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Introduction

The goal of these notes is to provide a fast introduction to symplectic geometry.

A symplectic form is a closed nondegenerate 2-form. A symplectic manifold is
a manifold equipped with a symplectic form. Symplectic geometry is the geometry
of symplectic manifolds. Symplectic manifolds are necessarily even-dimensional and
orientable, since nondegeneracy says that the top exterior power of a symplectic
form is a volume form. The closedness condition is a natural differential equation,
which forces all symplectic manifolds to being locally indistinguishable. (These
assertions will be explained in Lecture 1 and Homework 2.)

The list of questions on symplectic forms begins with those of existence and
uniqueness on a given manifold. For specific symplectic manifolds, one would like
to understand the geometry and the topology of special submanifolds, the dynamics
of certain vector fields or systems of differential equations, the symmetries and extra
structure, etc.

Two centuries ago, symplectic geometry provided a language for classical me-
chanics. Through its recent huge development, it conquered an independent and
rich territory, as a central branch of differential geometry and topology. To mention
just a few key landmarks, one may say that symplectic geometry began to take its
modern shape with the formulation of the Arnold conjectures in the 60’s and with
the foundational work of Weinstein in the 70’s. A paper of Gromov [49] in the 80’s
gave the subject a whole new set of tools: pseudo-holomorphic curves. Gromov also
first showed that important results from complex Kähler geometry remain true in the
more general symplectic category, and this direction was continued rather dramati-
cally in the 90’s in the work of Donaldson on the topology of symplectic manifolds
and their symplectic submanifolds, and in the work of Taubes in the context of
the Seiberg-Witten invariants. Symplectic geometry is significantly stimulated by
important interactions with global analysis, mathematical physics, low-dimensional
topology, dynamical systems, algebraic geometry, integrable systems, microlocal
analysis, partial differential equations, representation theory, quantization, equivari-
ant cohomology, geometric combinatorics, etc.

As a curiosity, note that two centuries ago the name symplectic geometry did
not exist. If you consult a major English dictionary, you are likely to find that
symplectic is the name for a bone in a fish’s head. However, as clarified in [105], the
word symplectic in mathematics was coined by Weyl [110, p.165] who substituted
the Latin root in complex by the corresponding Greek root, in order to label the
symplectic group. Weyl thus avoided that this group connote the complex numbers,
and also spared us from much confusion that would have arisen, had the name
remained the former one in honor of Abel: abelian linear group.

This text is essentially the set of notes of a 15-week course on symplectic ge-
ometry with 2 hour-and-a-half lectures per week. The course targeted second-year
graduate students in mathematics, though the audience was more diverse, including
advanced undergraduates, post-docs and graduate students from other departments.
The present text should hence still be appropriate for a second-year graduate course
or for an independent study project.
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2 INTRODUCTION

There are scattered short exercises throughout the text. At the end of most lec-
tures, some longer guided problems, called homework, were designed to complement
the exposition or extend the reader’s understanding.

Geometry of manifolds was the basic prerequisite for the original course, so the
same holds now for the notes. In particular, some familiarity with de Rham theory
and classical Lie groups is expected.

As for conventions: unless otherwise indicated, all vector spaces are real and
finite-dimensional, all maps are smooth (i.e., C∞) and all manifolds are smooth,
Hausdorff and second countable.

Here is a brief summary of the contents of this book. Parts I-III explain classical
topics, including cotangent bundles, symplectomorphisms, lagrangian submanifolds
and local forms. Parts IV-VI concentrate on important related areas, such as contact
geometry and Kähler geometry. Classical hamiltonian theory enters in Parts VII-VIII,
starting the second half of this book, which is devoted to a selection of themes from
hamiltonian dynamical systems and symmetry. Parts IX-XI discuss the moment map
whose preponderance has been growing steadily for the past twenty years.

There are by now excellent references on symplectic geometry, a subset of which
is in the bibliography. However, the most efficient introduction to a subject is often
a short elementary treatment, and these notes attempt to serve that purpose. The
author hopes that these notes provide a taste of areas of current research, and
will prepare the reader to explore recent papers and extensive books in symplectic
geometry, where the pace is much faster.



Part I

Symplectic Manifolds
A symplectic form is a 2-form satisfying an algebraic condition – nondegeneracy –
and an analytical condition – closedness. In Lectures 1 and 2 we define symplectic
forms, describe some of their basic properties, introduce the first examples, namely
even-dimensional euclidean spaces and cotangent bundles.

1 Symplectic Forms

1.1 Skew-Symmetric Bilinear Maps

Let V be anm-dimensional vector space over R, and let Ω : V ×V → R be a bilinear
map. The map Ω is skew-symmetric if Ω(u, v) = −Ω(v, u), for all u, v ∈ V .

Theorem 1.1 (Standard Form for Skew-symmetric Bilinear Maps)
Let Ω be a skew-symmetric bilinear map on V . Then there is a basis

u1, . . . , uk, e1, . . . , en, f1, . . . , fn of V such that

Ω(ui, v) = 0 , for all i and all v ∈ V ,
Ω(ei, ej) = 0 = Ω(fi, fj) , for all i, j, and
Ω(ei, fj) = δij , for all i, j.

Remarks.

1. The basis in Theorem 1.1 is not unique, though it is traditionally also called
a “canonical” basis.

2. In matrix notation with respect to such basis, we have

Ω(u, v) = [ u ]

 0 0 0
0 0 Id
0 −Id 0

 |v
|

 .
♦

Proof. This induction proof is a skew-symmetric version of the Gram-Schmidt
process.

Let U := {u ∈ V | Ω(u, v) = 0 for all v ∈ V }. Choose a basis u1, . . . , uk of U ,
and choose a complementary space W to U in V ,

V = U ⊕W .

3



4 1 SYMPLECTIC FORMS

Take any nonzero e1 ∈W . Then there is f1 ∈W such that Ω(e1, f1) 6= 0. Assume
that Ω(e1, f1) = 1. Let

W1 = span of e1, f1
WΩ

1 = {w ∈W | Ω(w, v) = 0 for all v ∈W1} .

Claim. W1 ∩WΩ
1 = {0}.

Suppose that v = ae1 + bf1 ∈W1 ∩WΩ
1 .

0 = Ω(v, e1) = −b
0 = Ω(v, f1) = a

}
=⇒ v = 0 .

Claim. W = W1 ⊕WΩ
1 .

Suppose that v ∈W has Ω(v, e1) = c and Ω(v, f1) = d. Then

v = (−cf1 + de1)︸ ︷︷ ︸
∈W1

+(v + cf1 − de1)︸ ︷︷ ︸
∈WΩ

1

.

Go on: let e2 ∈ WΩ
1 , e2 6= 0. There is f2 ∈ WΩ

1 such that Ω(e2, f2) 6= 0.
Assume that Ω(e2, f2) = 1. Let W2 = span of e2, f2. Etc.

This process eventually stops because dimV <∞. We hence obtain

V = U ⊕W1 ⊕W2 ⊕ . . .⊕Wn

where all summands are orthogonal with respect to Ω, and where Wi has basis ei, fi
with Ω(ei, fi) = 1. �

The dimension of the subspace U = {u ∈ V | Ω(u, v) = 0, for all v ∈ V } does
not depend on the choice of basis.

=⇒ k := dimU is an invariant of (V,Ω) .

Since k + 2n = m = dimV ,
=⇒ n is an invariant of (V,Ω); 2n is called the rank of Ω.

1.2 Symplectic Vector Spaces

Let V be an m-dimensional vector space over R, and let Ω : V × V → R be a
bilinear map.

Definition 1.2 The map Ω̃ : V → V ∗ is the linear map defined by Ω̃(v)(u) =
Ω(v, u).

The kernel of Ω̃ is the subspace U above.

Definition 1.3 A skew-symmetric bilinear map Ω is symplectic (or nondegener-

ate) if Ω̃ is bijective, i.e., U = {0}. The map Ω is then called a linear symplectic
structure on V , and (V,Ω) is called a symplectic vector space.
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The following are immediate properties of a linear symplectic structure Ω:

• Duality: the map Ω̃ : V '→ V ∗ is a bijection.

• By the standard form theorem, k = dimU = 0, so dimV = 2n is even.

• By Theorem 1.1, a symplectic vector space (V,Ω) has a basis
e1, . . . , en, f1, . . . , fn satisfying

Ω(ei, fj) = δij and Ω(ei, ej) = 0 = Ω(fi, fj) .

Such a basis is called a symplectic basis of (V,Ω). We have

Ω(u, v) = [ u ]
[

0 Id
−Id 0

] |v
|

 ,

where the symbol

 |v
|

 represents the column of coordinates of the vector v with

respect to a symplectic basis e1, . . . , en, f1, . . . , fn whereas [ v ] represents its
transpose line.

Not all subspaces W of a symplectic vector space (V,Ω) look the same:

• A subspace W is called symplectic if Ω|W is nondegenerate. For instance,
the span of e1, f1 is symplectic.

• A subspace W is called isotropic if Ω|W ≡ 0. For instance, the span of e1, e2
is isotropic.

Homework 1 describes subspaces W of (V,Ω) in terms of the relation between W
and WΩ.

The prototype of a symplectic vector space is (R2n,Ω0) with Ω0 such that
the basis

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0,

n︷︸︸︷
1 , 0, . . . , 0),

f1 = (0, . . . , 0, 1︸︷︷︸
n+1

, 0, . . . , 0), . . . , fn = (0, . . . , 0, 1) ,

is a symplectic basis. The map Ω0 on other vectors is determined by its values on
a basis and bilinearity.

Definition 1.4 A symplectomorphism ϕ between symplectic vector spaces (V,Ω)
and (V ′,Ω′) is a linear isomorphism ϕ : V '→ V ′ such that ϕ∗Ω′ = Ω. (By
definition, (ϕ∗Ω′)(u, v) = Ω′(ϕ(u), ϕ(v)).) If a symplectomorphism exists, (V,Ω)
and (V ′,Ω′) are said to be symplectomorphic.



6 1 SYMPLECTIC FORMS

The relation of being symplectomorphic is clearly an equivalence relation in the
set of all even-dimensional vector spaces. Furthermore, by Theorem 1.1, every 2n-
dimensional symplectic vector space (V,Ω) is symplectomorphic to the prototype
(R2n,Ω0); a choice of a symplectic basis for (V,Ω) yields a symplectomorphism
to (R2n,Ω0). Hence, nonnegative even integers classify equivalence classes for the
relation of being symplectomorphic.

1.3 Symplectic Manifolds

Let ω be a de Rham 2-form on a manifold M , that is, for each p ∈ M , the map
ωp : TpM ×TpM → R is skew-symmetric bilinear on the tangent space to M at p,
and ωp varies smoothly in p. We say that ω is closed if it satisfies the differential
equation dω = 0, where d is the de Rham differential (i.e., exterior derivative).

Definition 1.5 The 2-form ω is symplectic if ω is closed and ωp is symplectic for
all p ∈M .

If ω is symplectic, then dimTpM = dimM must be even.

Definition 1.6 A symplectic manifold is a pair (M,ω) where M is a manifold
and ω is a symplectic form.

Example. Let M = R2n with linear coordinates x1, . . . , xn, y1, . . . , yn. The form

ω0 =
n∑
i=1

dxi ∧ dyi

is symplectic as can be easily checked, and the set{(
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

,

(
∂

∂y1

)
p

, . . . ,

(
∂

∂yn

)
p

}
is a symplectic basis of TpM . ♦

Example. Let M = Cn with linear coordinates z1, . . . , zn. The form

ω0 =
i

2

n∑
k=1

dzk ∧ dz̄k

is symplectic. In fact, this form equals that of the previous example under the
identification Cn ' R2n, zk = xk + iyk. ♦

Example. Let M = S2 regarded as the set of unit vectors in R3. Tangent vectors
to S2 at p may then be identified with vectors orthogonal to p. The standard
symplectic form on S2 is induced by the inner and exterior products:

ωp(u, v) := 〈p, u× v〉 , for u, v ∈ TpS2 = {p}⊥ .

This form is closed because it is of top degree; it is nondegenerate because 〈p, u×
v〉 6= 0 when u 6= 0 and we take, for instance, v = u× p. ♦
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1.4 Symplectomorphisms

Definition 1.7 Let (M1, ω1) and (M2, ω2) be 2n-dimensional symplectic manifolds,
and let ϕ : M1 → M2 be a diffeomorphism. Then ϕ is a symplectomorphism if
ϕ∗ω2 = ω1.

1

We would like to classify symplectic manifolds up to symplectomorphism. The
Darboux theorem (proved in Lecture 8 and stated below) takes care of this classifi-
cation locally: the dimension is the only local invariant of symplectic manifolds up
to symplectomorphisms. Just as any n-dimensional manifold looks locally like Rn,
any 2n-dimensional symplectic manifold looks locally like (R2n, ω0). More precisely,
any symplectic manifold (M2n, ω) is locally symplectomorphic to (R2n, ω0).

Theorem 8.1 (Darboux) Let (M,ω) be a 2n-dimensional symplectic manifold,
and let p be any point in M .
Then there is a coordinate chart (U , x1, . . . , xn, y1, . . . , yn) centered at p such that
on U

ω =
n∑
i=1

dxi ∧ dyi .

A chart (U , x1, . . . , xn, y1, . . . , yn) as in Theorem 8.1 is called a Darboux chart.
By Theorem 8.1, the prototype of a local piece of a 2n-dimensional sym-

plectic manifold is M = R2n, with linear coordinates (x1, . . . , xn, y1, . . . , yn), and
with symplectic form

ω0 =
n∑
i=1

dxi ∧ dyi .

1Recall that, by definition of pullback, at tangent vectors u, v ∈ TpM1, we have
(ϕ∗ω2)p(u, v) = (ω2)ϕ(p)(dϕp(u), dϕp(v)).



Homework 1: Symplectic Linear Algebra

Given a linear subspace Y of a symplectic vector space (V,Ω), its symplectic
orthogonal Y Ω is the linear subspace defined by

Y Ω := {v ∈ V |Ω(v, u) = 0 for all u ∈ Y } .

1. Show that dimY + dimY Ω = dimV .

Hint: What is the kernel and image of the map

V −→ Y ∗ = Hom(Y,R) ?
v 7−→ Ω(v, ·)|Y

2. Show that (Y Ω)Ω = Y .

3. Show that, if Y and W are subspaces, then

Y ⊆W ⇐⇒ WΩ ⊆ Y Ω .

4. Show that:

Y is symplectic (i.e., Ω|Y×Y is nondegenerate) ⇐⇒ Y ∩ Y Ω = {0} ⇐⇒
V = Y ⊕ Y Ω.

5. We call Y isotropic when Y ⊆ Y Ω (i.e., Ω|Y×Y ≡ 0).

Show that, if Y is isotropic, then dimY ≤ 1
2 dimV .

6. We call Y coisotropic when Y Ω ⊆ Y .

Check that every codimension 1 subspace Y is coisotropic.

7. An isotropic subspace Y of (V,Ω) is called lagrangian when dimY = 1
2 dimV .

Check that:

Y is lagrangian ⇐⇒ Y is isotropic and coisotropic ⇐⇒ Y = Y Ω .

8. Show that, if Y is a lagrangian subspace of (V,Ω), then any basis e1, . . . , en
of Y can be extended to a symplectic basis e1, . . . , en, f1, . . . , fn of (V,Ω).

Hint: Choose f1 in WΩ, where W is the linear span of {e2, . . . , en}.

9. Show that, if Y is a lagrangian subspace, (V,Ω) is symplectomorphic to the
space (Y ⊕ Y ∗,Ω0), where Ω0 is determined by the formula

Ω0(u⊕ α, v ⊕ β) = β(u)− α(v) .

In fact, for any vector space E, the direct sum V = E ⊕ E∗ has a canonical
symplectic structure determined by the formula above. If e1, . . . , en is a basis
of E, and f1, . . . , fn is the dual basis, then e1⊕0, . . . , en⊕0, 0⊕f1, . . . , 0⊕fn
is a symplectic basis for V .

8



2 Symplectic Form on the Cotangent Bundle

2.1 Cotangent Bundle

Let X be any n-dimensional manifold and M = T ∗X its cotangent bundle. If
the manifold structure on X is described by coordinate charts (U , x1, . . . , xn) with
xi : U → R, then at any x ∈ U , the differentials (dx1)x, . . . (dxn)x form a basis
of T ∗xX. Namely, if ξ ∈ T ∗xX, then ξ =

∑n
i=1 ξi(dxi)x for some real coefficients

ξ1, . . . , ξn. This induces a map

T ∗U −→ R2n

(x, ξ) 7−→ (x1, . . . , xn, ξ1, . . . , ξn) .

The chart (T ∗U , x1, . . . , xn, ξ1, . . . , ξn) is a coordinate chart for T ∗X; the coor-
dinates x1, . . . , xn, ξ1, . . . , ξn are the cotangent coordinates associated to the
coordinates x1, . . . , xn on U . The transition functions on the overlaps are smooth:
given two charts (U , x1, . . . , xn), (U ′, x′1, . . . , x′n), and x ∈ U ∩ U ′, if ξ ∈ T ∗xX,
then

ξ =
n∑
i=1

ξi (dxi)x =
∑
i,j

ξi

(
∂xi
∂x′j

)
(dx′j)x =

n∑
j=1

ξ′j (dx′j)x

where ξ′j =
∑
i ξi

(
∂xi

∂x′j

)
is smooth. Hence, T ∗X is a 2n-dimensional manifold.

We will now construct a major class of examples of symplectic forms. The
canonical forms on cotangent bundles are relevant for several branches, including
analysis of differential operators, dynamical systems and classical mechanics.

2.2 Tautological and Canonical Forms in Coordinates

Let (U , x1, . . . , xn) be a coordinate chart for X, with associated cotangent coordi-
nates (T ∗U , x1, . . . , xn, ξ1, . . . , ξn). Define a 2-form ω on T ∗U by

ω =
n∑
i=1

dxi ∧ dξi .

In order to check that this definition is coordinate-independent, consider the 1-form
on T ∗U

α =
n∑
i=1

ξi dxi .

Clearly, ω = −dα.

Claim. The form α is intrinsically defined (and hence the form ω is also intrinsically
defined) .

9
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Proof. Let (U , x1, . . . , xn, ξ1, . . . , ξn) and (U ′, x′1, . . . , x′n, ξ′1, . . . , ξ′n) be two cotan-
gent coordinate charts. On U ∩ U ′, the two sets of coordinates are related by

ξ′j =
∑
i ξi

(
∂xi

∂x′j

)
. Since dx′j =

∑
i

(
∂x′j
∂xi

)
dxi, we have

α =
∑
i

ξidxi =
∑
j

ξ′jdx
′
j = α′ .

�

The 1-form α is the tautological form or Liouville 1-form and the 2-form ω
is the canonical symplectic form. The following section provides an alternative
proof of the intrinsic character of these forms.

2.3 Coordinate-Free Definitions

Let
M = T ∗X p = (x, ξ) ξ ∈ T ∗xX

↓ π ↓
X x

be the natural projection. The tautological 1-form α may be defined pointwise
by

αp = (dπp)∗ξ ∈ T ∗pM ,

where (dπp)∗ is the transpose of dπp, that is, (dπp)∗ξ = ξ ◦ dπp:

p = (x, ξ) TpM T ∗pM
↓ π ↓ dπp ↑ (dπp)∗

x TxX T ∗xX

Equivalently,

αp(v) = ξ
(
(dπp)v

)
, for v ∈ TpM .

Exercise. Let (U , x1, . . . , xn) be a chart on X with associated cotangent coordi-

nates x1, . . . , xn, ξ1, . . . , ξn. Show that on T ∗U , α =
n∑
i=1

ξi dxi. ♦

The canonical symplectic 2-form ω on T ∗X is defined as

ω = −dα .

Locally, ω =
∑n
i=1 dxi ∧ dξi.

Exercise. Show that the tautological 1-form α is uniquely characterized by the
property that, for every 1-form µ : X → T ∗X, µ∗α = µ. (See Lecture 3.) ♦
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2.4 Naturality of the Tautological and Canonical Forms

Let X1 and X2 be n-dimensional manifolds with cotangent bundles M1 = T ∗X1

and M2 = T ∗X2, and tautological 1-forms α1 and α2. Suppose that f : X1 → X2

is a diffeomorphism. Then there is a natural diffeomorphism

f] : M1 →M2

which lifts f ; namely, if p1 = (x1, ξ1) ∈M1 for x1 ∈ X1 and ξ1 ∈ T ∗x1
X1, then we

define

f](p1) = p2 = (x2, ξ2) , with

{
x2 = f(x1) ∈ X2 and
ξ1 = (dfx1)

∗ξ2 ,

where (dfx1)
∗ : T ∗x2

X2
'→ T ∗x1

X1, so f]|T∗x1
is the inverse map of (dfx1)

∗.

Exercise. Check that f] is a diffeomorphism. Here are some hints:

1.
M1

f]−→ M2

π1 ↓ ↓ π2

X1
f−→ X2

commutes;

2. f] : M1 →M2 is bijective;

3. f] and f−1
] are smooth.

♦

Proposition 2.1 The lift f] of a diffeomorphism f : X1 → X2 pulls the tautological
form on T ∗X2 back to the tautological form on T ∗X1, i.e.,

(f])∗α2 = α1 .

Proof. At p1 = (x1, ξ1) ∈M1, this identity says

(df])
∗
p1

(α2)p2 = (α1)p1 (?)

where p2 = f](p1).

Using the following facts,

• Definition of f]:

p2 = f](p1) ⇐⇒ p2 = (x2, ξ2) where x2 = f(x1) and (dfx1)
∗ξ2 = ξ1.

• Definition of tautological 1-form:

(α1)p1 = (dπ1)∗p1ξ1 and (α2)p2 = (dπ2)∗p2ξ2.

• The diagram
M1

f]−→ M2

π1 ↓ ↓ π2

X1
f−→ X2

commutes.
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the proof of (?) is:

(df])∗p1(α2)p2 = (df])∗p1(dπ2)∗p2ξ2 = (d(π2 ◦ f]))∗p1 ξ2
= (d(f ◦ π1))

∗
p1
ξ2 = (dπ1)∗p1(df)∗x1

ξ2
= (dπ1)∗p1ξ1 = (α1)p1 .

�

Corollary 2.2 The lift f] of a diffeomorphism f : X1 → X2 is a symplectomor-
phism, i.e.,

(f])∗ω2 = ω1 ,

where ω1, ω2 are the canonical symplectic forms.

In summary, a diffeomorphism of manifolds induces a canonical symplectomor-
phism of cotangent bundles:

f] : T ∗X1 −→ T ∗X2

↑
f : X1 −→ X2

Example. Let X1 = X2 = S1. Then T ∗S1 is an infinite cylinder S1 × R. The
canonical 2-form ω is the area form ω = dθ ∧ dξ. If f : S1 → S1 is any diffeomor-
phism, then f] : S1×R→ S1×R is a symplectomorphism, i.e., is an area-preserving
diffeomorphism of the cylinder. ♦

If f : X1 → X2 and g : X2 → X3 are diffeomorphisms, then (g ◦ f)] = g] ◦ f].
In terms of the group Diff(X) of diffeomorphisms of X and the group Sympl(M,ω)
of symplectomorphisms of (M,ω), we say that the map

Diff(X) −→ Sympl(M,ω)
f 7−→ f]

is a group homomorphism. This map is clearly injective. Is it surjective? Do all
symplectomorphisms T ∗X → T ∗X come from diffeomorphisms X → X? No:
for instance, translation along cotangent fibers is not induced by a diffeomorphism
of the base manifold. A criterion for which symplectomorphisms arise as lifts of
diffeomorphisms is discussed in Homework 3.



Homework 2: Symplectic Volume

1. Given a vector space V , the exterior algebra of its dual space is

∧∗(V ∗) =
dimV⊕
k=0

∧k(V ∗) ,

where ∧k(V ∗) is the set of maps α :

k︷ ︸︸ ︷
V × · · · × V → R which are linear in each

entry, and for any permutation π, α(vπ1 , . . . , vπk
) = (signπ) · α(v1, . . . , vk).

The elements of ∧k(V ∗) are known as skew-symmetric k-linear maps or
k-forms on V .

(a) Show that any Ω ∈ ∧2(V ∗) is of the form Ω = e∗1 ∧ f∗1 + . . . + e∗n ∧
f∗n, where u∗1, . . . , u

∗
k, e

∗
1, . . . , e

∗
n, f

∗
1 , . . . , f

∗
n is a basis of V ∗ dual to the

standard basis (k + 2n = dimV ).

(b) In this language, a symplectic map Ω : V × V → R is just a nondegen-
erate 2-form Ω ∈ ∧2(V ∗), called a symplectic form on V .

Show that, if Ω is any symplectic form on a vector space V of dimension
2n, then the nth exterior power Ωn = Ω ∧ . . . ∧ Ω︸ ︷︷ ︸

n

does not vanish.

(c) Deduce that the nth exterior power ωn of any symplectic form ω on a
2n-dimensional manifold M is a volume form.2

Hence, any symplectic manifold (M,ω) is canonically oriented by the
symplectic structure. The form ωn

n! is called the symplectic volume or
the Liouville volume of (M,ω).
Does the Möbius strip support a symplectic structure?

(d) Conversely, given a 2-form Ω ∈ ∧2(V ∗), show that, if Ωn 6= 0, then Ω
is symplectic.

Hint: Standard form.

2. Let (M,ω) be a 2n-dimensional symplectic manifold, and let ωn be the volume
form obtained by wedging ω with itself n times.

(a) Show that, if M is compact, the de Rham cohomology class [ωn] ∈
H2n(M ; R) is non-zero.

Hint: Stokes’ theorem.

(b) Conclude that [ω] itself is non-zero (in other words, that ω is not exact).

(c) Show that if n > 1 there are no symplectic structures on the sphere S2n.

2A volume form is a nonvanishing form of top degree.
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Part II

Symplectomorphisms
Equivalence between symplectic manifolds is expressed by a symplectomorphism.
By Weinstein’s lagrangian creed [105], everything is a lagrangian manifold! We will
study symplectomorphisms according to the creed.

3 Lagrangian Submanifolds

3.1 Submanifolds

Let M and X be manifolds with dimX < dimM .

Definition 3.1 A map i : X → M is an immersion if dip : TpX → Ti(p)M is
injective for any point p ∈ X.

An embedding is an immersion which is a homeomorphism onto its image.3

A closed embedding is a proper4 injective immersion.

Exercise. Show that a map i : X →M is a closed embedding if and only if i is an
embedding and its image i(X) is closed in M .

Hints:

• If i is injective and proper, then for any neighborhood U of p ∈ X, there is a
neighborhood V of i(p) such that f−1(V) ⊆ U .

• On a Hausdorff space, any compact set is closed. On any topological space,
a closed subset of a compact set is compact.

• An embedding is proper if and only if its image is closed.

♦

Definition 3.2 A submanifold of M is a manifold X with a closed embedding
i : X ↪→M .5

Notation. Given a submanifold, we regard the embedding i : X ↪→ M as an
inclusion, in order to identify points and tangent vectors:

p = i(p) and TpX = dip(TpX) ⊂ TpM .

3The image has the topology induced by the target manifold.
4A map is proper if the preimage of any compact set is compact.
5When X is an open subset of a manifold M , we refer to it as an open submanifold.

15
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3.2 Lagrangian Submanifolds of T ∗X

Definition 3.3 Let (M,ω) be a 2n-dimensional symplectic manifold. A submani-
fold Y of M is a lagrangian submanifold if, at each p ∈ Y , TpY is a lagrangian
subspace of TpM , i.e., ωp|TpY ≡ 0 and dimTpY = 1

2 dimTpM . Equivalently, if
i : Y ↪→ M is the inclusion map, then Y is lagrangian if and only if i∗ω = 0 and
dimY = 1

2 dimM .

Let X be an n-dimensional manifold, with M = T ∗X its cotangent bundle.
If x1, . . . , xn are coordinates on U ⊆ X, with associated cotangent coordinates
x1, . . . , xn, ξ1, . . . , ξn on T ∗U , then the tautological 1-form on T ∗X is

α =
∑

ξidxi

and the canonical 2-form on T ∗X is

ω = −dα =
∑

dxi ∧ dξi .

The zero section of T ∗X

X0 := {(x, ξ) ∈ T ∗X | ξ = 0 in T ∗xX}

is an n-dimensional submanifold of T ∗X whose intersection with T ∗U is given by
the equations ξ1 = . . . = ξn = 0. Clearly α =

∑
ξidxi vanishes on X0 ∩ T ∗U .

In particular, if i0 : X0 ↪→ T ∗X is the inclusion map, we have i∗0α = 0. Hence,
i∗0ω = i∗0dα = 0, and X0 is lagrangian.

What are all the lagrangian submanifolds of T ∗X which are “C1-close to X0”?
Let Xµ be (the image of) another section, that is, an n-dimensional submanifold

of T ∗X of the form

Xµ = {(x, µx) | x ∈ X, µx ∈ T ∗xX} (?)

where the covector µx depends smoothly on x, and µ : X → T ∗X is a de Rham
1-form. Relative to the inclusion i : Xµ ↪→ T ∗X and the cotangent projection
π : T ∗X → X, Xµ is of the form (?) if and only if π ◦ i : Xµ → X is a
diffeomorphism.

When is such an Xµ lagrangian?

Proposition 3.4 Let Xµ be of the form (?), and let µ be the associated de Rham
1-form. Denote by sµ : X → T ∗X, x 7→ (x, µx), the 1-form µ regarded exclusively
as a map. Notice that the image of sµ is Xµ. Let α be the tautological 1-form on
T ∗X. Then

s∗µα = µ .

Proof. By definition of α (previous lecture), αp = (dπp)∗ξ at p = (x, ξ) ∈M . For
p = sµ(x) = (x, µx), we have αp = (dπp)∗µx. Then

(s∗µα)x = (dsµ)∗xαp = (dsµ)∗x(dπp)
∗µx = (d(π ◦ sµ︸ ︷︷ ︸

idX

))∗xµx = µx .

�
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Suppose that Xµ is an n-dimensional submanifold of T ∗X of the form (?), with
associated de Rham 1-form µ. Then sµ : X → T ∗X is an embedding with image
Xµ, and there is a diffeomorphism τ : X → Xµ, τ(x) := (x, µx), such that the
following diagram commutes.

X
sµ - T ∗X

Xµ

i

-
'

τ
-

We want to express the condition of Xµ being lagrangian in terms of the form µ:

Xµ is lagrangian ⇐⇒ i∗dα = 0
⇐⇒ τ∗i∗dα = 0
⇐⇒ (i ◦ τ)∗dα = 0
⇐⇒ s∗µdα = 0
⇐⇒ ds∗µα = 0
⇐⇒ dµ = 0
⇐⇒ µ is closed .

Therefore, there is a one-to-one correspondence between the set of lagrangian
submanifolds of T ∗X of the form (?) and the set of closed 1-forms on X.

When X is simply connected, H1
deRham(X) = 0, so every closed 1-form µ is

equal to df for some f ∈ C∞(X). Any such primitive f is then called a generating
function for the lagrangian submanifold Xµ associated to µ. (Two functions gen-
erate the same lagrangian submanifold if and only if they differ by a locally constant
function.) On arbitrary manifolds X, functions f ∈ C∞(X) originate lagrangian
submanifolds as images of df .

Exercise. Check that, if X is compact (and not just one point) and f ∈ C∞(X),
then #(Xdf ∩X0) ≥ 2. ♦

There are lots of lagrangian submanifolds of T ∗X not covered by the description
in terms of closed 1-forms, starting with the cotangent fibers.

3.3 Conormal Bundles

Let S be any k-dimensional submanifold of an n-dimensional manifold X.

Definition 3.5 The conormal space at x ∈ S is

N∗
xS = {ξ ∈ T ∗xX | ξ(v) = 0 , for all v ∈ TxS} .

The conormal bundle of S is

N∗S = {(x, ξ) ∈ T ∗X | x ∈ S, ξ ∈ N∗
xS} .
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Exercise. The conormal bundle N∗S is an n-dimensional submanifold of T ∗X.
Hint: Use coordinates on X adapted6 to S. ♦

Proposition 3.6 Let i : N∗S ↪→ T ∗X be the inclusion, and let α be the tautolog-
ical 1-form on T ∗X. Then

i∗α = 0 .

Proof. Let (U , x1, . . . , xn) be a coordinate system on X centered at x ∈ S
and adapted to S, so that U ∩ S is described by xk+1 = . . . = xn = 0. Let
(T ∗U , x1, . . . , xn, ξ1, . . . , ξn) be the associated cotangent coordinate system. The
submanifold N∗S ∩ T ∗U is then described by

xk+1 = . . . = xn = 0 and ξ1 = . . . = ξk = 0 .

Since α =
∑
ξidxi on T ∗U , we conclude that, at p ∈ N∗S,

(i∗α)p = αp|Tp(N∗S) =
∑
i>k

ξidxi

∣∣∣∣∣
span{ ∂

∂xi
,i≤k}

= 0 .

�

Corollary 3.7 For any submanifold S ⊂ X, the conormal bundle N∗S is a la-
grangian submanifold of T ∗X.

Taking S = {x} to be one point, the conormal bundle L = N∗S = T ∗xX is a
cotangent fiber. Taking S = X, the conormal bundle L = X0 is the zero section
of T ∗X.

3.4 Application to Symplectomorphisms

Let (M1, ω1) and (M2, ω2) be two 2n-dimensional symplectic manifolds. Given a

diffeomorphism ϕ : M1
'−→ M2, when is it a symplectomorphism? (I.e., when is

ϕ∗ω2 = ω1?)
Consider the two projection maps

(p1, p2)

p1

?

M1 ×M2

M1

�

pr 1

M2

pr
2

-

(p1, p2)

p2

?

6A coordinate chart (U , x1, . . . , xn) on X is adapted to a k-dimensional submanifold S if
S ∩ U is described by xk+1 = . . . = xn = 0.
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Then ω = (pr1)∗ω1 + (pr2)∗ω2 is a 2-form on M1 ×M2 which is closed,

dω = (pr1)
∗dω1︸︷︷︸

0

+ (pr2)
∗dω2︸︷︷︸

0

= 0 ,

and symplectic,

ω2n =
(

2n
n

)(
(pr1)∗ω1

)n
∧
(
(pr2)∗ω2

)n
6= 0 .

More generally, if λ1, λ2 ∈ R\{0}, then λ1(pr1)∗ω1+λ2(pr2)∗ω2 is also a symplectic
form on M1×M2. Take λ1 = 1, λ2 = −1 to obtain the twisted product form on
M1 ×M2:

ω̃ = (pr1)
∗ω1 − (pr2)

∗ω2 .

The graph of a diffeomorphism ϕ : M1
'−→M2 is the 2n-dimensional submani-

fold of M1 ×M2:

Γϕ := Graphϕ = {(p, ϕ(p)) | p ∈M1} .

The submanifold Γϕ is an embedded image of M1 in M1 ×M2, the embedding
being the map

γ : M1 −→ M1 ×M2

p 7−→ (p, ϕ(p)) .

Proposition 3.8 A diffeomorphism ϕ is a symplectomorphism if and only if Γϕ is
a lagrangian submanifold of (M1 ×M2, ω̃).

Proof. The graph Γϕ is lagrangian if and only if γ∗ω̃ = 0. But

γ∗ω̃ = γ∗ pr∗1 ω1 − γ∗ pr∗2 ω2

= (pr1 ◦ γ)∗ω1 − (pr2 ◦ γ)∗ω2

and pr1 ◦ γ is the identity map on M1 whereas pr2 ◦ γ = ϕ. Therefore,

γ∗ω̃ = 0 ⇐⇒ ϕ∗ω2 = ω1 .

�



Homework 3:
Tautological Form and Symplectomorphisms

This set of problems is from [53].

1. Let (M,ω) be a symplectic manifold, and let α be a 1-form such that

ω = −dα .

Show that there exists a unique vector field v such that its interior product
with ω is α, i.e., ıvω = −α.

Prove that, if g is a symplectomorphism which preserves α (that is, g∗α = α),
then g commutes with the one-parameter group of diffeomorphisms generated
by v, i.e.,

(exp tv) ◦ g = g ◦ (exp tv) .

Hint: Recall that, for p ∈ M , (exp tv)(p) is the unique curve in M solving the
ordinary differential equation

d
dt

(exp tv(p)) = v(exp tv(p))
(exp tv)(p)|t=0 = p

for t in some neighborhood of 0. Show that g ◦ (exp tv)◦g−1 is the one-parameter
group of diffeomorphisms generated by g∗v. (The push-forward of v by g is defined
by (g∗v)g(p) = dgp(vp).) Finally check that g preserves v (that is, g∗v = v).

2. Let X be an arbitrary n-dimensional manifold, and let M = T ∗X. Let
(U , x1, . . . , xn) be a coordinate system on X, and let x1, . . . , xn, ξ1, . . . , ξn
be the corresponding coordinates on T ∗U .

Show that, when α is the tautological 1-form on M (which, in these coordi-
nates, is

∑
ξi dxi), the vector field v in the previous exercise is just the vector

field
∑
ξi

∂
∂ξi

.

Let exp tv, −∞ < t < ∞, be the one-parameter group of diffeomorphisms
generated by v.

Show that, for every point p = (x, ξ) in M ,

(exp tv)(p) = pt where pt = (x, etξ) .

20
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3. Let M be as in exercise 2.

Show that, if g is a symplectomorphism of M which preserves α, then

g(x, ξ) = (y, η) =⇒ g(x, λξ) = (y, λη)

for all (x, ξ) ∈M and λ ∈ R.

Conclude that g has to preserve the cotangent fibration, i.e., show that there
exists a diffeomorphism f : X → X such that π◦g = f ◦π, where π : M → X
is the projection map π(x, ξ) = x.

Finally prove that g = f#, the map f# being the symplectomorphism of M
lifting f .

Hint: Suppose that g(p) = q where p = (x, ξ) and q = (y, η).
Combine the identity

(dgp)∗αq = αp

with the identity
dπq ◦ dgp = dfx ◦ dπp .

(The first identity expresses the fact that g∗α = α, and the second identity is
obtained by differentiating both sides of the equation π ◦ g = f ◦ π at p.)

4. Let M be as in exercise 2, and let h be a smooth function on X. Define
τh : M →M by setting

τh(x, ξ) = (x, ξ + dhx) .

Prove that
τ∗hα = α+ π∗dh

where π is the projection map

M (x, ξ)
↓ π ↓
X x

Deduce that
τ∗hω = ω ,

i.e., that τh is a symplectomorphism.



4 Generating Functions

4.1 Constructing Symplectomorphisms

Let X1, X2 be n-dimensional manifolds, with cotangent bundles M1 = T ∗X1,
M2 = T ∗X2, tautological 1-forms α1, α2, and canonical 2-forms ω1, ω2.

Under the natural identification

M1 ×M2 = T ∗X1 × T ∗X2 ' T ∗(X1 ×X2) ,

the tautological 1-form on T ∗(X1 ×X2) is

α = (pr1)
∗α1 + (pr2)

∗α2 ,

where pri : M1×M2 →Mi, i = 1, 2 are the two projections. The canonical 2-form
on T ∗(X1 ×X2) is

ω = −dα = −dpr∗1α1 − dpr∗2α2 = pr∗1ω1 + pr∗2ω2 .

In order to describe the twisted form ω̃ = pr∗1ω1 − pr∗2ω2, we define an involution
of M2 = T ∗X2 by

σ2 : M2 −→ M2

(x2, ξ2) 7−→ (x2,−ξ2)
which yields σ∗2α2 = −α2. Let σ = idM1 × σ2 : M1 ×M2 →M1 ×M2. Then

σ∗ω̃ = pr∗1ω1 + pr∗2ω2 = ω .

If Y is a lagrangian submanifold of (M1 ×M2, ω), then its “twist” Y σ := σ(Y ) is
a lagrangian submanifold of (M1 ×M2, ω̃).

Recipe for producing symplectomorphisms M1 = T ∗X1 →M2 = T ∗X2:

1. Start with a lagrangian submanifold Y of (M1 ×M2, ω).

2. Twist it to obtain a lagrangian submanifold Y σ of (M1 ×M2, ω̃).

3. Check whether Y σ is the graph of some diffeomorphism ϕ : M1 →M2.

4. If it is, then ϕ is a symplectomorphism (by Proposition 3.8).

Let i : Y σ ↪→M1 ×M2 be the inclusion map

Y σ

M1
ϕ? -

�

pr 1
◦ i

M2

pr
2 ◦
i

-

Step 3 amounts to checking whether pr1 ◦ i and pr2 ◦ i are diffeomorphisms. If yes,
then ϕ := (pr2 ◦ i) ◦ (pr1 ◦ i)−1 is a diffeomorphism.

In order to obtain lagrangian submanifolds of M1 ×M2 ' T ∗(X1 × X2), we
can use the method of generating functions.

22
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4.2 Method of Generating Functions

For any f ∈ C∞(X1 × X2), df is a closed 1-form on X1 × X2. The lagrangian
submanifold generated by f is

Yf := {((x, y), (df)(x,y)) | (x, y) ∈ X1 ×X2} .

We adopt the notation

dxf := (df)(x,y) projected to T ∗xX1 × {0},
dyf := (df)(x,y) projected to {0} × T ∗yX2 ,

which enables us to write

Yf = {(x, y, dxf, dyf) | (x, y) ∈ X1 ×X2}

and
Y σf = {(x, y, dxf,−dyf) | (x, y) ∈ X1 ×X2} .

When Y σf is in fact the graph of a diffeomorphism ϕ : M1 → M2, we call ϕ the
symplectomorphism generated by f , and call f the generating function, of
ϕ : M1 →M2.

So when is Y σf the graph of a diffeomorphism ϕ : M1 →M2?

Let (U1, x1, . . . , xn), (U2, y1, . . . , yn) be coordinate charts forX1, X2, with asso-
ciated charts (T ∗U1, x1, . . . , xn, ξ1, . . . , ξn), (T ∗U2, y1, . . . , yn, η1, . . . , ηn) forM1,M2.
The set Y σf is the graph of ϕ : M1 → M2 if and only if, for any (x, ξ) ∈ M1 and
(y, η) ∈M2, we have

ϕ(x, ξ) = (y, η) ⇐⇒ ξ = dxf and η = −dyf .

Therefore, given a point (x, ξ) ∈ M1, to find its image (y, η) = ϕ(x, ξ) we must
solve the “Hamilton” equations

ξi =
∂f

∂xi
(x, y) (?)

ηi = − ∂f
∂yi

(x, y) . (??)

If there is a solution y = ϕ1(x, ξ) of (?), we may feed it to (??) thus obtaining
η = ϕ2(x, ξ), so that ϕ(x, ξ) = (ϕ1(x, ξ), ϕ2(x, ξ)). Now by the implicit function
theorem, in order to solve (?) locally for y in terms of x and ξ, we need the condition

det
[
∂

∂yj

(
∂f

∂xi

)]n
i,j=1

6= 0 .

This is a necessary local condition for f to generate a symplectomorphism ϕ. Locally
this is also sufficient, but globally there is the usual bijectivity issue.
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Example. Let X1 = U1 ' Rn, X2 = U2 ' Rn, and f(x, y) = − |x−y|2
2 , the square

of euclidean distance up to a constant.

The “Hamilton” equations are
ξi =

∂f

∂xi
= yi − xi

ηi = − ∂f
∂yi

= yi − xi
⇐⇒

 yi = xi + ξi

ηi = ξi .

The symplectomorphism generated by f is

ϕ(x, ξ) = (x+ ξ, ξ) .

If we use the euclidean inner product to identify T ∗Rn with TRn, and hence regard
ϕ as ϕ̃ : TRn → TRn and interpret ξ as the velocity vector, then the symplecto-
morphism ϕ corresponds to free translational motion in euclidean space.

x

x+ ξ
ξ

r
r

��
��

�*�
�
��

�*

♦

4.3 Application to Geodesic Flow

Let V be an n-dimensional vector space. A positive inner product G on V is a
bilinear map G : V × V → R which is

symmetric : G(v, w) = G(w, v) , and
positive-definite : G(v, v) > 0 when v 6= 0 .

Definition 4.1 A riemannian metric on a manifoldX is a function g which assigns
to each point x ∈ X a positive inner product gx on TxX.

A riemannian metric g is smooth if for every smooth vector field v : X → TX
the real-valued function x 7→ gx(vx, vx) is a smooth function on X.

Definition 4.2 A riemannian manifold (X, g) is a manifold X equipped with a
smooth riemannian metric g.
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The arc-length of a piecewise smooth curve γ : [a, b] → X on a riemannian
manifold (X, g) is ∫ b

a

√
gγ(t)

(
dγ

dt
,
dγ

dt

)
dt .

x = γ(a)

y = γ(b)

γ

r

r
-

Definition 4.3 The riemannian distance between two points x and y of a con-
nected riemannian manifold (X, g) is the infimum d(x, y) of the set of all arc-lengths
for piecewise smooth curves joining x to y.

A smooth curve joining x to y is a minimizing geodesic7 if its arc-length is the
riemannian distance d(x, y).

A riemannian manifold (X, g) is geodesically convex if every point x is joined
to every other point y by a unique minimizing geodesic.

Example. On X = Rn with TX ' Rn × Rn, let gx(v, w) = 〈v, w〉, gx(v, v) =
|v|2, where 〈·, ·〉 is the euclidean inner product, and | · | is the euclidean norm.
Then (Rn, 〈·, ·〉) is a geodesically convex riemannian manifold, and the riemannian
distance is the usual euclidean distance d(x, y) = |x− y|. ♦

Suppose that (X, g) is a geodesically convex riemannian manifold. Consider the
function

f : X ×X −→ R , f(x, y) = −d(x, y)
2

2
.

What is the symplectomorphism ϕ : T ∗X → T ∗X generated by f?

The metric gx : TxX × TxX → R induces an identification

g̃x : TxX
'−→ T ∗xX

v 7−→ gx(v, ·)

Use g̃ to translate ϕ into a map ϕ̃ : TX → TX.
We need to solve {

g̃x(v) = ξi = dxf(x, y)
g̃y(w) = ηi = −dyf(x, y)

7In riemannian geometry, a geodesic is a curve which locally minimizes distance and
whose velocity is constant.
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for (y, η) in terms of (x, ξ) in order to find ϕ, or, equivalently, for (y, w) in terms
(x, v) in order to find ϕ̃.

Let γ be the geodesic with initial conditions γ(0) = x and dγ
dt (0) = v.

x

γ
v

r���
�
�
���

-

Then the symplectomorphism ϕ corresponds to the map

ϕ̃ : TX −→ TX

(x, v) 7−→ (γ(1), dγdt (1)) .

This is called the geodesic flow on X (see Homework 4).



Homework 4: Geodesic Flow

This set of problems is adapted from [53].

Let (X, g) be a riemannian manifold. The arc-length of a smooth curve γ :
[a, b]→ X is

arc-length of γ :=
∫ b

a

∣∣∣∣dγdt
∣∣∣∣ dt , where

∣∣∣∣dγdt
∣∣∣∣ :=

√
gγ(t)

(
dγ

dt
,
dγ

dt

)
.

1. Show that the arc-length of γ is independent of the parametrization of γ,
i.e., show that, if we reparametrize γ by τ : [a′, b′] → [a, b], the new curve
γ′ = γ ◦ τ : [a′, b′]→ X has the same arc-length. A curve γ is called a curve

of constant velocity when
∣∣∣dγdt ∣∣∣ is independent of t. Show that, given any

curve γ : [a, b] → X (with dγ
dt never vanishing), there is a reparametrization

τ : [a, b]→ [a, b] such that γ ◦ τ : [a, b]→ X is of constant velocity.

2. Given a smooth curve γ : [a, b]→ X, the action of γ is A(γ) :=
∫ b

a

∣∣∣∣dγdt
∣∣∣∣2 dt.

Show that, among all curves joining x to y, γ minimizes the action if and
only if γ is of constant velocity and γ minimizes arc-length.

Hint: Suppose that γ is of constant velocity, and let τ : [a, b] → [a, b] be a
reparametrization. Show that A(γ ◦ τ) ≥ A(γ), with equality only when τ =
identity.

3. Assume that (X, g) is geodesically convex, that is, any two points x, y ∈ X
are joined by a unique (up to reparametrization) minimizing geodesic; its
arc-length d(x, y) is called the riemannian distance between x and y.

Assume also that (X, g) is geodesically complete, that is, every geodesic can
be extended indefinitely. Given (x, v) ∈ TX, let exp(x, v) : R → X be
the unique minimizing geodesic of constant velocity with initial conditions

exp(x, v)(0) = x and d exp(x,v)
dt (0) = v.

Consider the function f : X ×X → R given by f(x, y) = − 1
2 · d(x, y)

2. Let
dxf and dyf be the components of df(x,y) with respect to T ∗(x,y)(X ×X) '
T ∗xX × T ∗yX. Recall that, if

Γσf = {(x, y, dxf,−dyf) | (x, y) ∈ X ×X}

is the graph of a diffeomorphism f : T ∗X → T ∗X, then f is the symplecto-
morphism generated by f . In this case, f(x, ξ) = (y, η) if and only if ξ = dxf
and η = −dyf .

Show that, under the identification of TX with T ∗X by g, the symplec-
tomorphism generated by f coincides with the map TX → TX, (x, v) 7→
exp(x, v)(1).

27
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Hint: The metric g provides the identifications TxXv ' ξ(·) = gx(v, ·) ∈
T ∗xX. We need to show that, given (x, v) ∈ TX, the unique solution of

(?)


gx(v, ·) = dxf(·)
gy(w, ·) = −dyf(·) is (y, w) = (exp(x, v)(1), d

exp(x,v)
dt

(1)).

Look up the Gauss lemma in a book on riemannian geometry. It asserts that
geodesics are orthogonal to the level sets of the distance function.

To solve the first line in (?) for y, evaluate both sides at v =
d exp(x,v)

dt
(0).

Conclude that y = exp(x, v)(1). Check that dxf(v′) = 0 for vectors v′ ∈ TxX
orthogonal to v (that is, gx(v, v′) = 0); this is a consequence of f(x, y) being the
arc-length of a minimizing geodesic, and it suffices to check locally.
The vector w is obtained from the second line of (?). Compute

−dyf(
d exp(x,v)

dt
(1)). Then evaluate −dyf at vectors w′ ∈ TyX orthogonal to

d exp(x,v)
dt

(1); this pairing is again 0 because f(x, y) is the arc-length of a mini-

mizing geodesic. Conclude, using the nondegeneracy of g, that w =
d exp(x,v)

dt
(1).

For both steps, it might be useful to recall that, given a function ϕ : X → R and

a tangent vector v ∈ TxX, we have dϕx(v) =
d

du
[ϕ(exp(x, v)(u))]u=0.



5 Recurrence

5.1 Periodic Points

Let X be an n-dimensional manifold. Let M = T ∗X be its cotangent bundle with
canonical symplectic form ω.

Suppose that we are given a smooth function f : X ×X → R which generates
a symplectomorphism ϕ : M → M , ϕ(x, dxf) = (y,−dyf), by the recipe of the
previous lecture.

What are the fixed points of ϕ?

Define ψ : X → R by ψ(x) = f(x, x).

Proposition 5.1 There is a one-to-one correspondence between the fixed points of
ϕ and the critical points of ψ.

Proof. At x0 ∈ X, dx0ψ = (dxf + dyf)|(x,y)=(x0,x0). Let ξ = dxf |(x,y)=(x0,x0).

x0 is a critical point of ψ ⇐⇒ dx0ψ = 0 ⇐⇒ dyf |(x,y)=(x0,x0) = −ξ .

Hence, the point in Γσf corresponding to (x, y) = (x0, x0) is (x0, x0, ξ, ξ). But Γσf
is the graph of ϕ, so ϕ(x0, ξ) = (x0, ξ) is a fixed point. This argument also works
backwards. �

Consider the iterates of ϕ,

ϕ(N) = ϕ ◦ ϕ ◦ . . . ◦ ϕ︸ ︷︷ ︸
N

: M −→M , N = 1, 2, . . . ,

each of which is a symplectomorphism of M . According to the previous proposition,
if ϕ(N) : M →M is generated by f (N), then there is a correspondence{

fixed points of ϕ(N)
}

1−1←→
{

critical points of
ψ(N) : X → R , ψ(N)(x) = f (N)(x, x)

}
Knowing that ϕ is generated by f , does ϕ(2) have a generating function? The

answer is a partial yes:

Fix x, y ∈ X. Define a map

X −→ R
z 7−→ f(x, z) + f(z, y) .

Suppose that this map has a unique critical point z0, and that z0 is nondegenerate.
Let

f (2)(x, y) := f(x, z0) + f(z0, y) .

29
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Proposition 5.2 The function f (2) : X × X → R is smooth and is a generating
function for ϕ(2) if we assume that, for each ξ ∈ T ∗xX, there is a unique y ∈ X for
which dxf

(2) = ξ.

Proof. The point z0 is given implicitly by dyf(x, z0) + dxf(z0, y) = 0. The
nondegeneracy condition is

det
[
∂

∂zi

(
∂f

∂yj
(x, z) +

∂f

∂xj
(z, y)

)]
6= 0 .

By the implicit function theorem, z0 = z0(x, y) is smooth.

As for the second assertion, f (2)(x, y) is a generating function for ϕ(2) if and
only if

ϕ(2)(x, dxf (2)) = (y,−dyf (2))

(assuming that, for each ξ ∈ T ∗xX, there is a unique y ∈ X for which dxf
(2) = ξ).

Since ϕ is generated by f , and z0 is critical, we obtain

ϕ(2)(x, dxf (2)(x, y)) = ϕ(ϕ(x, dxf (2)(x, y)︸ ︷︷ ︸
=dxf(x,z0)

) = ϕ(z0,−dyf(x, z0))

= ϕ(z0, dxf(z0, y)) = (y, −dyf(z0, y)︸ ︷︷ ︸
=−dyf(2)(x,y)

) .

�

Exercise. What is a generating function for ϕ(3)?

Hint: Suppose that the function

X ×X −→ R
(z, u) 7−→ f(x, z) + f(z, u) + f(u, y)

has a unique critical point (z0, u0), and that it is a nondegenerate critical point.
Let f (3)(x, y) = f(x, z0) + f(z0, u0) + f(u0, y). ♦

5.2 Billiards

Let χ : R→ R2 be a smooth plane curve which is 1-periodic, i.e., χ(s+ 1) = χ(s),
and parametrized by arc-length, i.e.,

∣∣∣dχds ∣∣∣ = 1. Assume that the region Y enclosed

by χ is convex, i.e., for any s ∈ R, the tangent line {χ(s) + tdχds | t ∈ R} intersects
X := ∂Y (= the image of χ) at only the point χ(s).
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X = ∂Y

χ(s)r
�

Suppose that we throw a ball into Y rolling with constant velocity and bouncing
off the boundary with the usual law of reflection. This determines a map

ϕ : R/Z× (−1, 1) −→ R/Z× (−1, 1)
(x, v) 7−→ (y, w)

by the rule

when the ball bounces off χ(x) with angle θ = arccos v, it will next collide with
χ(y) and bounce off with angle ν = arccosw.

χ(x)

χ(y)

r

r

"
"
"
"
"

b
b
b
b
b
b
b
b
b
b"

"
"
"

�

j

*

Let f : R/Z× R/Z→ R be defined by f(x, y) = −|χ(x)− χ(y)|; f is smooth
off the diagonal. Use χ to identify R/Z with the image curve X.

Suppose that ϕ(x, v) = (y, w), i.e., (x, v) and (y, w) are successive points on
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the orbit described by the ball. Then
df

dx
= − x− y

|x− y|
projected onto TxX = v

df

dy
= − y − x

|x− y|
projected onto TyX = −w

or, equivalently,
d

ds
f(χ(s), y) =

y − x
|x− y|

· dχ
ds

= cos θ = v

d

ds
f(x, χ(s)) =

x− y
|x− y|

· dχ
ds

= − cos ν = −w .

We conclude that f is a generating function for ϕ. Similar approaches work for
higher dimensional billiards problems.

Periodic points are obtained by finding critical points of

X × . . .×X︸ ︷︷ ︸
N

−→ R , N > 1

(x1, . . . , xN ) 7−→ f(x1, x2) + f(x2, x3) + . . .+ f(xN−1, xN ) + f(xN , x1)
= |x1 − x2|+ . . .+ |xN−1 − xN |+ |xN − x1| ,

that is, by finding the N -sided (generalized) polygons inscribed in X of critical
perimeter.

Notice that

R/Z× (−1, 1) ' {(x, v) | x ∈ X, v ∈ TxX, |v| < 1} ' A

is the open unit tangent ball bundle of a circle X, that is, an open annulus A. The
map ϕ : A→ A is area-preserving.

5.3 Poincaré Recurrence

Theorem 5.3 (Poincaré Recurrence Theorem) Suppose that ϕ : A→ A is an
area-preserving diffeomorphism of a finite-area manifold A. Let p ∈ A, and let U
be a neighborhood of p. Then there is q ∈ U and a positive integer N such that
ϕ(N)(q) ∈ U .

Proof. Let U0 = U ,U1 = ϕ(U),U2 = ϕ(2)(U), . . .. If all of these sets were disjoint,
then, since Area (Ui) = Area (U) > 0 for all i, we would have

Area A ≥ Area (U0 ∪ U1 ∪ U2 ∪ . . .) =
∑
i

Area (Ui) =∞ .
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To avoid this contradiction we must have ϕ(k)(U) ∩ ϕ(l)(U) 6= ∅ for some k > l,
which implies ϕ(k−l)(U) ∩ U 6= ∅. �

Hence, eternal return applies to billiards...

Remark. Theorem 5.3 clearly generalizes to volume-preserving diffeomorphisms in
higher dimensions. ♦

Theorem 5.4 (Poincaré’s Last Geometric Theorem) Suppose ϕ : A → A
is an area-preserving diffeomorphism of the closed annulus A = R/Z × [−1, 1]
which preserves the two components of the boundary, and twists them in opposite
directions. Then ϕ has at least two fixed points.

This theorem was proved in 1913 by Birkhoff, and hence is also called the
Poincaré-Birkhoff theorem. It has important applications to dynamical systems
and celestial mechanics. The Arnold conjecture (1966) on the existence of fixed
points for symplectomorphisms of compact manifolds (see Lecture 9) may be re-
garded as a generalization of the Poincaré-Birkhoff theorem. This conjecture has
motivated a significant amount of recent research involving a more general notion
of generating function; see, for instance, [34, 45].





Part III

Local Forms
Inspired by the elementary normal form in symplectic linear algebra (Theorem 1.1),
we will go on to describe normal neighborhoods of a point (the Darboux theorem)
and of a lagrangian submanifold (the Weinstein theorems), inside a symplectic man-
ifold. The main tool is the Moser trick, explained in Lecture 7, which leads to the
crucial Moser theorems and which is at the heart of many arguments in symplectic
geometry.

In order to prove the normal forms, we need the (non-symplectic) ingredients
discussed in Lecture 6; for more on these topics, see, for instance, [18, 55, 96].

6 Preparation for the Local Theory

6.1 Isotopies and Vector Fields

Let M be a manifold, and ρ : M × R→M a map, where we set ρt(p) := ρ(p, t).

Definition 6.1 The map ρ is an isotopy if each ρt : M →M is a diffeomorphism,
and ρ0 = idM .

Given an isotopy ρ, we obtain a time-dependent vector field, that is, a family
of vector fields vt, t ∈ R, which at p ∈M satisfy

vt(p) =
d

ds
ρs(q)

∣∣∣∣
s=t

where q = ρ−1
t (p) ,

i.e.,
dρt
dt

= vt ◦ ρt .

Conversely, given a time-dependent vector field vt, if M is compact or if the vt’s
are compactly supported, there exists an isotopy ρ satisfying the previous ordinary
differential equation.

Suppose that M is compact. Then we have a one-to-one correspondence

{isotopies of M} 1−1←→ {time-dependent vector fields on M}
ρt, t ∈ R ←→ vt, t ∈ R

Definition 6.2 When vt = v is independent of t, the associated isotopy is called
the exponential map or the flow of v and is denoted exp tv; i.e., {exp tv : M →
M | t ∈ R} is the unique smooth family of diffeomorphisms satisfying

exp tv|t=0 = idM and
d

dt
(exp tv)(p) = v(exp tv(p)) .
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Definition 6.3 The Lie derivative is the operator

Lv : Ωk(M) −→ Ωk(M) defined by Lvω :=
d

dt
(exp tv)∗ω|t=0 .

When a vector field vt is time-dependent, its flow, that is, the corresponding
isotopy ρ, still locally exists by Picard’s theorem. More precisely, in the neighborhood
of any point p and for sufficiently small time t, there is a one-parameter family of
local diffeomorphisms ρt satisfying

dρt
dt

= vt ◦ ρt and ρ0 = id .

Hence, we say that the Lie derivative by vt is

Lvt : Ωk(M) −→ Ωk(M) defined by Lvtω :=
d

dt
(ρt)∗ω|t=0 .

Exercise. Prove the Cartan magic formula,

Lvω = ıvdω + dıvω ,

and the formula
d

dt
ρ∗tω = ρ∗tLvtω , (?)

where ρ is the (local) isotopy generated by vt. A good strategy for each formula is
to follow the steps:

1. Check the formula for 0-forms ω ∈ Ω0(M) = C∞(M).

2. Check that both sides commute with d.

3. Check that both sides are derivations of the algebra (Ω∗(M),∧). For instance,
check that

Lv(ω ∧ α) = (Lvω) ∧ α+ ω ∧ (Lvα) .

4. Notice that, if U is the domain of a coordinate system, then Ω•(U) is gener-
ated as an algebra by Ω0(U) and dΩ0(U), i.e., every element in Ω•(U) is a
linear combination of wedge products of elements in Ω0(U) and elements in
dΩ0(U).

♦

We will need the following improved version of formula (?).

Proposition 6.4 For a smooth family ωt, t ∈ R, of d-forms, we have

d

dt
ρ∗tωt = ρ∗t

(
Lvtωt +

dωt
dt

)
.
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Proof. If f(x, y) is a real function of two variables, by the chain rule we have

d

dt
f(t, t) =

d

dx
f(x, t)

∣∣∣∣
x=t

+
d

dy
f(t, y)

∣∣∣∣
y=t

.

Therefore,
d

dt
ρ∗tωt =

d

dx
ρ∗xωt

∣∣∣∣
x=t︸ ︷︷ ︸

ρ∗xLvxωt

∣∣∣
x=t

by (?)

+
d

dy
ρ∗tωy

∣∣∣∣
y=t︸ ︷︷ ︸

ρ∗t
dωy
dy

∣∣∣
y=t

= ρ∗t

(
Lvtωt +

dωt
dt

)
.

�

6.2 Tubular Neighborhood Theorem

Let M be an n-dimensional manifold, and let X be a k-dimensional submanifold
where k < n and with inclusion map

i : X ↪→M .

At each x ∈ X, the tangent space to X is viewed as a subspace of the tangent
space to M via the linear inclusion dix : TxX ↪→ TxM , where we denote x = i(x).
The quotient NxX := TxM/TxX is an (n − k)-dimensional vector space, known
as the normal space to X at x. The normal bundle of X is

NX = {(x, v) | x ∈ X , v ∈ NxX} .

The set NX has the structure of a vector bundle over X of rank n− k under the
natural projection, hence as a manifold NX is n-dimensional. The zero section of
NX,

i0 : X ↪→ NX , x 7→ (x, 0) ,

embeds X as a closed submanifold of NX. A neighborhood U0 of the zero section
X in NX is called convex if the intersection U0 ∩NxX with each fiber is convex.

Theorem 6.5 (Tubular Neighborhood Theorem) There exist a convex neigh-
borhood U0 of X in NX, a neighborhood U of X in M , and a diffeomorphism
ϕ : U0 → U such that

NX ⊇ U0
ϕ

'
- U ⊆M

X

i

-
�

i0 commutes.
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Outline of the proof.

• Case of M = Rn, and X is a compact submanifold of Rn.

Theorem 6.6 (ε-Neighborhood Theorem)

Let Uε = {p ∈ Rn : |p − q| < ε for some q ∈ X} be the set of points at a
distance less than ε from X. Then, for ε sufficiently small, each p ∈ Uε has
a unique nearest point q ∈ X (i.e., a unique q ∈ X minimizing |q − x|).

Moreover, setting q = π(p), the map Uε π→ X is a (smooth) submersion with
the property that, for all p ∈ Uε, the line segment (1 − t)p + tq, 0 ≤ t ≤ 1,
is in Uε.

The proof is part of Homework 5. Here are some hints.

At any x ∈ X, the normal space NxX may be regarded as an (n − k)-
dimensional subspace of Rn, namely the orthogonal complement in Rn of the
tangent space to X at x:

NxX ' {v ∈ Rn : v ⊥ w , for all w ∈ TxX} .

We define the following open neighborhood of X in NX:

NXε = {(x, v) ∈ NX : |v| < ε} .

Let
exp : NX −→ Rn

(x, v) 7−→ x+ v .

Restricted to the zero section, exp is the identity map on X.

Prove that, for ε sufficiently small, exp maps NXε diffeomorphically onto
Uε, and show also that the diagram

NXε exp - Uε

X
�

π
π
0

-

commutes.

• Case where X is a compact submanifold of an arbitrary manifold M .

Put a riemannian metric g on M , and let d(p, q) be the riemannian distance
between p, q ∈M . The ε-neighborhood of a compact submanifold X is

Uε = {p ∈M | d(p, q) < ε for some q ∈ X} .

Prove the ε-neighborhood theorem in this setting: for ε small enough, the
following assertions hold.
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– Any p ∈ Uε has a unique point q ∈ X with minimal d(p, q). Set q = π(p).

– The map Uε π→ X is a submersion and, for all p ∈ Uε, there is a unique
geodesic curve γ joining p to q = π(p).

– The normal space to X at x ∈ X is naturally identified with a subspace of
TxM :

NxX ' {v ∈ TxM | gx(v, w) = 0 , for any w ∈ TxX} .

Let NXε = {(x, v) ∈ NX |
√
gx(v, v) < ε}.

– Define exp : NXε → M by exp(x, v) = γ(1), where γ : [0, 1]→ M is the
geodesic with γ(0) = x and dγ

dt (0) = v. Then exp maps NXε diffeomorphi-
cally to Uε.

• General case.

When X is not compact, adapt the previous argument by replacing ε by an
appropriate continuous function ε : X → R+ which tends to zero fast enough
as x tends to infinity.

�

Restricting to the subset U0 ⊆ NX from the tubular neighborhood theorem,
we obtain a submersion U0

π0−→ X with all fibers π−1
0 (x) convex. We can carry this

fibration to U by setting π = π0 ◦ ϕ−1:

U0 ⊆ NX is a fibration =⇒ U ⊆M is a fibration
π0 ↓ π ↓
X X

This is called the tubular neighborhood fibration.

6.3 Homotopy Formula

Let U be a tubular neighborhood of a submanifold X in M . The restriction i∗ :
Hd

deRham(U) → Hd
deRham(X) by the inclusion map is surjective. As a corollary

of the tubular neighborhood fibration, i∗ is also injective: this follows from the
homotopy-invariance of de Rham cohomology.

Corollary 6.7 For any degree `, H`
deRham(U) ' H`

deRham(X).

At the level of forms, this means that, if ω is a closed `-form on U and i∗ω is
exact on X, then ω is exact. We will need the following related result.

Proposition 6.8 If a closed `-form ω on U has restriction i∗ω = 0, then ω is exact,
i.e., ω = dµ for some µ ∈ Ωd−1(U). Moreover, we can choose µ such that µx = 0
at all x ∈ X.
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Proof. Via ϕ : U0
'−→ U , it is equivalent to work over U0. Define for every

0 ≤ t ≤ 1 a map
ρt : U0 −→ U0

(x, v) 7−→ (x, tv) .

This is well-defined since U0 is convex. The map ρ1 is the identity, ρ0 = i0 ◦π0, and
each ρt fixes X, that is, ρt ◦ i0 = i0. We hence say that the family {ρt | 0 ≤ t ≤ 1}
is a homotopy from i0 ◦ π0 to the identity fixing X. The map π0 : U0 → X is
called a retraction because π0 ◦ i0 is the identity. The submanifold X is then called
a deformation retract of U .

A (de Rham) homotopy operator between ρ0 = i0 ◦ π0 and ρ1 = id is a linear
map

Q : Ωd(U0) −→ Ωd−1(U0)

satisfying the homotopy formula

Id− (i0 ◦ π0)∗ = dQ+Qd .

When dω = 0 and i∗0ω = 0, the operator Q gives ω = dQω, so that we can take
µ = Qω. A concrete operator Q is given by the formula:

Qω =
∫ 1

0

ρ∗t (ıvtω) dt ,

where vt, at the point q = ρt(p), is the vector tangent to the curve ρs(p) at s = t.
The proof that Q satisfies the homotopy formula is below.

In our case, for x ∈ X, ρt(x) = x (all t) is the constant curve, so vt vanishes
at all x for all t, hence µx = 0. �

To check that Q above satisfies the homotopy formula, we compute

Qdω + dQω =
∫ 1

0

ρ∗t (ıvtdω)dt+ d

∫ 1

0

ρ∗t (ıvtω)dt

=
∫ 1

0

ρ∗t (ıvtdω + dıvtω︸ ︷︷ ︸
Lvtω

)dt ,

where Lv denotes the Lie derivative along v (reviewed in the next section), and we
used the Cartan magic formula: Lvω = ıvdω + dıvω. The result now follows from

d

dt
ρ∗tω = ρ∗tLvtω

and from the fundamental theorem of calculus:

Qdω + dQω =
∫ 1

0

d

dt
ρ∗tω dt = ρ∗1ω − ρ∗0ω .



Homework 5: Tubular Neighborhoods in Rn

1. Let X be a k-dimensional submanifold of an n-dimensional manifold M . Let
x be a point in X. The normal space to X at x is the quotient space

NxX = TxM/TxX ,

and the normal bundle of X in M is the vector bundle NX over X whose
fiber at x is NxX.

(a) Prove that NX is indeed a vector bundle.

(b) If M is Rn, show that NxX can be identified with the usual “normal
space” to X in Rn, that is, the orthogonal complement in Rn of the
tangent space to X at x.

2. Let X be a k-dimensional compact submanifold of Rn. Prove the tubular
neighborhood theorem in the following form.

(a) Given ε > 0 let Uε be the set of all points in Rn which are at a distance
less than ε from X. Show that, for ε sufficiently small, every point
p ∈ Uε has a unique nearest point π(p) ∈ X.

(b) Let π : Uε → X be the map defined in (a) for ε sufficiently small. Show
that, if p ∈ Uε, then the line segment (1 − t) · p + t · π(p), 0 ≤ t ≤ 1,
joining p to π(p) lies in Uε.

(c) Let NXε = {(x, v) ∈ NX such that |v| < ε}. Let exp : NX → Rn be
the map (x, v) 7→ x+ v, and let ν : NXε → X be the map (x, v) 7→ x.
Show that, for ε sufficiently small, exp maps NXε diffeomorphically
onto Uε, and show also that the following diagram commutes:

NXε
exp - Uε

X
�

πν
-

3. Suppose that the manifold X in the previous exercise is not compact.

Prove that the assertion about exp is still true provided we replace ε by a
continuous function

ε : X → R+

which tends to zero fast enough as x tends to infinity.
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7 Moser Theorems

7.1 Notions of Equivalence for Symplectic Structures

Let M be a 2n-dimensional manifold with two symplectic forms ω0 and ω1, so that
(M,ω0) and (M,ω1) are two symplectic manifolds.

Definition 7.1 We say that

• (M,ω0) and (M,ω1) are symplectomorphic if there is a diffeomorphism
ϕ : M →M with ϕ∗ω1 = ω0;

• (M,ω0) and (M,ω1) are strongly isotopic if there is an isotopy ρt : M →M
such that ρ∗1ω1 = ω0;

• (M,ω0) and (M,ω1) are deformation-equivalent if there is a smooth family
ωt of symplectic forms joining ω0 to ω1;

• (M,ω0) and (M,ω1) are isotopic if they are deformation-equivalent with [ωt]
independent of t.

Clearly, we have

strongly isotopic =⇒ symplectomorphic , and

isotopic =⇒ deformation-equivalent .

We also have
strongly isotopic =⇒ isotopic

because, if ρt : M →M is an isotopy such that ρ∗1ω1 = ω0, then the set ωt := ρ∗tω1

is a smooth family of symplectic forms joining ω1 to ω0 and [ωt] = [ω1], ∀t, by
the homotopy invariance of de Rham cohomology. As we will see below, the Moser
theorem states that, on a compact manifold,

isotopic =⇒ strongly isotopic .

7.2 Moser Trick

Problem. Given a 2n-dimensional manifold M , a k-dimensional submanifold X,
neighborhoods U0,U1 of X, and symplectic forms ω0, ω1 on U0,U1, does there exist
a symplectomorphism preserving X? More precisely, does there exist a diffeomor-
phism ϕ : U0 → U1 with ϕ∗ω1 = ω0 and ϕ(X) = X?

At the two extremes, we have:
Case X = point: Darboux theorem – see Lecture 8.
Case X = M : Moser theorem – discussed here:

Let M be a compact manifold with symplectic forms ω0 and ω1.
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– Are (M,ω0) and (M,ω1) symplectomorphic?
I.e., does there exist a diffeomorphism ϕ : M →M such that ϕ∗1ω0 = ω1?

Moser asked whether we can find such an ϕ which is homotopic to idM . A
necessary condition is [ω0] = [ω1] ∈ H2(M ; R) because: if ϕ ∼ idM , then, by the
homotopy formula, there exists a homotopy operator Q such that

id∗Mω1 − ϕ∗ω1 = dQω1 +Q dω1︸︷︷︸
0

=⇒ ω1 = ϕ∗ω1 + d(Qω1)
=⇒ [ω1] = [ϕ∗ω1] = [ω0] .

– If [ω0] = [ω1], does there exist a diffeomorphism ϕ homotopic to idM such that
ϕ∗ω1 = ω0?

Moser [87] proved that the answer is yes, with a further hypothesis as in Theo-
rem 7.2. McDuff showed that, in general, the answer is no; for a counterexample,
see Example 7.23 in [83].

Theorem 7.2 (Moser Theorem – Version I) Suppose that M is compact,
[ω0] = [ω1] and that the 2-form ωt = (1 − t)ω0 + tω1 is symplectic for each
t ∈ [0, 1]. Then there exists an isotopy ρ : M × R → M such that ρ∗tωt = ω0 for
all t ∈ [0, 1].

In particular, ϕ = ρ1 : M '−→M , satisfies ϕ∗ω1 = ω0.
The following argument, due to Moser, is extremely useful; it is known as the

Moser trick.

Proof. Suppose that there exists an isotopy ρ : M ×R→M such that ρ∗tωt = ω0,
0 ≤ t ≤ 1. Let

vt =
dρt
dt
◦ ρ−1

t , t ∈ R .

Then

0 =
d

dt
(ρ∗tωt) = ρ∗t

(
Lvtωt +

dωt
dt

)
⇐⇒ Lvtωt +

dωt
dt

= 0 . (?)

Suppose conversely that we can find a smooth time-dependent vector field vt,
t ∈ R, such that (?) holds for 0 ≤ t ≤ 1. Since M is compact, we can integrate vt
to an isotopy ρ : M × R→M with

d

dt
(ρ∗tωt) = 0 =⇒ ρ∗tωt = ρ∗0ω0 = ω0 .

So everything boils down to solving (?) for vt.
First, from ωt = (1− t)ω0 + tω1, we conclude that

dωt
dt

= ω1 − ω0 .
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Second, since [ω0] = [ω1], there exists a 1-form µ such that

ω1 − ω0 = dµ .

Third, by the Cartan magic formula, we have

Lvt
ωt = dıvt

ωt + ıvt
dωt︸︷︷︸

0

.

Putting everything together, we must find vt such that

dıvtωt + dµ = 0 .

It is sufficient to solve ıvtωt + µ = 0. By the nondegeneracy of ωt, we can solve
this pointwise, to obtain a unique (smooth) vt. �

Theorem 7.3 (Moser Theorem – Version II) Let M be a compact manifold
with symplectic forms ω0 and ω1. Suppose that ωt, 0 ≤ t ≤ 1, is a smooth family
of closed 2-forms joining ω0 to ω1 and satisfying:

(1) cohomology assumption: [ωt] is independent of t, i.e., d
dt [ωt] =

[
d
dtωt

]
= 0,

(2) nondegeneracy assumption: ωt is nondegenerate for 0 ≤ t ≤ 1.

Then there exists an isotopy ρ : M × R→M such that ρ∗tωt = ω0, 0 ≤ t ≤ 1.

Proof. (Moser trick) We have the following implications from the hypotheses:

(1) =⇒ ∃ family of 1-forms µt such that

dωt
dt

= dµt , 0 ≤ t ≤ 1 .

We can indeed find a smooth family of 1-forms µt such that dωt

dt = dµt.
The argument involves the Poincaré lemma for compactly-supported forms,
together with the Mayer-Vietoris sequence in order to use induction on the
number of charts in a good cover of M . For a sketch of the argument, see
page 95 in [83].

(2) =⇒ ∃ unique family of vector fields vt such that

ıvtωt + µt = 0 (Moser equation) .

Extend vt to all t ∈ R. Let ρ be the isotopy generated by vt (ρ exists by
compactness of M). Then we indeed have

d

dt
(ρ∗tωt) = ρ∗t (Lvtωt +

dωt
dt

) = ρ∗t (dıvt
ωt + dµt) = 0 .

�
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The compactness of M was used to be able to integrate vt for all t ∈ R. If M
is not compact, we need to check the existence of a solution ρt for the differential
equation dρt

dt = vt ◦ ρt for 0 ≤ t ≤ 1.

Picture. Fix c ∈ H2(M). Define Sc = {symplectic forms ω in M with [ω] = c}.
The Moser theorem implies that, on a compact manifold, all symplectic forms on
the same path-connected component of Sc are symplectomorphic.

7.3 Moser Relative Theorem

Theorem 7.4 (Moser Theorem – Relative Version) Let M be a manifold, X
a compact submanifold of M , i : X ↪→M the inclusion map, ω0 and ω1 symplectic
forms in M .

Hypothesis: ω0|p = ω1|p , ∀p ∈ X .
Conclusion: There exist neighborhoods U0,U1 of X in M ,

and a diffeomorphism ϕ : U0 → U1 such that

U0
ϕ - U1

X

i

-
�

i commutes

and ϕ∗ω1 = ω0 .

Proof.

1. Pick a tubular neighborhood U0 of X. The 2-form ω1 − ω0 is closed on U0,
and (ω1 − ω0)p = 0 at all p ∈ X. By the homotopy formula on the tubular
neighborhood, there exists a 1-form µ on U0 such that ω1 − ω0 = dµ and
µp = 0 at all p ∈ X.

2. Consider the family ωt = (1− t)ω0 + tω1 = ω0 + tdµ of closed 2-forms on U0.
Shrinking U0 if necessary, we can assume that ωt is symplectic for 0 ≤ t ≤ 1.

3. Solve the Moser equation: ıvtωt = −µ. Notice that vt = 0 on X.

4. Integrate vt. Shrinking U0 again if necessary, there exists an isotopy ρ :
U0 × [0, 1] → M with ρ∗tωt = ω0, for all t ∈ [0, 1]. Since vt|X = 0, we have
ρt|X = idX .

Set ϕ = ρ1, U1 = ρ1(U0). �

Exercise. Prove the Darboux theorem. (Hint: apply the relative version of the
Moser theorem to X = {p}, as in the next lecture.) ♦
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8.1 Darboux Theorem

Theorem 8.1 (Darboux) Let (M,ω) be a symplectic manifold, and let p be
any point in M . Then we can find a coordinate system (U , x1, . . . , xn, y1, . . . yn)
centered at p such that on U

ω =
n∑
i=1

dxi ∧ dyi .

As a consequence of Theorem 8.1, if we prove for (R2n,
∑
dxi ∧ dyi) a local

assertion which is invariant under symplectomorphisms, then that assertion holds
for any symplectic manifold.

Proof. Apply the Moser relative theorem (Theorem 7.4) to X = {p}:
Use any symplectic basis for TpM to construct coordinates (x′1, . . . , x

′
n, y

′
1, . . . y

′
n)

centered at p and valid on some neighborhood U ′, so that

ωp =
∑

dx′i ∧ dy′i
∣∣∣
p
.

There are two symplectic forms on U ′: the given ω0 = ω and ω1 =
∑
dx′i∧dy′i. By

the Moser theorem, there are neighborhoods U0 and U1 of p, and a diffeomorphism
ϕ : U0 → U1 such that

ϕ(p) = p and ϕ∗(
∑

dx′i ∧ dy′i) = ω .

Since ϕ∗(
∑
dx′i∧dy′i) =

∑
d(x′i◦ϕ)∧d(y′i◦ϕ), we only need to set new coordinates

xi = x′i ◦ ϕ and yi = y′i ◦ ϕ. �

If in the Moser relative theorem (Theorem 7.4) we assume instead

Hypothesis: X is an n-dimensional submanifold with
i∗ω0 = i∗ω1 = 0 where i : X ↪→M is inclusion, i.e.,
X is a submanifold lagrangian for ω0 and ω1 ,

then Weinstein [104] proved that the conclusion still holds. We need some algebra
for the Weinstein theorem.

8.2 Lagrangian Subspaces

Suppose that U,W are n-dimensional vector spaces, and Ω : U × W → R is a
bilinear pairing; the map Ω gives rise to a linear map Ω̃ : U →W ∗, Ω̃(u) = Ω(u, ·).
Then Ω is nondegenerate if and only if Ω̃ is bijective.
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Proposition 8.2 Suppose that (V,Ω) is a 2n-dimensional symplectic vector space.
Let U be a lagrangian subspace of (V,Ω) (i.e., Ω|U×U = 0 and U is n-dimensional).
Let W be any vector space complement to U , not necessarily lagrangian.

Then from W we can canonically build a lagrangian complement to U .

Proof. The pairing Ω gives a nondegenerate pairing U × W
Ω′→ R. Therefore,

Ω̃′ : U →W ∗ is bijective. We look for a lagrangian complement to U of the form

W ′ = {w +Aw | w ∈W} ,

the map A : W → U being linear. For W ′ to be lagrangian we need

∀ w1, w2 ∈W , Ω(w1 +Aw1, w2 +Aw2) = 0

=⇒ Ω(w1, w2) + Ω(w1, Aw2) + Ω(Aw1, w2) + Ω(Aw1, Aw2︸ ︷︷ ︸
∈U

)

︸ ︷︷ ︸
0

= 0

=⇒ Ω(w1, w2) = Ω(Aw2, w1)− Ω(Aw1, w2)
= Ω̃′(Aw2)(w1)− Ω̃′(Aw1)(w2) .

Let A′ = Ω̃′ ◦A : W →W ∗, and look for A′ such that

∀ w1, w2 ∈W , Ω(w1, w2) = A′(w2)(w1)−A′(w1)(w2) .

The canonical choice is A′(w) = − 1
2Ω(w, ·). Then set A = (Ω̃′)−1 ◦A′. �

Proposition 8.3 Let V be a 2n-dimensional vector space, let Ω0 and Ω1 be sym-
plectic forms in V , let U be a subspace of V lagrangian for Ω0 and Ω1, and let W
be any complement to U in V . Then from W we can canonically construct a linear

isomorphism L : V '→ V such that L|U = IdU and L∗Ω1 = Ω0.

Proof. From W we canonically obtain complements W0 and W1 to U in V such
that W0 is lagrangian for Ω0 and W1 is lagrangian for Ω1. The nondegenerate
bilinear pairings

W0 × U
Ω0−→ R

W1 × U
Ω1−→ R

give isomorphisms
Ω̃0 : W0

'−→ U∗

Ω̃1 : W1
'−→ U∗ .

Consider the diagram

W0

eΩ0−→ U∗

B ↓ ↓ id

W1

eΩ1−→ U∗

where the linear map B satisfies Ω̃1 ◦ B = Ω̃0, i.e., Ω0(w0, u) = Ω1(Bw0, u),
∀w0 ∈ W0, ∀u ∈ U . Extend B to the rest of V by setting it to be the identity on
U :

L := IdU ⊕B : U ⊕W0 −→ U ⊕W1 .
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Finally, we check that L∗Ω1 = Ω0.

(L∗Ω1)(u⊕ w0, u
′ ⊕ w′0) = Ω1(u⊕Bw0, u

′ ⊕Bω′0)
= Ω1(u,Bw′0) + Ω1(Bw0, u

′)
= Ω0(u,w′0) + Ω0(w0, u

′)
= Ω0(u⊕ w0, u

′ ⊕ w′0) .

�

8.3 Weinstein Lagrangian Neighborhood Theorem

Theorem 8.4 (Weinstein Lagrangian Neighborhood Theorem [104]) Let M
be a 2n-dimensional manifold, X a compact n-dimensional submanifold, i : X ↪→
M the inclusion map, and ω0 and ω1 symplectic forms on M such that i∗ω0 =
i∗ω1 = 0, i.e., X is a lagrangian submanifold of both (M,ω0) and (M,ω1). Then
there exist neighborhoods U0 and U1 of X in M and a diffeomorphism ϕ : U0 → U1

such that

U0
ϕ - U1

X

i

-
�

i commutes and ϕ∗ω1 = ω0 .

The proof of the Weinstein theorem uses the Whitney extension theorem.

Theorem 8.5 (Whitney Extension Theorem) Let M be an n-dimensional man-
ifold and X a k-dimensional submanifold with k < n. Suppose that at each p ∈ X
we are given a linear isomorphism Lp : TpM

'→ TpM such that Lp|TpX = IdTpX

and Lp depends smoothly on p. Then there exists an embedding h : N → M
of some neighborhood N of X in M such that h|X = idX and dhp = Lp for all
p ∈ X.

The linear maps L serve as “germs” for the embedding.

Proof of the Weinstein theorem. Put a riemannian metric g on M ; at each
p ∈ M , gp(·, ·) is a positive-definite inner product. Fix p ∈ X, and let V = TpM ,
U = TpX and W = U⊥ the orthocomplement of U in V relative to gp(·, ·).

Since i∗ω0 = i∗ω1 = 0, the space U is a lagrangian subspace of both (V, ω0|p)
and (V, ω1|p). By symplectic linear algebra, we canonically get from U⊥ a linear
isomorphism Lp : TpM → TpM , such that Lp|TpX = IdTpX and L∗pω1|p = ω0|p.
Lp varies smoothly with respect to p since our recipe is canonical!

By the Whitney theorem, there are a neighborhood N of X and an embedding
h : N ↪→M with h|X = idX and dhp = Lp for p ∈ X. Hence, at any p ∈ X,

(h∗ω1)p = (dhp)∗ω1|p = L∗pω1|p = ω0|p .
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Applying the Moser relative theorem (Theorem 7.4) to ω0 and h∗ω1, we find a
neighborhood U0 of X and an embedding f : U0 → N such that f |X = idX and
f∗(h∗ω1) = ω0 on Uo. Set ϕ = h ◦ f . �

Sketch of proof for the Whitney theorem.
Case M = Rn:
For a compact k-dimensional submanifold X, take a neighborhood of the form

Uε = {p ∈M | distance (p,X) ≤ ε} .

For ε sufficiently small so that any p ∈ Uε has a unique nearest point in X, define
a projection π : Uε → X, p 7→ point on X closest to p. If π(p) = q, then
p = q + v for some v ∈ NqX where NqX = (TqX)⊥ is the normal space at q; see
Homework 5. Let

h : Uε −→ Rn
p 7−→ q + Lqv ,

where q = π(p) and v = p − π(p) ∈ NqX. Then hX = idX and dhp = Lp for
p ∈ X. If X is not compact, replace ε by a continuous function ε : X → R+ which
tends to zero fast enough as x tends to infinity.

General case:
Choose a riemannian metric on M . Replace distance by riemannian distance,

replace straight lines q + tv by geodesics exp(q, v)(t) and replace q + Lqv by the
value at t = 1 of the geodesic with initial value q and initial velocity Lqv. �

In Lecture 30 we will need the following generalization of Theorem 8.4. For a
proof see, for instance, either of [47, 58, 107].

Theorem 8.6 (Coisotropic Embedding Theorem) Let M be a manifold of
dimension 2n, X a submanifold of dimension k ≥ n, i : X ↪→ M the inclusion
map, and ω0 and ω1 symplectic forms on M , such that i∗ω0 = i∗ω1 and X is
coisotropic for both (M,ω0) and (M,ω1). Then there exist neighborhoods U0 and
U1 of X in M and a diffeomorphism ϕ : U0 → U1 such that

U0
ϕ - U1

X

i

-
�

i commutes and ϕ∗ω1 = ω0 .



Homework 6: Oriented Surfaces

1. The standard symplectic form on the 2-sphere is the standard area form:

If we think of S2 as the unit sphere in 3-space

S2 = {u ∈ R3 such that |u| = 1} ,

then the induced area form is given by

ωu(v, w) = 〈u, v × w〉

where u ∈ S2, v, w ∈ TuS2 are vectors in R3, × is the exterior product, and
〈·, ·〉 is the standard inner product. With this form, the total area of S2 is 4π.

Consider cylindrical polar coordinates (θ, z) on S2 away from its poles, where
0 ≤ θ < 2π and −1 ≤ z ≤ 1.

Show that, in these coordinates,

ω = dθ ∧ dz .

2. Prove the Darboux theorem in the 2-dimensional case, using the fact that
every nonvanishing 1-form on a surface can be written locally as f dg for
suitable functions f, g.

Hint: ω = df ∧ dg is nondegenerate ⇐⇒ (f, g) is a local diffeomorphism.

3. Any oriented 2-dimensional manifold with an area form is a symplectic mani-
fold.

(a) Show that convex combinations of two area forms ω0, ω1 that induce
the same orientation are symplectic.

This is wrong in dimension 4: find two symplectic forms on the vector
space R4 that induce the same orientation, yet some convex combination
of which is degenerate. Find a path of symplectic forms that connect
them.

(b) Suppose that we have two area forms ω0, ω1 on a compact 2-dimensional
manifold M representing the same de Rham cohomology class, i.e.,
[ω0] = [ω1] ∈ H2

deRham(M).
Prove that there is a 1-parameter family of diffeomorphisms ϕt : M →
M such that ϕ∗1ω0 = ω1, ϕ0 = id, and ϕ∗tω0 is symplectic for all
t ∈ [0, 1].

Hint: Exercise (a) and the Moser trick.

Such a 1-parameter family ϕt is called a strong isotopy between ω0 and
ω1. In this language, this exercise shows that, up to strong isotopy, there
is a unique symplectic representative in each non-zero 2-cohomology
class of M .
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9 Weinstein Tubular Neighborhood Theorem

9.1 Observation from Linear Algebra

Let (V,Ω) be a symplectic linear space, and let U be a lagrangian subspace.

Claim. There is a canonical nondegenerate bilinear pairing Ω′ : V/U × U → R.

Proof. Define Ω′([v], u) = Ω(v, u) where [v] is the equivalence class of v in V/U .

Exercise. Check that Ω′ is well-defined and nondegenerate. ♦ �

Consequently, we get

=⇒ Ω̃′ : V/U → U∗ defined by Ω̃′([v]) = Ω′([v], ·) is an isomorphism.

=⇒ V/U ' U∗ are canonically identified.

In particular, if (M,ω) is a symplectic manifold, and X is a lagrangian subman-
ifold, then TxX is a lagrangian subspace of (TxM,ωx) for each x ∈ X.

The space NxX := TxM/TxX is called the normal space of X at x.

=⇒ There is a canonical identification NxX ' T ∗xX.

=⇒

Theorem 9.1 The vector bundles NX and T ∗X are canonically identified.

9.2 Tubular Neighborhoods

Theorem 9.2 (Standard Tubular Neighborhood Theorem) Let M be an n-
dimensional manifold, X a k-dimensional submanifold, NX the normal bundle of
X in M , i0 : X ↪→ NX the zero section, and i : X ↪→M inclusion. Then there are
neighborhoods U0 of X in NX, U of X in M and a diffeomorphism ψ : U0 → U
such that

U0
ψ - U

X

i

-
�

i0 commutes .

For the proof, see Lecture 6.

Theorem 9.3 (Weinstein Tubular Neighborhood Theorem) Let (M,ω) be
a symplectic manifold, X a compact lagrangian submanifold, ω0 the canonical
symplectic form on T ∗X, i0 : X ↪→ T ∗X the lagrangian embedding as the zero
section, and i : X ↪→M the lagrangian embedding given by inclusion.
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Then there are neighborhoods U0 of X in T ∗X, U of X in M , and a diffeomor-
phism ϕ : U0 → U such that

U0
ϕ - U

X

i

-
�

i0 commutes and ϕ∗ω = ω0 .

Proof. This proof relies on (1) the standard tubular neighborhood theorem, and
(2) the Weinstein lagrangian neighborhood theorem.

(1) Since NX ' T ∗X, we can find a neighborhood N0 of X in T ∗X, a neigh-
borhood N of X in M , and a diffeomorphism ψ : N0 → N such that

N0
ψ - N

X

i

-
�

i0 commutes .

Let
ω0 = canonical form on T ∗X
ω1 = ψ∗ω

}
symplectic forms on N0.

The submanifold X is lagrangian for both ω0 and ω1.

(2) There exist neighborhoods U0 and U1 of X in N0 and a diffeomorphism
θ : U0 → U1 such that

U0
θ - U1

X

i 0

-
�

i0 commutes and θ∗ω1 = ω0 .

Take ϕ = ψ ◦ θ and U = ϕ(U0). Check that ϕ∗ω = θ∗ψ∗ω︸︷︷︸
ω1

= ω0.

�

Remark. Theorem 9.3 classifies lagrangian embeddings: up to local symplectomor-
phism, the set of lagrangian embeddings is the set of embeddings of manifolds into
their cotangent bundles as zero sections.
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The classification of isotropic embeddings was also carried out by Weinstein
in [105, 107]. An isotropic embedding of a manifold X into a symplectic manifold
(M,ω) is a closed embedding i : X ↪→M such that i∗ω = 0. Weinstein showed that
neighbourhood equivalence of isotropic embeddings is in one-to-one correspondence
with isomorphism classes of symplectic vector bundles.

The classification of coisotropic embeddings is due to Gotay [47]. A coisotropic
embedding of a manifold X carrying a closed 2-form α of constant rank into a
symplectic manifold (M,ω) is an embedding i : X ↪→ M such that i∗ω = α and
i(X) is coisotropic as a submanifold ofM . Let E be the characteristic distribution
of a closed form α of constant rank on X, i.e., Ep is the kernel of αp at p ∈ X.
Gotay showed that then E∗ carries a symplectic structure in a neighbourhood of
the zero section, such that X embeds coisotropically onto this zero section, and,
moreover every coisotropic embedding is equivalent to this in some neighbourhood
of the zero section. ♦

9.3 Application 1:
Tangent Space to the Group of Symplectomorphisms

The symplectomorphisms of a symplectic manifold (M,ω) form the group

Sympl(M,ω) = {f : M '−→M | f∗ω = ω} .

– What is Tid(Sympl(M,ω))?
(What is the “Lie algebra” of the group of symplectomorphisms?)
– What does a neighborhood of id in Sympl(M,ω) look like?

We use notions from the C1-topology:

C1-topology.
Let X and Y be manifolds.

Definition 9.4 A sequence of maps fi : X → Y converges in the C0-topology
to f : X → Y if and only if fi converges uniformly on compact sets.

Definition 9.5 A sequence of C1 maps fi : X → Y converges in the C1-
topology to f : X → Y if and only if it and the sequence of derivatives dfi :
TX → TY converge uniformly on compact sets.

Let (M,ω) be a compact symplectic manifold and f ∈ Sympl(M,ω). Then
Graph f
Graph id = ∆

}
are lagrangian submanifolds of (M ×M,pr∗1ω − pr∗2ω).

(pri : M ×M →M , i = 1, 2, are the projections to each factor.)

By the Weinstein tubular neighborhood theorem, there exists a neighborhood U of
∆ ('M) in (M ×M,pr∗1ω− pr∗2ω) which is symplectomorphic to a neighborhood
U0 of M in (T ∗M,ω0). Let ϕ : U → U0 be the symplectomorphism satisfying
ϕ(p, p) = (p, 0), ∀p ∈M .
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Suppose that f is sufficiently C1-close to id, i.e., f is in some sufficiently small
neighborhood of id in the C1-topology. Then:

1. We can assume that Graph f ⊆ U .

Let j : M ↪→ U be the embedding as Graph f ,
i : M ↪→ U be the embedding as Graph id = ∆ .

2. The map j is sufficiently C1-close to i.

3. By the Weinstein theorem, U ' U0 ⊆ T ∗M , so the above j and i induce

j0 : M ↪→ U0 embedding, where j0 = ϕ ◦ j ,
i0 : M ↪→ U0 embedding as 0-section .

Hence, we have

U
ϕ - U0

M

i 0

-
�

i and

U
ϕ - U0

M

j 0

-
�

j

where i(p) = (p, p), i0(p) = (p, 0), j(p) = (p, f(p)) and j0(p) = ϕ(p, f(p))
for p ∈M .

4. The map j0 is sufficiently C1-close to i0.
⇓

The image set j0(M) intersects each T ∗pM at one point µp depending smoothly
on p.

5. The image of j0 is the image of a smooth section µ : M → T ∗M , that is, a
1-form µ = j0 ◦ (π ◦ j0)−1.

Therefore, Graph f ' {(p, µp) | p ∈M, µp ∈ T ∗pM}.

Exercise. Vice-versa: if µ is a 1-form sufficiently C1-close to the zero 1-form, then

{(p, µp) | p ∈M, µp ∈ T ∗pM} ' Graph f ,

for some diffeomorphism f : M →M . By Lecture 3, we have

Graph f is lagrangian ⇐⇒ µ is closed. ♦

Conclusion. A small C1-neighborhood of id in Sympl(M,ω) is homeomorphic to
a C1-neighborhood of zero in the vector space of closed 1-forms on M . So:

Tid(Sympl(M,ω)) ' {µ ∈ Ω1(M) | dµ = 0} .

In particular, Tid(Sympl(M,ω)) contains the space of exact 1-forms

{µ = dh | h ∈ C∞(M)} ' C∞(M)/ locally constant functions .
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9.4 Application 2:
Fixed Points of Symplectomorphisms

Theorem 9.6 Let (M,ω) be a compact symplectic manifold with H1
deRham(M) =

0. Then any symplectomorphism of M which is sufficiently C1-close to the identity
has at least two fixed points.

Proof. Suppose that f ∈ Sympl(M,ω) is sufficiently C1-close to id.
Then Graph f ' closed 1-form µ on M .

dµ = 0
H1

deRham(M) = 0

}
=⇒ µ = dh for some h ∈ C∞(M) .

Since M is compact, h has at least 2 critical points.

Fixed points of f = critical points of h
‖ ‖

Graph f ∩∆ = {p : µp = dhp = 0} .

�

Lagrangian intersection problem:
A submanifold Y ofM is C1-close toX when there is a diffeomorphismX → Y

which is, as a map into M , C1-close to the inclusion X ↪→M .

Theorem 9.7 Let (M,ω) be a symplectic manifold. Suppose that X is a com-
pact lagrangian submanifold of M with H1

deRham(X) = 0. Then every lagrangian
submanifold of M which is C1-close to X intersects X in at least two points.

Proof. Exercise. �

Arnold conjecture:

Let (M,ω) be a compact symplectic manifold, and f : M → M a symplectomor-
phism which is “exactly homotopic to the identity” (see below). Then

#{fixed points of f} ≥ minimal # of critical points
a smooth function on M can have .

Together with Morse theory,8 we obtain9

#{nondegenerate fixed points of f} ≥ minimal # of critical points
a Morse function on M can have

≥
2n∑
i=0

dimHi(M ; R) .

8A Morse function on M is a function h : M → R whose critical points (i.e., points
p where dhp = 0) are all nondegenerate (i.e., the hessian at those points is nonsingular:

det
“

∂2h
∂xi∂xj

”
p
6= 0).

9A fixed point p of f : M →M is nondegenerate if dfp : TpM → TpM is nonsingular.



56 9 WEINSTEIN TUBULAR NEIGHBORHOOD THEOREM

The Arnold conjecture was proved by Conley-Zehnder, Floer, Hofer-Salamon,
Ono, Fukaya-Ono, Liu-Tian using Floer homology (which is an∞-dimensional ana-
logue of Morse theory). There are open conjectures for sharper bounds on the
number of fixed points.

Meaning of “f is exactly homotopic to the identity:”

Suppose that ht : M → R is a smooth family of functions which is 1-periodic,
i.e., ht = ht+1. Let ρ : M×R→M be the isotopy generated by the time-dependent
vector field vt defined by ω(vt, ·) = dht. Then “f being exactly homotopic to the
identity” means f = ρ1 for some such ht.

In other words, f is exactly homotopic to the identity when f is the time-1
map of an isotopy generated by some smooth time-dependent 1-periodic hamiltonian
function.

There is a one-to-one correspondence

fixed points of f
1−1←→ period-1 orbits of ρ : M × R→M

because f(p) = p if and only if {ρ(t, p) , t ∈ [0, 1]} is a closed orbit.

Proof of the Arnold conjecture in the case when h : M → R is independent of t:
p is a critical point of h ⇐⇒ dhp = 0 ⇐⇒ vp = 0
=⇒ ρ(t, p) = p , ∀t ∈ R =⇒ p is a fixed point of ρ1. �

Exercise. Compute these estimates for the number of fixed points on some compact
symplectic manifolds (for instance, S2, S2 × S2 and T 2 = S1 × S1). ♦



Part IV

Contact Manifolds
Contact geometry is also known as “the odd-dimensional analogue of symplectic
geometry.” We will browse through the basics of contact manifolds and their relation
to symplectic manifolds.

10 Contact Forms

10.1 Contact Structures

Definition 10.1 A contact element on a manifold M is a point p ∈ M , called
the contact point, together with a tangent hyperplane at p, Hp ⊂ TpM , that is,
a codimension-1 subspace of TpM .

A hyperplane Hp ⊂ TpM determines a covector αp ∈ T ∗pM \ {0}, up to multi-
plication by a nonzero scalar:

(p,Hp) is a contact element←→ Hp = kerαp with αp : TpM −→ R linear , 6= 0

kerαp = kerα′p ⇐⇒ αp = λα′p for some λ ∈ R \ {0} .

Suppose that H is a smooth field of contact elements (i.e., of tangent hyper-
planes) on M :

H : p 7−→ Hp ⊂ TpM .

Locally, H = kerα for some 1-form α, called a locally defining 1-form for H. (α
is not unique: kerα = ker(fα), for any nowhere vanishing f : M → R.)

Definition 10.2 A contact structure on M is a smooth field of tangent hyper-
planes H ⊂ TM , such that, for any locally defining 1-form α, we have dα|H non-
degenerate (i.e., symplectic). The pair (M,H) is then called a contact manifold
and α is called a local contact form.

At each p ∈M ,
TpM = kerαp︸ ︷︷ ︸

Hp

⊕ ker dαp︸ ︷︷ ︸
1−dimensional

.

The ker dαp summand in this splitting depends on the choice of α.

dαp|Hp
nondegenerate =⇒

{
dimHp = 2n is even
(dαp)n|Hp 6= 0 is a volume form on Hp

αp|ker dαp nondegenerate

Therefore,

• any contact manifold (M,H) has dimM = 2n+ 1 odd, and
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• if α is a (global) contact form, then α ∧ (dα)n is a volume form on M .

Remark. Let (M,H) be a contact manifold. A global contact form exists if and
only if the quotient line bundle TM/H is orientable. Since H is also orientable,
this implies that M is orientable. ♦

Proposition 10.3 Let H be a field of tangent hyperplanes on M . Then

H is a contact structure ⇐⇒ α ∧ (dα)n 6= 0 for every locally defining 1-form α .

Proof.
=⇒ Done above.
⇐= Suppose that H = kerα locally. We need to show:

dα|H nondegenerate ⇐⇒ α ∧ (dα)n 6= 0 .

Take a local trivialization {e1, f1, . . . , en, fn, r} of TM = kerα⊕ rest , such that
kerα = span{e1, f1, . . . , en, fn} and rest = span{r}.

(α ∧ (dα)n)(e1, f1, . . . , en, fn, r) = α(r)︸︷︷︸
6=0

·(dα)n(e1, f1, . . . , en, fn)

and hence α ∧ (dα)n 6= 0 ⇐⇒ (dα)n|H 6= 0 ⇐⇒ dα|H is nondegenerate . �

10.2 Examples

1. On R3 with coordinates (x, y, z), consider α = xdy + dz. Since

α ∧ dα = (xdy + dz) ∧ (dx ∧ dy) = dx ∧ dy ∧ dz 6= 0 ,

α is a contact form on R3.

The corresponding field of hyperplanes H = kerα at (x, y, z) ∈ R3 is

H(x,y,z) = {v = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
| α(v) = bx+ c = 0} .

Exercise. Picture these hyperplanes. ♦

2. (Martinet [80], 1971) Any compact orientable 3-manifold admits a contact
structure.

Open Problem, 2000. The classification of compact orientable contact 3-
manifolds is still not known. There is by now a huge collection of results
in contact topology related to the classification of contact manifolds. For
a review of the state of the knowledge and interesting questions on contact
3-manifolds, see [33, 43, 100].
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3. Let X be a manifold and T ∗X its cotangent bundle. There are two canonical
contact manifolds associated to X (see Homework 7):

P(T ∗X) = the projectivization of T ∗X , and
S(T ∗X) = the cotangent sphere bundle .

4. On R2n+1 with coordinates (x1, y1, . . . , xn, yn, z), α =
∑
i xidyi + dz is

contact.

10.3 First Properties

There is a local normal form theorem for contact manifolds analogous to the Dar-
boux theorem for symplectic manifolds.

Theorem 10.4 Let (M,H) be a contact manifold and p ∈ M . Then there exists
a coordinate system (U , x1, y1, . . . , xn, yn, z) centered at p such that on U

α =
∑

xidyi + dz is a local contact form for H .

The idea behind the proof is sketched in the next lecture.

There is also a Moser-type theorem for contact forms.

Theorem 10.5 (Gray) LetM be a compact manifold. Suppose that αt, t ∈ [0, 1],
is a smooth family of (global) contact forms on M . Let Ht = kerαt. Then there
exists an isotopy ρ : M × R −→M such that Ht = ρt∗H0, for all 0 ≤ t ≤ 1.

Exercise. Show that Ht = ρt∗H0 ⇐⇒ ρ∗tαt = ut ·α0 for some family ut : M −→
R, 0 ≤ t ≤ 1, of nowhere vanishing functions. ♦

Proof. (À la Moser)

We need to find ρt such that

{
ρ0 = id
d
dt (ρ

∗
tαt) = d

dt (utα0) .
For any isotopy ρ,

d

dt
(ρ∗tαt) = ρ∗t

(
Lvtαt +

dαt
dt

)
,

where vt = dρt

dt ◦ ρ
−1
t is the vector field generated by ρt. By the Moser trick, it

suffices to find vt and then integrate it to ρt. We will search for vt in Ht = kerαt;
this unnecessary assumption simplifies the proof.
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We need to solve

ρ∗t ( Lvtαt︸ ︷︷ ︸
dıvtαt+ıvtdαt

+
dαt
dt

) =
dut
dt

α0︸︷︷︸
1

ut
ρ∗tαt

=⇒ ρ∗t

(
ıvtdαt +

dαt
dt

)
=

dut
dt
· 1
ut
· ρ∗tαt

⇐⇒ ıvtdαt +
dαt
dt

= (ρ∗t )
−1

(
dut
dt
· 1
ut

)
αt . (?)

Restricting to the hyperplane Ht = kerαt, equation (?) reads

ıvt
dαt|Ht

= −dαt
dt

∣∣∣∣
Ht

which determines vt uniquely, since dαt|Ht
is nondegenerate. After integrating vt

to ρt, the factor ut is determined by the relation ρ∗tαt = ut · α0. Check that this
indeed gives a solution. �



Homework 7: Manifolds of Contact Elements

Given any manifold X of dimension n, there is a canonical symplectic manifold
of dimension 2n attached to it, namely its cotangent bundle with the standard
symplectic structure. The exercises below show that there is also a canonical contact
manifold of dimension 2n− 1 attached to X.

The manifold of contact elements of an n-dimensional manifold X is

C = {(x, χx) |x ∈ X and χx is a hyperplane in TxX} .

On the other hand, the projectivization of the cotangent bundle of X is

P∗X = (T ∗X \ zero section)/ ∼

where (x, ξ) ∼ (x, ξ′) whenever ξ = λξ′ for some λ ∈ R \ {0} (here x ∈ X and
ξ, ξ′ ∈ T ∗xX \ {0}). We will denote elements of P∗X by (x, [ξ]), [ξ] being the ∼
equivalence class of ξ.

1. Show that C is naturally isomorphic to P∗X as a bundle over X, i.e., exhibit
a diffeomorphism ϕ : C → P∗X such that the following diagram commutes:

C ϕ−→ P∗X
π ↓ ↓ π
X = X

where the vertical maps are the natural projections (x, χx) 7→ x and (x, ξ) 7→
x.

Hint: The kernel of a non-zero ξ ∈ T ∗xX is a hyperplane χx ⊂ TxX.
What is the relation between ξ and ξ′ if ker ξ = ker ξ′?

2. There is on C a canonical field of hyperplanes H (that is, a smooth map
attaching to each point in C a hyperplane in the tangent space to C at that
point): H at the point p = (x, χx) ∈ C is the hyperplane

Hp = (dπp)−1χx ⊂ TpC ,

where
C p = (x, χx) TpC
↓ π ↓ ↓ dπp

X x TxX

are the natural projections, and (dπp)−1χx is the preimage of χx ⊂ TxX by
dπp.

Under the isomorphism C ' P∗X from exercise 1, H induces a field of hyper-
planes H on P∗X. Describe H.

Hint: If ξ ∈ T ∗xX \ {0} has kernel χx, what is the kernel of the canonical 1-form
α(x,ξ) = (dπ(x,ξ))

∗ξ?
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62 HOMEWORK 7

3. Check that (P∗X,H) is a contact manifold, and therefore (C,H) is a contact
manifold.

Hint: Let (x, [ξ]) ∈ P∗X. For any ξ representing the class [ξ], we have

H(x,[ξ]) = ker ((dπ(x,[ξ]))
∗ξ) .

Let x1, . . . , xn be local coordinates on X, and let x1, . . . , xn, ξ1, . . . , ξn be the
associated local coordinates on T ∗X. In these coordinates, (x, [ξ]) is given by
(x1, . . . , xn, [ξ1, . . . , ξn]). Since at least one of the ξi’s is nonzero, without loss
of generality we may assume that ξ1 6= 0 so that we may divide ξ by ξ1 to obtain
a representative with coordinates (1, ξ2, . . . , ξn). Hence, by choosing always the
representative of [ξ] with ξ1 = 1, the set x1, . . . , xn, ξ2, . . . , ξn defines coordinates
on some neighborhood U of (x, [ξ]) in P∗X. On U , consider the 1-form

α = dx1 +
X
i≥2

ξidxi .

Show that α is a contact form on U , i.e., show that kerα(x,[ξ]) = H(x,[ξ]), and
that dα(x,[ξ]) is nondegenerate on H(x,[ξ]).

4. What is the symplectization of C?
What is the manifold C when X = R3 and when X = S1 × S1?

Remark. Similarly, we could have defined the manifold of oriented contact
elements of X to be

Co =
{

(x, χox)
∣∣∣∣x ∈ X and

χox is a hyperplane in TxX
equipped with an orientation

}
.

The manifold Co is isomorphic to the cotangent sphere bundle of X

S∗X := (T ∗X \ zero section)/ ≈

where (x, ξ) ≈ (x, ξ′) whenever ξ = λξ′ for some λ ∈ R+.

A construction analogous to the above produces a canonical contact structure
on Co. See [3, Appendix 4].

♦



11 Contact Dynamics

11.1 Reeb Vector Fields

Let (M,H) be a contact manifold with a contact form α.

Claim. There exists a unique vector field R on M such that

{
ı
R
dα = 0
ı
R
α = 1

Proof.

{
ı
R
dα = 0 =⇒ R ∈ ker dα , which is a line bundle, and

ı
R
α = 1 =⇒ normalizes R .

�

The vector field R is called the Reeb vector field determined by α.

Claim. The flow of R preserves the contact form, i.e., if ρt = exp tR is the isotopy
generated by R, then ρ∗tα = α, ∀t ∈ R.

Proof. We have d
dt (ρ

∗
tα) = ρ∗t (LR

α) = ρ∗t (d ıRα︸︷︷︸
1

+ ı
R
dα︸ ︷︷ ︸
0

) = 0 .

Hence, ρ∗tα = ρ∗0α = α, ∀t ∈ R. �

Definition 11.1 A contactomorphism is a diffeomorphism f of a contact manifold
(M,H) which preserves the contact structure (i.e., f∗H = H).

Examples.

1. Euclidean space R2n+1 with α =
∑
i xidyi + dz.

ı
R

∑
dxi ∧ dyi = 0

ı
R

∑
xidyi + dz = 1

}
=⇒ R =

∂

∂z
is the Reeb vector field.

The contactomorphisms generated by R are translations

ρt(x1, y1, . . . , xn, yn, z) = (x1, y1, . . . , xn, yn, z + t) .

2. Regard the odd sphere S2n−1 i
↪→ R2n as the set of unit vectors

{(x1, y1, . . . , xn, yn) |
∑

(x2
i + y2

i ) = 1} .

Consider the 1-form on R2n, σ = 1
2

∑
(xidyi − yidxi).

Claim. The form α = i∗σ is a contact form on S2n−1.

Proof. We need to show that α ∧ (dα)n−1 6= 0. The 1-form on R2n ν =
d
∑

(x2
i+y

2
i ) = 2

∑
(xidxi+yidyi) satisfies TpS

2n−1 = ker νp, at p ∈ S2n−1.
Check that ν ∧ σ ∧ (dσ)n−1 6= 0. �

63
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The distribution H = kerα is called the standard contact structure on
S2n−1. The Reeb vector field is R = 2

∑(
xi

∂
∂yi
− yi ∂

∂xi

)
, and is also

known as the Hopf vector field on S2n−1, as the orbits of its flow are the
circles of the Hopf fibration.

♦

11.2 Symplectization

Example. Let M̃ = S2n−1 × R, with coordinate τ in the R-factor, and projection
π : M̃ → S2n−1, (p, τ) 7→ p. Under the identification M̃ ' R2n\{0}, where
the R-factor represents the logarithm of the square of the radius, the projection π
becomes

π : R2n\{0} −→ S2n−1

(X1, Y1, . . . , Xn, Yn) 7−→ ( X1√
eτ ,

Y1√
eτ , . . . ,

Xn√
eτ ,

Yn√
eτ )

where eτ =
∑

(X2
i + Y 2

i ). Let α = i∗σ be the standard contact form on S2n−1

(see the previous example). Then ω = d(eτπ∗α) is a closed 2-form on R2n\{0}.
Since π∗i∗xi = Xi√

eτ , π∗i∗yi = Yi√
eτ , we have

π∗α = π∗i∗σ = 1
2

∑(
Xi√
eτ d(

Yi√
eτ )− Yi√

eτ d(
Xi√
eτ )
)

= 1
2eτ

∑
(XidYi − YidXi) .

Therefore, ω =
∑
dXi ∧ dYi is the standard symplectic form on R2n\{0} ⊂ R2n.

(M̃, ω) is called the symplectization of (S2n−1, α). ♦

Proposition 11.2 Let (M,H) be a contact manifold with a contact form α. Let

M̃ = M × R, and let π : M̃ → M , (p, τ) 7→ p, be the projection. Then ω =
d(eτπ∗α) is a symplectic form on M̃ , where τ is a coordinate on R.

Proof. Exercise. �

Hence, M̃ has a symplectic form ω canonically determined by a contact form
α on M and a coordinate function on R; (M̃, ω) is called the symplectization of
(M,α).

Remarks.

1. The contact version of the Darboux theorem can now be derived by applying
the symplectic theorem to the symplectization of the contact manifold (with
appropriate choice of coordinates); see [3, Appendix 4].
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2. There is a coordinate-free description of M̃ as

M̃ = {(p, ξ) | p ∈M, ξ ∈ T ∗pM, such that ker ξ = Hp} .

The group R \ {0} acts on M̃ by multiplication on the cotangent vector:

λ · (p, ξ) = (p, λξ) , λ ∈ R \ {0} .

The quotient M̃/(R \ {0}) is diffeomorphic to M . M̃ has a canonical 1-form

α̃ defined at v ∈ T(p,ξ)M̃ by

α̃(p,ξ)(v) = ξ((d pr)(p,ξ)v) ,

where pr : M̃ →M is the bundle projection.

♦

11.3 Conjectures of Seifert and Weinstein

Question. (Seifert, 1948) Let v be a nowhere vanishing vector field on the
3-sphere. Does the flow of v have any periodic orbits?

Counterexamples.

• (Schweitzer, 1974) ∃ C1 vector field without periodic orbits.

• (Kristina Kuperberg, 1994) ∃ C∞ vector field without periodic orbits.

Question. How about volume-preserving vector fields?

• (Greg Kuperberg, 1997) ∃ C1 counterexample.

• C∞ counterexamples are not known.

Natural generalization of this problem:
Let M = S3 be the 3-sphere, and let γ be a volume form on M . Suppose that

v is a nowhere vanishing vector field, and suppose that v is volume-preserving, i.e.,

Lvγ = 0 ⇐⇒ dıvγ = 0 ⇐⇒ ıvγ = dα

for some 1-form α, since H2(S3) = 0.
Given a 1-form α, we would like to study vector fields v such that{

ıvγ = dα
ıvα > 0 .
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A vector field v satisfying ıvα > 0 is called positive. For instance, vector fields in a
neighborhood of the Hopf vector field are positive relative to the standard contact
form on S3.

Renormalizing as R := v
ıvα

, we should study instead ıRdα = 0
ıα = 1
α ∧ dα is a volume form,

that is, study pairs (α,R) where{
α is a contact form, and
R is its Reeb vector field.

Conjecture. (Weinstein, 1978 [106]) Suppose that M is a 3-dimensional
manifold with a (global) contact form α. Let v be the Reeb vector field for α. Then
v has a periodic orbit.

Theorem 11.3 (Viterbo and Hofer, 1993 [63, 64, 103]) The Weinstein con-
jecture is true when

1) M = S3, or

2) π2(M) 6= 0, or

3) the contact structure is overtwisted.10

Open questions.

• How many periodic orbits are there?

• What do they look like?

• Is there always an unknotted one?

• What about the linking behavior?

10A surface S inside a contact 3-manifold determines a singular foliation on S, called the
characteristic foliation of S, by the intersection of the contact planes with the tangent
spaces to S. A contact structure on a 3-manifold M is called overtwisted if there exists
an embedded 2-disk whose characteristic foliation contains one closed leaf C and exactly
one singular point inside C; otherwise, the contact structure is called tight. Eliashberg [32]
showed that the isotopy classification of overtwisted contact structures on closed 3-manifolds
coincides with their homotopy classification as tangent plane fields. The classification of tight
contact structures is still open.



Part V

Compatible Almost Complex
Structures
The fact that any symplectic manifold possesses almost complex structures, and
even so in a compatible sense, establishes a link from symplectic geometry to com-
plex geometry, and is the point of departure for the modern technique of counting
pseudo-holomorphic curves, as first proposed by Gromov [49].

12 Almost Complex Structures

12.1 Three Geometries

1. Symplectic geometry:
geometry of a closed nondegenerate skew-symmetric bilinear form.

2. Riemannian geometry:
geometry of a positive-definite symmetric bilinear map.

3. Complex geometry:
geometry of a linear map with square -1.

Example. The euclidean space R2n with the standard linear coordinates
(x1, . . . , xn, y1, . . . , yn) has standard structures:

ω0 =
∑
dxj ∧ dyj , standard symplectic structure;

g0 = 〈·, ·〉 , standard inner product; and

if we identify R2n with Cn with coordinates zj = xj +
√
−1 yj , then multiplication

by
√
−1 induces a constant linear map J0 on the tangent spaces of R2n:

J0(
∂

∂xj
) =

∂

∂yj
, J0(

∂

∂yj
) = − ∂

∂xj
,

with J2
0 = −Id. Relative to the basis ∂

∂x1
, . . . , ∂

∂xn
, ∂
∂y1

, . . . , ∂
∂yn

, the maps J0, ω0

and g0 are represented by

J0(u) =
(

0 −Id
Id 0

)
u

ω0(u, v) = vt
(

0 −Id
Id 0

)
u

g0(u, v) = vtu

67
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where u, v ∈ R2n and vt is the transpose of v. The following compatibility relation
holds:

ω0(u, v) = g0(J0(u), v) .

♦

12.2 Complex Structures on Vector Spaces

Definition 12.1 Let V be a vector space. A complex structure on V is a linear
map:

J : V → V with J2 = −Id .

The pair (V, J) is called a complex vector space.

A complex structure J is equivalent to a structure of vector space over C if we
identify the map J with multiplication by

√
−1.

Definition 12.2 Let (V,Ω) be a symplectic vector space. A complex structure J
on V is said to be compatible (with Ω, or Ω-compatible) if

G
J
(u, v) := Ω(u, Jv) , ∀u, v ∈ V , is a positive inner product on V .

That is,

J is Ω-compatible ⇐⇒
{

Ω(Ju, Jv) = Ω(u, v) [symplectomorphism]
Ω(u, Ju) > 0, ∀u 6= 0 [taming condition]

Compatible complex structures always exist on symplectic vector spaces:

Proposition 12.3 Let (V,Ω) be a symplectic vector space. Then there is a com-
patible complex structure J on V .

Proof. Choose a positive inner product G on V . Since Ω and G are nondegenerate,

u ∈ V 7−→ Ω(u, ·) ∈ V ∗

w ∈ V 7−→ G(w, ·) ∈ V ∗

}
are isomorphisms between V and V ∗.

Hence, Ω(u, v) = G(Au, v) for some linear map A : V → V . This map A is
skew-symmetric because

G(A∗u, v) = G(u,Av) = G(Av, u)
= Ω(v, u) = −Ω(u, v) = G(−Au, v) .

Also:

• AA∗ is symmetric: (AA∗)∗ = AA∗.

• AA∗ is positive: G(AA∗u, u) = G(A∗u,A∗u) > 0, for u 6= 0.
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These properties imply that AA∗ diagonalizes with positive eigenvalues λi,

AA∗ = B diag (λ1, . . . , λ2n) B−1 .

We may hence define an arbitrary real power of AA∗ by rescaling the eigenspaces,
in particular, √

AA∗ := B diag (
√
λ1, . . . ,

√
λ2n) B−1 .

Then
√
AA∗ is symmetric and positive-definite. Let

J = (
√
AA∗)−1A .

The factorization A =
√
AA∗ J is called the polar decomposition of A. Since

A commutes with
√
AA∗, J commutes with

√
AA∗. Check that J is orthogonal,

JJ∗ = Id, as well as skew-adjoint, J∗ = −J , and hence it is a complex structure
on V :

J2 = −JJ∗ = −Id .

Compatibility:

Ω(Ju, Jv) = G(AJu, Jv) = G(JAu, Jv) = G(Au, v)
= Ω(u, v)

Ω(u, Ju) = G(Au, Ju) = G(−JAu, u)
= G(

√
AA∗ u, u) > 0 , for u 6= 0 .

Therefore, J is a compatible complex structure on V . �

As indicated in the proof, in general, the positive inner product defined by

Ω(u, Jv) = G(
√
AA∗ u, v) is different from G(u, v) .

Remarks.

1. This construction is canonical after an initial choice of G. To see this, no-
tice that

√
AA∗ does not depend on the choice of B nor of the ordering of

the eigenvalues in diag (
√
λ1, . . . ,

√
λ2n). The linear transformation

√
AA∗

is completely determined by its effect on each eigenspace of AA∗: on the
eigenspace corresponding to the eigenvalue λk, the map

√
AA∗ is defined to

be multiplication by
√
λk.

2. If (Vt,Ωt) is a family of symplectic vector spaces with a family Gt of positive
inner products, all depending smoothly on a real parameter t, then, adapting
the proof of the previous proposition, we can show that there is a smooth
family Jt of compatible complex structures on Vt.

3. To check just the existence of compatible complex structures on a symplectic
vector space (V,Ω), we could also proceed as follows. Given a symplectic basis
e1, . . . , en, f1, . . . , fn (i.e., Ω(ei, ej) = Ω(fi, fj) = 0 and Ω(ei, fj) = δij),
one can define Jej = fj and Jfj = −ej . This is a compatible complex



70 12 ALMOST COMPLEX STRUCTURES

structure on (V,Ω). Moreover, given Ω and J compatible on V , there exists
a symplectic basis of V of the form:

e1, . . . , en, f1 = Je1, . . . , fn = Jen .

The proof is part of Homework 8.

4. Conversely, given (V, J), there is always a symplectic structure Ω such that J
is Ω-compatible: pick any positive inner product G such that J∗ = −J and
take Ω(u, v) = G(Ju, v).

♦

12.3 Compatible Structures

Definition 12.4 An almost complex structure on a manifold M is a smooth field
of complex structures on the tangent spaces:

x 7−→ Jx : TxM → TxM linear, and J2
x = −Id .

The pair (M,J) is then called an almost complex manifold.

Definition 12.5 Let (M,ω) be a symplectic manifold. An almost complex structure
J on M is called compatible (with ω or ω-compatible) if the assignment

x 7−→ gx : TxM × TxM → R
gx(u, v) := ωx(u, Jxv)

is a riemannian metric on M .

For a manifold M ,

ω is a symplectic form =⇒ x 7−→ ωx : TxM × TxM → R is bilinear,
nondegenerate, skew-symmetric;

g is a riemannian metric =⇒ x 7−→ gx : TxM × TxM → R
is a positive inner product;

J almost complex structure =⇒ x 7−→ Jx : TxM → TxM
is linear and J2 = −Id .

The triple (ω, g, J) is called a compatible triple when g(·, ·) = ω(·, J ·).

Proposition 12.6 Let (M,ω) be a symplectic manifold, and g a riemannian metric
on M . Then there exists a canonical almost complex structure J on M which is
compatible.

Proof. The polar decomposition is canonical (after a choice of metric), hence this
construction of J on M is smooth; cf. Remark 2 of the previous section. �

Remark. In general, g
J
(·, ·) := ω(·, J ·) 6= g(·, ·). ♦

Since riemannian metrics always exist, we conclude:
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Corollary 12.7 Any symplectic manifold has compatible almost complex structures.

– How different can compatible almost complex structures be?

Proposition 12.8 Let (M,ω) be a symplectic manifold, and J0, J1 two almost
complex structures compatible with ω. Then there is a smooth family Jt, 0 ≤ t ≤ 1,
of compatible almost complex structures joining J0 to J1.

Proof. By compatibility, we get

ω, J0  g0(·, ·) = ω(·, J0·)
ω, J1  g1(·, ·) = ω(·, J1·)

}
two riemannian metrics on M .

Their convex combinations

gt(·, ·) = (1− t)g0(·, ·) + tg1(·, ·) , 0 ≤ t ≤ 1 ,

form a smooth family of riemannian metrics. Apply the polar decomposition to
(ω, gt) to obtain a smooth family of Jt’s joining J0 to J1. �

Corollary 12.9 The set of all compatible almost complex structures on a symplectic
manifold is path-connected.



Homework 8: Compatible Linear Structures

1. Let Ω(V ) and J(V ) be the spaces of symplectic forms and complex structures
on the vector space V , respectively. Take Ω ∈ Ω(V ) and J ∈ J(V ). Let
GL(V ) be the group of all isomorphisms of V , let Sp(V,Ω) be the group
of symplectomorphisms of (V,Ω), and let GL(V, J) be the group of complex
isomorphisms of (V, J).

Show that

Ω(V ) ' GL(V )/Sp(V,Ω) and J(V ) ' GL(V )/GL(V, J) .

Hint: The group GL(V ) acts on Ω(V ) by pullback. What is the stabilizer of a
given Ω?

2. Let (R2n,Ω0) be the standard 2n-dimensional symplectic euclidean space.

The symplectic linear group is the group of all linear transformations of R2n

which preserve the symplectic structure:

Sp(2n) := {A ∈ GL(2n; R) |Ω0(Au,Av) = Ω0(u, v) for all u, v ∈ R2n} .

Identifying the complex n × n matrix X + iY with the real 2n × 2n matrix(
X −Y
Y X

)
, consider the following subgroups of GL(2n; R):

Sp(2n) , O(2n) , GL(n; C) and U(n) .

Show that the intersection of any two of them is U(n). (From [83, p.41].)
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3. Let (V,Ω) be a symplectic vector space of dimension 2n, and let J : V → V ,
J2 = −Id, be a complex structure on V .

(a) Prove that, if J is Ω-compatible and L is a lagrangian subspace of (V,Ω),
then JL is also lagrangian and JL = L⊥, where ⊥ denotes orthogonality
with respect to the positive inner product G

J
(u, v) = Ω(u, Jv).

(b) Deduce that J is Ω-compatible if and only if there exists a symplectic
basis for V of the form

e1, e2, . . . , en, f1 = Je1, f2 = Je2, . . . , fn = Jen

where Ω(ei, ej) = Ω(fi, fj) = 0 and Ω(ei, fj) = δij .



13 Compatible Triples

13.1 Compatibility

Let (M,ω) be a symplectic manifold. As shown in the previous lecture, compatible
almost complex structures always exist on (M,ω). We also showed that the set
of all compatible almost complex structures on (M,ω) is path-connected. In fact,
the set of all compatible almost complex structures is even contractible. (This is
important for defining invariants.) Let J (TxM,ωx) be the set of all compatible
complex structures on (TxM,ωx) for x ∈M .

Proposition 13.1 The set J (TxM,ωx) is contractible, i.e., there exists a homo-
topy

ht : J (TxM,ωx) −→ J (TxM,ωx) , 0 ≤ t ≤ 1 ,

starting at the identity h0 = Id,
finishing at a trivial map h1 : J (TxM,ωx)→ {J0},
and fixing J0 (i.e., ht(J0) = J0, ∀t) for some J0 ∈ J (TxM,ωx).

Proof. Homework 9. �

Consider the fiber bundle J →M with fiber

Jx := J (TxM,ωx) over x ∈M .

A compatible almost complex structure J on (M,ω) is a section of J . The space
of sections of J is contractible because the fibers are contractible.

Remarks.

• We never used the closedness of ω to construct compatible almost com-
plex structures. The construction holds for an almost symplectic manifold
(M,ω), that is, a pair of a manifold M and a nondegenerate 2-form ω, not
necessarily closed.

• Similarly, we could define a symplectic vector bundle to be a vector bundle
E → M over a manifold M equipped with a smooth field ω of fiberwise
nondegenerate skew-symmetric bilinear maps

ωx : Ex × Ex −→ R .

The existence of such a field ω is equivalent to being able to reduce the
structure group of the bundle from the general linear group to the linear
symplectic group. As a consequence of our discussion, a symplectic vector
bundle is always a complex vector bundle, and vice-versa.

♦
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13.2 Triple of Structures

If (ω, J, g) is a compatible triple, then any one of ω, J or g can be written in
terms of the other two:

g(u, v) = ω(u, Jv)
ω(u, v) = g(Ju, v)
J(u) = g̃−1(ω̃(u))

where
ω̃ : TM −→ T ∗M u 7−→ ω(u, ·)
g̃ : TM −→ T ∗M u 7−→ g(u, ·)

are the linear isomorphisms induced by the bilinear forms ω and g.
The relations among ω, J and g can be summarized in the following table. The

last column lists differential equations these structures are usually asked to satisfy.

Data Condition/Technique Consequence Question

ω, J
ω(Ju, Jv) = ω(u, v)
ω(u, Ju) > 0, u 6= 0

g(u, v) := ω(u, Jv)
is positive inner product

(g flat?)

g, J
g(Ju, Jv) = g(u, v)
(i.e., J is orthogonal)

ω(u, v) := g(Ju, v)
is nondeg., skew-symm.

ω closed?

ω, g polar decomposition  J almost complex str. J integrable?

An almost complex structure J on a manifold M is called integrable if and only
if J is induced by a structure of complex manifold on M . In Lecture 15 we will
discuss tests to check whether a given J is integrable.

13.3 First Consequences

Proposition 13.2 Let (M,J) be an almost complex manifold. Suppose that J
is compatible with two symplectic structures ω0, ω1 Then ω0, ω1 are deformation-
equivalent, that is, there exists a smooth family ωt, 0 ≤ t ≤ 1, of symplectic forms
joining ω0 to ω1.

Proof. Take ωt = (1− t)ω0 + tω1, 0 ≤ t ≤ 1. Then:

• ωt is closed.

• ωt is nondegenerate, since

gt(·, ·) := ωt(·, J ·) = (1− t)g0(·, ·) + tg1(·, ·)

is positive, hence nondegenerate.
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�

Remark. The converse of this proposition is not true. A counterexample is provided
by the following family in R4:

ωt = cosπt dx1dy1 + sinπt dx1dy2 + sinπt dy1dx2 + cosπt dx2dy2 , 0 ≤ t ≤ 1 .

There is no J in R4 compatible with both ω0 and ω1. ♦

Definition 13.3 A submanifold X of an almost complex manifold (M,J) is an
almost complex submanifold when J(TX) ⊆ TX, i.e., for all x ∈ X, v ∈ TxX,
we have Jxv ∈ TxX.

Proposition 13.4 Let (M,ω) be a symplectic manifold equipped with a compatible
almost complex structure J . Then any almost complex submanifold X of (M,J)
is a symplectic submanifold of (M,ω).

Proof. Let i : X ↪→M be the inclusion. Then i∗ω is a closed 2-form on X.
Nondegeneracy:

ωx(u, v) = gx(Jxu, v) , ∀x ∈ X , ∀u, v ∈ TxX .

Since gx|TxX is nondegenerate, so is ωx|TxX . Hence, i∗ω is symplectic. �

– When is an almost complex manifold a complex manifold? See Lecture 15.

Examples.

S2 is an almost complex manifold and it is a complex manifold.

S4 is not an almost complex manifold (proved by Ehresmann and Hopf).

S6 is almost complex and it is not yet known whether it is complex.

S8 and higher spheres are not almost complex manifolds.

♦



Homework 9: Contractibility

The following proof illustrates in a geometric way the relation between lagrangian
subspaces, complex structures and inner products; from [11, p.45].

Let (V,Ω) be a symplectic vector space, and let J (V,Ω) be the set of all complex
structures on (V,Ω) which are Ω-compatible; i.e., given a complex structure J on
V we have

J ∈ J (V,Ω) ⇐⇒ G
J
(·, ·) := Ω(·, J ·) is a positive inner product on V .

Fix a lagrangian subspace L0 of (V,Ω). Let L(V,Ω, L0) be the space of all
lagrangian subspaces of (V,Ω) which intersect L0 transversally. Let G(L0) be the
space of all positive inner products on L0.

Consider the map

Ψ : J (V,Ω) → L(V,Ω, L0)× G(L0)
J 7→ (JL0, GJ

|L0)

Show that:

1. Ψ is well-defined.

2. Ψ is a bijection.

Hint: Given (L,G) ∈ L(V,Ω, L0)× G(L0), define J in the following manner:
For v ∈ L0, v⊥ = {u ∈ L0 |G(u, v) = 0} is a (n − 1)-dimensional space of L0;
its symplectic orthogonal (v⊥)Ω is (n+ 1)-dimensional. Check that (v⊥)Ω ∩ L is
1-dimensional. Let Jv be the unique vector in this line such that Ω(v, Jv) = 1.
Check that, if we take v’s in some G-orthonormal basis of L0, this defines the
required element of J (V,Ω).

3. L(V,Ω, L0) is contractible.

Hint: Prove that L(V,Ω, L0) can be identified with the vector space of all
symmetric n× n matrices. Notice that any n-dimensional subspace L of V which
is transversal to L0 is the graph of a linear map S : JL0 → L0, i.e.,

L = span of {Je1 + SJe1, . . . , Jen + SJen}
when L0 = span of {e1, . . . , en} .

4. G(L0) is contractible.

Hint: G(L0) is even convex.

Conclude that J (V,Ω) is contractible.
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14 Dolbeault Theory

14.1 Splittings

Let (M,J) be an almost complex manifold. The complexified tangent bundle of M
is the bundle

TM ⊗ C
↓
M

with fiber (TM ⊗ C)p = TpM ⊗ C at p ∈M . If

TpM is a 2n-dimensional vector space over R , then
TpM ⊗ C is a 2n-dimensional vector space over C .

We may extend J linearly to TM ⊗ C:

J(v ⊗ c) = Jv ⊗ c , v ∈ TM , c ∈ C .

Since J2 = −Id, on the complex vector space (TM ⊗ C)p, the linear map Jp has
eigenvalues ±i. Let

T1,0 = {v ∈ TM ⊗ C | Jv = +iv} = (+i)-eigenspace of J
= {v ⊗ 1− Jv ⊗ i | v ∈ TM}
= (J-)holomorphic tangent vectors ;

T0,1 = {v ∈ TM ⊗ C | Jv = −iv} = (−i)-eigenspace of J
= {v ⊗ 1 + Jv ⊗ i | v ∈ TM}
= (J-)anti-holomorphic tangent vectors .

Since
π1,0 : TM −→ T1,0

v 7−→ 1
2 (v ⊗ 1− Jv ⊗ i)

is a (real) bundle isomorphism such that π1,0 ◦ J = iπ1,0, and

π0,1 : TM −→ T0,1

v 7−→ 1
2 (v ⊗ 1 + Jv ⊗ i)

is also a (real) bundle isomorphism such that π0,1 ◦ J = −iπ0,1, we conclude that
we have isomorphisms of complex vector bundles

(TM, J) ' T1,0 ' T0,1 ,

where T0,1 denotes the complex conjugate bundle of T0,1. Extending π1,0 and π0,1

to projections of TM ⊗ C, we obtain an isomorphism

(π1,0, π0,1) : TM ⊗ C '−→ T1,0 ⊕ T0,1 .
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Similarly, the complexified cotangent bundle splits as

(π1,0, π0,1) : T ∗M ⊗ C '−→ T 1,0 ⊕ T 0,1

where

T 1,0 = (T1,0)∗ = {η ∈ T ∗ ⊗ C | η(Jω) = iη(ω) ,∀ω ∈ TM ⊗ C}
= {ξ ⊗ 1− (ξ ◦ J)⊗ i | ξ ∈ T ∗M}
= complex-linear cotangent vectors ,

T 0,1 = (T0,1)∗ = {η ∈ T ∗ ⊗ C | η(Jω) = −iη(ω) ,∀ω ∈ TM ⊗ C}
= {ξ ⊗ 1 + (ξ ◦ J)⊗ i | ξ ∈ T ∗M}
= complex-antilinear cotangent vectors ,

and π1,0, π0,1 are the two natural projections

π1,0 : T ∗M ⊗ C −→ T 1,0

η 7−→ η1,0 := 1
2 (η − iη ◦ J) ;

π0,1 : T ∗M ⊗ C −→ T 0,1

η 7−→ η0,1 := 1
2 (η + iη ◦ J) .

14.2 Forms of Type (`, m)

For an almost complex manifold (M,J), let

Ωk(M ; C) := sections of Λk(T ∗M ⊗ C)
= complex-valued k-forms on M,where

Λk(T ∗M ⊗ C) := Λk(T 1,0 ⊕ T 0,1)
= ⊕`+m=k (Λ`T 1,0) ∧ (ΛmT 0,1)︸ ︷︷ ︸

Λ`,m(definition)

= ⊕`+m=kΛ`,m .

In particular, Λ1,0 = T 1,0 and Λ0,1 = T 0,1.

Definition 14.1 The differential forms of type (`, m) on (M,J) are the sections
of Λ`,m:

Ω`,m := sections of Λ`,m .

Then
Ωk(M ; C) = ⊕`+m=kΩ`,m .

Let π`,m : Λk(T ∗M ⊗ C) → Λ`,m be the projection map, where ` + m = k.
The usual exterior derivative d composed with two of these projections induces
differential operators ∂ and ∂̄ on forms of type (`,m):

∂ := π`+1,m ◦ d : Ω`,m(M) −→ Ω`+1,m(M)
∂̄ := π`,m+1 ◦ d : Ω`,m(M) −→ Ω`,m+1(M) .
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If β ∈ Ω`,m(M), with k = `+m, then dβ ∈ Ωk+1(M ; C):

dβ =
∑

r+s=k+1

πr,sdβ = πk+1,0dβ + · · ·+ ∂β + ∂̄β + · · ·+ π0,k+1dβ .

14.3 J-Holomorphic Functions

Let f : M → C be a smooth complex-valued function on M . The exterior derivative
d extends linearly to C-valued functions as df = d(Ref) + i d(Imf).

Definition 14.2 A function f is (J-)holomorphic at x ∈ M if dfp is complex
linear, i.e., dfp ◦ J = i dfp. A function f is (J-)holomorphic if it is holomorphic
at all p ∈M .

Exercise. Show that

dfp ◦ J = i dfp ⇐⇒ dfp ∈ T 1,0
p ⇐⇒ π0,1

p dfp = 0 .

♦

Definition 14.3 A function f is (J-)anti-holomorphic at p ∈M if dfp is complex
antilinear, i.e., dfp ◦ J = −i dfp.

Exercise.

dfp ◦ J = −i dfp ⇐⇒ dfp ∈ T 0,1
p ⇐⇒ π1,0

p dfp = 0
⇐⇒ df̄p ∈ T 1,0

p ⇐⇒ π0,1
p df̄p = 0

⇐⇒ f̄ is holomorphic at p ∈M .

♦

Definition 14.4 On functions, d = ∂ + ∂̄, where

∂ := π1,0 ◦ d and ∂̄ := π0,1 ◦ d .

Then

f is holomorphic ⇐⇒ ∂̄f = 0 ,
f is anti-holomorphic ⇐⇒ ∂f = 0 .

– What about higher differential forms?
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14.4 Dolbeault Cohomology

Suppose that d = ∂ + ∂̄, i.e.,

dβ = ∂β︸︷︷︸
∈Ω`+1,m

+ ∂̄β︸︷︷︸
∈Ω`,m+1

, ∀β ∈ Ω`,m .

Then, for any form β ∈ Ω`,m,

0 = d2β = ∂2β︸︷︷︸
∈Ω`+2,m

+ ∂∂̄β + ∂̄∂β︸ ︷︷ ︸
∈Ω`+1,m+1

+ ∂̄2β︸︷︷︸
∈Ω`,m+2

,

which implies  ∂̄2 = 0
∂∂̄ + ∂̄∂ = 0
∂2 = 0

Since ∂̄2 = 0, the chain

0 −→ Ω`,0 ∂̄−→ Ω`,1 ∂̄−→ Ω`,2 ∂̄−→ · · ·

is a differential complex; its cohomology groups

H`,m
Dolbeault(M) :=

ker ∂̄ : Ω`,m −→ Ω`,m+1

im ∂̄ : Ω`,m−1 −→ Ω`,m

are called the Dolbeault cohomology groups.

Ω0,0

Ω1,0
�

∂

Ω0,1

∂̄

-

Ω2,0
�

∂

Ω1,1
�

∂∂̄

-

Ω0,2

∂̄

-

...
...

...

– When is d = ∂ + ∂̄? See the next lecture.



Homework 10: Integrability

This set of problems is from [11, p.46-47].

1. Let (M,J) be an almost complex manifold. Its Nijenhuis tensor N is:

N (v, w) := [Jv, Jw]− J [v, Jw]− J [Jv,w]− [v, w] ,

where v and w are vector fields on M , [·, ·] is the usual bracket

[v, w] · f := v · (w · f)− w · (v · f) , for f ∈ C∞(M) ,

and v · f = df(v).

(a) Check that, if the map v 7→ [v, w] is complex linear (in the sense that it
commutes with J), then N ≡ 0.

(b) Show that N is actually a tensor, that is: N (v, w) at x ∈ M depends
only on the values vx, wx ∈ TxM and not really on the vector fields v
and w.

(c) Compute N (v, Jv). Deduce that, if M is a surface, then N ≡ 0.

A theorem of Newlander and Nirenberg [89] states that an almost complex
manifold (M,J) is a complex (analytic) manifold if and only if N ≡ 0.
Combining (c) with the fact that any orientable surface is symplectic, we
conclude that any orientable surface is a complex manifold, a result already
known to Gauss.

2. Let N be as above. For any map f : R2n → C and any vector field v on
R2n, we have v · f = v · (f1 + if2) = v · f1 + i v · f2, so that f 7→ v · f is a
complex linear map.

(a) Let R2n be endowed with an almost complex structure J , and suppose
that f is a J-holomorphic function, that is,

df ◦ J = i df .

Show that df(N (v, w)) = 0 for all vector fields v, w.

(b) Suppose that there exist n J-holomorphic functions, f1, . . . , fn, on R2n,
which are independent at some point p, i.e., the real and imaginary parts
of (df1)p, . . . , (dfn)p form a basis of T ∗pR2n. Show that N vanishes
identically at p.

(c) Assume that M is a complex manifold and J is its complex structure.
Show that N vanishes identically everywhere on M .

In general, an almost complex manifold has no J-holomorphic functions at all.
On the other hand, it has plenty of J-holomorphic curves: maps f : C→M
such that df ◦ i = J ◦ df . J-holomorphic curves, also known as pseudo-
holomorphic curves, provide a main tool in symplectic topology, as first
realized by Gromov [49].
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Part VI

Kähler Manifolds
Kähler geometry lies at the intersection of complex, riemannian and symplectic
geometries, and plays a central role in all of these fields. We will start by reviewing
complex manifolds. After describing the local normal form for Kähler manifolds
(Lecture 16), we conclude with a summary of Hodge theory for compact Kähler
manifolds (Lecture 17).

15 Complex Manifolds

15.1 Complex Charts

Definition 15.1 A complex manifold of (complex) dimension n is a set M with
a complete complex atlas

A = {(Uα,Vα, ϕα) , α ∈ index set I}

where M = ∪αUα, the Vα’s are open subsets of Cn, and the maps ϕα : Uα → Vα
are such that the transition maps ψαβ are biholomorphic as maps on open subsets
of Cn:

Uα ∩ Uβ

Vαβ
ψαβ = ϕβ ◦ ϕ−1

α -
�

ϕα

'

Vβα

ϕ
β

'
-

where Vαβ = ϕα(Uα ∩ Uβ) ⊆ Cn and Vβα = ϕβ(Uα ∩ Uβ) ⊆ Cn. ψαβ be-
ing biholomorphic means that ψαβ is a bijection and that ψαβ and ψ−1

αβ are both
holomorphic.

Proposition 15.2 Any complex manifold has a canonical almost complex structure.

Proof.

1) Local definition of J :

Let (U ,V, ϕ : U → V) be a complex chart for a complex manifold M with
ϕ = (z1, . . . , zn) written in components relative to complex coordinates zj =
xj + iyj . At p ∈ U

TpM = R-span of

{
∂

∂xj

∣∣∣∣
p

,
∂

∂yj

∣∣∣∣
p

: j = 1, . . . , n

}
.
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Define J over U by

Jp

(
∂

∂xj

∣∣∣∣
p

)
=

∂

∂yj

∣∣∣∣
p

j = 1, . . . , n .

Jp

(
∂

∂yj

∣∣∣∣
p

)
= − ∂

∂xj

∣∣∣∣
p

2) This J is well-defined globally:

If (U ,V, ϕ) and (U ′,V ′, ϕ′) are two charts, we need to show that J = J ′ on
their overlap.

On U ∩ U ′, ψ ◦ ϕ = ϕ′. If zj = xj + iyj and wj = uj + ivj are coordinates
on U and U ′, respectively, so that ϕ and ϕ′ can be written in components
ϕ = (z1, . . . , zn), ϕ′ = (w1, . . . , wn), then ψ(z1, . . . , zn) = (w1, . . . , wn).
Taking the derivative of a composition

∂

∂xk
=

∑
j

(
∂uj
∂xk

∂

∂uj
+
∂vj
∂xk

∂

∂vj

)
∂

∂yk
=

∑
j

(
∂uj
∂yk

∂

∂uj
+
∂vj
∂yk

∂

∂vj

)
Since ψ is biholomorphic, each component of ψ satisfies the Cauchy-Riemann
equations: 

∂uj
∂xk

=
∂vj
∂yk

j, k = 1, . . . , n .
∂uj
∂yk

= − ∂vj
∂xk

These equations imply

J ′
∑
j

(
∂uj
∂xk

∂

∂uj
+
∂vj
∂xk

∂

∂vj

)
︸ ︷︷ ︸ =

∑
j

(
∂uj
∂yk

∂

∂uj
+
∂vj
∂yk

∂

∂vj

)

∑
j


∂uj
∂xk︸︷︷︸
∂vj
∂yk

∂

∂vj
− ∂vj
∂xj︸︷︷︸
−

∂uj
∂yk

∂

∂uj


which matches the equation

J
∂

∂xk
=

∂

∂yk
.

�
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15.2 Forms on Complex Manifolds

Suppose that M is a complex manifold and J is its canonical almost complex
structure. What does the splitting Ωk(M ; C) = ⊕`+m=kΩ`,m look like? ([22, 48,
66, 109] are good references for this material.)

Let U ⊆M be a coordinate neighborhood with complex coordinates z1, . . . , zn,
zj = xj + iyj , and real coordinates x1, y1, . . . , xn, yn. At p ∈ U ,

TpM = R-span

{
∂
∂xj

∣∣∣
p
, ∂
∂yj

∣∣∣
p

}
TpM ⊗ C = C-span

{
∂
∂xj

∣∣∣
p
, ∂
∂yj

∣∣∣
p

}

= C-span

{
1
2

(
∂

∂xj

∣∣∣∣
p

− i ∂

∂yj

∣∣∣∣
p

)}
︸ ︷︷ ︸ ⊕ C-span

{
1
2

(
∂

∂xj

∣∣∣∣
p

+ i
∂

∂yj

∣∣∣∣
p

)}
︸ ︷︷ ︸

T1,0 = (+i)-eigenspace of J T0,1 = (−i)-eigenspace of J

J
(

∂
∂xj
− i ∂

∂yj

)
= i
(

∂
∂xj
− i ∂

∂yj

)
J
(

∂
∂xj

+ i ∂
∂yj

)
= −i

(
∂
∂xj

+ i ∂
∂yj

)
This can be written more concisely using:

Definition 15.3

∂

∂zj
:=

1
2

(
∂

∂xj
− i ∂

∂yj

)
and

∂

∂z̄j
:=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
.

Hence,

(T1,0)p = C-span

{
∂

∂zj

∣∣∣∣
p

: j = 1, . . . , n

}
, (T0,1)p = C-span

{
∂

∂z̄j

∣∣∣∣
p

: j = 1, . . . , n

}
.

Similarly,

T ∗M ⊗ C = C-span{dxj , dyj : j = 1, . . . , n}

= C-span{dxj + idyj : j = 1, . . . , n}︸ ︷︷ ︸ ⊕ C-span{dxj − idyj : j = 1, . . . , n}︸ ︷︷ ︸
T 1,0 T 0,1

(dxj + idyj) ◦ J = i(dxj + idyj) (dxj − idyj) ◦ J = −i(dxj − idyj)

Putting

dzj = dxj + idyj and dz̄j = dxj − idyj ,

we obtain

T 1,0 = C-span{dzj : j = 1, . . . , n} , T 0,1 = C-span{dz̄j : j = 1, . . . , n} .
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On the coordinate neighborhood U ,

(1, 0)-forms =
{∑

j bjdzj | bj ∈ C∞(U ; C)
}

(0, 1)-forms =
{∑

j bjdz̄j | bj ∈ C∞(U ; C)
}

(2, 0)-forms =
{∑

j1<j2
bj1,j2dzj1 ∧ dzj2 | bj1,j2 ∈ C∞(U ; C)

}
(1, 1)-forms =

{∑
j1,j2

bj1,j2dzj1 ∧ dz̄j2 | bj1,j2 ∈ C∞(U ; C)
}

(0, 2)-forms =
{∑

j1<j2
bj1,j2dz̄j1 ∧ dz̄j2 | bj1,j2 ∈ C∞(U ; C)

}

If we use multi-index notation:

J = (j1, . . . , jm) 1 ≤ j1 < . . . < jm ≤ n
|J | = m
dz

J
= dzj1 ∧ dzj2 ∧ . . . ∧ dzjm

then

Ω`,m = (`,m)-forms =

 ∑
|J|=`,|K|=m

b
J,K
dz

J
∧ dz̄

K
| b

J,K
∈ C∞(U ; C)

 .

15.3 Differentials

On a coordinate neighborhood U , a form β ∈ Ωk(M ; C) may be written as

β =
∑

|J|+|K|=k

a
J,K
dx

J
∧ dy

K
, with a

J,K
∈ C∞(U ; C) .

We would like to know whether the following equality holds:

dβ =
∑

(∂a
J,K

+ ∂̄a
J,K

)dx
J
∧ dy

K

?= (∂ + ∂̄)
∑

a
J,K
dx

J
∧ dy

K
.

If we use the identities

{
dxj + idyj = dzj
dxj − idyj = dz̄j

⇐⇒
{
dxj = 1

2 (dzj + dz̄j)
dyj = 1

2i (dzj − dz̄j)
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after substituting and reshuffling, we obtain

β =
∑

|J|+|K|=k

b
J,K
dz

J
∧ dz̄

K

=
∑

`+m=k

 ∑
|J|=`,|K|=m

b
J,K
dz

J
∧ dz̄

K


︸ ︷︷ ︸

∈Ω`,m

,

dβ =
∑

`+m=k

 ∑
|J|=`,|K|=m

db
J,K
∧ dz

J
∧ dz̄

K


=

∑
`+m=k

∑
|J|=`,|K|=m

(
∂b

J,K
+ ∂̄b

J,K

)
∧ dz

J
∧ dz̄

K

(because d = ∂ + ∂̄ on functions)

=
∑

`+m=k


∑

|J|=`,|K|=m

∂b
J,K
∧ dz

J
∧ dz̄

K︸ ︷︷ ︸
∈Ω`+1,m

+
∑

|J|=`,|K|=m

∂̄b
J,K
∧ dz

J
∧ dz̄

K︸ ︷︷ ︸
∈Ω`,m+1


= ∂β + ∂̄β .

Therefore, d = ∂ + ∂̄ on forms of any degree for a complex manifold.

Conclusion. If M is a complex manifold, then d = ∂ + ∂̄. (For an almost complex
manifold this fails because there are no coordinate functions zj to give a suitable
basis of 1-forms.)

Remark. If b ∈ C∞(U ; C), in terms of z and z̄, we obtain the following formulas:

db =
∑
j

(
∂b

∂xj
dxj +

∂b

∂yj
dyj

)
=

∑
j

[
1
2

(
∂b

∂xj
− i ∂b

∂yj

)
(dxj + idyj) +

1
2

(
∂b

∂xj
+ i

∂b

∂yj

)
(dxj − idyj)

]
=

∑
j

(
∂b

∂zj
dzj +

∂b

∂z̄j
dz̄j

)
.

Hence: {
∂b = π1,0db =

∑
j
∂b
∂zj

dzj

∂̄b = π0,1db =
∑
j
∂b
∂z̄j

dz̄j

♦
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In the case where β ∈ Ω`,m, we have

dβ = ∂β + ∂̄β = (`+ 1,m)-form + (`,m+ 1)-form
0 = d2β = (`+ 2,m)-form + (`+ 1,m+ 1)-form + (`,m+ 2)-form

= ∂2β︸︷︷︸
0

+(∂∂̄ + ∂̄∂)β︸ ︷︷ ︸
0

+ ∂̄2β︸︷︷︸
0

.

Hence, ∂̄2 = 0.
The Dolbeault theorem states that for complex manifolds

H`,m
Dolbeault(M) = Hm(M ;O(Ω(`,0))) ,

where O(Ω(`,0)) is the sheaf of forms of type (`, 0) over M .

Theorem 15.4 (Newlander-Nirenberg, 1957 [89])
Let (M,J) be an almost complex manifold. Let N be the Nijenhuis tensor

(defined in Homework 10). Then:

M is a complex manifold ⇐⇒ J is integrable
⇐⇒ N ≡ 0
⇐⇒ d = ∂ + ∂̄
⇐⇒ ∂̄2 = 0
⇐⇒ π2,0d|Ω0,1 = 0 .

For the proof of this theorem, besides the original reference, see also [22, 30,
48, 66, 109]. Naturally most almost complex manifolds have d 6= ∂ + ∂̄.



Homework 11: Complex Projective Space

The complex projective space CPn is the space of complex lines in Cn+1:
CPn is obtained from Cn+1 \ {0} by making the identifications (z0, . . . , zn) ∼

(λz0, . . . , λzn) for all λ ∈ C \ {0}. One denotes by [z0, . . . , zn] the equivalence
class of (z0, . . . , zn), and calls z0, . . . , zn the homogeneous coordinates of the point
p = [z0, . . . , zn]. (The homogeneous coordinates are, of course, only determined
up to multiplication by a non-zero complex number λ.)

Let Ui be the subset of CPn consisting of all points p = [z0, . . . , zn] for which
zi 6= 0. Let ϕi : Ui → Cn be the map

ϕi([z0, . . . , zn]) =
(
z0
zi
, . . . , zi−1

zi
, zi+1
zi
, . . . , zn

zi

)
.

1. Show that the collection

{(Ui,Cn, ϕi), i = 0, . . . , n}

is an atlas in the complex sense, i.e., the transition maps are biholomorphic.
Conclude that CPn is a complex manifold.

Hint: Work out the transition maps associated with (U0,Cn, ϕ0) and
(U1,Cn, ϕ1). Show that the transition diagram has the form

U0 ∩ U1

V0,1
ϕ0,1 -

�

ϕ 0

V1,0

ϕ
1

-

where V0,1 = V1,0 = {(z1, . . . , zn) ∈ Cn | z1 6= 0} and

ϕ0,1(z1, . . . , zn) = ( 1
z1
, z2

z1
, . . . , zn

z1
) .

2. Show that the 1-dimensional complex manifold CP1 is diffeomorphic, as a
real 2-dimensional manifold, to S2.

Hint: Stereographic projection.
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16 Kähler Forms

16.1 Kähler Forms

Definition 16.1 A Kähler manifold is a symplectic manifold (M,ω) equipped with
an integrable compatible almost complex structure. The symplectic form ω is then
called a Kähler form.

It follows immediately from the previous definition that

(M,ω) is Kähler =⇒ M is a complex manifold

=⇒
{

Ωk(M ; C) = ⊕`+m=kΩ`,m

d = ∂ + ∂̄

where
∂ = π`+1,m ◦ d : Ω`,m → Ω`+1,m

∂̄ = π`,m+1 ◦ d : Ω`,m → Ω`,m+1 .

On a complex chart (U , z1, . . . , zn), n = dimC M ,

Ω`,m =

 ∑
|J|=`,|K|=m

b
JK
dz

J
∧ dz̄

K
| b

JK
∈ C∞(U ; C)

 ,

where

J = (j1, . . . , j`) , j1 < . . . < j` , dz
J

= dzj1 ∧ . . . ∧ dzj` ,
K = (k1, . . . , km) , k1 < . . . < km , dz̄

K
= dz̄k1 ∧ . . . ∧ dz̄km .

On the other hand,

(M,ω) is Kähler =⇒ ω is a symplectic form .

– Where does ω fit with respect to the above decomposition?
A Kähler form ω is

1. a 2-form,

2. compatible with the complex structure,

3. closed,

4. real-valued, and

5. nondegenerate.

These properties translate into:
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1. Ω2(M ; C) = Ω2,0 ⊕ Ω1,1 ⊕ Ω0,2.

On a local complex chart (U , z1, . . . , zn),

ω =
∑

ajk dzj ∧ dzk +
∑

bjk dzj ∧ dz̄k +
∑

cjk dz̄j ∧ dz̄k

for some ajk, bjk, cjk ∈ C∞(U ; C).

2. J is a symplectomorphism, that is, J∗ω = ω where (J∗ω)(u, v) := ω(Ju, Jv).

J∗dzj = dzj ◦ J = idzj
J∗dz̄j = dz̄j ◦ J = −idz̄j

J∗ω =
∑ −1

‖
(i · i) ajk dzj ∧ dzk+

1
‖

i(−i)
∑
bjk dzj ∧ dz̄k+

−1
‖

(−i)2
∑
cjkd z̄j ∧ dz̄k

J∗ω = ω ⇐⇒ ajk = 0 = cjk , all j, k ⇐⇒ ω ∈ Ω1,1 .

3. 0 = dω = ∂ω︸︷︷︸
(2,1)−form

+ ∂̄ω︸︷︷︸
(1,2)−form

=⇒
{
∂ω = 0 ω is ∂-closed
∂̄ω = 0 ω is ∂̄-closed

Hence, ω defines a Dolbeault (1, 1) cohomology class,

[ω] ∈ H1,1
Dolbeault(M) .

Putting bjk = i
2hjk,

ω =
i

2

n∑
j,k=1

hjk dzj ∧ dz̄k , hjk ∈ C∞(U ; C).

4. ω real-valued ⇐⇒ ω = ω.

ω = − i
2

∑
hjk dz̄j ∧ dzk =

i

2

∑
hjk dzk ∧ dz̄j =

i

2

∑
hkj dzj ∧ dz̄k

ω real ⇐⇒ hjk = hkj ,

i.e., at every point p ∈ U , the n× n matrix (hjk(p)) is hermitian.

5. nondegeneracy: ωn = ω ∧ . . . ∧ ω︸ ︷︷ ︸
n

6= 0.

Exercise. Check that

ωn = n!
(
i

2

)n
det(hjk) dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n .

♦

Now
ω nondegenerate ⇐⇒ detC(hjk) 6= 0 ,

i.e., at every p ∈M , (hjk(p)) is a nonsingular matrix.
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2. Again the positivity condition: ω(v, Jv) > 0, ∀v 6= 0.

Exercise. Show that (hjk(p)) is positive-definite. ♦

ω positive ⇐⇒ (hjk)� 0 ,

i.e., at each p ∈ U , (hjk(p)) is positive-definite.

Conclusion. Kähler forms are ∂- and ∂̄-closed (1, 1)-forms, which are given on a
local chart (U , z1, . . . , zn) by

ω =
i

2

n∑
j,k=1

hjk dzj ∧ dz̄k

where, at every point p ∈ U , (hjk(p)) is a positive-definite hermitian matrix.

16.2 An Application

Theorem 16.2 (Banyaga) Let M be a compact complex manifold. Let ω0 and
ω1 be Kähler forms on M . If [ω0] = [ω1] ∈ H2

deRham(M), then (M,ω0) and
(M,ω1) are symplectomorphic.

Proof. Any combination ωt = (1− t)ω0 + tω1 is symplectic for 0 ≤ t ≤ 1, because,
on a complex chart (U , z1, . . . , zn), where n = dimC M , we have

ω0 = i
2

∑
h0
jkdzj ∧ dz̄k

ω1 = i
2

∑
h1
jkdzj ∧ dz̄k

ωt = i
2

∑
htjkdzj ∧ dz̄k , where htjk = (1− t)h0

jk + th1
jk .

(h0
jk)� 0 , (h1

jk)� 0 =⇒ (htjk)� 0 .

Apply the Moser theorem (Theorem 7.2). �

16.3 Recipe to Obtain Kähler Forms

Definition 16.3 Let M be a complex manifold. A function ρ ∈ C∞(M ; R) is
strictly plurisubharmonic (s.p.s.h.) if, on each local complex chart (U , z1, . . . ,
zn), where n = dimC M , the matrix

(
∂2ρ

∂zj∂z̄k
(p)
)

is positive-definite at all p ∈ U .

Proposition 16.4 LetM be a complex manifold and let ρ ∈ C∞(M ; R) be s.p.s.h..
Then

ω =
i

2
∂∂̄ρ is Kähler .
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A function ρ as in the previous proposition is called a (global) Kähler potential.

Proof. Simply observe that:
∂ω = i

2

0︷︸︸︷
∂2 ∂̄ρ = 0

∂̄ω = i
2 ∂̄∂︸︷︷︸
−∂∂̄

∂̄ρ = − i
2∂ ∂̄2︸︷︷︸

0

ρ = 0

dω = ∂ω + ∂̄ω = 0 =⇒ ω is closed .

ω = − i
2 ∂̄∂ρ = i

2∂∂̄ρ = ω =⇒ ω is real .

ω ∈ Ω1,1 =⇒ J∗ω = ω =⇒ ω(·, J ·) is symmetric .

Exercise. Show that, for f ∈ C∞(U ; C),

∂f =
∑ ∂f

∂zj
dzj and ∂̄f =

∑ ∂f

∂z̄j
dz̄j .

Since the right-hand sides are in Ω1,0 and Ω0,1, respectively, it suffices to show that
the sum of the two expressions is df . ♦

ω =
i

2
∂∂̄ρ =

i

2

∑ ∂

∂zj

(
∂ρ

∂z̄k

)
dzj ∧ dz̄k =

i

2

∑(
∂2ρ

∂zj∂z̄k

)
︸ ︷︷ ︸

hjk

dzj ∧ dz̄k .

ρ is s.p.s.h =⇒ (hjk)� 0 =⇒ ω(·, J ·) is positive .

In particular, ω is nondegenerate. �

Example. Let M = Cn ' R2n, with complex coordinates (z1, . . . , zn) and corre-
sponding real coordinates (x1, y1, . . . , xn, yn) via zj = xj + iyj . Let

ρ(x1, y1, . . . , xn, yn) =
n∑
j=1

(x2
j + y2

j ) =
∑
|zj |2 =

∑
zj z̄j .

Then
∂

∂zj

∂ρ

∂z̄k
=

∂

∂zj
zk = δjk ,

so

(hjk) =
(

∂2ρ

∂zj∂z̄k

)
= (δjk) = Id� 0 =⇒ ρ is s.p.s.h. .
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The corresponding Kähler form

ω = i
2∂∂̄ρ = i

2

∑
j,k

δjk dzj ∧ dz̄k

= i
2

∑
j

dzj ∧ dz̄j =
∑
j

dxj ∧ dyj is the standard form .

♦

16.4 Local Canonical Form for Kähler Forms

There is a local converse to the previous construction of Kähler forms.

Theorem 16.5 Let ω be a closed real-valued (1, 1)-form on a complex manifold M
and let p ∈ M . Then there exist a neighborhood U of p and ρ ∈ C∞(U ; R) such
that, on U ,

ω =
i

2
∂∂̄ρ .

The function ρ is then called a (local) Kähler potential.

The proof requires holomorphic versions of Poincaré’s lemma, namely, the local
triviality of Dolbeault groups:

∀p ∈M ∃ neighborhood U of p such that H`,m
Dolbeault(U) = 0 , m > 0 ,

and the local triviality of the holomorphic de Rham groups; see [48].

Proposition 16.6 Let M be a complex manifold, ρ ∈ C∞(M ; R) s.p.s.h., X a
complex submanifold, and i : X ↪→M the inclusion map. Then i∗ρ is s.p.s.h..

Proof. Let dimC M = n and dimC X = n − m. For p ∈ X, choose a chart
(U , z1, . . . , zn) for M centered at p and adapted to X, i.e., X ∩ U is given by
z1 = . . . = zm = 0. In this chart, i∗ρ = ρ(0, 0, . . . , 0, zm+1, . . . , zn).

i∗p is s.p.s.h. ⇐⇒
(

∂2ρ

∂zm+j∂z̄m+k
(0, . . . , 0, zm+1, . . . , zn)

)
is positive-definite ,

which holds since this is a minor of
(

∂2

∂zj∂z̄k
(0, . . . , 0, zm+1, . . . , zn)

)
. �

Corollary 16.7 Any complex submanifold of a Kähler manifold is also Kähler.

Definition 16.8 Let (M,ω) be a Kähler manifold, X a complex submanifold, and
i : X ↪→M the inclusion. Then (X, i∗ω) is called a Kähler submanifold.
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Example. Complex vector space (Cn, ω0) where ω0 = i
2

∑
dzj ∧ dz̄j is Kähler.

Every complex submanifold of Cn is Kähler. ♦

Example. The complex projective space is

CPn = Cn+1\{0}/ ∼

where
(z0, . . . , zn) ∼ (λz0, . . . , λzn) , λ ∈ C\{0} .

The Fubini-Study form (see Homework 12) is Kähler. Therefore, every non-singular
projective variety is a Kähler submanifold. Here we mean

non-singular = smooth
projective variety = zero locus of a collection

of homogeneous polynomials .

♦



Homework 12: The Fubini-Study Structure

The purpose of the following exercises is to describe the natural Kähler structure
on complex projective space, CPn.

1. Show that the function on Cn

z 7−→ log(|z|2 + 1)

is strictly plurisubharmonic. Conclude that the 2-form

ωFS = i
2∂∂̄ log(|z|2 + 1)

is a Kähler form. (It is usually called the Fubini-Study form on Cn.)

Hint: A hermitian n×n matrix H is positive definite if and only if v∗Hv > 0 for
any v ∈ Cn \ {0}, where v∗ is the transpose of the vector v̄. To prove positive-
definiteness, either apply the Cauchy-Schwarz inequality, or use the following sym-
metry observation: U(n) acts transitively on S2n−1 and ωFS is U(n)-invariant,
thus it suffices to show positive-definiteness along one direction.

2. Let U be the open subset of Cn defined by the inequality z1 6= 0, and let
ϕ : U → U be the map

ϕ(z1, . . . , zn) = 1
z1

(1, z2, . . . , zn) .

Show that ϕ maps U biholomorphically onto U and that

ϕ∗ log(|z|2 + 1) = log(|z|2 + 1) + log 1
|z1|2 . (?)

3. Notice that, for every point p ∈ U , we can write the second term in (?) as
the sum of a holomorphic and an anti-holomorphic function:

− log z1 − log z1

on a neighborhood of p. Conclude that

∂∂̄ϕ∗ log(|z|2 + 1) = ∂∂̄ log(|z|2 + 1)

and hence that ϕ∗ωFS = ωFS .

Hint: You need to use the fact that the pullback by a holomorphic map ϕ∗

commutes with the ∂ and ∂̄ operators. This is a consequence of ϕ∗ preserving
form type, ϕ∗(Ωp,q) ⊆ Ωp,q , which in turn is implied by ϕ∗dzj = ∂ϕj ⊆ Ω1,0

and ϕ∗dzj = ∂̄ϕj ⊆ Ω0,1, where ϕj is the jth component of ϕ with respect to
local complex coordinates (z1, . . . , zn).

4. Recall that CPn is obtained from Cn+1 \ {0} by making the identifications
(z0, . . . , zn) ∼ (λz0, . . . , λzn) for all λ ∈ C \ {0}; [z0, . . . , zn] is the equiva-
lence class of (z0, . . . , zn).
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For i = 0, 1, . . . , n, let

Ui = {[z0, . . . , zn] ∈ CPn |zi 6= 0}
ϕi : Ui → Cn ϕi([z0, . . . , zn]) =

(
z0
zi
, . . . , zi−1

zi
, zi+1
zi
, . . . , zn

zi

)
.

Homework 11 showed that the collection {(Ui,Cn, ϕi), i = 0, . . . , n} is a
complex atlas (i.e., the transition maps are biholomorphic). In particular,
it was shown that the transition diagram associated with (U0,Cn, ϕ0) and
(U1,Cn, ϕ1) has the form

U0 ∩ U1

V0,1

ϕ0,1 -
�

ϕ 0

V1,0

ϕ
1

-

where V0,1 = V1,0 = {(z1, . . . , zn) ∈ Cn | z1 6= 0} and ϕ0,1(z1, . . . , zn) =
( 1
z1
, z2z1 , . . . ,

zn

z1
). Now the set U in exercise 2 is equal to the sets V0,1 and

V1,0, and the map ϕ coincides with ϕ0,1.

Show that ϕ∗0ωFS and ϕ∗1ωFS are identical on the overlap U0 ∩ U1.

More generally, show that the Kähler forms ϕ∗iωFS “glue together” to define
a Kähler structure on CPn. This is called the Fubini-Study form on complex
projective space.

5. Prove that for CP1 the Fubini-Study form on the chart U0 = {[z0, z1] ∈
CP1 |z0 6= 0} is given by the formula

ωFS =
dx ∧ dy

(x2 + y2 + 1)2

where z1
z0

= z = x+ iy is the usual coordinate on C.

6. Compute the total area of CP1 = C ∪ {∞} with respect to ωFS :∫
CP1

ωFS =
∫

R2

dx ∧ dy
(x2 + y2 + 1)2

.

7. Recall that CP1 ' S2 as real 2-dimensional manifolds (Homework 11). On
S2 there is the standard area form ωstd induced by regarding it as the unit
sphere in R3 (Homework 6): in cylindrical polar coordinates (θ, h) on S2 away
from its poles (0 ≤ θ < 2π and −1 ≤ h ≤ 1), we have

ωstd = dθ ∧ dh .

Using stereographic projection, show that

ωFS =
1
4
ωstd .



17 Compact Kähler Manifolds

17.1 Hodge Theory

Let M be a complex manifold. A Kähler form ω on M is a symplectic form which
is compatible with the complex structure. Equivalently, a Kähler form ω is a ∂-
and ∂̄-closed form of type (1, 1) which, on a local chart (U , z1, . . . , zn) is given by
ω = i

2

∑n
j,k=1 hjkdzj ∧ dz̄k, where, at each x ∈ U , (hjk(x)) is a positive-definite

hermitian matrix. The pair (M,ω) is then called a Kähler manifold.

Theorem 17.1 (Hodge) On a compact Kähler manifold (M,ω) the Dolbeault
cohomology groups satisfy

Hk
deRham(M ; C) '

⊕
`+m=k

H`,m
Dolbeault(M) (Hodge decomposition)

with H`,m ' Hm,`. In particular, the spaces H`,m
Dolbeault are finite-dimensional.

Hodge identified the spaces of cohomology classes of forms with spaces of ac-
tual forms, by picking the representative from each class which solves a certain
differential equation, namely the harmonic representative.

(1) The Hodge ∗-operator.

Each tangent space V = TxM has a positive inner product 〈·, ·〉, part of the
riemannian metric in a compatible triple; we forget about the complex and
symplectic structures until part (4).

Let e1, . . . , en be a positively oriented orthonormal basis of V .

The star operator is a linear operator ∗ : Λ(V )→ Λ(V ) defined by

∗(1) = e1 ∧ . . . ∧ en
∗(e1 ∧ . . . ∧ en) = 1
∗(e1 ∧ . . . ∧ ek) = ek+1 ∧ . . . ∧ en .

We see that ∗ : Λk(V )→ Λn−k(V ) and satisfies ∗∗ = (−1)k(n−k).

(2) The codifferential and the laplacian are the operators defined by:

δ = (−1)n(k+1)+1 ∗ d∗ : Ωk(M)→ Ωk−1(M)
∆ = dδ + δd : Ωk(M)→ Ωk(M) .

The operator ∆ is also called the Laplace-Beltrami operator.

Exercise. Check that, on Ω0(Rn) = C∞(Rn), ∆ = −
∑n
i=1

∂2

∂x2
i
. ♦

Exercise. Check that ∆∗ = ∗∆. ♦

Suppose that M is compact. Define an inner product on forms by

〈·, ·〉 : Ωk × Ωk → R , 〈α, β〉 =
∫
M

α ∧ ∗β .
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Exercise. Check that this is symmetric, positive-definite and satisfies 〈dα, β〉 =
〈α, δβ〉. ♦

Therefore, δ is often denoted by d∗ and called the adjoint of d. (When
M is not compact, we still have a formal adjoint of d with respect to the
nondegenerate bilinear pairing 〈·, ·〉 : Ωk × Ωkc → R defined by a similar
formula, where Ωkc is the space of compactly supported k-forms.) Also, ∆ is
self-adjoint:

Exercise. Check that 〈∆α, β〉 = 〈α,∆β〉, and that 〈∆α, α〉 = |dα|2 +
|δα|2 ≥ 0, where | · | is the norm with respect to this inner product. ♦

(3) The harmonic k-forms are the elements of Hk := {α ∈ Ωk | ∆α = 0}.

Note that ∆α = 0 ⇐⇒ dα = δα = 0. Since a harmonic form is d-closed, it
defines a de Rham cohomology class.

Theorem 17.2 (Hodge) Every de Rham cohomology class on a compact
oriented riemannian manifold (M, g) possesses a unique harmonic represen-
tative, i.e.,

Hk ' Hk
deRham(M ; R) .

In particular, the spaces Hk are finite-dimensional. We also have the following
orthogonal decomposition with respect to 〈·, ·〉:

Ωk ' Hk ⊕∆(Ωk(M))
' Hk ⊕ dΩk−1 ⊕ δΩk+1 (Hodge decomposition on forms) .

The proof involves functional analysis, elliptic differential operators, pseudod-
ifferential operators and Fourier analysis; see [48, 109].

So far, this was ordinary Hodge theory, considering only the metric and not
the complex structure.

(4) Complex Hodge Theory.

When M is Kähler, the laplacian satisfies ∆ = 2(∂̄∂̄∗ + ∂̄∗∂̄) (see, for ex-
ample, [48]) and preserves the decomposition according to type, ∆ : Ω`,m →
Ω`,m. Hence, harmonic forms are also bigraded

Hk =
⊕

`+m=k

H`,m .

Theorem 17.3 (Hodge) Every Dolbeault cohomology class on a compact
Kähler manifold (M,ω) possesses a unique harmonic representative, i.e.,

H`,m ' H`,m
Dolbeault(M)
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and the spaces H`,m are finite-dimensional. Hence, we have the following
isomorphisms:

Hk
deRham(M) ' Hk '

⊕
`+m=k

H`,m '
⊕

`+m=k

H`,m
Dolbeault(M) .

For the proof, see for instance [48, 109].

17.2 Immediate Topological Consequences

Let bk(M) := dimHk
deRham(M) be the usual Betti numbers of M , and let

h`,m(M) := dimH`,m
Dolbeault(M) be the so-called Hodge numbers of M .

Hodge Theorem =⇒
{

bk =
∑
`+m=k h

`,m

h`,m = hm,`

Some immediate topological consequences are:

1. On compact Kähler manifolds “the odd Betti numbers are even:”

b2k+1 =
∑

`+m=2k+1

h`,m = 2
k∑
`=0

h`,(2k+1−`) is even .

2. On compact Kähler manifolds, h1,0 = 1
2b

1 is a topological invariant.

3. On compact symplectic manifolds, “even Betti numbers are positive,” because
ωk is closed but not exact (k = 0, 1, . . . , n).

Proof. If ωk = dα, by Stokes’ theorem,

∫
M

ωn =
∫
M

d(α ∧ ωn−k) = 0 .

This cannot happen since ωn is a volume form. �

4. On compact Kähler manifolds, the h`,` are positive.

Claim. 0 6= [ω`] ∈ H`,`
Dolbeault(M).

Proof.
ω ∈ Ω1,1 =⇒ ω` ∈ Ω`,`

dω = 0 =⇒ 0 = dω` = ∂ω`︸︷︷︸
(`+1,`)

+ ∂̄ω`︸︷︷︸
(`,`+1)

=⇒ ∂̄ω` = 0 ,

so [ω`] defines an element of H`,`
Dolbeault. Why is ω` not ∂̄-exact?

If ω` = ∂̄β for some β ∈ Ω`−1,`, then

ωn = ω` ∧ ωn−` = ∂̄(β ∧ ωn−`) =⇒ 0 = [ωn] ∈ Hn,n
Dolbeault(M) .

But [ωn] 6= 0 in H2n
deRham(M ; C) ' Hn,n

Dolbeault(M) since it is a volume form.

�
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There are other constraints on the Hodge numbers of compact Kähler manifolds,
and ongoing research on how to compute H`,m

Dolbeault. A popular picture to describe
the relations is the Hodge diamond:

hn,n

hn,n−1 hn−1,n

hn,n−2 hn−1,n−1 hn−2,n

...

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

Complex conjugation gives symmetry with respect to the middle vertical, whereas
the Hodge ∗ induces symmetry about the center of the diamond. The middle vertical
axis is all non-zero. There are further symmetries induced by isomorphisms given
by wedging with ω.

The Hodge conjecture relates H`,`
Dolbeault(M)∩H2`(M ; Z) for projective man-

ifolds M (i.e., submanifolds of complex projective space) to codimC = ` complex
submanifolds of M .

17.3 Compact Examples and Counterexamples

symplectic ⇐= Kähler
⇓ ⇓

almost complex ⇐= complex

symplectic

smooth even-dimensional orientable

Kähler

almost complex

complex

Is each of these regions nonempty? Can we even find representatives of each
region which are simply connected or have any specified fundamental group?
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• Not all smooth even-dimensional manifolds are almost complex. For example,
S4, S8, S10, etc., are not almost complex.

• If M is both symplectic and complex, is it necessarily Kähler?

No. For some time, it had been suspected that every compact symplectic
manifold might have an underlying Kähler structure, or, at least, that a com-
pact symplectic manifold might have to satisfy the Hodge relations on its
Betti numbers [52]. The following example first demonstrated otherwise.

The Kodaira-Thurston example (Thurston, 1976 [101]):

Take R4 with dx1 ∧ dy1 + dx2 ∧ dy2, and Γ the discrete group generated by
the following symplectomorphisms:

γ1 : (x1, x2, y1, y2) 7−→ (x1, x2 + 1, y1, y2)
γ2 : (x1, x2, y1, y2) 7−→ (x1, x2, y1, y2 + 1)
γ3 : (x1, x2, y1, y2) 7−→ (x1 + 1, x2, y1, y2)
γ4 : (x1, x2, y1, y2) 7−→ (x1, x2 + y2, y1 + 1, y2)

Then M = R4/Γ is a flat 2-torus bundle over a 2-torus. Kodaira [70]
had shown that M has a complex structure. However, π1(M) = Γ, hence
H1(R4/Γ; Z) = Γ/[Γ,Γ] has rank 3, b1 = 3 is odd, so M is not Kähler [101].

• Does any symplectic manifold admit some complex structure (not necessarily
compatible)?

No.

(Fernández-Gotay-Gray, 1988 [37]): There are symplectic manifolds which
do not admit any complex structure [37]. Their examples are circle bundles
over circle bundles over a 2-torus.

S1 ↪→ M
↓

S1 ↪→ P
↓

T2

tower of circle fibrations

• Given a complex structure on M , is there always a symplectic structure (not
necessarily compatible)?

No.

The Hopf surface S1×S3 is not symplectic because H2(S1×S3) = 0. But
it is complex since S1 × S3 ' C2\{0}/Γ where Γ = {2nId | n ∈ Z} is a
group of complex transformations, i.e., we factor C2\{0} by the equivalence
relation (z1, z2) ∼ (2z1, 2z2).
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• Is any almost complex manifold either complex or symplectic?

No.

CP2#CP2#CP2 is almost complex (proved by a computation with charac-
teristic classes), but is neither complex (since it does not fit Kodaira’s clas-
sification of complex surfaces), nor symplectic (as shown by Taubes [97] in
1995 using Seiberg-Witten invariants).

• In 1993 Gompf [46] provided a construction that yields a compact symplec-
tic 4-manifold with fundamental group equal to any given finitely-presented
group. In particular, we can find simply connected examples. His construction
can be adapted to produce nonKähler examples.

17.4 Main Kähler Manifolds

• Compact Riemann surfaces

As real manifolds, these are the 2-dimensional compact orientable manifolds
classified by genus. An area form is a symplectic form. Any compatible al-
most complex structure is always integrable for dimension reasons (see Home-
work 10).

• Stein manifolds

Definition 17.4 A Stein manifold is a Kähler manifold (M,ω) which admits
a global proper Kähler potential, i.e., ω = i

2∂∂̄ρ for some proper function
ρ : M → R.

Proper means that the preimage by ρ of a compact set is compact, i.e.,
“ρ(p)→∞ as p→∞.”

Stein manifolds can be also characterized as the properly embedded analytic
submanifolds of Cn.

• Complex tori

Complex tori look like M = Cn/Zn where Zn is a lattice in Cn. The form
ω =

∑
dzj ∧ dz̄j induced by the euclidean structure is Kähler.

• Complex projective spaces

The standard Kähler form on CPn is the Fubini-Study form (see Home-
work 12). (In 1995, Taubes showed that CP2 has a unique symplectic struc-
ture up to symplectomorphism.)

• Products of Kähler manifolds

• Complex submanifolds of Kähler manifolds





Part VII

Hamiltonian Mechanics
The equations of motion in classical mechanics arise as solutions of variational
problems. For a general mechanical system of n particles in R3, the physical path
satisfies Newton’s second law. On the other hand, the physical path minimizes the
mean value of kinetic minus potential energy. This quantity is called the action.
For a system with constraints, the physical path is the path which minimizes the
action among all paths satisfying the constraint.

The Legendre transform (Lecture 20) gives the relation between the variational
(Euler-Lagrange) and the symplectic (Hamilton-Jacobi) formulations of the equa-
tions of motion.

18 Hamiltonian Vector Fields

18.1 Hamiltonian and Symplectic Vector Fields

– What does a symplectic geometer do with a real function?...

Let (M,ω) be a symplectic manifold and let H : M → R be a smooth function.
Its differential dH is a 1-form. By nondegeneracy, there is a unique vector field X

H

on M such that ıXH
ω = dH. Integrate X

H
. Supposing that M is compact, or at

least that X
H

is complete, let ρt : M →M , t ∈ R, be the one-parameter family of
diffeomorphisms generated by X

H
:
ρ0 = idM

dρt
dt
◦ ρ−1

t = X
H
.

Claim. Each diffeomorphism ρt preserves ω, i.e., ρ∗tω = ω, ∀t.

Proof. We have d
dtρ

∗
tω = ρ∗tLXH

ω = ρ∗t (d ıXH
ω︸ ︷︷ ︸

dH

+ıX
H
dω︸︷︷︸
0

) = 0. �

Therefore, every function on (M,ω) gives a family of symplectomorphisms. No-
tice how the proof involved both the nondegeneracy and the closedness of ω.

Definition 18.1 A vector field X
H

as above is called the hamiltonian vector field
with hamiltonian function H.

Example. The height function H(θ, h) = h on the sphere (M,ω) = (S2, dθ ∧ dh)
has

ıXH
(dθ ∧ dh) = dh ⇐⇒ X

H
=

∂

∂θ
.

105
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Thus, ρt(θ, h) = (θ + t, h), which is rotation about the vertical axis; the height
function H is preserved by this motion. ♦

Exercise. Let X be a vector field on an abstract manifold W . There is a unique
vector field X] on the cotangent bundle T ∗W , whose flow is the lift of the flow of
X; cf. Lecture 2. Let α be the tautological 1-form on T ∗W and let ω = −dα be
the canonical symplectic form on T ∗W . Show that X] is a hamiltonian vector field
with hamiltonian function H := ıX]

α. ♦

Remark. If X
H

is hamiltonian, then

LXH
H = ıXH

dH = ıXH
ıXH

ω = 0 .

Therefore, hamiltonian vector fields preserve their hamiltonian functions, and each
integral curve {ρt(x) | t ∈ R} of X

H
must be contained in a level set of H:

H(x) = (ρ∗tH)(x) = H(ρt(x)) , ∀t .

♦

Definition 18.2 A vector field X on M preserving ω (i.e., such that LXω = 0) is
called a symplectic vector field.{

X is symplectic ⇐⇒ ıXω is closed ,
X is hamiltonian ⇐⇒ ıXω is exact .

Locally, on every contractible open set, every symplectic vector field is hamilto-
nian. IfH1

deRham(M) = 0, then globally every symplectic vector field is hamiltonian.
In general, H1

deRham(M) measures the obstruction for symplectic vector fields to
be hamiltonian.

Example. On the 2-torus (M,ω) = (T2, dθ1 ∧ dθ2), the vector fields X1 = ∂
∂θ1

and X2 = ∂
∂θ2

are symplectic but not hamiltonian. ♦

To summarize, vector fields on a symplectic manifold (M,ω) which preserve ω
are called symplectic. The following are equivalent:

• X is a symplectic vector field;

• the flow ρt of X preserves ω, i.e., ρ∗tω = ω, for all t;

• LXω = 0;

• ıXω is closed.

A hamiltonian vector field is a vector field X for which

• ıXω is exact,

i.e., ıXω = dH for some H ∈ C∞(M). A primitive H of ıXω is then called a
hamiltonian function of X.
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18.2 Classical Mechanics

Consider euclidean space R2n with coordinates (q1, . . . , qn, p1, . . . , pn) and ω0 =∑
dqj ∧ dpj . The curve ρt = (q(t), p(t)) is an integral curve for X

H
exactly if


dqi
dt

(t) =
∂H

∂pi

dpi
dt

(t) = −∂H
∂qi

(Hamilton equations)

Indeed, let X
H

=
n∑
i=1

(
∂H
∂pi

∂
∂qi
− ∂H

∂qi

∂
∂pi

)
. Then,

ıXH
ω =

n∑
j=1

ıXH
(dqj ∧ dpj) =

n∑
j=1

[(ıXH
dqj) ∧ dpj − dqj ∧ (ıXH

dpj)]

=
n∑
j=1

(
∂H
∂pj

dpj + ∂H
∂qj

dqj

)
= dH .

Remark. The gradient vector field of H relative to the euclidean metric is

∇H :=
n∑
i=1

(
∂H

∂qi

∂

∂qi
+
∂H

∂pi

∂

∂pi

)
.

If J is the standard (almost) complex structure so that J( ∂
∂qi

) = ∂
∂pi

and

J( ∂
∂pi

) = − ∂
∂qi

, we have JX
H

= ∇H. ♦

The case where n = 3 has a simple physical illustration. Newton’s second law
states that a particle of massm moving in configuration space R3 with coordinates
q = (q1, q2, q3) under a potential V (q) moves along a curve q(t) such that

m
d2q

dt2
= −∇V (q) .

Introduce the momenta pi = mdqi

dt for i = 1, 2, 3, and energy function H(p, q) =
1

2m |p|
2+V (q). Let R6 = T ∗R3 be the corresponding phase space, with coordinates

(q1, q2, q3, p1, p2, p3). Newton’s second law in R3 is equivalent to the Hamilton
equations in R6: 

dqi
dt

=
1
m
pi =

∂H

∂pi
dpi
dt

= m
d2qi
dt2

= −∂V
∂qi

= −∂H
∂qi

.

The energy H is conserved by the physical motion.
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18.3 Brackets

Vector fields are differential operators on functions: if X is a vector field and
f ∈ C∞(M), df being the corresponding 1-form, then

X · f := df(X) = L
X
f .

Given two vector fields X, Y , there is a unique vector field W such that

LW f = LX(LY f)− LY (LXf) .

The vector field W is called the Lie bracket of the vector fields X and Y and
denoted W = [X,Y ], since LW = [LX ,LY ] is the commutator.

Exercise. Check that, for any form α,

ı[X,Y ]α = LX ıY α− ıY LXα = [LX , ıY ]α .

Since each side is an anti-derivation with respect to the wedge product, it suffices
to check this formula on local generators of the exterior algebra of forms, namely
functions and exact 1-forms. ♦

Proposition 18.3 If X and Y are symplectic vector fields on a symplectic manifold
(M,ω), then [X,Y ] is hamiltonian with hamiltonian function ω(Y,X).

Proof.
ı[X,Y ]ω = LX ıY ω − ıY LXω

= dıX ıY ω + ıX dıY ω︸ ︷︷ ︸
0

−ıY dıXω︸ ︷︷ ︸
0

−ıY ıX dω︸︷︷︸
0

= d(ω(Y,X)) .

�

A (real) Lie algebra is a (real) vector space g together with a Lie bracket [·, ·],
i.e., a bilinear map [·, ·] : g× g→ g satisfying:

(a) [x, y] = −[y, x] , ∀x, y ∈ g , (antisymmetry)

(b) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 , ∀x, y, z ∈ g . (Jacobi identity)

Let
χ(M) = { vector fields on M }

χsympl(M) = { symplectic vector fields on M }
χham(M) = { hamiltonian vector fields on M } .

Corollary 18.4 The inclusions (χham(M), [·, ·]) ⊆ (χsympl(M), [·, ·]) ⊆ (χ(M), [·, ·])
are inclusions of Lie algebras.

Definition 18.5 The Poisson bracket of two functions f, g ∈ C∞(M ; R) is

{f, g} := ω(Xf , Xg) .
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We have X{f,g} = −[Xf , Xg] because Xω(Xf ,Xg) = [Xg, Xf ].

Theorem 18.6 The bracket {·, ·} satisfies the Jacobi identity, i.e.,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 .

Proof. Exercise. �

Definition 18.7 A Poisson algebra (P, {·, ·}) is a commutative associative algebra
P with a Lie bracket {·, ·} satisfying the Leibniz rule:

{f, gh} = {f, g}h+ g{f, h} .

Exercise. Check that the Poisson bracket {·, ·} defined above satisfies the Leibniz
rule. ♦

We conclude that, if (M,ω) is a symplectic manifold, then (C∞(M), {·, ·}) is
a Poisson algebra. Furthermore, we have a Lie algebra anti-homomorphism

C∞(M) −→ χ(M)
H 7−→ X

H

{·, ·}  −[·, ·] .

18.4 Integrable Systems

Definition 18.8 A hamiltonian system is a triple (M,ω,H), where (M,ω) is a
symplectic manifold and H ∈ C∞(M ; R) is a function, called the hamiltonian
function.

Theorem 18.9 We have {f,H} = 0 if and only if f is constant along integral
curves of X

H
.

Proof. Let ρt be the flow of X
H

. Then

d
dt (f ◦ ρt) = ρ∗tLXH

f = ρ∗t ıXH
df = ρ∗t ıXH

ıXf
ω

= ρ∗tω(Xf , XH
) = ρ∗t {f,H} .

�

A function f as in Theorem 18.9 is called an integral of motion (or a first
integral or a constant of motion). In general, hamiltonian systems do not admit
integrals of motion which are independent of the hamiltonian function. Functions
f1, . . . , fn on M are said to be independent if their differentials (df1)p, . . . , (dfn)p
are linearly independent at all points p in some open dense subset of M . Loosely
speaking, a hamiltonian system is (completely) integrable if it has as many commut-
ing integrals of motion as possible. Commutativity is with respect to the Poisson
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bracket. Notice that, if f1, . . . , fn are commuting integrals of motion for a hamil-
tonian system (M,ω,H), then, at each p ∈ M , their hamiltonian vector fields
generate an isotropic subspace of TpM :

ω(Xfi
, Xfj

) = {fi, fj} = 0 .

If f1, . . . , fn are independent, then, by symplectic linear algebra, n can be at most
half the dimension of M .

Definition 18.10 A hamiltonian system (M,ω,H) is (completely) integrable if
it possesses n = 1

2 dimM independent integrals of motion, f1 = H, f2, . . . , fn,
which are pairwise in involution with respect to the Poisson bracket, i.e., {fi, fj}
= 0, for all i, j.

Example. The simple pendulum (Homework 13) and the harmonic oscillator are
trivially integrable systems – any 2-dimensional hamiltonian system (where the set
of non-fixed points is dense) is integrable. ♦

Example. A hamiltonian system (M,ω,H) where M is 4-dimensional is integrable
if there is an integral of motion independent of H (the commutativity condition
is automatically satisfied). Homework 18 shows that the spherical pendulum is
integrable. ♦

For sophisticated examples of integrable systems, see [10, 62].

Let (M,ω,H) be an integrable system of dimension 2n with integrals of motion
f1 = H, f2, . . . , fn. Let c ∈ Rn be a regular value of f := (f1, . . . , fn). The corre-
sponding level set, f−1(c), is a lagrangian submanifold, because it is n-dimensional
and its tangent bundle is isotropic.

Lemma 18.11 If the hamiltonian vector fields Xf1 , . . . , Xfn are complete on the
level f−1(c), then the connected components of f−1(c) are homogeneous spaces
for Rn, i.e., are of the form Rn−k × Tk for some k, 0 ≤ k ≤ n, where Tk is a
k-dimensional torus.

Proof. Exercise (just follow the flows to obtain coordinates). �

Any compact component of f−1(c) must hence be a torus. These components,
when they exist, are called Liouville tori. (The easiest way to ensure that compact
components exist is to have one of the fi’s proper.)

Theorem 18.12 (Arnold-Liouville [3]) Let (M,ω,H) be an integrable system
of dimension 2n with integrals of motion f1 = H, f2, . . . , fn. Let c ∈ Rn be a
regular value of f := (f1, . . . , fn). The corresponding level f−1(c) is a lagrangian
submanifold of M .

(a) If the flows of Xf1 , . . . , Xfn
starting at a point p ∈ f−1(c) are complete, then

the connected component of f−1(c) containing p is a homogeneous space for
Rn. With respect to this affine structure, that component has coordinates
ϕ1, . . . , ϕn, known as angle coordinates, in which the flows of the vector
fields Xf1 , . . . , Xfn are linear.
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(b) There are coordinates ψ1, . . . , ψn, known as action coordinates, comple-
mentary to the angle coordinates such that the ψi’s are integrals of motion
and ϕ1, . . . , ϕn, ψ1, . . . , ψn form a Darboux chart.

Therefore, the dynamics of an integrable system is extremely simple and the
system has an explicit solution in action-angle coordinates. The proof of part (a) –
the easy part – of the Arnold-Liouville theorem is sketched above. For the proof of
part (b), see [3, 28].

Geometrically, regular levels being lagrangian submanifolds implies that, in a
neighborhood of a regular value, the map f : M → Rn collecting the given in-
tegrals of motion is a lagrangian fibration, i.e., it is locally trivial and its fibers
are lagrangian submanifolds. Part (a) of the Arnold-Liouville theorem states that
there are coordinates along the fibers, the angle coordinates ϕi,

11 in which the
flows of Xf1 , . . . , Xfn are linear. Part (b) of the theorem guarantees the existence
of coordinates on Rn, the action coordinates ψi, which (Poisson) commute among
themselves and satisfy {ϕi, ψj} = δij with respect to the angle coordinates. Notice
that, in general, the action coordinates are not the given integrals of motion because
ϕ1, . . . , ϕn, f1, . . . , fn do not form a Darboux chart.

11The name “angle coordinates” is used even if the fibers are not tori.



Homework 13: Simple Pendulum

This problem is adapted from [53].

The simple pendulum is a mechanical system consisting of a massless rigid
rod of length l, fixed at one end, whereas the other end has a plumb bob of mass
m, which may oscillate in the vertical plane. Assume that the force of gravity
is constant pointing vertically downwards, and that this is the only external force
acting on this system.

(a) Let θ be the oriented angle between the rod (regarded as a line segment)
and the vertical direction. Let ξ be the coordinate along the fibers of T ∗S1

induced by the standard angle coordinate on S1. Show that the function
H : T ∗S1 → R given by

H(θ, ξ) =
ξ2

2ml2︸ ︷︷ ︸
K

+ml(1− cos θ)︸ ︷︷ ︸
V

,

is an appropriate hamiltonian function to describe the simple pendulum. More
precisely, check that gravity corresponds to the potential energy V (θ) =
ml(1 − cos θ) (we omit universal constants), and that the kinetic energy
is given by K(θ, ξ) = 1

2ml2 ξ
2.

(b) For simplicity assume that m = l = 1.
Plot the level curves of H in the (θ, ξ) plane.

Show that there exists a number c such that for 0 < h < c the level curve
H = h is a disjoint union of closed curves. Show that the projection of each
of these curves onto the θ-axis is an interval of length less than π.

Show that neither of these assertions is true if h > c.

What types of motion are described by these two types of curves?
What about the case H = c?

(c) Compute the critical points of the function H. Show that, modulo 2π in θ,
there are exactly two critical points: a critical point s where H vanishes, and
a critical point u where H equals c. These points are called the stable and
unstable points of H, respectively. Justify this terminology, i.e., show that a
trajectory of the hamiltonian vector field of H whose initial point is close to
s stays close to s forever, and show that this is not the case for u. What is
happening physically?
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19.1 Equations of Motion

The equations of motion in classical mechanics arise as solutions of variational
problems:

A general mechanical system possesses both kinetic and potential en-
ergy. The quantity that is minimized is the mean value of kinetic minus
potential energy.

Example. Suppose that a point-particle of mass m moves in R3 under a force field
F ; let x(t), a ≤ t ≤ b, be its path of motion in R3. Newton’s second law states
that

m
d2x

dt2
(t) = F (x(t)) .

Define the work of a path γ : [a, b] −→ R3, with γ(a) = p and γ(b) = q, to be

Wγ =
∫ b

a

F (γ(t)) · dγ
dt

(t)dt .

Suppose that F is conservative, i.e., Wγ depends only on p and q. Then we can
define the potential energy V : R3 −→ R of the system as

V (q) := Wγ

where γ is a path joining a fixed base point p0 ∈ R3 (the “origin”) to q. Newton’s
second law can now be written

m
d2x

dt2
(t) = −∂V

∂x
(x(t)) .

In the previous lecture we saw that

Newton’s second law ⇐⇒ Hamilton equations
in R3 = {(q1, q2, q3)} in T ∗R3 = {(q1, q2, q3, p1, p2, p3)}

where pi = mdqi

dt and the hamiltonian is H(p, q) = 1
2m |p|

2 + V (q). Hence, solving
Newton’s second law in configuration space R3 is equivalent to solving in phase
space T ∗R3 for the integral curve of the hamiltonian vector field with hamiltonian
function H. ♦

Example. The motion of earth about the sun, both regarded as point-masses and
assuming that the sun to be stationary at the origin, obeys the inverse square law

m
d2x

dt2
= −∂V

∂x
,

where x(t) is the position of earth at time t, and V (x) = const.
|x| is the gravitational

potential. ♦

113



114 19 VARIATIONAL PRINCIPLES

19.2 Principle of Least Action

When we need to deal with systems with constraints, such as the simple pendulum,
or two point masses attached by a rigid rod, or a rigid body, the language of varia-
tional principles becomes more appropriate than the explicit analogues of Newton’s
second laws. Variational principles are due mostly to D’Alembert, Maupertius, Euler
and Lagrange.

Example. (The n-particle system.) Suppose that we have n point-particles of
masses m1, . . . ,mn moving in 3-space. At any time t, the configuration of this
system is described by a vector in configuration space R3n

x = (x1, . . . , xn) ∈ R3n

with xi ∈ R3 describing the position of the ith particle. If V ∈ C∞(R3n) is the
potential energy, then a path of motion x(t), a ≤ t ≤ b, satisfies

mi
d2xi
dt2

(t) = − ∂V
∂xi

(x1(t), . . . , xn(t)) .

Consider this path in configuration space as a map γ0 : [a, b]→ R3n with γ0(a) = p
and γ0(b) = q, and let

P = {γ : [a, b] −→ R3n | γ(a) = p and γ(b) = q}

be the set of all paths going from p to q over time t ∈ [a, b]. ♦

Definition 19.1 The action of a path γ ∈ P is

Aγ :=
∫ b

a

(
n∑
i=1

mi

2

∣∣∣∣dγidt (t)
∣∣∣∣2 − V (γ(t))

)
dt .

Principle of least action.
The physical path γ0 is the path for which Aγ is minimal.

Newton’s second law for a constrained system.
Suppose that the n point-masses are restricted to move on a submanifold M

of R3n called the constraint set. We can now single out the actual physical path
γ0 : [a, b] → M , with γ0(a) = p and γ0(b) = q, as being “the” path which
minimizes Aγ among all those hypothetical paths γ : [a, b] → R3n with γ(a) = p,
γ(b) = q and satisfying the rigid constraints γ(t) ∈M for all t.

19.3 Variational Problems

Let M be an n-dimensional manifold. Its tangent bundle TM is a 2n-dimensional
manifold. Let F : TM → R be a smooth function.
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If γ : [a, b] → M is a smooth curve on M , define the lift of γ to TM to be
the smooth curve on TM given by

γ̃ : [a, b] −→ TM

t 7−→
(
γ(t), dγdt (t)

)
.

The action of γ is

Aγ :=
∫ b

a

(γ̃∗F )(t)dt =
∫ b

a

F

(
γ(t),

dγ

dt
(t)
)
dt .

For fixed p, q ∈M , let

P(a, b, p, q) := {γ : [a, b] −→M | γ(a) = p, γ(b) = q} .

Problem.
Find, among all γ ∈ P(a, b, p, q), the curve γ0 which “minimizes” Aγ .

First observe that minimizing curves are always locally minimizing:

Lemma 19.2 Suppose that γ0 : [a, b]→M is minimizing. Let [a1, b1] be a subin-
terval of [a, b] and let p1 = γ0(a1), q1 = γ0(b1). Then γ0|[a1,b1] is minimizing
among the curves in P(a1, b1, p1, q1).

Proof. Exercise:
Argue by contradiction. Suppose that there were γ1 ∈ P(a1, b1, p1, q1) for

which Aγ1 < Aγ0|[a1,b1]
. Consider a broken path obtained from γ0 by replacing

the segment γ0|[a1,b1] by γ1. Construct a smooth curve γ2 ∈ P(a, b, p, q) for which
Aγ2 < Aγ0 by rounding off the corners of the broken path. �

We will now assume that p, q and γ0 lie in a coordinate neighborhood (U , x1, . . . , xn).
On TU we have coordinates (x1, . . . , xn, v1, . . . , vn) associated with a trivialization
of TU by ∂

∂x1
, . . . , ∂

∂xn
. Using this trivialization, the curve

γ : [a, b] −→ U , γ(t) = (γ1(t), . . . , γn(t))

lifts to

γ̃ : [a, b] −→ TU , γ̃(t) =
(
γ1(t), . . . , γn(t),

dγ1

dt
(t), . . . ,

dγn
dt

(t)
)
.

Necessary condition for γ0 ∈ P(a, b, p, q) to minimize the action.
Let c1, . . . , cn ∈ C∞([a, b]) be such that ci(a) = ci(b) = 0. Let γε : [a, b] −→ U

be the curve
γε(t) = (γ1(t) + εc1(t), . . . , γn(t) + εcn(t)) .

For ε small, γε is well-defined and in P(a, b, p, q).
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Let Aε = Aγε =
∫ b
a
F
(
γε(t), dγε

dt (t)
)
dt. If γ0 minimizes A, then

dAε
dε

(0) = 0 .

dAε
dε

(0) =
∫ b

a

∑
i

[
∂F

∂xi

(
γ0(t),

dγ0

dt
(t)
)
ci(t) +

∂F

∂vi

(
γ0(t),

dγ0

dt
(t)
)
dci
dt

(t)
]
dt

=
∫ b

a

∑
i

[
∂F

∂xi
(. . .)− d

dt

∂F

∂vi
(. . .)

]
ci(t)dt = 0

where the first equality follows from the Leibniz rule and the second equality follows
from integration by parts. Since this is true for all ci’s satisfying the boundary
conditions ci(a) = ci(b) = 0, we conclude that

∂F

∂xi

(
γ0(t),

dγ0

dt
(t)
)

=
d

dt

∂F

∂vi

(
γ0(t),

dγ0

dt
(t)
)
. E-L

These are the Euler-Lagrange equations.

19.4 Solving the Euler-Lagrange Equations

Case 1: Suppose that F (x, v) does not depend on v.

The Euler-Lagrange equations become

∂F

∂xi

(
γ0(t),

dγ0

dt
(t)
)

= 0 ⇐⇒ the curve γ0 sits on the critical set of F .

For generic F , the critical points are isolated, hence γ0(t) must be a constant
curve.

Case 2: Suppose that F (x, v) depends affinely on v:

F (x, v) = F0(x) +
n∑
j=1

Fj(x)vj .

LHS of E-L :
∂F0

∂xi
(γ(t)) +

n∑
j=1

∂Fj
∂xi

(γ(t))
dγj
dt

(t)

RHS of E-L :
d

dt
Fi(γ(t)) =

n∑
j=1

∂Fi
∂xj

(γ(t))
dγj
dt

(t)

The Euler-Lagrange equations become

∂F0

∂xi
(γ(t)) =

n∑
j=1

(
∂Fi
∂xj
− ∂Fj
∂xi

)
︸ ︷︷ ︸

n×n matrix

(γ(t))
dγj
dt

(t) .
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If the n× n matrix
(
∂Fi

∂xj
− ∂Fj

∂xi

)
has an inverse Gij(x), then

dγj
dt

(t) =
n∑
i=1

Gji(γ(t))
∂F0

∂xi
(γ(t))

is a system of first order ordinary differential equations. Locally it has a unique
solution through each point p. If q is not on this curve, there is no solution
at all to the Euler-Lagrange equations belonging to P(a, b, p, q).

Therefore, we need non-linear dependence of F on the v variables in order to have
appropriate solutions. From now on, assume that the

Legendre condition: det
(

∂2F

∂vi∂vj

)
6= 0 .

Letting Gij(x, v) =
(

∂2F
∂vi∂vj

(x, v)
)−1

, the Euler-Lagrange equations become

d2γj
dt2

=
∑
i

Gji
∂F

∂xi

(
γ,
dγ

dt

)
−
∑
i,k

Gji
∂2F

∂vi∂xk

(
γ,
dγ

dt

)
dγk
dt

.

This second order ordinary differential equation has a unique solution given initial
conditions

γ(a) = p and
dγ

dt
(a) = v .

19.5 Minimizing Properties

Is the above solution locally minimizing?

Assume that
(

∂2F
∂vi∂vj

(x, v)
)
� 0, ∀(x, v), i.e., with the x variable frozen, the

function v 7→ F (x, v) is strictly convex.
Suppose that γ0 ∈ P(a, b, p, q) satisfies E-L. Does γ0 minimize Aγ? Locally,

yes, according to the following theorem. (Globally it is only critical.)

Theorem 19.3 For every sufficiently small subinterval [a1, b1] of [a, b], γ0|[a1,b1] is
locally minimizing in P(a1, b1, p1, q1) where p1 = γ0(a1), q1 = γ0(b1).

Proof. As an exercise in Fourier series, show the Wirtinger inequality: for f ∈
C1([a, b]) with f(a) = f(b) = 0, we have∫ b

a

∣∣∣∣dfdt
∣∣∣∣2 dt ≥ π2

(b− a)2

∫ b

a

|f |2dt .

Suppose that γ0 : [a, b] → U satisfies E-L. Take ci ∈ C∞([a, b]), ci(a) =
ci(b) = 0. Let c = (c1, . . . , cn). Let γε = γ0 +εc ∈ P(a, b, p, q), and let Aε = Aγε .
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E-L ⇐⇒ dAε

dε (0) = 0.

d2Aε
dε2

(0) =
∫ b

a

∑
i,j

∂2F

∂xi∂xj

(
γ0,

dγ0

dt

)
ci cj dt (I)

+ 2
∫ b

a

∑
i,j

∂2F

∂xi∂vj

(
γ0,

dγ0

dt

)
ci
dcj
dt

dt (II)

+
∫ b

a

∑
i,j

∂2F

∂vi∂vj

(
γ0,

dγ0

dt

)
dci
dt

dcj
dt

dt (III) .

Since
(

∂2F
∂vi∂vj

(x, v)
)
� 0 at all x, v,

III ≥ KIII

∣∣∣∣dcdt
∣∣∣∣2
L2[a,b]

|I| ≤ KI |c|2L2[a,b]

|II| ≤ KII |c|L2[a,b]

∣∣∣∣dcdt
∣∣∣∣
L2[a,b]

where KI ,KII ,KIII > 0. By the Wirtinger inequality, if b − a is very small, then
III > |I|+ |II| when c 6= 0. Hence, γ0 is a local minimum. �



Homework 14: Minimizing Geodesics

This set of problems is adapted from [53].

Let (M, g) be a riemannian manifold. From the riemannian metric, we get
a function F : TM → R, whose restriction to each tangent space TpM is the
quadratic form defined by the metric.

Let p and q be points on M , and let γ : [a, b]→M be a smooth curve joining
p to q. Let γ̃ : [a, b] → TM , γ̃(t) = (γ(t), dγdt (t)) be the lift of γ to TM . The
action of γ is

A(γ) =
∫ b

a

(γ̃∗F ) dt =
∫ b

a

∣∣∣∣dγdt
∣∣∣∣2 dt .

1. Let γ : [a, b] → M be a smooth curve joining p to q. Show that the arc-
length of γ is independent of the parametrization of γ, i.e., show that if we
reparametrize γ by τ : [a′, b′]→ [a, b], the new curve γ′ = γ ◦τ : [a′, b′]→M
has the same arc-length.

2. Show that, given any curve γ : [a, b] → M (with dγ
dt never vanishing), there

is a reparametrization τ : [a, b] → [a, b] such that γ ◦ τ : [a, b] → M is of
constant velocity, that is, |dγdt | is independent of t.

3. Let τ : [a, b] → [a, b] be a smooth monotone map taking the endpoints of
[a, b] to the endpoints of [a, b]. Prove that∫ b

a

(
dτ

dt

)2

dt ≥ b− a ,

with equality holding if and only if dτ
dt = 1.

4. Let γ : [a, b] → M be a smooth curve joining p to q. Suppose that, as s
goes from a to b, its image γ(s) moves at constant velocity, i.e., suppose
that |dγds | is constant as a function of s. Let γ′ = γ ◦ τ : [a, b] → M be a
reparametrization of γ. Show that A(γ′) ≥ A(γ), with equality holding if
and only if τ(t) ≡ t.
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5. Let γ0 : [a, b] → M be a curve joining p to q. Suppose that γ0 is action-
minimizing, i.e., suppose that

A(γ0) ≤ A(γ)

for any other curve γ : [a, b] → M joining p to q. Prove that γ0 is also
arc-length-minimizing, i.e., show that γ0 is the shortest geodesic joining p
to q.

6. Show that, among all curves joining p to q, γ0 minimizes the action if and
only if γ0 is of constant velocity and γ0 minimizes arc-length.

7. On a coordinate chart (U , x1, . . . , xn) on M , we have

F (x, v) =
∑

gij(x)vivj .

Show that the Euler-Lagrange equations associated to the action reduce to
the Christoffel equations for a geodesic

d2γk

dt2
+
∑

(Γkij ◦ γ)
dγi

dt

dγj

dt
= 0 ,

where the Γkij ’s (called the Christoffel symbols) are defined in terms of the
coefficients of the riemannian metric by

Γkij =
1
2

∑
`

g`k
(
∂g`i
∂xj

+
∂g`j
∂xi
− ∂gij
∂x`

)
,

(gij) being the matrix inverse to (gij).

8. Let p and q be two non-antipodal points on Sn. Show that the geodesic
joining p to q is an arc of a great circle, the great circle in question being the
intersection of Sn with the two-dimensional subspace of Rn+1 spanned by p
and q.

Hint: No calculations are needed: Show that an isometry of a riemannian manifold
has to carry geodesics into geodesics, and show that there is an isometry of Rn+1

whose fixed point set is the plane spanned by p and q, and show that this isometry
induces on Sn an isometry whose fixed point set is the great circle containing p
and q.



20 Legendre Transform

20.1 Strict Convexity

Let V be an n-dimensional vector space, with e1, . . . , en a basis of V and v1, . . . , vn
the associated coordinates. Let F : V → R, F = F (v1, . . . , vn), be a smooth
function. Let p ∈ V , u =

∑n
i=1 uiei ∈ V . The hessian of F is the quadratic

function on V defined by

(d2F )p(u) :=
∑
i,j

∂2F

∂vi∂vj
(p)uiuj .

Exercise. Show that (d2F )p(u) = d2

dt2F (p+ tu)|t=0. ♦

Definition 20.1 The function F is strictly convex if (d2F )p � 0, ∀p ∈ V .

Proposition 20.2 For a strictly convex function F on V , the following are equiv-
alent:

(a) F has a critical point, i.e., a point where dFp = 0;

(b) F has a local minimum at some point;

(c) F has a unique critical point (global minimum); and

(d) F is proper, that is, F (p)→ +∞ as p→∞ in V .

Proof. Homework 15. �

Definition 20.3 A strictly convex function F is stable when it satisfies conditions
(a)-(d) in Proposition 20.2.

Example. The function ex + ax is strictly convex for any a ∈ R, but it is stable
only for a < 0. The function x2 + ax is strictly convex and stable for any a ∈ R.
♦

20.2 Legendre Transform

Let F be any strictly convex function on V . Given ` ∈ V ∗, let

F` : V −→ R , F`(v) = F (v)− `(v) .

Since (d2F )p = (d2F`)p,

F is strictly convex ⇐⇒ F` is strictly convex.
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122 20 LEGENDRE TRANSFORM

Definition 20.4 The stability set of a strictly convex function F is

SF = {` ∈ V ∗ | F` is stable} .

Proposition 20.5 The set SF is an open and convex subset of V ∗.

Proof. Homework 15. �

Homework 15 also describes a sufficient condition for SF = V ∗.

Definition 20.6 The Legendre transform associated to F ∈ C∞(V ; R) is the
map

LF : V −→ V ∗

p 7−→ dFp ∈ T ∗p V ' V ∗ .

Proposition 20.7 Suppose that F is strictly convex. Then

LF : V '−→ SF ,

i.e., LF is a diffeomorphism onto SF .

The inverse map L−1
F : SF → V is described as follows: for ` ∈ SF , the value

L−1
F (`) is the unique minimum point p` ∈ V of F` = F − `.

Exercise. Check that p is the minimum of F (v)− dFp(v). ♦

Definition 20.8 The dual function F ∗ to F is

F ∗ : SF −→ R , F ∗(`) = −min
p∈V

F`(p) .

Theorem 20.9 We have that L−1
F = LF∗ .

Proof. Homework 15. �

20.3 Application to Variational Problems

Let M be a manifold and F : TM → R a function on TM .

Problem. Minimize Aγ =
∫
γ̃∗F .

At p ∈M , let
Fp := F |TpM : TpM −→ R .

Assume that Fp is strictly convex for all p ∈M . To simplify notation, assume also
that SFp = T ∗pM . The Legendre transform on each tangent space

LFp : TpM
'−→ T ∗pM
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is essentially given by the first derivatives of F in the v directions. The dual function
to Fp is F ∗p : T ∗pM −→ R. Collect these fiberwise maps into

L : TM −→ T ∗M , L|TpM = LFp
, and

H : T ∗M −→ R , H|T∗pM = F ∗p .

Exercise. The maps H and L are smooth, and L is a diffeomorphism. ♦

Let
γ : [a, b] −→M be a curve, and
γ̃ : [a, b] −→ TM its lift.

Theorem 20.10 The curve γ satisfies the Euler-Lagrange equations on every co-
ordinate chart if and only if L ◦ γ̃ : [a, b] → T ∗M is an integral curve of the
hamiltonian vector field XH .

Proof. Let

(U , x1, . . . , xn) coordinate neighborhood in M ,
(TU , x1, . . . , xn, v1, . . . , vn) coordinates in TM ,
(T ∗U , x1, . . . , xn, ξ1, . . . , ξn) coordinates in T ∗M .

On TU we have F = F (x, v).
On T ∗U we have H = H(u, ξ).

L : TU −→ T ∗U
(x, v) 7−→ (x, ξ) where ξ = LFx(v) = ∂F

∂v (x, v) .

(This is the definition of momentum ξ.)

H(x, ξ) = F ∗x (ξ) = ξ · v − F (x, v) where L(x, v) = (x, ξ) .

Integral curves (x(t), ξ(t)) of XH satisfy the Hamilton equations:

H


dx

dt
=

∂H

∂ξ
(x, ξ)

dξ

dt
= −∂H

∂x
(x, ξ) ,

whereas the physical path x(t) satisfies the Euler-Lagrange equations:

E-L
∂F

∂x

(
x,
dx

dt

)
=

d

dt

∂F

∂v

(
x,
dx

dt

)
.

Let (x(t), ξ(t)) = L
(
x(t), dxdt (t)

)
. We want to prove:

t 7→ (x(t), ξ(t)) satisfies H ⇐⇒ t 7→
(
x(t),

dx

dt
(t)
)

satisfies E-L .
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The first line of H is automatically satisfied:

dx

dt
=
∂H

∂ξ
(x, ξ) = LF∗x (ξ) = L−1

Fx
(ξ) ⇐⇒ ξ = LFx

(
dx

dt

)

Claim. If (x, ξ) = L(x, v), then ∂F
∂x (x, v) = −∂H∂x (x, ξ).

This follows from differentiating both sides of H(x, ξ) = ξ · v − F (x, v) with
respect to x, where ξ = LFx

(v) = ξ(x, v).

∂H

∂x
+
∂H

∂ξ︸︷︷︸
v

∂ξ

∂x
=
∂ξ

∂x
· v − ∂F

∂x
.

Now the second line of H becomes

d

dt

∂F

∂v
(x, v) =

dξ

dt︸ ︷︷ ︸
since ξ = LFx(v)

= −∂H
∂x

(x, ξ) =
∂F

∂x
(x, v)︸ ︷︷ ︸

by the claim

⇐⇒ E-L .

�



Homework 15: Legendre Transform

This set of problems is adapted from [54].

1. Let f : R→ R be a smooth function. f is called strictly convex if f ′′(x) > 0
for all x ∈ R. Assuming that f is strictly convex, prove that the following
four conditions are equivalent:

(a) f ′(x) = 0 for some point x0,

(b) f has a local minimum at some point x0,

(c) f has a unique (global) minimum at some point x0,

(d) f(x)→ +∞ as x→ ±∞.

The function f is stable if it satisfies one (and hence all) of these conditions.

For what values of a is the function ex + ax stable? For those values of a for
which it is not stable, what does the graph look like?

2. Let V be an n-dimensional vector space and F : V → R a smooth function.
The function F is said to be strictly convex if for every pair of elements
p, v ∈ V , v 6= 0, the restriction of F to the line {p + xv |x ∈ R} is strictly
convex.

The hessian of F at p is the quadratic form

d2Fp : v 7−→ d2

dx2
F (p+ xv)|x=0 .

Show that F is strictly convex if and only if d2Fp is positive definite for all
p ∈ V .

Prove the n-dimensional analogue of the result you proved in (1). Namely,
assuming that F is strictly convex, show that the four following assertions are
equivalent:

(a) dFp = 0 at some point p0,

(b) F has a local minimum at some point p0,

(c) F has a unique (global) minimum at some point p0,

(d) F (p)→ +∞ as p→∞.

3. As in exercise 2, let V be an n-dimensional vector space and F : V → R a
smooth function. Since V is a vector space, there is a canonical identification
T ∗p V ' V ∗, for every p ∈ V . Therefore, we can define a map

L
F

: V −→ V ∗ (Legendre transform)

by setting
L

F
(p) = dFp ∈ T ∗p V ' V ∗ .

Show that, if F is strictly convex, then, for every point p ∈ V , L
F

maps a
neighborhood of p diffeomorphically onto a neighborhood of L

F
(p).
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4. A strictly convex function F : V → R is stable if it satisfies the four equivalent
conditions of exercise 2. Given any strictly convex function F , we will denote
by S

F
the set of l ∈ V ∗ for which the function Fl : V → R, p 7→ F (p)− l(p),

is stable. Prove that:

(a) The set S
F

is open and convex.

(b) L
F

maps V diffeomorphically onto S
F
.

(c) If ` ∈ S
F

and p0 = L−1
F

(`), then p0 is the unique minimum point of the
function F`.

Let F ∗ : S
F
→ R be the function whose value at l is the quantity −min

p∈V
Fl(p).

Show that F ∗ is a smooth function.

The function F ∗ is called the dual of the function F .

5. Let F be a strictly convex function. F is said to have quadratic growth at
infinity if there exists a positive-definite quadratic formQ on V and a constant
K such that F (p) ≥ Q(p)−K, for all p. Show that, if F has quadratic growth
at infinity, then S

F
= V ∗ and hence L

F
maps V diffeomorphically onto V ∗.

6. Let F : V → R be strictly convex and let F ∗ : S
F
→ R be the dual function.

Prove that for all p ∈ V and all ` ∈ S
F
,

F (p) + F ∗(`) ≥ `(p) (Young inequality) .

7. On one hand we have V ×V ∗ ' T ∗V , and on the other hand, since V = V ∗∗,
we have V × V ∗ ' V ∗ × V ' T ∗V ∗.

Let α1 be the canonical 1-form on T ∗V and α2 be the canonical 1-form on
T ∗V ∗. Via the identifications above, we can think of both of these forms as
living on V × V ∗. Show that α1 = dβ − α2, where β : V × V ∗ → R is the
function β(p, `) = `(p).

Conclude that the forms ω1 = dα1 and ω2 = dα2 satisfy ω1 = −ω2.

8. Let F : V → R be strictly convex. Assume that F has quadratic growth at
infinity so that S

F
= V ∗. Let Λ

F
be the graph of the Legendre transform

L
F
. The graph Λ

F
is a lagrangian submanifold of V × V ∗ with respect to

the symplectic form ω1; why? Hence, Λ
F

is also lagrangian for ω2.

Let pr1 : Λ
F
→ V and pr2 : Λ

F
→ V ∗ be the restrictions of the projection

maps V × V ∗ → V and V × V ∗ → V ∗, and let i : Λ
F
↪→ V × V ∗ be the

inclusion map. Show that

i∗α1 = d(pr1)
∗F .

Conclude that

i∗α2 = d(i∗β − (pr1)
∗F ) = d(pr2)

∗F ∗ ,

and from this conclude that the inverse of the Legendre transform associated
with F is the Legendre transform associated with F ∗.



Part VIII

Moment Maps
The concept of a moment map12 is a generalization of that of a hamiltonian func-
tion. The notion of a moment map associated to a group action on a symplectic
manifold formalizes the Noether principle, which states that to every symmetry
(such as a group action) in a mechanical system, there corresponds a conserved
quantity.

21 Actions

21.1 One-Parameter Groups of Diffeomorphisms

Let M be a manifold and X a complete vector field on M . Let ρt : M → M ,
t ∈ R, be the family of diffeomorphisms generated by X. For each p ∈ M , ρt(p),
t ∈ R, is by definition the unique integral curve of X passing through p at time 0,
i.e., ρt(p) satisfies 

ρ0(p) = p

dρt(p)
dt

= X(ρt(p)) .

Claim. We have that ρt ◦ ρs = ρt+s.

Proof. Let ρs(q) = p. We need to show that (ρt ◦ ρs)(q) = ρt+s(q), for all t ∈ R.
Reparametrize as ρ̃t(q) := ρt+s(q). Then

ρ̃0(q) = ρs(q) = p

dρ̃t(q)
dt

=
dρt+s(q)

dt
= X(ρt+s(q)) = X(ρ̃t(q)) ,

i.e., ρ̃t(q) is an integral curve of X through p. By uniqueness we must have
ρ̃t(q) = ρt(p), that is, ρt+s(q) = ρt(ρs(q)). �

Consequence. We have that ρ−1
t = ρ−t.

In terms of the group (R,+) and the group (Diff(M), ◦) of all diffeomorphisms
of M , these results can be summarized as:

Corollary 21.1 The map R→ Diff(M), t 7→ ρt, is a group homomorphism.

The family {ρt | t ∈ R} is then called a one-parameter group of diffeomor-
phisms of M and denoted

ρt = exp tX .

12Souriau [95] invented the french name “application moment.” In the US, East and West
coasts could be distinguished by the choice of translation: moment map and momentum map,
respectively. We will stick to the more economical version.
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128 21 ACTIONS

21.2 Lie Groups

Definition 21.2 A Lie group is a manifold G equipped with a group structure
where the group operations

G×G −→ G and G −→ G
(a, b) 7−→ a · b a 7−→ a−1

are smooth maps.

Examples.

• R (with addition13).

• S1 regarded as unit complex numbers with multiplication, represents rotations
of the plane: S1 = U(1) = SO(2).

• U(n), unitary linear transformations of Cn.

• SU(n), unitary linear transformations of Cn with det = 1.

• O(n), orthogonal linear transformations of Rn.

• SO(n), elements of O(n) with det = 1.

• GL(V ), invertible linear transformations of a vector space V .

♦

Definition 21.3 A representation of a Lie group G on a vector space V is a group
homomorphism G→ GL(V ).

21.3 Smooth Actions

Let M be a manifold.

Definition 21.4 An action of a Lie group G on M is a group homomorphism

ψ : G −→ Diff(M)
g 7−→ ψg .

(We will only consider left actions where ψ is a homomorphism. A right action
is defined with ψ being an anti-homomorphism.) The evaluation map associated
with an action ψ : G→ Diff(M) is

evψ : M ×G −→ M
(p, g) 7−→ ψg(p) .

The action ψ is smooth if evψ is a smooth map.

13The operation will be omitted when it is clear from the context.
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Example. If X is a complete vector field on M , then

ρ : R −→ Diff(M)
t 7−→ ρt = exp tX

is a smooth action of R on M . ♦

Every complete vector field gives rise to a smooth action of R on M . Conversely,
every smooth action of R on M is defined by a complete vector field.

{complete vector fields on M} 1−1←→ {smooth actions of R on M}

X 7−→ exp tX

Xp =
dψt(p)
dt

∣∣∣∣
t=0

←− ψ

21.4 Symplectic and Hamiltonian Actions

Let (M,ω) be a symplectic manifold, and G a Lie group. Let ψ : G −→ Diff(M)
be a (smooth) action.

Definition 21.5 The action ψ is a symplectic action if

ψ : G −→ Sympl(M,ω) ⊂ Diff(M) ,

i.e., G “acts by symplectomorphisms.”

{complete symplectic vector fields on M} 1−1←→ {symplectic actions of R on M}

Example. On R2n with ω =
∑
dxi ∧ dyi, let X = − ∂

∂y1
. The orbits of the action

generated by X are lines parallel to the y1-axis,

{(x1, y1 − t, x2, y2, . . . , xn, yn) | t ∈ R} .

Since X = Xx1 is hamiltonian (with hamiltonian function H = x1), this is actually
an example of a hamiltonian action of R. ♦

Example. On S2 with ω = dθ ∧ dh (cylindrical coordinates), let X = ∂
∂θ . Each

orbit is a horizontal circle (called a “parallel”) {(θ + t, h) | t ∈ R}. Notice that all
orbits of this R-action close up after time 2π, so that this is an action of S1:

ψ : S1 −→ Sympl(S2, ω)
t 7−→ rotation by angle t around h-axis .

Since X = Xh is hamiltonian (with hamiltonian function H = h), this is an example
of a hamiltonian action of S1. ♦



130 21 ACTIONS

Definition 21.6 A symplectic action ψ of S1 or R on (M,ω) is hamiltonian if the
vector field generated by ψ is hamiltonian. Equivalently, an action ψ of S1 or R on
(M,ω) is hamiltonian if there is H : M → R with dH = ıXω, where X is the
vector field generated by ψ.

What is a “hamiltonian action” of an arbitrary Lie group?

For the case where G = Tn = S1 × . . .× S1 is an n-torus, an action ψ : G→
Sympl(M,ω) should be called hamiltonian when each restriction

ψi := ψ|ith S1 factor : S1 −→ Sympl(M,ω)

is hamiltonian in the previous sense with hamiltonian function preserved by the
action of the rest of G.

When G is not a product of S1’s or R’s, the solution is to use an upgraded
hamiltonian function, known as a moment map. Before its definition though (in
Lecture 22), we need a little Lie theory.

21.5 Adjoint and Coadjoint Representations

Let G be a Lie group. Given g ∈ G let

Lg : G −→ G
a 7−→ g · a

be left multiplication by g. A vector field X on G is called left-invariant if
(Lg)∗X = X for every g ∈ G. (There are similar right notions.)

Let g be the vector space of all left-invariant vector fields on G. Together with
the Lie bracket [·, ·] of vector fields, g forms a Lie algebra, called the Lie algebra
of the Lie group G.

Exercise. Show that the map

g −→ TeG
X 7−→ Xe

where e is the identity element in G, is an isomorphism of vector spaces. ♦

Any Lie group G acts on itself by conjugation:

G −→ Diff(G)
g 7−→ ψg , ψg(a) = g · a · g−1 .

The derivative at the identity of

ψg : G −→ G
a 7−→ g · a · g−1
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is an invertible linear map Adg : g −→ g. Here we identify the Lie algebra g with
the tangent space TeG. Letting g vary, we obtain the adjoint representation (or
adjoint action) of G on g:

Ad : G −→ GL(g)
g 7−→ Adg .

Exercise. Check for matrix groups that

d

dt
Adexp tXY

∣∣∣∣
t=0

= [X,Y ] , ∀X,Y ∈ g .

Hint: For a matrix group G (i.e., a subgroup of GL(n; R) for some n), we have

Adg(Y ) = gY g−1 , ∀g ∈ G , ∀Y ∈ g

and
[X,Y ] = XY − Y X , ∀X,Y ∈ g .

♦

Let 〈·, ·〉 be the natural pairing between g∗ and g:

〈·, ·〉 : g∗ × g −→ R
(ξ,X) 7−→ 〈ξ,X〉 = ξ(X) .

Given ξ ∈ g∗, we define Ad∗gξ by

〈Ad∗gξ,X〉 = 〈ξ,Adg−1X〉 , for any X ∈ g .

The collection of maps Ad∗g forms the coadjoint representation (or coadjoint
action) of G on g∗:

Ad∗ : G −→ GL(g∗)
g 7−→ Ad∗g .

We take g−1 in the definition of Ad∗gξ in order to obtain a (left) representation,
i.e., a group homomorphism, instead of a “right” representation, i.e., a group anti-
homomorphism.

Exercise. Show that Adg ◦Adh = Adgh and Ad∗g ◦Ad∗h = Ad∗gh . ♦



Homework 16: Hermitian Matrices

Let H be the vector space of n× n complex hermitian matrices.
The unitary group U(n) acts on H by conjugation: A ·ξ = AξA−1 , for A ∈

U(n) , ξ ∈ H.
For each λ = (λ1, . . . , λn) ∈ Rn, let Hλ be the set of all n × n complex

hermitian matrices whose spectrum is λ.

1. Show that the orbits of the U(n)-action are the manifolds Hλ.
For a fixed λ ∈ Rn, what is the stabilizer of a point in Hλ?

Hint: If λ1, . . . , λn are all distinct, the stabilizer of the diagonal matrix is the
torus Tn of all diagonal unitary matrices.

2. Show that the symmetric bilinear form on H, (X,Y ) 7→ trace (XY ) , is
nondegenerate.
For ξ ∈ H, define a skew-symmetric bilinear form ω

ξ
on u(n) = T1U(n) = iH

(space of skew-hermitian matrices) by

ω
ξ
(X,Y ) = i trace ([X,Y ]ξ) , X, Y ∈ iH .

Check that ω
ξ
(X,Y ) = i trace (X(Y ξ − ξY )) and Y ξ − ξY ∈ H.

Show that the kernel of ω
ξ

is K
ξ

:= {Y ∈ u(n) | [Y, ξ] = 0}.

3. Show that K
ξ

is the Lie algebra of the stabilizer of ξ.

Hint: Differentiate the relation AξA−1 = ξ.

Show that the ω
ξ
’s induce nondegenerate 2-forms on the orbits Hλ.

Show that these 2-forms are closed.
Conclude that all the orbits Hλ are compact symplectic manifolds.

4. Describe the manifolds Hλ.
When all eigenvalues are equal, there is only one point in the orbit.
Suppose that λ1 6= λ2 = . . . = λn. Then the eigenspace associated with λ1

is a line, and the one associated with λ2 is the orthogonal hyperplane. Show
that there is a diffeomorphism Hλ ' CPn−1. We have thus exhibited a lot
of symplectic forms on CPn−1, on for each pair of distinct real numbers.
What about the other cases?

Hint: When the eigenvalues λ1 < . . . < λn are all distinct, any element in Hλ

defines a family of pairwise orthogonal lines in Cn: its eigenspaces.

5. Show that, for any skew-hermitian matrix X ∈ u(n), the vector field on H
generated by X ∈ u(n) for the U(n)-action by conjugation is X#

ξ
= [X, ξ].
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22 Hamiltonian Actions

22.1 Moment and Comoment Maps

Let

(M,ω) be a symplectic manifold,
G a Lie group, and

ψ : G→ Sympl(M,ω) a (smooth) symplectic action, i.e., a group homomorphism
such that the evaluation map evψ(g, p) := ψg(p) is smooth.

Case G = R:

We have the following bijective correspondence:

{symplectic actions of R on M} 1−1←→ {complete symplectic vector fields on M}

ψ 7−→ Xp = dψt(p)
dt

ψ = exp tX ←− X

“flow of X” “vector field generated by ψ”

The action ψ is hamiltonian if there exists a function H : M → R such that
dH = ıXω where X is the vector field on M generated by ψ.

Case G = S1:

An action of S1 is an action of R which is 2π-periodic: ψ2π = ψ0. The S1-action
is called hamiltonian if the underlying R-action is hamiltonian.

General case:

Let

(M,ω) be a symplectic manifold,
G a Lie group,
g the Lie algebra of G,
g∗ the dual vector space of g, and

ψ : G −→ Sympl(M,ω) a symplectic action.

Definition 22.1 The action ψ is a hamiltonian action if there exists a map

µ : M −→ g∗

satisfying:

1. For each X ∈ g, let
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• µX : M → R, µX(p) := 〈µ(p), X〉, be the component of µ along X,

• X# be the vector field on M generated by the one-parameter subgroup
{exp tX | t ∈ R} ⊆ G.

Then
dµX = ıX#ω

i.e., µX is a hamiltonian function for the vector field X#.

2. µ is equivariant with respect to the given action ψ of G on M and the
coadjoint action Ad∗ of G on g∗:

µ ◦ ψg = Ad∗g ◦ µ , for all g ∈ G .

The vector (M,ω,G, µ) is then called a hamiltonian G-space and µ is a moment
map.

For connected Lie groups, hamiltonian actions can be equivalently defined in
terms of a comoment map

µ∗ : g −→ C∞(M) ,

with the two conditions rephrased as:

1. µ∗(X) := µX is a hamiltonian function for the vector field X#,

2. µ∗ is a Lie algebra homomorphism:

µ∗[X,Y ] = {µ∗(X), µ∗(Y )}

where {·, ·} is the Poisson bracket on C∞(M).

These definitions match the previous ones for the cases G = R, S1, torus, where
equivariance becomes invariance since the coadjoint action is trivial.

Case G = S1 (or R):

Here g ' R, g∗ ' R. A moment map µ : M −→ R satisfies:

1. For the generator X = 1 of g, we have µX(p) = µ(p) · 1, i.e., µX = µ, and
X# is the standard vector field on M generated by S1. Then dµ = ıX#ω.

2. µ is invariant: LX#µ = ıX#dµ = 0.

Case G = Tn = n-torus:

Here g ' Rn, g∗ ' Rn. A moment map µ : M −→ Rn satisfies:

1. For each basis vector Xi of Rn, µXi is a hamiltonian function for X#
i .

2. µ is invariant.
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22.2 Orbit Spaces

Let ψ : G→ Diff(M) be any action.

Definition 22.2 The orbit of G through p ∈M is {ψg(p) | g ∈ G}.
The stabilizer (or isotropy) of p ∈M is the subgroup Gp := {g ∈ G | ψg(p) =

p}.

Exercise. If q is in the orbit of p, then Gq and Gp are conjugate subgroups. ♦

Definition 22.3 We say that the action of G on M is . . .

• transitive if there is just one orbit,

• free if all stabilizers are trivial {e},

• locally free if all stabilizers are discrete.

Let ∼ be the orbit equivalence relation; for p, q ∈M ,

p ∼ q ⇐⇒ p and q are on the same orbit.

The space of orbits M/ ∼ = M/G is called the orbit space. Let

π : M −→ M/G
p 7−→ orbit through p

be the point-orbit projection.

Topology of the orbit space:

We equip M/G with the weakest topology for which π is continuous, i.e., U ⊆
M/G is open if and only if π−1(U) is open in M . This is called the quotient
topology. This topology can be “bad.” For instance:

Example. Let G = R act on M = R by

t 7−→ ψt = multiplication by et.

There are three orbits R+, R− and {0}. The point in the three-point orbit space
corresponding to the orbit {0} is not open, so the orbit space with the quotient
topology is not Hausdorff. ♦

Example. Let G = C\{0} act on M = Cn by

λ 7−→ ψλ = multiplication by λ .

The orbits are the punctured complex lines (through non-zero vectors z ∈ Cn), plus
one “unstable” orbit through 0, which has a single point. The orbit space is

M/G = CPn−1 t {point} .
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The quotient topology restricts to the usual topology on CPn−1. The only open set
containing {point} in the quotient topology is the full space. Again the quotient
topology in M/G is not Hausdorff.

However, it suffices to remove 0 from Cn to obtain a Hausdorff orbit space:
CPn−1. Then there is also a compact (yet not complex) description of the orbit
space by taking only unit vectors:

CPn−1 =
(
Cn\{0}

)/(
C\{0}

)
= S2n−1/S1 .

♦

22.3 Preview of Reduction

Let ω = i
2

∑
dzi ∧ dz̄i =

∑
dxi ∧ dyi =

∑
ridri ∧ dθi be the standard symplectic

form on Cn. Consider the following S1-action on (Cn, ω):

t ∈ S1 7−→ ψt = multiplication by t .

The action ψ is hamiltonian with moment map

µ : Cn −→ R
z 7−→ − |z|2

2 + constant

since
dµ = − 1

2d(
∑
r2i )

X# =
∂

∂θ1
+

∂

∂θ2
+ . . .+

∂

∂θn

ıX#ω = −
∑
ridri = − 1

2

∑
dr2i .

If we choose the constant to be 1
2 , then µ−1(0) = S2n−1 is the unit sphere. The

orbit space of the zero level of the moment map is

µ−1(0)/S1 = S2n−1/S1 = CPn−1 .

CPn−1 is thus called a reduced space. Notice also that the image of the moment
map is half-space.

These particular observations are related to major theorems:
Under assumptions (explained in Lectures 23-29),

• [Marsden-Weinstein-Meyer] reduced spaces are symplectic manifolds;

• [Atiyah-Guillemin-Sternberg] the image of the moment map is a convex poly-
tope;

• [Delzant] hamiltonian Tn-spaces are classified by the image of the moment
map.
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22.4 Classical Examples

Example.
Let G = SO(3) = {A ∈ GL(3; R) | A tA = Id and detA = 1}. Then

g = {A ∈ gl(3; R) | A+At = 0} is the space of 3×3 skew-symmetric matrices and
can be identified with R3. The Lie bracket on g can be identified with the exterior
product via

A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 7−→ −→a = (a1, a2, a3)

[A,B] = AB −BA 7−→ −→a ×−→b .

Exercise. Under the identifications g, g∗ ' R3, the adjoint and coadjoint actions
are the usual SO(3)-action on R3 by rotations. ♦

Therefore, the coadjoint orbits are the spheres in R3 centered at the origin.
Homework 17 shows that coadjoint orbits are symplectic. ♦

The name “moment map” comes from being the generalization of linear and
angular momenta in classical mechanics.

Translation: Consider R6 with coordinates x1, x2, x3, y1, y2, y3 and symplectic form
ω =

∑
dxi ∧ dyi. Let R3 act on R6 by translations:

−→a ∈ R3 7−→ ψ−→a ∈ Sympl(R6, ω)

ψ−→a (−→x ,−→y ) = (−→x +−→a ,−→y ) .

Then X# = a1
∂
∂x1

+ a2
∂
∂x2

+ a3
∂
∂x3

for X = −→a , and

µ : R6 −→ R3 , µ(−→x ,−→y ) = −→y

is a moment map, with

µ
−→a (−→x ,−→y ) = 〈µ(−→x ,−→y ),−→a 〉 = −→y · −→a .

Classically, −→y is called the momentum vector corresponding to the position vec-
tor −→x , and the map µ is called the linear momentum.

Rotation: The SO(3)-action on R3 by rotations lifts to a symplectic action ψ on
the cotangent bundle R6. The infinitesimal version of this action is

−→a ∈ R3 7−→ dψ(−→a ) ∈ χsympl(R6)

dψ(−→a )(−→x ,−→y ) = (−→a ×−→x ,−→a ×−→y ) .
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Then
µ : R6 −→ R3 , µ(−→x ,−→y ) = −→x ×−→y

is a moment map, with

µ
−→a (−→x ,−→y ) = 〈µ(−→x ,−→y ),−→a 〉 = (−→x ×−→y ) · −→a .

The map µ is called the angular momentum.



Homework 17: Coadjoint Orbits

Let G be a Lie group, g its Lie algebra and g∗ the dual vector space of g.

1. Let gX# be the vector field generated by X ∈ g for the adjoint representation
of G on g. Show that

gX#
Y

= [X,Y ] ∀ Y ∈ g .

2. LetX# be the vector field generated byX ∈ g for the coadjoint representation
of G on g∗. Show that

〈X#
ξ
, Y 〉 = 〈ξ, [Y,X]〉 ∀ Y ∈ g .

3. For any ξ ∈ g∗, define a skew-symmetric bilinear form on g by

ω
ξ
(X,Y ) := 〈ξ, [X,Y ]〉 .

Show that the kernel of ω
ξ

is the Lie algebra g
ξ

of the stabilizer of ξ for the
coadjoint representation.

4. Show that ω
ξ

defines a nondegenerate 2-form on the tangent space at ξ to
the coadjoint orbit through ξ.

5. Show that ω
ξ

defines a closed 2-form on the orbit of ξ in g∗.

Hint: The tangent space to the orbit being generated by the vector fields X#,
this is a consequence of the Jacobi identity in g.

This canonical symplectic form on the coadjoint orbits in g∗ is also known
as the Lie-Poisson or Kostant-Kirillov symplectic structure.

6. The Lie algebra structure of g defines a canonical Poisson structure on g∗:

{f, g}(ξ) := 〈ξ, [df
ξ
, dg

ξ
]〉

for f, g ∈ C∞(g∗) and ξ ∈ g∗. Notice that df
ξ

: T
ξ
g∗ ' g∗ → R is identified

with an element of g ' g∗∗.
Check that {·, ·} satisfies the Leibniz rule:

{f, gh} = g{f, h}+ h{f, g} .

7. Show that the jacobiator

J(f, g, h) := {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}

is a trivector field, i.e., J is a skew-symmetric trilinear map C∞(g∗)×C∞(g∗)×
C∞(g∗)→ C∞(g∗), which is a derivation in each argument.

Hint: Being a derivation amounts to the Leibniz rule from exercise 6.

8. Show that J ≡ 0, i.e., {·, ·} satisfies the Jacobi identity.

Hint: Follows from the Jacobi identity for [·, ·] in g. It is enough to check on
coordinate functions.
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Part IX

Symplectic Reduction
The phase space of a system of n particles is the space parametrizing the position
and momenta of the particles. The mathematical model for the phase space is a
symplectic manifold. Classical physicists realized that, whenever there is a symmetry
group of dimension k acting on a mechanical system, then the number of degrees
of freedom for the position and momenta of the particles may be reduced by 2k.
Symplectic reduction formulates this feature mathematically.

23 The Marsden-Weinstein-Meyer Theorem

23.1 Statement

Theorem 23.1 (Marsden-Weinstein-Meyer [77, 85]) Let (M,ω,G, µ) be a
hamiltonian G-space for a compact Lie group G. Let i : µ−1(0) ↪→ M be the
inclusion map. Assume that G acts freely on µ−1(0). Then

• the orbit space Mred = µ−1(0)/G is a manifold,

• π : µ−1(0)→Mred is a principal G-bundle, and

• there is a symplectic form ωred on Mred satisfying i∗ω = π∗ωred.

Definition 23.2 The pair (Mred, ωred) is called the reduction of (M,ω) with re-
spect to G,µ, or the reduced space, or the symplectic quotient, or the Marsden-
Weinstein-Meyer quotient, etc.

Low-brow proof for the case G = S1 and dimM = 4.

In this case the moment map is µ : M → R. Let p ∈ µ−1(0). Choose local
coordinates:

• θ along the orbit through p,

• µ given by the moment map, and

• η1, η2 pullback of coordinates on µ−1(0)/S1.

Then the symplectic form can be written

ω = A dθ ∧ dµ+Bj dθ ∧ dηj + Cj dµ ∧ dηj +D dη1 ∧ dη2 .

Since dµ = ı
(
∂
∂θ

)
ω, we must have A = 1, Bj = 0. Hence,

ω = dθ ∧ dµ+ Cj dµ ∧ dηj +D dη1 ∧ dη2 .

Since ω is symplectic, we must have D 6= 0. Therefore, i∗ω = D dη1 ∧ dη2 is the
pullback of a symplectic form on Mred. �

The actual proof of the Marsden-Weinstein-Meyer theorem requires the following
ingredients.
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23.2 Ingredients

1. Let gp be the Lie algebra of the stabilizer of p ∈M . Then dµp : TpM → g∗

has
ker dµp = (TpOp)ωp

im dµp = g0
p

where Op is the G-orbit through p, and g0
p = {ξ ∈ g∗ | 〈ξ,X〉 = 0, ∀X ∈ gp}

is the annihilator of gp.

Proof. Stare at the expression ωp(X#
p , v) = 〈dµp(v), X〉, for all v ∈ TpM

and all X ∈ g, and count dimensions. �

Consequences:

• The action is locally free at p

⇐⇒ gp = {0}
⇐⇒ dµp is surjective

⇐⇒ p is a regular point of µ.

• G acts freely on µ−1(0)
=⇒ 0 is a regular value of µ

=⇒ µ−1(0) is a closed submanifold of M
of codimension equal to dimG.

• G acts freely on µ−1(0)
=⇒ Tpµ

−1(0) = ker dµp (for p ∈ µ−1(0))
=⇒ Tpµ

−1(0) and TpOp are symplectic orthocomplements in TpM .

In particular, the tangent space to the orbit through p ∈ µ−1(0) is an
isotropic subspace of TpM . Hence, orbits in µ−1(0) are isotropic.

Since any tangent vector to the orbit is the value of a vector field generated
by the group, we can confirm that orbits are isotropic directly by computing,
for any X,Y ∈ g and any p ∈ µ−1(0),

ωp(X#
p , Y

#
p ) = hamiltonian function for [Y #, X#] at p

= hamiltonian function for [Y,X]# at p
= µ[Y,X](p) = 0 .

2. Lemma 23.3 Let (V, ω) be a symplectic vector space. Suppose that I is an
isotropic subspace, that is, ω|I ≡ 0. Then ω induces a canonical symplectic
form Ω on Iω/I.

Proof. Let u, v ∈ Iω, and [u], [v] ∈ Iω/I. Define Ω([u], [v]) = ω(u, v).

• Ω is well-defined:

ω(u+ i, v + j) = ω(u, v) + ω(u, j)︸ ︷︷ ︸
0

+ω(i, v)︸ ︷︷ ︸
0

+ω(i, j)︸ ︷︷ ︸
0

, ∀i, j ∈ I .
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• Ω is nondegenerate:

Suppose that u ∈ Iω has ω(u, v) = 0, for all v ∈ Iω.

Then u ∈ (Iω)ω = I, i.e., [u] = 0.

�

3. Theorem 23.4 If a compact Lie group G acts freely on a manifold M , then
M/G is a manifold and the map π : M →M/G is a principal G-bundle.

Proof. We will first show that, for any p ∈ M , the G-orbit through p is a
compact embedded submanifold of M diffeomorphic to G.

Since the action is smooth, the evaluation map ev : G×M →M , ev(g, p) =
g · p, is smooth. Let evp : G → M be defined by evp(g) = g · p. The map
evp provides the embedding we seek:

The image of evp is the G-orbit through p. Injectivity of evp follows from the
action of G being free. The map evp is proper because, if A is a compact,
hence closed, subset of M , then its inverse image (evp)−1(A), being a closed
subset of the compact Lie group G, is also compact. It remains to show that
evp is an immersion. For X ∈ g ' TeG, we have

d(evp)e(X) = 0 ⇐⇒ X#
p = 0 ⇐⇒ X = 0 ,

as the action is free. We conclude that d(evp)e is injective. At any other
point g ∈ G, for X ∈ TgG, we have

d(evp)g(X) = 0 ⇐⇒ d(evp ◦Rg)e ◦ (dRg−1)g(X) = 0 ,

where Rg : G → G is right multiplication by g. But evp ◦ Rg = evg·p has
an injective differential at e, and (dRg−1)g is an isomorphism. It follows that
d(evp)g is always injective.

Exercise. Show that, even if the action is not free, the G-orbit through p is a
compact embedded submanifold of M . In that case, the orbit is diffeomorphic
to the quotient of G by the isotropy of p: Op ' G/Gp. ♦

Let S be a transverse section to Op at p; this is called a slice. Choose a
coordinate system x1, . . . , xn centered at p such that

Op ' G : x1 = . . . = xk = 0
S : xk+1 = . . . = xn = 0 .

Let Sε = S ∩Bε(0,Rn) where Bε(0,Rn) is the ball of radius ε centered at 0
in Rn. Let η : G × S → M , η(g, s) = g · s. Apply the following equivariant
tubular neighborhood theorem.
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Theorem 23.5 (Slice Theorem) Let G be a compact Lie group acting
on a manifold M such that G acts freely at p ∈ M . For sufficiently small
ε, η : G × Sε → M maps G × Sε diffeomorphically onto a G-invariant
neighborhood U of the G-orbit through p.

The proof of this slice theorem is sketched further below.

Corollary 23.6 If the action of G is free at p, then the action is free on U .

Corollary 23.7 The set of points where G acts freely is open.

Corollary 23.8 The set G × Sε ' U is G-invariant. Hence, the quotient
U/G ' Sε is smooth.

Conclusion of the proof that M/G is a manifold and π : M → M/G is a
smooth fiber map.

For p ∈ M , let q = π(p) ∈ M/G. Choose a G-invariant neighborhood U
of p as in the slice theorem: U ' G × S (where S = Sε for an appropriate
ε). Then π(U) = U/G =: V is an open neighborhood of q in M/G. By the

slice theorem, S
'→ V is a homeomorphism. We will use such neighborhoods

V as charts on M/G. To show that the transition functions associated with
these charts are smooth, consider two G-invariant open sets U1,U2 in M
and corresponding slices S1, S2 of the G-action. Then S12 = S1 ∩ U2, S21 =
S2∩U1 are both slices for the G-action on U1∩U2. To compute the transition
map S12 → S21, consider the diagram

S12
'−→ id× S12 ↪→ G× S12

↘'

U1 ∩ U2 .
↗'

S21
'−→ id× S21 ↪→ G× S21

Then the composition

S12 ↪→ U1 ∩ U2
'−→ G× S21

pr−→ S21

is smooth.

Finally, we need to show that π : M →M/G is a smooth fiber map. For p ∈
M , q = π(p), choose a G-invariant neighborhood U of the G-orbit through

p of the form η : G × S '→ U . Then V = U/G ' S is the corresponding
neighborhood of q in M/G:

M ⊇ U
η
' G× S ' G× V

↓ π ↓
M/G ⊇ V = V
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Since the projection on the right is smooth, π is smooth.

Exercise. Check that the transition functions for the bundle defined by π are
smooth. ♦

�

Sketch for the proof of the slice theorem. We need to show that, for ε
sufficiently small, η : G × Sε → U is a diffeomorphism where U ⊆ M is a
G-invariant neighborhood of the G-orbit through p. Show that:

(a) dη(id,p) is bijective.

(b) Let G act on G × S by the product of its left action on G and trivial
action on S. Then η : G× S →M is G-equivariant.

(c) dη is bijective at all points of G× {p}. This follows from (a) and (b).

(d) The set G×{p} is compact, and η : G×S →M is injective on G×{p}
with dη bijective at all these points. By the implicit function theorem,
there is a neighborhood U0 of G × {p} in G × S such that η maps U0

diffeomorphically onto a neighborhood U of the G-orbit through p.

(e) The sets G × Sε, varying ε, form a neighborhood base for G × {p} in
G× S. So in (d) we may take U0 = G× Sε.

�

23.3 Proof of the Marsden-Weinstein-Meyer Theorem

Since

G acts freely on µ−1(0) =⇒ dµp is surjective for all p ∈ µ−1(0)
=⇒ 0 is a regular value
=⇒ µ−1(0) is a submanifold of codimension = dimG

for the first two parts of the Marsden-Weinstein-Meyer theorem it is enough to apply
the third ingredient from Section 23.2 to the free action of G on µ−1(0).

At p ∈ µ−1(0) the tangent space to the orbit TpOp is an isotropic subspace of
the symplectic vector space (TpM,ωp), i.e., TpOp ⊆ (TpOp)ω.

(TpOp)ω = ker dµp = Tpµ
−1(0) .

The lemma (second ingredient) gives a canonical symplectic structure on the quo-
tient Tpµ

−1(0)/TpOp. The point [p] ∈ Mred = µ−1(0)/G has tangent space
T[p]Mred ' Tpµ−1(0)/TpOp. Thus the lemma defines a nondegenerate 2-form ωred

on Mred. This is well-defined because ω is G-invariant.
By construction i∗ω = π∗ωred where

µ−1(0)
i
↪→ M

↓ π
Mred
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Hence, π∗dωred = dπ∗ωred = dı∗ω = ı∗dω = 0. The closedness of ωred follows
from the injectivity of π∗. �

Remark. Suppose that another Lie group H acts on (M,ω) in a hamiltonian way
with moment map φ : M → h∗. If the H-action commutes with the G-action, and
if φ is G-invariant, then Mred inherits a hamiltonian action of H, with moment map
φred : Mred → h∗ satisfying φred ◦ π = φ ◦ i. ♦



24 Reduction

24.1 Noether Principle

Let (M,ω,G, µ) be a hamiltonian G-space.

Theorem 24.1 (Noether) A function f : M → R is G-invariant if and only if µ
is constant on the trajectories of the hamiltonian vector field of f .

Proof. Let vf be the hamiltonian vector field of f . Let X ∈ g and µX = 〈µ,X〉 :
M → R. We have

Lvf
µX = ıvf

dµX = ıvf
ıX#ω

= −ıX# ıvf
ω = −ıX#df

= −LX#f = 0

because f is G-invariant. �

Definition 24.2 AG-invariant function f : M → R is called an integral of motion
of (M,ω,G, µ). If µ is constant on the trajectories of a hamiltonian vector field vf ,
then the corresponding one-parameter group of diffeomorphisms {exp tvf | t ∈ R}
is called a symmetry of (M,ω,G, µ).

The Noether principle asserts that there is a one-to-one correspondence be-
tween symmetries and integrals of motion.

24.2 Elementary Theory of Reduction

Finding a symmetry for a 2n-dimensional mechanical problem may reduce it to
a (2n − 2)-dimensional problem as follows: an integral of motion f for a 2n-
dimensional hamiltonian system (M,ω,H) may enable us to understand the tra-
jectories of this system in terms of the trajectories of a (2n − 2)-dimensional
hamiltonian system (Mred, ωred,Hred). To make this precise, we will describe this
process locally. Suppose that U is an open set in M with Darboux coordinates
x1, . . . , xn, ξ1, . . . , ξn such that f = ξn for this chart, and write H in these coordi-
nates: H = H(x1, . . . , xn, ξ1, . . . , ξn). Then

ξn is an integral of motion =⇒


the trajectories of vH lie on the

hyperplane ξn = constant
{ξn,H} = 0 = − ∂H

∂xn

=⇒ H = H(x1, . . . , xn−1, ξ1, . . . , ξn) .
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If we set ξn = c, the motion of the system on this hyperplane is described by
the following Hamilton equations:

dx1

dt
=

∂H

∂ξ1
(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)

...
dxn−1

dt
=

∂H

∂ξn−1
(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)

dξ1
dt

= − ∂H
∂x1

(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)
...

dξn−1

dt
= − ∂H

∂xn−1
(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)

dxn
dt

=
∂H

∂ξn

dξn
dt

= − ∂H
∂xn

= 0 .

The reduced phase space is

Ured = {(x1, . . . , xn−1, ξ1, . . . , ξn−1) ∈ R2n−2 |
(x1, . . . , xn−1, a, ξ1, . . . , ξn−1, c) ∈ U for some a} .

The reduced hamiltonian is

Hred : Ured −→ R ,
Hred(x1, . . . , xn−1, ξ1, . . . , ξn−1) = H(x1, . . . , xn−1, ξ1, . . . , ξn−1, c) .

In order to find the trajectories of the original system on the hypersurface ξn = c,
we look for the trajectories

x1(t), . . . , xn−1(t), ξ1(t), . . . , ξn−1(t)

of the reduced system on Ured. We integrate the equation

dxn
dt

(t) =
∂H

∂ξn
(x1(t), . . . , xn−1(t), ξ1(t), . . . , ξn−1(t), c)

to obtain the original trajectories{
xn(t) = xn(0) +

∫ t
0
∂H
∂ξn

(. . .)dt
ξn(t) = c .
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24.3 Reduction for Product Groups

Let G1 and G2 be compact connected Lie groups and let G = G1 ×G2. Then

g = g1 ⊕ g2 and g∗ = g∗1 ⊕ g∗2 .

Suppose that (M,ω,G, ψ) is a hamiltonian G-space with moment map

ψ : M −→ g∗1 ⊕ g∗2 .

Write ψ = (ψ1, ψ2) where ψi : M → g∗i for i = 1, 2. The fact that ψ is equivariant
implies that ψ1 is invariant under G2 and ψ2 is invariant under G1. Now reduce
(M,ω) with respect to the G1-action. Let

Z1 = ψ−1
1 (0) .

Assume thatG1 acts freely on Z1. LetM1 = Z1/G1 be the reduced space and let ω1

be the corresponding reduced symplectic form. The action of G2 on Z1 commutes
with the G1-action. Since G2 preserves ω, it follows that G2 acts symplectically
on (M1, ω1). Since G1 preserves ψ2, G1 also preserves ψ2 ◦ ι1 : Z1 → g∗2, where

ι1 : Z1 ↪→ M is inclusion. Thus ψ2 ◦ ι1 is constant on fibers of Z1
p1→ M1. We

conclude that there exists a smooth map µ2 : M1 → g∗2 such that µ2 ◦p1 = ψ2 ◦ ι1.

Exercise. Show that:

(a) the map µ2 is a moment map for the action of G2 on (M1, ω1), and

(b) if G acts freely on ψ−1(0, 0), then G2 acts freely on µ−1
2 (0), and there is a

natural symplectomorphism

µ−1
2 (0)/G2 ' ψ−1(0, 0)/G .

♦

This technique of performing reduction with respect to one factor of a product
group at a time is called reduction in stages. It may be extended to reduction by
a normal subgroup H ⊂ G and by the corresponding quotient group G/H.

24.4 Reduction at Other Levels

Suppose that a compact Lie group G acts on a symplectic manifold (M,ω) in a
hamiltonian way with moment map µ : M → g∗. Let ξ ∈ g∗.

To reduce at the level ξ of µ, we need µ−1(ξ) to be preserved by G, or else
take the G-orbit of µ−1(ξ), or else take the quotient by the maximal subgroup of
G which preserves µ−1(ξ).

Since µ is equivariant,

G preserves µ−1(ξ) ⇐⇒ G preserves ξ
⇐⇒ Ad∗gξ = ξ, ∀g ∈ G .
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Of course the level 0 is always preserved. Also, when G is a torus, any level is
preserved and reduction at ξ for the moment map µ, is equivalent to reduction at
0 for a shifted moment map φ : M → g∗, φ(p) := µ(p)− ξ.

Let O be a coadjoint orbit in g∗ equipped with the canonical symplectic form
(also know as the Kostant-Kirillov symplectic form or the Lie-Poisson sym-
plectic form) ωO defined in Homework 17. Let O− be the orbit O equipped with
−ωO. The natural product action of G on M × O− is hamiltonian with moment
map µO(p, ξ) = µ(p) − ξ. If the Marsden-Weinstein-Meyer hypothesis is satisfied
for M × O−, then one obtains a reduced space with respect to the coadjoint
orbit O.

24.5 Orbifolds

Example. Let G = Tn be an n-torus. For any ξ ∈ (tn)∗, µ−1(ξ) is preserved by
the Tn-action. Suppose that ξ is a regular value of µ. (By Sard’s theorem, the
singular values of µ form a set of measure zero.) Then µ−1(ξ) is a submanifold of
codimension n. Note that

ξ regular =⇒ dµp is surjective at all p ∈ µ−1(ξ)
=⇒ gp = 0 for all p ∈ µ−1(ξ)
=⇒ the stabilizers on µ−1(ξ) are finite
=⇒ µ−1(ξ)/G is an orbifold [91, 92] .

Let Gp be the stabilizer of p. By the slice theorem (Lecture 23), µ−1(ξ)/G
is modeled by S/Gp, where S is a Gp-invariant disk in µ−1(ξ) through p and
transverse to Op. Hence, locally µ−1(ξ)/G looks indeed like Rn divided by a finite
group action. ♦

Example. Consider the S1-action on C2 given by eiθ · (z1, z2) = (eikθz1, eiθz2) for
some fixed integer k ≥ 2. This is hamiltonian with moment map

µ : C2 −→ R
(z1, z2) 7−→ − 1

2 (k|z1|2 + |z2|2) .

Any ξ < 0 is a regular value and µ−1(ξ) is a 3-dimensional ellipsoid. The stabilizer

of (z1, z2) ∈ µ−1(ξ) is {1} if z2 6= 0, and is Zk =
{
ei

2π`
k | ` = 0, 1, . . . , k − 1

}
if

z2 = 0. The reduced space µ−1(ξ)/S1 is called a teardrop orbifold or conehead;
it has one cone (also known as a dunce cap) singularity of type k (with cone angle
2π
k ). ♦

Example. Let S1 act on C2 by eiθ · (z1, z2) = (eikθz1, ei`θz2) for some integers
k, ` ≥ 2. Suppose that k and ` are relatively prime. Then

(z1, 0) has stabilizer Zk (for z1 6= 0) ,
(0, z2) has stabilizer Z` (for z2 6= 0) ,

(z1, z2) has stabilizer {1} (for z1, z2 6= 0) .
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The quotient µ−1(ξ)/S1 is called a football orbifold. It has two cone singularities,
one of type k and another of type `. ♦

Example. More generally, the reduced spaces of S1 acting on Cn by

eiθ · (z1, . . . , zn) = (eik1θz1, . . . , eiknθzn) ,

are called weighted (or twisted) projective spaces. ♦



Homework 18: Spherical Pendulum

This set of problems is from [53].

The spherical pendulum is a mechanical system consisting of a massless rigid
rod of length l, fixed at one end, whereas the other end has a plumb bob of mass
m, which may oscillate freely in all directions. Assume that the force of gravity
is constant pointing vertically downwards, and that this is the only external force
acting on this system.

Let ϕ, θ (0 < ϕ < π, 0 < θ < 2π) be spherical coordinates for the bob. For
simplicity assume that m = l = 1.

1. Let η, ξ be the coordinates along the fibers of T ∗S2 induced by the spherical
coordinates ϕ, θ on S2. Show that the function H : T ∗S2 → R given by

H(ϕ, θ, η, ξ) =
1
2

(
η2 +

ξ2

(sinϕ)2

)
+ cosϕ ,

is an appropriate hamiltonian function to describe the spherical pendulum.

2. Compute the critical points of the function H. Show that, on S2, there are
exactly two critical points: s (where H has a minimum) and u. These points
are called the stable and unstable points of H, respectively. Justify this
terminology, i.e., show that a trajectory whose initial point is close to s stays
close to s forever, and show that this is not the case for u. What is happening
physically?

3. Show that the group of rotations about the vertical axis is a group of sym-
metries of the spherical pendulum.

Show that, in the coordinates above, the integral of motion associated with
these symmetries is the function

J(ϕ, θ, η, ξ) = ξ .

Give a more coordinate-independent description of J , one that makes sense
also on the cotangent fibers above the North and South poles.
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4. Locate all points p ∈ T ∗S2 where dHp and dJp are linearly dependent:

(a) Clearly, the two critical points s and u belong to this set. Show that
these are the only two points where dHp = dJp = 0.

(b) Show that, if x ∈ S2 is in the southern hemisphere (x3 < 0), then there
exist exactly two points, p+ = (x, η, ξ) and p− = (x,−η,−ξ), in the
cotangent fiber above x where dHp and dJp are linearly dependent.

(c) Show that dHp and dJp are linearly dependent along the trajectory of
the hamiltonian vector field of H through p+.

Conclude that this trajectory is also a trajectory of the hamiltonian vector
field of J , and, hence, that its projection onto S2 is a latitudinal circle
(of the form x3 = constant).

Show that the projection of the trajectory through p− is the same lati-
tudinal circle traced in the opposite direction.

5. Show that any nonzero value j is a regular value of J , and that S1 acts freely
on the level set J = j. What happens on the cotangent fibers above the
North and South poles?

6. For j 6= 0 describe the reduced system and sketch the level curves of the
reduced hamiltonian.

7. Show that the integral curves of the original system on the level set J = j
can be obtained from those of the reduced system by “quadrature”, in other
words, by a simple integration.

8. Show that the reduced system for j 6= 0 has exactly one equilibrium point.
Show that the corresponding relative equilibrium for the original system is one
of the horizontal curves in exercise 4.

9. The energy-momentum map is the map (H,J) : T ∗S2 → R2. Show that,
if j 6= 0, the level set (H,J) = (h, j) of the energy-momentum map is either
a circle (in which case it is one of the horizontal curves in exercise 4), or
a two-torus. Show that the projection onto the configuration space of the
two-torus is an annular region on S2.





Part X

Moment Maps Revisited
Moment maps and symplectic reduction have been finding infinite-dimensional in-
carnations with amazing consequences for differential geometry. Lecture 25 sketches
the symplectic approach of Atiyah and Bott to Yang-Mills theory.

Lecture 27 describes the convexity of the image of a torus moment map, one of
the most striking geometric characteristics of moment maps.

25 Moment Map in Gauge Theory

25.1 Connections on a Principal Bundle

Let G be a Lie group and B a manifold.

Definition 25.1 A principal G-bundle over B is a manifold P with a smooth
map π : P → B satisfying the following conditions:

(a) G acts freely on P (on the left),

(b) B is the orbit space for this action and π is the point-orbit projection, and

(c) there is an open covering of B, such that, to each set U in that covering
corresponds a map ϕU : π−1(U)→ U ×G with

ϕU (p) = (π(p), sU (p)) and sU (g · p) = g · sU (p) , ∀p ∈ π−1(U) .

The G-valued maps sU are determined by the corresponding ϕU . Condition (c) is
called the property of being locally trivial.

If P with map π : P → B is a principal G-bundle over B, then the manifold
B is called the base, the manifold P is called the total space, the Lie group G is
called the structure group, and the map π is called the projection. This principal
bundle is also represented by the following diagram:

G ⊂ - P

B

π

?

Example. Let P be the 3-sphere regarded as unit vectors in C2:

P = S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} .
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Let G be the circle group, where eiθ ∈ S1 acts on S3 by complex multiplication,

(z1, z2) 7−→ (eiθz1, eiθz2) .

Then the quotient space B is the first complex projective space, that is, the two-
sphere. This data forms a principal S1-bundle, known as the Hopf fibration:

S1 ⊂ - S3

S2

π

?

♦

An action ψ : G→ Diff(P ) induces an infinitesimal action

dψ : g −→ χ(P )
X 7−→ X# = vector field generated by the

one-parameter group {exp tX(e) | t ∈ R} .

From now on, fix a basis X1, . . . , Xk of g.
Let P be a principal G-bundle over B. Since the G-action is free, the vector

fields X#
1 , . . . , X

#
k are linearly independent at each p ∈ P . The vertical bundle

V is the rank k subbundle of TP generated by X#
1 , . . . , X

#
k .

Exercise. Check that the vertical bundle V is the set of vectors tangent to P which
lie in the kernel of the derivative of the bundle projection π. (This shows that V is
independent of the choice of basis for g.) ♦

Definition 25.2 A (Ehresmann) connection on a principal bundle P is a choice
of a splitting

TP = V ⊕H ,

where H is a G-invariant subbundle of TP complementary to the vertical bundle
V . The bundle H is called the horizontal bundle.

25.2 Connection and Curvature Forms

A connection on a principal bundle P may be equivalently described in terms of
1-forms.

Definition 25.3 A connection form on a principal bundle P is a Lie-algebra-valued
1-form

A =
k∑
i=1

Ai ⊗Xi ∈ Ω1(P )⊗ g

such that:
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(a) A is G-invariant, with respect to the product action of G on Ω1(P ) (induced
by the action on P ) and on g (the adjoint representation), and

(b) A is vertical, in the sense that ıX#A = X for any X ∈ g.

Exercise. Show that a connection TP = V ⊕H determines a connection form A
and vice-versa by the formula

H = kerA = {v ∈ TP | ıvA = 0} .

♦
Given a connection on P , the splitting TP = V ⊕ H induces the following

splittings for bundles:

T ∗P = V ∗ ⊕H∗

∧2T ∗P = (∧2V ∗) ⊕ (V ∗ ∧H∗) ⊕ (∧2H∗)
...

and for their sections:

Ω1(P ) = Ω1
vert(P )⊕ Ω1

horiz(P )

Ω2(P ) = Ω2
vert(P )⊕ Ω2

mix(P )⊕ Ω2
horiz(P )

...

The corresponding connection form A is in Ω1
vert ⊗ g. Its exterior derivative dA is

in
Ω2(P )⊗ g =

(
Ω2

vert ⊕ Ω2
mix ⊕ Ω2

horiz

)
⊗ g ,

and thus decomposes into three components,

dA = (dA)vert + (dA)mix + (dA)horiz .

Exercise. Check that:

(a) (dA)vert(X,Y ) = [X,Y ], i.e., (dA)vert = 1
2

∑
i,`,m

ci`mA` ∧ Am ⊗ Xi, where

the ci`m’s are the structure constants of the Lie algebra with respect to the
chosen basis, and defined by [X`, Xm] =

∑
i,`,m

ci`mXi;

(b) (dA)mix = 0.

♦
According to the previous exercise, the relevance of dA may come only from its

horizontal component.

Definition 25.4 The curvature form of a connection is the horizontal component
of its connection form. I.e., if A is the connection form, then

curv A = (dA)horiz ∈ Ω2
horiz ⊗ g .

Definition 25.5 A connection is called flat if its curvature is zero.
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25.3 Symplectic Structure on the Space of Connections

Let P be a principal G-bundle over B. If A is a connection form on P , and if
a ∈ Ω1

horiz ⊗ g is G-invariant for the product action, then it is easy to check that
A + a is also a connection form on P . Reciprocally, any two connection forms on
P differ by an a ∈ (Ω1

horiz⊗ g)G. We conclude that the set A of all connections on
the principal G-bundle P is an affine space modeled on the linear space

a = (Ω1
horiz ⊗ g)G .

Now let P be a principal G-bundle over a compact oriented 2-dimensional rie-
mannian manifold B (for instance, B is a Riemann surface). Suppose that the group
G is compact or semisimple. Atiyah and Bott [7] noticed that the corresponding
space A of all connections may be treated as an infinite-dimensional symplectic
manifold. This will require choosing a G-invariant inner product 〈·, ·〉 on g, which
always exists, either by averaging any inner product when G is compact, or by using
the Killing form on semisimple groups.

Since A is an affine space, its tangent space at any point A is identified with
the model linear space a. With respect to a basis X1, . . . , Xk for the Lie algebra g,
elements a, b ∈ a14 are written

a =
∑

ai ⊗Xi and b =
∑

bi ⊗Xi .

If we wedge a and b, and then integrate over B using the riemannian volume, we
obtain a real number:

ω : a× a −→
(
Ω2

horiz(P )
)G ' Ω2(B) −→ R

(a, b) 7−→
∑
i,j

ai ∧ bj〈Xi, Xj〉 7−→
∫
B

∑
i,j

ai ∧ bj〈Xi, Xj〉 .

We have used that the pullback π∗ : Ω2(B) → Ω2(P ) is an isomorphism onto its

image
(
Ω2

horiz(P )
)G

.

Exercise. Show that if ω(a, b) = 0 for all b ∈ a, then a must be zero. ♦

The map ω is nondegenerate, skew-symmetric, bilinear and constant in the
sense that it does not depend on the base point A. Therefore, it has the right
to be called a symplectic form on A, so the pair (A, ω) is an infinite-dimensional
symplectic manifold.

25.4 Action of the Gauge Group

Let P be a principal G-bundle over B. A diffeomorphism f : P → P commuting
with the G-action determines a diffeomorphism fbasic : B → B by projection.

14The choice of symbols is in honor of Atiyah and Bott!
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Definition 25.6 A diffeomorphism f : P → P commuting with the G-action is a
gauge transformation if the induced fbasic is the identity. The gauge group of
P is the group G of all gauge transformations of P .

The derivative of an f ∈ G takes a connection TP = V ⊕ H to another
connection TP = V ⊕Hf , and thus induces an action of G in the space A of all
connections. Recall that A has a symplectic form ω. Atiyah and Bott [7] noticed
that the action of G on (A, ω) is hamiltonian, where the moment map (appropriately
interpreted) is the map

µ : A −→
(
Ω2(P )⊗ g

)G
A 7−→ curv A ,

i.e., the moment map “is” the curvature! We will describe this construction in detail
for the case of circle bundles in the next section.

Remark. The reduced space at level zero

M = µ−1(0)/G

is the space of flat connections modulo gauge equivalence, known as the moduli
space of flat connections. It turns out thatM is a finite-dimensional symplectic
orbifold. ♦

25.5 Case of Circle Bundles

What does the Atiyah-Bott construction of the previous section look like for the
case when G = S1?

S1 ⊂ - P

B

π

?

Let v be the generator of the S1-action on P , corresponding to the basis 1 of g ' R.
A connection form on P is a usual 1-form A ∈ Ω1(P ) such that

LvA = 0 and ıvA = 1 .

If we fix one particular connection A0, then any other connection is of the form

A = A0 + a for some a ∈ a =
(
Ω1

horiz(P )
)G = Ω1(B). The symplectic form on

a = Ω1(B) is simply

ω : a× a −→ R

(a, b) 7−→
∫
B

a ∧ b︸︷︷︸
∈Ω2(B)

.
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The gauge group is G = Maps(B,S1), because a gauge transformation is multipli-
cation by some element of S1 over each point in B:

φ : G −→ Diff(P )

h : B → S1 7−→ φh : P → P
p→ h(π(p)) · p

The Lie algebra of G is

Lie G = Maps(B,R) = C∞(B) .

Its dual space is
(Lie G)∗ = Ω2(B) ,

where the duality is provided by integration over B

C∞(B)× Ω2(B) −→ R

(h, β) 7−→
∫
B

hβ .

(it is topological or smooth duality, as opposed to algebraic duality) .
The gauge group acts on the space of all connections by

G −→ Diff(A)

h(x) = eiθ(x) 7−→ (A 7→ A−π∗dθ︸ ︷︷ ︸
∈a

)

Exercise. Check the previous assertion about the action on connections.

Hint: First deal with the case where P = S1 × B is a trivial bundle, in which
case h ∈ G acts on P by

φh : (t, x) 7−→ (t+ θ(x), x) ,

and where every connection can be written A = dt+β, with β ∈ Ω1(B). A gauge
transformation h ∈ G acts on A by

A 7−→ φ∗
h−1 (A) .

♦

The infinitesimal action of G on A is

dφ : Lie G −→ χ(A)

X 7−→ X# = vector field described by the transformation
(A 7→ A −dX︸ ︷︷ ︸

∈Ω1(B)=a

)

so that X# = −dX.
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Finally, we will check that

µ : A −→ (Lie G)∗ = Ω2(B)

A 7−→ curv A

is indeed a moment map for the action of the gauge group on A.

Exercise. Check that in this case:

(a) curv A = dA ∈
(
Ω2

horiz(P )
)G

= Ω2(B) ,

(b) µ is G-invariant.

♦

The previous exercise takes care of the equivariance condition, since the action
of G on Ω2(B) is trivial.

Take any X ∈ Lie G = C∞(B). We need to check that

dµX(a) = ω(X#, a) , ∀a ∈ Ω1(B) . (?)

As for the left-hand side of (?), the map µX ,

µX : A −→ R

A 7−→ 〈 X︸︷︷︸
∈C∞(B)

, dA︸︷︷︸
∈Ω2(B)

〉 =
∫
B

X · dA ,

is linear in A. Consequently,

dµX : a −→ R

a 7−→
∫
B

X · da .

As for the right-hand side of (?), by definition of ω, we have

ω(X#, a) =
∫
B

X# · a = −
∫
B

dX · a .

But, by Stokes theorem, the last integral is

−
∫
B

dX · a =
∫
B

X · da ,

so we are done in proving that µ is the moment map.



Homework 19: Examples of Moment Maps

1. Suppose that a Lie group G acts in a hamiltonian way on two symplectic
manifolds (Mj , ωj), j = 1, 2, with moment maps µj : Mj → g∗. Prove
that the diagonal action of G on M1 ×M2 is hamiltonian with moment map
µ : M1 ×M2 → g∗ given by

µ(p1, p2) = µ1(p1) + µ2(p2) , for pj ∈Mj .

2. Let Tn = {(t1, . . . , tn) ∈ Cn : |tj | = 1, for all j } be a torus acting on Cn
by

(t1, . . . , tn) · (z1, . . . , zn) = (tk11 z1, . . . , t
kn
n zn) ,

where k1, . . . , kn ∈ Z are fixed. Check that this action is hamiltonian with
moment map µ : Cn → (tn)∗ ' Rn given by

µ(z1, . . . , zn) = − 1
2 (k1|z1|2, . . . , kn|zn|2) ( + constant ) .

3. The vector field X# generated by X ∈ g for the coadjoint representation of
a Lie group G on g∗ satisfies 〈X#

ξ
, Y 〉 = 〈ξ, [Y,X]〉, for any Y ∈ g. Equip

the coadjoint orbits with the canonical symplectic forms. Show that, for each
ξ ∈ g∗, the coadjoint action on the orbit G · ξ is hamiltonian with moment
map the inclusion map:

µ : G · ξ ↪→ g∗ .

4. Consider the natural action of U(n) on (Cn, ω0). Show that this action is
hamiltonian with moment map µ : Cn → u(n) given by

µ(z) = i
2zz

∗ ,

where we identify the Lie algebra u(n) with its dual via the inner product
(A,B) = trace(A∗B).

Hint: Denote the elements of U(n) in terms of real and imaginary parts g =

h + i k. Then g acts on R2n by the linear symplectomorphism

„
h −k
k h

«
.

The Lie algebra u(n) is the set of skew-hermitian matrices X = V + iW where
V = −V t ∈ Rn×n and W = W t ∈ Rn×n. Show that the infinitesimal action is
generated by the hamiltonian functions

µX(z) = − 1
2
(x,Wx) + (y, V x)− 1

2
(y,Wy)

where z = x+ i y, x, y ∈ Rn and (·, ·) is the standard inner product. Show that

µX(z) = 1
2
i z∗Xz = 1

2
i trace(zz∗X) .

Check that µ is equivariant.
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5. Consider the natural action of U(k) on the space (Ck×n, ω0) of complex
(k × n)-matrices. Identify the Lie algebra u(k) with its dual via the inner
product (A,B) = trace(A∗B). Prove that a moment map for this action is
given by

µ(A) = i
2AA

∗ + Id
2i , for A ∈ Ck×n .

(The choice of the constant Id
2i is for convenience in Homework 20.)

Hint: Exercises 1 and 4.

6. Consider the U(n)-action by conjugation on the space (Cn2
, ω0) of complex

(n× n)-matrices. Show that a moment map for this action is given by

µ(A) = i
2 [A,A∗] .

Hint: Previous exercise and its “transpose” version.



26 Existence and Uniqueness of Moment Maps

26.1 Lie Algebras of Vector Fields

Let (M,ω) be a symplectic manifold and v ∈ χ(M) a vector field on M .

v is symplectic ⇐⇒ ıvω is closed ,
v is hamiltonian ⇐⇒ ıvω is exact .

The spaces

χsympl(M) = symplectic vector fields on M ,
χham(M) = hamiltonian vector fields on M .

are Lie algebras for the Lie bracket of vector fields. C∞(M) is a Lie algebra for the
Poisson bracket, {f, g} = ω(vf , vg). H1(M ; R) and R are regarded as Lie algebras
for the trivial bracket. We have two exact sequences of Lie algebras:

0 −→ χham(M) ↪→ χsympl(M) −→ H1(M ; R) −→ 0
v 7−→ [ıvω]

0 −→ R ↪→ C∞(M) −→ χham(M) −→ 0
f 7−→ vf .

In particular, if H1(M ; R) = 0, then χham(M) = χsympl(M).
Let G be a connected Lie group. A symplectic action ψ : G → Sympl(M,ω)

induces an infinitesimal action

dψ : g −→ χsympl(M)
X 7−→ X# = vector field generated by the

one-parameter group {exp tX(e) | t ∈ R} .

Exercise. Check that the map dψ is a Lie algebra anti-homomorphism. ♦
The action ψ is hamiltonian if and only if there is a Lie algebra homomorphism

µ∗ : g→ C∞(M) lifting dψ, i.e., making the following diagram commute.

C∞(M) - χsympl(M)

g

dψ

-
�

µ ∗

The map µ∗ is then called a comoment map (defined in Lecture 22).

Existence of µ∗ ⇐⇒ Existence of µ
comoment map moment map

Lie algebra homomorphism ←→ equivariance
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26.2 Lie Algebra Cohomology

Let g be a Lie algebra, and

Ck := Λkg∗ = k-cochains on g
= alternating k-linear maps g× . . .× g︸ ︷︷ ︸

k

−→ R .

Define a linear operator δ : Ck → Ck+1 by

δc(X0, . . . , Xk) =
∑
i<j

(−1)i+jc([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk) .

Exercise. Check that δ2 = 0. ♦

The Lie algebra cohomology groups (or Chevalley cohomology groups) of

g are the cohomology groups of the complex 0 δ→ C0 δ→ C1 δ→ . . .:

Hk(g; R) :=
ker δ : Ck −→ Ck+1

im δ : Ck−1 −→ Ck
.

Theorem 26.1 If g is the Lie algebra of a compact connected Lie group G, then

Hk(g; R) = Hk
deRham(G) .

Proof. Exercise. Hint: by averaging show that the de Rham cohomology can be
computed from the subcomplex of G-invariant forms. �

Meaning of H1(g; R) and H2(g; R):

• An element of C1 = g∗ is a linear functional on g. If c ∈ g∗, then δc(X0, X1) =
−c([X0, X1]). The commutator ideal of g is

[g, g] := {linear combinations of [X,Y ] for any X,Y ∈ g} .

Since δc = 0 if and only if c vanishes on [g, g], we conclude that

H1(g; R) = [g, g]0

where [g, g]0 ⊆ g∗ is the annihilator of [g, g].

• An element of C2 is an alternating bilinear map c : g× g→ R.

δc(X0, X1, X2) = −c([X0, X1], X2) + c([X0, X2], X1)− c([X1, X2], X0) .

If c = δb for some b ∈ C1, then

c(X0, X1) = (δb)(X0, X1) = −b([X0, X1] ).
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26.3 Existence of Moment Maps

Theorem 26.2 If H1(g; R) = H2(g,R) = 0, then any symplectic G-action is
hamiltonian.

Proof. Let ψ : G → Sympl(M,ω) be a symplectic action of G on a symplectic
manifold (M,ω). Since

H1(g; R) = 0 ⇐⇒ [g, g] = g

and since commutators of symplectic vector fields are hamiltonian, we have

dψ : g = [g, g] −→ χham(M).

The action ψ is hamiltonian if and only if there is a Lie algebra homomorphism
µ∗ : g→ C∞(M) such that the following diagram commutes.

R - C∞(M) - χham(M)

g

dψ

-
�

?

We first take an arbitrary vector space lift τ : g → C∞(M) making the diagram
commute, i.e., for each basis vector X ∈ g, we choose

τ(X) = τX ∈ C∞(M) such that v(τX) = dψ(X) .

The map X 7→ τX may not be a Lie algebra homomorphism. By construction,
τ [X,Y ] is a hamiltonian function for [X,Y ]#, and (as computed in Lecture 16)
{τX , τY } is a hamiltonian function for −[X#, Y #]. Since [X,Y ]# = −[X#, Y #],
the corresponding hamiltonian functions must differ by a constant:

τ [X,Y ] − {τX , τY } = c(X,Y ) ∈ R .

By the Jacobi identity, δc = 0. Since H2(g; R) = 0, there is b ∈ g∗ satisfying
c = δb, c(X,Y ) = −b([X,Y ]). We define

µ∗ : g −→ C∞(M)
X 7−→ µ∗(X) = τX + b(X) = µX .

Now µ∗ is a Lie algebra homomorphism:

µ∗([X,Y ]) = τ [X,Y ] + b([X,Y ]) = {τX , τY } = {µX , µY } .

�

So when is H1(g; R) = H2(g; R) = 0?
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A compact Lie group G is semisimple if g = [g, g].

Examples. The unitary group U(n) is not semisimple because the multiples of
the identity, S1 · Id, form a nontrivial center; at the level of the Lie algebra, this
corresponds to the 1-dimensional subspace R · Id of scalar matrices which are not
commutators since they are not traceless.

Any direct product of the other compact classical groups SU(n), SO(n) and
Sp(n) is semisimple (n > 1). Any commutative Lie group is not semisimple. ♦

Theorem 26.3 (Whitehead Lemmas) Let G be a compact Lie group.

G is semisimple ⇐⇒ H1(g; R) = H2(g; R) = 0 .

A proof can be found in [67, pages 93-95].

Corollary 26.4 If G is semisimple, then any symplectic G-action is hamiltonian.

26.4 Uniqueness of Moment Maps

Let G be a compact connected Lie group.

Theorem 26.5 If H1(g; R) = 0, then moment maps for hamiltonian G-actions are
unique.

Proof. Suppose that µ∗1 and µ∗2 are two comoment maps for an action ψ:

C∞(M) - χham(M)

g

dψ

-
�

µ ∗
2µ ∗

1

For each X ∈ g, µX1 and µX2 are both hamiltonian functions for X#, thus µX1 −
µX2 = c(X) is locally constant. This defines c ∈ g∗, X 7→ c(X).

Since µ∗1, µ
∗
2 are Lie algebra homomorphisms, we have c([X,Y ]) = 0, ∀X,Y ∈ g,

i.e., c ∈ [g, g]0 = {0}. Hence, µ∗1 = µ∗2. �

Corollary of this proof. In general, if µ : M → g∗ is a moment map, then given
any c ∈ [g, g]0, µ1 = µ+ c is another moment map.

In other words, moment maps are unique up to elements of the dual of the Lie
algebra which annihilate the commutator ideal.

The two extreme cases are:

G semisimple: any symplectic action is hamiltonian ,
moment maps are unique .

G commutative: symplectic actions may not be hamiltonian ,
moment maps are unique up to any constant c ∈ g∗ .

Example. The circle action on (T2, ω = dθ1 ∧ dθ2) by rotations in the θ1 direction
has vector field X# = ∂

∂θ1
; this is a symplectic action but is not hamiltonian. ♦



Homework 20: Examples of Reduction

1. For the natural action of U(k) on Ck×n with moment map computed in
exercise 5 of Homework 19, we have µ−1(0) = {A ∈ Ck×n |AA∗ = Id}.
Show that the quotient

µ−1(0)/U(k) = G(k, n)

is the grassmannian of k-planes in Cn.

2. Consider the S1-action on (R2n+2, ω0) which, under the usual identification
of R2n+2 with Cn+1, corresponds to multiplication by eit. This action is
hamiltonian with a moment map µ : Cn+1 → R given by

µ(z) = − 1
2 |z|

2 + 1
2 .

Prove that the reduction µ−1(0)/S1 is CPn with the Fubini-Study symplectic
form ωred = ωFS .

Hint: Let pr : Cn+1 \ {0} → CPn denote the standard projection. Check that

pr∗ωFS = i
2
∂∂̄ log(|z|2) .

Prove that this form has the same restriction to S2n+1 as ω0.

3. Show that the natural actions of Tn+1 and U(n + 1) on (CPn, ωFS) are
hamiltonian, and find formulas for their moment maps.

Hint: Previous exercise and exercises 2 and 4 of Homework 19.
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27 Convexity

27.1 Convexity Theorem

From now on, we will concentrate on actions of a torus G = Tm = Rm/Zm.

Theorem 27.1 (Atiyah [6], Guillemin-Sternberg [57])
Let (M,ω) be a compact connected symplectic manifold, and let Tm be an m-

torus. Suppose that ψ : Tm → Sympl(M,ω) is a hamiltonian action with moment
map µ : M → Rm. Then:

1. the levels of µ are connected;

2. the image of µ is convex;

3. the image of µ is the convex hull of the images of the fixed points of the
action.

The image µ(M) of the moment map is hence called the moment polytope.

Proof. This proof (due to Atiyah) involves induction over m = dim Tm. Consider
the statements:

Am: “the levels of µ are connected, for any Tm-action;”

Bm: “the image of µ is convex, for any Tm-action.”

Then
(1) ⇐⇒ Am holds for all m ,
(2) ⇐⇒ Bm holds for all m .

• A1 is a non-trivial result in Morse theory.

• Am−1 =⇒ Am (induction step) is in Homework 21.

• B1 is trivial because in R connectedness is convexity.

• Am−1 =⇒ Bm is proved below.

Choose an injective matrix A ∈ Zm×(m−1). Consider the action of an (m− 1)-
subtorus

ψA : Tm−1 −→ Sympl(M,ω)
θ 7−→ ψAθ .

Exercise. The action ψA is hamiltonian with moment map µA = Atµ : M →
Rm−1. ♦

Given any p0 ∈ µ−1
A (ξ),

p ∈ µ−1
A (ξ) ⇐⇒ Atµ(p) = ξ = Atµ(p0)
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170 27 CONVEXITY

so that

µ−1
A (ξ) = {p ∈M | µ(p)− µ(p0) ∈ kerAt} .

By the first part (statement Am−1), µ
−1
A (ξ) is connected. Therefore, if we connect

p0 to p1 by a path pt in µ−1
A (ξ), we obtain a path µ(pt) − µ(p0) in kerAt. But

kerAt is 1-dimensional. Hence, µ(pt) must go through any convex combination of
µ(p0) and µ(p1), which shows that any point on the line segment from µ(p0) to
µ(p1) must be in µ(M):

(1− t)µ(p0) + tµ(p1) ∈ µ(M) , 0 ≤ t ≤ 1 .

Any p0, p1 ∈M can be approximated arbitrarily closely by points p′0 and p′1 with
µ(p′1) − µ(p′0) ∈ kerAt for some injective matrix A ∈ Zm×(m−1). Taking limits
p′0 → p0, p

′
1 → p1, we obtain that µ(M) is convex.15

To prove part 3, consider the fixed point set C of ψ. Homework 21 shows that
C is a finite union of connected symplectic submanifolds, C = C1 ∪ . . .∪CN . The
moment map is constant on each Cj , µ(Cj) = ηj ∈ Rm, j = 1, . . . , N . By the
second part, the convex hull of {η1, . . . , ηN} is contained in µ(M).

For the converse, suppose that ξ ∈ Rm and ξ /∈ convex hull of {η1, . . . , ηN}.
Choose X ∈ Rm with rationally independent components and satisfying

〈ξ,X〉 > 〈ηj , X〉, for all j .

By the irrationality of X, the set {exp tX(e) | t ∈ R} is dense in Tm, hence the
zeros of the vector field X# on M are the fixed points of the Tm-action. Since
µX = 〈µ,X〉 attains its maximum on one of the sets Cj , this implies

〈ξ,X〉 > sup
p∈M
〈µ(p), X〉 ,

hence ξ /∈ µ(M). Therefore,

µ(M) = convex hull of {η1, . . . , ηN} .

�

27.2 Effective Actions

An action of a group G on a manifold M is called effective if each group element
g 6= e moves at least one p ∈M , that is,⋂

p∈M
Gp = {e} ,

where Gp = {g ∈ G | g · p = p} is the stabilizer of p.

15Clearly µ(M) is closed because it is compact.
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Corollary 27.2 Under the conditions of the convexity theorem, if the Tm-action is
effective, then there must be at least m+ 1 fixed points.

Proof. If the Tm-action is effective, there must be a point p where the moment
map is a submersion, i.e., (dµ1)p, . . . , (dµm)p are linearly independent. Hence, µ(p)
is an interior point of µ(M), and µ(M) is a nondegenerate convex polytope. Any
nondegenerate convex polytope in Rm must have at least m + 1 vertices. The
vertices of µ(M) are images of fixed points. �

Theorem 27.3 Let (M,ω,Tm, µ) be a hamiltonian Tm-space. If the Tm-action is
effective, then dimM ≥ 2m.

Proof. On an orbit O, the moment map µ(O) = ξ is constant. For p ∈ O, the
exterior derivative

dµp : TpM −→ g∗

maps TpO to 0. Thus

TpO ⊆ ker dµp = (TpO)ω ,

which shows that orbits O of a hamiltonian torus action are always isotropic sub-
manifolds of M . In particular, dimO ≤ 1

2 dimM .

Fact: If ψ : Tm → Diff(M) is an effective action, then it has orbits of dimension
m; a proof may be found in [17]. �

Definition 27.4 A (symplectic) toric manifold16 is a compact connected sym-
plectic manifold (M,ω) equipped with an effective hamiltonian action of a torus T
of dimension equal to half the dimension of the manifold:

dim T =
1
2

dimM

and with a choice of a corresponding moment map µ.

Exercise. Show that an effective hamiltonian action of a torus Tn on a 2n-
dimensional symplectic manifold gives rise to an integrable system.

Hint: The coordinates of the moment map are commuting integrals of motion.

♦

16In these notes, a toric manifold is always a symplectic toric manifold.
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27.3 Examples

1. The circle S1 acts on the 2-sphere (S2, ωstandard = dθ ∧ dh) by rotations
with moment map µ = h equal to the height function and moment polytope
[−1, 1].

-
µ = h

−1

1

&%
'$

t
t

t
t

1.’ The circle S1 acts on CP1 = C2 − 0/ ∼ with the Fubini-Study form ωFS =
1
4ωstandard, by eiθ · [z0, z1] = [z0, eiθz1]. This is hamiltonian with moment

map µ[z0, z1] = − 1
2 ·

|z1|2
|z0|2+|z1|2 , and moment polytope

[
− 1

2 , 0
]
.

2. The T2-action on CP2 by

(eiθ1 , eiθ2) · [z0, z1, z2] = [z0, eiθ1z1, eiθ2z2]

has moment map

µ[z0, z1, z2] = −1
2

(
|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2

)
.

The fixed points get mapped as

[1, 0, 0] 7−→ (0, 0)
[0, 1, 0] 7−→

(
− 1

2 , 0
)

[0, 0, 1] 7−→
(
0,− 1

2

)
.

Notice that the stabilizer of a preimage of the edges is S1, while the action
is free at preimages of interior points of the moment polytope.
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Exercise. What is the moment polytope for the T3-action on CP3 as

(eiθ1 , eiθ2 , eiθ3) · [z0, z1, z2, z3] = [z0, eiθ1z1, eiθ2z2, eiθ3z3] ?

♦

Exercise. What is the moment polytope for the T2-action on CP1 × CP1 as

(eiθ, eiη) · ([z0, z1], [w0, w1]) = ([z0, eiθz1], [w0, e
iηw1]) ?

♦



Homework 21: Connectedness

Consider a hamiltonian action ψ : Tm → Sympl (M,ω), θ 7→ ψθ, of an m-
dimensional torus on a 2n-dimensional compact connected symplectic manifold
(M,ω). If we identify the Lie algebra of Tm with Rm by viewing Tm = Rm/Zm,
and we identify the Lie algebra with its dual via the standard inner product, then
the moment map for ψ is µ : M → Rm.

1. Show that there exists a compatible almost complex structure J on (M,ω)
which is invariant under the Tm-action, that is, ψ∗θJ = Jψ∗θ , for all θ ∈ Tm.

Hint: We cannot average almost complex structures, but we can average rie-
mannian metrics (why?). Given a riemannian metric g0 on M , its Tm-average
g =

R
Tm ψ∗θg0dθ is Tm-invariant.

2. Show that, for any subgroup G ⊆ Tm, the fixed-point set for G ,

Fix (G) =
⋂
θ∈G

Fix (ψθ) ,

is a symplectic submanifold of M .

Hint: For each p ∈ Fix (G) and each θ ∈ G, the differential of ψθ at p,

dψθ(p) : TpM −→ TpM ,

preserves the complex structure Jp on TpM . Consider the exponential map expp :
TpM → M with respect to the invariant riemannian metric g(·, ·) = ω(·, J ·).
Show that, by uniqueness of geodesics, expp is equivariant, i.e.,

expp(dψθ(p)v) = ψθ(expp v)

for any θ ∈ G, v ∈ TpM . Conclude that the fixed points of ψθ near p correspond
to the fixed points of dψθ(p) on TpM , that is

TpFix (G) =
\

θ∈G

ker(Id− dψθ(p)) .

Since dψθ(p) ◦ Jp = Jp ◦ dψθ(p), the eigenspace with eigenvalue 1 is invariant
under Jp, and is therefore a symplectic subspace.

3. A smooth function f : M → R on a compact riemannian manifold M is called
a Morse-Bott function if its critical set Crit (f) = {p ∈ M | df(p) = 0} is
a submanifold of M and for every p ∈ Crit (f), TpCrit (f) = ker∇2f(p)
where ∇2f(p) : TpM → TpM denotes the linear operator obtained from the
hessian via the riemannian metric. This is the natural generalization of the
notion of Morse function to the case where the critical set is not just isolated
points. If f is a Morse-Bott function, then Crit (f) decomposes into finitely
many connected critical manifolds C. The tangent space TpM at p ∈ C
decomposes as a direct sum

TpM = TpC ⊕ E+
p ⊕ E−p

where E+
p and E−p are spanned by the positive and negative eigenspaces of

∇2f(p). The index of a connected critical submanifold C is n−C = dimE−p ,

for any p ∈ C, whereas the coindex of C is n+
C = dimE+

p .
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For each X ∈ Rm, let µX = 〈µ,X〉 : M → R be the component of µ along
X. Show that µX is a Morse-Bott function with even-dimensional critical
manifolds of even index. Moreover, show that the critical set

Crit (µX) =
⋂
θ∈TX

Fix (ψθ)

is a symplectic manifold, where TX is the closure of the subgroup of Tm
generated by X.

Hint: Assume first thatX has components independent over Q, so that TX = Tm

and Crit (µX) = Fix (Tm). Apply exercise 2. To prove that TpCrit (µX) =
ker∇2µX(p), show that ker∇2µX(p) = ∩θ∈Tm ker(Id − dψθ(p)). To see this,
notice that the 1-parameter group of matrices (dψexp tX)p coincides with exp(tvp),
where vp = −Jp∇2µX(p) : TpM → TpM is a vector field on TpM . The kernel of
∇2µX(p) corresponds to the fixed points of dψtX(p), and since X has rationally
independent components, these are the common fixed points of all dψθ(p), θ ∈
Tm. The eigenspaces of ∇2µX(p) are even-dimensional because they are invariant
under Jp.

4. The moment map µ = (µ1, . . . , µm) is called effective if the 1-forms dµ1, . . . , dµm
of its components are linearly independent. Show that, if µ is not effective,
then the action reduces to that of an (m− 1)-subtorus.

Hint: If µ is not effective, then the function µX = 〈µ,X〉 is constant for some
nonzero X ∈ Rm. Show that we can neglect the direction of X.

5. Prove that the level set µ−1(ξ) is connected for every regular value ξ ∈ Rm.

Hint: Prove by induction over m = dim Tm. For the case m = 1, use the lemma
that all level sets f−1(c) of a Morse-Bott function f : M → R on a compact
manifold M are necessarily connected, if the critical manifolds all have index and
coindex 6= 1 (see [83, p.178-179]). For the induction step, you can assume that
ψ is effective. Then, for every 0 6= X ∈ Rm, the function µX : M → R is
not constant. Show that C := ∪X 6=0Crit µX = ∪0 6=X∈ZmCrit µX where each

Crit µX is an even-dimensional proper submanifold, so the complement M \ C
must be dense in M . Show that M \C is open. Hence, by continuity, to show that
µ−1(ξ) is connected for every regular value ξ = (ξ1, . . . , ξm) ∈ Rm, it suffices to
show that µ−1(ξ) is connected whenever (ξ1, . . . , ξm−1) is a regular value for a
reduced moment map (µ1, . . . , µm−1). By the induction hypothesis, the manifold
Q = ∩m−1

j=1 µ
−1
j (ξj) is connected whenever (ξ1, . . . , ξm−1) is a regular value for

(µ1, . . . , µm−1). It suffices to show that the function µm : Q → R has only
critical manifolds of even index and coindex (see [83, p.183]), because then, by
the lemma, the level sets µ−1(ξ) = Q ∩ µ−1

m (ξm) are connected for every ξm.





Part XI

Symplectic Toric Manifolds
Native to algebraic geometry, toric manifolds have been studied by symplectic ge-
ometers as examples of extremely symmetric hamiltonian spaces, and as guinea pigs
for new theorems. Delzant showed that symplectic toric manifolds are classified (as
hamiltonian spaces) by a set of special polytopes.

28 Classification of Symplectic Toric Manifolds

28.1 Delzant Polytopes

A 2n-dimensional (symplectic) toric manifold is a compact connected symplectic
manifold (M2n, ω) equipped with an effective hamiltonian action of an n-torus Tn
and with a corresponding moment map µ : M → Rn.

Definition 28.1 A Delzant polytope ∆ in Rn is a convex polytope satisfying:

• it is simple, i.e., there are n edges meeting at each vertex;

• it is rational, i.e., the edges meeting at the vertex p are rational in the sense
that each edge is of the form p+ tui, t ≥ 0, where ui ∈ Zn;

• it is smooth, i.e., for each vertex, the corresponding u1, . . . , un can be chosen
to be a Z-basis of Zn.

Remark. The Delzant polytopes are the simple rational smooth polytopes. These
are closely related to the Newton polytopes (which are the nonsingular n-valent
polytopes), except that the vertices of a Newton polytope are required to lie on the
integer lattice and for a Delzant polytope they are not. ♦

Examples of Delzant polytopes:
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The dotted vertical line in the trapezoidal example means nothing, except that it is
a picture of a rectangle plus an isosceles triangle. For “taller” triangles, smoothness
would be violated. “Wider” triangles (with integral slope) may still be Delzant. The
family of the Delzant trapezoids of this type, starting with the rectangle, correspond,
under the Delzant construction, to Hirzebruch surfaces; see Homework 22.

Examples of polytopes which are not Delzant:
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The picture on the left fails the smoothness condition, whereas the picture on
the right fails the simplicity condition.

Algebraic description of Delzant polytopes:

A facet of a polytope is a (n− 1)-dimensional face.

Let ∆ be a Delzant polytope with n = dim ∆ and d = number of facets.

A lattice vector v ∈ Zn is primitive if it cannot be written as v = ku with
u ∈ Zn, k ∈ Z and |k| > 1; for instance, (1, 1), (4, 3), (1, 0) are primitive, but
(2, 2), (3, 6) are not.

Let vi ∈ Zn, i = 1, . . . , d, be the primitive outward-pointing normal vectors to
the facets.
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n = 2

d = 3

Then we can describe ∆ as an intersection of halfspaces

∆ = {x ∈ (Rn)∗ | 〈x, vi〉 ≤ λi, i = 1, . . . , d} for some λi ∈ R .
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Example. For the picture below, we have

∆ = {x ∈ (R2)∗ | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}
= {x ∈ (R2)∗ | 〈x, (−1, 0)〉 ≤ 0 , 〈x, (0,−1)〉 ≤ 0 , 〈x, (1, 1)〉 ≤ 1} .
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♦

28.2 Delzant Theorem

We do not have a classification of symplectic manifolds, but we do have a classifi-
cation of toric manifolds in terms of combinatorial data. This is the content of the
Delzant theorem.

Theorem 28.2 (Delzant [23]) Toric manifolds are classified by Delzant poly-
topes. More specifically, there is the following one-to-one correspondence

{toric manifolds} 1−1−→ {Delzant polytopes}
(M2n, ω,Tn, µ) 7−→ µ(M).

We will prove the existence part (or surjectivity) in the Delzant theorem follow-
ing [54]. Given a Delzant polytope, what is the corresponding toric manifold?

(M∆, ω∆,Tn, µ) ?←− ∆n
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28.3 Sketch of Delzant Construction

Let ∆ be a Delzant polytope with d facets. Let vi ∈ Zn, i = 1, . . . , d, be the
primitive outward-pointing normal vectors to the facets. For some λi ∈ R,

∆ = {x ∈ (Rn)∗ | 〈x, vi〉 ≤ λi, i = 1, . . . , d} .

Let e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1) be the standard basis of Rd. Consider

π : Rd −→ Rn
ei 7−→ vi .

Claim. The map π is onto and maps Zd onto Zn.

Proof. The set {e1, . . . , ed} is a basis of Zd. The set {v1, . . . , vd} spans Zn for
the following reason. At a vertex p, the edge vectors u1, . . . , un ∈ (Rn)∗, form a
basis for (Zn)∗ which, without loss of generality, we may assume is the standard
basis. Then the corresponding primitive normal vectors to the facets meeting at p
are symmetric (in the sense of multiplication by −1) to the ui’s, hence form a basis
of Zn. �

Therefore, π induces a surjective map, still called π, between tori:

Rd/Zd π−→ Rn/Zn
‖ ‖

Td −→ Tn −→ 0 .

Let
N = kernel of π (N is a Lie subgroup of Td)
n = Lie algebra of N

Rd = Lie algebra of Td
Rn = Lie algebra of Tn.

The exact sequence of tori

0 −→ N
i−→ Td π−→ Tn −→ 0

induces an exact sequence of Lie algebras

0 −→ n
i−→ Rd π−→ Rn −→ 0

with dual exact sequence

0 −→ (Rn)∗ π∗−→ (Rd)∗ i∗−→ n∗ −→ 0 .

Now consider Cd with symplectic form ω0 = i
2

∑
dzk ∧ dz̄k, and standard

hamiltonian action of Td

(e2πit1 , . . . , e2πitd) · (z1, . . . , zd) = (e2πit1z1, . . . , e2πitdzd) .
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The moment map is φ : Cd −→ (Rd)∗

φ(z1, . . . , zd) = −π(|z1|2, . . . , |zd|2) + constant ,

where we choose the constant to be (λ1, . . . , λd). What is the moment map for the
action restricted to the subgroup N?

Exercise. Let G be any compact Lie group and H a closed subgroup of G, with g
and h the respective Lie algebras. The inclusion i : h ↪→ g is dual to the projection
i∗ : g∗ → h∗. Suppose that (M,ω,G, φ) is a hamiltonian G-space. Show that the
restriction of the G-action to H is hamiltonian with moment map

i∗ ◦ φ : M −→ h∗ .

♦

The subtorus N acts on Cd in a hamiltonian way with moment map

i∗ ◦ φ : Cd −→ n∗ .

Let Z = (i∗ ◦ φ)−1(0) be the zero-level set.

Claim. The set Z is compact and N acts freely on Z.

This claim will be proved in the next lecture.

By the first claim, 0 ∈ n∗ is a regular value of i∗ ◦ φ. Hence, Z is a compact
submanifold of Cd of dimension

dimR Z = 2d− (d− n)︸ ︷︷ ︸
dim n∗

= d+ n .

The orbit space M∆ = Z/N is a compact manifold of dimension

dimR M∆ = d+ n− (d− n)︸ ︷︷ ︸
dimN

= 2n .

The point-orbit map p : Z →M∆ is a principal N -bundle over M∆.
Consider the diagram

Z
j
↪→ Cd

p ↓
M∆

where j : Z ↪→ Cd is inclusion. The Marsden-Weinstein-Meyer theorem guarantees
the existence of a symplectic form ω∆ on M∆ satisfying

p∗ω∆ = j∗ω0 .

Exercise. Work out all details in the following simple example.
Let ∆ = [0, a] ⊂ R∗ (n = 1, d = 2). Let v(= 1) be the standard basis vector

in R. Then
∆ : 〈x, v1〉 ≤ 0 v1 = −v

〈x, v2〉 ≤ a v2 = v .
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The projection

R2 π−→ R
e1 7−→ −v
e2 7−→ v

has kernel equal to the span of (e1 + e2), so that N is the diagonal subgroup of
T2 = S1 × S1. The exact sequences become

0 −→ N
i−→ T2 π−→ S1 −→ 0

0 −→ R∗ π∗−→ (R2)∗ i∗−→ n∗ −→ 0
(x1, x2) 7−→ x1 + x2 .

The action of the diagonal subgroup N = {(e2πit, e2πit) ∈ S1 × S1} on C2,

(e2πit, e2πit) · (z1, z2) = (e2πitz1, e2πitz2) ,

has moment map

(i∗ ◦ φ)(z1, z2) = −π(|z1|2 + |z2|2) + a ,

with zero-level set

(i∗ ◦ φ)−1(0) = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 =
a

π
} .

Hence, the reduced space is

(i∗ ◦ φ)−1(0)/N = CP1 projective space!

♦



29 Delzant Construction

29.1 Algebraic Set-Up

Let ∆ be a Delzant polytope with d facets. We can write ∆ as

∆ = {x ∈ (Rn)∗ | 〈x, vi〉 ≤ λi , i = 1, . . . , d} ,

for some λi ∈ R. Recall the exact sequences from the previous lecture

0 −→ N
i−→ Td π−→ Tn −→ 0

0 −→ n
i−→ Rd π−→ Rn −→ 0

ei 7−→ vi

and the dual sequence

0 −→ (Rn)∗ π∗−→ (Rd)∗ i∗−→ n∗ −→ 0 .

The standard hamiltonian action of Td on Cd

(e2πit1 , . . . , e2πitd) · (z1, . . . , zd) = (e2πit1z1, . . . , e2πitdzd)

has moment map φ : Cd → (Rd)∗ given by

φ(z1, . . . , zd) = −π(|z1|2, . . . , |zd|2) + (λ1, . . . , λd) .

The restriction of this action to N has moment map

i∗ ◦ φ : Cd −→ n∗ .

29.2 The Zero-Level

Let Z = (i∗ ◦ φ)−1(0).

Proposition 29.1 The level Z is compact and N acts freely on Z.

Proof. Let ∆′ be the image of ∆ by π∗. We will show that φ(Z) = ∆′. Since φ
is a proper map and ∆′ is compact, it will follow that Z is compact.

Lemma 29.2 Let y ∈ (Rd)∗. Then:

y ∈ ∆′ ⇐⇒ y is in the image of Z by φ .

Proof of the lemma. The value y is in the image of Z by φ if and only if both
of the following conditions hold:

1. y is in the image of φ;

183
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2. i∗y = 0.

Using the expression for φ and the third exact sequence, we see that these
conditions are equivalent to:

1. 〈y, ei〉 ≤ λi for i = 1, . . . , d.

2. y = π∗(x) for some x ∈ (Rn)∗.

Suppose that the second condition holds, so that y = π∗(x). Then

〈y, ei〉 ≤ λi,∀i ⇐⇒ 〈π∗(x), ei〉 ≤ λi,∀i
⇐⇒ 〈x, π(ei)〉 ≤ λi,∀i
⇐⇒ x ∈ ∆.

Thus, y ∈ φ(Z) ⇐⇒ y ∈ π∗(∆) = ∆′. �

Hence, we have a surjective proper map φ : Z → ∆′. Since ∆′ is compact, we
conclude that Z is compact. It remains to show that N acts freely on Z.

We define a stratification of Z with three equivalent descriptions:

• Define a stratification on ∆′ whose ith stratum is the closure of the union of
the i-dimensional faces of ∆′. Pull this stratification back to Z by φ.

We can obtain a more explicit description of the stratification on Z:

• Let F be a face of ∆′ with dimF = n − r. Then F is characterized (as a
subset of ∆′) by r equations

〈y, ei〉 = λi , i = i1, . . . , ir .

We write F = FI where I = (i1, . . . , ir) has 1 ≤ i1 < i2 . . . < ir ≤ d.
Let z = (z1, . . . , zd) ∈ Z.

z ∈ φ−1(FI) ⇐⇒ φ(z) ∈ FI
⇐⇒ 〈φ(z), ei〉 = λi , ∀i ∈ I
⇐⇒ −π|zi|2 + λi = λi , ∀i ∈ I
⇐⇒ zi = 0 , ∀i ∈ I .

• The Td-action on Cd preserves φ, so the Td-action takes Z = φ−1(∆′) onto
itself, so Td acts on Z.

Exercise. The stratification of Z is just the stratification of Z into Td orbit
types. More specifically, if z ∈ Z and φ(z) ∈ FI then the stabilizer of z in
Td is (Td)I where

I = (i1, . . . , ir) ,

FI = {y ∈ ∆′ | 〈y, ei〉 = λi,∀i ∈ I} ,
and

(Td)I = {(e2πit1 , . . . , e2πitd) | e2πits = 1,∀s /∈ I}
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Hint: Suppose that z = (z1, . . . , zd) ∈ Cd. Then

(e2πit1z1, . . . , e
2πitdzd) = (z1, . . . , zd)

if and only if e2πits = 1 whenever zs 6= 0.

♦

In order to show that N acts freely on Z, consider the worst case scenario of
points z ∈ Z whose stabilizer under the action of Td is a large as possible. Now
(Td)I is largest when FI = {y} is a vertex of ∆′. Then y satisfies n equations

〈y, ei〉 = λi , i ∈ I = {i1, . . . , in} .

Lemma 29.3 Let z ∈ Z be such that φ(z) is a vertex of ∆′. Let (Td)I be the
stabilizer of z. Then the map π : Td → Tn maps (Td)I bijectively onto Tn.

Since N = kerπ, this lemma shows that in the worst case, the stabilizer of z
intersects N in the trivial group. It will follow that N acts freely at this point and
hence on Z.

Proof of the lemma. Suppose that φ(z) = y is a vertex of ∆′. Renumber the
indices so that

I = (1, 2, . . . , n) .

Then
(Td)I = {(e2πit1 , . . . , e2πitn , 1, . . . , 1) | ti ∈ R} .

The hyperplanes meeting at y are

〈y′, ei〉 = λi , i = 1, . . . , n .

By definition of Delzant polytope, the set π(e1), . . . , π(en) is a basis of Zn. Thus,
π : (Td)I → Tn is bijective. �

This proves the theorem in the worst case scenario, and hence in general. �

29.3 Conclusion of the Delzant Construction

We continue the construction of (M∆, ω∆) from ∆. We already have that

M∆ = Z/N

is a compact 2n-dimensional manifold. Let ω∆ be the reduced symplectic form.

Claim. The manifold (M∆, ω∆) is a hamiltonian Tn-space with a moment map µ
having image µ(M∆) = ∆.

Suppose that z ∈ Z. The stabilizer of z with respect to the Td-action is (Td)I ,
and

(Td)I ∩N = {e} .
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In the worst case scenario, FI is a vertex of ∆′ and (Td)I is an n-dimensional
subgroup of Td. In any case, there is a right inverse map π−1 : Tn → (Td)I . Thus,
the exact sequence

0 −→ N −→ Td −→ Tn −→ 0

splits, and Td = N × Tn.
Apply the results on reduction for product groups (Section 24.3) to our situation

of Td = N × Tn acting on (M∆, ω∆). The moment map is

φ : Cd −→ (Rd)∗ = n∗ ⊕ (Rn)∗ .

Let j : Z ↪→ Cd be the inclusion map, and let

pr1 : (Rd)∗ −→ n∗ and pr2 : (Rd)∗ −→ (Rn)∗

be the projection maps. The map

pr2 ◦ φ ◦ j : Z −→ (Rn)∗

is constant on N -orbits. Thus there exists a map

µ : M∆ −→ (Rn)∗

such that
µ ◦ p = pr2 ◦ φ ◦ j .

The image of µ is equal to the image of pr2 ◦ φ ◦ j. We showed earlier that
φ(Z) = ∆′. Thus

Image of µ = pr2(∆
′) = pr2 ◦ π∗︸ ︷︷ ︸

id

(∆) = ∆ .

Thus (M∆, ω∆) is the required toric manifold corresponding to ∆.

29.4 Idea Behind the Delzant Construction

We use the idea that Rd is “universal” in the sense that any n-dimensional polytope
∆ with d facets can be obtained by intersecting the negative orthant Rd− with an
affine plane A. Given ∆, to construct A first write ∆ as:

∆ = {x ∈ Rn | 〈x, vi〉 ≤ λi, i = 1, . . . , d} .

Define

π : Rd −→ Rn with dual map π∗ : Rn −→ Rd .
ei 7−→ vi

Then
π∗ − λ : Rn −→ Rd
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is an affine map, where λ = (λ1, . . . , λd). Let A be the image of π∗ − λ. Then A
is an n-dimensional affine plane.

Claim. We have the equality (π∗ − λ)(∆) = Rd− ∩A.

Proof. Let x ∈ Rn. Then

(π∗ − λ)(x) ∈ Rd− ⇐⇒ 〈π∗(x)− λ, ei〉 ≤ 0,∀i
⇐⇒ 〈x, π(ei)〉 − λi ≤ 0,∀i
⇐⇒ 〈x, vi〉 ≤ λi,∀i
⇐⇒ x ∈ ∆ .

�

We conclude that ∆ ' Rd− ∩A. Now Rd− is the image of the moment map for
the standard hamiltonian action of Td on Cd

φ : Cd −→ Rd

(z1, . . . , zd) 7−→ −π(|z1|2, . . . , |zd|2) .

Facts.

• The set φ−1(A) ⊂ Cd is a compact submanifold. Let i : φ−1(A) ↪→ Cd
denote inclusion. Then i∗ω0 is a closed 2-form which is degenerate. Its kernel
is an integrable distribution. The corresponding foliation is called the null
foliation.

• The null foliation of i∗ω0 is a principal fibration, so we take the quotient:

N ↪→ φ−1(A)
↓
M∆ = φ−1(A)/N

Let ω∆ be the reduced symplectic form.

• The (non-effective) action of Td = N ×Tn on φ−1(A) has a “moment map”
with image φ(φ−1(A)) = ∆. (By “moment map” we mean a map satisfying
the usual definition even though the closed 2-form is not symplectic.)

Theorem 29.4 For any x ∈ ∆, we have that µ−1(x) is a single Tn-orbit.

Proof. Exercise.
First consider the standard Td-action on Cd with moment map φ : Cd → Rd.

Show that φ−1(y) is a single Td-orbit for any y ∈ φ(Cd). Now observe that

y ∈ ∆′ = π∗(∆) ⇐⇒ φ−1(y) ⊆ Z .
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Suppose that y = π∗(x). Show that µ−1(x) = φ−1(y)/N . But φ−1(y) is a single
Td-orbit where Td = N × Tn, hence µ−1(x) is a single Tn-orbit. �

Therefore, for toric manifolds, ∆ is the orbit space.
Now ∆ is a manifold with corners. At every point p in a face F , the tangent

space Tp∆ is the subspace of Rn tangent to F . We can visualize (M∆, ω∆,Tn, µ)
from ∆ as follows. First take the product Tn×∆. Let p lie in the interior of Tn×∆.
The tangent space at p is Rn × (Rn)∗. Define ωp by:

ωp(v, ξ) = ξ(v) = −ωp(ξ, v) and ωp(v, v′) = ω(ξ, ξ′) = 0 .

for all v, v′ ∈ Rn and ξ, ξ′ ∈ (Rn)∗. Then ω is a closed nondegenerate 2-form on
the interior of Tn ×∆. At the corner there are directions missing in (Rn)∗, so ω is
a degenerate pairing. Hence, we need to eliminate the corresponding directions in
Rn. To do this, we collapse the orbits corresponding to subgroups of Tn generated
by directions orthogonal to the annihilator of that face.

Example. Consider
(S2, ω = dθ ∧ dh, S1, µ = h) ,

where S1 acts on S2 by rotation. The image of µ is the line segment I = [−1, 1].
The product S1×I is an open-ended cylinder. By collapsing each end of the cylinder
to a point, we recover the 2-sphere. ♦

Exercise. Build CP2 from T2 ×∆ where ∆ is a right-angled isosceles triangle. ♦

Finally, Tn acts on Tn × ∆ by multiplication on the Tn factor. The moment
map for this action is projection onto the ∆ factor.



Homework 22: Delzant Theorem

1. (a) Consider the standard (S1)3-action on CP3:

(eiθ1 , eiθ2 , eiθ3) · [z0, z1, z2, z3] = [z0, eiθ1z1, eiθ2z2, eiθ3z3] .

Exhibit explicitly the subsets of CP3 for which the stabilizer under this
action is {1}, S1, (S1)2 and (S1)3. Show that the images of these
subsets under the moment map are the interior, the facets, the edges
and the vertices, respectively.

(b) Classify all 2-dimensional Delzant polytopes with 4 vertices, up to trans-
lation and the action of SL(2; Z).
Hint: By a linear transformation in SL(2; Z), you can make one of the angles
in the polytope into a square angle. Check that automatically another angle also
becomes 90o.

(c) What are all the 4-dimensional symplectic toric manifolds that have four
fixed points?

2. Take a Delzant polytope in Rn with a vertex p and with primitive (inward-
pointing) edge vectors u1, . . . , un at p. Chop off the corner to obtain a new
polytope with the same vertices except p, and with p replaced by n new
vertices:

p+ εuj , j = 1, . . . , n ,

where ε is a small positive real number. Show that this new polytope is also
Delzant. The corresponding toric manifold is the ε-symplectic blowup of
the original one.

p
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3. The toric 4-manifold Hn corresponding to the polygon with vertices (0, 0),
(n+1, 0), (0, 1) and (1, 1), for n a nonnegative integer, is called a Hirzebruch
surface.
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@
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H
H
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(a) What is the manifold H0? What is the manifold H1?

Hint:

@
@

@
@

(b) Construct the manifold Hn by symplectic reduction of C4 with respect
to an action of (S1)2.

(c) Exhibit Hn as a CP1-bundle over CP1.

4. Which 2n-dimensional toric manifolds have exactly n+ 1 fixed points?



30 Duistermaat-Heckman Theorems

30.1 Duistermaat-Heckman Polynomial

Let (M2n, ω) be a symplectic manifold. Then ωn

n! is the symplectic volume form.

Definition 30.1 The Liouville measure (or symplectic measure) of a Borel sub-
set17 U of M is

mω(U) =
∫
U

ωn

n!
.

Let G be a torus. Suppose that (M,ω,G, µ) is a hamiltonian G-space, and that
the moment map µ is proper.

Definition 30.2 The Duistermaat-Heckman measure, mDH , on g∗ is the push-
forward of mω by µ : M → g∗. That is,

mDH(U) = (µ∗mω)(U) =
∫
µ−1(U)

ωn

n!

for any Borel subset U of g∗.

For a compactly-supported function h ∈ C∞(g∗), we define its integral with
respect to the Duistermaat-Heckman measure to be∫

g∗
h dmDH =

∫
M

(h ◦ µ)
ωn

n!
.

On g∗ regarded as a vector space, say Rn, there is also the Lebesgue (or eu-
clidean) measure, m0. The relation between mDH and m0 is governed by the
Radon-Nikodym derivative, denoted by dmDH

dm0
, which is a generalized function sat-

isfying ∫
g∗
h dmDH =

∫
g∗
h
dmDH

dm0
dm0 .

Theorem 30.3 (Duistermaat-Heckman, 1982 [31]) The Duistermaat-Heckman
measure is a piecewise polynomial multiple of Lebesgue (or euclidean) measure m0

on g∗ ' Rn, that is, the Radon-Nikodym derivative

f =
dmDH

dm0

is piecewise polynomial. More specifically, for any Borel subset U of g∗,

mDH(U) =
∫
U

f(x) dx ,

where dx = dm0 is the Lebesgue volume form on U and f : g∗ ' Rn → R is
polynomial on any region consisting of regular values of µ.

17The set B of Borel subsets is the σ-ring generated by the set of compact subsets, i.e.,
if A,B ∈ B, then A \B ∈ B, and if Ai ∈ B, i = 1, 2, . . ., then ∪∞i=1Ai ∈ B.
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The proof of Theorem 30.3 for the case G = S1 is in Section 30.3. The proof
for the general case, which follows along similar lines, can be found in, for instance,
[54], besides the original articles.

The Radon-Nikodym derivative f is called the Duistermaat-Heckman poly-
nomial. In the case of a toric manifold, the Duistermaat-Heckman polynomial is a
universal constant equal to (2π)n when ∆ is n-dimensional. Thus the symplectic
volume of (M∆, ω∆) is (2π)n times the euclidean volume of ∆.

Example. Consider (S2, ω = dθ ∧ dh, S1, µ = h). The image of µ is the interval
[−1, 1]. The Lebesgue measure of [a, b] ⊆ [−1, 1] is

m0([a, b]) = b− a .

The Duistermaat-Heckman measure of [a, b] is

mDH([a, b]) =
∫
{(θ,h)∈S2|a≤h≤b}

dθ dh = 2π(b− a) .

Consequently, the spherical area between two horizontal circles depends only on the
vertical distance between them, a result which was known to Archimedes around
230 BC.

Corollary 30.4 For the standard hamiltonian action of S1 on (S2, ω), we have

mDH = 2π m0 .

♦

30.2 Local Form for Reduced Spaces

Let (M,ω,G, µ) be a hamiltonian G-space, where G is an n-torus.18 Assume that
µ is proper. If G acts freely on µ−1(0), it also acts freely on nearby levels µ−1(t),
t ∈ g∗ and t ≈ 0. Consider the reduced spaces

Mred = µ−1(0)/G and Mt = µ−1(t)/G

with reduced symplectic forms ωred and ωt. What is the relation between these
reduced spaces as symplectic manifolds?

For simplicity, we will assume G to be the circle S1. Let Z = µ−1(0) and let
i : Z ↪→ M be the inclusion map. We fix a connection form α ∈ Ω1(Z) for the
principal bundle

S1 ⊂ - Z

Mred

π

?

18The discussion in this section may be extended to hamiltonian actions of other compact
Lie groups, not necessarily tori; see [54, Exercises 2.1-2.10].
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that is, LX#α = 0 and ıX#α = 1, where X# is the infinitesimal generator for the
S1-action. From α we construct a 2-form on the product manifold Z × (−ε, ε) by
the recipe

σ = π∗ωred − d(xα) ,

x being a linear coordinate on the interval (−ε, ε) ⊂ R ' g∗. (By abuse of
notation, we shorten the symbols for forms on Z × (−ε, ε) which arise by pullback
via projection onto each factor.)

Lemma 30.5 The 2-form σ is symplectic for ε small enough.

Proof. The form σ is clearly closed. At points where x = 0, we have

σ|x=0 = π∗ωred + α ∧ dx ,

which satisfies

σ|x=0

(
X#,

∂

∂x

)
= 1 ,

so σ is nondegenerate along Z × {0}. Since nondegeneracy is an open condition,
we conclude that σ is nondegenerate for x in a sufficiently small neighborhood of
0. �

Notice that σ is invariant with respect to the S1-action on the first factor of
Z × (−ε, ε). In fact, this S1-action is hamiltonian with moment map given by
projection onto the second factor,

x : Z × (−ε, ε) −→ (−ε, ε) ,

as is easily verified:

ıX#σ = −ıX#d(xα) = −LX#(xα)︸ ︷︷ ︸
0

+d ıX#(xα)︸ ︷︷ ︸
x

= dx .

Lemma 30.6 There exists an equivariant symplectomorphism between a neighbor-
hood of Z in M and a neighborhood of Z × {0} in Z × (−ε, ε), intertwining the
two moment maps, for ε small enough.

Proof. The inclusion i0 : Z ↪→ Z × (−ε, ε) as Z × {0} and the natural inclusion
i : Z ↪→ M are S1-equivariant coisotropic embeddings. Moreover, they satisfy
i∗0σ = i∗ω since both sides are equal to π∗ωred, and the moment maps coincide on
Z because i∗0x = 0 = i∗µ. Replacing ε by a smaller positive number if necessary,
the result follows from the equivariant version of the coisotropic embedding theorem
stated in Section 8.3.19 �

19The equivariant version of Theorem 8.6 needed for this purpose may be phrased as follows:
Let (M0, ω0), (M1, ω1) be symplectic manifolds of dimension 2n, G a compact Lie group acting
on (Mi, ωi), i = 0, 1, in a hamiltonian way with moment maps µ0 and µ1, respectively, Z
a manifold of dimension k ≥ n with a G-action, and ιi : Z ↪→ Mi, i = 0, 1, G-equivariant
coisotropic embeddings. Suppose that ι∗0ω0 = ι∗1ω1 and ι∗0µ0 = ι∗1µ1. Then there exist G-
invariant neighborhoods U0 and U1 of ι0(Z) and ι1(Z) in M0 and M1, respectively, and a
G-equivariant symplectomorphism ϕ : U0 → U1 such that ϕ ◦ ι0 = ι1 and µ0 = ϕ∗µ1.
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Therefore, in order to compare the reduced spaces

Mt = µ−1(t)/S1 , t ≈ 0 ,

we can work in Z × (−ε, ε) and compare instead the reduced spaces

x−1(t)/S1 , t ≈ 0 .

Proposition 30.7 The reduced space (Mt, ωt) is symplectomorphic to

(Mred, ωred − tβ) ,

where β is the curvature form of the connection α.

Proof. By Lemma 30.6, (Mt, ωt) is symplectomorphic to the reduced space at
level t for the hamiltonian space (Z × (−ε, ε), σ, S1, x). Since x−1(t) = Z × {t},
where S1 acts on the first factor, all the manifolds x−1(t)/S1 are diffeomorphic to
Z/S1 = Mred. As for the symplectic forms, let ιt : Z × {t} ↪→ Z × (−ε, ε) be the
inclusion map. The restriction of σ to Z × {t} is

ι∗tσ = π∗ωred − tdα .

By definition of curvature, dα = π∗β. Hence, the reduced symplectic form on
x−1(t)/S1 is

ωred − tβ .

�

In loose terms, Proposition 30.7 says that the reduced forms ωt vary linearly in
t, for t close enough to 0. However, the identification of Mt with Mred as abstract
manifolds is not natural. Nonetheless, any two such identifications are isotopic. By
the homotopy invariance of de Rham classes, we obtain:

Theorem 30.8 (Duistermaat-Heckman, 1982 [31]) The cohomology class of
the reduced symplectic form [ωt] varies linearly in t. More specifically,

[ωt] = [ωred] + tc ,

where c = [−β] ∈ H2
deRham(Mred) is the first Chern class of the S1-bundle Z →

Mred.

Remark on conventions. Connections on principal bundles are Lie algebra-valued
1-forms; cf. Section 25.2. Often the Lie algebra of S1 is identified with 2πiR under
the exponential map exp : g ' 2πiR → S1, ξ 7→ eξ. Given a principal S1-bundle,
by this identification the infinitesimal action maps the generator 2πi of 2πiR to the
generating vector fieldX#. A connection form A is then an imaginary-valued 1-form
on the total space satisfying LX#A = 0 and ıX#A = 2πi. Its curvature form B is
an imaginary-valued 2-form on the base satisfying π∗B = dA. By the Chern-Weil
isomorphism, the first Chern class of the principal S1-bundle is c = [ i2πB].
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In this lecture, we identify the Lie algebra of S1 with R and implicitly use the
exponential map exp : g ' R → S1, t 7→ e2πit. Hence, given a principal S1-
bundle, the infinitesimal action maps the generator 1 of R to X#, and here a
connection form α is an ordinary 1-form on the total space satisfying LX#α = 0
and ıX#α = 1. The curvature form β is an ordinary 2-form on the base satisfying
π∗β = dα. Consequently, we have A = 2πiα, B = 2πiβ and the first Chern class
is given by c = [−β]. ♦

30.3 Variation of the Symplectic Volume

Let (M,ω, S1, µ) be a hamiltonian S1-space of dimension 2n and let (Mx, ωx) be
its reduced space at level x. Proposition 30.7 or Theorem 30.8 imply that, for x in
a sufficiently narrow neighborhood of 0, the symplectic volume of Mx,

vol(Mx) =
∫
Mx

ωn−1
x

(n− 1)!
=
∫
Mred

(ωred − xβ)n−1

(n− 1)!
,

is a polynomial in x of degree n− 1. This volume can be also expressed as

vol(Mx) =
∫
Z

π∗(ωred − xβ)n−1

(n− 1)!
∧ α .

Recall that α is a chosen connection form for the S1-bundle Z →Mred and β is its
curvature form.

Now we go back to the computation of the Duistermaat-Heckman measure. For
a Borel subset U of (−ε, ε), the Duistermaat-Heckman measure is, by definition,

mDH(U) =
∫
µ−1(U)

ωn

n!
.

Using the fact that (µ−1(−ε, ε), ω) is symplectomorphic to (Z × (−ε, ε), σ) and,
moreover, they are isomorphic as hamiltonian S1-spaces, we obtain

mDH(U) =
∫
Z×U

σn

n!
.

Since σ = π∗ωred − d(xα), its power is

σn = n(π∗ωred − xdα)n−1 ∧ α ∧ dx .

By the Fubini theorem, we then have

mDH(U) =
∫
U

[∫
Z

π∗(ωred − xβ)n−1

(n− 1)!
∧ α
]
∧ dx .

Therefore, the Radon-Nikodym derivative of mDH with respect to the Lebesgue
measure, dx, is

f(x) =
∫
Z

π∗(ωred − xβ)n−1

(n− 1)!
∧ α = vol(Mx) .
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The previous discussion proves that, for x ≈ 0, f(x) is a polynomial in x. The
same holds for a neighborhood of any other regular value of µ, because we may
change the moment map µ by an arbitrary additive constant.



Homework 23: S1-Equivariant Cohomology

1. Let M be a manifold with a circle action and X# the vector field on M
generated by S1. The algebra of S1-equivariant forms on M is the algebra
of S1-invariant forms on M tensored with complex polynomials in x,

Ω•
S1(M) := (Ω•(M))S

1
⊗R C[x] .

The product ∧ on Ω•
S1(M) combines the wedge product on Ω•(M) with the

product of polynomials on C[x].

(a) We grade Ω•
S1(M) by adding the usual grading on Ω•(M) to a grading

on C[x] where the monomial x has degree 2. Check that (Ω•
S1(M),∧)

is then a supercommutative graded algebra, i.e.,

α ∧ β = (−1)degα·deg ββ ∧ α

for elements of pure degree α, β ∈ Ω•
S1(M).

(b) On Ω•
S1(M) we define an operator

dS1 := d⊗ 1− ıX# ⊗ x .

In other words, for an elementary form α = α⊗ p(x),

dS1α = dα⊗ p(x)− ıX#α⊗ xp(x) .

The operator dS1 is called the Cartan differentiation. Show that dS1

is a superderivation of degree 1, i.e., check that it increases degree by 1
and that it satisfies the super Leibniz rule:

dS1(α ∧ β) = (dS1α) ∧ β + (−1)degα α ∧ dS1β .

(c) Show that d2
S1 = 0.

Hint: Cartan magic formula.

2. The previous exercise shows that the sequence

0 −→ Ω0
S1(M)

dS1−→ Ω1
S1(M)

dS1−→ Ω2
S1(M)

dS1−→ . . .

forms a graded complex whose cohomology is called the equivariant coho-
mology20 of M for the given action of S1. The kth equivariant cohomology
group of M is

Hk
S1(M) :=

ker dS1 : ΩkS1 −→ Ωk+1
S1

im dS1 : Ωk−1
S1 −→ ΩkS1

.

20The equivariant cohomology of a topological space M endowed with a continuous
action of a topological group G is, by definition, the cohomology of the diagonal quotient
(M × EG)/G, where EG is the universal bundle of G, i.e., EG is a contractible space where
G acts freely. H. Cartan [21, 59] showed that, for the action of a compact Lie group G on a
manifold M , the de Rham model (Ω•G(M), dG) computes the equivariant cohomology, where
Ω•G(M) are the G-equivariant forms on M . [8, 9, 29, 54] explain equivariant cohomology in
the symplectic context and [59] discusses equivariant de Rham theory and many applications.
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198 HOMEWORK 23

(a) What is the equivariant cohomology of a point?

(b) What is the equivariant cohomology of S1 with its multiplication action
on itself?

(c) Show that the equivariant cohomology of a manifold M with a free S1-
action is isomorphic to the ordinary cohomology of the quotient space
M/S1.
Hint: Let π : M →M/S1 be projection. Show that

π∗ : H•(M/S1) −→ H•
S1 (M)

[α] 7−→ [π∗α⊗ 1]

is a well-defined isomorphism. It helps to choose a connection on the principal
S1-bundle M → M/S1, that is, a 1-form θ on M such that LX#θ = 0 and
ıX#θ = 1. Keep in mind that a form β on M is of type π∗α for some α if and
only if it is basic, that is LX#β = 0 and ıX#β = 0.

3. Suppose that (M,ω) is a symplectic manifold with an S1-action. Let µ ∈
C∞(M) be a real function. Consider the equivariant form

ω := ω ⊗ 1 + µ⊗ x .

Show that ω is equivariantly closed, i.e., dS1ω = 0 if and only if µ is a
moment map. The equivariant form ω is called the equivariant symplectic
form.

4. Let M2n be a compact oriented manifold, not necessarily symplectic, acted
upon by S1. Suppose that the set MS1

of fixed points for this action is
finite. Let α(2n) be an S1-invariant form which is the top degree part of an
equivariantly closed form of even degree, that is, α(2n) ∈ Ω2n(M)S

1
is such

that there exists α ∈ Ω•
S1(M) with

α = α(2n) + α(2n−2) + . . .+ α(0)

where α(2k) ∈ (Ω2k(M))S
1 ⊗ C[x] and dS1α = 0.

(a) Show that the restriction of α(2n) to M \MS1
is exact.

Hint: The generator X# of the S1-action does not vanish on M \MS1
. Hence,

we can define a connection on M \MS1
by θ(Y ) =

〈Y,X#〉
〈X#,X#〉 , where 〈·, ·〉 is some

S1-invariant metric on M . Use θ ∈ Ω1(M \MS1
) to chase the primitive of α(2n)

all the way up from α(0).

(b) Compute the integral of α(2n) over M .

Hint: Stokes’ theorem allows to localize the answer near the fixed points.

This exercise is a very special case of the Atiyah-Bott-Berline-Vergne local-
ization theorem for equivariant cohomology [8, 14].

5. What is the integral of the symplectic form ω on a surface with a hamiltonian
S1-action, knowing that the S1-action is free outside a finite set of fixed
points?

Hint: Exercises 3 and 4.
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action
adjoint, 131, 137
coadjoint, 131, 137
coordinates, 111
definition, 128
effective, 170
free, 135
gauge group, 158
hamiltonian, 129, 130, 133, 164
infinitesimal, 156, 164
locally free, 135
minimizing, 115, 120
of a path, 114, 115, 119
principle of least action, 114
smooth, 128
symplectic, 129
transitive, 135

action-angle coordinates, 111
adapted coordinates, 18
adjoint

action, 131, 137
representation, 130, 131

almost complex manifold, 70
almost complex structure

compatibility, 70
contractibility, 77
definition, 70
integrability, 75, 82
three geometries, 67

almost complex submanifold, 76
almost symplectic manifold, 74
angle coordinates, 110
angular momentum, 137, 138
(J-)anti-holomorphic tangent vectors, 78
antisymmetry, 108
arc-length, 25
Archimedes, 192
Arnold

Arnold-Liouville theorem, 110
conjecture, 33, 55, 56

Atiyah
Atiyah-Guillemin-Sternberg theorem,

169

moduli space, 158
Yang-Mills theory, 155

Banyaga theorem, 92
base, 155
basis

for skew-symmetric bilinear maps, 3
Beltrami

Laplace-Beltrami operator, 98
Betti number, 100
biholomorphic map, 83
bilinear map, see skew-symmetric bilin-

ear map
billiards, 30
Birkhoff

Poincaré-Birkhoff theorem, 33
blowup, 189
Borel subset, 191
Bott

moduli space, 158
Morse-Bott function, 174
Yang-Mills theory, 155

bracket
Lie, 108
Poisson, 108, 110, 134, 164

C1-topology, 53, 54
canonical

symplectic form on a coadjoint or-
bit, 139, 150, 162

symplectomorphism, 12
canonical form on T ∗X

coordinate definition, 9, 10
intrinsic definition, 10
naturality, 11

Cartan
differentiation, 197
magic formula, 36, 40, 44

Cauchy-Riemann equations, 84
characteristic distribution, 53
chart

complex, 83
Darboux, 7
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Chern
first Chern class, 194

Chevalley cohomology, 165
Christoffel

equations, 120
symbols, 120

circle bundle, 159
classical mechanics, 107
coadjoint

action, 131, 137, 162
orbit, 139, 162
representation, 130, 131

codifferential, 98
cohomology

S1-equivariant, 197
Chevalley, 165
de Rham, 13, 39
Dolbeault, 81
equivariant, 197
Lie algebra, 165

coindex, 174, 175
coisotropic

embedding, 49, 53
subspace, 8

commutator ideal, 165
comoment map, 133, 134, 164
compatible

almost complex structure, 70, 74
complex structure, 68
linear structures, 72
triple, 70, 75

complete vector field, 129
completely integrable system, 110
complex

atlas, 89
chart, 83
differentials, 86, 87
Hodge theory, 99
manifold, 83
projective space, 89, 95, 96, 103,

136, 168, 181
complex structure

compatibility, 68, 77
on a vector space, 68
polar decomposition, 69

complex surface, 103

complex torus, 103
complex vector space, 68
complex-antilinear cotangent vectors, 79
complex-linear cotangent vectors, 79
complex-valued form, 79
conehead orbifold, 150
configuration space, 107, 113
conjecture

Arnold, 33, 55, 56
Hodge, 101
Seifert, 65
Weinstein, 65, 66

conjugation, 130
connectedness, 169, 174, 175
connection

flat, 159
form, 156
moduli space, 159
on a principal bundle, 155
space, 158

conormal
bundle, 17
space, 17

conservative system, 113
constrained system, 114
constraint set, 114
contact

contact structure on S2n−1, 64
dynamics, 63
element, 57, 61, 62
example of contact structure, 58
local contact form, 57
local normal form, 59
locally defining 1-form, 57
manifold, 57
point, 57
structure, 57

contactomorphism, 63
contractibility, 77
convexity, 169
cotangent bundle

canonical symplectomorphism, 11,
12

conormal bundle, 18
coordinates, 9
is a symplectic manifold, 9
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lagrangian submanifold, 16–18
projectivization, 59
sphere bundle, 59
zero section, 16

critical set, 174
curvature form, 157

D’Alembert
variational principle, 114

Darboux
chart, 7
theorem, 7, 45, 46
theorem for contact manifolds, 59
theorem in dimension two, 50

de Rham cohomology, 13, 39
deformation equivalence, 42
deformation retract, 40
Delzant

construction, 183, 185, 186
example of Delzant polytope, 177
example of non-Delzant polytope,

178
polytope, 177, 189
theorem, 179, 189

Dolbeault
cohomology, 81
theorem, 88
theory, 78

dual function, 122, 126
Duistermaat-Heckman

measure, 191
polynomial, 191, 192
theorem, 191, 194

dunce cap orbifold, 150
dynamical system, 33

effective
action, 170
moment map, 175

Ehresmann
connection, 156
S4 is not an almost complex mani-

fold, 76
embedding

closed, 15
coisotropic, 49, 53

definition, 15
isotropic, 53
lagrangian, 51

energy
classical mechanics, 107
energy-momentum map, 153
kinetic, 112, 113
potential, 112, 113

equations
Christoffel, 120
Euler-Lagrange, 105, 120, 123
Hamilton, 123, 148
Hamilton-Jacobi, 105
of motion, 113

equivariant
cohomology, 197
coisotropic embedding, 193
form, 197
moment map, 134
symplectic form, 198
tubular neighborhood theorem, 143

euclidean
distance, 24, 25
inner product, 24, 25
measure, 191
norm, 25
space, 24

Euler
Euler-Lagrange equations, 105, 116,

120, 123
variational principle, 114

evaluation map, 128
exactly homotopic to the identity, 56
example

2-sphere, 97
coadjoint orbits, 137, 139
complex projective space, 89, 103,

181
complex submanifold of a Kähler man-

ifold, 103
complex torus, 103
Delzant construction, 181
Fernández-Gotay-Gray, 102
Gompf, 103
hermitian matrices, 132
Hirzebruch surfaces, 178, 190
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Hopf surface, 102
Kodaira-Thurston, 102
McDuff, 43
non-singular projective variety, 95
of almost complex manifold, 76
of compact complex manifold, 101
of compact Kähler manifold, 96, 101
of compact symplectic manifold, 101
of complex manifold, 89
of contact manifold, 62
of contact structure, 58
of Delzant polytope, 177
of hamiltonian actions, 129
of infinite-dimensional symplectic man-

ifold, 158
of Kähler submanifold, 95
of lagrangian submanifold, 16
of mechanical system, 113
of non-almost-complex manifold, 76
of non-Delzant polytope, 178
of reduced system, 153
of symplectic manifold, 6, 9
of symplectomorphism, 22
oriented surfaces, 50
product of Kähler manifolds, 103
quotient topology, 135
reduction, 168
Riemann surface, 103
simple pendulum, 112
spherical pendulum, 152
Stein manifold, 103
Taubes, 103
toric manifold, 172
weighted projective space, 151

exponential map, 35

facet, 178
Fernández-Gotay-Gray example, 102
first Chern class, 194
first integral, 109
fixed point, 29, 33, 55
flat connection, 159
flow, 35
form

area, 50
canonical, 9, 10

complex-valued, 79
connection, 156
curvature, 157
de Rham, 6
Fubini-Study, 96, 168
harmonic, 98, 99
Kähler, 90, 98
Killing, 158
Liouville, 10
on a complex manifold, 85
positive, 92
symplectic, 6
tautological, 9, 10, 20
type, 79

free action, 135
Fubini theorem, 195
Fubini-Study form, 96, 168
function

biholomorphic, 89
dual, 122, 126
generating, 29
hamiltonian, 106, 134
J-holomorphic, 82
Morse-Bott, 174
stable, 121, 125
strictly convex, 121, 125

G-space, 134
gauge

group, 158, 159
theory, 155
transformation, 159

Gauss lemma, 28
generating function, 17, 22, 23, 29
geodesic

curve, 25
flow, 26, 27
geodesically convex, 25
minimizing, 25, 119, 120

Gompf construction, 103
Gotay

coisotropic embedding, 53
Fernández-Gotay-Gray, 102

gradient vector field, 107
gravitational potential, 113
gravity, 112, 152
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Gray
Fernández-Gotay-Gray (A. Gray), 102
theorem (J. Gray), 59

Gromov
pseudo-holomorphic curve, 67, 82

group
gauge, 158, 159
Lie, 128
of symplectomorphisms, 12, 53
one-parameter group of diffeomor-

phisms, 127
product, 149
semisimple, 158
structure, 155

Guillemin
Atiyah-Guillemin-Sternberg theorem,

169

Hamilton equations, 23, 24, 107, 113,
123, 148

Hamilton-Jacobi equations, 105
hamiltonian

action, 129, 130, 133, 164
function, 105, 106, 109, 134
G-space, 134
mechanics, 105
moment map, 134
reduced, 148
system, 109
vector field, 105, 106

harmonic form, 98, 99
Hausdorff quotient, 136
Heckman, see Duistermaat-Heckman
hermitian matrix, 132
hessian, 121, 125, 174
Hirzebruch surface, 178, 190
Hodge

complex Hodge theory, 99
conjecture, 101
decomposition, 98, 99
diamond, 101
number, 100
∗-operator, 98
theorem, 98–100
theory, 98

(J-)holomorphic tangent vectors, 78

homotopy
definition, 40
formula, 39, 40
invariance, 39
operator, 40

Hopf
fibration, 64, 156
S4 is not almost complex, 76
surface, 102
vector field, 64

immersion, 15
index, 174, 175
infinitesimal action, 156, 164
integrable

almost complex structure, 75, 82
system, 109, 110, 171

integral
curve, 106, 113, 127
first, 109
of motion, 109, 147

intersection of lagrangian submanifolds,
55

inverse square law, 113
isometry, 120
isotopy

definition, 35
symplectic, 42
vs. vector field, 35

isotropic
embedding, 53
subspace, 8

isotropy, 135

J-anti-holomorphic function, 80
(J-)anti-holomorphic tangent vectors, 78
J-holomorphic curve, 82
J-holomorphic function, 80, 82
(J-)holomorphic tangent vectors, 78
Jacobi

Hamilton-Jacobi equations, 105
identity, 108, 139

jacobiator, 139

Kähler
compact Kähler manifolds, 98
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form, 90, 98
local form, 94
manifold, 90, 98
potential, 93, 94
recipe, 92
submanifold, 94

Killing form, 158
kinetic energy, 112, 113
Kirillov

Kostant-Kirillov symplectic form, 139,
150

Kodaira
complex surface, 103
complex surfaces, 102
Kodaira-Thurston example, 102

Kostant-Kirillov symplectic form, 139, 150

Lagrange
Euler-Lagrange equations, 120
variational principle, 114

lagrangian complement, 47
lagrangian fibration, 111
lagrangian submanifold

closed 1-form, 17
conormal bundle, 17, 18
definition, 16
generating function, 17, 23
intersection problem, 55
of T ∗X, 16
vs. symplectomorphism, 15, 19
zero section, 16

lagrangian subspace, 8, 46, 77
Laplace-Beltrami operator, 98
laplacian, 98
Lebesgue

measure, 191
volume, 191

left multiplication, 130
left-invariant, 130
Legendre

condition, 117
transform, 121, 122, 125, 126

Leibniz rule, 109, 139
Lie

algebra, 108, 130, 164
algebra cohomology, 165

bracket, 108
derivative, 36, 40
group, 128

Lie-Poisson symplectic form, 139, 150
lift

of a diffeomorphism, 11
of a path, 115, 119
of a vector field, 106

linear momentum, 137
Liouville

Arnold-Liouville theorem, 110
form, 10
measure, 191
torus, 110
volume, 13

local form, 35, 94, 192
locally free action, 135

manifold
almost symplectic, 74
complex, 83
infinite-dimensional, 158
Kähler, 90, 98
of contact elements, 61
of oriented contact elements, 62
riemannian, 119
symplectic, 6
toric, see toric manifold
with corners, 188

Marsden-Weinstein-Meyer
quotient, 141
theorem, 136, 141

Maupertius
variational principle, 114

McDuff counterexample, 43
measure

Duistermaat-Heckman, 191
Lebesgue, 191
Liouville, 191
symplectic, 191

mechanical system, 113
mechanics

celestial, 33
classical, 107

metric, 24, 70, 119
Meyer, see Marsden-Weinstein-Meyer



INDEX 213

minimizing
action, 115
locally, 115, 117
property, 117

moduli space, 159
moment map

actions, 127
definition, 133
effective, 175
equivariance, 134
example, 162
existence, 164, 166
hamiltonian G-space, 134
in gauge theory, 155
origin, 127
uniqueness, 164, 167
upgraded hamiltonian function, 130

moment polytope, 169
momentum, 107, 123, 137
momentum vector, 137
Morse

Morse-Bott function, 174
Morse function, 55
Morse theory, 55, 169
Moser

equation, 44
theorem – relative version, 45
theorem – version I, 43
theorem – version II, 44
trick, 42–44, 50

motion
constant of motion, 109
equations, 113
integral of motion, 109, 147

neighborhood
convex, 37
ε-neighborhood theorem, 38
tubular neighborhood, 51
tubular neighborhood fibration, 39
tubular neighborhood in Rn, 41
tubular neighborhood theorem, 37
Weinstein lagrangian neighborhood,

46, 48
Weinstein tubular neighborhood, 51

Newlander-Nirenberg theorem, 82, 88

Newton
polytope, 177
second law, 105, 107, 113, 114

Nijenhuis tensor, 82, 88
Nikodym

Radon-Nikodym derivative, 191
Nirenberg

Newlander-Nirenberg theorem, 82
Noether

principle, 127, 147
theorem, 147

non-singular projective variety, 95
nondegenerate

bilinear map, 4
fixed point, 55

normal
bundle, 37, 41
space, 37, 41, 51

number
Betti, 100
Hodge, 100

one-parameter group of diffeomorphisms,
127

operator
Laplace-Beltrami, 98

orbifold
conehead, 150
dunce cap, 150
examples, 150
reduced space, 150
teardrop, 150

orbit
definition, 135
point-orbit projection, 135
space, 135
topology of the orbit space, 135
unstable, 135

oriented surfaces, 50
overtwisted contact structure, 66

pendulum
simple, 112, 114
spherical, 152

periodic point, 29
phase space, 107, 113, 148
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Picard theorem, 36
Poincaré

last geometric theorem, 33
Poincaré-Birkhoff theorem, 33
recurrence theorem, 32

point-orbit projection, 135
Poisson

algebra, 109
bracket, 108, 110, 134, 164
Lie-Poisson symplectic form, 139, 150
structure on g∗, 139

polar decomposition, 69, 70
polytope

Delzant, 177, 189
example of Delzant polytope, 177
example of non-Delzant polytope,

178
facet, 178
moment, 169
Newton, 177
rational, 177
simple, 177
smooth, 177

positive
form, 92
inner product, 24, 77
vector field, 66

potential
energy, 112, 113
gravitational, 113
Kähler, 93, 94
strictly plurisubharmonic, 92

primitive vector, 178
principal bundle

connection, 155
gauge group, 158

principle
Noether, 127, 147
of least action, 114
variational, 114

product group, 149
projectivization, 61
proper function, 15, 103, 121
pseudo-holomorphic curve, 67, 82
pullback, 7

quadratic growth at infinity, 126
quadrature, 153
quotient

Hausdorff, 136
Marsden-Weinstein-Meyer, 141
symplectic, 141
topology, 135

Radon-Nikodym derivative, 191
rank, 4
rational polytope, 177
recipe

for Kähler forms, 92
for symplectomorphisms, 22

recurrence, 29, 32
reduced

hamiltonian, 148
phase space, 148
space, 136, 141, 150

reduction
example, 168
for product groups, 149
in stages, 149
local form, 192
low-brow proof, 141
Noether principle, 147
other levels, 149
preview, 136
reduced space, 136
symmetry, 147

Reeb vector field, 63
representation

adjoint, 130, 131
coadjoint, 130, 131
of a Lie group, 128

retraction, 40
Riemann

Cauchy-Riemann equations, 84
surface, 103, 158

riemannian
distance, 25
manifold, 24, 119
metric, 24, 49, 70, 119

right multiplication, 130
right-invariant, 130
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s.p.s.h., 92
Seiberg-Witten invariants, 103
Seifert conjecture, 65
semisimple, 158, 167
simple pendulum, 112
simple polytope, 177
skew-symmetric bilinear map

nondegenerate, 4
rank, 4
standard form, 3
symplectic, 4

skew-symmetry
definition, 3
forms, 13
standard form for bilinear maps, 3

slice theorem, 144
smooth polytope, 177
space

affine, 158
configuration, 107, 113
moduli, 159
normal, 41, 51
of connections, 158
phase, 107, 113
total, 155

spherical pendulum, 152
splittings, 78
stability

definition, 121
set, 122

stabilizer, 135
stable

function, 125
point, 112, 152

Stein manifold, 103
stereographic projection, 89, 97
Sternberg

Atiyah-Guillemin-Sternberg theorem,
169

Stokes theorem, 13, 161
strictly convex function, 117, 121, 125
strictly plurisubharmonic, 92
strong isotopy, 42, 50
submanifold, 15
submanifold

almost complex, 76

Kähler, 94
subspace

coisotropic, 8
isotropic, 5, 8
lagrangian, 8, 46, 77
symplectic, 5, 8

supercommutativity, 197
superderivation, 197
symplectic

action, 129
almost symplectic manifold, 74
basis, 5
bilinear map, 4
blowup, 189
canonical symplectic form on a coad-

joint orbit, 139, 150, 162
cotangent bundle, 9
deformation equivalence, 42
duality, 5
equivalence, 42
equivariant form, 198
form, 6, 13
Fubini-Study form, 168
isotopy, 42
linear algebra, 8, 51
linear group, 72
linear symplectic structure, 4
manifold, 6
measure, 191
normal forms, 46
orthogonal, 8
properties of linear symplectic struc-

tures, 5
quotient, 141
reduction, see reduction
strong isotopy, 42
structure on the space of connec-

tions, 158
subspace, 8
toric manifold, see toric manifold
vector bundle, 74
vector field, 105, 106, 129
vector space, 4
volume, 13, 191, 195

symplectization, 64
symplectomorphic, 5, 42
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symplectomorphism
Arnold conjecture, 33, 55
canonical, 12
definition, 7
equivalence, 15
exactly homotopic to the identity,

56
fixed point, 33, 55
generating function, 23
group of symplectomorphisms, 12,

53
linear, 5
recipe, 22
tautological form, 20
vs. lagrangian submanifold, 15, 18,

19
system

conservative, 113
constrained, 114
mechanical, 113

Taubes
CP2#CP2#CP2 is not complex, 103
unique symplectic structure on CP2,

103
tautological form on T ∗X

coordinate definition, 9, 10
intrinsic definition, 10
naturality, 11
property, 10
symplectomorphism, 20

teardrop orbifold, 150
theorem

Archimedes, 192
Arnold-Liouville, 110
Atiyah-Guillemin-Sternberg, 136, 169
Banyaga, 92
coisotropic embedding, 49
convexity, 169
Darboux, 7, 46, 50
Delzant, 136, 179, 189
Dolbeault, 88
Duistermaat-Heckman, 191, 194
ε-neighborhood, 38
equivariant coisotropic embedding,

193

Euler-Lagrange equations, 123
Fubini, 195
Gray, 59
Hodge, 98–100
implicit function, 23
local normal form for contact man-

ifolds, 59
Marsden-Weinstein-Meyer, 136, 141
Moser – relative version, 45
Moser – version I, 43
Moser – version II, 44
Newlander-Nirenberg, 82, 88
Noether, 147
Picard, 36
Poincaré recurrence, 32
Poincaré’s last geometric theorem,

33
Poincaré-Birkhoff, 33
slice, 144
standard form for skew-symmetric

bilinear maps, 3
Stokes, 13, 161
symplectomorphism vs. lagrangian sub-

manifold, 19
tubular neighborhood, 37, 51
tubular neighborhood in Rn, 41
Weinstein lagrangian neighborhood,

46, 48
Weinstein tubular neighborhood, 51
Whitehead lemmas, 167
Whitney extension, 48

Thurston
Kodaira-Thurston example, 102

tight contact structure, 66
time-dependent vector field, 35
topological constraint, 100
topology of the orbit space, 135
toric manifold

classification, 177
definition, 171, 177
example, 172
4-dimensional, 189

total space, 155
transitive action, 135
tubular neighborhood

equivariant, 143
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fibration, 39
homotopy-invariance, 39
in Rn, 41
theorem, 37, 51
Weinstein theorem, 51

twisted product form, 19
twisted projective space, 151

unique symplectic structure on CP2, 103
unstable

orbit, 135
point, 112, 152

variational
principle, 113, 114
problem, 113, 122

vector field
complete, 129
gradient, 107
hamiltonian, 105, 106
Lie algebra, 164
symplectic, 105, 106, 129

vector space
complex, 68
symplectic, 4

velocity, 119
volume, 13, 191, 195

weighted projective space, 151
Weinstein

conjecture, 65, 66
isotropic embedding, 53
lagrangian embedding, 51
lagrangian neighborhood theorem, 46,

48
Marsden-Weinstein-Meyer quotient,

141
Marsden-Weinstein-Meyer theorem,

141
tubular neighborhood theorem, 51

Whitehead lemmas, 167
Whitney extension theorem, 48
Wirtinger inequality, 117, 118
Witten

Seiberg-Witten invariants, 103
work, 113

Young inequality, 126


