Large deviations for the 3D dimer model

Catherine Wolfram
(joint work with Nishant Chandgotia and Scott Sheffield)
July 13, 2023

Massachusetts Institute of Technology

Introduction

This talk is about dimer tilings of \mathbb{Z}^{3}.

The main goal is to explain how to generalize the large deviation principle for dimer tilings in \mathbb{Z}^{2} by Cohn, Kenyon, and Propp [1].

Introduction

This talk is about dimer tilings of \mathbb{Z}^{3}.

The main goal is to explain how to generalize the large deviation principle for dimer tilings in \mathbb{Z}^{2} by Cohn, Kenyon, and Propp [1].

There are two main challenges that make studying dimers in 3D different from 2D:

- There is no height function correspondence for dimer tilings of \mathbb{Z}^{3}.
- There are no (known) formulas for the partition function, surface tension, etc for tilings of \mathbb{Z}^{3}. (And the model is probably not integrable.)

Plan for the talk

- A bit more about these two ways that studying the dimer model in 3D is different from 2D
- Set up for an LDP and analogous result in 2D
- Main theorems in 3D
- Simulations!
- A few methods that we use in the proofs in 3D.

Correspondence: dimer tilings and discrete vector fields

For any d, \mathbb{Z}^{d} is a bipartite lattice, with underlying black and white checkerboard.

Correspondence: dimer tilings and discrete vector fields

For any d, \mathbb{Z}^{d} is a bipartite lattice, with underlying black and white checkerboard.

The colors of the dimers represent the cardinal direction of the dimer (north, south, east, west, up, down for $d=3$), viewed as a vector from its white cube to its black cube.

Correspondence: dimer tilings and discrete vector fields

For any d, \mathbb{Z}^{d} is a bipartite lattice, with underlying black and white checkerboard.

The colors of the dimers represent the cardinal direction of the dimer (north, south, east, west, up, down for $d=3$), viewed as a vector from its white cube to its black cube.

There is a correspondence between 1) a dimer tiling τ of \mathbb{Z}^{d} and 2) a discrete vector field v_{τ} defined by: for each edge e of \mathbb{Z}^{d} oriented from white to black,

$$
v_{\tau}(e)= \begin{cases}1 & e \in \tau \\ 0 & e \notin \tau\end{cases}
$$

Height function replacement: divergence free discrete vector field

Observation: compute divergences of v_{τ}.

$$
\operatorname{div} v_{\tau}(x)=\sum_{\substack{e \ni x \\ \text { oriented out of } x}} v_{\tau}(e)= \begin{cases}+1 & x \text { is white } \\ -1 & x \text { is black. }\end{cases}
$$

Height function replacement: divergence free discrete vector field

Observation: compute divergences of v_{τ}.

$$
\operatorname{div} v_{\tau}(x)=\sum_{\substack{e \ni x \\ \text { oriented out of } x}} v_{\tau}(e)= \begin{cases}+1 & x \text { is white } \\ -1 & x \text { is black. }\end{cases}
$$

Upshot: divergences depend only on the parity of x.

Height function replacement: divergence free discrete vector field

Observation: compute divergences of v_{τ}.

$$
\operatorname{div} v_{\tau}(x)=\sum_{\substack{e \ni x \\ \text { oriented out of } x}} v_{\tau}(e)= \begin{cases}+1 & x \text { is white } \\ -1 & x \text { is black. }\end{cases}
$$

Upshot: divergences depend only on the parity of x.
Subtracting a constant reference flow $r(e)=1 /(2 d)$ for all $e \in \mathbb{Z}^{d}$, a dimer tiling τ corresponds to a divergence free discrete vector field f_{τ} which we call the tiling flow.

Height function replacement: divergence free discrete vector field

Observation: compute divergences of v_{τ}.

$$
\operatorname{div} v_{\tau}(x)=\sum_{\substack{e \ni x \\ \text { oriented out of } x}} v_{\tau}(e)= \begin{cases}+1 & x \text { is white } \\ -1 & x \text { is black. }\end{cases}
$$

Upshot: divergences depend only on the parity of x.
Subtracting a constant reference flow $r(e)=1 /(2 d)$ for all $e \in \mathbb{Z}^{d}$, a dimer tiling τ corresponds to a divergence free discrete vector field f_{τ} which we call the tiling flow.

When $d=3$ this is

$$
f_{\tau}(e)= \begin{cases}1-1 / 6=5 / 6 & e \in \tau \\ -1 / 6 & e \notin \tau\end{cases}
$$

Height function replacement: divergence free discrete vector field

Observation: compute divergences of v_{τ}.

$$
\operatorname{div} v_{\tau}(x)=\sum_{\substack{e \ni x \\ \text { oriented out of } x}} v_{\tau}(e)= \begin{cases}+1 & x \text { is white } \\ -1 & x \text { is black. }\end{cases}
$$

Upshot: divergences depend only on the parity of x.
Subtracting a constant reference flow $r(e)=1 /(2 d)$ for all $e \in \mathbb{Z}^{d}$, a dimer tiling τ corresponds to a divergence free discrete vector field f_{τ} which we call the tiling flow.
When $d=3$ this is

$$
f_{\tau}(e)= \begin{cases}1-1 / 6=5 / 6 & e \in \tau \\ -1 / 6 & e \notin \tau\end{cases}
$$

Relation to the height function in 2D: in 2D, a divergence-free flow is dual to a curl-free flow, which is then the gradient of a function. The curl-free dual of f_{τ} in $2 D$ is ∇h, where h is the height function.

Height function replacement: divergence free discrete vector field

Observation: compute divergences of v_{τ}.

$$
\operatorname{div} v_{\tau}(x)=\sum_{\substack{e \ni x \\ \text { oriented out of } x}} v_{\tau}(e)= \begin{cases}+1 & x \text { is white } \\ -1 & x \text { is black. }\end{cases}
$$

Upshot: divergences depend only on the parity of x.
Subtracting a constant reference flow $r(e)=1 /(2 d)$ for all $e \in \mathbb{Z}^{d}$, a dimer tiling τ corresponds to a divergence free discrete vector field f_{τ} which we call the tiling flow.
When $d=3$ this is

$$
f_{\tau}(e)= \begin{cases}1-1 / 6=5 / 6 & e \in \tau \\ -1 / 6 & e \notin \tau\end{cases}
$$

Relation to the height function in 2D: in 2D, a divergence-free flow is dual to a curl-free flow, which is then the gradient of a function. The curl-free dual of f_{τ} in 2 D is ∇h, where h is the height function.

The main intuition throughout this talk is to think of a dimer tiling as a flow.

Remark: non-intersecting paths and (non)-integrability?

One of the ways to see that the dimer model on \mathbb{Z}^{2} is integrable is via the bijection with non-intersecting paths in \mathbb{Z}^{2} by overlaying a tiling (red) with a brickwork tiling (black).

Remark: non-intersecting paths and (non)-integrability?

One of the ways to see that the dimer model on \mathbb{Z}^{2} is integrable is via the bijection with non-intersecting paths in \mathbb{Z}^{2} by overlaying a tiling (red) with a brickwork tiling (black).

There is an analogous bijection between dimer tilings of \mathbb{Z}^{3} and non-intersecting paths in \mathbb{Z}^{3}. But these paths are not ordered, they can be braided in various ways, etc.

Part II: set up for an LDP and 2D context

Set up for large deviations in 2D or 3D

Fix, for dimension $d=2$ or 3 :

Set up for large deviations in 2D or 3D

Fix, for dimension $d=2$ or 3:

- a "reasonable" compact region $R \subset \mathbb{R}^{d}$ and some boundary condition b (boundary condition specified e.g. with flow or height function)

Set up for large deviations in 2D or 3D

Fix, for dimension $d=2$ or 3:

- a "reasonable" compact region $R \subset \mathbb{R}^{d}$ and some boundary condition b (boundary condition specified e.g. with flow or height function)
- a sequence of grid regions $R_{n} \subset \frac{1}{n} \mathbb{Z}^{d}$ approximating R with the boundary conditions of R_{n} converging to b as $n \rightarrow \infty$.

Set up for large deviations in 2D or 3D

Fix, for dimension $d=2$ or 3 :

- a "reasonable" compact region $R \subset \mathbb{R}^{d}$ and some boundary condition b (boundary condition specified e.g. with flow or height function)
- a sequence of grid regions $R_{n} \subset \frac{1}{n} \mathbb{Z}^{d}$ approximating R with the boundary conditions of R_{n} converging to b as $n \rightarrow \infty$.

Question: what do uniform random dimer tilings of R_{n} look like in the fine-mesh limit as $n \rightarrow \infty$?

Set up for large deviations in 2D or 3D

Fix, for dimension $d=2$ or 3 :

- a "reasonable" compact region $R \subset \mathbb{R}^{d}$ and some boundary condition b (boundary condition specified e.g. with flow or height function)
- a sequence of grid regions $R_{n} \subset \frac{1}{n} \mathbb{Z}^{d}$ approximating R with the boundary conditions of R_{n} converging to b as $n \rightarrow \infty$.

Question: what do uniform random dimer tilings of R_{n} look like in the fine-mesh limit as $n \rightarrow \infty$?

Using the correspondence, a dimer tiling corresponds to a discrete divergence free flow on $\frac{1}{n} \mathbb{Z}^{d}$, the fine-mesh limit as $n \rightarrow \infty$ should be some measurable divergence free flow.

Set up for large deviations in 2D or 3D

Fix, for dimension $d=2$ or 3 :

- a "reasonable" compact region $R \subset \mathbb{R}^{d}$ and some boundary condition b (boundary condition specified e.g. with flow or height function)
- a sequence of grid regions $R_{n} \subset \frac{1}{n} \mathbb{Z}^{d}$ approximating R with the boundary conditions of R_{n} converging to b as $n \rightarrow \infty$.

Question: what do uniform random dimer tilings of R_{n} look like in the fine-mesh limit as $n \rightarrow \infty$?

Using the correspondence, a dimer tiling corresponds to a discrete divergence free flow on $\frac{1}{n} \mathbb{Z}^{d}$, the fine-mesh limit as $n \rightarrow \infty$ should be some measurable divergence free flow.

Large deviations means quantifying: given a deterministic flow g, what is the probability that a tiling of R_{n} is close to g as $n \rightarrow \infty$? There is a limit shape if is there is one flow that random tilings concentrate on as $n \rightarrow \infty$.

Ingredients of an LDP

In general, a large deviation principle (LDP) needs:

Ingredients of an LDP

In general, a large deviation principle (LDP) needs:

1. A sequence of probability measures $\left(\rho_{n}\right)_{n \geq 1}$ that the large deviation principle is about.

Ingredients of an LDP

In general, a large deviation principle (LDP) needs:

1. A sequence of probability measures $\left(\rho_{n}\right)_{n \geq 1}$ that the large deviation principle is about.
2. A topology (to say what the fine-mesh limits are, and to compare things).

Ingredients of an LDP

In general, a large deviation principle (LDP) needs:

1. A sequence of probability measures $\left(\rho_{n}\right)_{n \geq 1}$ that the large deviation principle is about.
2. A topology (to say what the fine-mesh limits are, and to compare things).
3. A rate function $I(\cdot)$, where I measures, for any fixed $\delta>0$,
" ρ_{n} (tiling flow f_{τ} is within δ of deterministic flow $\left.g\right) \approx \exp \left(-n^{d} \cdot I(g)\right) "$

Ingredients of an LDP

In general, a large deviation principle (LDP) needs:

1. A sequence of probability measures $\left(\rho_{n}\right)_{n \geq 1}$ that the large deviation principle is about.
2. A topology (to say what the fine-mesh limits are, and to compare things).
3. A rate function $I(\cdot)$, where I measures, for any fixed $\delta>0$,
" ρ_{n} (tiling flow f_{τ} is within δ of deterministic flow $\left.g\right) \approx \exp \left(-n^{d} \cdot I(g)\right) "$
4. When the rate function $I(\cdot)$ has a unique minimizer and $\left(\rho_{n}\right)_{n \geq 1}$ satisfy an LDP, then the ρ_{n}-probability that a random tiling is close to minimizer goes to 1 as $n \rightarrow \infty$. The minimizer is called the limit shape.

Ingredients of an LDP

In general, a large deviation principle (LDP) needs:

1. A sequence of probability measures $\left(\rho_{n}\right)_{n \geq 1}$ that the large deviation principle is about.
2. A topology (to say what the fine-mesh limits are, and to compare things).
3. A rate function $I(\cdot)$, where I measures, for any fixed $\delta>0$,
" ρ_{n} (tiling flow f_{τ} is within δ of deterministic flow $\left.g\right) \approx \exp \left(-n^{d} \cdot I(g)\right) "$
4. When the rate function $I(\cdot)$ has a unique minimizer and $\left(\rho_{n}\right)_{n \geq 1}$ satisfy an LDP, then the ρ_{n}-probability that a random tiling is close to minimizer goes to 1 as $n \rightarrow \infty$. The minimizer is called the limit shape.
5. Main step for proving that $I(\cdot)$ has a unique minimizer is usually to prove that $I(\cdot)$ is strictly convex.

Context: LDP and limit shape theorems in 2D by Cohn, Kenyon and Propp

Fix $R \subset \mathbb{R}^{2}$ compact simply connected region, h_{b} boundary height function. Choose $R_{n} \subset \frac{1}{n} \mathbb{Z}^{2}$ regions approximating R such that boundary values of height functions for tilings of R_{n} converge to h_{b}.

Context: LDP and limit shape theorems in 2D by Cohn, Kenyon and Propp

Fix $R \subset \mathbb{R}^{2}$ compact simply connected region, h_{b} boundary height function. Choose $R_{n} \subset \frac{1}{n} \mathbb{Z}^{2}$ regions approximating R such that boundary values of height functions for tilings of R_{n} converge to h_{b}.

Context: LDP and limit shape theorems in 2D by Cohn, Kenyon and Propp

Fix $R \subset \mathbb{R}^{2}$ compact simply connected region, h_{b} boundary height function. Choose $R_{n} \subset \frac{1}{n} \mathbb{Z}^{2}$ regions approximating R such that boundary values of height functions for tilings of R_{n} converge to h_{b}.

- Measures: ρ_{n} is uniform measure on tilings of R_{n}.

Context: LDP and limit shape theorems in 2D by Cohn, Kenyon and Propp

Fix $R \subset \mathbb{R}^{2}$ compact simply connected region, h_{b} boundary height function. Choose $R_{n} \subset \frac{1}{n} \mathbb{Z}^{2}$ regions approximating R such that boundary values of height functions for tilings of R_{n} converge to h_{b}.

- Measures: ρ_{n} is uniform measure on tilings of R_{n}.
- Topology: sup norm on corresponding height functions.

Context: LDP and limit shape theorems in 2D by Cohn, Kenyon and Propp

Fix $R \subset \mathbb{R}^{2}$ compact simply connected region, h_{b} boundary height function. Choose $R_{n} \subset \frac{1}{n} \mathbb{Z}^{2}$ regions approximating R such that boundary values of height functions for tilings of R_{n} converge to h_{b}.

- Measures: ρ_{n} is uniform measure on tilings of R_{n}.
- Topology: sup norm on corresponding height functions.
- Fine-mesh limits of height functions as $n \rightarrow \infty$: asymptotic height functions $A H\left(R, h_{b}\right)$, i.e. 2-Lipschitz functions.

Context: LDP and limit shape theorems in 2D by Cohn, Kenyon and Propp

Fix $R \subset \mathbb{R}^{2}$ compact simply connected region, h_{b} boundary height function. Choose $R_{n} \subset \frac{1}{n} \mathbb{Z}^{2}$ regions approximating R such that boundary values of height functions for tilings of R_{n} converge to h_{b}.

- Measures: ρ_{n} is uniform measure on tilings of R_{n}.
- Topology: sup norm on corresponding height functions.
- Fine-mesh limits of height functions as $n \rightarrow \infty$: asymptotic height functions $A H\left(R, h_{b}\right)$, i.e. 2-Lipschitz functions.
- Rate function: I : AH $\left(R, h_{b}\right) \rightarrow[0, \infty)$ has the form

$$
I(h)=C-\operatorname{Ent}(\nabla h)=C-\frac{1}{\operatorname{area}(R)} \int_{R} \operatorname{ent}_{2}(\nabla h(x)) \mathrm{d} x .
$$

Understanding the rate function in 2D

$$
I(h)=C-\operatorname{Ent}(\nabla h)=C-\frac{1}{\operatorname{area}(R)} \int_{R} \operatorname{ent}_{2}(\nabla h(x)) \mathrm{d} x .
$$

The entropy function ent ${ }_{2}:\{(s, t):|s|+|t| \leq 2\} \rightarrow[0, \infty)$ can be computed explicitly using Kasteleyn theory (linear algebra), and this is the main tool in 2D for showing strict convexity and proving that I has a unique minimizer with each boundary condition h_{b}.

Understanding the rate function in 2D

$$
I(h)=C-\operatorname{Ent}(\nabla h)=C-\frac{1}{\operatorname{area}(R)} \int_{R} e^{2} t_{2}(\nabla h(x)) \mathrm{d} x .
$$

The entropy function ent ${ }_{2}:\{(s, t):|s|+|t| \leq 2\} \rightarrow[0, \infty)$ can be computed explicitly using Kasteleyn theory (linear algebra), and this is the main tool in 2D for showing strict convexity and proving that I has a unique minimizer with each boundary condition h_{b}.

The formula is

$$
\operatorname{ent}_{2}\left(s_{1}, s_{2}\right)=\sum_{i=1}^{4} L\left(\pi p_{i}\right)
$$

where p_{i} are determined by $\left(s_{1}, s_{2}\right)$ with the equations $p_{1}+p_{2}+p_{3}+p_{4}=1$, $s_{1}=2\left(p_{1}-p_{2}\right), s_{2}=2\left(p_{3}-p_{4}\right)$, and $\sin \left(\pi p_{1}\right) \sin \left(\pi p_{2}\right)=\sin \left(\pi p_{3}\right) \sin \left(\pi p_{4}\right)$ and $L(z)=\int_{0}^{z} \log |2 \sin t| d t$ is the Lobachevsky function.

Part III: moving to three dimensions

LDP and limit shape in 3D

Need to explain:

- Measures ρ_{n};
- Topology for comparing tilings, and corresponding fine-mesh limits [different from 2D since we don't have a height function]
- Rate function I [methods to understand this are different from 2D because we do not have a formula for it]

Will explain the first two, then state the main theorems in 3D. After that, will describe the rate function. (Then show simulations, and say a little bit about our methods.)

Topology in 3D: use tiling flows

Recall that any dimension d, there is a correspondence
$\left\{\right.$ dimer tilings τ of $\left.\mathbb{Z}^{d}\right\} \quad \Longleftrightarrow \quad\left\{\right.$ div free discrete flows $\left.f_{\tau}\right\}$.
The corresponding flow is called a tiling flow.

Topology in 3D: use tiling flows

Recall that any dimension d, there is a correspondence

$$
\left\{\text { dimer tilings } \tau \text { of } \mathbb{Z}^{d}\right\} \quad \Longleftrightarrow \quad\left\{\text { div free discrete flows } f_{\tau}\right\}
$$

The corresponding flow is called a tiling flow.
When $d=3$, for each edge e of \mathbb{Z}^{3} oriented from white to black,

$$
f_{\tau}(e)= \begin{cases}1-1 / 6=5 / 6 & e \in \tau \\ -1 / 6 & e \notin \tau\end{cases}
$$

Topology in 3D: use tiling flows

Recall that any dimension d, there is a correspondence

$$
\left\{\text { dimer tilings } \tau \text { of } \mathbb{Z}^{d}\right\} \quad \Longleftrightarrow \quad\left\{\text { div free discrete flows } f_{\tau}\right\}
$$

The corresponding flow is called a tiling flow.
When $d=3$, for each edge e of \mathbb{Z}^{3} oriented from white to black,

$$
f_{\tau}(e)= \begin{cases}1-1 / 6=5 / 6 & e \in \tau \\ -1 / 6 & e \notin \tau\end{cases}
$$

Topology: induced by a metric d_{w} on tiling flows, where d_{w} is a version of Wasserstein distance.

Topology in 3D: use tiling flows

Recall that any dimension d, there is a correspondence

$$
\left\{\text { dimer tilings } \tau \text { of } \mathbb{Z}^{d}\right\} \quad \Longleftrightarrow \quad\left\{\text { div free discrete flows } f_{\tau}\right\}
$$

The corresponding flow is called a tiling flow.
When $d=3$, for each edge e of \mathbb{Z}^{3} oriented from white to black,

$$
f_{\tau}(e)= \begin{cases}1-1 / 6=5 / 6 & e \in \tau \\ -1 / 6 & e \notin \tau\end{cases}
$$

Topology: induced by a metric d_{w} on tiling flows, where d_{w} is a version of Wasserstein distance.

Intuitive description of d_{w} : two flows are close if we can transform one flow into another with low "cost" where "cost" is the minimum sum of 1) amount of flow moved times distance moved, 2) flow added, 3) flow deleted to transform one flow into the other.

Fine-mesh limits

The fine-mesh limits as $n \rightarrow \infty$ of tiling flows in this topology are asymptotic flows, which are vector fields on R that are

- measurable
- divergence-free (as a distribution)
- valued in the mean-current octahedron

$$
\mathcal{O}=\left\{s=\left(s_{1}, s_{2}, s_{3}\right):\left|s_{1}\right|+\left|s_{2}\right|+\left|s_{3}\right| \leq 1\right\}
$$

A element $s \in \mathcal{O}$ is called a mean current.

Measures ρ_{n} : hard and soft boundary conditions

Fix a nice region $R \subset \mathbb{R}^{3}$ (compact, closure of a domain, ∂R piecewise smooth) and b a boundary value on ∂R.

Measures ρ_{n} : hard and soft boundary conditions

Fix a nice region $R \subset \mathbb{R}^{3}$ (compact, closure of a domain, ∂R piecewise smooth) and b a boundary value on ∂R.

There are some subtleties with hard boundary conditions in 3D, so have two ways of specifying boundary conditions.

Measures ρ_{n} : hard and soft boundary conditions

Fix a nice region $R \subset \mathbb{R}^{3}$ (compact, closure of a domain, ∂R piecewise smooth) and b a boundary value on ∂R.

There are some subtleties with hard boundary conditions in 3D, so have two ways of specifying boundary conditions.

Like with height functions, τ_{1}, τ_{2} are tilings of the same region $R_{n} \subset \mathbb{Z}^{3}$ if and only if their tiling flows have the same boundary values (i.e., same flow of vector field through boundary).

Measures ρ_{n} : hard and soft boundary conditions

Fix a nice region $R \subset \mathbb{R}^{3}$ (compact, closure of a domain, ∂R piecewise smooth) and b a boundary value on ∂R.

There are some subtleties with hard boundary conditions in 3D, so have two ways of specifying boundary conditions.
Like with height functions, τ_{1}, τ_{2} are tilings of the same region $R_{n} \subset \mathbb{Z}^{3}$ if and only if their tiling flows have the same boundary values (i.e., same flow of vector field through boundary).

Hard boundary (HB): fix a sequence of regions $R_{n} \subset \frac{1}{n} \mathbb{Z}^{3}$ with boundary values b_{n} approximating b and let $\bar{\rho}_{n}$ be uniform measure on dimer tilings of R_{n}.

Measures ρ_{n} : hard and soft boundary conditions

Fix a nice region $R \subset \mathbb{R}^{3}$ (compact, closure of a domain, ∂R piecewise smooth) and b a boundary value on ∂R.

There are some subtleties with hard boundary conditions in 3D, so have two ways of specifying boundary conditions.

Like with height functions, τ_{1}, τ_{2} are tilings of the same region $R_{n} \subset \mathbb{Z}^{3}$ if and only if their tiling flows have the same boundary values (i.e., same flow of vector field through boundary).

Hard boundary (HB): fix a sequence of regions $R_{n} \subset \frac{1}{n} \mathbb{Z}^{3}$ with boundary values b_{n} approximating b and let $\bar{\rho}_{n}$ be uniform measure on dimer tilings of R_{n}.

Soft boundary (SB): choose a sequence of "thresholds" $\left(\theta_{n}\right)_{n \geq 0}$ with $\theta_{n} \rightarrow 0$ slowly enough and let ρ_{n} be uniform measure on free-boundary tilings of $R \cap \frac{1}{n} \mathbb{Z}^{3}$ with boundary values within θ_{n} of b.

Main theorems in 3D summarized

To state the versions of the theorem, need to define some mild conditions for region/ boundary value pairs (R, b):

Main theorems in 3D summarized

To state the versions of the theorem, need to define some mild conditions for region / boundary value pairs (R, b) :

- (R, b) is flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \operatorname{lnt}(\mathcal{O})$.

Main theorems in 3D summarized

To state the versions of the theorem, need to define some mild conditions for region/ boundary value pairs (R, b) :

- (R, b) is flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \operatorname{lnt}(\mathcal{O})$.
- (R, b) is semi-flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \mathcal{O} \backslash \mathcal{E}(\mathcal{E}$ is the edges of $\partial \mathcal{O})$.

Main theorems in 3D summarized

To state the versions of the theorem, need to define some mild conditions for region/ boundary value pairs (R, b) :

- (R, b) is flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \operatorname{lnt}(\mathcal{O})$.
- (R, b) is semi-flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \mathcal{O} \backslash \mathcal{E}(\mathcal{E}$ is the edges of $\partial \mathcal{O})$.
- Otherwise (R, b) is rigid.

Main theorems in 3D summarized

To state the versions of the theorem, need to define some mild conditions for region / boundary value pairs (R, b) :

- (R, b) is flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \operatorname{lnt}(\mathcal{O})$.
- (R, b) is semi-flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \mathcal{O} \backslash \mathcal{E}(\mathcal{E}$ is the edges of $\partial \mathcal{O})$.
- Otherwise (R, b) is rigid.

Theorems (Chandgotia, Sheffield, W.) Assume that $R \subset \mathbb{R}^{3}$ is the closure of a connected domain and ∂R is piecewise smooth.

(R, b)	$\operatorname{SB} \operatorname{LDP}\left(\rho_{n}\right)$	Ent maximizer $/ I_{b}$ minimizer unique	$\operatorname{HB} \operatorname{LDP}\left(\bar{\rho}_{n}\right)$
rigid	yes	not known	no
semi-flexible	yes	yes	no
flexible	yes	yes	yes

Main theorems in 3D summarized

To state the versions of the theorem, need to define some mild conditions for region/boundary value pairs (R, b) :

- (R, b) is flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \operatorname{lnt}(\mathcal{O})$.
- (R, b) is semi-flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \mathcal{O} \backslash \mathcal{E}(\mathcal{E}$ is the edges of $\partial \mathcal{O})$.
- Otherwise (R, b) is rigid.

Theorems (Chandgotia, Sheffield, W.) Assume that $R \subset \mathbb{R}^{3}$ is the closure of a connected domain and ∂R is piecewise smooth.

(R, b)	$\operatorname{SB} \operatorname{LDP}\left(\rho_{n}\right)$	Ent maximizer $/ I_{b}$ minimizer unique	$\operatorname{HB} \operatorname{LDP}\left(\bar{\rho}_{n}\right)$
rigid	yes	not known	no
semi-flexible	yes	yes	no
flexible	yes	yes	yes

The hard boundary LDP is provably not true in full generality in 3D; there exists (R, b) semi-flexible where the HB LDP is false.

Main theorems in 3D summarized

To state the versions of the theorem, need to define some mild conditions for region / boundary value pairs (R, b) :

- (R, b) is flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \operatorname{lnt}(\mathcal{O})$.
- (R, b) is semi-flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension g of b such that $g(U) \subset \mathcal{O} \backslash \mathcal{E}(\mathcal{E}$ is the edges of $\partial \mathcal{O})$.
- Otherwise (R, b) is rigid.

Theorems (Chandgotia, Sheffield, W.) Assume that $R \subset \mathbb{R}^{3}$ is the closure of a connected domain and ∂R is piecewise smooth.

(R, b)	$\operatorname{SB} \operatorname{LDP}\left(\rho_{n}\right)$	Ent maximizer $/ l_{b}$ minimizer unique	$\operatorname{HB} \operatorname{LDP}\left(\bar{\rho}_{n}\right)$
rigid	yes	not known	no
semi-flexible	yes	yes	no
flexible	yes	yes	yes

The hard boundary LDP is provably not true in full generality in 3D; there exists (R, b) semi-flexible where the HB LDP is false.
For (R, b) rigid, a weak uniqueness holds. Namely, if f_{1}, f_{2} are both Ent maximizers, then on the set A where they differ they are both valued in \mathcal{E}.

LDP rate function

For either $\left(\rho_{n}\right)_{n \geq 1}$ (soft boundary) or $\left(\bar{\rho}_{n}\right)_{n \geq 1}$ (hard boundary), the rate function when an LDP holds is

$$
I_{b}(g)=C-E n t_{3}(g) .
$$

LDP rate function

For either $\left(\rho_{n}\right)_{n \geq 1}$ (soft boundary) or $\left(\bar{\rho}_{n}\right)_{n \geq 1}$ (hard boundary), the rate function when an LDP holds is

$$
I_{b}(g)=C-\operatorname{Ent}_{3}(g)
$$

Like 2D, the entropy functional Ents ${ }_{3}$ is an average of a local entropy function ent ${ }_{3}$:

$$
\operatorname{Ent}_{3}(g)=\frac{1}{\operatorname{Vol}(R)} \int_{R} \operatorname{ent}_{3}(g(x)) d x
$$

LDP rate function

For either $\left(\rho_{n}\right)_{n \geq 1}$ (soft boundary) or $\left(\bar{\rho}_{n}\right)_{n \geq 1}$ (hard boundary), the rate function when an LDP holds is

$$
I_{b}(g)=C-\operatorname{Ent}_{3}(g)
$$

Like 2D, the entropy functional Ents is an average of a local entropy function ent ${ }_{3}$:

$$
\operatorname{Ent}_{3}(g)=\frac{1}{\operatorname{Vol}(R)} \int_{R} \operatorname{ent}_{3}(g(x)) d x .
$$

The local entropy function ent $=$ ent $_{3}: \mathcal{O} \rightarrow[0, \infty)$ is defined more abstractly as:

$$
\operatorname{ent}(s)=\max _{\mu \in \mathcal{P}^{s}} h(\mu)
$$

LDP rate function

For either $\left(\rho_{n}\right)_{n \geq 1}$ (soft boundary) or $\left(\bar{\rho}_{n}\right)_{n \geq 1}$ (hard boundary), the rate function when an LDP holds is

$$
I_{b}(g)=C-\operatorname{Ent}_{3}(g)
$$

Like 2D, the entropy functional Ents is an average of a local entropy function ent ${ }_{3}$:

$$
\operatorname{Ent}_{3}(g)=\frac{1}{\operatorname{Vol}(R)} \int_{R} \operatorname{ent}_{3}(g(x)) d x
$$

The local entropy function ent $=$ ent $_{3}: \mathcal{O} \rightarrow[0, \infty)$ is defined more abstractly as:

$$
\operatorname{ent}(s)=\max _{\mu \in \mathcal{P}^{s}} h(\mu)
$$

Here $h(\mu)$ is specific entropy (limit of Shannon entropy per site) and \mathcal{P}^{s} is "measures with mean current s ", i.e. the set of measures on dimer tilings of \mathbb{Z}^{3} which are invariant under even translations (these are the translations that preserve the direction of flow) such that the μ-expected flow through the origin is $s \in \mathcal{O}$.

Dictionary between 2D LDP and 3D LDP set ups

	2D	3D
compact region R that is...	simply connected [1], multiply connected [3]	closure of connected domain, ∂R piecewise smooth
object associated to tiling τ	height function h	tiling flow f_{τ}
topology (to compare tilings)	sup norm on height functions	Wasserstein metric d_{w} on tiling flows
limits of discrete objects	asymptotic height functions: 2-Lipschitz functions	asymptotic flows: div-free meas. vector fields valued in \mathcal{O}
rate function	$C_{2}-$ Ent $_{2}(\nabla h)$	$C_{3}-$ Ent $_{3}\left(f_{\tau}\right)$

Part IV: simulations

Simulations: aztechedron and slices

Simulations: pyramid and slices

Part V: a few methods

A few methods

Will say a little bit about two key pieces in our arguments:

A few methods

Will say a little bit about two key pieces in our arguments:

- patching theorem: essential "locality" property of tilings. Says that if two tilings τ_{1}, τ_{2} have flows that approximate the same constant flow $s \in \operatorname{lnt}(\mathcal{O})$, then a size-n finite piece of τ_{2} be "patched in" to τ_{1} by tiling a thin annulus between them for n large enough.

Tiles from τ_{1}

Region to be filled in

Tiles from τ_{2}

A few methods

Will say a little bit about two key pieces in our arguments:

- patching theorem: essential "locality" property of tilings. Says that if two tilings τ_{1}, τ_{2} have flows that approximate the same constant flow $s \in \operatorname{lnt}(\mathcal{O})$, then a size- n finite piece of τ_{2} be "patched in" to τ_{1} by tiling a thin annulus between them for n large enough.

Tiles from τ_{1}
Region to be filled in

Tiles from τ_{2}

- In 2D, patching is proved using Lipschitz extension theorems for height functions. Our arguments in 3D are very different and more combinatorial.

A few methods

Will say a little bit about two key pieces in our arguments:

- patching theorem: essential "locality" property of tilings. Says that if two tilings τ_{1}, τ_{2} have flows that approximate the same constant flow $s \in \operatorname{lnt}(\mathcal{O})$, then a size- n finite piece of τ_{2} be "patched in" to τ_{1} by tiling a thin annulus between them for n large enough.

Tiles from τ_{1}

- In 2D, patching is proved using Lipschitz extension theorems for height functions. Our arguments in 3D are very different and more combinatorial.
- strict convexity of the rate function I_{b} (more precisely, strict concavity of ent) and how to understand I_{b} without formulas.

Patching: more precisely

Let $B_{n}=[-n, n]^{3}$ and fix $\delta>0$. If two tilings τ_{1}, τ_{2} of \mathbb{Z}^{3} approximate the constant flow $s \in \operatorname{lnt}(\mathcal{O})$, how can we show that we can "patch them together" with τ_{1} outside B_{n} to τ_{2} inside $B_{(1-\delta) n}$ by tiling the annulus $A_{n}=B_{n} \backslash B_{(1-\delta) n}$ between them?

Patching: more precisely

Let $B_{n}=[-n, n]^{3}$ and fix $\delta>0$. If two tilings τ_{1}, τ_{2} of \mathbb{Z}^{3} approximate the constant flow $s \in \operatorname{lnt}(\mathcal{O})$, how can we show that we can "patch them together" with τ_{1} outside B_{n} to τ_{2} inside $B_{(1-\delta) n}$ by tiling the annulus $A_{n}=B_{n} \backslash B_{(1-\delta) n}$ between them?

In other words, under what conditions is an annular region like the one above exactly tileable by dimers?

Hall's matching theorem

Necessary condition: a dimer contains 1 black cube and 1 white cube, so the region R needs to have white $(R)=\operatorname{black}(R)$. We call this balanced.

Hall's matching theorem

Necessary condition: a dimer contains 1 black cube and 1 white cube, so the region R needs to have white $(R)=\operatorname{black}(R)$. We call this balanced.

Hall's matching theorem [2] gives a necessary and sufficient condition:
Theorem. A balanced region $R \subset \mathbb{Z}^{3}$ is tileable by dimers if and only if there is no counterexample set $U \subset R$, i.e. no set of cubes which has white $(U)>\operatorname{black}(U)$, despite having only black cubes along its boundary within R.

Hall's matching theorem

Necessary condition: a dimer contains 1 black cube and 1 white cube, so the region R needs to have white $(R)=\operatorname{black}(R)$. We call this balanced.

Hall's matching theorem [2] gives a necessary and sufficient condition:
Theorem. A balanced region $R \subset \mathbb{Z}^{3}$ is tileable by dimers if and only if there is no counterexample set $U \subset R$, i.e. no set of cubes which has white $(U)>\operatorname{black}(U)$, despite having only black cubes along its boundary within R.

Hall's matching theorem

Necessary condition: a dimer contains 1 black cube and 1 white cube, so the region R needs to have white $(R)=\operatorname{black}(R)$. We call this balanced.

Hall's matching theorem [2] gives a necessary and sufficient condition:
Theorem. A balanced region $R \subset \mathbb{Z}^{3}$ is tileable by dimers if and only if there is no counterexample set $U \subset R$, i.e. no set of cubes which has white $(U)>\operatorname{black}(U)$, despite having only black cubes along its boundary within R.

To prove the patching theorem, we show that there are no counterexamples to tileability of A_{n} when n is large enough and apply Hall's matching theorem.

Understanding the rate function I_{b}

Unlike in 2D, we do not have a formula for ent(s) in $\operatorname{Int}(\mathcal{O})$.

Understanding the rate function I_{b}

Unlike in 2D, we do not have a formula for ent(s) in $\operatorname{Int}(\mathcal{O})$.
To prove that the rate function

$$
I_{b}(g)=C-\operatorname{Ent}(g)=C-\frac{1}{\operatorname{Vol}(R)} \int_{R} \operatorname{ent}(g(x)) \mathrm{d} x
$$

has a unique minimizer, one of the important steps is to show that ent(s) is strictly concave on $\mathcal{O} \backslash \mathcal{E}$, where \mathcal{E} is the edges of \mathcal{O}.

Understanding the rate function I_{b}

Unlike in 2D, we do not have a formula for ent(s) in $\operatorname{Int}(\mathcal{O})$.
To prove that the rate function

$$
I_{b}(g)=C-\operatorname{Ent}(g)=C-\frac{1}{\operatorname{Vol}(R)} \int_{R} \operatorname{ent}(g(x)) \mathrm{d} x
$$

has a unique minimizer, one of the important steps is to show that ent(s) is strictly concave on $\mathcal{O} \backslash \mathcal{E}$, where \mathcal{E} is the edges of \mathcal{O}.

Like in 2 D , ent $\left.\right|_{\mathcal{E}} \equiv 0$, so it is not strictly concave on \mathcal{E}. (This is why we need the semi-flexible condition to prove that the Ent maximizer is unique.)

Understanding the rate function I_{b}

Unlike in 2D, we do not have a formula for ent(s) in $\operatorname{Int}(\mathcal{O})$.
To prove that the rate function

$$
I_{b}(g)=C-\operatorname{Ent}(g)=C-\frac{1}{\operatorname{Vol}(R)} \int_{R} \operatorname{ent}(g(x)) d x
$$

has a unique minimizer, one of the important steps is to show that ent(s) is strictly concave on $\mathcal{O} \backslash \mathcal{E}$, where \mathcal{E} is the edges of \mathcal{O}.
Like in 2 D , ent $\left.\right|_{\mathcal{E}} \equiv 0$, so it is not strictly concave on \mathcal{E}. (This is why we need the semi-flexible condition to prove that the Ent maximizer is unique.)
Without a formula for ent we need "soft arguments" for strict concavity. The main idea, for $s \in \operatorname{lnt}(\mathcal{O})$, is a method called chain swapping.

Gibbs measures and entropy

Before explaining chain swapping, want to explain some background about Gibbs measures.

Gibbs measures and entropy

Before explaining chain swapping, want to explain some background about Gibbs measures.

A measure μ is Gibbs if for any finite region B, μ conditional on a tiling σ of $\mathbb{Z}^{3} \backslash B$ is uniform on tilings τ of B extending σ.

Gibbs measures have a special relationship with entropy.

Gibbs measures and entropy

Before explaining chain swapping, want to explain some background about Gibbs measures.

A measure μ is Gibbs if for any finite region B, μ conditional on a tiling σ of $\mathbb{Z}^{3} \backslash B$ is uniform on tilings τ of B extending σ.

Gibbs measures have a special relationship with entropy.

- Classical result [4]: specific entropy $h(\cdot)$ is maximized by Gibbs measure.

Gibbs measures and entropy

Before explaining chain swapping, want to explain some background about Gibbs measures.

A measure μ is Gibbs if for any finite region B, μ conditional on a tiling σ of $\mathbb{Z}^{3} \backslash B$ is uniform on tilings τ of B extending σ.

Gibbs measures have a special relationship with entropy.

- Classical result [4]: specific entropy $h(\cdot)$ is maximized by Gibbs measure.
- Straightforward to extend this to say that

$$
\operatorname{ent}(s)=\max _{\mu \in \mathcal{P}^{\mathrm{s}}} h(\mu)
$$

is realized by a Gibbs measure of mean current s.

Gibbs measures and entropy

Before explaining chain swapping, want to explain some background about Gibbs measures.

A measure μ is Gibbs if for any finite region B, μ conditional on a tiling σ of $\mathbb{Z}^{3} \backslash B$ is uniform on tilings τ of B extending σ.

Gibbs measures have a special relationship with entropy.

- Classical result [4]: specific entropy $h(\cdot)$ is maximized by Gibbs measure.
- Straightforward to extend this to say that

$$
\operatorname{ent}(s)=\max _{\mu \in \mathcal{P}^{s}} h(\mu)
$$

is realized by a Gibbs measure of mean current s.

- Corollary of the patching theorem: if μ_{1}, μ_{2} are ergodic Gibbs measures (EGMs) of the same mean current $s \in \operatorname{lnt}(\mathcal{O})$, then $h\left(\mu_{1}\right)=h\left(\mu_{2}\right)$.

Gibbs measures and entropy

Before explaining chain swapping, want to explain some background about Gibbs measures.

A measure μ is Gibbs if for any finite region B, μ conditional on a tiling σ of $\mathbb{Z}^{3} \backslash B$ is uniform on tilings τ of B extending σ.

Gibbs measures have a special relationship with entropy.

- Classical result [4]: specific entropy $h(\cdot)$ is maximized by Gibbs measure.
- Straightforward to extend this to say that

$$
\operatorname{ent}(s)=\max _{\mu \in \mathcal{P}^{\mathrm{s}}} h(\mu)
$$

is realized by a Gibbs measure of mean current s.

- Corollary of the patching theorem: if μ_{1}, μ_{2} are ergodic Gibbs measures (EGMs) of the same mean current $s \in \operatorname{Int}(\mathcal{O})$, then $h\left(\mu_{1}\right)=h\left(\mu_{2}\right)$.

Idea with chain swapping: uses two measures μ_{1}, μ_{2} of mean currents s_{1}, s_{2} to construct new two measures with mean currents $\left(s_{1}+s_{2}\right) / 2$ and the same total entropy, but then show that this breaks the Gibbs property.

Chain swapping and ent(s) for $s \in \operatorname{Int}(\mathcal{O})$

Let $\mu=\left(\mu_{1}, \mu_{2}\right)$ be a measure on pairs of dimer tilings which is invariant under even translations, sample $\left(\tau_{1}, \tau_{2}\right)$ from μ. The union $\tau_{1} \cup \tau_{2}$ is a collection of double tiles, finite loops, and infinite paths.

Chain swapping and ent(s) for $s \in \operatorname{Int}(\mathcal{O})$

Let $\mu=\left(\mu_{1}, \mu_{2}\right)$ be a measure on pairs of dimer tilings which is invariant under even translations, sample $\left(\tau_{1}, \tau_{2}\right)$ from μ. The union $\tau_{1} \cup \tau_{2}$ is a collection of double tiles, finite loops, and infinite paths.

Chain swapping and ent(s) for $s \in \operatorname{Int}(\mathcal{O})$

Let $\mu=\left(\mu_{1}, \mu_{2}\right)$ be a measure on pairs of dimer tilings which is invariant under even translations, sample $\left(\tau_{1}, \tau_{2}\right)$ from μ. The union $\tau_{1} \cup \tau_{2}$ is a collection of double tiles, finite loops, and infinite paths.

Chain swapping: for each infinite path "of nonzero slope" $\ell \subset\left(\tau_{1}, \tau_{2}\right)$, with independent probability $1 / 2$ we swap the tiles from τ_{1}, τ_{2} to construct a new pair of tilings $\left(\tau_{1}^{\prime}, \tau_{2}^{\prime}\right)$. This defines a new swapped measure $\mu^{\prime}=\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}\right)$.

Chain swapping to prove strict concavity on $\operatorname{Int}(\mathcal{O})$

Suppose μ is an erogdic coupling of ergodic measures μ_{1}, μ_{2} on dimer tilings, with mean currents $s\left(\mu_{1}\right) \neq s\left(\mu_{2}\right)$. Let μ^{\prime} be the swapped measure, with marginals $\mu_{1}^{\prime}, \mu_{2}^{\prime}$. Chain swapping...

Chain swapping to prove strict concavity on $\operatorname{Int}(\mathcal{O})$

Suppose μ is an erogdic coupling of ergodic measures μ_{1}, μ_{2} on dimer tilings, with mean currents $s\left(\mu_{1}\right) \neq s\left(\mu_{2}\right)$. Let μ^{\prime} be the swapped measure, with marginals $\mu_{1}^{\prime}, \mu_{2}^{\prime}$. Chain swapping...

- Preserves ergodicity: μ^{\prime} and hence $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are ergodic.

Chain swapping to prove strict concavity on $\operatorname{Int}(\mathcal{O})$

Suppose μ is an erogdic coupling of ergodic measures μ_{1}, μ_{2} on dimer tilings, with mean currents $s\left(\mu_{1}\right) \neq s\left(\mu_{2}\right)$. Let μ^{\prime} be the swapped measure, with marginals $\mu_{1}^{\prime}, \mu_{2}^{\prime}$. Chain swapping...

- Preserves ergodicity: μ^{\prime} and hence $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are ergodic.
- Preserves total entropy: $h\left(\mu_{1}\right)+h\left(\mu_{2}\right)=h(\mu)=h\left(\mu^{\prime}\right)=h\left(\mu_{1}^{\prime}\right)+h\left(\mu_{2}^{\prime}\right)$.

Chain swapping to prove strict concavity on $\operatorname{Int}(\mathcal{O})$

Suppose μ is an erogdic coupling of ergodic measures μ_{1}, μ_{2} on dimer tilings, with mean currents $s\left(\mu_{1}\right) \neq s\left(\mu_{2}\right)$. Let μ^{\prime} be the swapped measure, with marginals $\mu_{1}^{\prime}, \mu_{2}^{\prime}$. Chain swapping...

- Preserves ergodicity: μ^{\prime} and hence $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are ergodic.
- Preserves total entropy: $h\left(\mu_{1}\right)+h\left(\mu_{2}\right)=h(\mu)=h\left(\mu^{\prime}\right)=h\left(\mu_{1}^{\prime}\right)+h\left(\mu_{2}^{\prime}\right)$.
- Preserves but redistributes mean current: for $i=1,2$,

$$
s\left(\mu_{i}^{\prime}\right)=\frac{s\left(\mu_{1}\right)+s\left(\mu_{2}\right)}{2} .
$$

Chain swapping to prove strict concavity on $\operatorname{Int}(\mathcal{O})$

Suppose μ is an erogdic coupling of ergodic measures μ_{1}, μ_{2} on dimer tilings, with mean currents $s\left(\mu_{1}\right) \neq s\left(\mu_{2}\right)$. Let μ^{\prime} be the swapped measure, with marginals $\mu_{1}^{\prime}, \mu_{2}^{\prime}$. Chain swapping...

- Preserves ergodicity: μ^{\prime} and hence $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are ergodic.
- Preserves total entropy: $h\left(\mu_{1}\right)+h\left(\mu_{2}\right)=h(\mu)=h\left(\mu^{\prime}\right)=h\left(\mu_{1}^{\prime}\right)+h\left(\mu_{2}^{\prime}\right)$.
- Preserves but redistributes mean current: for $i=1,2$,

$$
s\left(\mu_{i}^{\prime}\right)=\frac{s\left(\mu_{1}\right)+s\left(\mu_{2}\right)}{2}
$$

- BREAKS the Gibbs property: if μ_{1}, μ_{2} are ergodic Gibbs measures (EGMs), then $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are not Gibbs.

Chain swapping to prove strict concavity on $\operatorname{Int}(\mathcal{O})$

Suppose μ is an erogdic coupling of ergodic measures μ_{1}, μ_{2} on dimer tilings, with mean currents $s\left(\mu_{1}\right) \neq s\left(\mu_{2}\right)$. Let μ^{\prime} be the swapped measure, with marginals $\mu_{1}^{\prime}, \mu_{2}^{\prime}$. Chain swapping...

- Preserves ergodicity: μ^{\prime} and hence $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are ergodic.
- Preserves total entropy: $h\left(\mu_{1}\right)+h\left(\mu_{2}\right)=h(\mu)=h\left(\mu^{\prime}\right)=h\left(\mu_{1}^{\prime}\right)+h\left(\mu_{2}^{\prime}\right)$.
- Preserves but redistributes mean current: for $i=1,2$,

$$
s\left(\mu_{i}^{\prime}\right)=\frac{s\left(\mu_{1}\right)+s\left(\mu_{2}\right)}{2}
$$

- BREAKS the Gibbs property: if μ_{1}, μ_{2} are ergodic Gibbs measures (EGMs), then $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are not Gibbs.
proof* of strict concavity for $s \in \operatorname{Int}(\mathcal{O})$: Given mean currents $s_{1} \neq s_{2}$, $\frac{s_{1}+s_{2}}{2} \in \operatorname{Int}(\mathcal{O})$, let μ_{1}, μ_{2} Gibbs be such that ent $\left(s_{i}\right)=h\left(\mu_{i}\right)$. Assuming that μ_{1}, μ_{2} are EGMs*, then by chain swapping

$$
2 e n t\left(\frac{s_{1}+s_{2}}{2}\right)>h\left(\mu_{1}^{\prime}\right)+h\left(\mu_{2}^{\prime}\right)=h\left(\mu_{1}\right)+h\left(\mu_{2}\right)=\operatorname{ent}\left(s_{1}\right)+\operatorname{ent}\left(s_{2}\right)
$$

Chain swapping to prove strict concavity on $\operatorname{Int}(\mathcal{O})$

Suppose μ is an erogdic coupling of ergodic measures μ_{1}, μ_{2} on dimer tilings, with mean currents $s\left(\mu_{1}\right) \neq s\left(\mu_{2}\right)$. Let μ^{\prime} be the swapped measure, with marginals $\mu_{1}^{\prime}, \mu_{2}^{\prime}$. Chain swapping...

- Preserves ergodicity: μ^{\prime} and hence $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are ergodic.
- Preserves total entropy: $h\left(\mu_{1}\right)+h\left(\mu_{2}\right)=h(\mu)=h\left(\mu^{\prime}\right)=h\left(\mu_{1}^{\prime}\right)+h\left(\mu_{2}^{\prime}\right)$.
- Preserves but redistributes mean current: for $i=1,2$,

$$
s\left(\mu_{i}^{\prime}\right)=\frac{s\left(\mu_{1}\right)+s\left(\mu_{2}\right)}{2}
$$

- BREAKS the Gibbs property: if μ_{1}, μ_{2} are ergodic Gibbs measures (EGMs), then $\mu_{1}^{\prime}, \mu_{2}^{\prime}$ are not Gibbs.
proof* of strict concavity for $s \in \operatorname{Int}(\mathcal{O})$: Given mean currents $s_{1} \neq s_{2}$, $\frac{s_{1}+s_{2}}{2} \in \operatorname{Int}(\mathcal{O})$, let μ_{1}, μ_{2} Gibbs be such that ent $\left(s_{i}\right)=h\left(\mu_{i}\right)$. Assuming that μ_{1}, μ_{2} are EGMs*, then by chain swapping

$$
2 e n t\left(\frac{s_{1}+s_{2}}{2}\right)>h\left(\mu_{1}^{\prime}\right)+h\left(\mu_{2}^{\prime}\right)=h\left(\mu_{1}\right)+h\left(\mu_{2}\right)=\operatorname{ent}\left(s_{1}\right)+\operatorname{ent}\left(s_{2}\right)
$$

*full proof uses case work based on ergodic decompositions (we don't yet know that EGMs of every mean current exist) but this is the main idea.

Thank you for listening!!

Various open questions...

- Is there is a unique EGM of mean current s for all $s \in \operatorname{lnt}(\mathcal{O})$?
- What can be said about the interfaces between frozen and liquid regions in the limit shapes? How big should the fluctuations be?
- Do there exist regions $R \subset \mathbb{R}^{3}$ (with ∂R piecewise smooth) and boundary conditions b where (R, b) has more than one Ent maximizer?
- Now we know a limit shape exists. Are there soft arguments, for example, for the existence of frozen regions in the limit shape?
- and more...

