
σ-conjugacy classes and the Kottwitz map

Let F/Qp a finite extension, Γ = Gal(F/F ), L ⊆ F the maximal unramified extension of
F . Let v denote the valuation on L, normalized so that v(πF ) = 1. To an algebraic group
G/F we assign the abelian group B(G) of σ-conjugacy classes of elements in G(L). This is
naturally a pointed set and can be interpreted as H1(⟨σ⟩, G(L)).

The goal of this note is to define a natural map

B(G) −→ X∗(Z(Ĝ)Γ)

which will be an isomorphism when G is a torus. We will focus on the case of tori, and
then generalize. This is an exposition of (a subset of) Kottwitz’s paper “Isocrystals with
additional structure.”

1 The Kottwitz map

1.1 Tori

We begin with the case of a torus T/F . Then we are looking to define a map

B(T ) −→ X∗(T̂ Γ) ∼= X∗(T )Γ.

In fact we will define the isomorphism in the opposite direction.

Proposition 1.1. There is a natural isomorphism of functors A : X∗(−)Γ → B(−) from
the category of tori over F to the category of abelian groups (unique up to negation).

We normalize so that the resulting map End(Gm)→ B(Gm) sends 1 to 1.
Let us, for the moment, suppose we know that such an F exists. We will be able to

compute an explicit formula for what it should be, and then check that this indeed works.

Lemma 1.2. The functor X∗(−) is pro-represented by the pro-torus

TF := lim←−E/F
RE/FGm

where the limit runs over finite Galois extensions E/F and the transition maps are norms.

Proof. For each E/F finite Galois let

µE : Gm,E → (RE/FGm)E ∼=
∏
ΓE/F

Gm,E

be the map a 7→ (a, 1, 1, . . . ) where the first slot corresponds to 1 ∈ ΓE/F . Let µ ∈ X∗(T )
with field of definition K, so µ : Gm,K → TK . The key claim is that there is a unique map
fµ : RK/FGm → T such that µ = fµ ◦µK . This is equivalent to saying that there is a unique
Galois-equivariant map

fµ,K :
∏
ΓK/F

Gm,K → TK
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which is µ when restricted to the first component. But ΓK/F acts on
∏

Gm,K by σ(xg)g =
(xgσ)g, so the desired map is given explicitly as

fµ,K((xg)g) =
∏
g

g−1µ(xg).

Compatibility with the transition maps follows from the above stated uniqueness and the
compatibility of the maps µE with the transition maps.

Proposition 1.3. Let T/F a torus and E/F a Galois extension splitting T . Let E0 = E∩L.
Then for any µ ∈ X∗(T ) we have

AT (µ) = NE/E0µ(πE) ∈ T (E0)

where πE is any uniformizer of E.

Proof. By enlarging E, we can assume there is a map f : RE/FGm → T such that f ◦µE = µ.
By functoriality, we have a diagram

Z[ΓE/F ] B(RE/FGm)

X∗(T ) B(T )

f

We have an equality

f(NE/E0µE(πE)) = NE/E0f(µE(πE)) = NE/E0µ(πE)

(since f is defined over F , it is Galois-equivariant on E-points). So we are reduced to the
case T = RE/FGm. In this case, we have a commuting diagram

Z[ΓE/F ] B(T )

Z B(Gm)

NE/F

and the right-hand downward arrow is an isomorphism. We have another commutative
diagram as follows:

T (E) T (E0)

Gm(E) Gm(E0)

NE/E0

NE/F NE/F

NE/E0

(there are two different kinds of norm maps here, one T → Gm denoted NE/F and one
E → E0 denoted NE/E0). The key observation is that NE/FµE(πE) = πE, so

NE/F (NE/E0µE(πE)) = NE/E0(πE) = uπF

for a p-adic unit u. So NE/E0µE(πE) is the element of B(T ) that maps to the class of πF in
B(Gm), so we’re done.
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Corollary 1.4. Suppose E is unramified (so T is also unramified). Then AT (µ) = µ(πF ).

So we now understand the map X∗(−)Γ → B(−) completely explicitly for tori. It is easy
to check that this is a natural transformation of functors. We also note that if µ = id ∈
End(Gm) then we have AGm(id) = 1 ∈ B(Gm) ∼= Z. It follows that AGm is bijective. It
follows that AT is bijective for any T = RE/FGm and consequently for any product of such
tori.

Lemma 1.5. For any torus T , the map AT : X∗(T )Γ → B(T ) is surjective.

Proof. There is some torus T ′ of the form RE/FGm which surjects onto T . Since AT ′ is an iso-
morphism and B(T ′)→ B(T ) is surjective, we get the desired conclusion via commutativity
of the diagram

X∗(T
′)Γ X(T )Γ

B(T ′) B(T ).

Proposition 1.6. For any torus T , the map AT : X(T )Γ → B(T ) is bijective.

Proof. Choose T ′ as in Lemma 1.5 and let T ′′ be the kernel of T ′ ↠ T . Then we have
AT ′′ : X∗(T

′′)Γ → B(T ′′) is surjective. Applying the four-lemma to the diagram

X∗(T
′′)Γ X∗(T

′)Γ X(T )Γ 1

B(T ′′) B(T ′) B(T ) 1

yields the desired result.

1.2 Groups with simply connected derived subgroup

We now want to extend this to reductive groups. For the sake of simplicity, we will assume
that Gder is simply connected (which will suffice in many applications) but what follows can
be done for a general connected reductive group. Define the torus T := G/Gder. Then we
have canonical maps

B(G) −→ B(T )
∼−→ X∗(T )Γ

∼−→ X∗(T̂ Γ)

so it will suffice to see that T̂ = Z(Ĝ). This is a general fact about reductive G with simply
connected Gder (since the dual of a simply connected group is centerless).

In fact, this map is surjective and we can identify a natural subset of B(G) which bijects

onto X∗(Z(Ĝ)Γ).
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2 σ-conjugacy classes and the slope morphism

2.1 The slope morphism

We again begin by working in the category of tori over F . We show that there is a functorial
homomorphism B(−)→ X∗(−)ΓQ for tori. This is easier; indeed an element b ∈ T (L) defines
an element of Hom(X∗(T )ΓQ,Q) ∼= X∗(T )

Γ
Q via

λ 7→ v(λ(b)).

Since we are only looking at Galois equivariant characters, changing b to a σ-conjugate
will change λ(b) to a σ-conjugate, which does not change the valuation. So this is well-defined
as a map from B(T ).

We want a generalization to connected reductive groups (at least with simply connected
derived subgroup). Let D denote the pro-torus over F with X∗(D) = Q. Explicitly,

D = lim←−n∈NGm

where the transition maps are the power maps. Then X∗(T )
Γ
Q = Hom(D, T ). The correct

generalization is then to show that D represents B(−) in the category of connected reductive
groups over F .

Let G be a reductive group, and let ρ be a faithful representation on an L-vector space
V . There is also a natural map from B(G) to isocrystal structures on V (a σ-semilinear
endomorphism on V ) where g ∈ G(L) is assigned to the map Φ = g(1⊗σ) : V ⊗L→ V ⊗σL.
This gives rise to a slope decomposition on V , which is equivalent to a Q-grading and hence
an action of D. So we get a corresponding map αρ,g ∈ Hom(D,GL(V )).

Thus, the choice of g ∈ G(L) determines a map of Tannakian categories Rep(G) →
Rep(D) and hence an element νg ∈ Hom(D, G). The assignment g 7→ νg gives a functorial
map ν : B(G)→ Hom(D, G).

2.2 Basic elements

Definition 2.1. We say that g ∈ G(L) is basic if νg : D → G factors through Z(G). We
write B(G)b for the basic σ-conjugacy classes.

Now suppose Gder is simply connected and let T = G/Gder as before.

Proposition 2.2. The map B(G)b → B(T ) is bijective. In particular, the restriction

B(G)b → X∗(Z(Ĝ)Γ)

is bijective.

This identifies a natural subset of B(G) which bijects onto the image of the Kottwitz
map; we do not include the proof here.
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