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Abstract. Vector quantization is a classical signal-processing technique with significant applications in data compression,
pattern recognition, clustering, and data stream mining. It is well known that for critical points of the quantization energy, the
tessellation of the domain is a centroidal Voronoi tessellation. However, for dimensions greater than one, rigorously verifying
a given centroidal Voronoi tessellation is a local minimum can prove difficult. Using variational techniques, we give a full
characterization of the second variation of a centroidal Voronoi tessellation and give sufficient conditions for a centroidal
Voronoi tessellation to be a local minimum. In addition, the conditions under which a centroidal Voronoi tessellation for a given
density and domain is unique have been elusive for dimensions greater than one. We prove that there does not exist a unique
two generator centroidal Voronoi tessellation for dimensions greater than one.
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1. Preliminaries. Consider the vector space IRN over the field IR, with inner product 〈x, y〉 := xT y
and induced norm ‖x‖ := 〈x, x〉1/2. Let p(x) be a positive real-valued C2 function, p : IRN → IR, with
compact and convex support Ω. We call p(x) the density function associated with Ω. Let µ be the measure
associated with p(x), namely

µ(A) =

∫
A

p(x)dx.

We consider the problem of approximating p(x) by a piecewise-constant function taking only K many values,
namely p̂ : Ω→ {p(u1), ..., p(uK)}, where {u1, ..., uK} ⊂ Ω and

p̂(x) = p(ui) if x ∈ Ωi,

Ωi = {x ∈ Ω|‖x− ui‖ ≤ ‖x− uj‖ for all j}.

The process of approximating a function by its value at finitely many points is known as quantization. Quan-
tization is a classical signal-processing technique with applications in data compression, pattern recognition,
clustering, and data stream mining [9]. For N = 1 and N > 1, it is referred to as scalar quantization and
vector quantization, respectively.

We have Ω = ∪Ki=1Ωi. Let us define λN (A) as the N -dimensional Lebesgue measure of the set A ⊂ IRN .
We have λN (Ωi ∩ Ωj) = 0 for all i 6= j. If Ωi ∩ Ωj 6= ∅, we define σi,j as the unique element of Ωi ∩ Ωj that
is collinear with {ui, uj}, namely

σi,j =
ui + uj

2
.

We note that the set {Ωi}Ki=1 defines a tessellation of Ω and is referred to as the Voronoi tessellation associated
with the generating points {ui}Ki=1. The region Ωi is referred to as the Voronoi region associated with the
generator ui. Each of these regions Ωi is convex. The dual to a Voronoi tessellation defines a Delaunay
triangulation [1]. See Figure 1.

The connectivity of the Voronoi regions {Ωi}Ki=1 gives rise to a graphical structure. We define the Voronoi
graph G = (V,E) as the graph with vertices i ∈ V , i = 1, ...,K and edges ei,j ∈ E if Ωi ∩ Ωj 6= ∅.

If the Voronoi generators satisfy the property

ui = µ(Ωi)
−1

∫
Ωi

xp(x)dx,
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(a) Voronoi tessellation (b) Delaunay triangulation

Fig. 1. A Voronoi tessellation of the square and the dual Delaunay triangulation.

then the tessellation is a centroidal Voronoi tessellation.
We define the error of the approximating function p̂, uniquely defined by the generators {ui}Ki=1, by

J [u] =
∑
i∈V

∫
Ωi

‖x− ui‖2p(x)dx.

This is also often referred to as the quantization energy or energy of the tessellation. Any set of generators
that minimizes the functional J [u] must necessarily generate a centroidal Voronoi tessellation. We define the
quantization error corresponding to a particular generator ui by

Ji[u] =

∫
Ωi

‖x− ui‖2p(x)dx.

While the support Ω is compact, the domain of {ui}Ki=1 is not. The set of valid choices for {ui}Ki=1,
denoted by U ⊂ ΩK , does not contain points for which ui = uj for some i 6= j. Such points are called
degenerate and do not define a K-quantizer. Analysis of such points is not needed; the energy of a degenerate
point is greater than some local K-quantizer in an ε-neighborhood for any ε greater than zero [2, 5]. For this
reason, we restrict ourselves to

U = {u|ui ∈ Ω, i = 1, .., k, ui 6= uj , for i 6= j}.

The study of quantizers and centroidal Voronoi tessellations is closely related to Lloyd’s algorithm [12],
described as follows:

Lloyd’s Algorithm:
1. Choose initial set of generators {ui}Ki=1 on Ω.
2. Construct associated Voronoi regions {Ωi}Ki=1 of Ω.
3. Compute centroids of each Voronoi region, {ũi}Ki=1, ũi = µ(Ωi)

−1
∫

Ωi
xp(x)dx.

4. If {ui}Ki=1 and {ũi}Ki=1 meet the given convergence criterion, return {ũi}Ki=1 and terminate; otherwise
let {ui}Ki=1 := {ũi}Ki=1 and repeat steps 2 and 3.

The algorithm is intended to converge to a centroidal Voronoi tessellation minimizing J [u] over all
acceptable choices of u. See Figure 2. Centralized Voronoi tessellations and their relation to the convergence
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(a) Initial Guess (b) One Iteration (c) Three Iterations

(d) Five Iterations (e) Ten Iterations (f) Twenty-Five Iterations

Fig. 2. Iterations of Lloyds algorithm on the square. The tessellations are approaching the globally minimizing centroidal
Voronoi tessellation.

of Lloyd’s algorithm have been studied extensively. For excellent and thorough reviews of the literature, we
refer the reader to [3, 4].

Initially in [7], and later in [11], it was shown that Lloyd’s algorithm is a local contraction for N = 1,
given that the density function is logarithmically concave, namely

d2

dx2
ln p(x) < 0 for all x ∈ Ω.

In [15], this result was extended to continuous and positive densities. Similar convergence results are tougher
for N > 1, but not intractable. Convergence was shown in [10, 14] by defining the Lloyd mapping for
degenerate points. Most notably, in [2] global convergence of Lloyd’s algorithm was shown under a number
of different conditions, one of the largest recent results in the field:

Theorem 1.1. If any one of the following conditions occur
(i) there is a unique fixed point,

(ii) the set of fixed points with any particular distortion value is finite,
(iii) the Lloyd iterations stay in a compact set for which the Lloyd map is continuous,
then the Lloyd’s algorithm converges globally.

While this result proves convergence to a centroidal Voronoi tessellation, it does not give conditions for
uniqueness. In fact, there may be multiple centroidal Voronoi tessellations for a given density and domain,
each with a different locally minimizing energy. See Figure 3.

In [7], Fleischer showed that for N = 1 the logarithmic concavity condition implies that any centroidal
Voronoi tessellation is a local minimum, and, further, that there is a unique centroidal Voronoi tessellation
that is both a local and global minimum of J [u]. Namely, he proved the following theorem:

Theorem 1.2 (Fleischer, 1964). Let a given continuous probability density of finite second moment obey
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(a) Voronoi tessellation (b) Saddle point CVT (c) Globally minimizing CVT

Fig. 3. Both figure (B) and (C) are centroidal Voronoi tessellations of the square with uniform density. Tessellation (B)
is only a saddle point with respect to energy, while tessellation (C) globally minimizes energy.

the inequality [ln p(x)]′′ < 0. Then the energy of an K-level quantizer has a unique stationary point. This
point is a relative and absolute minimum.

As noted in numerous papers, including [2, 4], there has been no extension of Fleischer’s theorem to
N > 1. The need for vector quantizers in higher dimensions, rather than a superposition of N scalar
quantizers, was shown in [13]. Convergence of Lloyd’s algorithm and conditions for a unique centroidal
Voronoi tessellation remain a relevant and open area of research.

However, rigorously verifying that a given centroidal Voronoi tessellation is a minimum can be difficult.
Using a variational formulation, we determine when critical points are guaranteed to be minima and give
sufficient conditions that can be used in practice to verify a given centroidal Voronoi tessellation is indeed
a minimum. Furthermore, we address the open question of the existence of conditions for a unique cen-
troidal Voronoi tessellation in higher dimensions. Namely, we prove that there exists multiple two generator
centroidal Voronoi tessellations for any density and multidimensional domain. Such results have both clear
practical and theoretical applications to Lloyd’s algorithm and the many fields that use quantizers.

The remainder of the paper is as follows. In section two, we introduce the problem through variational
calculus. We recall classical results and find explicit representations for the first and second variation of J [u].
In section three, we examine sufficient conditions for minima and illustrate how the conditions can be used
in practice. Finally, in section four, we prove that there does not exist a unique two generator centroidal
Voronoi tessellation for dimensions greater than one.

2. Variational Formulation. First, we recall the following differential notation. The gradient and
Hessian of a function f(x), denoted ∇f(x) and H[f(x)], respectively, are defined by

〈∇f(x), ϕ〉 := lim
ε→0+

f(x+ εϕ)− f(x)

ε
and H[f(x)] := ∇[∇f(x)]T .

When referring to a set A, we will denote the interior, boundary, and closure by Ao, ∂A, and Ā, respectively.
Here, and in what follows, we will make use of the theory of variational calculus to assist in the study of the
critical points of the functional J [u]. Fleischer’s proof for N = 1 uses no such machinery but instead uses
basic differential calculus and optimization concepts, namely, first and second order conditions of the form

∇J [u] = 0, H[ J [u] ] > 0,

where now and in what follows, “>” and “≥” refer to positive definiteness and semi-definiteness, respectively.
Differential calculus works well for N = 1, but it is more difficult for N > 1, due to the complex nature of
the subregions Ωi in higher dimensions.

We recall certain basic concepts from variational calculus that will prove useful in our analysis. For
additional reading, the author suggests [8], a classic text by Gelfand on the subject.
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Let us fix a point u ∈ U . Define u∗ = u+ εϕ, for some ε ∈ IR, ϕ ∈ IRN×K , ϕ = (ϕT1 , ..., ϕ
T
K)T , ‖ϕi‖ ≤ 1

for all i = 1, ..,K. The increment of J [u] is given by

∆J [ε, ϕ;u] = J [u∗]− J [u].

We say the functional J [u] is twice-differentiable if its increment can be written in the form

∆J [ε, ϕ;u] = δJ [ϕ;u]ε+ δ2J [ϕ;u]ε2 +M [ε, ϕ;u]ε2,

where δJ [ϕ;u] and δ2J [ϕ;u] are linear and quadratic functionals in ϕ, respectively, and limε→0M [ε, ϕ;u] = 0.
We say the functionals δJ [ϕ;u] and δ2J [ϕ;u] are the first and second variation of J [u], respectively.

We recall the following results regarding extremal points of a functional, taken from [8].
Theorem 2.1. A necessary condition for the differentiable functional J [u] to have an extremum at

u = û is that its first variation vanishes, namely

δJ [ϕ; û] = 0

for all admissible ϕ.
Theorem 2.2. A sufficient condition for a twice differentiable functional J [u] to have a minimum at

u = û, given that the first variation δJ [ϕ;u] vanishes at u = û, is that its second variation δ2J [ϕ; û] is
strongly positive, namely, there exists a constant C > 0 such that

δ2J [ϕ; û] ≥ C‖ϕ‖2

for all admissible ϕ.
Theorems 2.1 and 2.2 will not be used until Section 3, but they motivate the work in this section. With

the necessary machinery in hand, we examine the increment ∆J [ε, ϕ;u].

Just as we have

Ωi = {x ∈ Ω|‖x− ui‖ ≤ ‖x− uj‖ for all j},

let us define

Ω∗i = {x ∈ Ω|‖x− u∗i ‖ ≤ ‖x− u∗j‖ for all j}.

In this way, just as

J [u] =
∑
i∈V

∫
Ωi

‖x− ui‖2p(x)dx,

we have

J [u∗] =
∑
i∈V

∫
Ω∗i

‖x− u∗i ‖2p(x)dx.

In addition, if Ω∗i ∩Ω∗j 6= ∅, let us define σ∗i,j as the unique element of Ω∗i ∩Ω∗j that is collinear with {u∗i , u∗j}.
Because of the complex nature of the regions of integration Ωi and Ω∗i , the uncertain variation between

the regions Ωi and Ω∗i , and the uncertainty in the change of boundaries or creation of new boundaries be-
tween {Ωi}Ki=1 and {Ω∗i }Ki=1, we divide the increment into two portions.

We introduce another functional, Ĵ [u∗;u], defined by

Ĵ [u∗;u] =
∑
i∈V

∫
Ωi

‖x− u∗i ‖2p(x)dx.
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We can now decompose the increment ∆J [ε, ϕ;u] into two parts and write

∆J [ε, ϕ;u] = ∆Ju[ε, ϕ;u] + ∆JΩ[ε, ϕ;u],

where

∆Ju[ε, ϕ;u] = Ĵ [u∗;u]− J [u],

∆JΩ[ε, ϕ;u] = J [u∗]− Ĵ [u∗;u].

The subscripts u and Ω have meaning, in that ∆Ju[ε, ϕ;u] obtains its variation from the difference in
functions of u and u∗ integrated over identical subregions, and ∆JΩ[ε, ϕ;u] obtains its variation from the
difference in identical functions of u∗ integrated over differing subregions. However, before we compute
the representations of ∆Ju[ε, ϕ;u] and ∆JΩ[ε, ϕ;u], we give the following lemma, which will be useful in
analyzing both components of the increment.

Lemma 2.3.

‖x− y‖2 − ‖x− z‖2 = 2〈x− y + z

2
, z − y〉

With the assistance of Lemma 2.3, we can efficiently compute the representation of ∆Ju[ε, ϕ;u].
Lemma 2.4.

∆Ju[ε, ϕ;u] = −2ε
∑
i∈V

∫
Ωi

〈x− ui, ϕi〉p(x)dx+ ε2
∑
i∈V
‖ϕi‖2µ(Ωi)

Proof.

∆Ju[ε, ϕ;u] = Ĵ [u∗;u]− J [u] =
∑
i∈V

∫
Ωi

‖x− u∗i ‖2p(x)dx−
∑
i∈V

∫
Ωi

‖x− ui‖2p(x)dx

=
∑
i∈V

∫
Ωi

‖x− u∗i ‖2 − ‖x− ui‖2p(x)dx

By Lemma 2.3,

‖x− u∗i ‖2 − ‖x− ui‖2 = 2〈x− ui + u∗i
2

, ui − u∗i 〉 = 2〈x− ui −
ε

2
ϕi,−εϕi〉

= −2ε〈x− ui, ϕi〉+ ε2‖ϕi‖2.

The representation of the component ∆Ju[ε, ϕ;u] has been straightforward to obtain. However, the
component ∆JΩ[ε, ϕ;u] requires precision and care, due to the complex nature of the subregions and the
boundaries between them. We give the following lemma.

Lemma 2.5. Let {Ω∗i }Ki=1 and {Ωj}Kj=1 be two Voronoi tessellations of Ω. Then

Ω = ∪1≤i≤K ∪1≤j≤K (Ω∗i ∩ Ωj)

and

∂(Ω∗i ∩ Ωj) =
(
∪ 6̀=i Ω∗i ∩ Ω∗` ∩ Ωj

)
∪
(
∪` 6=j Ω∗i ∩ Ω` ∩ Ωj

)
∪
(
Ω∗i ∩ Ωj ∩ (∂Ω)

)
.

Proof. We have

∪1≤i≤K ∪1≤j≤K (Ω∗i ∩ Ωj) = ∪1≤i≤K(Ω∗i ∩ (∪1≤j≤KΩj)) = ∪1≤i≤K(Ω∗i ∩ Ω) = ∪1≤i≤KΩ∗i = Ω.
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Now consider x ∈ ∂(Ω∗i ∩Ωj). We have either x ∈ ∂Ω∗i , x ∈ ∂Ωj , or both. Without loss of generality, suppose
x ∈ ∂Ω∗i . Then x ∈ Ω∗i ∩ Ω∗` for some ` 6= i, or x ∈ ∂Ω. Therefore,

∂(Ω∗i ∩ Ωj) ⊂
(
∪ 6̀=i Ω∗i ∩ Ω∗` ∩ Ωj

)
∪
(
∪` 6=j Ω∗i ∩ Ω` ∩ Ωj

)
∪
(
Ω∗i ∩ Ωj ∩ (∂Ω)

)
.

Because Ωj ∩ Ω` ⊂ ∂Ωj for all ` 6= j and Ωj ∩ ∂Ω ⊂ ∂Ωj , we also have

∂(Ω∗i ∩ Ωj) ⊃
(
∪ 6̀=i Ω∗i ∩ Ω∗` ∩ Ωj

)
∪
(
∪` 6=j Ω∗i ∩ Ω` ∩ Ωj

)
∪
(
Ω∗i ∩ Ωj ∩ (∂Ω)

)
.

We have the following representation for ∆JΩ[ε, ϕ;u].
Lemma 2.6.

∆JΩ[ε, ϕ;u] = −ε2
∑
ei,j∈E

∫
Ωi∩Ωj

[〈ϕj , x− uj〉 − 〈ϕi, x− ui〉]2

‖uj − ui‖
p(x)dx+MΩ[ε, ϕ;u]ε2,

where limε→0MΩ[ε, ϕ;u] = 0.
Proof. For the sake of space, we introduce the notation

ui→j = uj − ui, u∗i→j = u∗j − u∗i ,

and

Ωi∗,j = Ω∗i ∩ Ωj , Ωi∗,j,k = Ω∗i ∩ Ωj ∩ Ωk, Ωi∗,j∗,k = Ω∗i ∩ Ω∗j ∩ Ωk.

By Lemmas 2.3 and 2.5, we have

∆JΩ[ε, ϕ;u] = J [u∗]− Ĵ [u∗, u] =
∑
i∈V

∫
Ω∗i

‖x− u∗i ‖2p(x)dx−
∑
j∈V

∫
Ωj

‖x− u∗j‖2p(x)dx

=
∑
i∈V

∑
j∈V

∫
Ωi∗,j

(
‖x− u∗i ‖2 − ‖x− u∗j‖2

)
p(x)dx =

∑
i 6=j

∫
Ωi∗,j

2〈x− σ∗i,j , u∗i→j〉p(x)dx

=
∑
i 6=j

∫
Ωi∗,j

2

‖u∗i→j‖2
〈x− σ∗i,j , u∗i→j〉〈u∗i→j , u∗i→j〉p(x)dx

=
∑
i 6=j

∫
Ωi∗,j

2

‖u∗i→j‖2
(x− σ∗i,j)T [u∗i→j(u

∗
i→j)

T ]u∗i→jp(x)dx.

Applying integration by parts, we obtain

∆JΩ[ε, ϕ;u] =
∑
i 6=j

[ ∫
∂(Ωi∗,j)

〈x− σ∗i,j , u∗i→j〉2〈u∗i→j , n〉
‖u∗i→j‖2

p(x)dx−
∫

Ωi∗,j

〈x− σ∗i,j , u∗i→j〉2〈u∗i→j ,∇p(x)〉
‖u∗i→j‖2

dx

]
,

where n is the unit normal vector, oriented outward with respect to Ωi∗,j .
By Lemma 2.5,

∂(Ωi∗,j) =
(
∪` 6=i Ω∗i ∩ Ω∗` ∩ Ωj

)
∪
(
∪` 6=j Ω∗i ∩ Ω` ∩ Ωj

)
∪
(
Ω∗i ∩ Ωj ∩ (∂Ω)

)
.

For x ∈ Ωi∗,j∗,j , 〈u∗i→j , x− σ∗i,j〉 = 0. Therefore the integral over Ωi∗,j∗,j is zero. For x ∈ Ωi∗,i,j , 〈ui→j , x−
σi,j〉 = 0, giving

〈u∗i→j , x− σ∗i,j〉 = 〈ui→j , x− σi,j〉+ 〈u∗i→j − ui→j , x− σi,j〉+ 〈u∗i→j , σi,j − σ∗i,j〉

= ε〈ϕj − ϕi, x− σi,j〉 −
ε

2
〈u∗i→j , ϕi + ϕj〉

= ε〈ϕj − ϕi, x− σi,j〉 −
ε

2
〈ui→j , ϕi + ϕj〉 −

ε2

2
〈ϕj − ϕi, ϕi + ϕj〉

= ε〈ϕj , x− σi,j −
ui→j

2
〉 − ε〈ϕi, x− σi,j +

ui→j
2
〉 − ε2

2
〈ϕj − ϕi, ϕi + ϕj〉

= ε(〈ϕj , x− uj〉 − 〈ϕi, x− ui〉)−
ε2

2
〈ϕj − ϕi, ϕi + ϕj〉.
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Therefore,

〈u∗i→j , x− σ∗i,j〉2 = ε2(〈ϕj , x− uj〉 − 〈ϕi, x− ui〉)2

− ε3

2
〈ϕj − ϕi, ϕi + ϕj〉(〈ϕj , x− uj〉 − 〈ϕi, x− ui〉 −

ε

2
〈ϕj − ϕi, ϕi + ϕj〉).

For Ωi∗,i,j oriented with respect to Ωi∗,j ,

〈u∗i→j , n〉 = −
〈u∗i→j , ui→j〉
‖ui→j‖

= −
〈u∗i→j , u∗i→j〉+ 〈u∗i→j , ui→j − u∗i→j〉

‖ui→j‖
= −
‖u∗i→j‖2

‖ui→j‖
+ ε
〈u∗i→j , ϕj − ϕi〉
‖ui→j‖

,

giving

〈u∗i→j , x− σ∗i,j〉2〈u∗i→j , n〉
‖u∗i→j‖2

= ε
〈u∗i→j , ϕj − ϕi〉〈u∗i→j , x− σ∗i,j〉2

‖ui→j‖‖u∗i→j‖2
− ε2 [〈ϕj , x− uj〉 − 〈ϕi, x− ui〉]2

‖ui→j‖

+ ε3
〈ϕj − ϕi, ϕi + ϕj〉

2‖ui→j‖
(〈ϕj , x− uj〉 − 〈ϕi, x− ui〉 −

ε

2
〈ϕj − ϕi, ϕi + ϕj〉)

for x ∈ Ωi∗,i,j oriented with respect to Ωi∗,j .
Noting that p(x) = 0 on ∂Ω and that Ωi,j = ∪`∈V Ωi,j,`∗ , we can write

∆JΩ[ε, ϕ;u] = −ε2
∑
ei,j∈E

∫
Ωi∩Ωj

[〈ϕj , x− uj〉 − 〈ϕi, x− ui〉]2

‖ui→j‖
p(x)dx+MΩ[ε, ϕ;u]ε2,

where

MΩ[ε, ϕ;u] =
1

ε2

∑
i 6=j

[ ∫
(∪` 6=i,jΩi∗,`,j)∪(∪` 6=i,jΩi∗,`∗,j)

〈x− σ∗i,j , u∗i→j〉2〈u∗i→j , n〉
‖u∗i→j‖2

p(x)dx

−
∫

Ωi∗,j

〈x− σ∗i,j , u∗i→j〉2〈u∗i→j ,∇p(x)〉
‖u∗i→j‖2

dx+ ε

∫
Ωi∗,i,j

〈u∗i→j , ϕj − ϕi〉〈u∗i→j , x− σ∗i,j〉2

‖ui→j‖‖u∗i→j‖2
p(x)dx

+ ε3
∫

Ωi∗,i,j

〈ϕj − ϕi, ϕi + ϕj〉
2‖ui→j‖

(〈ϕj , x− uj〉 − 〈ϕi, x− ui〉 −
ε

2
〈ϕj − ϕi, ϕi + ϕj〉)p(x)dx

]
+
∑
ei,j∈E

∫
∪` 6=i,jΩi,j,`∗

[〈ϕj , x− uj〉 − 〈ϕi, x− ui〉]2

‖ui→j‖
p(x)dx.

The proof that limε→0MΩ[ε, ϕ;u] = 0 is tedious and adds little insight to the result. Therefore, we leave
it to Appendix A.

With an explicit representation of both ∆Ju[ε, ϕ;u] and ∆JΩ[ε, ϕ;u], we can write the increment
∆J [ε, ϕ;u] explicitly.

Theorem 2.7.

∆J [ε, ϕ;u] = −2ε
∑
i∈V

∫
Ωi

〈x− ui, ϕi〉p(x)dx+ ε2
∑
i∈V
‖ϕi‖2µ(Ωi)

− ε2
∑
ei,j∈E

∫
Ωi∩Ωj

[〈ϕj , x− uj〉 − 〈ϕi, x− ui〉]2

‖uj − ui‖
p(x)dx+M [ε, ϕ;u]ε2,

where limε→0M [ε, ϕ;u] = 0.
Explicit representations of the first and second variation δJ [ϕ;u] and δ2J [ϕ;u] follow naturally.
Corollary 2.8.

δJ [ϕ;u] = −2
∑
i∈V

∫
Ωi

〈x− ui, ϕi〉p(x)dx

Corollary 2.9.

δ2J [ϕ;u] =
∑
i∈V
‖ϕi‖2µ(Ωi)−

∑
ei,j∈E

∫
Ωi∩Ωj

[〈ϕj , x− uj〉 − 〈ϕi, x− ui〉]2

‖uj − ui‖
p(x)dx



9

3. Conditions for Extrema. With explicit representations of both the first and second variations
in hand, we may now investigate necessary conditions for extremal points and give sufficient conditions for
which those points are minima. We have the following necessary condition with respect to the first variation.

Theorem 3.1. u is an extremal point of J only if

ui = µ(Ωi)
−1

∫
Ωi

xp(x)dx for all i = 1, ...,K.

Proof. By Theorem 2.1, we require∑
i∈V

∫
Ωi

〈x− ui, ϕi〉p(x)dx = 0

for all admissible ϕ. This implies that ∫
Ωi

(x− ui)p(x)dx = 0

for all i = 1, ...,K. Rearranging, the desired result follows.
Before we make use of the second variation for sufficient conditions, we give the following lemmas:
Lemma 3.2. Let f be a C2 function on a convex region Ω. Then we have

min
x∈Ω

λmin(H[f(x)]) ≤ 〈x− y,∇xf(x)−∇yf(y)〉
〈x− y, x− y〉

for all x 6= y ∈ Ω.

Proof. The result follows from the definition of the Hessian, namely

H[f(x)]ϕ = lim
ε→0

1

ε
[∇f(x+ εϕ)−∇f(x)].

Lemma 3.3.

arg min
y∈Ω

∫
Ω

‖x− y‖2p(x)dx = µ(Ω)−1

∫
Ω

xp(x)dx

Proof. Observing the first order condition

∇y
∫

Ω

‖x− y‖2p(x)dx =

∫
Ω

2(y − x)p(x)dx = 0

gives us

y = µ(Ω)−1

∫
Ω

xp(x)dx

as the unique critical point. We note that

H
[ ∫

Ω

‖x− y‖2p(x)dx] = ∇y
∫

Ω

2(y − x)p(x)dx = 2µ(Ω)I.

We also recall the following result with respect to block diagonally dominant matrices, taken from [6].

Lemma 3.4. Let f(x) =
∑K
i=1

∑K
j=1 x

T
i ai,jxj , with ai,j = aTj,i for all i, j = 1, ...,K. The function f(x)

is strongly positive if
(i) ai,i is SPD, i = 1, ...,K,

(ii) (‖a−1
i,i ‖)−1 ≥

∑
j 6=i ‖ai,j‖, i = 1, ..,K, with strict inequality holding for at least one i,

(iii) A = (ai,j)
K
i,j=1 is block irreducible.
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We prove the following sufficient condition with respect to the second variation.

Theorem 3.5. Suppose

ui = µ(Ωi)
−1

∫
Ωi

xp(x)dx

and

Ji[u]

2
min
x∈Ω

λmin(H[− ln p(x)]) ≥ (N − 1)µ(Ωi) +
∑
j∼i

∫
Ωi∩Ωj

‖xi − σi,j‖2

‖ui − σi,j‖
p(x)dx

for all i = 1, ...,K, with strict inequality holding for at least one i. Then u is a minimum.

Proof. The condition

ui = µ(Ωi)
−1

∫
Ωi

xp(x)dx, i = 1, ...,K

implies that δJ [ϕ;u] = 0. Therefore, by Theorem 2.2 all we require is that δ2J [ϕ;u] is strongly positive.
However, before we can apply the result of Lemma 3.4, we must verify that δ2J [ϕ;u] can be put in the
necessary form. We have

[〈ϕj , x− uj〉 − 〈ϕi, x− ui〉]2 = ϕTj (x− uj)(x− uj)Tϕj − ϕTi (x− ui)(x− uj)Tϕj
− ϕTj (x− uj)(x− ui)Tϕi + ϕTi (x− ui)(x− ui)Tϕi.

From this we obtain

δ2J [ϕ;u] =
∑
i∈V

∑
j∈V

ϕTi ai,jϕj ,

where

ai,i = µ(Ωi)I −
∑
j∼i

∫
Ωi∩Ωj

(x− ui)(x− ui)T

‖uj − ui‖
p(x)dx,

ai,j =

∫
Ωi∩Ωj

(x− ui)(x− uj)T

‖uj − ui‖
p(x)dx, i 6= j.

We note that

(‖a−1
i,i ‖)

−1 = inf
‖Ai,ix‖
‖x‖

= inf
‖sx−Bx‖
‖x‖

≥ inf
s‖x‖ − ‖Bx‖

‖x‖
= s− sup

‖Bx‖
‖x‖

= s− ‖B‖.

We require

µ(Ωi) ≥
∥∥∥∥∑
j∼i

∫
Ωi∩Ωj

(x− ui)(x− ui)T

‖uj − ui‖
p(x)dx

∥∥∥∥+
∑
j∼i

∥∥∥∥∫
Ωi∩Ωj

(x− ui)(x− uj)T

‖uj − ui‖
p(x)dx

∥∥∥∥.
From this condition, it quickly follows that ai,i is SPD. In addition, A = (ai,j)

K
i,j=1 is block irreducible, from
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the connectedness of the Voronoi graph G. Examining the right hand side, we have∥∥∥∥∑
j∼i

∫
Ωi∩Ωj

(x− ui)(x− ui)T

‖uj − ui‖
p(x)dx

∥∥∥∥+
∑
j∼i

∥∥∥∥∫
Ωi∩Ωj

(x− ui)(x− uj)T

‖uj − ui‖
p(x)dx

∥∥∥∥
≤
∑
j∼i

∫
Ωi∩Ωj

‖(x− ui)(x− ui)T ‖+ ‖(x− ui)(x− uj)T ‖
‖uj − ui‖

p(x)dx

≤
∑
j∼i

∫
Ωi∩Ωj

‖x− ui‖2 + ‖x− ui‖‖x− uj‖
‖uj − ui‖

p(x)dx =
∑
j∼i

∫
Ωi∩Ωj

2‖x− ui‖2

‖uj − ui‖
p(x)dx

≤
∑
j∼i

∫
Ωi∩Ωj

2‖x− ui‖2 − 〈x− ui, x− uj〉+ 〈x− ui, x− uj〉
‖uj − ui‖

p(x)dx

≤
∑
j∼i

∫
Ωi∩Ωj

〈x− ui, uj − ui〉
‖uj − ui‖

p(x)dx+
∑
j∼i

∫
Ωi∩Ωj

2〈x− ui, x− σi,j〉
‖uj − ui‖

p(x)dx

≤
∫
∂Ωi

〈x− ui, n〉p(x)dx+
∑
j∼i

∫
Ωi∩Ωj

‖x− σi,j‖2

‖ui − σi,j‖
p(x)dx.

Using Stokes’ Theorem, we have∫
∂Ωi

〈x− ui, n〉p(x)dx =

∫
Ωi

〈∇p(x), x− ui〉dx+Nµ(Ωi).

Therefore, to prove the theorem it suffices to have∫
Ωi

〈∇p(x), ui − x〉dx ≥ (N − 1)µ(Ωi) +
∑
j∼i

∫
Ωi∩Ωj

‖x− σi,j‖2

‖ui − σi,j‖
p(x)dx.

We also have∫
Ωi

〈∇xp(x), ui − x〉dx = µ(Ωi)
−1

(
〈
∫

Ωi

xp(x)dx,

∫
Ωi

∇xp(x)dx〉 −
∫

Ωi

p(x)dx

∫
Ωi

〈x,∇xp(x)〉dx
)

= µ(Ωi)
−1

(
〈
∫

Ωi

xp(x)dx,

∫
Ωi

∇yp(y)dy〉 −
∫

Ωi

p(x)dx

∫
Ωi

〈y,∇yp(y)〉dy
)

= µ(Ωi)
−1

∫
Ωi

∫
Ωi

p(x)〈x,∇yp(y)〉 − p(x)〈y,∇yp(y)〉dxdy

= µ(Ωi)
−1

∫
Ωi

∫
Ωi

p(x)〈x− y,∇yp(y)〉dxdy

= µ(Ωi)
−1 1

2

∫
Ωi

∫
Ωi

〈x− y, p(x)∇yp(y)− p(y)∇xp(x)〉dxdy

= µ(Ωi)
−1 1

2

∫
Ωi

∫
Ωi

〈x− y,∇y ln p(y)−∇x ln p(x)〉p(x)p(y)dxdy.

Applying Lemmas 3.2 and 3.3,∫
Ωi

〈∇xp(x), ui − x〉dx ≥ µ(Ωi)
−1 1

2

[
min
x∈Ω

λmin(H[− ln p(x)])
] ∫

Ωi

[ ∫
Ωi

‖x− y‖2p(x)dx

]
p(y)dy

≥ Ji[u]

2
min
x∈Ω

λmin(H[− ln p(x)]).

With this, we can easily prove Fleischer’s sufficient conditions for local minima for N = 1.
Corollary 3.6. Let Ω ⊂ IR. A sufficient condition for u to be a minima of J is

ũi = µ(Ωi)
−1

∫
Ωi

xp(x)dx
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and

d2

dx2
ln p(x) < 0

for all x ∈ Ω.
Proof. When N = 1, Ωi ∩ Ωj = {σi,j}. By Theorem 3.5, a sufficient condition is

min
x∈Ω

λmin(H[− ln p(x)]) = min
x∈Ω

d2

dx2
[− ln p(x)] > 0.

When the dimension increases, the additional terms play a role, and the multidimensional version of the
log-concavity condition

min
x∈Ω

λmin(H[− ln p(x)]) > 0

is not sufficient to guarantee a critical point to be a minimum. We have the following example for N = 2.
Example 3.7. Consider the function f : Ω := [0,M ]2 → [0, 1], p(x) = exp{−‖x‖2}, and the case

K = 2. We introduce the subregions

Ω1 = {x ∈ Ω|x1 ≥ x2}, Ω2 = {x ∈ Ω|x2 ≥ x1}.

The centroidal locations are given by

u1 =

√
2π

8

(
erf(
√

2M)−
√

2e−M
2

erf(M)√
2erf(M)− erf(

√
2M)

)
, u2 =

√
2π

8

( √
2erf(M)− erf(

√
2M)

erf(
√

2M)−
√

2e−M
2

erf(M)

)
.

The centroidal locations are reflections about the line x1 = x2, implying that they are generators for Ω1,Ω2

and, therefore, produce a centroidal Voronoi tessellation. We note that we have the log-concavity condition

λmin(H[− ln p(x)]) = λmin(H[‖x‖2]) > 0.

We investigate δ2J [ϕ∗;u] for ϕ∗1 = (0, 1)T , ϕ∗2 = (0, 0)T . For illustration, we consider the result as M →∞,
though the result holds for choices for which M is finite. We have

δ2J [ϕ∗;u] =

∫
Ω1

p(x)dx−
∫

Ω1∩Ω2

〈ϕ1, x− u1〉2

‖u2 − u1‖
p(x)dx

=

∫ ∞
0

∫ x1

0

e−(x2
1+x2

2)dx2dx1 −
∫ ∞

0

( x√
2
− u1(2))2

‖u2 − u1‖
e−x

2

dx

=
π

8
−

√
π

64 ((3− 2
√

2)π + 8(2−
√

2))
√

2π
4 (
√

2− 1)
=

π

16
√

2(
√

2− 1)
− 1

2
< 0,

so therefore the centroidal Voronoi diagram of u1, u2 cannot be a minimum.
Finally, we give a simple example of Theorem 3.5 used in practice to verify a given centroidal Voronoi

tessellation is indeed a minimum.
Example 3.8. Let Ω = [−10, 10]2 and p(x) = e−‖x‖

2/2. The generators

u1 =

(
(1− e−50)

√
2πerf(5

√
2)

0

)
, u2 = −u1

produce a centroidal Voronoi tessellation with regions Ω1 = [0, 10]× [−10, 10], Ω2 = [−10, 0]× [−10, 10]. We
have

λmin(H[− ln p(x)]) = λmin(H[‖x‖2/2]) = 1,
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µ(Ω1) = µ(Ω2) =
1

2

∫
Ω

e−‖x‖
2/2dx = πerf(5

√
2)2 ≈ π,

J [u1] = J [u2] =

∫
Ω1

‖x− u1‖2e−‖x‖
2/2dx

=
√
π/2erf(5

√
2)

(
(1− e−50)

√
2πerf(5

√
2)((1− e−50)2πerf(5

√
2)− 4)

+ 2
√

2πerf(5
√

2) + 4e−50((1− e−50)
√

2πerf(5
√

2)− 10)

)
≈ 2π(π − 1),

and ∫
Ω1,2

‖x‖2

‖u1‖
e−‖x‖

2/2dx =
1

1− e−50

(
1− 20e−50

√
2πerf(5

√
2)

)
≈ 1.

We see that

π(π − 1)− π − 1 = (π − 1)2 > 0,

implying that centroids u1 and u2 satisfy the conditions of Theorem 3.5, and, therefore, the centroidal Voronoi
tessellation is a strict minimum.

4. Non-Uniqueness for Two Generators. Following and expanding upon the techniques of Fleis-
cher, the sufficient conditions in Theorem 3.5 can be used to give sufficient conditions for a unique centroidal
Voronoi tessellation. This procedure is done in Appendix B, however, the resulting conditions in dimen-
sions greater than one prove unwieldy, and may describe an empty set in general. In particular, we show
that for any density and multidimensional domain, there exists multiple two generator centroidal Voronoi
tessellations.

First, we must first show that the energy J [u] is stable with respect to small changes in the density
p(x). For the remainder of the section, we assume all densities are positive real-valued C2 functions with
compact and convex support contained in Ω, but not necessarily given by Ω. Let us denote the energy of
the generator u over a density p(x) by J [u; p]. Let

∆(Ω) := max
x,y∈Ω

‖x− y‖

be the diameter of Ω. Using the diameter and the measure of the domain Ω, we can bound the change in
energy resulting from a change in density.

Lemma 4.1. If ‖p(x)− p̂(x)‖ < ε, then |J [u; p]− J [u; p̂]| < ε∆(Ω)2µ(Ω)1/2.
Proof. We may write p̂(x) as

p̂(x) = p(x) + εγ(x), ‖γ(x)‖ < 1.

By linearity of J with respect to the density, we have

|J [u; p̂]− J [u; p]| = ε|
∑
i∈V

∫
Ωi

‖x− ui‖2γ(x)dx| ≤ ε
∑
i∈V

∫
Ωi

‖x− ui‖2|γ(x)|dx.

Applying the Cauchy-Schwartz inequality, we obtain

|J [u; p̂]− J [u; p]| ≤ ε
∫

Ω

(∑
i∈V
‖x− ui‖21{x ∈ Ωi}

)
|γ(x)|dx

≤ ε
(∫

Ω

(∑
i∈V
‖x− ui‖21{x ∈ Ωi}

)2
dx

)1/2(∫
Ω

γ(x)2dx

)1/2

< ε[∆(Ω)4µ(Ω)]1/2 = ε∆(Ω)2µ(Ω)1/2.
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If we have a given centroidal Voronoi tessellation u for a density p(x), for sufficiently small perturbations
of the density, we can bound the distance between u and the closest centroidal Voronoi tessellation for the
new, perturbed density. However, first we must define notions of distance on ΩK . We define a natural inner
product, given by

〈u, v〉ΩK :=

K∑
i=1

〈ui, vi〉,

with induced norm

‖u− v‖2ΩK =

K∑
i=1

‖ui − vi‖2.

We have the following theorem.
Theorem 4.2. Let u be a centroidal Voronoi tessellation of p(x) and J [u; p] be σ-strongly convex in

B(u,R) := {v ∈ ΩK |‖v − u‖ΩK ≤ R}. Then for any p̂(x) satisfying

‖p(x)− p̂(x)‖ < ε :=
σR2

4∆(Ω)2µ(Ω)1/2

there exists some centroidal Voronoi tessellation û of p̂(x) such that

‖u− û‖ΩK <
√
ε.

Proof. Because J [u; p] is σ-strongly convex in B(u,R) and u is a centroidal Voronoi tessellation of p(x),
we have that for any v ∈ B(u,R),

J [v; p] ≥ J [u; p] + 〈∇J [u; p], v − u〉+
σ

2
‖u− v‖2ΩK = J [u; p] +

σ

2
‖u− v‖2ΩK .

This gives

J [v; p̂]− J [u; p̂] = (J [v; p̂]− J [v; p]) + (J [u; p]− J [u; p̂]) + (J [v; p]− J [u, p])

≥ σ

2
‖u− v‖2ΩK − |J [v; p̂]− J [v; p]| − |J [u; p̂]− J [u; p]|.

Now, suppose ‖u− v‖ΩK = R. Using Lemma 4.1, we have

J [v; p̂]− J [u; p̂] >
σR2

2
− 2ε∆(Ω)2µ(Ω)1/2.

Setting

ε =
σR2

4∆(Ω)2µ(Ω)1/2

implies that

J [v, t∗ + τ ]− J [u, t∗ + τ ] > 0

for all v such that ‖u− v‖ΩK = R. Therefore B(u,R) must contain a local minimum in its interior for p̂(x).
This local minimum is by definition a centroidal Voronoi tessellation.

Given Theorem 4.2, we are now prepared to prove that for any density on a multidimensional domain,
there exists multiple two generator centroidal Voronoi tessellations.

Theorem 4.3. Let Ω ⊂ IRN , N > 1. Then there exists multiple two generator centroidal Voronoi
tessellations that are distinct not counting permutations.
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Proof. Suppose, to the contrary, that there is a unique centroidal Voronoi tessellation, given by u =
(u1, u2). Let the mass center of Ω with respect to p(x) be given by z. We necessarily have z = αu1 +(1−α)u2

for some 0 < α < 1.
For each line L in IRN that passes through z, we can consider the projection of p(x) onto L, given by

pL(x) =

∫
{y|(y−x)⊥L}

p(x)dy, x ∈ L.

Each pL has convex and compact support on a one dimensional interval of length at most ∆(Ω), where we
will assume z to correspond to the origin. Let

Θ = {u|u is a local minimum two generator centroidal Voronoi tessellation of pL for some L} ⊂ Ω2.

We note that any centroidal Voronoi tessellation in one dimension that is a local minimum must be a strict
local minimum. This is easily seen from considering δ2J [ϕ; v] in the one dimensional case and noting that
pL has convex support. This implies that each minimum is σ-strongly convex, for some σ > 0.

Let v = (v1, v2) be an element of Θ that maximizes the energy J [v] over Θ. Let the line that contains
v1, v2 be denoted Lv. Because of the assumption of uniqueness of u, u uniquely minimizes energy over all
choices in Ω2. Therefore v and u are distinct, even with respect to permutation. Let us denote the Voronoi
regions of v1 and v2 by Ω1 and Ω2, respectively. Let the centroids of Ω1 and Ω2 be given by w1 and w2,
respectively. We have z = αw1 +(1−α)w2 for some 0 < α < 1. Because v is a centroidal Voronoi tessellation
of pLv , (v1−w1) ⊥ Lv and (v2−w2) ⊥ Lv. Therefore, δJ [ϕ;u] = 0 for all perturbations ϕ along the line Lv.

It suffices to show that v1 = w1 and v2 = w2. Because ∆(Ω) < ∞ and p(x) is C2, we have that for
a sufficiently small angular perturbation of Lv about z, pL is also perturbed a sufficiently small amount.
Therefore, by Theorem 4.2, for any sufficiently small angular perturbation, there is an element of Θ on the
perturbed line that is sufficiently close to v. This creates a local, convex (N − 1) dimensional subset M of
Θ, that contains v and a unique element of Θ for every directional angular perturbation of Lv. However, v
maximizes energy over this local convex set M , and therefore δJ [ϕ;u] = 0 for all ϕ pointing along M .

Because δJ [ϕ;u] = 0 for all perturbations ϕ along the line Lv, and the linearity of δJ [ϕ; v] with respect
to ϕ, we have δJ [ϕ; v] equals zero for ϕ1 = w1 − v1, ϕ2 = w2 − v2. However, because w1 and w2 are the
centroids of Ω1 and Ω2, respectively, we have∫

Ω1

〈x− v1, w1 − v1〉p(x)dx ≥ 0 and

∫
Ω2

〈x− v2, w2 − v2〉p(x)dx ≥ 0.

Therefore ∫
Ω1

〈x− v1, w1 − v1〉p(x)dx =

∫
Ω2

〈x− v2, w2 − v2〉p(x)dx = 0,

which implies that v1 = w1 and v2 = w2.
While the machinery in the proof of Theorem 4.3 does not extend easily to K > 2, it is likely that this

result holds for general K. Finally, we make the following conjecture.
Conjecture 4.4. There does not exist a unique centroidal Voronoi tessellation for generators and

dimensions both greater than one.
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Appendix A. limε→0MΩ[ε, ϕ;u] = 0 .
We note that for ε sufficiently small, the change in tessellation from {Ωi}Ki=1 to {Ω∗i }Ki=1 is of order ε, by

the definition of Ωi. Stated more precisely, we have the following lemma:
Lemma A.1. For sufficiently small ε,

sup
x,y∈Ω∗i∩Ωj

|〈x− y, uj − ui〉| < M1ε, λN (Ω∗i ∩ Ωj) < M2ε, and λN−1(Ωi ∩ Ωj ∩ Ω∗k) < M3ε

for all i 6= j 6= k and some fixed M1,M2,M3 <∞.
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Proof. We first aim to bound supx,y∈Ω∗i∩Ωj
|〈x− y, uj −ui〉|. It suffices to show that this holds for all u∗

such that ϕj = 0 for all j. We can decompose ϕi into two components, the projection onto uj − ui and the
component orthogonal to ui→j . The result of the projection component is that the hyperplanes containing
Ωi,j and Ωi∗,j∗ , respectively are parallel, and at most an ε distance apart. The orthogonal component has
norm at most ε. By the boundedness of Ω, namely

∆(Ω) := max
x,y∈Ω

‖x− y‖ <∞,

the maximum distance between Ωi,j and Ωi∗,j∗ along uj − ui is bounded above by ε∆(Ω)
‖uj−ui‖ . Therefore, we

have supx,y∈Ω∗i∩Ωj
|〈x− y, uj − ui〉| < Mε, M <∞. From here, the remaining two results come from noting

that the N -dimensional volume of Ω∗i ∩ Ωj and the (N − 1)-dimensional volume Ωi ∩ Ωj ∩ Ω∗k are bounded
by ∂(Ω)N−1Mε and ∂(Ω)N−2Mε, respectively.

The assumption on ε is non-restrictive, in that we are concerned with behavior in an ε-neighborhood of
u as ε→ 0. We are now prepared to prove the following:

Lemma A.2. limε→0MΩ[ε, ϕ;u] = 0
Proof. It suffices to show |MΩ[ε, ϕ;u]| < Cε, for some C <∞. By Lemma A.1,∫

(∪` 6=i,jΩi∗,`,j)∪(∪` 6=i,jΩi∗,`∗,j)

〈x− σ∗i,j , u∗i→j〉2〈u∗i→j , n〉
‖u∗i→j‖2

p(x)dx

≤
∫

(∪` 6=i,jΩi∗,`,j)∪(∪` 6=i,jΩi∗,`∗,j)

M2
1 ε

2

‖u∗i→j‖
p(x)dx

≤ M2
1 ε

2 maxx∈Ω p(x)

mini 6=j ‖u∗i→j‖

[ ∑
6̀=i,j

λN−1(Ωi∗,j,`) +
∑
` 6=i,j

λN−1(Ωi∗,j,`∗)

]

≤ M2
1 ε

2 maxx∈Ω p(x)

mini 6=j ‖u∗i→j‖
2(K − 2)M3ε,

∫
Ωi∗,j

〈x− σ∗i,j , u∗i→j〉2〈u∗i→j ,∇p(x)〉
‖u∗i→j‖2

dx ≤
∫

Ωi∗,j

M2
1 ε

2‖∇p(x)‖
‖u∗i→j‖

dx

≤ M2
1 ε

2 maxx∈Ω ‖∇p(x)‖
mini6=j ‖u∗i→j‖

λN (Ωi∗,j)

≤ M2
1 ε

2 maxx∈Ω ‖∇p(x)‖
mini6=j ‖u∗i→j‖

M2ε,

∫
Ωi∗,i,j

〈u∗i→j , ϕj − ϕi〉〈u∗i→j , x− σ∗i,j〉2

‖ui→j‖‖u∗i→j‖2
p(x)dx ≤

∫
Ωi∗,i,j

‖ϕj − ϕi‖M2
1 ε

2

‖ui→j‖‖u∗i→j‖
p(x)dx

≤ (‖ϕj‖+ ‖ϕi‖)M2
1 ε

2 maxx∈Ω p(x)

mini 6=j ‖ui→j‖mini6=j ‖u∗i→j‖
λN−1(Ωi∗,i,j)

≤ 2M2
1 ε

2 maxx∈Ω p(x)

mini 6=j ‖ui→j‖mini6=j ‖u∗i→j‖
∆(Ω)N−1,

∫
Ωi∗,i,j

〈ϕj − ϕi, ϕi + ϕj〉
2‖ui→j‖

(〈ϕj , x− uj〉 − 〈ϕi, x− ui〉 −
ε

2
〈ϕj − ϕi, ϕi + ϕj〉)p(x)dx

]
≤
∫

Ωi∗,i,j

‖ϕj − ϕi‖‖ϕi + ϕj‖
2‖ui→j‖

(‖ϕj‖∆(Ω) + ‖ϕi‖∆(Ω) +
ε

2
‖ϕj − ϕi‖‖ϕi + ϕj‖)p(x)dx

]
≤ (‖ϕj‖+ ‖ϕi‖)2

2 mini 6=j ‖ui→j‖
(2∆(Ω) +

ε

2
(‖ϕj‖+ ‖ϕi‖)2)λN−1(Ωi∗,i,j)maxx∈Ωp(x)

≤ 2(2∆(Ω) + 2ε)∆(Ω)N−1maxx∈Ωp(x)

mini 6=j ‖ui→j‖
,
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∫
∪` 6=i,jΩi,j,`∗

[〈ϕj , x− uj〉 − 〈ϕi, x− ui〉]2

‖ui→j‖
p(x)dx ≤

∫
∪` 6=i,jΩi,j,`∗

[‖ϕj‖∆(Ω) + ‖ϕi‖∆(Ω)]2

‖ui→j‖
p(x)dx

≤ [2∆(Ω)]2 maxx∈Ω p(x)

mini6=j ‖ui→j‖
∑
6̀=i,j

λN−1(Ωi,j,`∗)

≤ 4∆(Ω)2 maxx∈Ω p(x)

mini 6=j ‖ui→j‖
(K − 2)M3ε.

This gives us

|MΩ[ε, ϕ;u]| ≤
∑
i6=j

[
2M2

1M3(K − 2) maxx∈Ω p(x)

mini 6=j ‖u∗i→j‖
+
M2

1M2 maxx∈Ω ‖∇p(x)‖
mini 6=j ‖u∗i→j‖

+
2M2

1 ∆(Ω)N−1 maxx∈Ω p(x)

mini 6=j ‖ui→j‖mini6=j ‖u∗i→j‖
+

4∆(Ω)N−1(∆(Ω) + ε)maxx∈Ωp(x)

mini 6=j ‖ui→j‖

]
ε

+
∑
ei,j∈E

4M3(K − 2)∆(Ω)2 maxx∈Ω p(x)

mini 6=j ‖ui→j‖
ε.

We have |MΩ[ε, ϕ;u]| ≤ Cε, where C < ∞ follows from p(x), ‖∇p(x)‖ < ∞ for all x ∈ Ω, ‖uj − ui‖
bounded away from zero, and N,K,∆(Ω) <∞.

Appendix B. Resulting Sufficient Conditions for Uniqueness.
First we must restrict the domain U . Consider the set of permutations acting on the elements u1, ..., uK ,

denoted PK . If u ∈ U is a minimum, then σ(u) must also be a minimum for any σ ∈ PK . Therefore, we must
redefine our concept of unique. We must either search for a centroidal Voronoi tessellation that is unique up
to permutation, or consider an alternate domain which does not contain permutations of itself. Namely, we
consider closed convex regions W ⊂ ΩK satisfying the following two conditions:

(i) σ(Wo) ∩W = ∅ for all non-trivial permutations σ ∈ PK ,
(ii) ∪σ∈PK

σ(W) = ΩK .
The region W contains every element of U up to permutation, but does not contain any non-trivial permu-
tations of itself. Therefore, every unlabeled set of K-quantizers appears only once.

In the scalar setting, this is easily done by setting

W = {u|ui ≤ uj ,∀i < j}.

In the multi-dimensional setting, there is no clear “best” choice of W. To show uniqueness, the boundary of
W must not contain any points that locally minimize energy. In one dimension, this is guaranteed, for the
boundary consists exclusively of degenerate points.

We also note that while U is not convex, W is, allowing existing optimization theory to be applied. In
addition, because W is closed, it necessarily contains the set of degenerate points on its boundary. We recall
the following optimization lemma, from [7].

Lemma B.1. Let C1 be a connected open region in N -dimensional Euclidean space and let C be a convex
closed region in C1. Let f(x) be a function defined in C1 which has the following properties:

(i) ∇f(x) exists and is continuous in C1.
(ii) At every point where ∇f(x) = 0, the function attains a strict local minimum.

(iii) At every point on the boundary of C there exists a vector pointing into C along which the directional
derivative of f(x) is negative.

Then, in the region C, f(x) possesses a unique stationary point. The point is interior to C; it is a relative
and absolute minimum of f(x) in C.

We are now prepared to give conditions for uniqueness.
Theorem B.2. Suppose W is such that no element of ∂W locally minimizes energy with respect to Wo,

and for every u ∈ W such that

ui = µ(Ωi)
−1

∫
Ωi

xp(x)dx
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for all i = 1, ...,K, we have

Ji[u]

2
min
x∈Ω

λmin(H[− ln p(x)]) ≥ (N − 1)µ(Ωi) +
∑
j∼i

∫
Ωi∩Ωj

‖xi − σi,j‖2

‖ui − σi,j‖
p(x)dx

for all i = 1, ...,K, with strict inequality holding for at least one i. Then J [u] achieves a unique centroidal
Voronoi tessellation onW, which is also unique on U up to permutation. That centroidal Voronoi tessellation
is the unique local and global minimizer of the quantization energy on W, and also on U up to permutation.

Proof. By the assumption on ∂W, we immediately have condition (iii) of Lemma B.1. By the as-
sumptions of the theorem and Theorem 3.5, condition (ii) holds. We have continuity of δJ [ϕ;u] for all
K-quantizers. We will show continuity of δJ [ϕ;u] for degenerate points in Appendix C.

Fleischer’s result for N = 1 (Theorem 1.2) is a direct corollary of Theorem B.2. However, as noted in
Section 4, when N > 1 the given conditions are significantly more cumbersome. Further, by Theorem 4.3,
the conditions of Theorem B.2 are not satisfiable for K = 2, and, as suggested by Conjecture 4.4, may indeed
describe an empty set in general.

Appendix C. Continuity of δJ [ϕ;u] for Degenerate Points.

The continuity of δJ [ϕ;u] for degenerate points is immediate when ϕ points along a curve of degenerate
points. Therefore, it suffices to consider δJ [ϕ;u] when u∗ = u+ εϕ is a K-quantizer, for ε sufficiently small.
We will treat the case when u is a (K − 1)-quantizer. All other cases of degeneracy follow immediately from
successive application of the following analysis.

Without loss of generality, suppose the degenerate point of u is given by uK−1, and the corresponding
two points in u∗ are given by u∗K−1 and u∗K . Let us introduce the point û = u+ εϕ̂, where

ϕ̂i =

{
0 i = 1, ...,K − 2
ϕi i = K − 1,K

,

and the functional Ĵ [û, u], given by

Ĵ [û, u] =

K−2∑
i=1

∫
Ωi

‖x− ûi‖2p(x)dx+

∫
Ω̃K−1

‖x− ûK−1‖2p(x)dx+

∫
Ω̃K

‖x− ûK‖2p(x)dx,

where Ω̃K−1 and Ω̃K are the resulting tessellations from the generators ûK−1 and ûK acting on the domain
ΩK−1.

We will decompose ∆J [ε, ϕ;u] into three components, namely

∆J [ε, ϕ;u] = [J [u∗]− J [û]] + [J [û]− Ĵ [û, u]] + [Ĵ [û, u]− J [u].

We aim to find the terms of order epsilon in each component. The component J [u∗]− J [û] is the difference
in energy between two K-quantizers, and therefore

J [u∗]− J [û] = −2ε

K−2∑
i=1

∫
Ωi

〈x− ûi, ϕi〉p(x)dx+M1[u∗, û]ε

= −2ε

K−2∑
i=1

∫
Ωi

〈x− ui, ϕi〉p(x)dx+M1[u∗, û]ε,

where M1[u∗, û] → 0 as ε → 0. The component J [û] − Ĵ [û, u] consists of the same generators, integrated
over ε-varying subdomains. By Lemma 2.6 and the results of the previous Appendix,

J [û]− Ĵ [û, u] = M2[û, u]ε,
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where M2[û, u]→ 0 as ε→ 0. All that remains is to consider Ĵ [û, u]− J [u]. We have

Ĵ [û, u]− J [u] =

∫
Ω̃K−1

‖x− ûK−1‖2p(x)dx+

∫
Ω̃K

‖x− ûK‖2p(x)dx−
∫

ΩK−1

‖x− uK−1‖2p(x)dx

=

∫
Ω̃K−1

[‖x− ûK−1‖2 − ‖x− uK−1‖2]p(x)dx+

∫
Ω̃K

[‖x− ûK‖2 − ‖x− uK−1‖2]p(x)dx

= −2ε

[ ∫
Ω̃K−1

〈x− uK−1, ϕK−1〉p(x)dx+

∫
Ω̃K

〈x− uK−1, ϕK〉p(x)dx

]
+M3[û, u]ε,

where M3[û, u] → 0 as ε → 0. We are now prepared to give an explicit representation of δJ [ϕ;u] for
degenerate points.

Theorem C.1. Let u ∈ ΩK be degenerate, namely

u1 = u2 = ...u`(1), u`(1)+1 = u`(1)+2 = ... = u`(2), ..., u`(k−1)+1 = u`(k−1)+2 = ... = u`(k),

with `(k) = K. Suppose u∗ = u+ εϕ is non-degenerate for all ε sufficiently small. Then

δJ [ϕ;u] = −2
∑
i∈V

∫
Ω̃i

〈x− ui, ϕi〉p(x)dx,

where {Ω̃i}`(j)i=`(j−1)+1 is the tessellation of the degenerate subregion corresponding to the jth element degen-

erate k-quantizer by the elements {u∗}`(j)i=`(j−1)+1 as ε→ 0.
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