Modulor UNPOS
$$/\overline{Z}$$
.
*
Last time: $\sum_{k,1,-} (N) / \overline{Z} [\overline{A}]$: pore end rised $d(E/s, --Etros)$
How to extend this to a reduly proflem $/\overline{Z}$?
in dust p, E/k , $E[p] \simeq 0$ on Z/p .
 k -field, obsided
A: Drinfeld level structure. $E[p] \subset E$ subgroup-schene,
 $Gartier Juiser$.
Defn: a Drinfeld $\Gamma(N)$ -structure on E/s - is
a map $d: (\overline{Z}/N)^2 \rightarrow E(s)$, st. $E[N] = \sum_{k,k \in \overline{Z}/N^2} \psi(a, k)$
 os Cartier divisors.

$$\frac{E \times (n!E/k)}{\Gamma(p^n) - structure} \left(\frac{Z/p^n}{p^n} + E \right) = E \sum_{i=1}^{n} \frac{E \sum_{i=1}^{n} \frac{Z}{p^n}}{\Gamma(p^n)} = E \sum_{i=1}^{n} \frac{Z}{p^n} = \sum_{i=1}^{n$$

$$\frac{\mathcal{I}E/k}{\mathcal{P}et_{n}} \xrightarrow{\text{ordinary}} (\mathbb{Z}/p^{n})^{2} \longrightarrow \mathbb{E}[p^{n}].$$

$$\frac{\mathcal{P}et_{n}}{\mathcal{P}et_{n}} \xrightarrow{\text{ordinary}} (\mathbb{Z}/p^{n})^{2} \longrightarrow \mathbb{E}[p^{n} \text{ isgn}, \nu/\text{ a generator of } (p^{n})^{2}.$$

$$\frac{\mathcal{P}et_{n}}{\operatorname{ker}(f)} \xrightarrow{\text{ordinary}} (\mathbb{Z}/p^{n})^{2}.$$

The Vietz-Mazur): p">M Y(p"), Tetp", Yi(p") we represented By repulser schemes, $T_{n}(p^{n})$ is finite, flat 2-im. $T_{n}(xy = p)$ $T_{n}(xy = p)$ $T_{n}(xy = p)$ How to prove this: (rivid.) The ("axismatic regularits"): P- poduli public on elliptic curres P Then if: 1) f is rel representable, finite; F J 2) ettole over DE J] (Ell) W:= W/K) 3) orby depends on underboing p-tiv. group. W:= W/K) 4) K-uby. cloud of cher. P, Eu/K supersingular, then: a) P(Eo/K)=*- PE/WETJ=(A, M). In 2 clts. F is sep remained information. PE/WETJ=(A, M). In 2 clts. F is sep., regular. We vill dech last condition

Fix
$$k = \overline{h}$$
 dr p . F: $Art_{k} \rightarrow Sets$. $(F/k) = x$.)
Art_k = $artony$ of $keal Artin rings, r/res. field $\approx h$.
F is representable by (A, m)
 R : given $f_{1}, f_{2}, ..., f_{n} \subset m$, when is $m = (f_{1}, ..., f_{n})$ true?
 R : given $f_{1}, f_{2}, ..., f_{n} \subset m$, when is $m = (f_{1}, ..., f_{n})$ true?
 R : $arten g: A \rightarrow R$ sends all $f_{1} \mapsto 0$ (=> the corresponding
 A : when $g: A \rightarrow R$ sends all $f_{1} \mapsto 0$ (=> the corresponding
 $arten g: A \rightarrow R$ sends all $f_{1} \mapsto 0$ (=> the corresponding
 $arten g: A \rightarrow R$ sends all $f_{1} \mapsto 0$ (=> the corresponding
 $arten g: A \rightarrow R$ sends all $f_{1} \mapsto 0$ (=> the corresponding
 $arten g: A \rightarrow R$ sends all $f_{1} \mapsto 0$ (=> the corresponding
 f_{1R}) is "constant",
 f_{1R} is "constant",
 $arten g: A \rightarrow R$ f_{1R} is "constant",
 $arten g: A \rightarrow R$ f_{1R} f_{1R} is "constant",
 f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R}
 f_{1R} f_{1R} f_{1R} f_{1R} f_{1R}
 f_{1R} f_{1R} f_{1R} f_{1R} f_{1R}
 f_{1R} f_{1R} f_{1R} f_{1R} f_{1R}
 f_{1R} f_{1R} f_{1R} f_{1R} f_{1R}
 f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R}
 f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R}
 f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R} f_{1R}
 f_{1R} $f_{$$

We determine the property
$$P = P^{2}(p^{n})$$
.
 $R \mapsto \lambda (E/R, \phi (\overline{Z}/p^{n})^{2} \longrightarrow E(R) \text{ s.t. } \Sigma \phi (\delta, P) = EEp^{\delta} \overline{T})$.
 $E_{\delta}/h.$ $X = coordinate for \widehat{E} , the formal group. $h[\overline{E}, \overline{T}]$.
 $\phi_{L=2}$ $P, Q \in E(R)$. $f, g \in m_{A}$ are " $X(P), X(Q)$."
 $\psi_{L=2}$ $P, Q \in E(R)$. $f, g \in m_{A}$ are " $X(P), X(Q)$."
 $WT'S: given E/R, (0,0) is a Dr. p^{-level structure} = 2$
 $R \in Atk.$
 $E = P = 0 \text{ m. } R, \& E = R \otimes E_{\delta}.$
 $F: E \to E^{|P|}.$ $her F^{2n} = p^{2n} \cdot EOI as she have
 $F: E \to E^{|P|}.$ $her F^{2n} = p^{2n} \cdot EOI = 2F/EEp^{\delta} = 2$
 $E = E^{(p^{2n})} = E^{(p^{2n})} = E/EEp^{\delta} = 2$
 $E = E(p^{2n}) = E(P^{2n}) = E(P^{2n} + P^{2n}) = 2$
 $E = E(P^{2n}) = E(P^{2n} + P^{2n}) = E(P^{2n} + P^{2n}) = 2$
 $E|R, (cleo find $p=0$ in $R.$)$$$

Wednesday, June 22, 2022 7.46 PM Fool: Jerwite $\Gamma_0(p^h)$, $\Gamma(p^h) \bigotimes_{Z} F_{P}$. Consider $[p^h_{-isg}.]$; $R \mapsto \{(E/R, E \to E' p^{n_{-isg}}.]\}$ Γ_h I_i $f_i(E/R, E \in Ep^n] | rh D = p^n \}$ $f_i(E/R, E \in Ep^n] | rh D = p^n \}$

Zi Ca X dusedi Yu T-orrectediver YLYSS X ~ LIZilyor. $\hat{U}_{\chi,\chi_0} \simeq h \bar{U}_{\chi,\chi} \mathcal{I} / (f)$ this are, the Zi are the irr. components 04 Thm! in $\forall s.s. \times o, \quad \bigcup_{X, \times o}^{n} = K[X, y] / \prod_{i \in T}^{l} f_{i}, \quad \text{where } U_{Z_{i}} = W[X, y]$

Let us explain these additions for [ph-ison]. Lebral. Els ortinory ell curve, DCE pⁿ-subgroup. then $Zorishi-locally \sim 5$, $\exists ! (a,b) s d, a,b > 0$, a+b=n, s d. 1) En her F^h= F^a; 2) F/(F^a) is a fin.etale ^{ayelk} for our of rh p^b. S= Speelk, k=k. E[p[∞]]=r_p[∞] × Q_p/Z_p. EffE' ph- isogeny. then I! (a, P) r.t. Gr: $E \xrightarrow{F^{a}} E^{(p^{a})} \simeq E^{l(p^{l})} \xrightarrow{V^{b}} E^{l} \qquad (E - ordinary.)$ Observe: E/4-supersingular, GCE ph-subgroup. Hen F = her(F).

Wednesday, June 22, 2022 8:09 PM

Wedendry, use 22,202 200

$$E \xrightarrow{f^{A}} E^{(p^{A})} \xrightarrow{\gamma} E^{j} \stackrel{p^{A}}{\longrightarrow} \stackrel{i}{\longrightarrow} E^{j}.$$

$$E \xrightarrow{f^{A}} E^{(p^{A})} \xrightarrow{\gamma} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j}.$$

$$P \xrightarrow{f^{A}} E^{(p^{A})} \xrightarrow{\gamma} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j}.$$

$$P \xrightarrow{f^{A}} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j}.$$

$$P \xrightarrow{f^{A}} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j}.$$

$$P \xrightarrow{f^{A}} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j}.$$

$$E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j}.$$

$$P \xrightarrow{f^{A}} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j}.$$

$$E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j}.$$

$$E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j}.$$

$$P \xrightarrow{f^{A}} E^{j} \stackrel{p^{A}}{\longrightarrow} E^{j}.$$

$$E^{j} \stackrel{p^{A}}{\rightarrow$$

We determine 22.202 BLTM

$$\frac{1}{1} \frac{1}{1} \left[\prod_{0} \left(p^{n} \right) \right] \otimes F_{p} = \sum_{\substack{\alpha + \ell = n \\ \alpha + \ell = n}} \left[\prod_{0} \left(p^{n} \right) \right] \\
= \sum_{\substack{\alpha + \ell = n \\ \alpha + \ell = n}} \left[\prod_{\substack{\alpha = 0 \\ \beta = 1 \\ \beta$$