3, a4), e = (a1, a3), Q′ = (b1, b2, b3, b4), e′ = (b1, b3),

g(Q, e,Q′, e′) = 2
π

Re
4∑

j,k=1

(−1)j+ka2
j b̄

2
k(aj+1 − aj−1)(b̄k+1 − b̄k−1)

(aj+1 − aj)(aj − aj−1)(b̄k+1 − b̄k)(b̄k − b̄k−1)
σ(aj , bk),

and for a, b ∈ T,

σ(a, b) =
∞∑

p=0

(ab̄)p+1

(1 + p)(2 + p)(3 + p) .

The expression of the metric tensor is relatively complicated. In contrast, the symplectic
form has a very simple expression first noticed by Penner in [23, 24]. Using the formula
in [24, Thm. 5.5] and the relationship between diamond shears and log Λ-lengths that we
describe in Section 3.5, we can rewrite the Weil–Petersson symplectic form in terms of a
mixture of infinitesimal shears and diamond shears as follows.
Theorem 1.9 (See Theorem 6.11). Let ω denote the Weil–Petersson symplectic form on
WP(T) and fix h ∈ H . Suppose that u1, u2 are the H3/2 vector fields corresponding to the
ℓ2-summable infinitesimal diamond shears ϑ̇1, ϑ̇2 ∈ ThH ⊂ Th WP(T) with infinitesimal shear
coordinates ṡ1, ṡ2 respectively. Then

ω(u1, u2) =
∑
e∈E

ϑ̇1(e)ṡ2(e) = −
∑
e∈E

ṡ1(e)ϑ̇2(e).

We note the resemblance of this formula with the Weil–Petersson symplectic form on the finite
dimensional Teichmüller spaces Tg,n using the Fenchel-Nielson coordinates due to Wolpert [43]:

ω = −1
2
∑
γ∈Γ

dl ∧ dτ,

where Γ is a maximal multicurve on a Riemann surface of finite type. Here, one may draw the
analogy by interpreting ṡ as the deformation by twisting along closed geodesics corresponding
to dτ , and ϑ̇ as the deformation by changing the length of geodesics corresponding to −1

2dl by
Corollary 1.2.

Outline of the paper. In Section 2, we recall definitions and basic results about the Farey
tessellation, shears, and the classes of homeomorphisms of the circle that we consider. In
Section 3, we relate the Weil–Petersson class to shears in the finite support case, and motivated
by this define diamond shears coordinates combinatorially (on a class of shear functions called
P), analytically (in terms of h′ on V ), and in terms of log Λ-lengths. We also define the classes
H ,S . In Section 4, we prove that C 1,α ⊂ H (Theorem 4.1). In Section 5, we prove the
theorems relating WP(T), H , and S . Section 6 is devoted to the infinitesimal theory of the
Weil–Petersson metric and symplectic form. We define infinitesimal shears and diamond shears
and compute the Weil–Petersson metric tensor (Theorem 6.8, Corollary 6.10) and symplectic
form (Theorem 6.11) in terms of shears and diamond shears on H .
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2 Preliminaries

2.1 Farey tessellation

For D = D or H, we say that a triangle τ ⊂ D is geodesic if all its edges are geodesics for the
hyperbolic metric on D. All triangles in this discussion will be geodesic. An ideal triangle is
a geodesic triangle with all its vertices on ∂D. An ideal triangulation of D is a (necessarily
infinite) locally finite collection of non-overlapping ideal triangles that cover D. The data of
an ideal triangulation is encoded in its edges and vertices. For a ̸= b ∈ ∂D, we write (a, b) for
the hyperbolic geodesic connecting a, b.
The Farey tessellation is an ideal triangulation of D with many natural symmetries and
properties. Since the Farey tessellation will be ubiquitous throughout this paper, we denote it
just by F, its set of edges by E, and its set of vertices by V . Unless otherwise specified, the
edges in E are unoriented and denoted e = (a, b) where a, b ∈ V are the endpoints of e.
Let τ0 be the ideal triangle with vertices (1, i,−1). From τ0, all the other triangles in F are
images of τ0 by reflections over edges which are hyperbolic (orientation reversing) isometries.
The dual tree to the Farey tessellation, which we denote F∗, will also play a central role in
our discussions. Every triangle τ ∈ F corresponds to a vertex τ∗ in F∗, and every vertex in F

corresponds to a face v∗ in D∖ F∗. Every edge e ∈ E corresponds to the dual edge e∗ ∈ E∗.
We call the edge e∗

0 dual to (−1, 1) the root edge of F∗.
The dual edges are sorted into generations based on their graph distance to the e∗

0. We write
E∗

n ⊂ E∗ for the set of dual edges within distance n of e∗
0. From this we extend the definition

of generations to the vertices, edges, and faces of F and F∗. We define En ⊂ E to be the
collection of edges dual to E∗

n, Vn ⊂ V to be the vertices which are endpoints of edges in En,
and T ∗

n to be the vertices of F∗ which are vertices of E∗
n. We then extend the definition of

generation via duality to faces of F and F∗. We say that a vertex, an edge or a face in F or in
F∗ has generation n if it belongs to the corresponding set of index n but not n− 1, and we
write gen(·) for the generation function. It is easy to see:

Lemma 2.1. If an edge e = (a, b) ̸= e0, then gen(a) ̸= gen(b).

The Farey tessellation is nicely represented in the upper half plane H. We choose the following
Cayley map c which maps D conformally onto H:

c : z 7→ −i
z + 1
z − 1 , which maps − 1 7→ 0, 1 7→ ∞, i 7→ −1.
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Under this identification, V is sent to Q ∪ {∞}, therefore, V = Q2 ∩ T. In fact, the modular
group

PSL(2,Z) =
{
A =

(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
/A∼−A

acts on H by fraction linear transformations

z 7→ az + b

cz + d
=: A(z). (2.1)

The image of the Farey tessellation under c contains the ideal triangle c(τ0) of vertices {−1, 0,∞}
and is preserved by the action of PSL(2,Z) on H which is generated by maps z 7→ z + 1 and
z 7→ −1/z. It is then not hard to see that PSL(2,Z) acts transitively on c(E) (faithfully on
oriented edges) and c(V ) = Q ∪ {∞}.
Each element in Q ∖ {0} will be written in the form p

q , where q ∈ Z≥1, p ∈ Z, and p, q are
co-prime. We use the convention 0 = 0

1 and ∞ = 1
0 = −1

0 . We recall the following basic fact
about the Farey tessellation in H. For readers’ convenience we also include the elementary
proof of this classical result.

0 = 0
1

1
5

1
2 1 = 1

1
4
5

2
3

1
3

1
4

2
5

3
5

3
4

3
8

2
7

3
7

4
7

5
8

5
7

∞ = 1
0 =

−1
0 ∞ = 1

0 =
−1
0

Figure 2: Farey tessellation in H between 0 and 1 up to generation 4 with vertices labeled.

We say that c ∈ V is a child of (a, b) ∈ E, if c has one generation larger than (a, b) and (a, b, c)
is a triangle in F. Apart from (−1, 1) which has two children {i,−i}, all other edges have only
one child.

Lemma 2.2. An edge (p
q ,

r
s ) ∈ c(E), if and only if |ps− rq| = 1. Moreover, p+ r and q+ s are

co-prime and the child of (p
q ,

r
s ) is p+r

q+s . Here, we choose the convention ∞ = 1
0 if p ≥ 0, q = 1,

and ∞ = −1
0 if p ≤ 0, q = 1 (for p = 0, we use both conventions).

Proof. Assume that (p
q ,

r
s) ∈ c(E). Since PSL(2,Z) acts transitively on c(E), there exists an

element A ∈ PSL(2,Z), such that A(∞) = p
q and A(0) = r

s . Hence A =
(

αp βr
αq βs

)
for some

α, β ∈ Z. Since detA = 1 = (ps − rq)αβ and p, r, q, s ∈ Z, we have α, β ∈ {1,−1} and
|ps− rq| = 1. Conversely, if |ps− rq| = 1, we let A = ( αp r

αq s ) with α ∈ {1,−1} such that
A ∈ PSL(2,Z). Then (p

q ,
r
s) is the image of (0,∞) under the fractional linear transformation

A. Therefore (p
q ,

r
s) ∈ c(E).
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Now we compute the child of (p
q ,

r
s). We treat first the case where s or q = 0. By symmetry,

we assume that s = 0 and q ̸= 0. Using our convention, this happens only if p ≥ 0, q = 1, r = 1
(or resp. p ≤ 0, q = 1, r = −1). The child of (∞ = 1

0 , p) is p+ 1 and child of (∞ = −1
0 , p) is

p− 1 as claimed.
Now we consider the case where s, q ̸= 0. By symmetry, we assume that ps− rq = 1. Note that

p

q
= 1
sq

+ r

s
,

s, q ≥ 0 implies that r
s <

p
q .

The matrix A′ =
(

p+r r
q+s s

)
∈ PSL(2,Z). Therefore p+ r and q + s are co-prime. The previous

result shows that p+r
q+s is adjacent to r

s . Consider similarly the matrix A′′ =
(

p p+r
q q+s

)
, we obtain

that p+r
q+s is adjacent to p

q . Moreover, we have the inequalities

r

s
<
p+ r

q + s
<
p

q
,

which shows that p+r
q+s is the child of the edge (p

q ,
r
s).

2.2 Shear along an edge

Let e be a hyperbolic geodesic in the disk connecting a, c ∈ T. A quad Q around e is an
ideal quadrilateral in D with vertices a, b, c, d ∈ T in counterclockwise order, for some b, d ∈ T.
Recall the cross ratio of a, b, c, d is

cr(a, b, c, d) = (b− a)(d− c)
(c− b)(d− a) .

Definition 2.3. The shear of Q = (a, b, c, d) along e = (a, c) is s(Q, e) := log cr(a, b, c, d).

The shear of Q along a diagonal e does not depend on the orientation of e since cr(a, b, c, d) =
cr(c, d, a, b). The cross ratio is also invariant under Möbius transformations, and hence so is
the shear of a quad around an edge. We can use the Cayley transform c to easily compute the
shear for quads around e0 = (−1, 1).

Example 2.4. Consider a quad around the edge e0 = (−1, 1) of the form Q = {1, i,−1, xs}.
Under the Cayley transform c : (1, i,−1, xs) 7→ (∞,−1, 0, c(xs)). Since the cross ratio is
preserved by Möbius transformations, we get that

s(Q, e0) = log cr(∞,−1, 0, c(xs)) = log c(xs).

While s(Q, e) does not depend on the orientation of e, orienting e is useful for the following
geometric interpretation of the shear (which also explains the name). The quad Q can be
thought of as two triangles glued along e. Choosing an orientation of e, we call the triangle
on the left of e (when e is pointing up) with respect to the orientation τL and the other
τR. Geometrically, the shear of Q along e measures how τL, τR are glued together along e to
construct Q.
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Lemma 2.5. Let e⃗ = (c, a) be oriented from c to a so that b ∈ τL and d ∈ τR. For any point
x ∈ T, define mx(e) to be the intersection between e and the hyperbolic geodesic through x

perpendicular to e. Then

s(Q, e) = ±dhyp,D(mb(e),md(e))

The sign is positive if mb is before md along e⃗ = (c, a) and negative otherwise. See Figure 3.

Proof. Let e⃗ = (c, a) and e⃗0 = (−1, 1) as oriented edges. Let A be a Möbius transformation
that sends a, b, c to 1, i,−1 respectively. Under this map, e⃗ is sent to e⃗0, the quad Q = (a, b, c, d)
around e⃗ is sent to the quad Q′ = (1, i,−1, A(d) =: xs) around e⃗0, and the intersection points
mb(e),md(e) are sent to the intersection points mi(e0),mxs(e0) respectively. Since shears are
preserved under Möbius transformations and using the calculation in Example 2.4,

s(Q, e) = s(Q′, e0) = log c(xs).

Since hyperbolic lengths are also preserved by Möbius transformations,

dhyp,D(mb(e),md(e)) = dhyp,D(mi(e0),mxs(e0)).

We can use the Cayley transform again to compute this distance. Under c, Q′ = {1, i,−1, xs} 7→
{∞,−1, 0, c(xs)}, mi(e0) 7→ i, and mxs(e0) 7→ c(xs)i. Hence

dhyp,D(mi(e0),mxs(e0)) = dhyp,H(i, c(xs)i) =
∣∣∣∣ ∫ c(xs)

1

1
y

dy
∣∣∣∣ = | log c(xs)|.

As for the sign, under the composition c ◦ A, e⃗ is sent as an oriented edge to (0,∞). Hence
mb(e) is before md(e) along e⃗ if and only if 1 < c(xs).

c(xs)i

i
1 7→ ∞

xs

c
1

i

−1 e0

c(xs) = es0−1

Q′Q

A

a

d
c

b
e
mb

md

mi

mxs

a 7→ 1
b 7→ i
c 7→ −1

Figure 3: The quad Q = {a, b, c, d} around e = (c, a) with intersection points drawn, sent to
Q′ = {1, i,−1, xs} around e0 = (−1, 1) by A, and then the image under the Cayley transform c.

The pair of triangles around an edge e in a tessellation forms a quad around e. We define the
Farey quad, denoted Qe, to be the quad around e in F. The Farey tessellation is characterized
by

s(Qe, e) = 0, for all e ∈ E.

This follows from the construction of the Farey tessellation via reflection.
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2.3 Shear coordinates and classes of circle homeomorphisms

We now introduce shear coordinates for orientation-preserving homeomorphisms of the circle
T. As one would often identify two homeomorphisms up to post-compositions by Möbius
transformations, namely by the group Möb(T) ≃ PSU(1, 1) ≃ PSL(2,R), e.g., in the context
of Teichmüller theory, we assume throughout the paper that all circle homeomorphisms fix
{−1, i, 1} unless otherwise specified.
If h : T → T is a circle homeomorphism, h induces a map V → Vh = h(V ) by sending
v 7→ h(v) ∈ T. For each edge e ∈ E with end points v1 and v2, we write h(e) for the hyperbolic
geodesic connecting h(v1) and h(v2). The image of E under h forms a new tessellation h(F) of
the unit disk where the ideal triangle τ0 is fixed. We define similarly h(Qe) to be the quad
around h(e) in h(F).

Definition 2.6. The shear coordinate of h is the map sh : E → R such that sh(e) is the shear
of the edge h(e) in the quad h(Qe). Namely, sh(e) = s(h(Qe), h(e)).

Notice that sh is determined by h|V . However, not all functions s : E → R arise as a shear
coordinate for some circle homeomorphism. In fact, from s we recover a map h : V → T which
is strictly increasing and fixes 1, i,−1 such that sh = s. However, h(V ) does not have to be
dense in T and cannot always be extended continuously to a homeomorphism. In [28] the first
author characterized the class of shear functions which arise from a circle homeomorphism,
as well as those from quasisymmetric and symmetric homeomorphisms. See also [30]. In the
present article, we are particularly interested in the following classes of circle homeomorphisms.

Definition 2.7 (See [33, 36]). A circle homeomorphism h is called Weil–Petersson if h is
absolutely continuous (with respect to arclength measure) and log h′ belongs to the Sobolev
space H1/2. In other words,∫∫

T×T

∣∣∣∣ log h′(ζ) − log h′(ξ)
ζ − ξ

∣∣∣∣2 dζdξ < ∞. (2.2)

We write WP(T) for the class of all Weil–Petersson homeomorphisms. The Weil–Petersson class
has been studied extensively since the 80s because of its rich geometric structure and links to
string theory [5,20,22,42], Teichmüller theory [6,11,33–36], computer vision [32], periodic KdV
equations [31], and more recently, the discovery of links to SLE [37–40], hyperbolic geometry [1],
Coulomb gases [14,41], etc. See, e.g., [1] by Bishop for a survey as well as a number of new
characterizations of the Weil–Petersson class.
Every quasisymmetric circle homeomorphism admits a quasiconformal extension D → D, see,
e.g, [16]. For a quasisymmetric homeomorphism to be Weil–Petersson, it has to satisfy the
following equivalent L2 condition.

Theorem 2.8 (See [33,36]). A circle homeomorphism h is Weil–Petersson if and only if there
is a quasiconformal extension f : D → D of h, such that the Beltrami coefficient µ = ∂f/∂f

satisfies

∥µ∥2
2 =

∫
D

4|µ(z)|2

(1 − |z|2)2
dA(z) < ∞,

where dA is the Euclidean area measure.
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For α ∈ (0, 1], we let C 1,α denote the class of circle homeomorphisms h such that log h′ is
α-Hölder continuous. Or equivalently, in terms of the Hölder classes C1,α,

C 1,α = {h ∈ C1,α : h is a circle homeomorphism and inf
T

|h′| > 0}. (2.3)

In particular, it follows from the Kellogg theorem [10, Thm. II.4.3] that the welding homeo-
morphisms of C1,α Jordan curves belong to C 1,α. It is easy to see from (2.2) the following
lemma.

Lemma 2.9. We have C 1,α ⊂ WP(T) for all α > 1/2 and C 1,1/2 ⊈ WP(T).

3 Diamond shear

3.1 Circle homeomorphisms with finite shear

We will introduce a new shear coordinate system (diamond shears), essential to describe the
class H of circle homeomorphisms at the center of this work (see Definition 3.15). To motivate
the definition of diamond shears, let us first consider circle homeomorphisms with finitely many
nonzero shears (i.e. sh has finite support).
We write

PSU(1, 1) =
{(

α β

β α

)
: α, β ∈ C, |α|2 − |β|2 = 1

}
/A∼−A

for the group of Möbius transformations preserving T. This group is conjugate to PSL(2,R)
via the Cayley transform c. For two distinct points z, w ∈ T, we denote by I(z, w) ⊂ T the
closed circular arc going counterclockwise from z to w.

Lemma 3.1. A circle homeomorphism h has finitely many nonzero shears if and only if
h is piecewise Möbius with rational breakpoints. Namely, there exist k ≥ 2 distinct points
v1, . . . , vk ∈ V in counterclockwise order such that h|I(vi,vi+1) ∈ PSU(1, 1), where vk+1 = v1.

Proof. Let h be a piecewise Möbius homeomorphism with break points v1, . . . , vk ∈ V . By
possibly subdividing further, we assume that (vi, vi+1) ∈ E. We write Ei = {(a, b) ∈ E : a, b ∈
I(vi, vi+1)}. If (a, b) ∈ Ei and (a, b) ̸= (vi, vi+1), then the four vertices of the Farey quad Q(a,b)
are all in I(vi, vi+1). Since h|I(vi,vi+1) is Möbius, which preserves the cross-ratio, sh(a, b) = 0.
We obtain that sh has finite support since E ∖

⋃k
i=1 Ei is finite.

Conversely, if sh has finite support, then T can be partitioned to ⋃k
i=1 I(vi, vi+1) such that

sh|Ei
≡ 0 for all i = 1, · · · , k. By possibly further subdividing the intervals we may assume

that (vi, vi+1) ∈ E (and therefore in Ei). Let xi ∈ I(vi, vi+1) be the unique vertex which is
adjacent to vi and vi+1 and h̃i the unique Möbius map in PSU(1, 1) which maps respectively
vi, xi, vi+1 to h(vi), h(xi), h(vi+1). The image of V ∩ I(vi, vi+1) by h is determined by sh|Ei

and
the image of one triangle. Therefore h = h̃i on V ∩ I(vi, vi+1). As h̃i is continuous and V is
dense in T, we obtain that h = h̃i on I(vi, vi+1).

Remark 3.2. Notice that in the proof of the converse direction, we showed that the finitely
supported shear coordinate defines a map h : V → R which extends continuously to a piecewise
Möbius homeomorphism (and we do not need to assume that h is a homeomorphism to start).
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To state the next result, we organize the edges of F into fans. We define

fan(v) = {e ∈ E : e is incident to v}.

We will index the edges in fan(v) as (en)n∈Z in a way that n increases in the counterclockwise
manner and e0 is an arbitrary choice of edge in fan(v). The order is chosen such that after
mapping D conformally onto H and v is sent to ∞, the image of (en)n∈Z are equally spaced
vertical lines with index increasing from left to right.
We write v+ (resp. v−) for a point on T approaching v infinitesimally counterclockwise (resp.
clockwise), which corresponds to x → ∞ (resp. x → −∞) in the upper half-plane model. For
instance, f(1+) means the limit of f(z) as z ∈ T approaches 1 from below, if it exists.

Definition 3.3. We say that s : E → R satisfies the finite balanced condition if for all v ∈ V ,
{n ∈ Z : s(en) ̸= 0} is finite and ∑n∈Z s(en) = 0, where fan(v) = (en)n∈Z.

Lemma 3.4. If a circle homeomorphism h has finitely many nonzero shears, the following are
equivalent:

i) h is Weil–Petersson;
ii) h is C 1,1 with rational breakpoints;

iii) s = sh satisfies the finite balanced condition.

Proof. Since h has finitely many nonzero shears, Lemma 3.1 shows that h is piecewise Möbius
with rational breakpoints that we denote by v1, . . . , vk ∈ V . One and only one of the following
is true:

• For all i = 1, . . . , k, h′(vi+) = h′(vi−). In this case, h ∈ C 1,1. Lemma 2.9 shows that
h ∈ WP(T).

• There exists i such that h′(vi+) ̸= h′(vi−). In this case, log h′(vi+) ̸= log h′(vi−). We see
from (2.2) that h /∈ WP(T).

This proves the equivalence between i) and ii).
Now we show that h′(vi+) = h′(vi−) is equivalent to ∑n∈Z s(en) = 0, where (en)n∈Z = fan(vi).
We define φ : R → R to be the homeomorphism φ = c1 ◦ h ◦ c−1

2 , where c1, c2 are two
Möbius transformations D → H such that c1(h(vi)) = ∞, c2(vi) = ∞, c2(e0) = (0,∞), and
c2(e1) = (1,∞). Given this, φ fixes ∞, and c2(en) = (n,∞) for all n ∈ Z.
From Lemma 2.5, we know that

φ(n+ 1) − φ(n)
φ(n) − φ(n− 1) = exp(s(en)). (3.1)

Since s has finite support, there exists n0 ≥ 0 such that s(en) = 0 if |n| ≥ n0. Therefore, there
exists ℓ, ℓ′ > 0 such that for all n,m ≥ n0, φ(m+ 1) −φ(m) = ℓ, φ(−n) −φ(−n− 1) = ℓ′, and

φ(m+ 1) − φ(m)
φ(−n) − φ(−n− 1) = ℓ

ℓ′
= exp(

∑
n∈Z

s(en)).

We have

φ(m+ 1) − φ(m) =
∫ m+1

m

∣∣φ′(x)
∣∣ dx

13



=
∫ m+1

m

∣∣∣c′
1(h ◦ c−1

2 (x))
∣∣∣ ∣∣∣h′(c−1

2 (x))
∣∣∣ ∣∣∣(c−1

2 )′(x)
∣∣∣ dx.

Since c1, c2 are Möbius transformations D → H sending vi, h(vi) to ∞ respectively, there exist
α, β > 0 such that

∣∣c′
1(z)

∣∣ = α

|z − h(vi)|2
+O

( 1
|z − h(vi)|

)
,
∣∣c′

2(z)
∣∣ = β

|z − vi|2
+O

( 1
|z − vi|

)
.

On the other hand, since h is piecewise Möbius, we have

|h′(z)| = |h′(vi±)| +O(|z − vi|),

depending on which side of vi does z approaches from. Therefore, for x ∈ [n0,∞),∣∣∣c′
1(h ◦ c−1

2 (x))
∣∣∣ ∣∣∣h′(c−1

2 (x))
∣∣∣ ∣∣∣(c−1

2 )′(x)
∣∣∣

=
(
α
∣∣∣h ◦ c−1

2 (x) − h(vi)
∣∣∣−2

+O

(∣∣∣h ◦ c−1
2 (x) − h(vi)

∣∣∣−1
))

(|h′(vi+)| +O(|c−1
2 (x) − vi|))( 1

β

∣∣∣c−1
2 (x) − vi

∣∣∣2 +O(|c−1
2 (x) − vi|3)

)
= α

β

1
|h′(vi+)| +O(|c−1

2 (x) − vi|).

We obtain

ℓ = lim
m→∞

φ(m+ 1) − φ(m) = α

β

1
|h′(vi+)| .

Similarly,

ℓ′ = lim
n→∞

φ(−n) − φ(−n− 1) = α

β

1
|h′(vi−)| .

Equation (3.1) then shows that h′(vi+) = h′(vi−) if and only if ∑n∈Z s(en) = 0 which concludes
the proof.

We now introduce the diamond shear coordinates which are well-adapted to describe finite
shears with the finite balanced condition. We say that e, e′ ∈ E are adjacent if e and e′ share
a vertex v and are consecutive in fan(v) (their indices in fan(v) differ by exactly 1). We say
that e∗ ∈ E∗ and e′ ∈ E are adjacent if the dual edge e of e∗ is adjacent to e′. Note that e∗ is
adjacent to exactly 4 edges in E, that we denote by (e1, e2, e3, e4), in counterclockwise order,
such that e1 is the edge on the left of e⃗ and has the same head as e⃗. We do not distinguish
between (e1, e2, e3, e4) and (e3, e4, e1, e2) which results from inverting the orientation of e.
A diamond shear function is a map ϑ : E∗ → R. The space of diamond shear functions has
a basis {ϑe∗(·)}e∗∈E∗ , where ϑe∗(·) equals 1 at e∗ and 0 elsewhere. For each e∗ ∈ E∗, the
corresponding shear function of ϑe∗ has s(e1) = s(e3) = 1 and s(e2) = s(e4) = −1. See Figure 4.
More generally, the diamond shear functions translate to the shear functions via the map
Φ : RE∗ → RE :

s(e) = Φ(ϑ)(e) = −ϑ(e∗
1) + ϑ(e∗

2) − ϑ(e∗
3) + ϑ(e∗

4), ∀e ∈ E. (3.2)

Here, (e∗
i )i=1,...,4 are the dual edges of (ei)i=1,...,4 ordered as described above.
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1−1

−i

i

1−1

−i

i

ϑ(e∗0) = 1

'

s(e1) = 1

s(e3) = 1 s(e4) = −1

s(e2) = −1

Figure 4: A single diamond shear along the edge (−1, 1) (left) is equivalent to four shears
with alternating sign (right).

Remark 3.5. • We note that Φ is linear and if ϑ ≡ 1, then Φ(ϑ) ≡ 0. In other words,
constant diamond shear coordinates belong to the kernel of Φ.

• If ϑ has finite support, then Φ(ϑ) has finite support and satisfies the finite balanced
condition. The converse follows from the next proposition.

Proposition 3.6. Assume that s : E → R has finite support and satisfies the finite balanced
condition. There exists a unique ϑ : E∗ → R with finite support such that Φ(ϑ) = s.

Proof. Every e ∈ E belongs to two triangles which are dual to two vertices in F∗. Let τ∗(e) be
the dual vertex that has the lower generation, if e ̸= e0. We define as to be the union of e∗

0
and the geodesic path from τ∗(e) to e∗

0 in F∗ for all e ̸= e0 such that s(e) ̸= 0. (We call as the
convex hull of {τ∗(e) : s(e) ̸= 0} ∪ e∗

0.) Since s has finite support, as is a finite tree.
We prove the existence of ϑ by induction on as. If as contains only e∗

0, then {e : s(e) ̸= 0} ⊂
{(−1, 1), (i, 1), (i,−1), (−i, 1), (−i,−1)}. The finite balanced condition shows that the only
possibility is

s(i, 1) = −s(i,−1) = s(−i,−1) = −s(−i, 1) = α

for some α ∈ R. For convenience, we write s(a, b) for s((a, b)). Therefore, s = Φ(αϑe∗
0
).

Now assume that as is a general finite tree containing e∗
0 and e∗ is a leaf of as. Assume that e∗

has generation n. The dual edge e ∈ E has two vertices {a, c}, their child b ∈ V has generation
n+ 1. We assume that a, b, c are in the counterclockwise order. Fan(b) contains at most two
edges, (a, b) and (b, c), on which s is nonzero. From the finite balanced condition, there is
α = α(e∗) ∈ R such that

α(e∗) = s(a, b) = −s(b, c).

Therefore s′ := s − Φ(α(e∗)ϑe∗) is a shear coordinate with finite support, and as′ = as ∖ e∗.
By the assumption of induction, let ϑ′ be a finite support diamond shear coordinate such that
Φ(ϑ′) = s′. The linearity of Φ shows that Φ(ϑ′ + α(e∗)ϑe∗) = s.
Now we show the uniqueness. Assume that ϑ and ϑ′ have finite support and Φ(ϑ) = Φ(ϑ′).
Then Φ(ϑ − ϑ′) ≡ 0. Let a be the convex hull of {e∗ ∈ E∗ : ϑ(e∗) or ϑ′(e∗) ̸= 0}. The above
argument shows that for any leaf e∗ of a, ϑ(e∗) − ϑ′(e∗) = 0. By induction, we have ϑ = ϑ′

which concludes the proof.

Definition 3.7. If a circle homeomorphism h satisfies the conditions in Lemma 3.4, the
diamond shear coordinate of h is the unique finitely supported diamond shear function ϑh such
that Φ(ϑh) = sh.
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3.2 Examples and developing algorithm

In this section we provide a few explicit examples to show concretely how circle homeomorphisms
are related to shear and diamond shear coordinates. Recall that for a ̸= b ∈ T, I(a, b) ⊂ T
denotes the circular arc going counterclockwise from a to b.

Example 3.8 (Single shear). For t ∈ R, let ht be the normalized circle homeomorphism with
shear coordinate st(e0) = t, and st(e) = 0 for all e ∈ E, e ̸= e0 = (−1, 1). Then

c ◦ ht ◦ c−1(x) =

x ∀x ≤ 0
etx ∀x ≥ 0.

In other words,

ht(z) =


z ∀z ∈ I(1,−1)
αtz + βt

βtz + αt
∀z ∈ I(−1, 1)

with αt = cosh(t/2) and βt = sinh(t/2). In particular (ht)t∈R forms a one-dimensional subgroup
of the group of piecewise PSU(1, 1) circle homeomorphisms.
For e = (a, b), not necessarily an edge of F, there exists A ∈ PSU(1, 1) such that A(a) = −1,
A(b) = 1. Then he,t := A−1 ◦ ht ◦ A is also a one-dimensional subgroup of (non-normalized)
circle homeomorphisms (and independent of the choice of A) fixing the circular arc I(b, a).
Explicitly,

he,t =

z ∀z ∈ I(b, a) = A−1I(1,−1)
At(z) ∀z ∈ I(a, b) = A−1I(−1, 1)

where At = A−1
(

αt βt

βt αt

)
A. We note that he,t is not C1 if t ̸= 0 and we find

h′
e,t(a+) = 1, h′

e,t(a−) = et, h′
e,t(b+) = e−t, h′

e,t(b−) = 1,

where a+ means approaching a counterclockwisely, and a− clockwisely.

Example 3.9 (Standard single diamond shear). For t ∈ R, let Ht be a normalized circle
homeomorphism satisfying the conditions in Lemma 3.4 (we can hence talk about its diamond
shear coordinates ϑt). In particular, suppose it has diamond shear coordinates such that
ϑt(e∗

0) = t, and ϑt(e∗) = 0 for all e∗ ∈ E∗, e∗ ̸= e∗
0. Then the corresponding shear coordinate

St = Φ(ϑt) of Ht is given by

St(1, i) = t, St(i,−1) = −t, St(−1,−i) = t, St(−i, 1) = −t.

It is easy to see that Ht fixes 1, i,−1,−i. We obtain the following explicit expression of Ht(z)
(by symmetry it suffices to compute Ht on I(1, i)):

h(1,i),t(z) = α1,tz + β1,t

β1,tz + α1,t
with

α1,t = cosh( t
2) − i sinh( t

2)
β1,t = (i − 1) sinh( t

2),
∀z ∈ I(1, i);

h(i,−1),−t(z) = α2,tz + β2,t

β2,tz + α2,t
with

α2,t = α1,t

β2,t = −β1,t,
∀z ∈ I(i,−1);

h(−1,−i),t(z) = α3,tz + β3,t

β3,tz + α3,t
with

α3,t = α1,t

β3,t = −β1,t,
∀z ∈ I(−1,−i);

h(−i,1),−t(z) = α4,tz + β4,t

β4,tz + α4,t
with

α4,t = α1,t

β4,t = β1,t,
∀z ∈ I(−i, 1).

(3.3)

16



We observe
H ′

t(1) = H ′
t(−1) = et, H ′

t(i) = H ′
t(−i) = e−t

and that (Ht)t∈R is a one-dimensional subgroup of the group of C1,1 and piecewise PSU(1, 1)
circle homeomorphisms.

The circle homeomorphism satisfying the conditions in Lemma 3.4 whose diamond shear is
supported on a single dual edge e∗ ∈ E∗ can be obtained by A−1 ◦Ht ◦A for some A ∈ PSU(1, 1)
up to normalization. We can also define the homeomorphism associated to a diamond shear on
a non-standard quad.

Definition 3.10 (Single diamond shear on non-standard quad). Let Q be a quad with vertices
a, b, c, d ∈ T in counterclockwise order. (We do not require Q is a quad in F, in particular,
cr(a, b, c, d) might not be zero.) We define HQ,(a,c),t ∈ C1,1 to be the (non-normalized) circle
homeomorphism which fixes the vertices of Q, that is piecewise PSU(1, 1) with break points at
the vertices, and

H ′
Q,(a,c),t(a) = et. (3.4)

Remark 3.11. Since for any Möbius transform A and x ̸= y, A′(x)A′(y) = (A(x)−A(y))2

(x−y)2 , the
C1,1 condition and (3.4) uniquely determine HQ,(a,c),t on T and give us

H ′
Q,(a,c),t(c) = et, H ′

Q,(a,c),t(b) = H ′
Q,(a,c),t(d) = e−t.

From this we obtain

HQ,(a,c),t|I(a,b) = h(a,b),t|I(a,b), HQ,(a,c),t|I(b,c) = h(b,c),−t|I(b,c),

HQ,(a,c),t|I(c,d) = h(c,d),t|I(c,d), HQ,(a,c),t|I(d,a) = h(d,a),−t|I(d,a).

This relation similar to (3.3) justifies the name of homeomorphism associated to non-standard
diamond shear and also shows that (HQ,(a,c),t)t∈R is a one-dimensional subgroup of C1,1 and
piecewise PSU(1, 1) circle homeomorphisms. Note that this definition coincides with the one for
the single diamond shear supported on an edge (as diagonal of a Farey quad) as in Example 3.9.

Non-standard diamond shears are useful in the following developing algorithm for finding the
associated circle homeomorphism given the diamond shear coordinate inductively when it has
finite support.

Proposition 3.12. Let h be a circle homeomorphism satisfying the conditions in Lemma 3.4 and
ϑ its (finitely supported) diamond shear coordinates. Let t ∈ R and e ∈ E. The homeomorphism
with diamond shear coordinate ϑ+ tϑe∗ is Hh(Qe),h(e),t ◦ h after normalizing to fix −1, i, 1.

Proof. Let s = Φ(ϑ) denote the shear coordinate of h. Let ht := Hh(Qe),h(e),t ◦ h and st its
shear coordinate. We write the Farey quad Qe = (a, b, c, d) such that e = (a, c). Let e1 = (a, b),
e2 = (b, c), e3 = (c, d), and e4 = (d, a) be the adjacent edges in F. We need to show that

St(ej) := s(ht(Qej ), ht(ej)) = s(ej) + (−1)j−1t, j = 1, · · · , 4. (3.5)

We see it from the geometric interpretation of the shear (Lemma 2.5). In fact, s(e1) =
s(h(Qe1), h(e1)) is the signed distance between the geodesics normal to h(e1) and starting from
the third vertex of the two ideal triangles that we call τL, τR, where τL ∪ τR = h(Qe1) and
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τR ⊂ h(Qe). Since Hh(Qe),h(e),t fixes h(Qe), it also fixes τR. On the arc I1 ⊂ T which has the
same vertices as h(e1) = (h(a), h(b)) and contains the vertices of τL, Hh(Qe),h(e),t shears further
the normal starting from any point of I1 by hyperbolic distance t in the direction from h(a) to
h(b). We obtain (3.5) for j = 1. See Figure 5. The same argument works for other j.

h

e
h(e)

I1

I4

c

a

b

d h(a)

h(b)
h(c)

h(d)

I2

I3

h(e)

h(a)

h(b)
h(c)

h(d)

Hh(Qe),h(e),t

Figure 5: Illustration of the maps in the proof of Proposition 3.12. Left: Farey tessellation
F with an edge e ∈ E and Qe with vertices a, b, c, d marked. Middle: h(F) with the edges of
h(Qe) in pink, the green arrows indicate the direction in which of the piecewise Möbius circle
homeomorphism Hh(Qe),h(e),t moves the points on each arcs, when t > 0. Red dashed lines
indicate the normals to h(e1) = (h(a), h(b)). Right: the tessellation ht(F).

3.3 Combinatorial definition of diamond shear

The goal of this section is to extend the definition of diamond shear coordinates to a more
general class of circle homeomorphisms. Definition 3.7 suggests that ϑ should be defined as
the image of s by the inverse of Φ defined in (3.2). However, the map Φ does not map onto
RE , nor is it injective by Remark 3.5. Therefore, we will restrict to the following family of
shear coordinates to define a right-inverse map of Φ:

P = {s ∈ RE : ∀ v ∈ V, fan(v) = (en)n∈Z, lim
n→∞

−1∑
k=−n

s(ek) ∈ R and lim
n→∞

n∑
k=0

s(ek) ∈ R}.

Similar to Definition 3.3, we say that s ∈ P satisfies the (generalized) balanced condition, if

s ∈ P0 = {s ∈ P : ∀ v ∈ V, fan(v) = (en)n∈Z,
∞∑

k=−∞
s(ek) = 0}. (3.6)

Note that if s satisfies the finite balanced condition, then s ∈ P0.

Definition 3.13. We define for s ∈ P, v ∈ V , and e ∈ fan(v),

ps,v(e+) =
∑

e′>ve

s(e′), ps,v(e−) =
∑

e′<ve

s(e′)

where e′ >v e means that e′ ∈ fan(v) and has strictly larger index than e, and similarly, e′ <v e

for strictly smaller index than e. Define Ψ : P → RE∗ by

Ψ(s)(e∗) = 1
4
(
ps,a(e−) − ps,a(e+) + ps,b(e−) − ps,b(e+)

)
(3.7)

where e = (a, b) is dual to e∗. See Figure 6 for an illustration of Ψ(s)(e∗
0).
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e
b a

e1e2

e3 e4

E1E2

E3 E4

Figure 6: The shears on blue edges are counted as positive and the shears on orange edges are
counted as negative in Ψ(s)(e∗).

Proposition 3.14. The function Ψ is a right-inverse of Φ, namely, Φ ◦ Ψ = IdP .

Proof. The maps Φ and Ψ are both linear. Combining Equations (3.2) and (3.7), Φ(Ψ(s))(e)
is a sum of ps,a(e±) for sixteen different choices of a, e,±. Since s ∈ P, the limits ps,a(e±)
are well-defined for all a ∈ V, e ∈ fan(a), and hence we can switch the finite sum with sixteen
terms with the limits defining ps,a(e±). Therefore Φ ◦ Ψ is linear on P even for infinite linear
combinations, so it is enough to show that Φ ◦ Ψ(se) = se where se takes value 1 on the edge
e = (a, b) ∈ E and 0 elsewhere.
Let e1, e2, e3, e4 be the edges around Qe in counterclockwise order starting from a. We denote
the four half-fans around Qe in counterclockwise order by E1 = {e′ ∈ fan(a) : e′ ≤a e1},
E2 = {e′ ∈ fan(b) : e′ ≥b e2}, E3 = {e′ ∈ fan(b) : e′ ≤b e3}, E4 = {e′ ∈ fan(a) : e′ ≥a e4}. See
Figure 6. To simplify notation, we identify the dual edges (e′)∗ with the corresponding edge e′.
By Equation (3.7)

Ψ(se)(e′) =


−1/4 e′ ∈ E1 ∪ E3

+1/4 e′ ∈ E2 ∪ E4

0 otherwise.

To compute Φ(Ψ(se))(e′) we look at the the values of Ψ(se) on the edges e′
1, e

′
2, e

′
3, e

′
4 around

Qe′ and use Equation (3.2).
If e′ = e,

Φ(Ψ)(se)(e′) = −
(

− 1
4

)
+ 1

4 −
(

− 1
4

)
+ 1

4 = 1.

For e′ ̸= e, we check that Φ(Ψ(se))(e′) = 0.
If e′ ̸= ei for i = 1, 2, 3, 4, the edges around Qe′ either all have diamond shear Ψ(se)(·) = 0, or
there are two consecutive edges with the same nonzero diamond shear followed by two edges
with zero diamond shear. In both cases, Φ(Ψ(se))(e′) = 0.
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For e′ = ei for i = 1, 2, 3, 4, one can check that two non-consecutive edges around Qe′ have
nonzero diamond shear coordinates of opposite sign, and the other two edges have diamond
shear coordinate 0.

Definition 3.15. We define the diamond shear coordinate ϑh := Ψ(sh) of a circle homeomor-
phism h if the shear coordinate sh ∈ P. We let

S = {s ∈ RE :
∑
e∈E

s(e)2 < ∞} and H = {s ∈ P :
∑

e∗∈E∗
ϑ(e∗)2 < ∞ where ϑ = Ψ(s)}.

We say that a circle homeomorphism h has a square summable diamond shear coordinate if
ϑh ∈ H . We endow S and H with the topology of ℓ2 convergence in s and ϑ respectively.

In the finite support case, it follows from Proposition 3.14 that Ψ(sh) is the diamond shear
coordinate defined in Definition 3.7. Here and in the rest of the paper we identify E with E∗

to simplify the notation.

Lemma 3.16. Assume that s ∈ H and ϑ = Ψ(s). Then we have s ∈ S and∑
v∈V

∑
e∈fan(v)

ps,v(e+)2 = 2
∑
e∈E

ϑ(e)2 +
∑
e∼e′

(ϑ(e) − ϑ(e′))2 < ∞, (3.8)

where e ∼ e′ means that e and e′ are adjacent in the same fan. In particular, s ∈ P0.

Proof. The Cauchy-Schwarz inequality, s = Φ(ϑ), and the assumption of ϑ is square summable
show that s ∈ S .
Now we fix v ∈ V and let fan(v) = (en)n∈Z. For ek ∈ fan(v), we compute ps,v(ek+) =∑∞

n=k+1 s(en). For this, we write the edge of F connecting the endpoints of en and en+1 other
than v as e′

n. Since s = Φ(ϑ), (3.2) shows that for m > k,
m∑

n=k+1
s(en) =

m∑
n=k+1

ϑ(en−1) − ϑ(e′
n−1) + ϑ(e′

n) − ϑ(en+1)

= ϑ(ek) + ϑ(ek+1) − ϑ(e′
k) + ϑ(e′

m) − ϑ(em) − ϑ(em+1).

Since ϑ is square summable, we have ϑ(em) and ϑ(e′
m) converging to 0 as m → ∞. Hence,

ps,v(ek+) = lim
m→∞

m∑
n=k+1

s(en) = ϑ(ek) + ϑ(ek+1) − ϑ(e′
k).

When we sum ps,v(e+)2 over all v ∈ V and e ∈ fan(v), the triplet (ϑ(ek), ϑ(ek+1), ϑ(e′
k)) in the

above identity appears three times but with different signs, once in each fan at the vertices of
the triangle formed by ek, ek+1 and e′

k. Using the identity

(a+ b− c)2 + (b+ c− a)2 + (c+ a− b)2 = a2 + b2 + c2 + (a− b)2 + (a− c)2 + (b− c)2,

we obtain ∑
v∈V

∑
e∈fan(v)

ps,v(e+)2 = 2
∑
e∈E

ϑ(e)2 +
∑
e∼e′

(ϑ(e) − ϑ(e′))2 < ∞

as claimed. Here we note that the constant in front of the first sum is 2 since every edge
appears in two triangles, while the constant in front of the second is 1 because every pair
of adjacent edges appears in only one triangle. Finally, (3.8) implies that ps,v(ek+) → 0 as
k → −∞. This shows s ∈ P0.
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Summarizing the above results, we obtain the following inclusions.

Corollary 3.17. We have H ⊂ P0 ∩ S ⊂ P.

Shear functions in H also satisfy another boundedness condition.

Lemma 3.18. If s ∈ H , then there exists a constant M = M(s) ≥ 0 such that for all v ∈ V

and all n,m ∈ Z, n ≤ m, ∣∣∣∣∣
m∑

i=n

s(ei)
∣∣∣∣∣ ≤ M, (3.9)

where fan(v) = (ei)i∈Z.

Proof. By Lemma 3.16, s ∈ H implies that {ps,v(e+) : v ∈ V, e ∈ fan(v)} is square summable,
so there is a constant C > 0 such that |ps,v(e+)| < C for all v ∈ V, e ∈ fan(v). Choose any
v ∈ V , and let fan(v) = (ei)i∈Z. For any n,m,∣∣∣∣∣

m∑
i=n

s(ei)
∣∣∣∣∣ = |ps,v(em+) − ps,v(en+)| ≤ 2C.

Therefore (3.9) holds with M = 2C.

Remark 3.19. The class of shear functions satisfying Equation (3.9) does not include, nor is
contained in P0 or P.

• (3.9) does not imply that s ∈ P. For example, the map that has shears alternating ±1
along a fan satisfies (3.9), but is not in P.

• s ∈ P0 does not imply (3.9) either. The condition s ∈ P0 implies that for each v ∈ V

there exists a constant Mv such that the sums in fan(v) are bounded by Mv, but these
Mv constants may not be the same and the collection {Mv : v ∈ V } may be unbounded
for s ∈ P0.

The condition (3.9) helps us show that any s ∈ H induces a quasisymmetric homeomorphism
h of the circle. Shears for quasisymmetric homeomorphisms have been characterized.

Theorem 3.20 (See [28], [30]). A shear function s : E → R is induced by a quasisymmetric
map if and only if there exists C ≥ 1 such that for all v ∈ V with fan(v) = (ei)i∈Z and for all
k ∈ Z, n ∈ N,

1
C

≤ s(k, n; v) ≤ C.

Here s(k, n; v) is

s(k, n; v) = es(ek) + es(ek)+s(ek+1) + · · · + es(ek)+···+s(ek+n)

1 + e−s(ek−1) + · · · + e−s(ek−1)−···−s(ek−n) .

We obtain from this theorem the following corollary which is also considered in the paper of
Parlier and the first author [21].

Corollary 3.21. If s : E → R satisfies (3.9), then s induces a quasisymmetric homeomorphism
h : T → T. In particular, if sh ∈ H , then h ∈ QS(T).

Remark 3.22. Given the result above, in later sections we often abuse notation and write
h ∈ H to mean that the homeomorphism h has shear coordinates sh ∈ H . Despite the fact
that not all shear functions in P,P0 induce homeomorphisms, we also sometimes write h ∈ P

or h ∈ P0 to mean that h has shear function sh ∈ P or sh ∈ P0 respectively.
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3.4 Analytic definition of diamond shear

In the section we show that the diamond shear coordinate of a circle homeomorphism can
be described directly using derivatives of h. This description of diamond shears also leads to
a relationship with coordinates called log Λ-lengths for decorated Teichmüller space studied
in [24–26], see Section 3.5. The following lemma is reminiscent of Lemma 3.4 for finite support
shears.

Lemma 3.23. i) If h ∈ P, then h admits left and right derivatives at all rational points,
i.e., ∀v ∈ V , h′(v+) and h′(v−) exist.

ii) If h ∈ P0, then h is differentiable at all rational points, i.e., ∀v ∈ V , h′(v+) = h′(v−).
iii) Conversely, if h ∈ C 1, i.e., h is continuously differentiable and h′ ≠ 0 everywhere, then

h ∈ P0.

Proof. Assume that s = sh ∈ P. We fix v ∈ V = Q2 ∩ T and fan(v) = (ek)k∈Z. As in
Lemma 3.4, we define φ : R → R to be the homeomorphism φ = c1 ◦ h ◦ c−1

2 , where c1, c2 are
two Möbius transformations D → H such that c1(h(v)) = ∞, c2(v) = ∞, c2(e0) = (0,∞), and
c2(e1) = (1,∞). We have φ fixes ∞, and c2(en) = (n,∞) for all n ∈ Z. Since the limits as
n → ∞ of ∑−1

k=−n s(ek) and ∑n
k=0 s(ek) exist by definition of P,

ℓ := lim
n→∞

φ(n+ 1) − φ(n) = (φ(0) − φ(−1)) exp
( ∞∑

k=0
s(ek)

)
∈ (0,∞) (3.10)

and

ℓ′ := lim
n→∞

φ(−n) − φ(−n− 1) = (φ(0) − φ(−1)) exp
(

−
−1∑

k=−∞
s(ek)

)
∈ (0,∞) (3.11)

also exist. In particular, φ(n) = nℓ + o(n) and φ(−n) = −nℓ′ + o(n) as n → ∞ by Cesàro
summation.
To show the left and right derivatives of h at v exist, it suffices to show that φ̃ = ι ◦ φ ◦ ι has
left and right derivatives at 0, where ι(x) = −1/x. Note that φ̃ fixes 0 and is an increasing
function. We have

φ̃(−n−1)
−n−1 = n

φ(n)
n→∞−−−→ ℓ−1.

From the monotonicity of φ̃, we have

φ̃(−(n+ 1)−1)
−n−1 ≤ φ̃(x)

x
≤ φ̃(−n−1)

−(n+ 1)−1 , ∀x ∈ [−n−1,−(n+ 1)−1].

Hence, φ̃ admits the left derivative ℓ−1 at 0. Similarly, we can show that φ̃ admits the right
derivative (ℓ′)−1. This concludes the proof of i).
Now we assume that h ∈ P0. The equations (3.10), (3.11) show that ℓ = ℓ′. Hence, the left
and right derivatives of h coincide, which shows ii).
For iii), if h ∈ C 1, then φ is continuously differentiable with φ′(0) ̸= 0. We have

φ(n+ 1) − φ(n) = 1
φ̃(−n−1) − 1

φ̃(−(n+ 1)−1) = φ̃(−(n+ 1)−1) − φ̃(−n−1)
φ̃(−(n+ 1)−1)φ̃(−n−1)

= n−1 − (n+ 1)−1

(n+ 1)−1n−1
φ̃′(x)

φ̃′(y)φ̃′(z) = φ̃′(x)
φ̃′(y)φ̃′(z)
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for some x ∈ [−n−1,−(n+ 1)−1], y ∈ [−(n+ 1)−1, 0], z ∈ [−n−1, 0]. Therefore,

φ(n+ 1) − φ(n) n→∞−−−→ φ̃′(0)−1, (3.12)

which shows that ∑n
k=0 s(ek) converges. Similarly, ∑−1

k=−n s(ek) converges as well. We conclude
with (3.10), (3.11) that h ∈ P0.

Remark 3.24. The converse statement iii) is slightly weaker and we do not have an equivalent
description for circle homeomorphisms whose shear coordinate satisfies the generalized balanced
condition P0. The naive converse of ii) is not true. This lemma is trickier than Lemma 3.4
as the set of vertices is dense in T and we do not have the a priori smoothness of piecewise
Möbius maps.

Proposition 3.25. If a circle homeomorphism h ∈ P0, then ϑh is given by

ϑh(e) = 1
2 log h′(a)h′(b) − log h(a) − h(b)

a− b
(3.13)

for all e = (a, b) ∈ E.

Proof. We assume first that e = (−1, 1) and recall that h fixes ±1, i. The Cayley map c sends
1 7→ ∞, −1 7→ 0, i 7→ −1. We index edges (en)n∈Z in fan(1) such that c(en) is the geodesic
(n,∞) in H. In this way, e = e0. We write also (e′

n)n∈Z = fan(−1), such that e′
0 = e. Let

φ = c ◦ h ◦ c−1, and φ̃ = ι ◦ φ ◦ ι, where ι(x) = −1/x. We note that φ fixes −1, 0,∞ and φ̃

fixes 0, 1,∞.
Let s = sh and ϑ = ϑh = Ψ(sh). Since s ∈ P0, we have from (3.7) that

ϑh(e0) = −1
2
(
ps,1(e+) + ps,−1(e+) + s(e)

)
.

It follows from the proof of Lemma 3.23, (3.10), and (3.12) that

ps,1(e+) + s(e) =
∞∑

k=0
s(ek) = − log φ̃′(0). (3.14)

Similarly, applying the same proof to fan(−1) with the homeomorphism φ̃, and φ = ι ◦ φ̃ ◦ ι,
we obtain

φ′(0)−1 = lim
n→∞

φ̃(n+ 1) − φ̃(n) = (φ̃(1) − φ̃(0)) exp
( ∞∑

k=1
s(e′

k)
)

= exp
( ∞∑

k=1
s(e′

k)
)
.

Hence
ps,−1(e+) =

∞∑
k=1

s(e′
k) = − logφ′(0).

On the other hand,

φ′(0) = c′(−1)h′(−1)(c−1)′(0) = h′(−1), φ̃′(0) = (ι ◦ c)′(1)h′(1)(ι ◦ c)−1′(0) = h′(1).

We obtain (3.13) since in this case h(1)−h(−1)
1−(−1) = 1.

For a general edge e = (a, b), h might not fix a, b. We choose γ, δ ∈ PSU(1, 1), such that γ maps
F to F, sending −1 7→ a and 1 7→ b (see Section 2.1); and δ is such that the homeomorphism
h̃ = δ ◦ h ◦ γ fixes ±1, i. In particular, δ maps h(a) 7→ −1 and h(b) 7→ 1. The homeomorphism
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h̃ has the shear coordinate s̃ = s ◦ γ and therefore the diamond shear coordinate ϑ̃ = ϑ ◦ γ.
Applying the previous result, we have

ϑ(e) = ϑ̃((−1, 1)) = 1
2 log h̃′(−1)h̃′(1).

We use the fact that for any Möbius transformation A, as long as it is well defined, A′(a)A′(b) =
(A(a)−A(b))2

(a−b)2 . We obtain

h̃′(−1)h̃′(1) = [δ′(h(a))δ′(h(b))]h′(a)h′(b)[γ′(−1)γ′(1)] = h′(a)h′(b) (a− b)2

(h(a) − h(b))2

which concludes the proof.

Remark 3.26. We can see directly that the right-hand side of (3.13) is real-valued. In fact,
for e = (a, b), consider two Möbius transformations c1, c2 sending D onto H, such that

• If x = c1(a) ∈ R, y = c1(b) ∈ R, and c2(h(a)), c2(h(b)) ∈ R, then φ := c2 ◦ h ◦ c−1
1 satisfies

ϑh(e) = 1
2 log h′(a)h′(b) − log h(a) − h(b)

a− b
= 1

2 logφ′(x)φ′(y) − log φ(x) − φ(y)
x− y

∈ R;

• If c1(a) = c2(h(a)) = ∞, and y = c1(b) ∈ R, then φ := c2 ◦ h ◦ c−1
1 satisfies

ϑh(e) = 1
2 logφ′(y)φ′(∞),

where φ′(∞) := φ̃′(0) for φ̃ = ι ◦ φ ◦ ι.

3.5 Diamond shear in terms of log Λ-length

In this section we show a simple relation (Lemma 3.30) between diamond shear coordinates
of a circle homeomorphism and the log Λ-lengths, which are coordinates on the decorated
Teichmüller space, denoted T̃ (D) introduced by Penner. See [24–26]. This relation will play an
essential role in Section 6.4.
We view the Teichmüller space T (D) as a space of tessellations by identifying

h ∈ T (D) ⇐⇒ h(F).

A point in T̃ (D) is a tessellation h(F) plus a “decoration”, namely a choice of horocycle at each
vertex h(v) ∈ h(V ). The log Λ-length along an edge (a, b) decorated with horocycles ρa, ρb at
a, b ∈ T is

log Λ(ρa, ρb) := δ/2

where δ is the signed hyperbolic distance between ρa ∩ e and ρb ∩ e with the convention that
if ρa ∩ ρb = ∅, then δ is positive. Since hyperbolic distances are invariant under Möbius
transformations, so are log Λ-lengths. Moreover, the log Λ-length can be computed in terms of
the Euclidean diameters of the horocycles in H.

Lemma 3.27 (See [26, Chap. 1, Sec. 1.4, Cor. 4.6]). Let x = c(a), y = c(b), cx = c(ρa), and
ρy = c(ρb). If x, y ̸= ∞,

log Λ(ρa, ρb) = log |x− y| − 1
2 log dxdy
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where dx, dy are the Euclidean diameters of ρx, ρy respectively. If x = ∞, then

log Λ(ρa, ρb) = 1
2 logH − 1

2 log dy

where ρ∞ = {z ∈ H : Im(z) = H}. (Recall that horocycles at ∞ are horizontal lines, and we call
H the Euclidean height of ρ∞.) Further, for any Möbius transformation A =

(
a b
c d

)
∈ PSL(2,R),

if A(x) ∈ R then A(ρx) has diameter dx/(cx+ d)2 = A′(x) dx. If A(x) = ∞, then A(ρx) has
height 1/(c2dx).

The Farey tessellation admits a very special decoration by a collection of horocycles called the
Ford circles. In the Farey tessellation c(F) of H, the Ford circle ρp/q is the horocycle centered
at p/q with Euclidean diameter 1/q2. The Ford circle at infinity is the line {Im(z) = 1}. See
Figure 7. This collection of horocycles has the property that:

• ρp/q is tangent to ρr/s if (p/q, r/s) ∈ c(E),
• ρp/q is disjoint from ρr/s if (p/q, r/s) ̸∈ c(E).

1
2

0
1

1
1

−1
1

−1
2 2

3
1
3

−1
3

−2
3

∞ = 1
0 =

−1
0

Figure 7: A few generations of Ford circles between −1 and +1 labeled by their center points
in c(F).

The Ford circles in the disk are the pullback of the Ford circles in the upper half plane by c.
For all e = (a, b) ∈ E, the Farey tessellation decorated by the Ford circles has log Λ(ρa, ρb) = 0.
Starting from the Ford circle decoration of F for the identity map, one can define a section σ

from homeomorphisms h ∈ P0 to T̃ (D) motivated by Lemma 3.27.

Definition 3.28 (See [26, p. 119-120]). If h ∈ P0, we define a section σ to T̃ (D) as follows:

• σ(IdT) assigns the Ford circle as the horocycle at each v ∈ V . In H, this means the
horocycle at p/q ∈ R has diameter q−2 and the horocycle at ∞ has height 1.

• For any other h ∈ H , let φ = c ◦h ◦ c−1 : R → R. At each point φ(p/q) ∈ R, σ(h) assigns
the horocycle with diameter |φ′(p/q)|q−2. At φ(∞) = ∞, σ assigns the horocycle of
height |φ′(∞)|−1 at ∞. Here recall that φ′(∞) = φ̃′(0) for φ̃(x) = −1/φ(−1/x).

Remark 3.29. The section σ was first introduced in [17] for diffeomorphisms and is defined for
any homeomorphism h : T → T fixing ±1, i such that h is differentiable at all rational points
of the circle. By Lemma 3.23 ii), σ is well-defined if h ∈ P0. It is also not hard to see that the
decoration does not depend on the choice of conformal map D → H, we choose c for simplicity.
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When e = (a, b) ∈ E and h ∈ P0, we define the notation

log Λh(e) := log Λ(ρa, ρb)

where ρa, ρb are the horocycles at h(a), h(b) chosen by the section σ. Using this, we can describe
the relationship between diamond shear coordinates and log Λ-lengths.

Lemma 3.30. If h ∈ P0, then for any e = (a, b) ∈ E,

ϑh(e) = − log Λh(e).

Proof. Let φ := c ◦ h ◦ c−1 which is a homeomorphism of R fixing ∞. Choose (a, b) ∈ E and
let c(a) = x, c(b) = y. If x, y ̸= ∞, let dx, dy denote the diameters of the Ford circles at x, y.
We have

log ΛId(e) = log |x− y| − 1
2 log dxdy = 0,

which follows from direct computation or the fact that the Ford circles at x and y are tangent.
Using Definition 3.28 and Lemma 3.27,

log Λh(e) = log Λh(e) − log ΛId(e)

= log |φ(x) − φ(y)| − 1
2 log |φ′(x)||φ′(y)|dxdy − log |x− y| + 1

2 log dxdy

= −1
2 log |φ′(x)φ′(y)| + log |φ(x) − φ(y)|

|x− y|
.

If x = ∞ = φ(x), then the horocycle at φ(x) has height H = φ′(∞)−1, y ∈ Z and hence dy = 1.
We have

log Λh(e) = 1
2 log |φ′(∞)|−1 − 1

2 log |φ′(y)|dy = −1
2 logφ′(y)φ′(∞).

In both cases, we have ϑh(e) = − log Λh(e) by Remark 3.26.

4 Relation to Hölder classes

Here we relate the class H of homeomorphisms with square-summable diamond shears to the
Hölder class C 1,α defined in (1.2).

Theorem 4.1. We have C 1,α ⊂ H if and only if α > 1/2.

For comparison, recall Lemma 2.9, which says analogously that C 1,α ⊂ WP(T) if and only if
α > 1/2. The “only if” direction of Theorem 4.1 will follow from the fact that H ⊂ WP(T) and
the latter does not contain C 1,1/2, see Theorem 5.5. In this section, we show that C 1,α ⊂ H

for α > 1/2.
For (a, b) ∈ E, let ℓ(a, b) denote the arclength of the arc in T from a to b containing the child
of a, b (which is the shorter of the two arcs between a and b, we call it a Farey segment). We
call these lengths the Farey lengths.

Proposition 4.2. The Farey lengths are ℓr-summable if and only if r > 1, e.g.∑
(a,b)∈E

ℓ(a, b)r < ∞

if and only if r > 1.
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Proof. Since ∑(a,b)∈En∖En−1 ℓ(a, b) = 2π for all n, the sum diverges for r ≤ 1.
Now we show the sum converges when r > 1. We sort the sum over edges (a, b) by the endpoint
of the earlier generation. Note that by Lemma 2.1 there are no edge between vertices of the
same generation except e0. Therefore,∑

(a,b)∈E

ℓ(a, b)r = πr +
∑
a∈V

∑
b∈child(a)

ℓ(a, b)r.

The πr term corresponds to e0 = (−1, 1). We refer to the set of vertices

child(a) = {b ∈ V : (a, b) ∈ E, gen(b) > gen(a)}

as the children of a.
Let Γ1, ...,Γ4 denote the closed quarter circles with vertices 1, i,−1,−i. All the Farey segments
(other than the one corresponding to e0 = (−1, 1)) are contained in one of these closed quarter
circles, so it suffices to show that the lengths in Γ := Γ3, the arc from −1 to −i, are ℓr-summable.
The inverse Cayley transform c−1 sends [0, 1] onto Γ and is Lipschitz on [0, 1]. The image
c(V ∩ Γ) consists of the rational points between 0 and 1. If λ is the Lipschitz constant of
c−1|[0,1], then

∑
a∈V ∩Γ

∑
child(a)

ℓ(a, b)r ≤ λr
∑

p
q

∈c(V ∩Γ)

∑
p′
q′ ∈child( p

q
)

∣∣∣∣pq − p′

q′

∣∣∣∣r.
If k1/m1 < p/q < k2/m2 are the parents of p/q, the children of p/q are of the form

p′

q′ = ki + np

mi + nq
i = 1, 2 and n ∈ N≥1

by Lemma 2.2. Hence the distances we must bound are of the form∣∣∣∣pq − np+ ki

nq +mi

∣∣∣∣r =
∣∣∣∣ pmi − qki

q(nq +mi)

∣∣∣∣r.
Lemma 2.2 also shows that |pmi − qki|r = 1, hence∣∣∣∣ pmi − qki

q(nq +mi)

∣∣∣∣r ≤ 1
q2rnr

.

Therefore∑
p
q

∈c(V ∩Γ)

∑
p′
q′ ∈child( p

q
)

∣∣∣∣pq − p′

q′

∣∣∣∣r =
∑

p
q

∈c(V ∩Γ)

∑
n≥1
i=1,2

∣∣∣∣pq − np+ ki

nq +mi

∣∣∣∣r ≤
∑

p
q

∈c(V ∩Γ)

∑
n≥1

2
q2rnr

=
∑

p
q

∈c(V ∩Γ)
2q−2rζ(r).

There are ϕ(q) rational points in [0, 1] with denominator q, where ϕ is Euler’s ϕ function. Since
ϕ(q) ≤ q, ∑

p
q

∈c(V ∩Γ)
2q−2rζ(r) = 2ζ(r)

∑
q≥1

ϕ(q)q−2r ≤ 2ζ(r)
∑
q≥1

q1−2r

which is finite exactly if r > 1.
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Theorem 4.1 follows straightforwardly from Proposition 4.2 and the analytic description of
diamond shear coordinates.

Proof of Theorem 4.1. By Lemma 3.23 iii), h ∈ C 1,α implies sh ∈ P0. For any closed interval
I ⊂ T which is a proper subset of T, we can find Möbius transformations c1, c2 : D → H such
that c1(I), c2(h(I)) are bounded intervals of R.
Define φI := c2 ◦ h ◦ c−1

1 : R → R. By Remark 3.26, for all (a, b) ∈ E such that a, b ∈ I,

ϑh(e) = 1
2 logφ′

I(x)φ′
I(y) − log φI(x) − φI(y)

x− y

where x = c1(a), y = c1(b).
By the mean value theorem applied to φI , there exists z ∈ (x, y) such that φ′

I(z) = φI(x)−φI(y)
x−y .

Thus

ϑh(e) = 1
2(logφ′

I(x) − logφ′
I(z)) + 1

2(logφ′
I(y) − logφ′

I(z)).

Further, c := c−1
1 (z) is contained in the interval I(a, b) ⊂ T.

Since log h′ is α-Hölder and since c2(h(I)) and c1(I) are bounded intervals, logφ′
I is α-Hölder.

Thus there is a constant C > 0 such that for all s, t ∈ c1(I),

| logφ′
I(s) − logφ′

I(t)| ≤ C|s− t|α.

Given also that c1 : I → c1(I) is Lipschitz, it follows that

|ϑ(e)| ≤ C

2

(
|x− z|α + |z − y|α

)
≤ K

2

(
ℓ(a, c)α + ℓ(b, c)α

)
≤ Kℓ(a, b)α (4.1)

for a constant K = K(c1, I) and all e = (a, b) ∈ E with a, b ∈ I.
We cover T by the intervals I1 = {eiϑ : ϑ ∈ [0, π]} and I2 = {eiϑ : ϑ ∈ [π, 2π]}. For every
(a, b) ∈ E, there exists j such that a, b ∈ Ij . Summing the bounds given in (4.1) using an
appropriate interval for each e ∈ E,∑

e∈E

ϑ(e)2 ≤ K2 ∑
(a,b)=e∈E

ℓ(a, b)2α,

where K2 = max(K2
1 ,K

2
2) and Kj is the constant in (4.1) for Ij . By Proposition 4.2, this

bound is finite if and only if α > 1/2.

5 Relation to Weil–Petersson homeomorphisms

We now describe relationships between two classes of homeomorphisms defined in terms of
shears, namely H and {h : sh ∈ S }, and the Weil–Petersson class WP(T). To summarize,
the main results of this section are that H ⊂ WP(T) ⊂ {h : sh ∈ S }, and the inclusions are
strict.
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5.1 Cell decomposition of D or H along F∗

We say that an embedding of the dual tree of an ideal tessellation of D = D or H is centered if
the vertices of the tree are at the centers of the triangles in the tessellation and geodesic if the
edges of the tree are geodesics for the hyperbolic metric on D. Given a tessellation, there is a
well-defined centered geodesic embedding of its dual tree. Further, since Möbius transformations
preserve angles and hyperbolic distances, if T = h(F) is a tessellation embedded in D with dual
tree T ∗ embedded as a centered geodesic tree, then for any Möbius transformation A : D → D′,
A(T ∗) is a centered geodesic embedding of the dual tree of A(T ) in D′. The complementary
region D∖T is a union of disjoint simply connected regions with piecewise-geodesic boundary,
each of which contains exactly one vertex of V (T ). We call these regions cells.
We embed the dual tree F∗ as a centered geodesic tree in D. Applying the Cayley map
c : D → H, the centered geodesic embedding of F∗ in D is sent to a centered geodesic tree c(F∗)
in c(F) in H. We denote the cells of F or c(F) simply by Cv or Cc(v) for v ∈ V . The group
PSL(2,Z) acts transitively on the set of cells. Further, for any v ∈ V , there is A ∈ PSL(2,Z)
such that A ◦ c sends Cv to C∞. See the pink area of the left-hand side of Figure 8 for an
illustration of C∞.

x + iu(x)

0 1 2 3�1�2�3

1

e3

1

'(0)

↵(x) + i�(x)C1 '(C1)
'

e�3 e�2 e�1 e0 e1 e2

Figure 8: The cell at ∞ in the Farey tessellation between −3 and 3 with boundary given by
x+ iu(x), and an example of its image under a map φ with boundary given by α(x) + iβ(x).
The strip A0 and its image are illustrated in dark pink.

We now describe the cell C∞ more explicitly. We denote e0 = (0,∞), and let fan(∞) =
(en = (n,∞))n∈Z. Let an = (n, n + 1) ∈ c(E) and let τn be the ideal triangle bounded by
{en, an, en+1}. The center of τn is

cn = 1
2 + n+ i

√
3

2 .

The geodesic arc connecting cn, cn+1 is an arc of the circle centered at n + 1 of radius 1.
We define u(x) to be the function whose graph is these arcs. Explicitly, on the interval
[n− 1/2, n+ 1/2], u(x) =

√
1 − (x− n)2. In terms of u(x), the cell at ∞ is

C∞ = {x+ iy : y ≥ u(x)}.

Note that u(x) is continuous everywhere and differentiable everywhere except the half-integers.
We further split C∞ into infinitely many strips An, broken at the half-integers

An =
{
x+ iy : y ≥ u(x), n− 1

2 ≤ x ≤ n+ 1
2

}
.
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Homeomorphisms h ∈ T → T act naturally on geodesic centered dual trees. Since h determines
the tessellation h(F), it determines the images of the centers of the triangles and thus determines
the centered geodesic tree h(F∗). We write h(Cv) for the connected component of D ∖
h(F∗) containing v. We define the corresponding hyperbolic stretching map Fh, which is a
homeomorphism from F∗ to h(F∗) defined as follows:

• Fh maps the center of a triangle τ of the Farey tessellation to the center of h(τ);
• Fh linearly stretches the hyperbolic length along each geodesic edge.

Similarly, for φ : R → R fixing ∞, let φ(C∞) denote the image of the cell at ∞ under φ and
define similarly the hyperbolic stretching map Fφ : c(F∗) → φ(c(F∗)). We will give an explicit
expression for Fφ on ∂C∞. For this, we define functions α(x), β(x) such that

Fφ(x+ iu(x)) = α(x) + iβ(x),

so that the image cell is

φ(C∞) = {α(x) + iy : y ≥ β(x)}

and the image strips are

φ(An) =
{
α(x) + iy : y ≥ β(x), n− 1

2 ≤ x ≤ n+ 1
2

}
.

The maps α, β are continuous for all x ∈ R and differentiable everywhere except the half-integers.
Restricted to [n− 1/2, n+ 1/2], α(x) + iβ(x) is a parametrization of the hyperbolic geodesic
connecting Fφ(cn) to Fφ(cn+1). In particular, Fφ(cn), Fφ(cn+1) are the centers of the triangles
{φ(n− 1), φ(n),∞}, {φ(n), φ(n+ 1),∞} respectively, meaning that

Fφ(cn) = φ(n) − ρ

2 + i
ρ
√

3
2 , ρ = φ(n) − φ(n− 1),

Fφ(cn+1) = φ(n) + λ

2 + i
λ

√
3

2 , λ = φ(n+ 1) − φ(n).

Using this, we now explicitly compute the functions α, β on a single strip. Translating, it
suffices to compute the following:

Lemma 5.1. For ρ, λ > 0, let γρ,λ denote the geodesic connecting −ρ
2 + iρ

√
3

2 to λ
2 + iλ

√
3

2 . We
have γρ,λ is an arc of the circle centered at λ− ρ with Euclidean radius r =

√
λ2 − λρ+ ρ2 and

hyperbolic length ℓ = log ρ+λ+r
ρ+λ−r . Let Fρ,λ : γ1,1 → γρ,λ be the hyperbolic stretching. If γ1,1 is

parametrized by γ1,1(x) = x+ iu(x), then γρ,λ(x) = Fρ,λ(γ1,1(x)) = αρ,λ(x) + iβρ,λ(x) where

αρ,λ(x) =
(r + λ− ρ)eℓ

(
1+x
1−x

)ℓ/ log 3
− (r − λ+ ρ)K(ρ, λ)2

eℓ

(
1+x
1−x

)ℓ/ log 3
+K(ρ, λ)2

,

βρ,λ(x) =
2reℓ/2

(
1+x
1−x

)ℓ/2 log 3
K(ρ, λ)

eℓ

(
1+x
1−x

)ℓ/ log 3
+K(ρ, λ)2

,

and K(ρ, λ) = 2r+2λ−ρ√
3ρ

.
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Proof. Direct computations show that γρ,λ is an arc of the circle centered at λ− ρ of Euclidean
radius

√
λ2 − λρ+ ρ2. On the imaginary axis, the hyperbolic stretching map Ca1,a2 : iR+ → iR+

that sends (i, a1i) to (i, a2i) is given by

Ca1,a2(z) = i (z/i)log a2/ log a1 .

To compute Fρ,λ, we conjugate by Möbius transformations that send γ1,1 and γρ,λ to segments of
the form (i, a1i) and (i, a2i) respectively, where log a1 = length(γ1,1) and log a2 = length(γρ,λ).
Let Bρ,λ : H → H be the Möbius transformation such that Bρ,λ(γρ,λ) ⊂ iR+ (with negative
endpoint of the geodesic containing γρ,λ sent to 0 and positive endpoint sent to ∞) and
Bρ,λ(−ρ

2 + iρ
√

3
2 ) = i. To compute the length of γ1,1, we note that

B1,1(z) =
√

3 1 + z

1 − z
, B1,1(1

2 + i

√
3

2 ) = 3i.

Thus length(γ1,1) = log 3. Given this and denoting ℓ = length(γρ,λ),

Fρ,λ(x+ iu(x)) = B−1
ρ,λ ◦ C3,eℓ ◦B1,1(x+ iu(x)).

To find ℓ, we compute

Bρ,λ(z) = K(ρ, λ)r − λ+ ρ+ z

r + λ− ρ− z

where K(ρ, λ) is the multiplicative constant so that Bρ,λ sends −ρ
2 + ρ

√
3

2 i to i. For x+ iy ∈ γρ,λ,
we get that

Bρ,λ(x+ iy)
K(ρ, λ) = 2ryi

(r + λ− ρ− x)2 + y2 .

Thus

K(ρ, λ) = (r + λ− ρ+ ρ/2)2 + (
√

3ρ/2)2

2r
√

3ρ/2
= 2r + 2λ− ρ√

3ρ
.

Similarly,

Bρ,λ(λ2 +
√

3λ
2 i) = K(ρ, λ)

√
3λ

2r + λ− 2ρ = λ(2r + 2λ− ρ)
ρ(2r + λ− 2ρ) .

From this and simplification, we find

ℓ = log λ(2r + 2λ− ρ)
ρ(2r + λ− 2ρ) = log ρ+ λ+ r

ρ+ λ− r
.

Putting these together we compute Fρ,λ(x+ iu(x)). First

B1,1(x+ iu(x)) =
√

3
(1 + x

1 − x

)1/2
i

so then

C3,eℓ ◦B1,1(x+ iu(x)) = i
√

3ℓ/ log 3
(1 + x

1 − x

)ℓ/2 log 3
= ieℓ/2

(1 + x

1 − x

)ℓ/2 log 3
.
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Note that

B−1
ρ,λ(z) = (r + λ− ρ)z −K(ρ, λ)(r − λ+ ρ)

z +K(ρ, λ)

so finally

Fρ,λ(x+ iu(x)) =
(r + λ− ρ)ieℓ/2

(
1+x
1−x

)ℓ/2 log 3
−K(ρ, λ)(r − λ+ ρ)

ieℓ/2
(

1+x
1−x

)ℓ/2 log 3
+K(ρ, λ)

.

Taking real and imaginary parts completes the proof.

The following observation follows directly from the explicit formulas of α and β.

Corollary 5.2. The functions (s, t, x) 7→ αes,et(x), α′
es,et(x), βes,et(x), and β′

es,et(x) are real
analytic and bounded on [−M,M ]×[−M,M ]×[−1/2, 1/2] for all M > 0. Moreover, α′

ρ,λ(x) > 0
for all ρ, λ > 0 and all x ∈ [−1/2, 1/2].

5.2 Proof of H ⊂ WP(T)

In this section, we fix a circle homeomorphism h ∈ H . We explicitly construct a homeomor-
phism f : D → D which extends h using the cell structure described above. The extension
coincides with the hyperbolic stretching map along the centered geodesic tree. We show that
f is quasiconformal (Theorem 5.3) and then show that the Beltrami coefficient µ of f is
L2-integrable on the disk with respect to the hyperbolic metric (Theorem 5.5) which shows
that h is Weil–Petersson. The construction is an adaption of a construction of Kahn–Markovic
from [15] to the infinite tessellation setting.

Construction of an extension f : D → D of h : T → T.
Recall that we embed the Farey dual tree F∗ as a centered geodesic tree. We first define f |F∗

to be the hyperbolic stretching map from F∗ → h(F∗), where h(F∗) is the centered geodesic
tree associated to the tessellation induced by h. Since f sends F∗ to the centered geodesic tree
in h(F), for any v ∈ V , f(v) = h(v). Since V is dense in T and h is continuous, if f is also
continuous then f extends h.
We now define f on D∖ F∗ cell-by-cell. Choose v ∈ V and let fan(v) = (ek)k∈Z centered on an
arbitrary but fixed middle edge e0. By Lemma 3.16, h ∈ P0, so

M :=
∞∑

i=0
sh(ei) = −

−∞∑
i=−1

sh(ei) < ∞.

If we choose Möbius transformations c1, c2 : D → H as in Lemma 3.23 so that c1(v) = ∞,
c2(h(v)) = ∞, c1(e0) = c2(e0) = (0,∞), and c1(e−1) = c2(e−1) = (−1,∞), then as in (3.10),
(3.11), for all n ≥ 0, c2 ◦ h ◦ c−1

1 satisfies

lim
n→∞

c2 ◦ h ◦ c−1
1 (n+ 1) − c2 ◦ h ◦ c−1

1 (n) = lim
n→∞

c2 ◦ h ◦ c−1
1 (−n) − c2 ◦ h ◦ c−1

1 (−n− 1) = eM .

We construct an extension ψ on C∞ for

φ := e−M c2 ◦ h ◦ c−1
1 : R → R.
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This way, φ(0) = 0 and φ(∞) = ∞, and φ is asymptotic to the identity near ∞. The restriction
of ψ to ∂C∞ ⊂ c1(F∗) is given by the hyperbolic stretching, already studied in the previous
section, and we denoted the map by

ψ(x+ iu(x)) = α(x) + iβ(x).

We extend ψ to C∞ by

ψ(x+ iy) := α(x) + i(β(x) − u(x) + y), ∀x ∈ R, y ≥ u(x).

With this definition, ψ sends the strip An onto φ(An) and is a homeomorphism C∞ → φ(C∞).
Conjugating back to D, we obtain a continuous extension c−1

2 ◦ (eMψ) ◦ c1 of f |F∗ to Cv ∪ F∗.
This construction applied to all v ∈ V gives a continuous map f : D → D extending h.

Theorem 5.3. If h ∈ H , then the extension f : D → D constructed above is quasiconformal.

Proof. Choose v ∈ V and consider the map ψ = e−M c2 ◦ f ◦ c−1
1 . On C∞ = c1(Cv),

ψ(x+ iy) := α(x) + i(β(x) − u(x) + y), y ≥ u(x).

Since ψ differs from f by Möbius transformations, ψ being K-quasiconformal on C∞ is
equivalent to f being K-quasiconformal on Cv (See e.g. [19, Sec. 1.2.8]). Since u, α, β are
differentiable almost everywhere, so is ψ. A direct computation shows that the Beltrami
coefficient of ψ on C∞ is given by

µ(x+ iy) = ψz̄

ψz
(x+ iy) = α′(x) − 1 + i(β′(x) − u′(x))

α′(x) + 1 + i(β′(x) − u′(x)) .

Another direct computation shows that

|µ(x+ iy)|2 = 1 − 4α′(x)
(α′(x) + 1)2 + (β′(x) − u′(x))2 . (5.1)

It is clear that the ratio in (5.1) takes value in (0, 1], we now show it to be uniformly bounded
away from 0. For x ∈ [n− 1/2, n+ 1/2], the infimum of the ratio is a continuous function of
ρ = φ(n) − φ(n− 1) and λ = φ(n+ 1) − φ(n) by Lemma 5.1. Moreover,

φ(n+ 1) − φ(n) = exp(−M) exp(
n∑

i=0
sh(ei)) = exp(

n∑
i=−∞

sh(ei)) = exp(−psh,v(en+)).

Here we use the convention that if n ≤ −1 then ∑n
i=0 sh(ei) = −

∑−1
i=n sh(ei). Since psh,v(en+)

is uniformly bounded for all v ∈ V , n ∈ Z by Lemma 3.16, from the continuity, we obtain that
there exists k < 1 independent of the cell chosen, such that ∥µ∥∞,C∞ ≤ k. This shows that f
is K-quasiconformal in D∖ F∗, where K = (1 + k)/(1 − k). Points and C1 Jordan curves are
quasiconformally removable, see [7, Thm. 3.1.3], thus F∗ is quasiconformally removable. Since
f is a homeomorphism of D, we obtain that f is a K-quasiconformal extension of h to D.

To show that H ⊂ WP(T), we need the following lemma.

Lemma 5.4. Let ψs,t(x + iy) = αes,et(x) + i(βes,et(x) − u(x) + y) for x ∈ [−1/2, 1/2] and
y ≥ u(x), and let µs,t be the Beltrami coefficient of ψs,t. For any ε > 0 small, there is a
constant C = C(ε) > 0 such that if |s|, |t| < ε,

|µs,t(x+ iy)| ≤ C(|s| + |t|)

for all x ∈ [−1/2, 1/2] and all y ≥ u(x).
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Proof. Recall that

µs,t(x+ iy) =
α′

es,et(x) − 1 + i(β′
es,et(x) − u′(x))

α′
es,et(x) + 1 + i(β′

es,et(x) − u′(x)) . (5.2)

Using the explicit formulas for α, β in Lemma 5.1, notice that µ0,0(x + iy) ≡ 0. Since the
modulus of the denominator of µ is bounded below by 1,

|µs,t(x+ iy)| ≤ |α′
es,et(x) − 1| + |β′

es,et(x) − u′(x)|.

By Corollary 5.2, the right hand side of (5.2) is analytic in s, t, x on the appropriate interval.
Further, when (s, t) = (0, 0), the right hand side is 0. Fixing x ∈ [−1/2, 1/2] and expanding
around (s, t) = (0, 0), we find that for |s|, |t| < ε,

|µs,t(x+ iy)| ≤ C(ε, x)(|s| + |t|).

By Corollary 5.2, C(ε, x) can be chosen to be a continuous function of x ∈ [−1/2, 1/2] and
hence achieves a maximum value C = C(ε), which completes the proof.

Theorem 5.5. If h ∈ H , then the extension f constructed above has Beltrami coefficient µ
such that ∫

D

|µ(z)|2
(1 − |z|2)2 dA(z) ≲

∑
v∈V

∑
e∈fan(v)

p2
sh,v(e+) < ∞.

In particular, H ⊂ WP(T).

Proof. Choose v ∈ V and again consider ψ = e−M c2 ◦ f ◦ c−1
1 . For x+ iy ∈ C∞ = c1(Cv), recall

that

µ(x+ iy) = α′(x) − 1 + i(β′(x) − u′(x))
α′(x) + 1 + i(β′(x) − u′(x)) .

Further, for x ∈ [n− 1/2, n+ 1/2], α(x) = αλn−1,λn(x− n) and β(x) = βλn−1,λn(x− n), where

λn = φ(n+ 1) − φ(n) = exp(−psh,v(en+)).

Fix a small threshold ε > 0. By Lemma 3.16, there are only finitely many (v, e) such that
|psh,v(e+)| > ε. We say that a strip An is bad if |psh,v(e+)| > ε for e = en or e = en−1. Let
N(ε) < ∞ be the number of bad strips across all cells. Since each strip An is contained in an
ideal triangle, Areahyp(An) ≤ π. Since |µ(x+ iy)| < 1,∫

bad strips

|µ(z)|2
(1 − |z|2)2 dA(z) < πN(ε).

On the other hand, if |psh,v(en+)|, |psh,v(en−1+)| < ε, then by Lemma 5.4,

|µ(x+ iy)| ≤ C(ε)(|psh,v(en+)| + |psh,v(en−1+)|)

for all x+ iy ∈ An. Therefore∫
Cv∖bad strips

|µ(z)|2
(1 − |z|2)2 dA(z) ≤ 4πC(ε)2 ∑

e∈fan(v)
psh,v(e+)2.

Summing over v ∈ V , adding back the bad strips, and applying Lemma 3.16, we get that∫
D

|µ(z)|2
(1 − |z|2)2 dA(z) ≤ N(ε)π + 4πC(ε)2 ∑

v∈V

∑
e∈fan(v)

p2
sh(e+) < ∞.

By Theorem 2.8, h ∈ WP(T).
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5.3 Counterexample: an element of WP(T) which is not in H

We saw in the last section that H ⊂ WP(T). It is straightforward to see that the reverse
inclusion does not hold.

Proposition 5.6. WP(T) ̸⊂ P. As a consequence, WP(T) ̸⊂ H .

Proof. By Lemma 3.23 i), if h ∈ P then h has left and right derivatives at all rational points.
A Weil–Petersson homeomorphism may not have left or right derivatives since functions in
the Sobolev space H1/2 may not have left or right limits everywhere, so WP(T) ̸⊂ P from
Definition 2.7. By Corollary 3.17, WP(T) ̸⊂ H .

We illustrate an explicit example of a homeomorphism φ : R → R which is Weil–Petersson but
not in P.

Example 5.7. Consider φ : R → R such that φ(x) = x log |x| − x for |x| > 2, and is smooth
on R. On one hand, φ(x) grows faster than linear functions as x → ∞ or x → −∞, and hence
φ ̸∈ P.
To show that φ is Weil–Petersson, we show1 that u(x) := logφ′(x) is in H1/2(R) by showing
that it is the trace of a map f : H → H which has finite Dirichlet energy (by the classical
Douglas formula, see, e.g. [37, Eq.(2.2), (2.3)]). We compute

u(x) = log log |x|

for x outside (−2, 2). Hence u is the trace of a smooth function f on H which takes the values
f(z) = log log |z| on H ∖ D(0, 2). The gradient of f satisfies |∇f(z)| = 1

r log r if |z| = r > 2.
Thus,∫

H∖D(0,2)
|∇f(z)|2 dA(z) =

∫ π

0

∫ ∞

2

r

r2(log r)2 drdθ = π

[
− 1

log r

]∞

r=2
= π

log 2 < ∞,

and φ is Weil–Petersson.
We can also see explicitly that φ ̸∈ P by computing its shears sφ(en) for en = (n,∞) ∈ fan(∞).
For n ≥ 0,

φ(n+ 1) − φ(n) = (n+ 1) log(n+ 1) − n logn− 1
= (n+ 1)[logn+ log(1 + 1/n)] − logn− 1

= logn+ (n+ 1)
( 1
n

− 1
2n2 +O( 1

n3 )
)

− 1

= logn+ 1
2n +O( 1

n2 ).

Analogously,

φ(n) − φ(n− 1) = logn− 1
2n +O( 1

n2 ).

Therefore

sφ(en) = log φ(n+ 1) − φ(n)
φ(n) − φ(n− 1) = log

(
1 + 1

n logn +O( 1
n2 )

)
= 1
n logn +O( 1

n2 ).

In particular, sφ(en) is not summable. Note however that sφ(en) is square-summable (as it
must be by Theorem 5.12).

1This characterization of the Weil–Petersson class is obtained in [34, Thm. 2.2].
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5.4 Convergence in H implies convergence in WP(T)

In this section we show that convergence in H is stronger than convergence in the Weil–
Petersson metric (Corollary 5.10).

Theorem 5.8. Suppose that g, h ∈ H , and let q = g ◦ h−1. Then there exists C(ε, h) > 0
such that q has a quasiconformal extension fq with Beltrami coefficient µ satisfying∫

D

|µ(z)|2
(1 − |z|2)2 dA(z) ≤ C(ε, h)

∑
e∈E

(ϑg(e) − ϑh(e))2,

for any g ∈ H such that
∑

e∈E(ϑg(e) − ϑh(e))2 ≤ ε.

Proof. Let fg, fh be the quasiconformal extensions of g, h respectively constructed in the section
above. We will show that the extension fq := fg ◦ f−1

h of q has Beltrami coefficient satisfying
the bound above cell by cell.
Choose v ∈ V , and let fan(v) = (en)n∈Z. For g, choose Cayley maps c1, c2 as in Section
5.2 so that c1(v) = ∞, c2(g(v)) = ∞, and c1(e0) = c2(e0) = (0,∞), c1(e−1) = c2(e−1) =
(−1,∞). Define ψg = e−Mgc2 ◦ fg ◦ c−1

1 , where Mg = ∑∞
n=0 sg(en), and let αg, βg be such that

ψg(x + iu(x)) = αg(x) + iβg(x). Analogously choose Cayley maps c3, c4 to define ψh, αh, βh.
Since ψg, ψh both fix ∞, ψq := ψg ◦ ψ−1

h fixes ∞. In particular, ψq maps C∞(h(F)) onto
C∞(g(F)).
The boundary curve of C∞(h(F)) is given by

x+ iuh(x), uh(x) = βh ◦ α−1
h (x).

We define αq, βq so that

ψq(x+ iuh(x)) = αq(x) + iβq(x).

Since ψq = ψg ◦ ψ−1
h ,

αq(x) = αg ◦ α−1
h (x)

βq(x) = βg ◦ α−1
h (x).

Hence the Beltrami coefficient µ of ψq on C∞(h(F)) is

µ(x+ iy) =
α′

g − α′
h + i(β′

g − β′
h)

α′
g + α′

h + i(β′
g − β′

h) ◦ α−1
h (x).

For w = α−1
h (x) ∈ [n − 1/2, n + 1/2], α′

h(w) is a continuous function of psh,v(en+) and
psh,v(en−1+). By Lemma 3.16, psh,v(en+) is uniformly bounded for all v ∈ V, n ∈ Z. Further,
by Corollary 5.2, α′

h(w) > 0. Combining this with the fact that α′
h is continuous, there exists

a constant K(h) > 0 independent of cell such that α′
h(w) ≥ K(h). Therefore

|µ(x+ iy)| ≤
|α′

g − α′
h| + |β′

g − β′
h|

K(h) ◦ α−1
h (x).

Fix a threshold ε > 0. From the assumption and Lemma 3.16, there are only finitely many
(v, e) such that |psh,v(e+) − psg ,v(e+)| > ε. Let N(ε) be the number of strips An across all cells
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where |psg ,v(en+) − psh,v(en+)| or |psg ,v(en−1+) − psh,v(en−1+)| is larger than ε. Any other strip
An we call a good strip.
By Corollary 5.2, α′, β′ are analytic functions of the (s, t, w). Expanding around any (s0, t0),
there is a constant C depending on ε and (s0, t0) such that if |s− s0|, |t− t0| < ε, then

|α′
es,et(w) − α′

es0 ,et0 (w)| ≤ C(|s− s0| + |t− t0|)
|β′

es,et(w) − β′
es0 ,et0 (w)| ≤ C(|s− s0| + |t− t0|)

for all w ∈ [−1/2, 1/2]. For each good strip An, we use this expansion for (s0, t0) =
(psh,v(en−1+), psh,v(en+)). By Lemma 3.16 applied to h these are uniformly bounded for
all v ∈ V, n ∈ Z, so we can take the constant C to depend only on ε and h to find

|α′
g(w) − α′

h(w)| ≤ C(|psg ,v(en−1+) − psh,v(en−1+)| + |psg ,v(en+) − psh,v(en+)|)
|β′

g(w) − β′
h(w)| ≤ C(|psg ,v(en−1+) − psh,v(en−1+)| + |psg ,v(en+) − psh,v(en+)|).

Therefore there is another constant C(ε, h) such that for all x+ iy ∈ An,

|µ(x+ iy)| ≤ C(ε, h)
( ∣∣psg ,v(en−1+) − psh,v(en−1+)

∣∣+ ∣∣psg ,v(en+) − psh,v(en+)
∣∣ ).

Every strip h(An) is a geodesic triangle, so it is contained in an ideal triangle and its hyperbolic
area is bounded by π. Summing over v ∈ V, n ∈ Z, adding back the bad strips, and integrating,
we find ∫

D

|µ(z)|2
(1 − |z|2)2 dA(z) ≤ πN(ε) + 4πC(ε, h)

∑
v∈V

∑
e∈fan(v)

(psg ,v(e+) − psh,v(e+))2.

Note that
N(ε) ≤ 1

ε2

∑
v∈V

∑
e∈fan(v)

(psg ,v(e+) − psh,v(e+))2.

Applying Lemma 3.16 with s = sg − sh, we obtain using Cauchy-Schwarz∑
v∈V

∑
e∈fan(v)

(psg ,v(e+) − psh,v(e+))2

≤ 2
∑
e∈E

(ϑg(e) − ϑh(e))2 +
∑
e∼e′

2(ϑg(e) − ϑh(e))2 + 2(ϑg(e′) − ϑh(e′))2

= 6
∑
e∈E

(ϑg(e) − ϑh(e))2,

which completes the proof.

Lemma 5.9. Suppose that h, (hn)n≥1 are Weil–Petersson homeomorphisms fixing ±1, i, and
let µn be the Beltrami coefficient of a quasiconformal extension of hn ◦ h−1 in D. If

lim
n→∞

∫
D

|µn(z)|2
(1 − |z|2)2 dA(z) = 0,

then hn converges to h in the Weil–Petersson metric.

This result must be well-known. For readers’ convenience we sketch the proof using several
lemmas from [36]. The results in [36] are stated using µ defined in the outer disk D∗ = {z ∈
C : |z| > 1}, by pre-composing quasiconformal maps by z 7→ 1/z we can easily translate those
results to D.
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Proof. Theorem I.3.8 in [36] shows that WP(T) is a topological group. Therefore, it suffices to
show the claim when h = IdT.
We write

∥µ∥2
2 :=

∫
D

|µ(z)|2
(1 − |z|2)2 dA(z) and ∥µ∥∞ = sup

z∈D
|µ(z)|.

We note that two measurable Beltrami differentials µ, ν with ∥µ∥∞ < 1 and ∥ν∥∞ < 1 are said
to be equivalent, if they are the Beltrami coefficients of a quasiconformal extension of the same
circle homeomorphism fixing ±1, i.
If ∥µ∥∞ < 1, the Bers embedding of the equivalence class of µ, denoted as B([µ]), is a
holomorphic function ϕ ∈ Q(D∗). See Section 6.2 for more details. If furthermore ∥µ∥2 < ∞,
[36] shows that

∥ϕ∥2
A2(D∗) :=

∫
D∗

|ϕ|2(1 − |z|2)2 dA(z) < ∞.

Now let µn be a family of Beltrami differentials such that limn→∞∥µn∥2 = 0, [36, Lem. I.2.9]
implies that there exists C > 0, such that

∥B([µn])∥A2(D∗) ≤ C∥µn∥2 → 0.

Since B|T0(D) is a biholomorphic mapping of Hilbert manifolds [36, Thm. I.2.13], where

T0(D) = {[µ] : ∥µ∥2 < ∞, ∥µ∥∞ < 1} ≃ WP(T)

and the identification WP(T) → T0(D) is the map from a circle homeomorphism h to the
equivalence class of Beltrami coefficients of any quasiconformal extension [µ], it shows [µn]
converges to [0] in T0(D) which is by definition equivalent to hn converges to IdT for the
Weil–Petersson metric.

Lemma 5.9 and Theorem 5.8 applied to g = hn combine to give the following corollary.

Corollary 5.10. Suppose that h, (hn)n≥1 ∈ H with diamond shear coordinates ϑ, ϑn respec-
tively. If limn→∞

∑
e∈E(ϑn(e) − ϑ(e))2 = 0, then hn converges to h in the Weil–Petersson

metric.

5.5 Square summable shears

In this section we prove three results about square summable shear functions S . First we
show that S is not contained in Homeo(T), nor does it contain QS(T).

Proposition 5.11. There exists s ∈ S such that s does not induce a homeomorphism.
Conversely, there exists h ∈ QS(T) such that its shear sh ̸∈ S .

Proof. To prove this result, we just need to exhibit two examples and apply the suitable
conditions from [28,30].
For S ̸⊂ Homeo(T): let (en)n∈Z denote the fan of edges incident to 1 in counterclockwise
order. By [28, Theorem C], if s : E → R has

∞∑
n=1

exp(s(e1) + · · · + s(en)) < ∞,

38



then s does not induce a homeomorphism. Given this, we choose 1/2 < α < 1, and define the
shear function s : E → R so that s(en) = − 1

nα for n ≥ 1, and is 0 on all other edges in E. On
one hand, since α > 1/2, ∑

e∈E

s(e)2 =
∑
n≥1

1
n2α

< ∞,

so s ∈ S . On the other hand, s(e1) + . . . s(en) = −H(n, α) is minus the generalized harmonic
number with parameter α, and since α < 1,

∞∑
n=1

exp(s(e1) + · · · + s(en)) =
∞∑

n=1
exp(−H(n, α)) < ∞.

Therefore s does not induce a homeomorphism.
For QS(T) ̸⊂ S : if s : E → R has s(e) = 1 for infinitely many edges e ∈ E, then s ̸∈ S . In
particular, consider s : E → R where for each n, there is one edge e connecting vertices of
generations 2n and 2n+ 1 of F where s(e) = 1, and all other shears are 0. Clearly this includes
infinitely many edges e where s(e) = 1. Note also that this has the property that every fan
contains either zero or one edge with nonzero shear. One can check the condition for a shear to
induce a quasisymmetric homeomorphism (from [28,30], and included here as Theorem 3.20)
is satisfied with C = e.

Finally we show the following inclusion:

Theorem 5.12. If h ∈ WP(T), then sh ∈ S .

Note that the reverse statement is not true: a circle homeomorphism h with shear coordinate
sh supported on a single edge is has sh ∈ S but does not satisfied the finite balanced condition
from Definition 3.3, so Lemma 3.4 shows that such a homeomorphism is not Weil–Petersson.
To show the inclusion we use the following property of Weil–Petersson homeomorphisms due
to Wu.

Theorem 5.13 (See [44]). Suppose h ∈ WP(T). Then there is a constant C = C(h) > 0 such
that for any pairwise disjoint collection of quads Q1, . . . , Qn with vertices on T,

n∑
i=1

d2(cr(Qi), cr(h(Qi)))λ(cr(Qi)) < C

where d(·, ·) is the hyperbolic metric on C∖ {−1, 0} and λ(x) = exp(d(1, x) − | log x|/2).

We clarify that quads are considered as open sets bounded by hyperbolic geodesics. In other
words, quads sharing only boundary edges or vertex are also considered as disjoint. Note that
λ(1) = 1 and since the hyperbolic metric has smooth conformal factor with respect to the
Euclidean metric, there exists a > 0 such that

d(1, es) = a|s| +O(s2), s → 0. (5.3)

Proof of Theorem 5.12. Let h ∈ WP(T). If Q is a Farey quad, then cr(Q) = 1. Therefore for
an infinite sequence Q1, Q2, . . . of pairwise disjoint Farey quads, Theorem 5.13 implies that

∞∑
i=1

d2(1, cr(h(Qi))) < C, (5.4)

39



as C is independent of the number of quads.
Farey quads Qe are in one-to-one correspondence with dual edges e∗ ∈ E∗. If two dual edges
e∗, f∗ are disjoint and do not share a vertex, then the quads Qe and Qf are disjoint. Since F∗

is a trivalent tree, the dual edges E∗ can be colored red, blue, or green so that no two edges of
the same color intersect. Let R, B, G be the collections of dual edges colored red, blue, or
green respectively. Each of R,B,G corresponds to a collection of disjoint Farey quads, so (5.4)
applies. On the other hand, E∗ = R ∪B ∪G, and hence∑

e∈E

d2(1, cr(h(Qe))) < 3C. (5.5)

Since this sum converges, for any ε > 0 there are only finitely many e ∈ E such that
| cr(h(Qe)) − 1| > ε. Recall that sh(e) = log cr(h(Qe)). Hence, there are only finitely many
edges e ∈ E such that |sh(e)| > ε. We now choose ε such that |s| < ε implies |s| < 2a−1d(1, es)
by (5.3). In particular, if |sh(e)| < ε, sh(e)2 < 4a−2d(1, cr(h(Qe)))2. We obtain sh ∈ S from
(5.5).

6 Weil–Petersson metric tensor and symplectic form

6.1 Finite shears and Zygmund functions

The tangent space to the universal Teichmüller space

T (D) := QS(T)/Möb(T) ≃ {h : T → T, quasisymmetric and fixing − 1, i, 1}

at the origin IdT consists of all Zygmund functions on the unit circle that vanish at 1, i and
−1 (see [9, Sec. 16.6]). More precisely, consider a differentiable path (for the Banach manifold
structure of T (D)) t 7→ ht with t ∈ (−ε, ε) of quasisymmetric maps such that h0 = IdT. Then
d
dtht(x)|t=0 = u(x) is a Zygmund function on the unit circle and conversely, every Zygmund
function on the unit circle is the tangent vector to a differentiable path of quasisymmetric
maps at IdT ∈ T (D).
For any h ∈ T (D) we can identify ThT (D) with the space of Zygmund functions on the circle by
pullback, meaning if t 7→ ht, t ∈ (−ε, ε) is a differentiable path of quasisymmetric maps fixing 1,
i, and −1 with h0 = h, then we identify it with the Zygmund function u(x) = d

dtht ◦h−1(x)|t=0.
The set of finitely supported shear functions is

F := {ṡ : E → R : ṡ(e) ̸= 0 for finitely many e ∈ E}.

For any h ∈ T (D) with shear coordinate sh and ṡ ∈ F , the path of shear functions sh + t · ṡ
for t ∈ (−ε, ε) induces a path of homeomorphisms (ht)t∈(−ε,ε) ⊂ T (D). Using the developing
algorithm of Section 3.2, ht is of the form ht = Ht ◦ h, where Ht is a piecewise-Möbius
homeomorphism with breakpoints in h(V ). Another way to view this is that the shear function
of Ht on h(F) (instead of F)

St(h(e)) := s(Ht ◦ h(Qe), h(e)) − s(h(Qe), h(e)) = sh(e) + t · ṡ(e) − sh(e) = t · ṡ(e).

is finitely supported. The first author [27] proved that ht ◦ h−1 is a differentiable path in t for
the Banach manifold structure of T (D). We obtain

u = d(ht ◦ h−1)
dt

∣∣∣
t=0

= dHt

dt
∣∣∣
t=0

∈ TIdT (D)
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is a piecewise psu(1, 1) vector field with break points in h(V ).
We now compute u explicitly in terms of the shear and the computation is often simpler in
the half plane model. By conjugating by the Cayley transform c, the differentiable path of
quasisymmetric maps of T that fixes 1, i and −1 is transformed to a differentiable path t 7→ φt

with t ∈ (−ε, ε) of quasisymmetric maps of R̂ = R ∪ {∞} that fix −1, 0 and ∞, namely in

T (H) := {φ : R̂ → R̂, quasisymmetric and fixing − 1, 0,∞}.

If φ0 = φ, then d
dtφt ◦ φ−1(x)|t=0 = u(x) is a Zygmund function on R that vanishes at −1 and

0 and satisfies |u(x)| = O(|x| log |x|) as |x| → ∞.
Let e ∈ E and h ∈ T (D). Let a, b ∈ R̂ such that (a, b) = c(h(e)). Let φt : R̂ → R̂ be the
path of normalized homeomorphisms conjugate to the circle homeomorphism Ht with shear
coordinates t · ṡe on h(F), where ṡe(e) = 1 and ṡe(e′) = 0 for all e′ ∈ E, e′ ̸= e. We define

u(a,b) := d(c ◦Ht ◦ c−1)
dt

∣∣∣
t=0

. (6.1)

Example 3.8 or [27] gives the following explicit formulas for u(a,b).
When a ≥ 0 and b = ∞

u(a,∞)(x) =

x− a, for x > a

0, for x ≤ a;

for a ≤ −1 and b = ∞

u(−∞,a)(x) =

−(x− a), for x < a

0, for x ≥ a;

and for a < b, such that the open interval (a, b) ⊂ R does not contain −1 or 0,

u(a,b)(x) =


(x−a)(x−b)

a−b , for a < x < b

0, otherwise.

Since we assumed that h(F) contains the triangle (−1, i, 1) and (a, b) = c(h(e)), the above cases
cover all possible scenarios.
More generally, suppose that ṡ ∈ F is supported on {e1, ..., en} ⊂ E and let φt : R̂ → R̂ be
the homeomorphism conjugate to the circle homeomorphism of shear coordinate sh + t · ṡ. By
developing and the chain rule

u = d(φt ◦ φ−1)
dt

∣∣∣
t=0

=
n∑

j=1
ṡ(ej)uc(h(ej)). (6.2)

Note that the above formula which gives a Zygmund function in terms of a shear function
does not extend to the case of a shear function with infinite support. The first author [29]
proved that a summation along each fan followed by the sum over all fans is a correct notion
for extending the above formula.

Definition 6.1. For each h ∈ T (D), we define the linear operator Ωh : F → TIdT (H) by

Ωh(ṡ) :=
n∑

j=1
ṡ(ej)uc(h(ej)).
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6.2 Finite shears and harmonic differentials

A point h ∈ T (D) (or its conjugate φ ∈ T (H)) can be represented by an equivalence class of
Beltrami coefficients in H, which consists of µ ∈ L∞

1 (H) satisfying ∥µ∥∞ < 1 and µ = ∂̄w/∂w for
some quasiconformal extension w : H → H of φ. A differentiable path in T (H) is represented
by a differentiable path of Beltrami coefficients with respect to the L∞-norm. By taking
derivative of this path with respect to L∞-norm, we conclude that a tangent vector to T (H) at
the identity is represented by an equivalence class of Beltrami differentials of µ̇ ∈ L∞(H) (for
example, see [9]). A special representative of the equivalence class is given by the Ahlfors-Weill
section.
More precisely, let µ̇ ∈ L∞(H) and |ε| < 1/∥µ̇∥∞. We define wε to be the solution of the
Beltrami equation

∂̄wε(z) =

εµ̇(z)∂wε(z), z ∈ H
0, z ∈ H∗

normalized to fix −1, 0,∞. Here H∗ denotes the lower half plane. Then,

û(z) := dwε(z)
dε

∣∣∣
ε=0

= −z(z + 1)
π

∫∫
H

µ̇(ζ)dξdη
ζ(ζ + 1)(ζ − z) (6.3)

for all z ∈ C (see [9, Sec. 6.5]). Note that û(z) is holomorphic in the lower half-plane.
The Bers embedding

B : T (H) → Q(H∗) = {ϕ : H∗ → C holomorphic and sup
z∈H∗

|ϕ(z)| Im(z)2 < ∞}

is given by [µ] 7→ S[w|H∗ ], where w solves the Beltrami equation

∂̄w(z) =

µ(z)∂w(z), z ∈ H
0, z ∈ H∗

and S[w] = w′′′

w′ − 3
2(w′′

w′ )2 is the Schwarzian derivative of w. The Nehari bound shows that
S[w] ∈ Q(H∗). Moreover, µ and ν represent the same element in T (H) if and only if they give
the same S[w|H∗ ]. Therefore the map B is well-defined and is an embedding.
The derivative of B at the origin of T (H) evaluated at the tangent vector represented by an
infinitesimal Beltrami differential µ̇ is given by

ϕ(z) := (dB)Id([µ̇])(z) = dS[wε](z)
dε

∣∣∣
ε=0

= û′′′(z), z ∈ H∗. (6.4)

The Ahlfors-Weill section is the harmonic Beltrami differential µ̇u in the equivalence class [µ̇]
representing a tangent vector u (a Zygmund vector field on R) at the origin of T (H) and is
given by

µ̇u(z) := −2y2ϕ(z̄) (6.5)
where z = x+ iy ∈ H.
Our goal is to express ϕ(z) in terms of the infinitesimal shear function. Since (dB)Id is linear
and by equation (6.2), it is enough to compute (dB)Id([µ̇(a,b)]) where µ̇(a,b) is the harmonic
Beltrami differential corresponding to u(a,b) defined in (6.1) and computed explicitly. Extend
µ̇(a,b) to C such that µ̇(a,b)(z) = µ̇(a,b)(z̄). Then we have for x ∈ R

u(a,b)(x) = − 1
π

∫∫
C
µ̇(a,b)(ζ)R(x, ζ) dξdη = − 2

π
Re
∫∫

H
µ̇(a,b)(ζ)R(x, ζ) dξdη,
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where R(x, ζ) = x(x+1)
ζ(ζ+1)(ζ−x) and ζ = ξ + iη. The Hilbert transform for u(a,b)(x) on R is given

by the formula
Hu(a,b)(x) = 1

π
p.v.

∫ ∞

−∞
u(a,b)(ξ)R(x, ξ)dξ.

An application of Stokes’ theorem gives, for x ∈ R,

Hu(a,b)(x) = 2i
π

∫∫
H
µ̇(a,b)(ζ)R(x, ζ) dξdη + iu(a,b)(x)

and
Hu(a,b)(x) = −2i

π

∫∫
H∗
µ̇(a,b)(ζ)R(x, ζ) dξdη − iu(a,b)(x).

By adding the above two equations we obtain

Hu(a,b)(x) = i

π

∫∫
H
µ̇(a,b)(ζ)R(x, ζ) dξdη − i

π

∫∫
H∗
µ̇(a,b)(ζ)R(x, ζ) dξdη

and together with the above formula for u(a,b) gives

u(a,b)(x) + iHu(a,b)(x) = − 2
π

∫∫
H
µ̇(a,b)(ζ)R(x, ζ) dξdη.

By replacing x with z ∈ C in the above integral, we obtain the function 2û(a,b)(x) where û(a,b)
is defined in (6.3) with µ̇ = µ̇(a,b), that is holomorphic in H∗ and whose ∂̄ derivative in H is
2µ̇(a,b). A direct computation of the Hilbert transform (see [29, Section 3]) and extending
u(a,b)(x) + iHu(a,b)(x) to a holomorphic function in H∗ gives (up to an addition of a linear
polynomial)

û(a,b)(z) = i

2π
(z − a)(z − b)

a− b
log z − b

z − a

for (a, b) with a < b ̸= ∞, and

û(a,b)(z) = − i

2π (z − a) log(z − a)

for ej = (a,∞).
In the formulas above, z−b

z−a ∈ H∗ when z ∈ H∗. The natural logarithm log z for z ∈ H∗ has the
imaginary part in [−π, 0] with −π corresponding to the negative axis. When x ∈ [a, b], then
x−b
x−a is on the negative real axis and the imaginary part of the logarithm is −π. Using (6.4) we
obtained the following formula.

Theorem 6.2. Let ṡ ∈ F with support {e1, . . . en} ⊂ E and h ∈ T (D). Let µ̇ be any Beltrami
differential representing the Zygmund vector field Ωh(ṡ) (Definition 6.1). The infinitesimal
Bers embedding of µ̇ is given by

(dB)Id(µ̇)(z) = i

2π

n∑
j=1

ṡ(ej) (aj − bj)2

(z − aj)2(z − bj)2 , z ∈ H∗ (6.6)

where (aj , bj) = c(h(ej)).

Note that the right-hand side of (6.6) is symmetric in aj and bj , therefore we do not require
aj < bj . When aj or bj = ∞, the ratio is understood as the limit as aj or bj → ∞.
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6.3 Weil–Petersson metric on H

In this section we compute the Weil–Petersson metric tensor on H (see Theorem 6.8, Corol-
lary 6.10). Recall that H is equipped with the topology induced by the ℓ2 norm, so for any
h ∈ H , the tangent space at h is

h := ThH = {ϑ̇ :
∑
e∈E

ϑ̇(e)2 < ∞}.

For ϑ̇ ∈ h, the path ht defined by

ϑht(e) = ϑh(e) + t · ϑ̇(e) ∀e ∈ E

is contained in H for t ∈ (−ε, ε), and has tangent vector ϑ̇ ∈ h. Since the coordinate-change
map Φ from diamond shears to shears is linear (see Equation (3.2)), h can also be written in
terms of infinitesimal shears as {ṡ = Φ(ϑ̇) : ∑e∈E ϑ̇(e)2 < ∞}.

Remark 6.3. We have seen that the tangent space for quasisymmetric homeomorphisms
consists of Zygmund functions, where the notion of a differentiable path uses the Teichmüller
metric on T (D). It is known that quasisymmetric homeomorphisms and Zygmund functions
have different characterizations in terms of shears [29]. In particular, when an infinitesimal
shear ṡ corresponding to a Zygmund vector field has infinite support, the one-parameter family
{tṡ(e) : e ∈ E} is not necessarily contained in T (D). (In fact, some might not even be induced
by circle homeomorphisms.) On the other hand, H is defined in terms of diamond shears, and
we are using its ℓ2 topology in diamond shears, so the identification of h with H is automatic.

In the half-plane model H, the Weil–Petersson Riemannian pairing of two Zygmund vector
fields u1 and u2 is given by

⟨u1, u2⟩WP = Re
∫∫

H
µ̇u1(z)µ̇u2(z) 1

y2 dxdy, z = x+ iy. (6.7)

We say that u ∈ TId WP(T) if ∥u∥2
WP = ⟨u, u⟩WP < ∞. In terms of Fourier coefficients [20]

⟨u1, u2⟩WP = 2πRe
∑
n≥2

(n3 − n)ũ1,nũ2,−n, where uj =
∑
n∈Z

ũj,ne
inθ ∂

∂θ
, ũj,n = ũj,−n ∈ C.

This shows that TId WP(T) = H3/2(T), the H3/2 Sobolev space of vector fields on T.
We show first that for h ∈ H , ϑ̇ ∈ h induces a vector in Th WP(T) ≃ TId WP(T) (where the
identification is the isometry given by the right-composition by h−1).

Lemma 6.4. Fix h ∈ H . Let ϑ̇ be a function E → R with finite support and ht be the
Weil–Petersson homeomorphism induced by the diamond shear function ϑh + t · ϑ̇. We write
u = d(ht ◦ h−1)/dt|t=0 ∈ TId WP(T). There exists C(h) > 0, such that

∥u∥WP ≤ C(h)∥ϑ̇∥h.

From Proposition 3.12 it is clear that u is a piecewise psu(1, 1) vector field, C1,1 regular, with
finitely many break points all in h(V ). This implies that ∥u∥WP < ∞ as C1,1 ⊂ H3/2. The
point of the lemma is the quantitative bound of in terms of ϑ̇ which implies the following:

Corollary 6.5. The linear map ϑ̇ 7→ u in Lemma 6.4 extends by continuity to a bounded linear
operator Ξh : h ≃ ThH → TId WP(T)(≃ Th WP(T)).
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Remark 6.6. By linearity, if Φ(ϑ̇) is a finitely supported infinitesimal shear function, then
Ξh(ϑ̇) = c∗Ωh(Φ(ϑ̇)), where Ωh is as in Definition 6.1 and c∗ is the pull-back map sending
Zygmund vector fields on R to Zygmund vector fields on T.

Proof of Lemma 6.4. We use the quasiconformal extension of ht ◦ h−1 as in Section 5 and let
µt be the associated Beltrami differential. By fixing ε = 1 and t small enough, Theorem 5.8
shows that there exists C(h) > 0,∫∫

D

4|µt(z)|2
(1 − |z|2)2 dA(z) ≤ C(h)t2

∑
e∈E

ϑ̇(e)2.

From the explicit expression of our quasiconformal extension we see that µt depends on t

analytically, and therefore we have µt(z) = t · µ̇(z) +O(t2). Letting t → 0 we obtain the bound∫∫
D

4|µ̇(z)|2
(1 − |z|2)2 dA(z) ≤ C(h)

∑
e∈E

ϑ̇(e)2 = C(h)∥ϑ̇∥2
h.

However, µ̇ is not a harmonic Beltrami differential. Let µ̇u be the corresponding har-
monic Beltrami differential (in the half-plane model) as defined in (6.5), we have µ̇u(z) =
−2y2(dB)Id([µ̇])(z̄) =: −2y2ϕ(z̄). By (6.4), denoting the pushforward of µ̇ to H also by µ̇,

∥u∥2
WP =

∫∫
H

|µ̇u(z)|2y−2 dxdy = 4
∫∫

H
|ϕ(z̄)|2y2 dxdy = 4

∫∫
H∗

|û′′′(z)|2y2 dxdy,

where û is defined in Equation (6.3) and we have

û′′′(z) = − 6
π

∫∫
H

µ̇(ζ) dξdη
(ζ − z)4 , ζ = ξ + iη.

By Cauchy-Schwarz,

∥u∥2
WP ≤ 4 · 62

π

∫∫
H∗
y2
(∫∫

H

dξ1dη1
|ζ1 − z|4

·
∫∫

H

|µ̇(ζ2)|2 dξ2dη2
|ζ2 − z|4

)
dxdy.

Using the identities ∫∫
H

dξdη
|ζ − z|4

= π

4y2 , z = x+ iy ∈ H∗,∫∫
H∗

dxdy
|ζ − z|4

= π

4η2 ζ = ξ + iη ∈ H,

we get that

∥u∥2
WP ≤ 9

∫
H
η−2

2 |µ̇(ζ2)|2 dξ2dη2 ≤ C ′(h)∥ϑ̇∥2
h

as claimed.

Now we explicitly compute the Weil–Petersson metric tensor on H . Let {ϑ̇e}e∈E denote a
basis of h, where ϑ̇e(e) = 1 and 0 otherwise. It suffices to compute for all h ∈ H , e1, e2 ∈ E,〈

Ξh(ϑ̇e1),Ξh(ϑ̇e2)
〉

WP
,
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namely, the inner product between two unit infinitesimal diamond shears on h(F).
More precisely, assume that a quad Q has vertices a1, a2, a3, a4 ∈ T in counterclockwise order.
Then the unit infinitesimal diamond shear on Q with diagonal (a1, a3) is the infinitesimal shear
with coordinates ṡ which is only non-zero at the edges of Q with

ṡ(a1, a2) = ṡ(a3, a4) = 1

and
ṡ(a2, a3) = ṡ(a4, a1) = −1.

Lemma 6.7. The unit infinitesimal diamond shear on h(Qe) with diagonal h(e) is Ξh(ϑ̇e).

Proof. This follows directly from Proposition 3.12.

Theorem 6.2 implies that in the half-plane model, the corresponding quadratic differential is

ϕ(z) := i

2π
[ (c(a1) − c(a2))2

(z − c(a1))2(z − c(a2))2 − (c(a2) − c(a3))2

(z − c(a2))2(z − c(a3))2 +

(c(a3) − c(a4))2

(z − c(a3))2(z − c(a4))2 − (c(a4) − c(a1))2

(z − c(a4))2(z − c(a1))2

] (6.8)

for all z ∈ H∗, and we have

ϕ(z) = i

π

4∑
j=1

(−1)j−1
(

1
c(aj+1) − c(aj) + 1

c(aj) − c(aj−1)

)
1

z − c(aj) , (6.9)

where the subscripts are considered modulo 4.

Theorem 6.8. If u is the Zygmund vector field associated with the unit infinitesimal diamond
shear on the quad with vertices (a1, a2, a3, a4) in T with diagonal (a1, a3), then

∥u∥2
WP = 2

π

4∑
j,k=1

(−1)j+ka2
j ā

2
k(aj+1 − aj−1)(āk+1 − āk−1)

(aj+1 − aj)(aj − aj−1)(āk+1 − āk)(āk − āk−1)σ(aj , ak).

where for a, b ∈ T,

σ(a, b) =
∞∑

p=0

(ab̄)p+1

(1 + p)(2 + p)(3 + p) . (6.10)

Further, let u1, u2 : E → R be two unit infinitesimal diamond shears on quads with vertices
Q1 = (a1, a2, a3, a4) and Q2 = (b1, b2, b3, b4) in T and diagonals e1 = (a1, a3) and e2 = (b1, b3)
respectively. Then

⟨u1, u2⟩WP = 2
π

Re
4∑

j,k=1

(−1)j+ka2
j b̄

2
k(aj+1 − aj−1)(b̄k+1 − b̄k−1)

(aj+1 − aj)(aj − aj−1)(b̄k+1 − b̄k)(b̄k − b̄k−1)
σ(aj , bk). (6.11)

Proof. Let ζ := c−1(z) = ξ + iη. We have from change of variables, (6.9), and (6.5) that in the
disk model

µ̇u(ζ) = − i

2π (1 − |ζ|2)2
4∑

j=1

(−1)j−1

ζ̄3

(
1

aj+1 − aj
+ 1
aj − aj−1

)
1

1 − aj ζ̄
.
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We notice that
4∑

j=1
(−1)j

(
1

aj+1 − aj
+ 1
aj − aj−1

)
ap

j = 0

for p = 0, 1, 2. Therefore,

µ̇u(ζ) = i

2π (1 − |ζ|2)2
4∑

j=1

(−1)j

ζ̄3

(
1

aj+1 − aj
+ 1
aj − aj−1

)∑
p≥0

(aj ζ̄)p

= i

2π (1 − |ζ|2)2
4∑

j=1

(−1)j

ζ̄3

(
1

aj+1 − aj
+ 1
aj − aj−1

)∑
p≥3

(aj ζ̄)p

= i

2π (1 − |ζ|2)2
4∑

j=1
(−1)ja2

j

(
1

aj+1 − aj
+ 1
aj − aj−1

)
aj

1 − aj ζ̄
.

Define for a, b ∈ T,

σ(a, b) = 1
2π

∫∫
D

a

1 − az̄

b̄

1 − b̄z
(1 − |z|2)2 dxdy. (6.12)

Using polar coordinates we find

σ(a, b) = 1
2π

∫∫
D

a

1 − az̄

b̄

1 − b̄z
(1 − |z|2)2 dxdy

= ab̄

2π

∫ 1

0

∫ 2π

0

∑
p,q≥0

(are−iθ)p(b̄reiθ)q(1 − r2)2r dθdr

=
∑
p≥0

(ab̄)p+1
∫ 1

0
r2p+1(1 − r2)2 dr

=
∑
p≥0

(ab̄)p+1

(p+ 1)(p+ 2)(p+ 3) .

The square of the Weil–Petersson norm of u equals

∥u∥2
WP = Re

∫∫
D

|µ̇u|2 4
(1 − |ζ|2)2 dξdη

= 1
π2

4∑
j,k=1

(−1)j+ka2
j ā

2
k

(
1

aj+1 − aj
+ 1
aj − aj−1

)( 1
āk+1 − āk

+ 1
āk − āk−1

)
∫∫

D

aj

1 − aj ζ̄

āk

1 − ākζ
(1 − |ζ|2)2 dξdη

= 2
π

4∑
j,k=1

(−1)j+ka2
j ā

2
k(aj+1 − aj−1)(āk+1 − āk−1)

(aj+1 − aj)(aj − aj−1)(āk+1 − āk)(āk − āk−1)σ(aj , ak).

Notice that the first integral is real so we omit Re in the second equality. The same computation
gives the claimed formula for ⟨u1, u2⟩WP = Re

∫∫
D µ̇u1 µ̇u2

4
(1−|ζ|2)2 dξdη.

Remark 6.9. Since the Weil–Petersson metric is invariant under the adjoint action of PSL(2,R),
therefore also under PSL(2,Z), the Weil–Petersson norm of a unit infinitesimal diamond shear
is constant for all Farey quads. To compute it, we consider the case where a1 = 1, a2 = i,
a3 = −1, and a4 = −i, with diagonal (−1, 1). We obtain

σ(1, 1) = σ(i, i) = σ(−1,−1) = σ(−i,−i) =
∞∑

p=1

1
p(1 + p)(2 + p) = 1

4

47



σ(1,−i) = σ(i, 1) = σ(−1, i) = σ(−i,−1) =
∞∑

p=1

ip

p(1 + p)(2 + p) = 3 − π

4 − i
log 2 − 1

2 .

σ(−i, 1) = σ(1, i) = σ(i,−1) = σ(−1,−i) = σ(1,−i) = 3 − π

4 + i
log 2 − 1

2

σ(1,−1) = σ(i,−i) = σ(−1, 1) = σ(−i, i) =
∞∑

p=1

(−1)p

p(1 + p)(2 + p) = 5
4 − 2 log 2.

Therefore Theorem 6.8 implies that

∥u∥2
WP = 8

π
log 2

for u the Zygmund vector field corresponding the unit single infinitesimal diamond shear
supported on e ∈ E.

Corollary 6.10. We define g(Q1, e1, Q2, e2) to be the right-hand side of (6.11). For j = 1, 2,
let ϑ̇j ∈ h ≃ ThH and uj := Ξh(ϑ̇j) ∈ TId WP(T) ≃ Th WP(T) be the corresponding vector
field. Then

⟨u1, u2⟩WP =
∑

e1∈E

∑
e2∈E

ϑ̇1(e1)ϑ̇2(e2) g(h(Qe1), h(e1), h(Qe2), h(e2)).

Proof. This follows from Lemma 6.7 and Theorem 6.8 if ϑ̇1 and ϑ̇2 are finitely supported.
Lemma 6.4 extends the result to all ϑ̇j ∈ h.

6.4 Weil–Petersson symplectic form on H

We give an expression for the Weil–Petersson symplectic form ω restricted to H in terms
of a mixture of shears and diamond shears. Similar to the computation of the metric, the
Weil–Petersson symplectic form is also right-invariant on WP(T) ≃ T0(D), so we simply use
ω to denote its alternating bilinear form on TId WP(T) (and compute only for pull-backs to
TId WP(T)).

Theorem 6.11. Let h ∈ H ⊂ WP(T). For j = 1, 2, let ϑ̇j ∈ h, ṡj := Φ(ϑ̇j) be the
corresponding infinitesimal shears, and let uj := Ξh(ϑ̇j) ∈ TId WP(T) = H3/2(T) be the pull-
back by h−1 of the tangent vector in Th WP(T) represented by the differentiable path t 7→ ϑh+t·θ̇j

as in Corollary 6.5. Then

ω(u1, u2) =
∑
e∈E

ϑ̇1(e)ṡ2(e) = −
∑
e∈E

ṡ1(e)ϑ̇2(e).

Remark 6.12. It is remarkable that unlike the expression of the metric tensor (Corollary 6.10),
the expression of the symplectic form in shear and diamond shear coordinates is very simple
and independent of h.

Concretely, the above theorem shows if u1 = Ξh(ϑ̇e1), u2 = Ξh(ϑ̇e2) are the vector fields given by
the unit infinitesimal diamond shears on quads Q1 = h(Qe1), Q2 = h(Qe2) ∈ h(F) of diagonals
h(e1), h(e2) respectively, then

• ω(u1, u2) = 1 if Q1, Q2 overlap in one triangle and e1, e2 are adjacent in a fan and the
index of e2 is the index of e1 plus 1;
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• ω(u1, u2) = −1 if Q1, Q2 overlap in one triangle and e1, e2 are adjacent in a fan and the
index of e2 is the index of e1 minus 1;

• ω(u1, u2) = 0 if Q1 = Q2 or if Q1, Q2 are disjoint. Note that two quads are considered
disjoint if they overlap in only a vertex or edge. See Figure 9.

Q1

Q1

Q2 Q2

overlapping disjoint

Q2

Q1

disjoint

Figure 9: An example of quads overlapping in a triangle and gives value ω(u1, u2) = −1 (left)
and two examples of disjoint quads (middle and right).

The most direct way to prove Theorem 6.11 would be to use the same computations as in
Theorem 6.8, as in the half-plane model H,

ω(u1, u2) = − Im
∫∫

H
µ̇u1(z)µ̇u2(z) 1

y2 dxdy, z = x+ iy. (6.13)

However, we have not been able to prove in general that ω has such a simple formula directly
from Equation (6.13) (see Remark 6.17 and Lemma 6.18 below for discussion). Instead, we
use an expression for a symplectic form ω̃ on decorated Teichmüller space from [24], and the
relationship between diamond shears and log Λ-lengths described in Section 3.5.
Recall from Definition 3.28 the section σ : P0 → T̃ (D) which gives a canonical way to choose
the decoration for each h ∈ H ⊂ P0. This allows us to compare the diamond shear coordinate
of h with the log Λ-coordinate of σ(h). For e = (a, b) ∈ E, if ρa, ρb are the horocycles chosen
by σ at h(a), h(b), recall the notation

log Λh(e) := log Λ(ρa, ρb).

Lemma 3.30 shows that
ϑh(e) = − log Λh(e).

As a corollary, the same relationship passes to h.

Corollary 6.13. Choose h ∈ H with diamond shear coordinate ϑhand ϑ̇ ∈ h and let ht be the
Weil–Petersson homeomorphism induced by the diamond shear function ϑh + t · ϑ̇. Then we
have

ϑ̇(e) = d
dt

∣∣∣∣
t=0

− log Λht(e).

The following result from [24, Sec. 5.1] shows that the symplectic form ω̃ defined below on
T̃ (D) in terms of log Λ-lengths projects to the Weil–Petersson symplectic form restricted to
Diff(T)/Möb.
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Theorem 6.14 (See [24, Thm. 5.5]). Let τ be a triangle in F, and let {e1, e2, e3} be its edges
in counterclockwise order. For any h ∈ Diff(T)/Möb(T), define

(ω̃τ )h :=d log Λh(e1) ∧ d log Λh(e2) + d log Λh(e2) ∧ d log Λh(e3)
+ d log Λh(e3) ∧ d log Λh(e1).

Then
ω̃ := −

∑
τ∈F

ω̃τ

projects to the Weil–Petersson symplectic form ω under forgetting the decoration.

Remark 6.15. The expression of the Weil–Petersson symplectic form differs from the one
in [24] by a factor 2 due to a different choice of scalar factor. Indeed, a direct computation
shows that our symplectic form (6.13) can be expressed in terms of the Fourier coefficients of
the vector fields on the circle as

ω(u1, u2) = iπ
∑
n∈Z

(n3 − n)ũ1,nũ2,−n,

first proved in [20], where

uj =
∑
n∈Z

ũj,ne
inθ ∂

∂θ
, ũj,n = ũj,−n ∈ C.

Whereas Penner uses the symplectic form 2iπ∑n∈Z(n3 − n)ũ1,nũ2,−n. We also verify Theo-
rem 6.14 in a special case by direct computation in terms of the shears in Lemma 6.18.

Proof of Theorem 6.11. First suppose that ṡ1, ṡ2 are finitely supported shear functions with
the end points of the support edges in {a1, ..., an} ⊂ V . By Remark 6.6 and Definition 6.1,
u1 = Ξh(ϑ̇1) and u2 = Ξh(ϑ̇2) depend only on the points h(a1), ..., h(an). In particular, if we
replace h by any function g which agrees with h at a1, ..., an, then we still have Ξg(ϑ̇j) = Ξh(ϑ̇j)
for j = 1, 2. Therefore we can replace h with g ∈ Diff(T)/Möb(T). We use Corollary 6.13 to
identify infinitesimal diamond shears with infinitesimal log Λ-lengths and then apply Theorem
6.14.
Indeed, for each v ∈ V , let (en)n∈Z be a labelling of fan(v) in counterclockwise order. We
rewrite the expression for ω from Theorem 6.14 as a sum over fans instead of triangles.

ω(u1, u2) =
∑
v∈V

∑
en∈fan(v)

ϑ̇1(en)ϑ̇2(en+1) − ϑ̇1(en+1)ϑ̇2(en). (6.14)

On the other hand, if e = (a, b), we can label the edges around Qe in counterclockwise order so
that the counterclockwise order in fan(a) is e1, e, e4 and the counterclockwise order in fan(b) is
e3, e, e2. Using Equation (3.2),∑

e∈E

ϑ̇1(e)ṡ2(e) =
∑
e∈E

ϑ̇1(e)(−ϑ̇2(e1) + ϑ̇2(e2) − ϑ̇2(e3) + ϑ̇2(e4))

=
∑
v∈V

∑
en∈fan(v)

ϑ̇1(en)ϑ̇2(en+1) − ϑ̇1(en+1)ϑ̇2(en).

Switching u1, u2, it is clear that ∑e∈E ṡ1(e)ϑ̇2(e) = −
∑

e∈E ϑ̇1(e)ṡ2(e). This completes the
proof in the case that ṡ1, ṡ2 are finitely supported.
In general, given ϑ̇1, ϑ̇2 ∈ h for which ṡ1, ṡ2 are not finitely supported, we can find sequences
(ϑ̇n

j )n≥1, j = 1, 2 such that
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• ṡn
j = Φ(ϑ̇n

j ) is finitely supported for j = 1, 2 and all n ≥ 1.
• ϑ̇n

j converges to ϑ̇j in ℓ2 in diamond shears for j = 1, 2.

(For example, the sequences (ϑ̇n
j )n≥1 where ϑ̇n

j is ϑ̇j restricted to edges with generation less
than n for j = 1, 2 satisfy these properties.)
For each finite n, we have ∑

e∈E

ϑ̇n
1 (e)ṡn

2 (e) = ω(un
1 , u

n
2 ),

where un
j := Ξh(ϑ̇n

j ) for j = 1, 2. It remains to compute the limits of both sides as n → ∞.
By Lemma 6.4, un

j
n→∞−−−→ uj in H3/2 for j = 1, 2. By Remark 6.16,

ω(un
1 , u

n
2 ) = ⟨un

1 , J(un
2 )⟩WP,

where J : TId WP(T) → TId WP(T) is the (almost) complex structure and an isometry, hence

lim
n→∞

ω(un
1 , u

n
2 ) = ω(u1, u2).

On the other hand, since ℓ2 convergence in diamond shears implies ℓ2 convergence in shears by
the expression Φ(ϑ̇) = ṡ, (3.2), and Cauchy-Schwarz inequality, we have

lim
n→∞

∑
e∈E

ϑ̇n
1 (e)ṡn

2 (e) =
∑
e∈E

ϑ̇1(e)ṡ2(e).

This completes the proof for general ϑ̇1, ϑ̇2 ∈ h.

Remark 6.16. The Weil–Petersson metric ⟨·, ·⟩WP (computed in Theorem 6.8, Corollary 6.10),
Weil–Petersson symplectic form ω (computed in Theorem 6.11), and a complex structure J
form a Kähler structure on Weil–Petersson Teichmüller space, meaning that

⟨u1, u2⟩WP = ω(u1, J(u2)).

The complex structure J is the Hilbert transform [20] on the space of Zygmund vector fields,
and was computed explicitly in terms of infinitesimal log Λ-lengths in [25, Thm. 6.8]. Combining
the symplectic form ω and complex structure J from [25] gives us another way to compute the
metric explicitly. Using this, we independently verify that ∥u∥2

WP = 8 log 2/π when u is the
Zygmund vector field associated to a single infinitesimal diamond shear which coincides with
our result in Remark 6.9.

Remark 6.17. Starting from the definition in Equation (6.13), the same computation (but
taking the imaginary part) and the same notation as in Theorem 6.8 gives that

ω(u1, u2) = − 2
π

Im
4∑

j,k=1

(−1)j+ka2
j b̄

2
k(aj+1 − aj−1)(b̄k+1 − b̄k−1)

(aj+1 − aj)(aj − aj−1)(b̄k+1 − b̄k)(b̄k − b̄k−1)
σ(aj , bk), (6.15)

where u1 and u2 are the vector fields representing two unit infinitesimal diamond shears.
Can one recover Theorem 6.11 directly from (6.15)? We are unable to prove this in general,
but check it in a special case (Lemma 6.18). The general case to check, after normalization,
would be when a1 = 1, a2 = i, a3 = −1, but a4 ̸= −i and u2 is an arbitrary diamond shear of
vertices (b1, b2, b3, b4), such that (a1, a2, a3, a4) and (b1, b2, b3, b4) are both quads in the same
tessellation h(F) of the disk.
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Lemma 6.18. Let u1 ∈ TId WP(T) be the vector field associated with the unit infinitesimal
diamond shear on the quad (a1, a2, a3, a4) = (1, i,−1, i) of diagonal (1,−1). Let u2 be the
unit infinitesimal diamond shear associated with (b1, b2, b3, b4) = (1, eiθ, i,−1) of diagonal (1, i).
Then ω(u1, u2) = −1 for all θ ∈ (0, π/2).

Proof. Rearranging (6.15) gives

− 2
π

Im
∑
p≥1

1
p(p+ 1)(p+ 2)

 4∑
j=1

(−1)j
ap+2

j (aj+1 − aj−1)
(aj+1 − aj)(aj − aj−1)

( 4∑
k=1

(−1)k b̄p+2
k (b̄k+1 − b̄k−1)

(b̄k+1 − b̄k)(b̄k − b̄k−1)

)
.

Since (a1, a2, a3, a4) = (1, i,−1, i),
4∑

j=1
(−1)j

ap+2
j (aj+1 − aj−1)

(aj+1 − aj)(aj − aj−1) = 4i (6.16)

if p = 1 mod 4, and 0 otherwise.
Using the identity

eia − eib = ei
a+b

2 (2i sin(a− b

2 )),

and writing αj = eiθj , we find that

αj(αj+1 − αj−1)
(αj+1 − αj)(αj − αj−1) = ei(θj+

θj+1+θj−1
2 −

θj+1+θj
2 −

θj +θj−1
2 ) sin( θj+1−θj−1

2 )
2i sin( θj+1−θj

2 ) sin( θj−θj−1
2 )

= − i

2
sin( θj+1−θj−1

2 )
sin( θj+1−θj

2 ) sin( θj−θj−1
2 )

.

Therefore, for k = 1, 3, 4 and p = 1 mod 4,

(−1)k b̄p+2
k (b̄k+1 − b̄k−1)

(b̄k+1 − b̄k)(b̄k − b̄k−1)
= (−1)k b̄3

k(b̄k+1 − b̄k−1)
(b̄k+1 − b̄k)(b̄k − b̄k−1)

is purely imaginary and does not contribute to ω(u1, u2) given (6.16). The remaining term is

b̄p+2
2 (b̄3 − b̄1)

(b̄3 − b̄2)(b̄2 − b̄1)
= i

2
e−i(p+1)θ sin(π/4)

sin(π/4 − θ/2) sin(θ/2) = i

2
√

2
e−i(p+1)θ

sin(π/4 − θ/2) sin(θ/2) .

This gives that

ω(u1, u2) = − 2
π

Im
(

4i
∞∑

n=0

i

2
√

2
e−i(4n+2)θ

sin(π/4 − θ/2) sin(θ/2)(4n+ 1)(4n+ 2)(4n+ 3)

)

= 2
√

2
π sin(π/4 − θ/2) sin(θ/2) Im

( ∞∑
n=0

e−i(4n+2)θ

(4n+ 1)(4n+ 2)(4n+ 3)

)

A simple trigonometry gives

sin(π/4 − θ/2) sin(θ/2) =
√

2
4 (sin θ + cos θ − 1).

Simplify the imaginary part of the series for θ ∈ (0, π/2) gives

f(θ) := Im
( ∞∑

n=0

e−i(4n+2)θ

(4n+ 1)(4n+ 2)(4n+ 3)

)
= −π

8 (sin(θ) + cos(θ) − 1).

Indeed, it suffices to check that f ′′(θ)+f(θ) = π/8, and limθ→0+ f(θ) = 0 and limθ→(π/2)− f(θ) =
0. This gives ω(u1, u2) = −1 as claimed.
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