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What is the dimer model?

• Dimers in 2D are dominoes, e.g. 1× 2 or 2× 1 blocks.
• Dimers in 3D are bricks, e.g. 2× 1× 1 or 1× 2× 1 or 1× 1× 2 blocks.

A dimer tiling of a region R ⊂ Z2 or Z3 is a collection of dimer tiles such that every
square/cube is covered by exactly one tile.

A lot is known about the dimer model in 2D (e.g. the study of domino tilings) and the goal of
this work is to try to understand some things about the 3D dimer model (e.g. the study of
brick tilings).
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Large deviations in 2D

In 2000, Cohn, Kenyon and Propp [CKP] proved an LDP for the 2D dimer tilings and showed
that there is a limit shape. The set up is: let R ⊂ R2 be a compact simply connected region,
hb is a Lipschitz function on ∂R. Let Rn ⊂ 1

nZ
2 be a sequence of grid regions approximating R

from within. For a sequence of uniform random tilings of Rn, if their rescaled boundary
“heights” on ∂Rn converge to hb as n → ∞, their heights functions converge to a
deterministic “limit shape”.

Example: finer and finer aztec diamonds. The interface between the frozen/rough regions is exactly a circle in the limit. The behavior depends on the boundary
conditions on R∗. 3 / 16



A bit more about dimers in 2D

• In 2D, there is a correspondence between
2D dimer tilings and Lipschitz functions
called height functions (up to an additive
constant).

Example of a height function of a tiling.
From [T].

• The large deviations principle and limit
shape theorem that CKP prove are in
terms of height functions. (E.g. two
tilings are close if their height functions
are close in the sup norm)

• The rate function is C − Ent2(·) where
Ent2 is an entropy functional.

• Linear algebra methods in 2D called
Kasteleyn theory make it possible to
compute Ent2 totally explicitly.
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What about in 3D?

• Is there a large deviations principle and
limit shape in 3D?

• Yes! But the height function
correspondence and Kasteleyn theory both
break down in 3D.

• What can we use instead of height
functions?
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Tiling flows
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Dual picture where dimers are edges; fτ values
around one vertex.

Given a dimer tiling of τ of Z3 (or Zd for any
d), we can associate a divergence free discrete
vector field. For each edge e oriented from
black to white,

fτ (e) =

{
1− 1/6 = 5/6 e ∈ τ

−1/6 e ̸∈ τ

• In 2D, a div-free flow f has a scalar
potential h, e.g. ∇h = f . The scalar
potential of the tiling flow in 2D is the
height function. So fτ is a generalization
of ∇h.

• The metric dW on flows is a version of
Wasserstein distance. Two flows are close
if we don’t have to move flow too much or
too far to transform one into the other.

• The fine-mesh limits of tiling flows are
measurable vector fields g that we call
asymptotic flows.
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Large deviations in 3D

Theorem (Chandgotia, Sheffield, W.)

(Rough statement) For any asymptotic flow g on R,

lim
δ→0

lim
n→∞

n−3Vol(R)−1 log#{free-boundary tilings τ of R ∩ 1

n
Z3 : dW (fτ , g) < δ} = Ent3(g).

Like in 2D, the entropy functional Ent3 is an average of a “local entropy” function ent3:
Ent3(g) =

1
Vol(R∗)

∫∫∫
R
ent3(g(x)) dx .

R

↔
1/n

free-boundary tiling
τ
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Dictionary between 2D and 3D set ups
2D 3D

object associated to tiling τ height function h tiling flow fτ
topology (e.g. how to
compare tilings)

sup norm on height
functions

Wasserstein metric dW on
tiling flows

limits of discrete objects asymptotic height functions
AH(R, hb), Lipschitz

functions

asymptotic flows AF (R, b),
divergence-free measurable

vector fields

rate function Ent2(∇h) Ent3(fτ )

approximation method all tilings of fixed region
Rn ⊂ 1

nZ
2 contained in R

all free-boundary tilings of
R ∩ 1

nZ
3

Rn ⊂ R
R
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Limit shape in 3D

AF (R, b) is the space of asymptotic flows with boundary value b. We show that Ent3(·) has a
unique maximizer f in AF (R, b), so we also get a limit shape theorem.

• Technical issue: boundary value convergence.

• There exists a sequence of “thresholds” (θn)n≥0 with θn → 0 such that for n large enough,
any g ∈ AF (R, b) can be approximated by a tiling with boundary values within θn of b.

Theorem (Chandgotia, Sheffield, W.)

(Rough statement) Let τn be a uniform random free-boundary tiling of R ∩ 1
nZ

3, conditioned
so that boundary values of its tiling flow fτn are within θn of b.
Then for any ϵ > 0, the probability that dW (fτn , f ) > ϵ goes to 0 exponentially fast in n3 as
n → ∞.

Remark: we don’t know how to compute Ent3(·) or ent3(·)! Different work goes in to
controlling this. While we know that a limit shape exists, all we know about what they look
like is from simulations.
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Simulations: pyramid
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Simulations: aztechedron (again)
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Simulations: alternating stack
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Open problem: local move connectedness in 3D?

In 2D, pictures like this are made using Glauber dynamics with one local move called a flip:

Any two tilings τ1, τ2 of a simply connected region in 2D are connected by a finite sequence of
flips, so the state space of dimer tilings of any region R ⊂ Z2 is connected under flips. (This is
proven in [T] using height functions.)
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Open problem: local move connectedness in 3D?

In 3D, connectedness under flips fails, even for small boxes:

A flip, a trit, and a flip-rigid configuration called a hopfion.

A natural but subtle question is whether flips and trits are enough. If L,M,N > 2, this is an
open question:

Problem

Are all 3D dimer tilings of an L×M × N box connected under flips and trits?

See [FKMS] and [FHNQ] (and more) for the status of this problem. Result we know: for
homologically equivalent tilings of the 3-dimensional torus, there is no finite collection of local
moves that is sufficient. (In 2D, all homologous tilings are connected under flips.)
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