Checking Equations in Finite Algebras

Vera Vértesi

Joint work with Csaba Szabó and Gábor Kun

Logic Colloquium 2004

Overview

Equational Bound

- ★ Membership problem and methods for checking
- ★ Our and other results
- ★ Application for flat graph and hypergraph algebras

• Identity Checking Problem

- ★ Previous results for different algebras
- ★ Different interpretations over rings
- ★ Results

The Membership Problem

Given: $\mathcal{V} = Var(\mathbf{A})$ variety, where \mathbf{A} is a finite and finitely typed algebra

$$|\mathbf{A}| = m$$

Input: **B** finite algebra.

 $|\mathbf{B}| = n$

Question: Is B in the variety generated by A? $\mathbf{B} \stackrel{?}{\in} \operatorname{Var}(\mathbf{A})$

Example

$$\begin{split} \tau &= \langle 1,^{-1}, \cdot \rangle \\ \text{Claim: A finite Abelian group} \\ \text{B} &\in \operatorname{Var}(A), \text{ finite } \iff \text{B is a finite Abelian group and} \\ &\exp \text{B} \mid \exp A \end{split}$$

Identity basis of Var(A) is

$$egin{aligned} x^{ ext{exp}\,\mathbf{A}} &\equiv 1 \ x \cdot 1 &\equiv 1 \cdot x \equiv x \ x \cdot x^{-1} &\equiv x^{-1} \cdot x \equiv 1 \ x \cdot (y \cdot z) &\equiv (x \cdot y) \cdot z \ x \cdot y &\equiv y \cdot x \end{aligned}$$

Method #1: Free algebra

 $\mathbf{B} \in \operatorname{Var}(\mathbf{A}) \iff \mathbf{B}$ is a homomorphic image of $\mathbf{F}_{\mathcal{V}}(n)$

$$\vec{g}_{1} = (a_{1} \quad a_{i_{1}} \quad \dots \quad a_{k_{1}}) \\ \vec{g}_{2} = (a_{2} \quad a_{i_{2}} \quad \dots \quad a_{k_{2}}) \\ \vdots \quad \vdots \quad \vdots \\ \vec{g}_{n} = (a_{n} \quad a_{i_{n}} \quad \dots \quad a_{k_{n}}) \\ < \\ |A^{B}| \\ F_{\mathcal{V}}(n) = \langle \vec{g}_{1}, \vec{g}_{2}, \dots, \vec{g}_{n} \rangle \subseteq A^{A^{B}} \\$$
To be checked if
$$\begin{array}{c} g_{1} \mapsto b_{i_{1}} \\ \vdots \\ g_{n} \mapsto b_{i_{n}} \end{array} extends to a homomorphism \\ g_{n} \mapsto b_{i_{n}} \end{array}$$

Method #2: Checking Identities

 $B \in Var(A) \iff$ All identities of A holds in B

Enough to check the identities of rank *n*

Moreover: $F_{\mathcal{V}}(n) =$ equivalence classes of expressions

 $T = \{t_1, t_2, \ldots, t_k\}$ system of representatives $(k \leq m^{m^n})$

Identities to be checked:

 $f(t_{i_1}, t_{i_2}, \dots, t_{i_r}) \equiv t$ $t_{i_j}, t \in T, f$ operation

Def. A *finitely based*, if every identity of A follows from a finite set of identities.

If A is finitely based \implies polynomial algorithm

β -function

 $\mathcal{V} = \operatorname{Var}(\mathbf{A})$

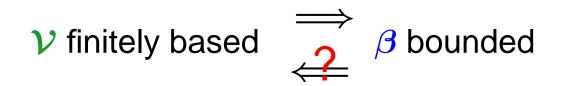
 $\boldsymbol{\beta}:\mathbb{N}\to\mathbb{N}$

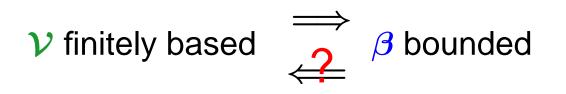
 $eta(n) = \min\{k : |\mathbf{B}| \le n, ext{it is enough to check the identities of} \ ext{not longer than } k ext{ to decide whether } \mathbf{B} \in \mathcal{V}\}$

 $= \max\{l: \exists \mathbf{C} \notin \mathcal{V}, |\mathbf{C}| \leq n, \text{every identity in } \mathbf{A} \\ \text{not longer than } l \text{ holds in } \mathbf{C}\} + 1$

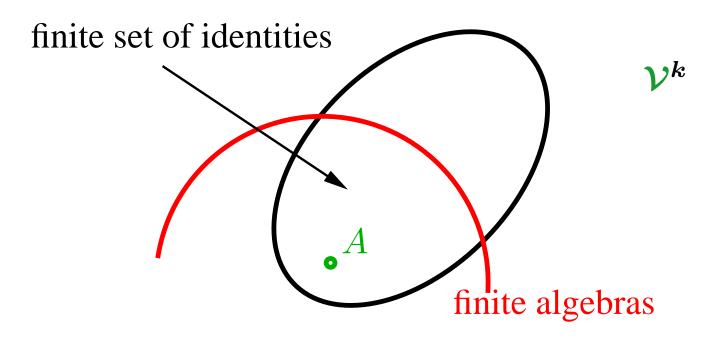
 $\Sigma_{\mathcal{V}}^{[k]}$: Identities of \mathcal{V} not longer than k

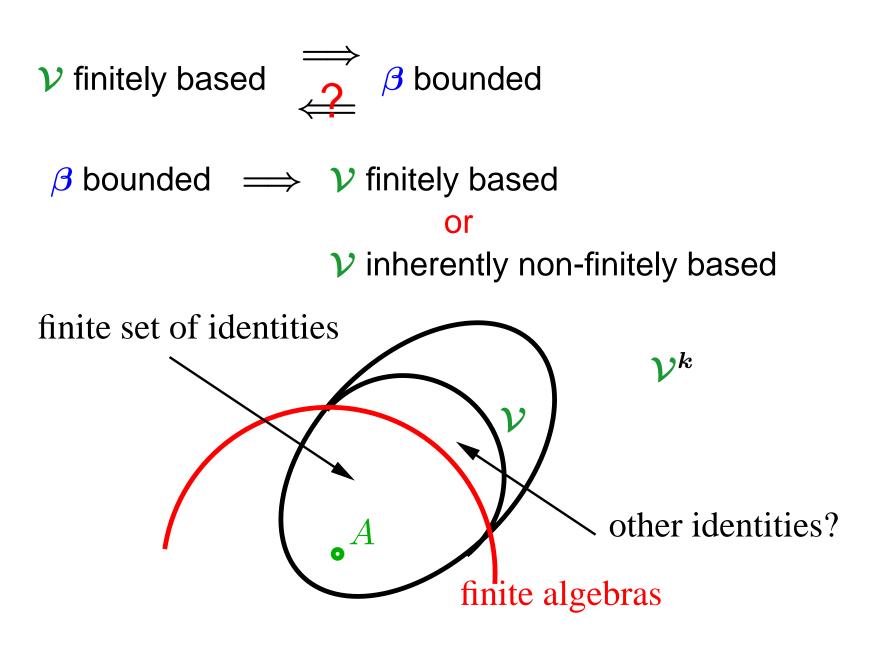
 \mathcal{V}^k : Variety defined by the identity set $\Sigma_{\mathcal{V}}^{[k]}$ $\mathbf{B} \in \mathcal{V} \iff \mathbf{B} \models \Sigma_{\mathcal{V}}^{[\boldsymbol{\beta}(\boldsymbol{n})]}$

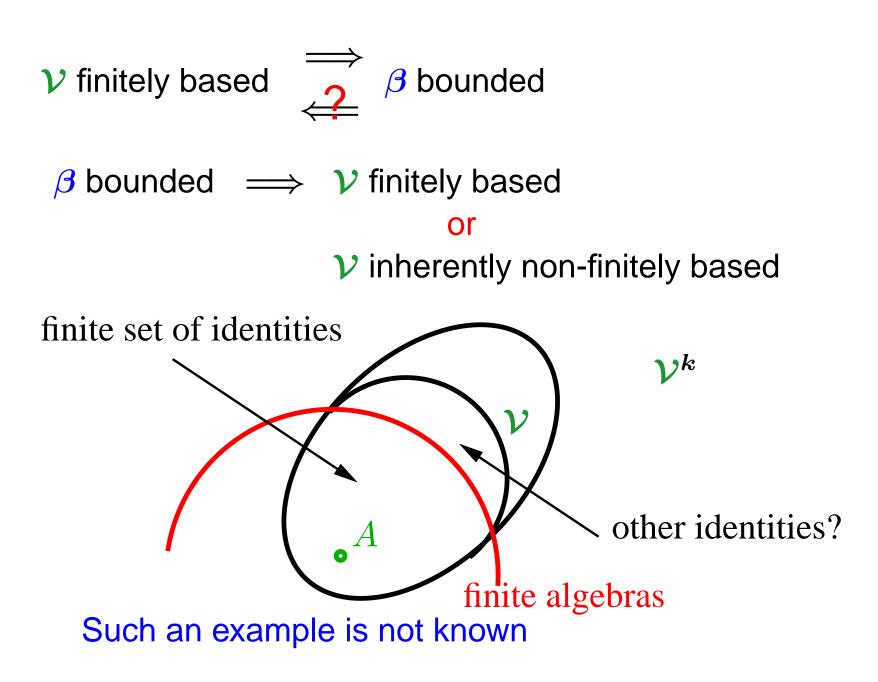




 β bounded $\implies \mathcal{V}$ finitely based







Results

Claim: (*McNulty*) A *β*-function exists and is recursive.

Claim: $\beta(n) = \mathcal{O}(m^{m^n})$

Well known: A finitely based $\implies \beta$ bounded

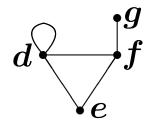
E.g. (*Székely*) There exists an algebra such that the β -function is at least sublinear.

Construction: (Kun, W): For every k there is an algebra such that $\beta(n) \sim n^k$.

Theorem: The β -function is not bounded by any polynomial.

Graph Algebras (C. Shallon, 1979)

$$\mathrm{G}(V,E)$$
 graph, $E\subseteq V^2$



	A _G
$A_{G}($	$V \cup \{0\}, \cdot$) graph algebra:

$$egin{aligned} \mathbf{0} \cdot x &= x \cdot \mathbf{0} = \mathbf{0} \ x \cdot y &= \left\{egin{aligned} x, & ext{if } (x,y) \in E \ \mathbf{0} & ext{otherwise} \end{aligned}
ight.$$

•	d	e	\boldsymbol{f}	${oldsymbol{g}}$	0
d	d	d	d	0	0
e	e	0	e	0	0
f	d d f 0 0	f	0	f	0
${oldsymbol{g}}$	0	0	${oldsymbol{g}}$	0	0
0	0	0	0	0	0

Hypergraph Algebras

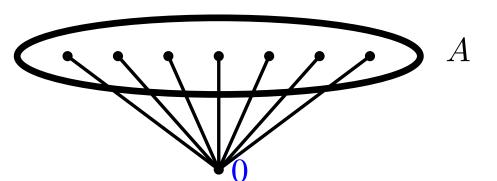
Generalizations of the Graph Algebras:

$$\begin{split} & \mathrm{R}(R,\alpha) \text{ relational structure / hypergraph, } \alpha \subseteq R^k \\ & \overbrace{R \cup \{0\}}^{A_{\mathrm{R}}}, f) \text{ hypergraph algebra:} \\ & f(x_1,\ldots,x_k) = \begin{cases} x_1, & \text{if } x_i \in R \text{ and } (x_1,\ldots,x_k) \in \alpha \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Flat Semilattices

A : arbitrary algebraNew operation : \land $x \land y = \begin{cases} x, & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$

flat semilattice operation



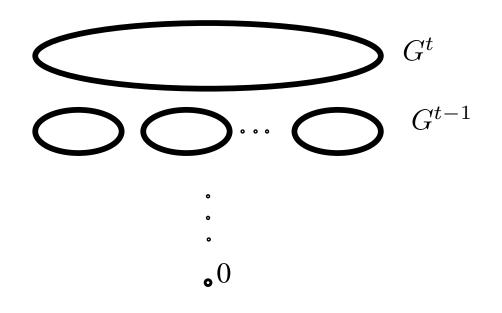
 $F_{G}(\overbrace{V\cup\{0\}}^{F_{G}},\cdot,\wedge) \text{ flat graph algebra}$

$$x \cdot y = \left\{egin{array}{cc} x, & ext{if} \ (x,y) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

 $F_{R}(\overbrace{R \cup \{0\}}^{F_{R}}, f, \wedge)$ flat hypergraph algebra

VERA VÉRTESI: CHECKING EQUATIONS IN FINITE ALGEBRAS

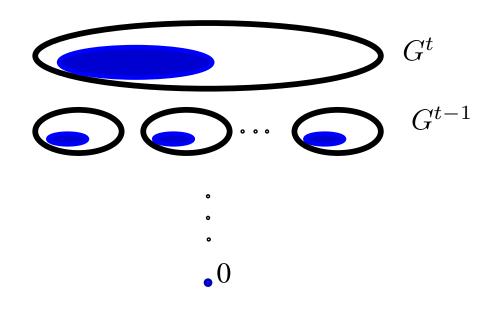
Flat Graph Algebra Varieties



... a direct product ...

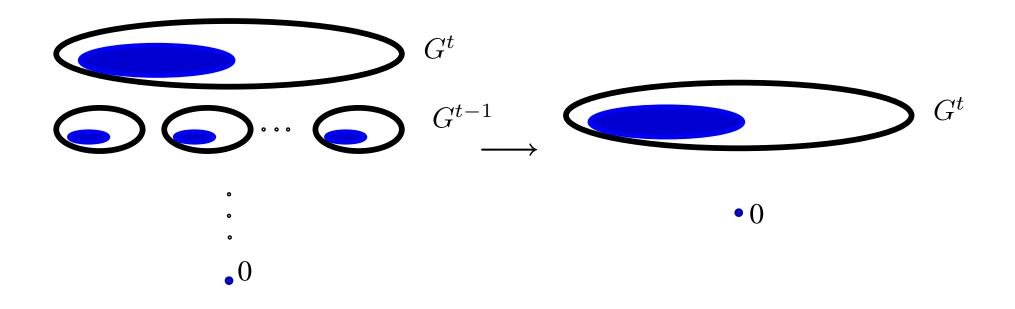
VERA VÉRTESI: CHECKING EQUATIONS IN FINITE ALGEBRAS

Flat Graph Algebra Varieties



... a direct product's subalgebra

Flat Graph Algebra Varieties



homomorphic image of a direct product's subalgebra

So if $\mathbf{H} \subseteq \mathbf{G}^t$ is an induced subgraph $\implies \mathbf{F}_{\mathbf{H}} \in \operatorname{Var}(\mathbf{F}_{\mathbf{G}})$

Subdirectly Irreducible Flat Graph Algebras

Theorem: (*Willard, 1996*) Let $F_G = \langle F_G, \cdot, \wedge \rangle$ be a finite flat graph algebra, and $D \in Var(F_G)$ a finite algebra. Then the following are equivalent:

- 1. D is subdirectly irreducible
- 2. $\mathbf{D} = \mathbf{F}_{\mathbf{H}}$ is a finite flat graph algebra, where \mathbf{H} is a connected induced subgraph of \mathbf{G}^{t} for some $t \in \mathbb{N}$.
- 3. D is simple.

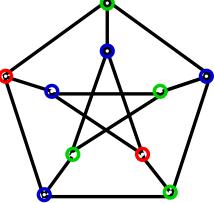
Theorem: (*Birkhoff*) Every algebra is a subdirect product of subdirectly irreducible ones.

Corollary: It is enough to know β 's order of magnitude for subdirectly irreducible algebras.

Corollary: It is enough to investigate the connected induced subgraphs of G^t .

Graph *r*-Coloring

Def. A graph G is r-colorable if its vertices can be colored with r colors so that there is no edge between vertices of the same color.



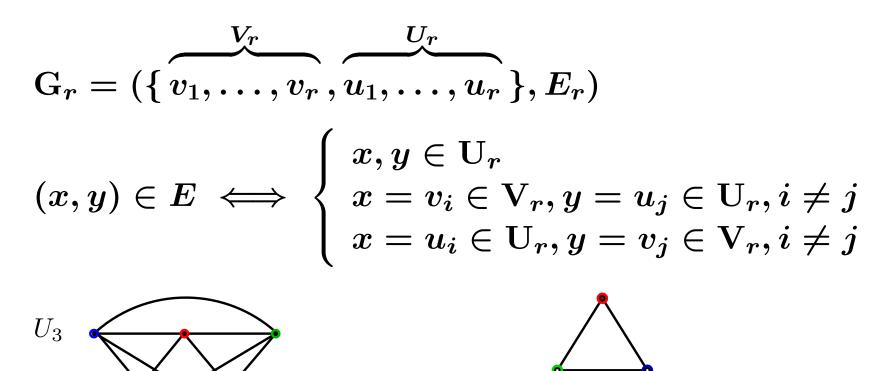
Def. G r-critical, if G is not r-colorable, but removing any edges of G results in an r-colorable graph.

E.g. 2-critical graphs are the odd circles

Theorem: (*Toft, 1972*) For every $r \ge 3$ there is an *r*-critical graph H_{r-crit} with *n* vertices and $\sim n^2$ edges.

 V_3

r-Colorable Graphs



Theorem: $\mathbf{H} = (U, F)$ is a connected *r*-colorable graph \iff **H** connected induced subgraph of \mathbf{G}_r^t for some $t \in \mathbb{N}$.

β -Function for Flat Graph Algebras

Reminder: The subdirectly irreducibles in $Var(\mathbf{F}_{G_r})$ are those graph algebras belonging to *r*-colorable graphs.

Theorem: (*Kun*, *W*) For a flat graph algebra $F_{G_r} \beta(n) \sim n^2$. Proof of $\beta(n) = \Omega(n^2)$

Let $\mathbf{H}_{r\text{-crit}}$ be an *r*-critical graph, then $\mathbf{F}_{\mathbf{H}_{r\text{-crit}}} \notin \operatorname{Var}(\mathbf{F}_{\mathbf{G}_r})$, thus $\exists p \equiv q$ identity:

 $F_{G_r} \models p \equiv q$ but $F_{H_{r-crit}} \not\models p \equiv q$ So there is an evaluation $u_1, \ldots, u_k \in F_{H_{r-crit}}$ so that $p(u_1, \ldots, u_k) \neq q(u_1, \ldots, u_k)$. If there was an edge (u, v) where $u \cdot v$ did not occur while evaluating $p(u_1, \ldots, u_k)$ and $q(u_1, \ldots, u_k)$, then $p \not\equiv q$ would be true by removing the edge (u, v). But since H_{r-crit} is critical, then by removing one edge we get an *r*-colorable graph, so $p \equiv q$ holds. $\not \equiv$

β -Function for Flat Hypergraph Algebras

Theorem: (*Willard, 1996*) Let $\mathbf{F}_{\mathbf{R}} = \langle F_{\mathbf{R}}, f, \wedge \rangle$ be a finite flat hypergraph algebra, and $\mathbf{D} \in \operatorname{Var}(\mathbf{F}_{\mathbf{R}})$ a finite algebra. Then the following are equivalent:

- 1. D is subdirectly irreducible
- 2. $\mathbf{D} = \mathbf{F}_{\mathbf{S}}$ is a finite flat hypergraph algebra, where \mathbf{S} is a connected induced subhypergraph of \mathbf{R}^{t} for some $t \in \mathbb{N}$.
- 3. D is simple.

Theorem: (*Toft, 1972*) For every $r \ge 3$ there is an *r*-critical *k*-hypergraph with *n* vertices and $\sim n^k$ edges.

Theorem: (*Kun, W*) The subdirectly irreducible algebras of $Var(F_{G_{r,k}})$ are the flat hypergraph algebras belong to *r*-colorable *k*-hypergraphs.

Theorem: (Kun, W) For a flat hypergraph algebra $\mathbf{F}_{\mathbf{G}_{r,k}}$ $\boldsymbol{\beta}(n) \sim n^k$.

The Identity Checking Problem

TERM-EQ(A) Given: A a finite and finitely typed algebra

Input: $t \stackrel{?}{\equiv} s$ identity, where t and s are terms Question: Is t = s for every substitution over A?

• E.g.
$$egin{pmatrix} x_1^{-1}x_2^{-1}x_1x_2 \end{pmatrix}^3 \stackrel{?}{\equiv} x_2^6 & ext{in } S_3 \\ \| & \| \\ [x_1,x_2]^3 \equiv id & \| \\ [x_1,x_2] \in S_3' = A_3 \end{bmatrix}$$

• E.g. $x^p \stackrel{?}{\equiv} x$ in \mathbb{Z}_p

Groups

- Theorem: *Lawrence*, *Willard* (1993) TERM-EQ is coNP-complete for *G* finite nonsolvable groups.
- Theorem: *Goldmann*, *Russel* (2001) For nilpotent groups TERM-EQ is in P.
- Theorem: Horváth, Kun, Szabó, W(2003)
 TERM-EQ is in P for metacyclic groups (semidirect product of cyclic groups).
- The question is open for other finite groups.

Semigroups

Are there any semigroups so that TERM-EQ is coNP-complete?

- Volkov (2002) #elements $\approx 2^{1700}$
- *Kisielewicz* (2002) few thousand
- Szabó, W (2002)
 13
- *Klima* (2003)
 6

Other semigroups?

Rings

Theorem: Burris, Lawrence (1993) For a finite ring \mathcal{R} TERM-EQ(\mathcal{R}) is in P, if \mathcal{R} is nilpotent, TERM-EQ(\mathcal{R}) is coNP-complete otherwise

TERM: • any E.g. $(x+y)^n$

- TERM_{Σ} (sum of monomials) E.g. $x_1x_2^3x_3 + x_1 + x_2x_1x_3 + x_{19}$ TERM_{Σ}-EQ(\mathcal{R}) problem
- monomial

just in the multiplicative semigroupTERM-EQproblemforthemultiplicative semigroup

$\text{TERM}_{\Sigma}\text{-}\text{EQ}(\mathcal{R})$ -Problem

• Theorem: Lawrence, Willard (1997)

If $\mathcal{R} = M_n(\mathbb{F})$ is a finite simple matrix ring whose invertible elements form a nonsolvable group, then TERM_{Σ} -EQ(\mathcal{R}) is coNP-complete.

- Theorem: Szabó, W (2002) TERM_{Σ}-EQ($M_2(\mathbb{Z}_2)$) and TERM_{Σ}-EQ($M_2(\mathbb{Z}_3)$) are coNP-complete.
- Conclusion: For a finite simple matrix ring $M_n(\mathbb{F})$, TERM_{Σ}-EQ($M_n(\mathbb{F})$) is in P if it is commutative; Otherwise it is coNP-complete.

Multiplicative Semigroup of Rings

• Theorem: Szabó, W (2002-2003)

TERM-EQ is in P for the multiplicative semigroup of a finite simple matrix ring if it is commutative; Otherwise it is coNP-complete.

Let \mathcal{R} be a finite ring, $\mathcal{J}(\mathcal{R})$ denotes its Jacobson-radical. Then $\mathcal{R}/\mathcal{J}(\mathcal{R}) = M_{n_1}(\mathbb{F}_1) \oplus \cdots \oplus M_{n_k}(\mathbb{F}_k)$

Theorem: For a finite ring *R* TERM_Σ-EQ(*R*) is in P if *R*/*J*(*R*) is commutative;
 Otherwise it is coNP-complete.