Large deviations for the 3D dimer model

Catherine Wolfram (joint work with Nishant Chandgotia and Scott Sheffield) July 13, 2023

Massachusetts Institute of Technology

Introduction

This talk is about dimer tilings of \mathbb{Z}^3 .

The main goal is to explain how to generalize the large deviation principle for dimer tilings in \mathbb{Z}^2 by Cohn, Kenyon, and Propp [1].

This talk is about dimer tilings of \mathbb{Z}^3 .

The main goal is to explain how to generalize the large deviation principle for dimer tilings in \mathbb{Z}^2 by Cohn, Kenyon, and Propp [1].

There are two main challenges that make studying dimers in 3D different from 2D:

- \cdot There is no height function correspondence for dimer tilings of $\mathbb{Z}^3.$
- There are no (known) formulas for the partition function, surface tension, etc for tilings of \mathbb{Z}^3 . (And the model is probably not integrable.)

- A bit more about these two ways that studying the dimer model in 3D is different from 2D
- $\cdot\,$ Set up for an LDP and analogous result in 2D
- Main theorems in 3D
- Simulations!
- A few methods that we use in the proofs in 3D.

Correspondence: dimer tilings and discrete vector fields

For any d, \mathbb{Z}^d is a bipartite lattice, with underlying black and white checkerboard.

Correspondence: dimer tilings and discrete vector fields

For any d, \mathbb{Z}^d is a bipartite lattice, with underlying black and white checkerboard.

The colors of the dimers represent the cardinal direction of the dimer (north, south, east, west, up, down for d = 3), viewed as a vector from its white cube to its black cube.

Correspondence: dimer tilings and discrete vector fields

For any d, \mathbb{Z}^d is a bipartite lattice, with underlying black and white checkerboard.

The colors of the dimers represent the cardinal direction of the dimer (north, south, east, west, up, down for d = 3), viewed as a vector from its white cube to its black cube.

There is a correspondence between 1) a dimer tiling τ of \mathbb{Z}^d and 2) a *discrete* vector field v_{τ} defined by: for each edge e of \mathbb{Z}^d oriented from white to black,

$$v_{\tau}(e) = \begin{cases} 1 & e \in \tau \\ 0 & e \notin \tau \end{cases}$$

Observation: compute divergences of v_{τ} .

div
$$v_{\tau}(x) = \sum_{\substack{e \ni x \\ \text{oriented out of } x}} v_{\tau}(e) = \begin{cases} +1 & x \text{ is white} \\ -1 & x \text{ is black.} \end{cases}$$

Observation: compute divergences of v_{τ} .

div
$$v_{\tau}(x) = \sum_{\substack{e \ni x \\ \text{oriented out of } x}} v_{\tau}(e) = \begin{cases} +1 & x \text{ is white} \\ -1 & x \text{ is black.} \end{cases}$$

Upshot: divergences depend only on the parity of x.

Observation: compute divergences of v_{τ} .

div
$$v_{\tau}(x) = \sum_{\substack{e \ni x \\ \text{oriented out of } x}} v_{\tau}(e) = \begin{cases} +1 & x \text{ is white} \\ -1 & x \text{ is black.} \end{cases}$$

Upshot: divergences depend only on the parity of x.

Subtracting a constant reference flow r(e) = 1/(2d) for all $e \in \mathbb{Z}^d$, a dimer tiling τ corresponds to a divergence free discrete vector field f_{τ} which we call the *tiling flow*.

Observation: compute divergences of v_{τ} .

div
$$v_{\tau}(x) = \sum_{\substack{e \ni x \\ \text{oriented out of } x}} v_{\tau}(e) = \begin{cases} +1 & x \text{ is white} \\ -1 & x \text{ is black.} \end{cases}$$

Upshot: divergences depend only on the parity of x.

Subtracting a constant reference flow r(e) = 1/(2d) for all $e \in \mathbb{Z}^d$, a dimer tiling τ corresponds to a divergence free discrete vector field f_{τ} which we call the *tiling flow*.

When d = 3 this is

$$f_{\tau}(e) = \begin{cases} 1 - 1/6 = 5/6 & e \in \tau \\ -1/6 & e \notin \tau \end{cases}$$

Observation: compute divergences of v_{τ} .

div
$$v_{\tau}(x) = \sum_{\substack{e \ni x \\ \text{oriented out of } x}} v_{\tau}(e) = \begin{cases} +1 & x \text{ is white} \\ -1 & x \text{ is black.} \end{cases}$$

Upshot: divergences depend only on the parity of x.

Subtracting a constant reference flow r(e) = 1/(2d) for all $e \in \mathbb{Z}^d$, a dimer tiling τ corresponds to a divergence free discrete vector field f_{τ} which we call the *tiling flow*.

When d = 3 this is

$$f_{\tau}(e) = \begin{cases} 1 - 1/6 = 5/6 & e \in \tau \\ -1/6 & e \notin \tau \end{cases}$$

Relation to the height function in 2D: in 2D, a divergence-free flow is dual to a curl-free flow, which is then the gradient of a function. The curl-free dual of f_{τ} in 2D is ∇h , where h is the height function.

Observation: compute divergences of v_{τ} .

div
$$v_{\tau}(x) = \sum_{\substack{e \ni x \\ \text{oriented out of } x}} v_{\tau}(e) = \begin{cases} +1 & x \text{ is white} \\ -1 & x \text{ is black.} \end{cases}$$

Upshot: divergences depend only on the parity of x.

Subtracting a constant reference flow r(e) = 1/(2d) for all $e \in \mathbb{Z}^d$, a dimer tiling τ corresponds to a divergence free discrete vector field f_{τ} which we call the *tiling flow*.

When d = 3 this is

$$f_{\tau}(e) = \begin{cases} 1 - 1/6 = 5/6 & e \in \tau \\ -1/6 & e \notin \tau \end{cases}$$

Relation to the height function in 2D: in 2D, a divergence-free flow is dual to a curl-free flow, which is then the gradient of a function. The curl-free dual of f_{τ} in 2D is ∇h , where h is the height function.

The main intuition throughout this talk is to think of a dimer tiling as a *flow*.

One of the ways to see that the dimer model on \mathbb{Z}^2 is integrable is via the bijection with *non-intersecting paths* in \mathbb{Z}^2 by overlaying a tiling (red) with a brickwork tiling (black).

One of the ways to see that the dimer model on \mathbb{Z}^2 is integrable is via the bijection with *non-intersecting paths* in \mathbb{Z}^2 by overlaying a tiling (red) with a brickwork tiling (black).

There is an analogous bijection between dimer tilings of \mathbb{Z}^3 and non-intersecting paths in \mathbb{Z}^3 . But these paths are not ordered, they can be braided in various ways, etc.

Part II: set up for an LDP and 2D context

Fix, for dimension d = 2 or 3:

Fix, for dimension d = 2 or 3:

• a "reasonable" compact region $R \subset \mathbb{R}^d$ and some boundary condition *b* (boundary condition specified e.g. with flow or height function)

Fix, for dimension d = 2 or 3:

- a "reasonable" compact region $R \subset \mathbb{R}^d$ and some boundary condition b (boundary condition specified e.g. with flow or height function)
- a sequence of grid regions $R_n \subset \frac{1}{n}\mathbb{Z}^d$ approximating R with the boundary conditions of R_n converging to b as $n \to \infty$.

Fix, for dimension d = 2 or 3:

- a "reasonable" compact region $R \subset \mathbb{R}^d$ and some boundary condition b (boundary condition specified e.g. with flow or height function)
- a sequence of grid regions $R_n \subset \frac{1}{n}\mathbb{Z}^d$ approximating R with the boundary conditions of R_n converging to b as $n \to \infty$.

Question: what do uniform random dimer tilings of R_n look like in the fine-mesh limit as $n \to \infty$?

Fix, for dimension d = 2 or 3:

- a "reasonable" compact region $R \subset \mathbb{R}^d$ and some boundary condition b (boundary condition specified e.g. with flow or height function)
- a sequence of grid regions $R_n \subset \frac{1}{n}\mathbb{Z}^d$ approximating R with the boundary conditions of R_n converging to b as $n \to \infty$.

Question: what do uniform random dimer tilings of R_n look like in the fine-mesh limit as $n \to \infty$?

Using the correspondence, a dimer tiling corresponds to a discrete divergence free flow on $\frac{1}{n}\mathbb{Z}^d$, the fine-mesh limit as $n \to \infty$ should be some measurable divergence free flow.

Fix, for dimension d = 2 or 3:

- a "reasonable" compact region $R \subset \mathbb{R}^d$ and some boundary condition b (boundary condition specified e.g. with flow or height function)
- a sequence of grid regions $R_n \subset \frac{1}{n}\mathbb{Z}^d$ approximating R with the boundary conditions of R_n converging to b as $n \to \infty$.

Question: what do uniform random dimer tilings of R_n look like in the fine-mesh limit as $n \to \infty$?

Using the correspondence, a dimer tiling corresponds to a discrete divergence free flow on $\frac{1}{n}\mathbb{Z}^d$, the fine-mesh limit as $n \to \infty$ should be some measurable divergence free flow.

Large deviations means quantifying: given a deterministic flow g, what is the probability that a tiling of R_n is close to g as $n \to \infty$? There is a *limit shape* if is there is one flow that random tilings concentrate on as $n \to \infty$.

1. A sequence of probability measures $(\rho_n)_{n\geq 1}$ that the large deviation principle is about.

- 1. A sequence of probability measures $(\rho_n)_{n\geq 1}$ that the large deviation principle is about.
- 2. A topology (to say what the fine-mesh limits are, and to compare things).

- 1. A sequence of probability measures $(\rho_n)_{n\geq 1}$ that the large deviation principle is about.
- 2. A topology (to say what the fine-mesh limits are, and to compare things).
- 3. A rate function $I(\cdot)$, where I measures, for any fixed $\delta > 0$,

" $\rho_n(\text{tiling flow } f_{\tau} \text{ is within } \delta \text{ of deterministic flow } g) \approx \exp(-n^d \cdot I(g))$ "

- 1. A sequence of probability measures $(\rho_n)_{n\geq 1}$ that the large deviation principle is about.
- 2. A topology (to say what the fine-mesh limits are, and to compare things).
- 3. A rate function $I(\cdot)$, where I measures, for any fixed $\delta > 0$,

" $\rho_n(\text{tiling flow } f_{\tau} \text{ is within } \delta \text{ of deterministic flow } g) \approx \exp(-n^d \cdot I(g))$ "

4. When the rate function $I(\cdot)$ has a **unique minimizer** and $(\rho_n)_{n\geq 1}$ satisfy an LDP, then the ρ_n -probability that a random tiling is close to minimizer goes to 1 as $n \to \infty$. The minimizer is called the *limit shape*.

- 1. A sequence of probability measures $(\rho_n)_{n\geq 1}$ that the large deviation principle is about.
- 2. A topology (to say what the fine-mesh limits are, and to compare things).
- 3. A rate function $I(\cdot)$, where I measures, for any fixed $\delta > 0$,

" $\rho_n(\text{tiling flow } f_{\tau} \text{ is within } \delta \text{ of deterministic flow } g) \approx \exp(-n^d \cdot I(g))$ "

- 4. When the rate function $I(\cdot)$ has a **unique minimizer** and $(\rho_n)_{n\geq 1}$ satisfy an LDP, then the ρ_n -probability that a random tiling is close to minimizer goes to 1 as $n \to \infty$. The minimizer is called the *limit shape*.
- 5. Main step for proving that $I(\cdot)$ has a unique minimizer is usually to prove that $I(\cdot)$ is strictly convex.

Fix $R \subset \mathbb{R}^2$ compact simply connected region, h_b boundary height function. Choose $R_n \subset \frac{1}{n}\mathbb{Z}^2$ regions approximating R such that boundary values of height functions for tilings of R_n converge to h_b .

• **Measures**: ρ_n is uniform measure on tilings of R_n .

- **Measures**: ρ_n is uniform measure on tilings of R_n .
- Topology: sup norm on corresponding height functions.

- **Measures**: ρ_n is uniform measure on tilings of R_n .
- Topology: sup norm on corresponding height functions.
- Fine-mesh limits of height functions as $n \to \infty$: asymptotic height functions $AH(R, h_b)$, i.e. 2-Lipschitz functions.

- Measures: ρ_n is uniform measure on tilings of R_n .
- Topology: sup norm on corresponding height functions.
- Fine-mesh limits of height functions as $n \to \infty$: asymptotic height functions $AH(R, h_b)$, i.e. 2-Lipschitz functions.
- Rate function: $I : AH(R, h_b) \rightarrow [0, \infty)$ has the form

$$I(h) = C - Ent(\nabla h) = C - \frac{1}{\operatorname{area}(R)} \int_{R} \operatorname{ent}_{2}(\nabla h(x)) \, \mathrm{d}x.$$

$$I(h) = C - Ent(\nabla h) = C - \frac{1}{\operatorname{area}(R)} \int_{R} \operatorname{ent}_{2}(\nabla h(x)) \, \mathrm{d}x.$$

The entropy function $ent_2 : \{(s,t) : |s| + |t| \le 2\} \rightarrow [0,\infty)$ can be **computed explicitly** using Kasteleyn theory (linear algebra), and this is the main tool in 2D for showing strict convexity and proving that *I* has a unique minimizer with each boundary condition h_b .

$$I(h) = C - Ent(\nabla h) = C - \frac{1}{\operatorname{area}(R)} \int_{R} \operatorname{ent}_{2}(\nabla h(x)) \, \mathrm{d}x.$$

The entropy function $\operatorname{ent}_2 : \{(s,t) : |s| + |t| \le 2\} \to [0,\infty)$ can be **computed explicitly** using Kasteleyn theory (linear algebra), and this is the main tool in 2D for showing strict convexity and proving that *I* has a unique minimizer with each boundary condition h_b .

The formula is

$$ent_2(s_1, s_2) = \sum_{i=1}^{4} L(\pi p_i),$$

where p_i are determined by (s_1, s_2) with the equations $p_1 + p_2 + p_3 + p_4 = 1$, $s_1 = 2(p_1 - p_2), s_2 = 2(p_3 - p_4)$, and $sin(\pi p_1)sin(\pi p_2) = sin(\pi p_3)sin(\pi p_4)$ and $L(z) = \int_0^z \log |2sint| dt$ is the Lobachevsky function.
Part III: moving to three dimensions

LDP and limit shape in 3D

Need to explain:

- Measures ρ_n ;
- Topology for comparing tilings, and corresponding fine-mesh limits [different from 2D since we don't have a height function]
- Rate function *I* [methods to understand this are different from 2D because we do not have a formula for it]

Will explain the first two, then state the main theorems in 3D. After that, will describe the rate function. (Then show simulations, and say a little bit about our methods.)

Topology in 3D: use tiling flows

Recall that any dimension *d*, there is a correspondence

$$\left\{ \text{dimer tilings } \tau \text{ of } \mathbb{Z}^d \right\} \qquad \iff \qquad \left\{ \text{div free discrete flows } f_\tau \right\}.$$

The corresponding flow is called a *tiling flow*.

Recall that any dimension *d*, there is a correspondence

$$\left\{ \operatorname{dimer tilings} \tau \text{ of } \mathbb{Z}^d \right\} \qquad \iff \qquad \left\{ \operatorname{div free discrete flows} f_\tau \right\}.$$

The corresponding flow is called a *tiling flow*.

When d = 3, for each edge e of \mathbb{Z}^3 oriented from white to black,

$$f_{\tau}(e) = \begin{cases} 1 - 1/6 = 5/6 & e \in \tau \\ -1/6 & e \notin \tau \end{cases}$$

Recall that any dimension *d*, there is a correspondence

$$\left\{ \operatorname{dimer tilings} \tau \text{ of } \mathbb{Z}^d \right\} \qquad \iff \qquad \left\{ \operatorname{div free discrete flows} f_\tau \right\}.$$

The corresponding flow is called a *tiling flow*.

When d = 3, for each edge e of \mathbb{Z}^3 oriented from white to black,

$$f_{\tau}(e) = \begin{cases} 1 - 1/6 = 5/6 & e \in \tau \\ -1/6 & e \notin \tau \end{cases}$$

Topology: induced by a metric d_W on tiling flows, where d_W is a version of *Wasserstein distance*.

Recall that any dimension d, there is a correspondence

$$\left\{ \text{dimer tilings } \tau \text{ of } \mathbb{Z}^d \right\} \qquad \iff \qquad \left\{ \text{div free discrete flows } f_\tau \right\}.$$

The corresponding flow is called a *tiling flow*.

When d = 3, for each edge e of \mathbb{Z}^3 oriented from white to black,

$$f_{\tau}(e) = \begin{cases} 1 - 1/6 = 5/6 & e \in \tau \\ -1/6 & e \notin \tau \end{cases}$$

Topology: induced by a metric *d*_W on tiling flows, where *d*_W is a version of *Wasserstein distance*.

Intuitive description of d_W : two flows are close if we can transform one flow into another with low "cost" where "cost" is the minimum sum of 1) amount of flow moved times distance moved, 2) flow added, 3) flow deleted to transform one flow into the other.

The fine-mesh limits as $n \to \infty$ of tiling flows in this topology are *asymptotic* flows, which are vector fields on R that are

- measurable
- · divergence-free (as a distribution)
- valued in the mean-current octahedron

 $\mathcal{O} = \{ S = (S_1, S_2, S_3) : |S_1| + |S_2| + |S_3| \le 1 \}.$

A element $s \in O$ is called a *mean current*.

Fix a nice region $R \subset \mathbb{R}^3$ (compact, closure of a domain, ∂R piecewise smooth) and *b* a boundary value on ∂R .

Fix a nice region $R \subset \mathbb{R}^3$ (compact, closure of a domain, ∂R piecewise smooth) and *b* a boundary value on ∂R .

There are some subtleties with hard boundary conditions in 3D, so have two ways of specifying boundary conditions.

Fix a nice region $R \subset \mathbb{R}^3$ (compact, closure of a domain, ∂R piecewise smooth) and *b* a boundary value on ∂R .

There are some subtleties with hard boundary conditions in 3D, so have two ways of specifying boundary conditions.

Like with height functions, τ_1 , τ_2 are tilings of the same region $R_n \subset \mathbb{Z}^3$ if and only if their tiling flows have the same boundary values (i.e., same flow of vector field through boundary).

Fix a nice region $R \subset \mathbb{R}^3$ (compact, closure of a domain, ∂R piecewise smooth) and *b* a boundary value on ∂R .

There are some subtleties with hard boundary conditions in 3D, so have two ways of specifying boundary conditions.

Like with height functions, τ_1 , τ_2 are tilings of the same region $R_n \subset \mathbb{Z}^3$ if and only if their tiling flows have the same boundary values (i.e., same flow of vector field through boundary).

Hard boundary (HB): fix a sequence of regions $R_n \subset \frac{1}{n}\mathbb{Z}^3$ with boundary values b_n approximating b and let $\overline{\rho}_n$ be uniform measure on dimer tilings of R_n .

Fix a nice region $R \subset \mathbb{R}^3$ (compact, closure of a domain, ∂R piecewise smooth) and *b* a boundary value on ∂R .

There are some subtleties with hard boundary conditions in 3D, so have two ways of specifying boundary conditions.

Like with height functions, τ_1 , τ_2 are tilings of the same region $R_n \subset \mathbb{Z}^3$ if and only if their tiling flows have the same boundary values (i.e., same flow of vector field through boundary).

Hard boundary (HB): fix a sequence of regions $R_n \subset \frac{1}{n}\mathbb{Z}^3$ with boundary values b_n approximating b and let $\overline{\rho}_n$ be uniform measure on dimer tilings of R_n .

Soft boundary (SB): choose a sequence of "thresholds" $(\theta_n)_{n\geq 0}$ with $\theta_n \to 0$ slowly enough and let ρ_n be uniform measure on free-boundary tilings of $R \cap \frac{1}{n}\mathbb{Z}^3$ with boundary values within θ_n of b.

• (*R*, *b*) is *flexible* if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset Int(\mathcal{O})$.

- (*R*, *b*) is *flexible* if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset Int(\mathcal{O})$.
- (*R*, *b*) is semi-flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset \mathcal{O} \setminus \mathcal{E}$ (\mathcal{E} is the edges of $\partial \mathcal{O}$).

- (*R*, *b*) is *flexible* if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset Int(\mathcal{O})$.
- (*R*, *b*) is semi-flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset \mathcal{O} \setminus \mathcal{E}$ (\mathcal{E} is the edges of $\partial \mathcal{O}$).
- Otherwise (R, b) is rigid.

- (*R*, *b*) is *flexible* if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset Int(\mathcal{O})$.
- (*R*, *b*) is semi-flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset \mathcal{O} \setminus \mathcal{E}$ (\mathcal{E} is the edges of $\partial \mathcal{O}$).
- Otherwise (R, b) is rigid.

Theorems (Chandgotia, Sheffield, W.) Assume that $R \subset \mathbb{R}^3$ is the closure of a connected domain and ∂R is piecewise smooth.

(R, b)	SB LDP (ρ_n)	Ent maximizer/ <i>I_b</i> minimizer unique	HB LDP $(\overline{\rho}_n)$
rigid	yes	not known	no
semi-flexible	yes	yes	no
flexible	yes	yes	yes

- (*R*, *b*) is *flexible* if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset Int(\mathcal{O})$.
- (*R*, *b*) is semi-flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset \mathcal{O} \setminus \mathcal{E}$ (\mathcal{E} is the edges of $\partial \mathcal{O}$).
- Otherwise (R, b) is rigid.

Theorems (Chandgotia, Sheffield, W.) Assume that $R \subset \mathbb{R}^3$ is the closure of a connected domain and ∂R is piecewise smooth.

(R, b)	SB LDP (ρ_n)	Ent maximizer/ <i>I_b</i> minimizer unique	HB LDP $(\overline{\rho}_n)$
rigid	yes	not known	no
semi-flexible	yes	yes	no
flexible	yes	yes	yes

The hard boundary LDP is **provably not true** in full generality in 3D; there exists (*R*, *b*) semi-flexible where the HB LDP is false.

- (*R*, *b*) is *flexible* if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset Int(\mathcal{O})$.
- (*R*, *b*) is semi-flexible if for every $x \in R$, there exists an open set $U \ni x$ and an extension *g* of *b* such that $g(U) \subset \mathcal{O} \setminus \mathcal{E}$ (\mathcal{E} is the edges of $\partial \mathcal{O}$).
- Otherwise (R, b) is rigid.

Theorems (Chandgotia, Sheffield, W.) Assume that $R \subset \mathbb{R}^3$ is the closure of a connected domain and ∂R is piecewise smooth.

(R, b)	SB LDP (ρ_n)	Ent maximizer/ <i>I_b</i> minimizer unique	HB LDP $(\overline{\rho}_n)$
rigid	yes	not known	no
semi-flexible	yes	yes	no
flexible	yes	yes	yes

The hard boundary LDP is **provably not true** in full generality in 3D; there exists (*R*, *b*) semi-flexible where the HB LDP is false.

For (R, b) rigid, a weak uniqueness holds. Namely, if f_1, f_2 are both Ent maximizers, then on the set A where they differ they are both valued in \mathcal{E} .

For either $(\rho_n)_{n\geq 1}$ (soft boundary) or $(\overline{\rho}_n)_{n\geq 1}$ (hard boundary), the *rate function* when an LDP holds is

 $I_b(g)=C-\operatorname{Ent}_3(g).$

For either $(\rho_n)_{n\geq 1}$ (soft boundary) or $(\overline{\rho}_n)_{n\geq 1}$ (hard boundary), the *rate function* when an LDP holds is

 $I_b(g)=C-\operatorname{Ent}_3(g).$

Like 2D, the entropy functional Ent₃ is an average of a local entropy function ent₃:

$$\operatorname{Ent}_3(g) = \frac{1}{\operatorname{Vol}(R)} \int_R \operatorname{ent}_3(g(x)) \, dx.$$

For either $(\rho_n)_{n\geq 1}$ (soft boundary) or $(\overline{\rho}_n)_{n\geq 1}$ (hard boundary), the *rate function* when an LDP holds is

 $I_b(g)=C-\operatorname{Ent}_3(g).$

Like 2D, the entropy functional Ent₃ is an average of a local entropy function ent₃:

$$\operatorname{Ent}_3(g) = \frac{1}{\operatorname{Vol}(R)} \int_R \operatorname{ent}_3(g(x)) \, dx.$$

The local entropy function ent = ent_3 : $\mathcal{O} \to [0,\infty)$ is defined more abstractly as:

$$\operatorname{ent}(s) = \max_{\mu \in \mathcal{P}^s} h(\mu).$$

For either $(\rho_n)_{n\geq 1}$ (soft boundary) or $(\overline{\rho}_n)_{n\geq 1}$ (hard boundary), the *rate function* when an LDP holds is

 $I_b(g)=C-\operatorname{Ent}_3(g).$

Like 2D, the entropy functional Ent₃ is an average of a local entropy function ent₃:

$$\operatorname{Ent}_3(g) = \frac{1}{\operatorname{Vol}(R)} \int_R \operatorname{ent}_3(g(x)) \, dx.$$

The local entropy function ent = ent_3 : $\mathcal{O} \to [0,\infty)$ is defined more abstractly as:

 $\operatorname{ent}(s) = \max_{\mu \in \mathcal{P}^s} h(\mu).$

Here $h(\mu)$ is specific entropy (limit of Shannon entropy per site) and \mathcal{P}^s is "measures with mean current s", i.e. the set of measures on dimer tilings of \mathbb{Z}^3 which are invariant under even translations (these are the translations that preserve the direction of flow) such that the μ -expected flow through the origin is $s \in \mathcal{O}$.

Dictionary between 2D LDP and 3D LDP set ups

	2D	3D
compact region R that	simply connected [1],	closure of connected
is	multiply connected [3]	domain, ∂R piecewise
		smooth
object associated to	height function h	tiling flow f_{τ}
tiling $ au$		
topology (to compare	sup norm on height	Wasserstein metric <i>d</i> _w
tilings)	functions	on tiling flows
limits of discrete	asymptotic height	asymptotic flows:
objects	functions: 2-Lipschitz	div-free meas. vector
	functions	fields valued in ${\cal O}$
rate function	$C_2 - \operatorname{Ent}_2(\nabla h)$	$C_3 - \operatorname{Ent}_3(f_{\tau})$

Part IV: simulations

Simulations: aztechedron and slices

Simulations: pyramid and slices

Part V: a few methods

Will say a little bit about two key pieces in our arguments:

A few methods

Will say a little bit about two key pieces in our arguments:

• patching theorem: essential "locality" property of tilings. Says that if two tilings τ_1, τ_2 have flows that approximate the same constant flow $s \in Int(\mathcal{O})$, then a size-*n* finite piece of τ_2 be "patched in" to τ_1 by tiling a thin annulus between them for *n* large enough.

Tiles from τ_1
Region to be filled in
Tiles from τ_2

A few methods

Will say a little bit about two key pieces in our arguments:

• patching theorem: essential "locality" property of tilings. Says that if two tilings τ_1, τ_2 have flows that approximate the same constant flow $s \in Int(\mathcal{O})$, then a size-*n* finite piece of τ_2 be "patched in" to τ_1 by tiling a thin annulus between them for *n* large enough.

Tiles from τ_1	
Region to be filled in	
Tiles from τ_2	

• In 2D, patching is proved using Lipschitz extension theorems for height functions. Our arguments in 3D are very different and more combinatorial.

A few methods

Will say a little bit about two key pieces in our arguments:

• patching theorem: essential "locality" property of tilings. Says that if two tilings τ_1, τ_2 have flows that approximate the same constant flow $s \in Int(\mathcal{O})$, then a size-*n* finite piece of τ_2 be "patched in" to τ_1 by tiling a thin annulus between them for *n* large enough.

Tiles from τ_1	
Region to be filled in	
Tiles from τ_2	

- In 2D, patching is proved using Lipschitz extension theorems for height functions. Our arguments in 3D are very different and more combinatorial.
- **strict convexity** of the rate function *I*_b (more precisely, strict concavity of ent) and how to understand *I*_b without formulas.

Patching: more precisely

Let $B_n = [-n, n]^3$ and fix $\delta > 0$. If two tilings τ_1, τ_2 of \mathbb{Z}^3 approximate the constant flow $s \in Int(\mathcal{O})$, how can we show that we can "patch them together" with τ_1 outside B_n to τ_2 inside $B_{(1-\delta)n}$ by tiling the annulus $A_n = B_n \setminus B_{(1-\delta)n}$ between them?

Patching: more precisely

Let $B_n = [-n, n]^3$ and fix $\delta > 0$. If two tilings τ_1, τ_2 of \mathbb{Z}^3 approximate the constant flow $s \in Int(\mathcal{O})$, how can we show that we can "patch them together" with τ_1 outside B_n to τ_2 inside $B_{(1-\delta)n}$ by tiling the annulus $A_n = B_n \setminus B_{(1-\delta)n}$ between them?

In other words, under what conditions is an annular region like the one above exactly tileable by dimers?

Necessary condition: a dimer contains 1 black cube and 1 white cube, so the region R needs to have white(R) = black(R). We call this *balanced*.

Necessary condition: a dimer contains 1 black cube and 1 white cube, so the region R needs to have white(R) = black(R). We call this *balanced*.

Hall's matching theorem [2] gives a necessary and sufficient condition:

Theorem. A balanced region $R \subset \mathbb{Z}^3$ is tileable by dimers if and only if there is no *counterexample set* $U \subset R$, i.e. no set of cubes which has white(U) > black(U), despite having only black cubes along its boundary within R.
Necessary condition: a dimer contains 1 black cube and 1 white cube, so the region R needs to have white(R) = black(R). We call this *balanced*.

Hall's matching theorem [2] gives a necessary and sufficient condition:

Theorem. A balanced region $R \subset \mathbb{Z}^3$ is tileable by dimers if and only if there is no *counterexample set* $U \subset R$, i.e. no set of cubes which has white(U) > black(U), despite having only black cubes along its boundary within R.

Necessary condition: a dimer contains 1 black cube and 1 white cube, so the region R needs to have white(R) = black(R). We call this *balanced*.

Hall's matching theorem [2] gives a necessary and sufficient condition:

Theorem. A balanced region $R \subset \mathbb{Z}^3$ is tileable by dimers if and only if there is no *counterexample set* $U \subset R$, i.e. no set of cubes which has white(U) > black(U), despite having only black cubes along its boundary within R.

To prove the patching theorem, we show that there are no counterexamples to tileability of A_n when n is large enough and apply Hall's matching theorem.

To prove that the rate function

$$I_b(g) = C - \operatorname{Ent}(g) = C - \frac{1}{\operatorname{Vol}(R)} \int_R \operatorname{ent}(g(x)) \, \mathrm{d}x$$

has a unique minimizer, one of the important steps is to show that ent(s) is *strictly concave* on $\mathcal{O} \setminus \mathcal{E}$, where \mathcal{E} is the edges of \mathcal{O} .

To prove that the rate function

$$I_b(g) = C - \operatorname{Ent}(g) = C - \frac{1}{\operatorname{Vol}(R)} \int_R \operatorname{ent}(g(x)) \, \mathrm{d}x$$

has a unique minimizer, one of the important steps is to show that ent(s) is *strictly concave* on $\mathcal{O} \setminus \mathcal{E}$, where \mathcal{E} is the edges of \mathcal{O} .

Like in 2D, ent $|_{\mathcal{E}} \equiv 0$, so it is not strictly concave on \mathcal{E} . (This is why we need the *semi-flexible* condition to prove that the Ent maximizer is unique.)

To prove that the rate function

$$I_b(g) = C - \operatorname{Ent}(g) = C - \frac{1}{\operatorname{Vol}(R)} \int_R \operatorname{ent}(g(x)) \, \mathrm{d}x$$

has a unique minimizer, one of the important steps is to show that ent(s) is *strictly concave* on $\mathcal{O} \setminus \mathcal{E}$, where \mathcal{E} is the edges of \mathcal{O} .

Like in 2D, ent $|_{\mathcal{E}} \equiv 0$, so it is not strictly concave on \mathcal{E} . (This is why we need the *semi-flexible* condition to prove that the Ent maximizer is unique.)

Without a formula for ent we need "soft arguments" for strict concavity. The main idea, for $s \in Int(\mathcal{O})$, is a method called *chain swapping*.

A measure μ is *Gibbs* if for any finite region *B*, μ conditional on a tiling σ of $\mathbb{Z}^3 \setminus B$ is uniform on tilings τ of *B* extending σ .

Gibbs measures have a special relationship with entropy.

A measure μ is *Gibbs* if for any finite region *B*, μ conditional on a tiling σ of $\mathbb{Z}^3 \setminus B$ is uniform on tilings τ of *B* extending σ .

Gibbs measures have a special relationship with entropy.

• Classical result [4]: specific entropy $h(\cdot)$ is maximized by Gibbs measure.

A measure μ is *Gibbs* if for any finite region *B*, μ conditional on a tiling σ of $\mathbb{Z}^3 \setminus B$ is uniform on tilings τ of *B* extending σ .

Gibbs measures have a special relationship with entropy.

- Classical result [4]: specific entropy $h(\cdot)$ is maximized by Gibbs measure.
- · Straightforward to extend this to say that

$$\operatorname{ent}(s) = \max_{\mu \in \mathcal{P}^s} h(\mu),$$

is realized by a Gibbs measure of mean current s.

A measure μ is *Gibbs* if for any finite region *B*, μ conditional on a tiling σ of $\mathbb{Z}^3 \setminus B$ is uniform on tilings τ of *B* extending σ .

Gibbs measures have a special relationship with entropy.

- Classical result [4]: specific entropy $h(\cdot)$ is maximized by Gibbs measure.
- · Straightforward to extend this to say that

$$\operatorname{ent}(s) = \max_{\mu \in \mathcal{P}^s} h(\mu),$$

is realized by a Gibbs measure of mean current s.

• Corollary of the patching theorem: if μ_1, μ_2 are ergodic Gibbs measures (EGMs) of the same mean current $s \in Int(\mathcal{O})$, then $h(\mu_1) = h(\mu_2)$.

A measure μ is *Gibbs* if for any finite region *B*, μ conditional on a tiling σ of $\mathbb{Z}^3 \setminus B$ is uniform on tilings τ of *B* extending σ .

Gibbs measures have a special relationship with entropy.

- Classical result [4]: specific entropy $h(\cdot)$ is maximized by Gibbs measure.
- · Straightforward to extend this to say that

$$\operatorname{ent}(s) = \max_{\mu \in \mathcal{P}^s} h(\mu),$$

is realized by a Gibbs measure of mean current s.

• Corollary of the patching theorem: if μ_1, μ_2 are ergodic Gibbs measures (EGMs) of the same mean current $s \in Int(\mathcal{O})$, then $h(\mu_1) = h(\mu_2)$.

Idea with chain swapping: uses two measures μ_1, μ_2 of mean currents s_1, s_2 to construct new two measures with mean currents $(s_1 + s_2)/2$ and the same total entropy, but then show that this breaks the Gibbs property.

Chain swapping and ent(s) for $s \in Int(\mathcal{O})$

Let $\mu = (\mu_1, \mu_2)$ be a measure on pairs of dimer tilings which is invariant under even translations, sample (τ_1, τ_2) from μ . The union $\tau_1 \cup \tau_2$ is a collection of double tiles, finite loops, and *infinite paths*.

Chain swapping and ent(s) for $s \in Int(\mathcal{O})$

Let $\mu = (\mu_1, \mu_2)$ be a measure on pairs of dimer tilings which is invariant under even translations, sample (τ_1, τ_2) from μ . The union $\tau_1 \cup \tau_2$ is a collection of double tiles, finite loops, and *infinite paths*.

Chain swapping and ent(s) for $s \in Int(\mathcal{O})$

Let $\mu = (\mu_1, \mu_2)$ be a measure on pairs of dimer tilings which is invariant under even translations, sample (τ_1, τ_2) from μ . The union $\tau_1 \cup \tau_2$ is a collection of double tiles, finite loops, and *infinite paths*.

Chain swapping: for each infinite path "of nonzero slope" $\ell \subset (\tau_1, \tau_2)$, with independent probability 1/2 we swap the tiles from τ_1, τ_2 to construct a new pair of tilings (τ'_1, τ'_2) . This defines a new swapped measure $\mu' = (\mu'_1, \mu'_2)$.

Suppose μ is an erogdic coupling of ergodic measures μ_1, μ_2 on dimer tilings, with mean currents $s(\mu_1) \neq s(\mu_2)$. Let μ' be the swapped measure, with marginals μ'_1, μ'_2 . Chain swapping...

Suppose μ is an erogdic coupling of ergodic measures μ_1, μ_2 on dimer tilings, with mean currents $s(\mu_1) \neq s(\mu_2)$. Let μ' be the swapped measure, with marginals μ'_1, μ'_2 . Chain swapping...

• Preserves ergodicity: μ' and hence μ'_1, μ'_2 are ergodic.

Suppose μ is an erogdic coupling of ergodic measures μ_1, μ_2 on dimer tilings, with mean currents $s(\mu_1) \neq s(\mu_2)$. Let μ' be the swapped measure, with marginals μ'_1, μ'_2 . Chain swapping...

- **Preserves ergodicity**: μ' and hence μ'_1, μ'_2 are ergodic.
- Preserves total entropy: $h(\mu_1) + h(\mu_2) = h(\mu) = h(\mu') = h(\mu'_1) + h(\mu'_2)$.

Suppose μ is an erogdic coupling of ergodic measures μ_1, μ_2 on dimer tilings, with mean currents $s(\mu_1) \neq s(\mu_2)$. Let μ' be the swapped measure, with marginals μ'_1, μ'_2 . Chain swapping...

- **Preserves ergodicity**: μ' and hence μ'_1, μ'_2 are ergodic.
- Preserves total entropy: $h(\mu_1) + h(\mu_2) = h(\mu) = h(\mu') = h(\mu'_1) + h(\mu'_2)$.
- Preserves but redistributes mean current: for i = 1, 2,

$$S(\mu'_i) = \frac{S(\mu_1) + S(\mu_2)}{2}$$

Suppose μ is an erogdic coupling of ergodic measures μ_1, μ_2 on dimer tilings, with mean currents $s(\mu_1) \neq s(\mu_2)$. Let μ' be the swapped measure, with marginals μ'_1, μ'_2 . Chain swapping...

- Preserves ergodicity: μ' and hence μ'_1, μ'_2 are ergodic.
- Preserves total entropy: $h(\mu_1) + h(\mu_2) = h(\mu) = h(\mu') = h(\mu'_1) + h(\mu'_2)$.
- Preserves but redistributes mean current: for i = 1, 2,

$$S(\mu'_i) = \frac{S(\mu_1) + S(\mu_2)}{2}$$

• BREAKS the Gibbs property: if μ_1, μ_2 are ergodic Gibbs measures (EGMs), then μ'_1, μ'_2 are **not** Gibbs.

Suppose μ is an erogdic coupling of ergodic measures μ_1, μ_2 on dimer tilings, with mean currents $s(\mu_1) \neq s(\mu_2)$. Let μ' be the swapped measure, with marginals μ'_1, μ'_2 . Chain swapping...

- Preserves ergodicity: μ' and hence μ'_1, μ'_2 are ergodic.
- Preserves total entropy: $h(\mu_1) + h(\mu_2) = h(\mu) = h(\mu') = h(\mu'_1) + h(\mu'_2)$.
- Preserves but redistributes mean current: for i = 1, 2,

$$s(\mu'_i) = \frac{s(\mu_1) + s(\mu_2)}{2}$$

- BREAKS the Gibbs property: if μ_1, μ_2 are ergodic Gibbs measures (EGMs), then μ'_1, μ'_2 are **not** Gibbs.

proof* of strict concavity for $s \in Int(\mathcal{O})$: Given mean currents $s_1 \neq s_2$, $\frac{s_1+s_2}{2} \in Int(\mathcal{O})$, let μ_1, μ_2 Gibbs be such that $ent(s_i) = h(\mu_i)$. Assuming that μ_1, μ_2 are EGMs*, then by chain swapping

$$2\text{ent}\left(\frac{s_1+s_2}{2}\right) > h(\mu'_1) + h(\mu'_2) = h(\mu_1) + h(\mu_2) = \text{ent}(s_1) + \text{ent}(s_2).$$

Suppose μ is an erogdic coupling of ergodic measures μ_1, μ_2 on dimer tilings, with mean currents $s(\mu_1) \neq s(\mu_2)$. Let μ' be the swapped measure, with marginals μ'_1, μ'_2 . Chain swapping...

- Preserves ergodicity: μ' and hence μ'_1, μ'_2 are ergodic.
- Preserves total entropy: $h(\mu_1) + h(\mu_2) = h(\mu) = h(\mu') = h(\mu'_1) + h(\mu'_2)$.
- Preserves but redistributes mean current: for i = 1, 2,

$$S(\mu'_i) = \frac{S(\mu_1) + S(\mu_2)}{2}$$

- BREAKS the Gibbs property: if μ_1, μ_2 are ergodic Gibbs measures (EGMs), then μ'_1, μ'_2 are **not** Gibbs.

proof* of strict concavity for $s \in Int(\mathcal{O})$: Given mean currents $s_1 \neq s_2$, $\frac{s_1+s_2}{2} \in Int(\mathcal{O})$, let μ_1, μ_2 Gibbs be such that $ent(s_i) = h(\mu_i)$. Assuming that μ_1, μ_2 are EGMs*, then by chain swapping

$$2\text{ent}\left(\frac{s_1+s_2}{2}\right) > h(\mu'_1) + h(\mu'_2) = h(\mu_1) + h(\mu_2) = \text{ent}(s_1) + \text{ent}(s_2).$$

*full proof uses case work based on ergodic decompositions (we don't yet know that EGMs of every mean current exist) but this is the main idea.

Thank you for listening!!

Various open questions...

- Is there is a unique EGM of mean current s for all $s \in Int(\mathcal{O})$?
- What can be said about the interfaces between frozen and liquid regions in the limit shapes? How big should the fluctuations be?
- Do there exist regions $R \subset \mathbb{R}^3$ (with ∂R piecewise smooth) and boundary conditions *b* where (*R*, *b*) has more than one Ent maximizer?
- Now we know a limit shape *exists*. Are there soft arguments, for example, for the existence of frozen regions in the limit shape?
- \cdot and more...