The Shimura-Taniyama formula

Let us start by considering a very concrete, simple question. Let E / \mathbf{F}_{p} be the elliptic curve given by equation $y^{2}=x^{3}-x$, and suppose $p \equiv 1 \bmod 4$. Then E has an action of $\mathbf{Z}[i]$ given by $[i](x, y)=(-x, i y)$. The p-power Frobenius morphism is central in the endomorphism algebra, so it is given by some element $\pi \in \mathbf{Z}[i]$. We also know it has degree p.

If we write $(p)=\mathfrak{p}_{1} \mathfrak{p}_{2}$ in $\mathbf{Z}[i]$, then does π belong to \mathfrak{p}_{1} or \mathfrak{p}_{2} ? In this case we have an easy way of being able to tell. Since $\mathbf{Z}[i]$ acts on E, it also acts on the 1-dimensional $\mathbf{F}_{p^{-}}$ vector space $H^{0}\left(E, \Omega_{E}^{1}\right)$; let \mathfrak{p} be the kernel of this action. Consider the invariant differential $\omega=d x / y$. Then for any $\alpha \in \mathbf{Z}[i]$, we have $[\alpha]^{*} \omega=\alpha \omega$. Since Frobenius is inseparable, we see that $\pi \omega=0$, so $\pi \in \mathfrak{p}$.

The Shimura-Taniyama formula answers the analogous question for abelian varieties of dimension g_{0} with an action by a CM extension of a totally real field of degree g_{0}. In this note we will discuss p-divisible groups with CM and prove the Shimura-Taniyama formula. We will include unramifiedness hypotheses for simplicity of exposition, but they can be removed.

1 p-divisible groups with complex multiplication

$1.1 \quad p$-divisible groups with action by a local field

Let F and K be finite unramified extensions of \mathbf{Q}_{p}. Let Γ be a p-divisible group over \mathcal{O}_{F} of dimension d and height $h=\left[K: \mathbf{Q}_{p}\right]$ with an action by \mathcal{O}_{K}. Let k denote the residue field of \mathcal{O}_{F} and put $q=p^{r}=\# k$. Let

$$
\lambda=\lambda(\Gamma):=\frac{d}{h}
$$

denote the slope of Γ. Also let $W:=W\left(\overline{\mathbf{F}}_{p}\right)$ and $L:=W\left[\frac{1}{p}\right]$.
Proposition 1.1. Suppose $\pi \in \mathcal{O}_{K}$ lifts the q-power Frobenius action on Γ_{k}, where k is the residue field of F. Then we have

$$
\lambda=\frac{\operatorname{ord}_{p} \pi}{r} .
$$

Proof. We need to show that π^{h} and q^{d} differ by a unit multiple in \mathcal{O}_{K}. Consider the connected-étale sequence

$$
0 \longrightarrow \Gamma^{0} \longrightarrow \Gamma \longrightarrow \Gamma^{\text {ét }} \longrightarrow 0
$$

We note that the Tate module $T_{p} \Gamma$ is free of rank 1 as a module over \mathcal{O}_{K}, so Γ is either connected or étale.

If Γ is étale, then $d=0$ and the Frobenius map is an isomorphism, so $\pi \in \mathcal{O}_{K}^{\times}$as desired.
If Γ is connected, then by Tate's theorem we know that Γ is a formal Lie group and thus is of the form $\operatorname{Spf} \mathcal{O}_{F} \llbracket X_{1}, \ldots, X_{d} \rrbracket$. Since π lifts the Frobenius on $\Gamma_{k} \cong \operatorname{Spf} k \llbracket X_{1}, \ldots, X_{d} \rrbracket$ which has degree q^{d}, we see that $\operatorname{deg} \pi=q^{d}$. On the other hand, $\operatorname{deg} p=p^{h}$ so $\operatorname{deg} q=q^{h}$. We conclude that π^{h} and q^{d} have the same degree as endomorphisms of Γ, and hence the same absolute value as elements of \mathcal{O}_{K}.

Consider the covariant Dieudonné module $D:=\mathbf{D}\left(\Gamma_{k}\right)$, and let $\varphi: D \rightarrow D$ denote the σ^{-1}-linear endomorphism associated to the Dieudonné module, where $\sigma: F \rightarrow F$ is the

Frobenius morphism. Now D is a free module of rank 1 over $\mathcal{O}_{K} \otimes_{\mathbf{z}_{p}} \mathcal{O}_{F}$. We have an isomorphism of \mathcal{O}_{K}-modules

$$
D \otimes_{\mathcal{O}_{F}} \mathcal{O}_{L} \cong \prod_{\phi \in \operatorname{Hom}\left(K, \mathbf{C}_{p}\right)} \mathcal{O}_{L}
$$

where $\alpha \in \mathcal{O}_{K}$ acts on the ϕ 'th copy of \mathcal{O}_{L} by $\phi(\alpha)$. We write φ_{L} for the associated endomorphism of $D \otimes \mathcal{O}_{F} \mathcal{O}_{L}$ given by $\varphi \otimes \sigma^{-1}$. Since φ commutes with the action of \mathcal{O}_{K}, we see that

$$
\varphi_{L}=t\left(1 \otimes \sigma^{-1}\right)
$$

where $t=\left(t_{\phi}\right) \in \prod_{\phi} \mathcal{O}_{L}$. Since we know that $p D \subset \varphi D$, we conclude that $\operatorname{ord}_{p} t_{\phi} \leq 1$ for all ϕ. Let $\operatorname{Hom}\left(K, \mathbf{C}_{p} ; \Gamma\right)$ denote the subset of ϕ for which $\operatorname{ord}_{p} t_{\phi}=1$ We then see that

$$
d=\operatorname{dim}_{k} D / \varphi D=\# \operatorname{Hom}\left(K, \mathbf{C}_{p} ; \Gamma\right)
$$

so we have arrived at:
Proposition 1.2. With setup as above, we have

$$
\lambda=\frac{\# \operatorname{Hom}\left(K, \mathbf{C}_{p} ; \Gamma\right)}{\# \operatorname{Hom}\left(K, \mathbf{C}_{p}\right)}
$$

$1.2 p$-divisible groups with action by a global field

Let F, k, q as before, but now consider a number field K unramified at p, and a p-divisible group \mathcal{G} over \mathcal{O}_{F} of dimension d and height $h=[K: \mathbf{Q}]$, with an action of \mathcal{O}_{K}.

Observe $T_{p} \mathcal{G}$ is a free module of rank 1 over $\mathcal{O}_{K} \otimes \mathbf{Z}_{p}=\prod_{\mathfrak{p} \mid p} \mathcal{O}_{K_{\mathfrak{p}}}$. Then we see that \mathcal{G} is isogenous to a product

$$
\prod_{\mathfrak{p} \mid p} G_{\mathfrak{p}}
$$

where $G_{\mathfrak{p}}$ is a p-divisible group over \mathcal{O}_{F} of height $\left[K_{\mathfrak{p}}: \mathbf{Q}_{p}\right]$ with an action by $\mathcal{O}_{K_{\mathfrak{p}}}$. Using the local results of the previous section, we obtain:

Proposition 1.3. Suppose $\pi \in \mathcal{O}_{K}$ lifts the Frobenius action on \mathcal{G}_{k}. For each $\mathfrak{p} \mid p$ (in \mathcal{O}_{K}) we have

$$
\frac{\operatorname{ord}_{\mathfrak{p}} \pi}{r}=\frac{\# \operatorname{Hom}\left(K_{\mathfrak{p}}, \mathbf{C}_{p} ; G_{\mathfrak{p}}\right)}{\# \operatorname{Hom}\left(K_{\mathfrak{p}}, \mathbf{C}_{p}\right)}
$$

2 Abelian varieties with complex multiplication

2.1 CM types

Let K^{+}denote a totally real number field and K / K^{+}a CM extension. Let $g_{0}=\left[K^{+}: \mathbf{Q}\right]$. Let $\operatorname{Hom}(K, \mathbf{C})$ denote the set of field embeddings of K into \mathbf{C}. For each $\phi^{+} \in \operatorname{Hom}\left(K^{+}, \mathbf{C}\right)$ there is a conjugate pair of embeddings $\phi, \bar{\phi} \in \operatorname{Hom}(K, \mathbf{C})$ extending ϕ^{+}.

Definition 2.1. A subset $\Phi \in \operatorname{Hom}(K, \mathbf{C})$ of cardinality g_{0} is a $C M$ type for K if for every $\phi^{+} \in \operatorname{Hom}\left(K^{+}, \mathbf{C}\right)$ there is a $\phi \in \Phi$ extending ϕ^{+}.

A CM-type is clearly equivalent to specifying the discrete measure on $\operatorname{Hom}(K, \mathbf{C})$ given by $\mu(S)=\#(S \cap \Phi)$.

Essentially, a CM type is a choice of one element of the conjugate pair of embeddings of K above each embedding of K^{+}.

2.2 CM type of an abelian variety

The key point is that the abelian variety A / \mathbf{C} with an action of \mathcal{O}_{K} canonically determines a CM type for K as follows. Since we have an embedding $\mathcal{O}_{K} \hookrightarrow$ End A, we obtain a linear action of \mathcal{O}_{K} on Lie A.

Via the exponential map there is an exact sequence

$$
0 \longrightarrow \Lambda \longrightarrow \text { Lie } A \longrightarrow A \longrightarrow 0
$$

where Λ is a free \mathbf{Z}-module of rank $2 g_{0}$. Then Λ is a flat \mathcal{O}_{K}-module of rank 1 , so Lie $A=\Lambda_{\mathbf{R}}$ is a flat module of rank 1 over

$$
\mathcal{O}_{K} \otimes_{\mathbf{Z}} \mathbf{R}=\prod_{\phi^{+} \in \operatorname{Hom}\left(K^{+}, \mathbf{C}\right)} \mathbf{C}_{\phi^{+}}
$$

where $\mathbf{C}_{\phi^{+}}$is \mathbf{C} with $\mathcal{O}_{K^{+-}}$algebra action determined by ϕ.
Also Lie A is a module over the ring

$$
\mathcal{O}_{K} \otimes_{\mathbf{Z}} \mathbf{C} \cong \prod_{\phi \in \operatorname{Hom}(K, \mathbf{C})} \mathbf{C}_{\phi}
$$

The map of $\mathcal{O}_{K^{+}}$algebras $\Lambda_{\mathbf{R}} \rightarrow$ Lie A then produces a choice $\phi \in \operatorname{Hom}(K, \mathbf{C})$ above each $\phi^{+} \in \operatorname{Hom}\left(K^{+}, \mathbf{C}\right)$, i.e. a CM type for K. We let Φ_{A} denote this CM type. In particular as an $\mathcal{O}_{K^{-}}$-algebra we have

$$
\text { Lie } A \cong \prod_{\phi \in \Phi_{A}} \mathbf{C}_{\phi}
$$

By choosing an embedding $\iota: \mathbf{C} \hookrightarrow \mathbf{C}_{p}$ we obtain a bijection $\operatorname{Hom}(K, \mathbf{C}) \simeq \operatorname{Hom}\left(K, \mathbf{C}_{p}\right)$. Any field embedding $\phi: K \hookrightarrow \mathbf{C}_{p}$ extends to a \mathbf{Q}_{p}-linear map $\phi_{\mathbf{Q}_{p}}: K \otimes \mathbf{Q}_{p} \rightarrow \mathbf{C}_{p}$. We have

$$
K \otimes \mathbf{Q}_{p}=\prod_{\mathfrak{p} \mid p} K_{\mathfrak{p}}
$$

and thus we have a bijection

$$
\operatorname{Hom}(K, \mathbf{C}) \simeq \bigsqcup_{\mathfrak{p} \mid p} \operatorname{Hom}_{\mathrm{cts}}\left(K_{\mathfrak{p}}, \mathbf{C}_{p}\right) .
$$

Definition 2.2. We will denote by $S_{\mathfrak{p}}$ the subset of $\operatorname{Hom}(K, \mathbf{C})$ corresponding to $\operatorname{Hom}_{\text {cts }}\left(K_{\mathfrak{p}}, \mathbf{C}_{p}\right)$.
We note that $\# S_{\mathfrak{p}}=\left[K_{\mathfrak{p}}: \mathbf{Q}_{p}\right]$.

2.3 CM abelian varieties over a number field

Let $F \subseteq \mathbf{C}$ denote a number field unramified at p, given as a subfield of \mathbf{C}. Upon choosing an embedding $\iota: \mathbf{C} \rightarrow \mathbf{C}_{p}$, we determine a prime ideal \mathfrak{q} of \mathcal{O}_{F} above p. We let k denote the residue field at \mathfrak{q}, of cardinality $q=p^{r}$.

We let A denote an abelian variety over F of dimension g_{0} with an action by \mathcal{O}_{K}. We suppose that A has a model $\mathcal{A} / \mathcal{O}_{F_{\mathfrak{q}}}$. Let $\Gamma=\mathcal{A}\left[p^{\infty}\right]$ its p-divisible group. As in $\S 1$, we obtain a decomposition of Γ (up to isogeny) of the form $\prod_{\mathfrak{p} \mid p} \Gamma_{\mathfrak{p}}$.

Proposition 2.3. We have $\# \operatorname{Hom}\left(K_{\mathfrak{p}}, \mathbf{C}_{p} ; \Gamma_{\mathfrak{p}}\right)=\mu_{A}\left(S_{\mathfrak{p}}\right)$.
Proof. Let $D=\mathbf{D}\left(\Gamma_{k}\right)$ denote the covariant Dieudonné module and let D_{L} denote its (semilinear) base change to L. Then we have \mathcal{O}_{K}-equivariant maps

$$
D_{L} / p D_{L} \rightarrow D_{L} / \varphi D_{L} \cong \operatorname{Lie} \mathcal{A}_{k} \otimes_{\mathbf{z}} \mathcal{O}_{L} \cong \prod_{\phi \in \Phi_{A}} \mathcal{O}_{L} / p \mathcal{O}_{L}
$$

Consequently, in the notation of $\S 1.1$, we see that $t_{\phi} \in p \mathcal{O}_{L}$ for $\phi \in \Phi_{A}$. It follows that $\phi \in \operatorname{Hom}\left(K_{\mathfrak{p}}, \mathbf{C}_{p}\right)$ belongs to $\operatorname{Hom}\left(K_{\mathfrak{p}}, \mathbf{C}_{p} ; \Gamma_{\mathfrak{p}}\right)$ if and only if $\phi \in \Phi_{A}$.

Let $\pi \in \operatorname{End}\left(\mathcal{A}_{k}\right)$ denote the q-power Frobenius map. Then π is central in $\operatorname{End}\left(\mathcal{A}_{k}\right)$ and so can be viewed as an element of \mathcal{O}_{K}. The Shimura-Taniyama formula determines the factorization of (π) as an ideal of \mathcal{O}_{K}.

Theorem 2.4 (Shimura-Taniyama). For each prime \mathfrak{p} of \mathcal{O}_{K} above p, we have

$$
\frac{\operatorname{ord}_{\mathfrak{p}} \pi}{r}=\frac{\mu_{A}\left(S_{\mathfrak{p}}\right)}{\# S_{\mathfrak{p}}}
$$

Proof. Combine Proposition 1.3 and Proposition 2.3.

3 Example: elliptic curves

Let E be an elliptic curve defined over F with good reduction at \mathfrak{q}, and suppose it has CM by \mathcal{O}_{K} for an imaginary quadratic field K / \mathbf{Q}. Then Lie $E_{\mathbf{C}} \cong \mathbf{C}$ so the action of \mathcal{O}_{K} on E determines an embedding $\phi: K \hookrightarrow \mathbf{C}$. This ϕ is the data of the CM type for K associated to E.

We have two cases; either p is inert in K or it splits. If p is inert there is a unique prime \mathfrak{p} above p (of norm p^{2}) and we must have $a_{\mathfrak{p}}=r / 2$ simply for reasons of degree. This proves the $\mathrm{S}-\mathrm{T}$ formula in this case since $\# S_{\mathfrak{p}}=2$ and $\#\left(\Phi \cap S_{\mathfrak{p}}\right)=1$.

If p splits the situation is slightly more interesting. In this case we can write $p \mathcal{O}_{K}=\mathfrak{p}_{1} \mathfrak{p}_{2}$ (these factors are conjugate to each other). Without loss of generality we'll suppose that $\phi \in S_{\mathfrak{p}_{1}}$, i.e. $K \stackrel{\phi}{\hookrightarrow} \mathbf{C} \hookrightarrow \mathbf{C}_{p}$ factors through $K \hookrightarrow K_{\mathfrak{p}_{1}} \cong \mathbf{Q}_{p}$. Via the embedding of F into \mathbf{C}_{p} we then have a map $\mathcal{O}_{K} \rightarrow$ End Lie $\mathcal{E}_{\overline{\mathbf{F}}_{p}}$ whose kernel is \mathfrak{p}_{1}. On the other hand the p-power Frobenius morphism is inseparable and so acts by 0 on Lie $\mathcal{E}_{\overline{\mathbf{F}}_{p}}$. It follows that $\pi \in \mathfrak{p}_{1}^{r}$ and $a_{\mathfrak{p}_{1}}=r, a_{\mathfrak{p}_{2}}=0$. This also agrees with the S-T formula since $\# S_{\mathfrak{p}_{1}}=\#\left(\Phi \cap S_{\mathfrak{p}_{1}}\right)=1$.

References

[1] B. Conrad. Shimura-Taniyama formula. http://math.stanford.edu/~conrad/vigregroup/vigre04/stformula.pdf.
[2] A. Genestier and B.C. Ngô. Lectures on shimura varieties.

