The Shimura–Taniyama formula

Let us start by considering a very concrete, simple question. Let E/\mathbf{F}_p be the elliptic curve given by equation $y^2 = x^3 - x$, and suppose $p \equiv 1 \mod 4$. Then E has an action of $\mathbf{Z}[i]$ given by [i](x,y) = (-x,iy). The *p*-power Frobenius morphism is central in the endomorphism algebra, so it is given by some element $\pi \in \mathbf{Z}[i]$. We also know it has degree p.

If we write $(p) = \mathfrak{p}_1 \mathfrak{p}_2$ in $\mathbb{Z}[i]$, then does π belong to \mathfrak{p}_1 or \mathfrak{p}_2 ? In this case we have an easy way of being able to tell. Since $\mathbb{Z}[i]$ acts on E, it also acts on the 1-dimensional \mathbb{F}_{p^-} vector space $H^0(E, \Omega_E^1)$; let \mathfrak{p} be the kernel of this action. Consider the invariant differential $\omega = dx/y$. Then for any $\alpha \in \mathbb{Z}[i]$, we have $[\alpha]^* \omega = \alpha \omega$. Since Frobenius is inseparable, we see that $\pi \omega = 0$, so $\pi \in \mathfrak{p}$.

The Shimura–Taniyama formula answers the analogous question for abelian varieties of dimension g_0 with an action by a CM extension of a totally real field of degree g_0 . In this note we will discuss *p*-divisible groups with CM and prove the Shimura–Taniyama formula. We will include unramifiedness hypotheses for simplicity of exposition, but they can be removed.

1 *p*-divisible groups with complex multiplication

1.1 *p*-divisible groups with action by a local field

Let F and K be finite unramified extensions of \mathbf{Q}_p . Let Γ be a p-divisible group over \mathcal{O}_F of dimension d and height $h = [K : \mathbf{Q}_p]$ with an action by \mathcal{O}_K . Let k denote the residue field of \mathcal{O}_F and put $q = p^r = \#k$. Let

$$\lambda = \lambda(\Gamma) \coloneqq \frac{d}{h}$$

denote the slope of Γ . Also let $W \coloneqq W(\overline{\mathbf{F}}_p)$ and $L \coloneqq W[\frac{1}{p}]$.

Proposition 1.1. Suppose $\pi \in \mathcal{O}_K$ lifts the q-power Frobenius action on Γ_k , where k is the residue field of F. Then we have

$$\lambda = \frac{\operatorname{ord}_p \pi}{r}.$$

Proof. We need to show that π^h and q^d differ by a unit multiple in \mathcal{O}_K . Consider the connected-étale sequence

$$0 \longrightarrow \Gamma^0 \longrightarrow \Gamma \longrightarrow \Gamma^{\text{\'et}} \longrightarrow 0.$$

We note that the Tate module $T_p\Gamma$ is free of rank 1 as a module over \mathcal{O}_K , so Γ is either connected or étale.

If Γ is étale, then d = 0 and the Frobenius map is an isomorphism, so $\pi \in \mathcal{O}_K^{\times}$ as desired.

If Γ is connected, then by Tate's theorem we know that Γ is a formal Lie group and thus is of the form $\operatorname{Spf} \mathcal{O}_F[\![X_1, \ldots, X_d]\!]$. Since π lifts the Frobenius on $\Gamma_k \cong \operatorname{Spf} k[\![X_1, \ldots, X_d]\!]$ which has degree q^d , we see that deg $\pi = q^d$. On the other hand, deg $p = p^h$ so deg $q = q^h$. We conclude that π^h and q^d have the same degree as endomorphisms of Γ , and hence the same absolute value as elements of \mathcal{O}_K .

Consider the covariant Dieudonné module $D := \mathbf{D}(\Gamma_k)$, and let $\varphi : D \to D$ denote the σ^{-1} -linear endomorphism associated to the Dieudonné module, where $\sigma : F \to F$ is the

Frobenius morphism. Now D is a free module of rank 1 over $\mathcal{O}_K \otimes_{\mathbf{Z}_p} \mathcal{O}_F$. We have an isomorphism of \mathcal{O}_K -modules

$$D \otimes_{\mathcal{O}_F} \mathcal{O}_L \cong \prod_{\phi \in \operatorname{Hom}(K, \mathbf{C}_p)} \mathcal{O}_L$$

where $\alpha \in \mathcal{O}_K$ acts on the ϕ 'th copy of \mathcal{O}_L by $\phi(\alpha)$. We write φ_L for the associated endomorphism of $D \otimes_{\mathcal{O}_F} \mathcal{O}_L$ given by $\varphi \otimes \sigma^{-1}$. Since φ commutes with the action of \mathcal{O}_K , we see that

 $\varphi_L = t(1 \otimes \sigma^{-1})$

where $t = (t_{\phi}) \in \prod_{\phi} \mathcal{O}_L$. Since we know that $pD \subset \varphi D$, we conclude that $\operatorname{ord}_p t_{\phi} \leq 1$ for all ϕ . Let $\operatorname{Hom}(K, \mathbb{C}_p; \Gamma)$ denote the subset of ϕ for which $\operatorname{ord}_p t_{\phi} = 1$ We then see that

$$d = \dim_k D/\varphi D = \# \operatorname{Hom}(K, \mathbf{C}_p; \Gamma)$$

so we have arrived at:

Proposition 1.2. With setup as above, we have

$$\lambda = \frac{\# \operatorname{Hom}(K, \mathbf{C}_p; \Gamma)}{\# \operatorname{Hom}(K, \mathbf{C}_p)}.$$

1.2 *p*-divisible groups with action by a global field

Let F, k, q as before, but now consider a number field K unramified at p, and a p-divisible group \mathcal{G} over \mathcal{O}_F of dimension d and height $h = [K : \mathbf{Q}]$, with an action of \mathcal{O}_K .

Observe $T_p \mathcal{G}$ is a free module of rank 1 over $\mathcal{O}_K \otimes \mathbf{Z}_p = \prod_{\mathfrak{p}|p} \mathcal{O}_{K\mathfrak{p}}$. Then we see that \mathcal{G} is isogenous to a product

$$\prod_{\mathfrak{p}|p} G_{\mathfrak{p}}$$

where $G_{\mathfrak{p}}$ is a *p*-divisible group over \mathcal{O}_F of height $[K_{\mathfrak{p}} : \mathbf{Q}_p]$ with an action by $\mathcal{O}_{K_{\mathfrak{p}}}$. Using the local results of the previous section, we obtain:

Proposition 1.3. Suppose $\pi \in \mathcal{O}_K$ lifts the Frobenius action on \mathcal{G}_k . For each $\mathfrak{p} \mid p$ (in \mathcal{O}_K) we have

$$\frac{\operatorname{ord}_{\mathfrak{p}}\pi}{r} = \frac{\#\operatorname{Hom}(K_{\mathfrak{p}}, \mathbf{C}_{p}; G_{\mathfrak{p}})}{\#\operatorname{Hom}(K_{\mathfrak{p}}, \mathbf{C}_{p})}$$

2 Abelian varieties with complex multiplication

2.1 CM types

Let K^+ denote a totally real number field and K/K^+ a CM extension. Let $g_0 = [K^+ : \mathbf{Q}]$. Let $\operatorname{Hom}(K, \mathbf{C})$ denote the set of field embeddings of K into C. For each $\phi^+ \in \operatorname{Hom}(K^+, \mathbf{C})$ there is a conjugate pair of embeddings $\phi, \overline{\phi} \in \operatorname{Hom}(K, \mathbf{C})$ extending ϕ^+ . **Definition 2.1.** A subset $\Phi \in \text{Hom}(K, \mathbb{C})$ of cardinality g_0 is a *CM type* for *K* if for every $\phi^+ \in \text{Hom}(K^+, \mathbb{C})$ there is a $\phi \in \Phi$ extending ϕ^+ .

A CM-type is clearly equivalent to specifying the discrete measure on $\text{Hom}(K, \mathbb{C})$ given by $\mu(S) = \#(S \cap \Phi)$.

Essentially, a CM type is a choice of one element of the conjugate pair of embeddings of K above each embedding of K^+ .

2.2 CM type of an abelian variety

The key point is that the abelian variety A/\mathbb{C} with an action of \mathcal{O}_K canonically determines a CM type for K as follows. Since we have an embedding $\mathcal{O}_K \hookrightarrow \text{End } A$, we obtain a linear action of \mathcal{O}_K on Lie A.

Via the exponential map there is an exact sequence

$$0 \longrightarrow \Lambda \longrightarrow \operatorname{Lie} A \longrightarrow A \longrightarrow 0$$

where Λ is a free **Z**-module of rank $2g_0$. Then Λ is a flat \mathcal{O}_K -module of rank 1, so Lie $A = \Lambda_{\mathbf{R}}$ is a flat module of rank 1 over

$$\mathcal{O}_K \otimes_{\mathbf{Z}} \mathbf{R} = \prod_{\phi^+ \in \operatorname{Hom}(K^+, \mathbf{C})} \mathbf{C}_{\phi^+}$$

where \mathbf{C}_{ϕ^+} is \mathbf{C} with \mathcal{O}_{K^+} -algebra action determined by ϕ .

Also Lie A is a module over the ring

$$\mathcal{O}_K \otimes_{\mathbf{Z}} \mathbf{C} \cong \prod_{\phi \in \operatorname{Hom}(K, \mathbf{C})} \mathbf{C}_{\phi}.$$

The map of \mathcal{O}_{K^+} -algebras $\Lambda_{\mathbf{R}} \to \text{Lie } A$ then produces a choice $\phi \in \text{Hom}(K, \mathbf{C})$ above each $\phi^+ \in \text{Hom}(K^+, \mathbf{C})$, i.e. a CM type for K. We let Φ_A denote this CM type. In particular as an \mathcal{O}_K -algebra we have

$$\operatorname{Lie} A \cong \prod_{\phi \in \Phi_A} \mathbf{C}_{\phi}.$$

By choosing an embedding $\iota : \mathbf{C} \hookrightarrow \mathbf{C}_p$ we obtain a bijection $\operatorname{Hom}(K, \mathbf{C}) \simeq \operatorname{Hom}(K, \mathbf{C}_p)$. Any field embedding $\phi : K \hookrightarrow \mathbf{C}_p$ extends to a \mathbf{Q}_p -linear map $\phi_{\mathbf{Q}_p} : K \otimes \mathbf{Q}_p \to \mathbf{C}_p$. We have

$$K \otimes \mathbf{Q}_p = \prod_{\mathfrak{p}|p} K_{\mathfrak{p}}$$

and thus we have a bijection

$$\operatorname{Hom}(K, \mathbf{C}) \simeq \bigsqcup_{\mathfrak{p}|p} \operatorname{Hom}_{\operatorname{cts}}(K_{\mathfrak{p}}, \mathbf{C}_{p}).$$

Definition 2.2. We will denote by $S_{\mathfrak{p}}$ the subset of Hom (K, \mathbb{C}) corresponding to Hom_{cts} $(K_{\mathfrak{p}}, \mathbb{C}_p)$.

We note that $\#S_{\mathfrak{p}} = [K_{\mathfrak{p}} : \mathbf{Q}_{p}].$

2.3 CM abelian varieties over a number field

Let $F \subseteq \mathbf{C}$ denote a number field unramified at p, given as a subfield of \mathbf{C} . Upon choosing an embedding $\iota : \mathbf{C} \to \mathbf{C}_p$, we determine a prime ideal \mathfrak{q} of \mathcal{O}_F above p. We let k denote the residue field at \mathfrak{q} , of cardinality $q = p^r$.

We let A denote an abelian variety over F of dimension g_0 with an action by \mathcal{O}_K . We suppose that A has a model $\mathcal{A}/\mathcal{O}_{F_q}$. Let $\Gamma = \mathcal{A}[p^{\infty}]$ its p-divisible group. As in §1, we obtain a decomposition of Γ (up to isogeny) of the form $\prod_{p \mid p} \Gamma_p$.

Proposition 2.3. We have $\# \operatorname{Hom}(K_{\mathfrak{p}}, \mathbf{C}_{p}; \Gamma_{\mathfrak{p}}) = \mu_{A}(S_{\mathfrak{p}}).$

Proof. Let $D = \mathbf{D}(\Gamma_k)$ denote the covariant Dieudonné module and let D_L denote its (semilinear) base change to L. Then we have \mathcal{O}_K -equivariant maps

$$D_L/pD_L \twoheadrightarrow D_L/\varphi D_L \cong \operatorname{Lie} \mathcal{A}_k \otimes_{\mathbf{Z}} \mathcal{O}_L \cong \prod_{\phi \in \Phi_A} \mathcal{O}_L/p\mathcal{O}_L$$

Consequently, in the notation of §1.1, we see that $t_{\phi} \in p\mathcal{O}_L$ for $\phi \in \Phi_A$. It follows that $\phi \in \text{Hom}(K_{\mathfrak{p}}, \mathbf{C}_p)$ belongs to $\text{Hom}(K_{\mathfrak{p}}, \mathbf{C}_p; \Gamma_{\mathfrak{p}})$ if and only if $\phi \in \Phi_A$.

Let $\pi \in \text{End}(\mathcal{A}_k)$ denote the *q*-power Frobenius map. Then π is central in $\text{End}(\mathcal{A}_k)$ and so can be viewed as an element of \mathcal{O}_K . The Shimura–Taniyama formula determines the factorization of (π) as an ideal of \mathcal{O}_K .

Theorem 2.4 (Shimura–Taniyama). For each prime \mathfrak{p} of \mathcal{O}_K above p, we have

$$\frac{\operatorname{ord}_{\mathfrak{p}}\pi}{r} = \frac{\mu_A(S_{\mathfrak{p}})}{\#S_{\mathfrak{p}}}.$$

Proof. Combine Proposition 1.3 and Proposition 2.3.

3 Example: elliptic curves

Let E be an elliptic curve defined over F with good reduction at \mathfrak{q} , and suppose it has CM by \mathcal{O}_K for an imaginary quadratic field K/\mathbb{Q} . Then Lie $E_{\mathbb{C}} \cong \mathbb{C}$ so the action of \mathcal{O}_K on Edetermines an embedding $\phi : K \hookrightarrow \mathbb{C}$. This ϕ is the data of the CM type for K associated to E.

We have two cases; either p is inert in K or it splits. If p is inert there is a unique prime \mathfrak{p} above p (of norm p^2) and we must have $a_{\mathfrak{p}} = r/2$ simply for reasons of degree. This proves the S–T formula in this case since $\#S_{\mathfrak{p}} = 2$ and $\#(\Phi \cap S_{\mathfrak{p}}) = 1$.

If p splits the situation is slightly more interesting. In this case we can write $p\mathcal{O}_K = \mathfrak{p}_1\mathfrak{p}_2$ (these factors are conjugate to each other). Without loss of generality we'll suppose that $\phi \in S_{\mathfrak{p}_1}$, i.e. $K \stackrel{\phi}{\to} \mathbf{C} \to \mathbf{C}_p$ factors through $K \hookrightarrow K_{\mathfrak{p}_1} \cong \mathbf{Q}_p$. Via the embedding of F into \mathbf{C}_p we then have a map $\mathcal{O}_K \to \text{End Lie } \mathcal{E}_{\overline{\mathbf{F}}_p}$ whose kernel is \mathfrak{p}_1 . On the other hand the p-power Frobenius morphism is inseparable and so acts by 0 on Lie $\mathcal{E}_{\overline{\mathbf{F}}_p}$. It follows that $\pi \in \mathfrak{p}_1^r$ and $a_{\mathfrak{p}_1} = r$, $a_{\mathfrak{p}_2} = 0$. This also agrees with the S–T formula since $\#S_{\mathfrak{p}_1} = \#(\Phi \cap S_{\mathfrak{p}_1}) = 1$.

References

- [1] B. Conrad. Shimura–Taniyama formula. http://math.stanford.edu/~conrad/vigregroup/vigre04/stformula.pdf.
- [2] A. Genestier and B.C. Ngô. Lectures on shimura varieties.