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Abstract

Computational problems in applied mathematics often have strong ties to graph/grid based struc-
tures. We treat graph-based problems in applied mathematics. We consider the spectral bisection
problem for general graphs, and extend Miroslav Fiedler’s results to more general graphs, using
the theory of irreducible matrices. In addition, we apply the spectral bisection theory to graph
partitioning, and create a cascadic Multigrid algorithm to solve for the Fiedler vector of a graph
Laplacian, thus producing a bisection. We give convergence results for a sub class of graphs for our
method. Finally, we consider the numerical computation of the fair price of barrier options. In prac-
tice, this becomes a problem of solving a partial differential equation numerically. We introduce a
technique where the grid is treated in space and time simultaneously. We use a Multigrid V-cycle,
in which the coarse grids are chosen adaptively, based on the properties of the finer structured
graph.
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Chapter 1
Introductory Comments

This thesis treats graph-based problems in applied mathematics. We treat three very different

graph-type problems. We begin by treating the spectral bisection problem for general graphs, and

extend Miroslav Fiedler’s results to more general graphs in Chapter 2. In Chapter 3, we apply

the spectral bisection theory to graph partitioning, and create a multilevel algorithm to solve for

the Fiedler vector of a graph Laplacian, thus producing a bisection. Finally, in Chapter 4, we

consider the numerical computation of the fair price of barrier options. In practice, this becomes a

problem of solving a partial differential equation numerically. We introduce a technique where the

grid is treated in space and time simultaneously. We use a multilevel structure, in which the coarse

grids are chosen adaptively, based on the properties of the finer structured graph. We give a more

detailed overview of each chapter below.

1.1 Theory of Connected Spectral Partitioning

The theorems of Miroslav Fiedler regarding bisections of irreducible matrices lies at the heart of

graph partitioning theory. We consider the framework of graph bisections, in reference to the

Fiedler vector. We extend the class of graphs that are guaranteed to produce connected spectral

bisections. In addition, we show that for all connected graphs there exists a Fiedler vector such

that connectedness is preserved by the bisection. We find that the subset of such Fiedler vectors

has positive measure.

1.2 Cascadic Multigrid as an Eigensolver for Fiedler Vectors

The Fiedler vector of a graph Laplacian is the eigenvector corresponding to the second smallest

eigenvalue. This vector has been found to have applications in fields such as graph partitioning and

graph drawing. We develop a cascadic multigrid algorithm for fast computation of this vector. It is

a purely algebraic approach based on a heavy edge coarsening scheme and a modified form of power
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iteration for refinement. In addition, we consider linear iterative methods as alternative refinement

procedures. We also consider the cascadic multigrid method in the geometric settings for elliptic

eigenvalue problems and show its uniform convergence under certain assumptions. We explore the

applicability of such an eigensolver to the graph partitioning problem and stress the simplicity

of the implementation of our multilevel algorithm in comparison to other partitioning schemes.

Numerical tests are presented for computing the Fiedler vector of several practical graphs, and

numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.

1.3 Adaptive Space-Time Multigrid for the Numerical Val-

uation of Options

We introduce a space-time multigrid method for the pricing of barrier options. In particular, we

consider pricing the value of up-and-out barrier options, discretized by the method of lines, using

the implicit Euler method. We implement a space-time multigrid method in which the domain in

space and time is treated simultaneously. We consider an adaptive coarsening technique in which

the choice of coarsening in space or time is dependent on the discrete problem’s degree of ansitropy

at each level. We perform local Fourier analysis to find a suitable choice of our ansitropy constant.

In addition, we consider the numerical solution of the problem both in the standard space-time

domain and in a transformed domain. Finally, we discuss the appeal of such an algorithm over

other methods for parabolic partial differential equations.



Chapter 2
On the Preservation of

Connectedness in Spectral Bisections

2.1 Introduction

We consider the set of connected, undirected multigraphs with no self-loops, which we will be

denoted by G. We will represent the set of graphs in G with |V | = n by Gn. A graph G = (V,E),

where V is the vertex set and E the edge set can be uniquely determined by its Laplacian (for a

review of graph theory refer to [4, 5, 12]). We have the following defintion.

Definition 2.1.1. Let G = (V,E) be a graph. We define the Laplacian matrix of G, denoted

L(G) ∈ Rn2

, n = |V |, as follows:

L(G)(i,j) :=

{
dvi for i = j

−weij for i 6= j

where dvi is the degree of vertex vi ∈ V , and weij the weight of edge (i, j) ∈ E

We note that L(G) is self-adjoint and positive semi-definite. In addition, the sum of any row

(and, also, any column) of L is zero. This implies that λ = 0 is an eigenvalue of L, with correspond-

ing eigenvector w = (1, ..., 1)T . Let us order the eigenvalues of L(G) as follows: 0 = λ1 ≤ λ2 ≤ ... ≤
λn, and denote by w1, w2, ..., wn the corresponding eigenvectors. We see that w1 = α(1, 1, ..., 1)T .

The eigenvalue and eigenvector pair λ2, w2 have special significance and, for this reason, are given

special names.

Definition 2.1.2. The algebraic connectivity of a graph G, denoted by a(G), is defined to be

the second eigenvalue of the corresponding Laplacian matrix, L(G), with eigenvalues defined in

increasing order 0 = λ1 ≤ λ2 ≤ ... ≤ λn. An eigenvector corresponding to the eigenvalue a(G) is

called a Fiedler vector of G.
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The term Fiedler vector comes from the mathematician Miroslav Fiedler, who proved many

results regarding the significance of this vector. His work involving irreducible matrices and the

Fiedler vector can be found in [13, 14]. The Fiedler vector of Graph Laplacians has proven to be a

useful quantity, finding an application in graph partitioning, which has proven useful in data mining

[3], very-large-scale integration (VLSI) design [38], and parallel computing [21].

For the remainder of the chapter, we consider the bisection problem exclusively. The goal of

a two way partition (bisection) is to cut a given graph into two parts, where the size of each sub-

graph is roughly equal, while minimizing the number of edges that go between them. The key to

computing such a partition in practice is to try to obtain one that is near optimal, while at the

same time, only requiring a reasonable amount of computing time.

It turns out that the Fiedler vector of the Laplacian of a graph proves to be a useful tool

for partitioning a graph into two parts. This can be seen by noting the connection between the

Rayleigh quotient of L and an edge cut, and recalling that the Fiedler vector minimizes the Rayleigh

quotient in the subspace {x|(x,1) = 0}. For a more detailed derivation of the connection, refer to

[29]. Bisections of graphs involving a Fiedler vector are called spectral bisections. Fiedler proved a

result regarding the connectivity of such a spectral bisection.

Theorem 2.1.3 (Fiedler’s Bisection Theorem). Let G = (V,E) ∈ Gn and let u be an eigenvector of

the Laplacian L(G) corresponding to the second smallest eigenvalue a(G), the algebraic connecivity

of G. Let V1 = {i ∈ V |ui ≥ 0}, where ui, i ∈ {1, 2, ..., n}, is the coordinate of u corresponding to

the i-th vertex in V . Then the subgraph G1 of G generated by G on the subset V1 of V is connected.

A proof of this fact can be found in [14]. From this theorem, we have the following corollary

regarding the two components of a spectral bisection of a connected graph.

Corollary 2.1.4. Let G ∈ Gn be a connected graph with vertices 1, 2, ..., n. Let y be a Fiedler vector

of G. If yi 6= 0 for all i ∈ {1, 2, ...n}, then the set of all alternating edges, i.e. edges (i, k) for which

yiyk < 0 forms a cut C of G such that both banks of G are connected.

While the above corollary shows connectedness for a spectral bisection with yi 6= 0 for all i,

it says nothing about the case when there exists components with yi = 0. We treat both cases,

and show the existence of a Fiedler vector for any connected graph G ∈ Gn such that the spectral

bisection preserves connectedness. In addition, we show the class of graphs for which all Fiedler

vectors produce connected bisections to be larger than described above.

Theorem 2.1.5 (Generalized Bisection Theorem). Let G ∈ Gn be a graph with V = {1, 2, ..., n}.
Let U ∼= Rk be the eigenspace of a(G), and W ⊂ U be the set of elements u ∈ U such that the

subgraphs G1, G2 of G, generated by G on the subsets V1 = {i ∈ V |ui ≥ 0}, V2 = {i ∈ V |ui < 0},
respectively, are connected. Then W has positive measure.

This theorem shows that for a given connected graph, the set of Fiedler vectors for which a

bisection produces two connected subgraphs has positive measure. We aim to prove this result.
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2.2 Plan of Proof

The overall plan of our proof is as follows: coarsen the set of nodes for which the Fiedler vector

has zero component (referred to as zero valuated vertices), treat the cases where the zero valuated

vertex is and isn’t an accumulation point separately, and then show that the subset W is non-empty.

More explicitly, the general flow of the remainder of the chapter is as follows:

Step 1: Consider the case of star graphs Sk, k ∈ N .

We treat the class of star graphs first, in order to gain intuition and give motivation for the

general case. We will see strong parallels between this case and the general setting.

Step 2: Transform the graph into components, isolating nodes which are zero valuated for all

v ∈ U and coarsening them.

We consider the subset of Rn for which U lies. We consider the components for which vi = 0

for all v ∈ U , and coarsen them to a single vertex. We show that the non-zero components of the

Fiedler vector, as well as the overall structure of the graph, remain unchanged.

Step 3: Check whether the zero valuated vertex is an accumulation point and, if so, the number

of components r its removal produces.

We consider whether the given node is a accumulation point, and if it is not, apply existing the-

ory regarding accumulation points with respect to Fiedler vectors. Therefore, it remains to treat

the case where the zero valuated vertex is an accumulation point.

Step 4: Show the existence of Fiedler vectors that produce connected spectral bisections for

graphs with a zero valuated accumulation point.

We use the formulation of L that the accumulation point produces and, taking inspiration from

the case of Sk, show the existence of connected spectral bisection producing Fiedler vectors.

2.3 Spectral Bisection of Sk

We begin by treating the case of the graph Sk. We do not assume any conditions on the edge

weights of the graph. Rather, we only assume that the central node has zero-valuation for all

x ∈ {x|Lx = a(G)x}. If this is not the case, then Corollary 2.1.4 applies. Without loss of generality,

we will take our central node to be ordered as the first vertex. This gives us the following form for
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our Laplacian:

L(Sk) =



d0 −d1 −d2 · · · −dk
−d1 d1 0 · · · 0

−d2 0 d2
. . .

...
...

...
. . .

. . . 0

−dk 0 · · · 0 dk


(k+1)×(k+1)

Taking y = (0 y1 ... yk)T , y ∈ {x|Lx = a(G)x}, we see Ly = a(G)y. Therefore, we have the

following relations:
k∑
i=1

di yi = 0

di yi = a(G) yi ∀ i ∈ {1, 2, ..., k}

This implies that di = a(G) for i = 1, 2, ..., k. Renormalizing the Laplacian, L̂ = 1
a(G)L, we have

the following form:

L̂(Sk) =

(
k −1Tk

−1k Ik

)

where 1k = (1, 1, ..., 1)T ∈ Rk and Ik ∈ Rk×k is the identity matrix. We see that U is the set of

all (k + 1)-dimensional vectors v such that v0 = 0 and
∑k
i=1 vi = 0. Therefore, U ∼= Rk−1. For the

set {i|vi < 0} to be non-void and generate a connected graph, we must have vi < 0 for exactly one

index. Therefore, the set W consists of all normalized Fiedler vectors such that vj < 0 for some j

and vi ≥ 0 for all i 6= j. We see this set has positive measure. We have now shown Theorem 2.1.5

for the subset {Sk|k ∈ N} ⊂ G.

2.4 Transformation of General Graphs

We now treat the general case. Consider some graph G ∈ Gn, and the set of its Fiedler vectors

U ⊂ Rn. Let i1, i2, ..., ij be the j components for which vik = 0 for all v ∈ U and k ∈ {1, 2, ..., j}.
Let us reorder the indices such that the components i1, i2, ..., ij are transformed to the indices

1, 2, ..., j. Representing our Laplacian in block form:

L =

(
L0 −AT

−A L̃

)
n×n

where L0 ∈ Rj×j , A ∈ R(n−j)×j , L̃ ∈ R(n−j)×(n−j). Our Fiedler vectors take the form v =

(01×j ỹ
T )T , where ỹ ∈ Rn−j . This gives us that L̃ ỹ = a(G) ỹ and AT ỹ = 0.

We aim to coarsen G, so that the vertices that make up L0 become a single node, and both L̃
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and ỹ remain unchanged. We introduce the interpolation matrix:

IhH =

(
1j 0j×(n−j)

0n−j In−j

)
n×(n−j+1)

The Laplacian (IhH)TLIhH preserves L̃. In addition, ỹ is preserved under (IhH)T . The coarsened

Laplacian L̂ = (IhH)TLIhH ∈ Rm, m = n− j + 1, is represented by

L̂ =

(
l0 −aT

−a L̃

)
m×m

From L̂(IhH)T y = a(G)(IhH)T y, we obtain that a = A1j and l0 = 1Tj L0 1j . What remains is to

consider the properties of the M-matrix L̃.

2.5 Accumulation Points and Reducibility

We consider the reducibility properties of L̃. We begin by recalling the concept of reducibility. We

have the following definitions, from [44].

Definition 2.5.1. A matrix A ∈ Rn×n is reducible if there exists a permutation matrix P ∈ Rn×n

such that

PAPT =

(
A1,1 A1,2

0 A2,2

)

Definition 2.5.2. A matrix A ∈ Rn×n has degree of reducibility r if there exists a permutation

matrix P ∈ Rn×n such that

PAPT =



A1,1 A1,2 · · · · · · A1,r

0 A2,2 · · · · · · A2,r

... 0
. . .

...
...

...
. . .

. . .
...

0 0 · · · 0 Ar,r


with Ai,i irreducible, 1 ≤ i ≤ r.

We consider the reducibility properties of L̃. We note that L̃ is reducible if and only if the vertex

v0 is an accumulation point of G. If the removal of v0 from G produces r connected components,

then L̃ has degree of reducibility r. Assuming L̃ to already be in block reducible form, L̂ has the
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following representation:

L̂ =



l0 −aT1 −aT2 · · · −aTr
−a1 L1 0 · · · 0

−a2 0 L2
. . .

...
...

...
. . .

. . . 0

−ar 0 · · · 0 Lr


Similarly, characteristic valuations can be put in the form y = (0 ỹT ) = (0 yT1 yT2 ... yTr )T . The

concept of reducibility is closely connected to the idea of connectedness. In particular, we have

Lemma 2.5.3. A graph G is connected if and only if its corresponding Laplacian matrix L(G) is

irreducible.

We begin by treating the case in which v0 is not an accumulation point. This implies that L̃ is

irreducible. We recall the following theorem, proven by Fiedler in [14].

Theorem 2.5.4. Let A be an n×n non-negative, irreducible, symmetric matrix with eigenvalues

λ1 ≥ λ2 ≥ ... ≥ λn. Let v be a vector such that, for fixed s ≥ 2, Av ≥ λsv. Then M = {i | vi ≥ 0}
is non-void, and the degree of reducibility of A(M) is less than or equal to s− 2.

Let 0 = λ1 < λ2 ≤ ... ≤ λm and µ1 ≤ µ2 ≤ ... ≤ µm−1 be the eigenvalues of L̂ and L̃,

respectively. We see λ1 = 0 and λ1 < λ2 from the properties of the Laplacian of a connected graph.

We do not have the same properties for L̃, because L̃ is not a Laplacian, but rather a M-matrix.

Let v be an eigenvector of L̃ corresponding to µ2. Consider the Gershgorin bound of L̃, given

by g = max1≤i≤m−1|L̃(i, i)|. We have that the matrix B = gI− L̃ is non-negative, with eigenvalues

g − µ1 ≥ g − µ2 ≥ ... ≥ g − µm−1 > 0. Therefore, by Theorem 2.5.4, we see that the set {i|vi ≥ 0}
is non-void and irreducible. We aim to show that ỹ is an eigenvector of µ2. We begin by recalling

the eigenvalue interlacing theorem.

Theorem 2.5.5. Let S be a real n × m matrix such that STS = I and let A be a symmetric

n × n matrix with eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn. Define B = STAS and let B have eigenvalues

µ1 ≤ µ2 ≤ ... ≤ µm. Then the eigenvalues of B interlace those of A, namely

λn−m+i ≥ µi ≥ λi

From this we see that 0 = λ1 ≤ µ1 ≤ a(G) ≤ µ2. From L̃ỹ = a(G)ỹ, we see that a(G)

is an eigenvalue and ỹ an eigenvector of L̃. Therefore, µ1 = a(G) or µ2 = a(G), or both. We

recall that the eigenvector of µ1 is either non-negative, or non-positive, by the Courant-Fisher

Theorem. Because ỹ contains both positive and negative values, we know ỹ must be an eigenvalue

of µ2 = a(G).

By Theorem 2.5.4, we see that the matrix generated by {i|ỹi ≥ 0} is non-void and irreducible.

However, we have that ỹi 6= 0 for all i. Therefore, both {i|ỹi > 0} and {i|ỹi < 0} are non-void and

irreducible. This implies that the graphs generated by {i|ỹi > 0} and {i|ỹi < 0} are non-empty and
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connected. Therefore, on the larger graph, represented by L̂, we have that the graphs generated by

{i|yi ≥ 0} and {i|yi < 0} are non-empty and connected. This completes the proof of the case when

v0 is not an accumulation point. We present this in the form of a theorem.

Theorem 2.5.6. Let G ∈ Gn be a connected graph with vertices 1, 2, ..., n. Let y be a Fiedler vector

of G. If G is still connected upon the removal of vertices such that yi = 0, then the set of all

alternating edges, i.e. edges (i, k) for which yiyk < 0 forms a cut C of G such that both banks of G

are connected.

We see that this extends the results of Fiedler to a more general class of graphs. It suffices to

consider only the k indices for which yi = 0 for all y ∈ U , because the set of Fiedler vectors for

which yi = 0 for more than k indices has measure zero. All that remains is to treat the case where

v0 is an accumulation point of G.

2.6 Measure of W for Graphs with Zero Valuated Accumu-

lation Sets

We now consider the case where v0 is an accumulation point of G, and aim to show that for this

case W has positive measure. We recall the following theorem with respect to accumulation points,

from [14].

Theorem 2.6.1. Let G be a connected graph, and y a characteristic valuation of G. Let k be a

point of articulation of G and let G0, G1, ..., Gr be the components of the graph obtained from G by

removing the vertex k and all adjacent edges. Then:

(i) If yk > 0, then exactly one of the components Gi contains a vertex negatively valuated in y.

For all vertices s in the remaining components ys > yk.

(ii) If yk = 0 and there is a component Gi containing both positively and negatively valuated

vertices, then there is exactly one such component, all remaining being zero valuated.

(iii) If yk = 0 and no component contains both positively and negatively valuated vertices, then

each component Gi contains either only positively valuated, or negatively valuated, or only

zero valuated vertices.

We see that for our purposes, we only consider case (iii). We can assume our accumulation

point v0 to be the only zero valuated point, for the set of Fiedler vectors which have more than

one zero-accumulation point after our coarsening procedure have measure zero. Therefore, case (ii)
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does not apply. With L̂ in the form

L̂ =



l0 −aT1 −aT2 · · · −aTr
−a1 L1 0 · · · 0

−a2 0 L2
. . .

...
...

...
. . .

. . . 0

−ar 0 · · · 0 Lr


we see that for each Li, we have that the component of y corresponding to Li, denoted yi, is either

positive or negative, i.e. yi > 0 or yi < 0. Therefore, we see that a valuation y ∈ W if yj < 0 for

some j and yi > 0 for all i 6= j.

This is very similar to the case of star graphs {Sr|r ∈ N}. However, we are working with

vectors yi, rather than numbers. However, by a renormalization, we can treat it as an equivalent

case. Suppose we renormalize each yi so that aTi yi = 1. Then we consider the Fiedler vector

y = (0 α1y
T
1 α2y

T
2 ... αry

T
r )T , α1, α2, ..., αr ∈ R.

What remains to be shown is that y must take this form, for fixed yi. This can be shown

by proving the eigenvalue a(G) has multiplicity one for L1, L2, ..., Lr. Rather than show this, we

recall that the space of eigenvectors which are either positive or negative has dimension one, by the

Perron-Frobenius Theorem, since L1, L2, ..., Lr are all M-matrices. Therefore, by Theorem 2.6.1, it

follows that y must be in the form y = (0 α1y
T
1 α2y

T
2 ... αry

T
r )T .

We see that having y ∈ W is equivalent to αj < 0 for some j, and αi > 0 for all i 6= j. This

is exactly the case we were treating for the star graph Sr. It follows that W has positive measure.

Theorem 2.1.5 is proven.

2.7 Conclusion

We have proven more general results with respect to the characterization of connected spectral

bisection producing valuations. We extended the results of Fiedler to a larger class of graphs, and

characterized the cases where valuations produce connected graphs. We showed the set of Fiedler

vectors which produce connected spectral bisections to have positive measure. We hope this fosters

further research into the field of spectral partitioning.



Chapter 3
A Cascadic Multigrid Algorithm for

Computing the Fiedler Vector of

Graph Laplacians

3.1 Introduction

Computation of the Fiedler vector of Graph Laplacians has proven to be a relevant topic, and has

found applications in areas such as graph partitioning and graph drawing [29]. We will focus on

graph partitioning as an application. Graph partitioning is an interesting and increasingly relevant

area in mathematics. This problem has numerous uses, including data mining [3], very-large-scale

integration (VLSI) design [38], and parallel computing [21]. Suppose there is a program that needs

to be run simultaneously on k processors. The goal is to divide the computational tasks between

the processors evenly, while at the same time, minimizing the overhead communication. This can

be easily converted to a k-way partitioning problem, with the vertices being the tasks, the edges the

connections between them, and the partitions the processors [21]. The goal of a k-way partitioning

problem is to partition a given graph into k parts, where the size of each partition is roughly equal,

while minimizing the number of edges that go between partitions. We will formalize this concept

later. The key to computing such a partition in practice is to obtain one that is nearly optimal,

while at the same time, only requiring a reasonable amount of computing time.

It turns out that the Fiedler vector of the Laplacian of a graph proves to be a good tool for

partitioning a graph into two parts. In Section 3.2.2 we will show the connection between the

Fiedler vector and graph partitioning. There have been a number of techniques implemented for

computation of the Fiedler vector for the purpose of partitioning, most notably by Barnard and

Simon [2]. They implemented a multilevel coarsening procedure, using maximal independent sets

and created a matching from them. For the refinement procedure, Rayleigh quotient iteration was
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used. We note that the term refinement refers to the smoothing process that occurs, and has a

different meaning in the multigrid literature. Although at the time this was significantly faster

than the standard recursive spectral bisection, it leaves room for improvement. The majority of

the improvement has been in the form of coarsening algorithms. Better coarsening techniques, such

as heavy edge matching (HEM), have been used more frequently, and have exhibited much shorter

runtimes [26, 27]. However, very little has been done in the improvement of refinement procedures.

In this chapter, we introduce a new and fast coarsening algorithm, based on the conecpt of

heavy edge matching, to create a more rapid coarsening procedure. For refinement, we implement a

form of power iteraiton, and also consider linear iterative methods for refinement as well. For both

our coarsening and refinement procedures we have created algorithms that are easily implemented.

While heavy edge matching is complicated and tough to implement in high level programming

languages, since it involves selecting an edge with heaviest weight between two unmatched vertices,

heavy edge coarsening is significantly easier because we do not need to worry about whether the

vertex has been aggregated or not. For the refinement procedure, power iteration does not require

the inversion of a matrix, making its use much more straightforward than for Rayleigh quotient

iteration, which requires some technique to approximately invert the matrix. Based on these two

improved components, we propose a cascadic multigrid (CMG) method to computing the Fiedler

vector. This is a purely algebraic approach which only uses the given graph. Moreover, although

the purely algebraic approach is technically difficult to analyze, we consider the CMG method for

the elliptic eigenvalue problem in the geometric setting. Based on the standard smoothing property

and approximation property, we show that the geometric CMG method converges uniformly for

the model problem, which indirectly provides theoretical justification of the efficiency of the CMG

method. This also shows the potential of our CMG method for solving other eigenvalue problems

from different applications.

The rest of the chapter is organized as follows. We begin by defining the Laplacian of a graph

and the Fiedler vector in Section 3.2. We introduce the concept of a partition and build the

connection between the Fiedler vector and partitioning. In Section 3.3, we introduce our cascadic

algorithm. Details of our coarsening and our refinement procedures are introduced in Section 3.4

and 3.5 respectively. In Section 3.6, we consider our CMG method for elliptic eigenvalue problem

in geometric settings, and prove its uniform convergence. Finally, we perform numerical tests on

our algorithm to compare it to existing methods in Section 3.7.

3.2 Preliminary

In this section, we introduce the basic concepts, notation, and properties of the graph Laplacian,

Fiedler vector, and graph partitioning.
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3.2.1 Graph Laplacian and Fiedler Vector

We begin by formally introducing the concept of a graph Laplacian and Fiedler vector. We start

with the concept of a graph. A graph G = (V,E) is said to be undirected if the edges have no

orientation. A graph is a multigraph if e(i,i) /∈ E for all 1 ≤ i ≤ |V | (|V | is the number of vertices).

For the remainder of this chapter, we assume that all graphs are undirected and multigraphs.

We consider the task of representing a graph in matrix form. One of the most natural represen-

tations is through its Laplacian. The Laplacian of a graph is defined as follows:

Definition 3.2.1. Let G = (V,E) be a graph. We define the Laplacian matrix of G, denoted

L(G) ∈ Rn×n (or just L for short), n = |V |, as follows:

L(G)(i,j) :=

{
dvi , for i = j,

−we(i,j) , for i 6= j,

where dvi is the degree of vi, and we(i,j) is the weight of the edge connecting vi and vj.

The Laplacian L(G) is self-adjoint, positive semi-definite, and diagonally dominant. In addition,

the sum of any row (and also, any column) of L is zero. Therefore λ = 0 is an eigenvalue of L,

with corresponding eigenvector 1 = (1, ..., 1)T . Let us order the eigenvalues of L(G) as follows:

0 = λ1 ≤ λ2 ≤ ... ≤ λn, and denote by w1, w2, ..., wn the corresponding eigenvectors. We have

already seen that w1 = α1. We now consider λ2 and w2. This eigenvalue and eigenvector pair has

special significance and, for this reason, are given special names.

Definition 3.2.2. The algebraic connectivity of a graph G, denoted by a(G), is defined to be the

second smallest eigenvalue of the corresponding Laplacian matrix L(G), with eigenvalues 0 = λ1 ≤
λ2 ≤ ... ≤ λn and eigenvectors w1, w2, ..., wn. The eigenvector w2, corresponding to the eigenvalue

a(G), is called the Fiedler vector of G.

The term Fiedler vector comes from the mathematician Miroslav Fiedler, who proved many

results regarding the significance of this eigenvector. His work involving irreducible matrices and

the Fiedler vector can be found in [13, 14].

3.2.2 Graph Partitioning

Based on the graph Laplacian and Fiedler vector, we consider the graph partitioning problem and

put it in an optimization framework. This section closely follows the work done in [22, 29, 37], and

is mainly expository in nature. We begin by introducing basic terminology.

Definition 3.2.3. Let G = (V,E) be a graph, and P = {V1, V2, ..., Vk} be a partition of V . Assume

that |V | = km, for some m ∈ Z+. We say that the partition P is optimal if |V1| = |V2| = ... = |Vk|
and the edge cut of P is minimized, where e(P) is given by

e(P) :=
∑

i∈Vr,j∈Vs,r 6=s

we(i,j) .
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Although this definition is for a general k-way partition, for the remainder of this section we

will restrict ourselves to the two-way partitioning problem. We consider the Rayleigh quotient of a

Laplacian matrix L. We have the following lemma, from [37], regarding its representation.

Lemma 3.2.4. Let the n × n matrix L be the Laplacian of some graph G. Then the Rayleigh

quotient of L is given by

rL(x) =
1

‖x‖2

∑
1≤i<j≤n

we(i,j)(xi − xj)
2.

This property proves useful when considering partitions. Consider some partition P = {V1, V2}.
Let us define a vector x∗ ∈ Rn as follows:

x∗i =

{
+ 1√

n
, if i ∈ V1,

− 1√
n
, if i ∈ V2.

For this specific choice x∗, the Rayleigh quotient gives us

rL(x∗) =
4

n

∑
i∈V1,j∈V2

we(i,j) .

Note the similarity to the definition of an edge cut. For a given bisection P, we have rL(x) = n
4 e(P).

This implies that the problem of finding the partition P that minimizes the edge cut is equivalent

to the problem of finding the x∗, with x∗i = ± 1√
n

, that minimizes rL(x∗).

We can present the problem of finding the optimal two-way partition in this framework as well.

The condition that |V1| = |V2| is equivalent to requiring that 1Tx∗ = 0. It now follows that the

problem of finding the optimal two-way partition P of a graph G can be viewed as the following

optimization problem:

minimize rL(x∗), subject to x∗i = ± 1√
n

and wT1 x
∗ = 0.

The solution of this problem is hard to compute, but if we relax the condition of x∗i = ± 1√
n

to

‖x∗‖2 = 1, we can find a solution using Lagrange multipliers. We obtain

∇f(x∗)− µ1∇g1(x∗)− µ2∇g2(x∗) = 2Lx∗ − 2µ1x
∗ − µ2w1 = 0.

Premultiplying by wT1 gives us

2wT1 Lx
∗ − µ2 = 2(Lw1)Tx∗ − µ2 = −µ2 = 0⇒ Lx∗ = µ1x

∗.

The optimal x∗ is an eigenvector of L. By the Courant-Fisher Theorem, it follows that the Fiedler

vector y = w2 is the minimizer. It is this eigenvector that we will use for our bisection. It is in

this way that our eigensolver for the Fiedler vector becomes of great use in graph partitioning.

Graph partitioning methods that use computation of the Fiedler vector are referred to as spectral

methods. Now that we have established the connection between graph partitioning and the Fiedler
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vector, we will now discuss our cascadic algorithm for computing this vector.

3.3 Cascadic MG Method for Computing the Fiedler Vector

In this section, we introduce our cascadic MG (CMG) algorithm for computing the Fielder vector.

Our CMG algorithm is a purely algebraic approach, and the multilevel structure is constructed from

the graph directly. Therefore, similar to standard algebraic MG (AMG) method, the new algorithm

consists of three steps: a setup phase, a solving phase on the coarsest level, and a cascadic solving

phase (also called refinement phase in our chapter). The process works as follows:

Step 1: Coarsen our graph G0 iteratively to subgraphs G1, G2, ..., GJ .

Taking inspiration from AMG coarsening and graph matching, we introduce a technique we call

heavy edge coarsening (HEC). This coarsening procedure produces a restriction matrix Ii+1
i at each

level i, and its transport will be used as the prolongation. This creates a multilevel structure of

coarse Laplacians L0, L1, ...., LJ . In general, the coarsening phase of a multilevel algorithm of this

form tends to be the most expensive part of the procedure.

Step 2: Solve for the Fiedler vector on the coarse graph GJ .

In practice the coarse graph tends to be small in size (usually |V | < 100). The technique im-

plemented on this level is not extremely relevant for single computations of the vector. However,

for applications which may require this eigenvalue computation a large number of times (such as

recursive spectral bisection, for large k), this becomes more of a relevant issue. The commonly used

eigensolver on this coarse level, in the absence of a good intial guess, is the Lanczos algorithm.

However, in our implementation we over-coarsen to |V | < 25 and use power iteration on a random

vector, sampled from a Gaussian distribution.

Step 3: Prolongate the Fiedler vector from coarse graph GJ back to GJ−1 and apply several

steps of refinement (smoothing). Repeat this step until the finest level.

We map the Fiedler vector to the finer graph at each level and perform some form of refine-

ment (smoothing). We mainly consider a variant of power iteration (PI), but also introduce other

smoothers commonly used in multigrid cycles. Because our focus here is the Fiedler vector, we need

to keep the iterators orthogonal to the constant vector.

Traditionally, in the MG method literature, steps 2 and 3 together are called the CMG method.

However, in non-spectral methods for graph partitioning, this is not the case, and for this reason

we maintain the three-step structure that is prevalent in the literature. We present the core of our

cascadic eigensolver in Algorithm 1.
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Algorithm 1: Multilevel Cascadic Eigensolver

Input: graph Laplacian matrix L0 ∈ Rn0×n0

Output: approximate Fiedler vector ỹ(0)

Step 1: Setup Phase

set i = 0

while ni > 25 do

Ii+1
i ← HEC(Li)

Li+1 = Ii+1
i Li(Ii+1

i )T

i = i+ 1
J ← i

Step 2: Coarsest Level Solving Phase

ỹ(J) ← PI(LJ , randn(nJ))

Step 3: Cascadic Refinement Phase

for j=J-1,J-2,...,0 do

ŷ(j) = (Ii+1
i )T ỹ(j+1)

ỹ(j) ← PI(Lj ,ŷ(j))

As an initial illustration of our algorithm, we give an example of our partitioning algorithm

implemented on a structured grid of size 15 × 15. We consider a 4-way partition and observe

the partitions that we obtain. The image of this partition can be found in Figure 3.1. The four

partitions are all connected and almost exactly the same size, as expected.

Figure 3.1. Four-Way Partition of a Structured 15 × 15 Grid Using the Multilevel Cascadic Eigensolver

As mentioned before, because the size of the coarsest graph is very small, and power iteration is

efficient, our focus is on the first and third steps. We will first introduce the heavy edge coarsening

scheme we proposed for the setup phase in the next section, and then present our cascadic refinement
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scheme in detail in Section 3.5.

3.4 Heavy Edge Coarsening

In this section, we will discuss the coarsening algorithm used for the setup phase. The goal for

this step is to coarsen a graph quickly, while also maintaining some semblance of its structure. In

practice, the coarsening procedure tends to dominate the run time of the multilevel eigensolver in

general. There is a great trade-off between fast and optimal coarsening techniques. By following

some of the themes currently in place in the existing literature [29, 26, 27], we propose a new

coarsening algorithm, which takes a stance somewhere in between. In order to introduce our

coarsening algorithm, we begin by considering matching as a coarsening technique. The concept of

a matching formally is as follows:

Definition 3.4.1. Let G = (V,E). A matching is a subset E∗ ⊂ E, such that no two elements of

E∗ are incident on the same vertex. A matching E∗ is said to be a maximal matching if there does

not exist an edge ei,j ∈ E\E∗ such that E∗ ∪ {ei,j} is still a matching.

For our purposes, the matching computed at each level is always a maximal matching. A

matching is computed at each level, and the edges in the matching are collapsed to form the coarser

graph. We consider the class of matching algorithms concerned with finding the matching with

the heaviest edge weight. A matching of heavy edges would make an ideal coarse graph for our

multilevel eigenproblem. The reason for this is related to graph partitioning. This coarsening

procedure creates a smaller edge cut on coarse levels for partitions, which results in smaller edge

cuts for the finer graphs. Even though we are not refining partitions, this concept still applies, due to

the close connection between the Fiedler vector and graph partitioning. To do a matching of heavy

edges optimally is rather expensive because it would require searching for the heaviest weighed edge

incident to two unmatched vertices at each step. In practice, the vertices are usually visited in a

random order, and the heaviest weighed incident edge with an unmatched vertex is chosen. Such

a technique produces a somewhat less optimal partition, but is much faster in practice. We adopt

this procedure in our coarsening algorithm.

Moreover, we choose to perform a more aggressive coarsening procedure, rather than matching,

because it results in less coarse levels in the multilevel scheme. In addition, when considering

heavy edge schemes, the aggressive coarsening procedure is significantly easier to implement than

its matching counterpart because we consider mapping each node to the incident vertex with the

heaviest edge, rather than picking the heaviest edge with an unmatched vertex. Moreover, rather

than mapping every vertex, we only perform this mapping procedure to vertices that have yet to

be mapped to. In general, this will not result in a matching. Therefore, we call this technique

heavy edge coarsening (HEC). This procedure can easily be implemented. For the specific details

regarding its implementation, we refer to Algorithm 2.

The HEC procedure proves to be a fast and efficient means of coarsening. The structure of the

finer graph is well represented, making the refinement process of power iteration converge quickly.
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In addition, one of the biggest benefits of HEC is the relatively small number of coarse levels m

required. We will introduce this concept formally, in the form of a lemma.

Lemma 3.4.2. Let Gi = (Vi, Ei) be a connected graph. Let Ii+1
i [HEC] ∈ Rn

HEC
i+1 ×ni be a restriction

matrix defined by heavy edge coarsening and Ii+1
i [E∗i ] ∈ Rn

M
i+1×ni be a restriction matrix defined by

a matching E∗i . Define kiHEC = nHECi+1 /ni and kiM = nMi+1/ni Then we have 1/ni ≤ kiHEC ≤ 0.5

and 0.5 ≤ kiM ≤ 1.

Proof. From the definition of a matching, we have that nMi+1 cannot be less than half of ni. For

the bounds on kiHEC , we note that for our HEC algorithm, every node in Vi is mapped to another

node, or has been mapped to. This implies that nHECi+1 is at most half of ni. The lower bound

results from taking a HEC procedure on a graph Gi such that Gi+1 is a single node.

Algorithm 2: Heavy Edge Coarsening (HEC)

Input: graph Laplacian matrix Li ∈ Rni×ni
Output: restriction matrix Ii+1

i

c← 0
p← randperm(ni)
q ← zeros(ni, 1)
for i = 1, 2, ..., ni do

if q(p(i)) = 0 then
m← argmin(L(:, p(i)))
if q(m) = 0 then

c← c+ 1
q(m) = c
q(p(i)) = c

else
q(p(i)) = q(m)

Ii+1
i ← zeros(c, ni)

for i = 1, 2, ..., ni do

Ii+1
i (q(i), i) = 1

We have given a bound for the value of kHEC (we drop the superscript i for simplicity). Given

below in Table 3.1 are samples of what values kHEC takes in practice for different graphs. As

expected, the values taken in practice are significantly below the given bound of 0.5. The details

about those graphs and more numerical results regarding kHEC are given in Section 3.7.

Table 3.1. Sample values of kHEC

Graph Sample k0
HEC Value

144 0.1893
598a 0.2024
auto 0.1742
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What remains to be explored is the properties of the restiction matrix Ii+1
i . The most important

fact that we require is that the coarse matrix created by the restriction matrix is still a Laplacian

matrix of the coarse graph. In addition, we want to inspect whether or not the constant eigenvector

1 = (1, ..., 1)T is preserved under restrictions and prolongations. We also consider issues of orthog-

onal solutions with respect to the refinement procedure. Those properties are summarized in the

following proposition.

Proposition 3.4.3. Let Ii+1
i ∈ Rni+1×ni be a restriction matrix defined by HEC. Then we have

the following:

1. (Ii+1
i )T1i+1 = 1i. That is, the eigenvector 1 is preserved under refinement.

2. If Li is a Laplacian matrix, then Li+1 = Ii+1
i Li(Ii+1

i )T is also a Lapacian matrix. In partic-

ular, Li+11i+1 = 0.

3. Let u ∈ 1⊥ = {u|(u,1) = 0} ⊂ Rni . Then Ii+1
i u ∈ 1⊥ ⊂ Rni+1 . However, in general,

(Iii−1)Tu /∈ 1⊥ ⊂ Rni−1 .

Proof. We begin with (1). This follows from the fact that each vertex in Vi is mapped to only one

vertex in Vi+1. However, Ii+1
i 1i 6= 1i+1 . This is expected, as the number of vertices in Vi mapped

to a given vertex vj ∈ Vi+1 varies.

To prove (2), we need to show that Li+1 is still symmetric, with positive diagonal and non-

positive offdiagonal, with Li+11i+1 = 0. We begin by decomposing Li into its degree matrix Di

and adjacency matrix Ai. This gives us Li+1 = Ii+1
i Di(Ii+1

i )T − Ii+1
i Ai(Ii+1

i )T . Ii+1
i Di(Ii+1

i )T is

still a degree matrix, and Ii+1
i Ai(Ii+1

i )T an adjacency matrix. We show that Li+1 is a Laplacian

by taking Li+11i+1 = Ii+1
i Li(Ii+1

i )T1i+1 = Ii+1
i Li1i = 0.

Part (3) of the Proposition can be shown as follows. Let u ∈ 1⊥ ⊂ Rni . We have (Ii+1
i u,1i+1) =

(u, (Ii+1
i )T1i+1) = (u,1i) = 0. Therefore, Ii+1

i u ∈ 1⊥ ⊂ Rni+1 . Looking at (Iii−1)Tu, we see

((Iii−1)Tu,1i−1) = (u, Iii−11
i−1) 6= (u,1i) = 0, since Iii−11

i−1 6= 1i.

3.5 Refinement Strategies

Given an approximate Fiedler vector y(i+1) on a coarse graph Gi+1, we aim to find an optimal

manner to project this vector back to the finer graph Gi and refine it to an approximate Fiedler

vector y(i) on Gi. We begin by considering the projection problem. The most natural way to project

y(i+1) to Gi is to use the restriction matrix Ii+1
i obtained from coarsening, define our prolongation

matrix to be (Ii+1
i )T , and let the initial approximation be ỹ(i) = (Ii+1

i )T y(i+1). However, we have

to concern ourselves with orthogonality to the eigenvector 1. From proposition 4.44, we have that

(ỹ(i),1i) 6= 0. Therefore, before we can perform any sort of eigenvalue refinement procedure, we

require our inital vector to be in the subspace 1⊥ = {u|(u,1) = 0}. This can be accomplished by

one iteration of Gram-Schmidt. From here, the orthogonality will be approximately maintained,

since 1⊥ is L-invariant.
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Given an approximation ỹ(i), we can refine it in a number of ways. We mainly consider power

iteration as a refinement scheme in our CMG algorithm because of its simplicity. In this way we

take advantage of the sparsity of our Laplacian. We also will introduce other alternative approaches

in this section.

3.5.1 Power Iteration

Because the Fiedler vector corresponds to the second smallest eigenvalue of the graph Laplacian,

we cannot apply the power iteration directly. Therefore, we compute a Gershgorin bound on the

eigenvalues of a Laplacian L by taking g = maxi
∑

1≤j≤n |li,j |, the greatest row sum of the absolute

value of the entries of L. From the Gershgorin circle Theorem, we have that all the eigenvalues of

gI − L are strictly positive, and are ordered oppositely, with eigenvalues g − λ1, g − λ2, ..., g − λn.

The eigenvectors remain unchanged. In this way it suffices to perform power iteration on gI − L,

coupled with an intial orthogonalization to w1 = 1. We note that 1⊥ is also invariant under gI−L.

This variant of power iteration is detailed in Algorithm 3.

We proceed by examining the stopping criterion for power iteration, and the number of iterations

required for convergence at a given level. Let u0 denote our initial guess, and uk represent the

normalized vector resulting from k iterations. For our algorithm, the stopping criterion is given by

(uk, uk−1) > 1−δ, for some given tolerance δ. We note that this is equivalent to ||uk−uk−1||2 < 2δ.

We recall the folowing result, with respect to power iteration on an arbitrary symmetric matrix.

Theorem 3.5.1. Let A be a symmetric matrix with eigenvalues λ1 > λ2 ≥ ... ≥ λn ≥ 0 and

corresponding eigenvectors w1, w2, ..., wn. Then power iteration, with intial guess u0, (u0, w1) 6= 0,

has convergence rate given by

sin∠(uk, w1) <
∣∣λ2

λ1

∣∣k tan∠(u0, w1).

A proof of this result can be found in [17]. For notational convenience, for the remainder of the

chapter we will omit the ∠ sign when referring to the trigonometric function of an angle between

two vectors. We are now ready to prove a result for our stopping criterion ||uk − uk−1||2 < 2δ.
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Algorithm 3: Power Iteration (PI)

Input: graph Laplacian matrix L ∈ Rn×n, initial guess ỹ0

Output: approximate Fiedler vector ỹ

g = maxi
∑

1≤j≤n |li,j |
Bg = gI − L
u = ỹ0 − 1T ỹ0

n ỹ0

u ← u
‖u‖

v ← zeros(n, 1)

while uT v < 1− tol do
v ← u

u = Bgv

u ← u
‖u‖

ỹ = u

Theorem 3.5.2. Let ||uk − w2||2 < 2δ be the stopping criterion for power iteration with an intial

guess u0 for the matrix B = gI −L where L is a Laplacian, with eigenvalues g > g−λ2 ≥ g−λ3 ≥
... ≥ g − λn and corresponding normalized eigenvectors w1, w2, ..., wn. Let αi = (u0, wi) (α1 = 0,

by assumption). Then the number of iterations required is bounded above by

k0 =
∣∣ C

λ3 − λ2
log
( tan2(u0, w2)

δ

)∣∣
+

(3.1)

where | · |+ := max(·, 0) and C < g−λ2

2 .

Proof. Taking the result of Theorem 3.5.1, and applying it to our case, we obtain

sin(uk, w2) <
(g − λ3

g − λ2

)k
tan(u0, w2)

. Noting that our uk is normalized, we have sin(uk, w2) =
√

1− (uk, w2)2. The criterion ||uk −
w2||2 < 2δ is equivalent to (uk, w2) < 1−δ. This is also equivalent to requiring that

√
1− (uk, w2)2<√

δ(2− δ). We therefore aim to find the smallest k such that

(g − λ3

g − λ2

)k
tan(u0, w2) <

√
δ(2− δ)

. Taking the logarithm of both sides and rearranging terms, we obtain

k >
log
( √δ(2−δ)

tan(u0,w2)

)
log
(
g−λ3

g−λ2

)
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. Taylor expanding the denominator about one, and moving terms, we have

k >
g − λ2

2

1− log(2−δ)
log
(

tan2(u0,w2)
δ

)
1 +

∑∞
i=1

1
(i+1)!

(
λ3−λ2

g−λ2

)i log
( tan2(u0,w2)

δ

)
λ3 − λ2

. We note that for tan2(u0, w2) > δ,

1− log(2−δ)
log
(

tan2(u0,w2)
δ

)
1 +

∑∞
i=1

1
(i+1)!

(
λ3−λ2

g−λ2

)i < 1

. If tan2(u0, w2) < δ, then the lower bound becomes negative. This gives us the desired result,

where C < g−λ2

2 .

k >
∣∣ C

λ3 − λ2
log
( tan2(u0, w2)

δ

)∣∣
+

We see that the number of iterations required depends on the quality of the initial guess in our

multilevel structure, as well as the chosen tolerance. We will analyze the behavior of k in greater

detail for the case of graphs resulting from elliptic PDE discretizations in Section 3.6.

3.5.2 Alternate Refinement Strategies

We now present alternative refinement strategies to the power iteration technique detailed above.

For power iteration, an initial guess ỹ0 is multiplied by gI −L iteratively, until a given tolerance is

reached at each level. We note that this is very similar to the modified Richardson iteration. We

present this concept in the form of a lemma.

Lemma 3.5.3. Let L be the Laplacian of some graph G = (V,E). Let x(0) be a vector such that

(1, x(0)) = 0. Solving the linear system Lx = 0 with modified Richardson iteration, ω = 1
g , stopping

criterion ||x(i+1) − x(i)|| < tol, and initial guess x(0) is equivalent to solving for the Fiedler vector

of L using power iteration on the matrix gI − L, with stopping criterion ||x(i+1) − x(i)|| < tol, and

initial guess x(0).

Proof. Recall that for Ax = b, modified Richardson iteration is given by x(i+1) = x(i) +ω(b−Ax(i)).

Therefore, for Lx = 0 and ω = 1
g , modified Richardson gives us x(i+1) = x(i) − g−1(Lx(i)) =

(I − g−1L)x(i). However, at each step, x(i+1) is normalized. Therefore multiplying the right hand

side by a constant does not change the end result. Multiplying by g gives us x(i+1) = (gI −L)x(i).

This is precisely power iteration for the matrix gI − L.

We see that the power iteration can be shown in the form of a linear iterative method. For

this reason, it is natural to consider a more general class of linear iterative methods of the form

x(i+1) = x(i) + B(b − Ax(i)) for Lx = 0. In addition to modified Richarson (power iteration), we
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can also use methods such as Jacobi method and forward, backward, and symmetric Gauss-Seidel

method.

We decompose the graph Laplacian L into three matrices L = U + D + L, where U is strictly

upper triagular, D is diagonal, and L is strictly lower triangular. For the sake of the reader, we

give a reminder as to what B is defined as for each of these linear methods:

Jacobi Method: B = D−1

Forward Gauss-Seidel: B = (U +D)−1

Backward Gauss-Seidel: B = (D + L)−1

Symmetric Gauss-Seidel: B = (D + U)−1 + (D + L)−1 − (D + U)−1L(D + L)−1

We consider these linear iterative methods as alternatives to power iteration. However, rather

than give a specific stopping criterion, we perform a fixed number of iterations on each level. The

number of iterations at level i is given by 2i−1, so more iterations are performed on the coarse grids,

and less on the finer grid. This is similar to what occurs with the given power iteration stopping

criterion. However, this is a more traditional refinement representation for a cascadic multigrid

algorithm. We consider these smoothers in addition to the power iteration in our numerical tests.

We note that these linear iterative methods require stricter conditions on our Laplacian L. In

particular, we require D to be invertible. Therefore we require every node to be connected to some

vertex. However, this is not guaranteed by our heavy edge coarsening procedure. Therefore, we

must check that each coarse Laplacian has a positive diagonal. If this is not the case, we attach the

isolated node vi to vertex vi+1. This is not required for the power iteration, because the Richardson

method does not depend on the invertability of the diagonal.

3.6 Convergence Analysis of CMG for Elliptic Eigenvalue

Problems

In Section 3.3, we introduced the CMG method for computing the Fiedler vector of a graph Lapla-

cian. However, we use the purely algebraic coarsening strategy (see Section 3.4) to construct the

hierarchical structure; hence, similar to the AMG method for the Poisson problem, the convergence

analysis for such purely algebraic CMG method is rather difficult. In order to provide a certain

level of theoretical support to our proposed CMG method, in this section, we discuss the geometric

CMG (GCMG) method for the elliptic eigenvalue problems. Because we are interested in the graph

Laplacian, we consider the following elliptic eigenvalue problem with Neumann boundary condition,−∆u = λu, on Ω

∂u

∂n
= 0, on ∂Ω

(3.2)
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where Ω ∈ Rd is a polygonal Lipschitz domain. We only consider the two- and three- dimensional

case here because of the simplicity of the chapter and its close connection with graph Laplacian.

However, the GCMG method we discussed here can be naturally applied for high diminutional

cases. Using the standard Sobolev space H1(Ω), we consider the weak formulation of (3.2) as

follows: find (λ,w) ∈ R×H1(Ω)\R, such that,

a(w, v) = λ(w, v), ∀ v ∈ H1(Ω), (3.3)

where the bilinear form a(u, v) = (∇u,∇v), and (·, ·) is the standard L2 inner product. Here, the

bounded symmetric bilinear form a(·, ·) is coercive on the quotient space H1(Ω), and therefore,

induces an energy-norm as follows,

‖u‖2a = a(u, u), ∀ u ∈ H1(Ω)\R. (3.4)

Moreover, we denote the L2-norm by ‖ · ‖ as usual. Similar to the eigenvalues for the graph

Laplacian, λ = 0 is also a eigenvalue of the eigenvalue problem (3.3), Again, we are interested in

approximating the second smallest eigenvalue of (3.3) and its corresponding eigenfunction space.

Given a nested family of quasi-uniform triangulations {Γj}Jj=0, namely,

1

c
2j−J ≤ hj = max

T∈Γj
diam(T ) ≤ c2j−J ,

the spaces of linear finite elements are

Vj = {u ∈ C(Ω) : u|T ∈ P1(T ),∀ T ∈ Γj},

where P1(T ) denotes the linear functions on the triangle T . We have

VJ ⊂ VJ−1 ⊂ · · · ⊂ V0 ⊂ H1(Ω).

The finite element approximations of (3.3) on each level are as follows: find (λj , wj) ∈ R×Vj , such

that,

a(wj , vj) = λj(wj , vj), ∀ vj ∈ Vj . (3.5)

Again, we are interested in approximating the second smallest eigenpair (λ
(2)
0 , w

(2)
0 ) on the finest

level. Moreover, we can define an operator Aj by a(uj , vj) = (Ajuj , vj), ∀uj , vj ∈ Vj . In addition,

we define Ej to be the orthogonal eigenvalue projection of the energy space onto the Galerkin

eigenvectors on Vj (see [1] for the formal definition in terms of complex integration).

We assume the elliptic eigenvalue problem has H1+α-regularity, i.e., the eigenvalue function

w ∈ H1+α for some 0 < α ≤ 1. Then we have the following error estimates regarding the standard

finite element approximation of the elliptic eigenvalue problem, which is taken from the work of

Babuska and Osborn [1].
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Lemma 3.6.1. Assume that (λj , wj) ∈ (R× Vj) is the finite element eigenpair of (3.5). Then we

have

(i) |λ− λj | ≤ Ch2α
j ,

(ii) there exists an eigenfunction w corresponding to λ, such that

‖w − wj‖a ≤ Chαj , (3.6)

where C is a constant that does not depend on the mesh size.

In addition, we can prove the following approximation property.

Lemma 3.6.2. Let (λ
(l)
j , w

(l)
j ) ∈ (R× Vj) be a finite element eigenpair of (3.5), with λ(l) a simple

eigenvalue. Then, for sufficiently small hj, we have

‖(I − Ej+1)w
(l)
j ‖H1−α ≤ Chαj ‖(I − Ej+1)w

(l)
j ‖a. (3.7)

Proof. We begin by proving a relation between the Ritz projection Pj+1 and the eigenvalue projec-

tion Ej+1, as defined in [1]. Namely, we aim to show

‖(I − Ej+1)w
(l)
j ‖L2 ≤ C‖(I − Pj+1)w

(l)
j ‖L2 . (3.8)

We note that Pj+1w
(l)
j ∈ Vj+1, and can be represented as

Pj+1w
(l)
j =

Nj+1∑
i=1

(Pj+1w
(l)
j , w

(i)
j+1)L2 w

(i)
j+1.

Letting αl = (Pj+1w
(l)
j , w

(l)
j+1)L2 ,

‖Pj+1w
(l)
j − αlw

(l)
j ‖

2
L2 =

∑
i6=l

(Pj+1w
(l)
j , w

(i)
j+1)2

L2 .

We have the identity

(λ
(i)
j+1 − λ

(l)
j )(Pj+1w

(l)
j , w

(l)
j+1)L2 = λ

(l)
j ((w

(l)
j − Pj+1w

(l)
j ), w

(l)
j+1)L2 ,

since

λ
(i)
j+1(Pj+1w

(l)
j , w

(i)
j+1)L2 = a(Pj+1w

(l)
j , w

(i)
j+1) = a(w

(l)
j , w

(i)
j+1) = λ

(i)
j (Pj+1w

(l)
j , w

(i)
j+1)L2 ,

where we use the fact that the billinear form a(·, ·) is symmetic. In addition, if λ
(l)
j is a simple
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eigenvalue, for sufficiently small hj we have that there is a separation constant dl such that

|λ(l)
j |

|λ(l)
j − λ

(i)
j+1|

≤ dl for all i.

Let Qj+1 be the L2 projection to Vj+1. We have

‖Pj+1w
(l)
j − αlw

(l)
j ‖

2
L2 ≤ d2

l

∑
i 6=l

(w
(l)
j − Pj+1w

(l)
j , w

(i)
j+1)2

L2 = d2
l

∑
i 6=l

(Qj+1w
(l)
j − Pj+1w

(l)
j , w

(i)
j+1)2

L2

≤ d2
l

∑
(Qj+1w

(l)
j − Pj+1w

(l)
j , w

(i)
j+1)2

L2 = d2
l ‖Qj+1w

(l)
j − Pj+1w

(l)
j ‖

2
L2

= d2
l ‖Qj+1(w

(l)
j − Pj+1w

(l)
j )‖2L2 ≤ d2

l ‖w
(l)
j − Pj+1w

(l)
j ‖

2
L2

Therefore,

‖w(l)
j − αlw

(l)
j ‖L2 ≤ ‖w(l)

j − Pj+1w
(l)
j ‖L2 + ‖Pj+1w

(l)
j − αlw

(l)
j ‖L2 ≤ (1 + dl)‖w(l)

j − Pj+1w
(l)
j ‖L2

It can be easily verified that |αl − 1| ≤ ‖w(l)
j − αlw

(l)
j+1‖L2 if we choose the unit eigenfunctions w

(l)
j

and w
(l)
j+1 such that αl ≥ 0. This gives us

‖(I − Ej+1)w
(l)
j ‖L2 ≤ ‖w(l)

j − w
(l)
j+1‖L2 ≤ ‖w(l)

j − αlw
(l)
j+1‖L2 + |αl − 1|

≤ 2‖w(l)
j − αlw

(l)
j+1‖L2 ≤ 2(1 + dl)‖w(l)

j − Pj+1w
(l)
j ‖L2

This proves (3.8). Based on this result, we have

‖(I − Ej+1)w
(l)
j ‖L2 ≤ C‖(I − Pj+1)w

(l)
j ‖L2

(see Theorem 8.4.14 of [18]) ≤ Ch‖(I − Pj+1)w
(l)
j ‖a

≤ Ch‖(I − Ej+1)w
(l)
j ‖a,

where the last inequality follows from noting that ‖(I − Pj+1)uj‖a = infv∈Vj+1
‖uj − v‖a. By an

interpolation argument, the desired result follows.

Based on the nested spaces VJ ⊂ VJ−1 ⊂ · · · ⊂ V0, the GCMG method for eigenvalue problems

seeks to solve the eigenvalue problem exactly on the coarse grid VJ , and interpolate and smooth

the approximation back to the fine grid V0. In this section, we consider the GCMG method, and

therefore, the geometric prolongation and restriction are used in our algorithm, and will be omitted

as usual. Our cascadic Algorithm 1 can be framed as follows:
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Algorithm 4: Geometric Cascadic Multgrid Method for Elliptic Eigenvalue Problem

if j = J (coarsest level) then

solve a(wJ , vJ) = λwJ ,vJ exactly, and let uJ := w
(2)
J .

else

uj = (I − ωjAj)kjuj+1, where ωj = ‖Aj‖−1
∞ . (with appropriate scaling)

λj =
a(uj ,uj)
(uj ,uj)

.

We consider the uniform convergence of the proposed GCMG method. Our analysis will follow

the standard convergence analysis for the CMG method for elliptic partial differential equations.

We begin by recalling the following lemma.

Lemma 3.6.3. For any k ∈ Z+, we have maxt∈[0,1] t(1− t)k < 1
k+1 .

This is a common result from Calculus, and is used often in multigrid literature. Denoting by

Sj = I −ωjAj the error prolongation of the Richardson smoother, we have the following smoothing

property.

Lemma 3.6.4. Let kj be the number of smoothing steps on level j, we have

‖Skjj vj‖a ≤ C
h−αj

k
α/2
j

‖vj‖H1−α , ∀ vj ∈ Vj\R. (3.9)

Proof. Consider S = I − ωA, with ω = ||A||−1
∞ . We have that A is Hermitian and positive semi-

definite, by the properties of a graph Laplacian. For u such that (u,1) = 0, we have that A is

positive definite in the subspace {u|(u,1) = 0}. We have

||Sνu||2a =
(
(I − ωA)νu, (I − ωA)νu

)
a

=
(
h−2A(I − ωA)νu, (I − ωA)νu

)
= ω−1

(
ωA(I − ωA)2νu, u

)
Noting that ω||A|| ≤ 1, ω−1 h h−2 and making use of Lemma 3.6.3, we obtain

||Sνu||2a . h−2η0(2ν)||u||2

. This gives us

‖Skjj vj‖a ≤ C
h−1
j

k
1/2
j

‖vj‖, ∀ vj ∈ Vj\R

. Recalling that we have ‖Skjj vj‖a ≤ C‖vj‖a, ∀ vj ∈ Vj , the desired result follows.

We are now able to show the uniform convergence of our GCMG Algorithm 4 under suitable

conditions.
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Lemma 3.6.5. For sufficiently small hJ , the error of the GCMG Algorithm 4 with the Richardson

smoother for the eigenvector can be estimated by

‖w(2)
0 − u0‖a ≤ C

J−1∑
j=0

hαj

k
α/2
j

,

and for the eigenvalue, by

|λ0 − λ(2)
0 | ≤ C

( J−1∑
j=0

hαj

k
α/2
j

)2

(3.10)

Proof. Let us first assume we have some approximate eigenfunction uj+1 on Vj+1. We can represent

this approximation as follows:

uj+1 = w
(2)
j+1 + ej+1

where w
(2)
j+1 is an eigenfunction in the eigenspace corresponding to the eigenvalue λ

(2)
j+1, and ej+1

is the error. Because w
(2)
j+1 is an approximation of w(2) on level j + 1, there exists an approximate

eigenfunction w̄
(2)
j on level j, such that w

(2)
j+1 := Ej+1w̄

(2)
j and ‖w̄(2)

j − w
(2)
j+1‖a ≤ Chαj+1. Then we

have

uj+1 = w̄
(2)
j + (w

(2)
j+1 − w̄

(2)
j ) + ej+1.

Because uj = S
kj
j uj+1, we have

uj = S
kj
j w̄

(2)
j + S

kj
j (w

(2)
j+1 − w̄

(2)
j ) + S

kj
j ej+1

= (
ω−1
j − λ

(2)
j

ω−1
j

)kj w̄
(2)
j + S

kj
j (w

(2)
j+1 − w̄

(2)
j ) + S

kj
j ej+1

:= w
(2)
j + ej ,

where w
(2)
j := (

ω−1
j −λ

(2)
j

ω−1
j

)kj w̄
(2)
j and ej := S

kj
j (w

(2)
j+1 − w̄

(2)
j ) + S

kj
j ej+1. Therefore, noting that

(w
(2)
j+1 − w̄

(2)
j ,1) = 0, we have

‖ej‖a ≤ ‖S
kj
j (w̄

(2)
j − w

(2)
j+1)‖a + ‖Skjj ej+1‖a

(Lemma 3.6.4) ≤ C
h−αj

k
α/2
j

‖w̄(2)
j − w

(2)
j+1‖H1−α + ‖ej+1‖a

(Approximation property (3.7)) ≤ C 1

k
α/2
j

‖w̄(2)
j − w

(2)
j+1‖a + ‖ej+1‖a

Summing from j = J − 1 to 0, and note that eJ = 0, we have

‖w(2)
0 − u0‖a = ‖e0‖a ≤ C

J−1∑
j=0

1

k
α/2
j

‖w̄(2)
j − w

(2)
j+1‖a ≤ C

J−1∑
j=0

hαj

k
α/2
j

.
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Moreover, using the identity

λ0 − λ(2)
0 =

a(w
(2)
0 − u0, w

(2)
0 − u0)

(u0, u0)
− λ(2)

0

(w
(2)
0 − u0, w

(2)
0 − u0)

(u0, u0)
,

we have

|λ0 − λ(2)
0 | ≤ C(

J−1∑
j=0

hαj

k
α/2
j

)2 (3.11)

Because 2jh0/C ≤ hj ≤ C2jh0, we consider kj = βjk0 for some fixed β > 0. We have the

following.

Theorem 3.6.6. Let the number of smoothing steps on level j be given by kj = βjk0. If hJ is

sufficiently small, then the error of the GCMG method for the eigenvector can be estimated by

‖w(2)
0 − u0‖a ≤


C 1

1−(4/β)α/2
hα0
k
α/2
0

, if β > 4,

CJ
hα0
k
α/2
0

, if β = 4.

and for the eigenvalue, by

|λ(2)
0 − λ0| ≤

C( 1
1−(4/β)α/2

)2 h
2α
0

kα0
, if β > 4,

CJ2 h
2α
0

kα0
, if β = 4.

Proof. The estimates follows directly from the following estimation

J−1∑
j=0

hαj

k
α/2
j

≤ C hα0

k
α/2
0

J−1∑
j=0

(
4

β
)
jα
2

What remains to be considered is the computational complexity. Assuming still that kj = βjk0

for some fixed β > 0, we have the following corollary.

Corollary 3.6.7. Let the number of smoothing steps on level j be given by kj = βjk0, then the

computational cost of the GCMG method is proportional to

J∑
j=1

kjnj ≤

C 1
1−β/2d k0n0, if β < 2d,

CJk0n0, if β = 2d.

Proof. The result follows naturally from noting that 2dj/c ≤ nj ≤ c2dj and observing that

J∑
j=1

kjnj ≤ ck0n0

J−1∑
j=0

( β
2d
)j
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We see that if we set β to be 4 < β < 2d, our results regarding accuracy and complexity do not

contradict. Therefore, we see that for d = 3 our algorithm is optimal. However, for d = 2, either

the accuracy or complexity must deteriorate logarithmically.

3.7 Numerical Results

We now perform numerical tests. We investigate values of kHEC in practice and compare the speed

of our eigensolver to the standard Lanczos algorithm. In addition, we take our eigensolver and use

it to solve the graph partitioning problem. We use our eigensolver in the spectral bisection method.

We perform numerical tests on a variety of different graphs (listed in Table 3.2).

Table 3.2. Details of test graphs used

Graph Graph Type Number of Vertices Number of Edges

144 3D Finite Element Mesh 144649 1074393
598a 3D Finite Element Mesh 110971 741934
auto 3D Finite Element Mesh 448695 3314611
bcsstk30 3D Stiffness Matrix 28294 1007284
bcsstk32 3D Stiffness Matrix 44609 985046
brack2 3D Finite Element Mesh 62631 366559
m14b 3D Finite Element Mesh 214765 3358036
rotor 3D Finite Element Mesh 99617 662431
troll 3D Stiffness Matrix 213453 5885829
wave 3D Finite Element Mesh 156317 1059331

We compare our eigensolver with heavy edge coarsening to the random matching coarsening

technique. In addition, we also investigate the different refinement processes presented, with heavy

edge coarsening as the coarsening scheme. In particular, we consider power iteration, Jacobi method,

and Symmetric Gauss-Seidel. Finally, we look into the computational run time for our cascadic

algorithm as a partitioner for a number of different matrix sizes. All of our computations were

performed on a HP Pavilion dv5 Notebook PC with a 2.40 GHz AMD Turion II P540 Dual-Core

Processor. All of the algorithms tested in this section were implemented and tested in MATLAB.

The .m files used in this chapter can be found online at http://www.personal.psu.edu/jcu5018,

under the publications tab.

We begin by looking at the value of kHEC for one iteration of HEC for each graph. In addition,

we consider the number of iterations needed to coarsen to less than 25 vertices. These results are

given in Table 3.3.

On average, our intial values of kHEC appear to be roughly in the 0.1-0.2 range. In terms of

speed, this is significantly quicker than any matching technique. Only about 6-8 iterations are

required. What remains to be shown is how well the coarse graphs approximate our fine graph.

This will be made apparent in the speed of the eigensolver.
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Table 3.3. Test values of kHEC

Number of
Graph Subgraphs k0

HEC Value

144 7 0.1893
598a 7 0.2024
auto 8 0.1742
bcsstk30 5 0.0700
bcsstk32 6 0.1386
brack2 7 0.2066
m14b 8 0.1969
rotor 7 0.1819
troll 7 0.1172
wave 7 0.1736

We consider the performance of our eigensolver against the Lanczos algorithm. In Table 3.4

we report the run times in seconds for each graph, along with a measure of the error in the

approximate eigenvector, given by ‖(L− r̃I)ỹ‖∞, where ỹ is the approximate eigenvector, and r̃ is

the corresponding approximate eigenvalue.

Table 3.4. Test results for eigensolver algorithm

Lanczos Algorithm Cascadic Eigensolver
Graph Run Time Error Run Time Error

144 189.50 0.0092 2.17 0.0019
598a 134.33 0.0099 1.53 0.0042
auto *** *** 7.05 0.0030
bcsstk30 117.83 0.0098 0.46 0.0759
bcsstk32 *** *** 0.69 0.0923
brack2 173.20 0.0090 0.74 0.0037
m14b *** *** 3.04 0.0053
rotor *** *** 1.14 0.0223
troll *** *** 3.24 0.0317
wave *** *** 1.98 0.0035

Note that our eigensolver significantly outperforms the Lanczos algorithm. Boxes with triple

asteriks (***) denote computations which failed to execute in 300 seconds. Usually these compu-

tations fail, as a result of insufficient memory.

We now consider using our cascadic eigensolver in recursive bisection. We perform a 64-way

partition of each graph. We compare the effect of our coarsening scheme to random matching. We

use the same power iteration refinement and bisection procedure. In addition, we compare power

iteration, Jacobi method, and Symmetric Gauss-Seidel as refinement procedures, all with heavy

edge coarsening as the coarsening technique. We compare both the edge cut and run time of each

method. The results are given in Table 3.5 and 3.6.
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Table 3.5. Test results for coarsening algorithms

Heavy Edge Coarsening Random Matching
Graph Run Time Edge Cut Run Time Edge Cut

144 11.85 101244 116.5 167012
598a 9.1 72608 84.08 115728
auto 38.93 223866 554.2 569894
bcsstk30 4.22 219101 53.82 252915
bcsstk32 4.69 138640 77.7 184661
brack2 4.8 36903 36.15 61736
m14b 18.2 130568 205.9 310378
rotor 7.96 70869 76.67 174038
troll 23.07 576780 543.85 1308683
wave 12.4 108756 125.65 198843

Looking at the coarsening results, we observe that with heavy edge coarsening the run times

are significantly faster. In addition, the edge cuts are better as well. This shows that heavy edge

coarsening is significantly better than the random matching procedure.

Table 3.6. Test results for refinement algorithms

Power Iteration Jacobi Method Symmtric Gauss-Seidel
Graph Run Time Edge Cut Run Time Edge Cut Run Time Edge Cut

144 11.85 101244 10.48 101721 10.98 98108
598a 9.1 72608 8.02 73736 8.28 69632
auto 38.93 223866 34.79 217197 36.88 211246
bcsstk30 4.22 219101 2.72 214679 2.85 216713
bcsstk32 4.69 138640 3.69 135969 3.79 130842
brack2 4.8 36903 4.25 35821 4.41 34338
m14b 18.2 130568 16.56 129331 16.84 124367
rotor 7.96 70869 6.92 68561 6.99 64160
troll 23.07 576780 18.91 533655 20.01 522397
wave 12.4 108756 10.83 110530 11.07 110822

When we look at the refinement procedures, we note that the Jacobi refinement is the fastest

and Symmetric Gauss-Seidel is very close, while also having the lowest edge cuts of the group.

We note that the edge cut of a graph for a spectral method is an indirect measure of the error

of the underlying eigensolver. Generally, a consistently lower edge cut implies that the underlying

eigensolver is more accurate.

We now consider using our cascadic algorithm as a partitioning algorithm for the standard

two-dimensional Laplacian problem with Neumann boundary conditions. We look at a 64 way

partition of the structured graph for a variety of different grid sizes N2 varying from size O(102)

up to size O(106). We used a sample size of 50, with the inverse of our step size h−1 = N given by

N = b10ln( i2 +e)c, where i = 1, 2, ..., 50. We report the run time for these different sizes. The graph,
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with respect to matrix size, is given below.

Figure 3.2. Plot of Run Time vs. Matrix Size for the 2D Laplacian Problem

We see that the plot of run time vs. matrix size (Figure 3.2) appears to be almost perfectly

linear. Upon examination of the sample, we report a correlation of R = 0.9998. This provides

strong numerical evidence that, as a partitioning algorithm, our cascadic eigensolver is linear with

respect to time.

3.8 Conclusion

In this chapter, we have presented a fast algorithm for approximately computing the Fiedler vector

of a graph Laplacian. We introduced a new coarsening procedure, called heavy edge coarsening.

We note the speed with which the procedure coarsens, and the quality of coarse level graphs. The

main contribution to the speed of the algorithm was a result of the implementation of the heavy

edge coarsening procedure.

In addition to being a fast coarsening procedure, the heavy edge coarsening algorithm is also

significantly easier to implement than other techniques of a similar type, such as heavy edge match-

ing and its variants (HEM and HEM*) [26, 27]. In terms of simplicity, it is along the lines of

random matching. Looking at refinement procedures, we considered a more standard eigensolver in

the form of power iteration, as well as linear iterative methods. As an eigensolver, the combination

of heavy edge coarsening and power iteration in a cascadic multigrid method proves to be a fast

algorithm for finding the Fiedler vector of graph Laplacians.



Chapter 4
A Space-Time Method for the

Numerical Pricing of Barrier Options

4.1 Introduction

The computation of the fair value price of a given barrier option is a relevant problem in finance.

Numerical techniques are particularly relevant, mainly due to the lack of closed-form representations

for their valuation under the majority of models. In addition, there exist nuances for the case of

the barrier option that separates it from the general vanilla options.

There are a number of different models that can be used to determine the fair value of a barrier

option. The most well known formulation by far is the Black-Scholes (BS) model. While it is

fairly simplistic (in comparison to its counterparts), and exhibits a closed form solution for barrier

options, it does not take into account the volatility smile observed in practice. In fact, the model is

especially inaccurate for the case of barrier options. The difference between the assumptions of the

Black-Scholes model and what occurs in practice produces errors that are particularly relevant for

barrier options. In addition, barrier options are extremely sensitive to mispecifications in parameter

estimation, resulting in large pricing errors. This is a result of discontinuitites in the payoffs of many

barrier options, resulting in large Gamma (Γ = ∂2V
∂S2 ), and, therefore, large Vega (ν = ∂V

∂σ ) [24].

In cases where a deterministic or surface volatility are used, exact solutions no longer exist.

However, due to reasons stated above, such volatility models are particularly useful for barrier

options. In addition to the Black-Scholes model, we give treatments of the constant elasticity of

variance (CEV) model and Heston’s model as well.

There exists a number of different techniques for pricing options under such models. In partic-

ular, the two main techniques used in practice are to estimate the price by Monte Carlo methods,

or to estimate the price by solving the model’s corresponding partial differential equation (PDE).

In this chapter, we consider the latter case exclusively. For a treatment of Monte Carlo methods

for financial engineering, refer to [16].
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The partial differential equation approach requires the computation of the solution of a second

order linear parabolic PDE. For this type of PDE, there are a number of different possible ap-

proaches. For our purposes, we consider the method of lines, with a finite differences discretization

in space. In practice, this technique is extremely popular, especially in financial circles. However,

for completeness, we introduce the finite element framework as well.

We consider applying multigrid (MG) methods to the discretization. We treat the entire grid

simultaneously and introduce an adaptive restriction procedure that depends on the problem’s

characteristics and discretized grid size. At each level, the restiction operator is determined through

local Fourier analysis (sometimes referred to as local mode analysis). Depending on the grid size,

we choose to coarsen either in space or time. Simultaneous coarsening fails for a large class of grids,

as the anisotropy ratio approaches zero on coarser grids.

Treating space and time simultaneously allows for full parallelization of the algorithm. For a

grid with N points in space and M in time, multigrid in space with time-stepping has parallel

complexity O(M logN), whereas treating the grid as a whole, with a suitable smoother, results in

parallel complexity O(logM + logN). For fine grids, this difference is extremely pronounced; even

for extremely large problems the parallel complexity of our algorithm is nominal, allowing for fast

computation of even the largest problems.

We begin by introducing the mathematical framework of our problem. We give the numerical

details of our method for the Black-Scholes operator by finite differences. We introduce the finite

element method as well. We detail the technique used to determine the restriction operator and

give numerical results. We show our method to be robust to other models and consider the CEV

and Heston’s model. In addition, we give a discussion of our method in general, with respect to its

advantages and disadvantages.

4.2 Mathematical Framework

We consider a specific type of derivative, in the form of barrier options. The intuition behind

barrier options is to take a given derivative and put an additional condition on its movement. In

particular, we set a stock level B and observe the stock’s movement over the life of the option [0, T ].

Depending on the type of barrier option, the option will become worthless if the extra condition

involving the stock price level B is not satisfied. Thus a barrier option will have the payoff of a call

or a put, unless it is rendered worthless by an additional condition. These conditions depend on

the type of barrier option considered.

There are predominantly eight different types of barrier options. The different types of barrier

options depends on three different choices. The first choice is whether the option is a call or a

put. The remaining two are as to whether the option is an up-and-out, up-and-in, down-and-out,

or down-and-in barrier option. We will assume our barrier options to contain only one barrier

(eliminating more complicated barriers, such as a double knock-out option, from the conversation).

In addition, we consider only continuous barriers and assume the option to be European in nature.

We have the following definition.
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Definition 4.2.1. A barrier option is a call or put derivative with underlying S, with an

additional condition for the path of the underlying St with respect to a given level of stock price B.

An up-and-out barrier option is worthless if there exists a t ∈ [0, T ) such that St ≥ B. An up-and-in

barrier option is worthless if there does not exist a t ∈ [0, T ) such that St ≥ B. A down-and-out

barrier option is worthless if there exists a t ∈ [0, T ) such that St ≤ B. A down-and-in barrier

option is worthless if there does not exist a t ∈ [0, T ) such that St ≤ B.

We help illustrate this definition with a set of figures. We consider an up-and-out European call

option. Looking at Figures 4.1 and 4.2, we see two realizations of paths of the underlying stock.

In Figure 4.1, we see that the stock crosses the boundary (there exists a t < T such that St ≥ B).

Therefore, in this case, the option expires worthless. However, in Figure 4.2 the stock does not

cross the boundary. Therefore the option expires as a standard call, with value |ST −K|+.

Figure 4.1. Plot of a stock that crosses
the barrier

Figure 4.2. Plot of a stock that doesn’t
cross the barrier

We give a list of the types of barrier options in Table 4.1, along with their worth, based on

interaction with the barrier. This table is similar to one found in [10]. We note that, of these eight

types, there are only four independent cases. The sum of an up-and-in (or down-and-in) option

and an up-and-out (or down-and-out) gives a vanilla option.

Table 4.1. Types of Single Barrier Options

Option Type Barrier Location Crossed Not Crossed

Call Down-and-Out Below Spot Worthless Standard Call
Down-and-In Below Spot Standard Call Worthless
Up-and-Out Above Spot Worthless Standard Call
Up-and-In Above Spot Standard Call Worthless

Put Down-and-Out Below Spot Worthless Standard Call
Down-and-In Below Spot Standard Call Worthless
Up-and-Out Above Spot Worthless Standard Call
Up-and-In Above Spot Standard Call Worthless

For the purposes of this chapter, we will consider up-and-out European call options exclusively.
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We take our underlying to be given by

dS(t) = β(S(t)) dt+ γ(S(t)) dW̃ (t) (4.1)

where W̃ (t), 0 ≤ t ≤ T , is a Brownian motion on the risk neutral measure P̃. Mathematically,

by the Feymann-Kac formula, the fair price of an up-and-out call option at time t, v(x, t) =

Ex,t[e−r(T−t)v(x, T )], is the solution to the following partial differential equation:
vt +Av − rv = 0 on [0, T )× (0, B)

v(t, 0) = v(t, B) = 0 for t ∈ [0, T )

v(T, x) = |x−K|+ for x ∈ [0, B],

(4.2)

where A is given by

A = β(x, t)
∂

∂x
+

1

2
γ(x, t)2 ∂2

∂x2
. (4.3)

Depending on the model, the choice of A varies. However, for now we can assume β(x, t) = rx

and γ(x, t) = σx, where r and σ are constant. This gives us the Black-Scholes partial differential

equation. We save the treatment of the CEV model and Heston’s model to Section 4.6.

The author notes that a significant amount of subtlety regarding the applicability of the Markov

property and the Feymann-Kac Theorem has been neglected. However, it is not directly relevant

to the topic of the chapter, and has been omitted. For a more detailed analysis of why the partial

differential equation for the barrier option is the same as for the case of vanilla options, and the

process to come to this result, refer to [39, 40]. For a more general introduction to the theory of

stochastic differential equations, refer to [33].

In addition to the standard representation of the Black-Scholes PDE, through a coordinate

transformation of the domain, one can obtain the standard diffusion equation (see Chapter 4 of

[42]). We consider the transformation x = ey, t = T − 2τ
σ2 . This gives us the following transformed

differential equation for v(y, τ) = v(ln(x), σ
2

2 (T − t)):

vτ = vyy + (
2r

σ2
− 1)vx −

2r

σ2
v for −∞ < x < ln(B), 0 ≤ τ < σ2

2
T (4.4)

Setting v(y, τ) = eαy+βτu(y, τ), for

α =
σ2 − 2r

2σ2
(4.5)

β =
(σ2 + 2r

2σ2

)2
, (4.6)
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we obtain the heat equation on a transformed domain, with similar boundary conditions.
uτ = uyy on (−∞, ln(B))× [0,

σ2

2
T )

u(τ, ln(B)) = 0 for 0 ≤ τ < σ2

2
T

u(0, y) = e−αy|ey −K|+ for −∞ < y < ln(B)

(4.7)

We will treat this formulation of the Black-Scholes PDE. We note that for any solution obtained

by the representation (4.7), the corresponding fair option value can be easily obtained by multiplying

by eαy+βτ and transforming (y, τ) → (x, t). It will be shown that this formulation is much more

suitable for local mode analysis, and, therefore, significantly more suitable for an adaptive space-

time multigrid method.

4.3 Numerical Formulation

We begin by considering the problem of discretizing our PDE. This can be done by either finite

differences or finite element. In practice, finite differences is the preferred discretization method in

finance, and, for this reason, we will follow this trend for the moment. We leave the theoretical

treatment of finite element to Subsection 4.3.1.

We begin by recalling the centered first and second derivative discretizations.

Lemma 4.3.1. Let f(x) be a C2 function. Then we have:

(i) f ′(x) = f(x+h)−f(x−h)
2h +O(h2)

(ii) f ′′(x) = f(x+h)−2f(x)+f(x−h)
h2 +O(h3)

From here we can consider the discretization of (4.7) in space. Because of the infinite lower

boundary in space, we must set an artificial lower boundary for our problem. We choose − log(B),

which transforms to a value of 1
B in the standard domain, and, for reasonably large B, is sufficiently

close to zero. The error of this approximation can be explicitly calculated by computing the

difference in solution between an up-and-out and double knock-out call with lower barrier at 1/B.

We define a partition in space Πx = {x1, x2, ..., xN−1, xN}, where − log(B) = x1 < x2 < ... <

xN−1 < xN = log(B), hx = xj+1 − xj . Using Lemma 4.3.1, we obtain the following discrete

formulation. 
vt = ṽxx(τ, xj) for t ∈ (0, T ], 0 < j < N

v(t, x0) = v(t, xN ) = 0 for t ∈ (0, T ]

v(0, xj) = e−αxj |exj −K|+ for all 0 < j < N

(4.8)

where

ṽxx(t, xj) :=
v(t, xj+1)− 2v(t, xj) + v(t, xj−1)

h2
x

(4.9)
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We have now approximated our problem by a system of N − 2 forward ordinary differential

equations, with initial conditions at t = 0. We recall the common first- and second-order numerical

techniques for solving ordinary differential equation initial value problems in Table 4.2. We denote

by Ψt+τ,tx the approximate solution obtained from a step of size tau.

Table 4.2. Common Numerical Techniques for Ordinary Differential Equations

Method Formulae Order
Explicit Euler Ψt+τ,tx = x+ τf(t, x) O(h)
Implicit Euler Ψt+τ,tx = x+ τf(t+ τ,Ψt+τ,tx) O(h)
Midpoint Ψt+τ,tx = x+ τf(t+ τ

2 , x+ τ
2f(t, x)) O(h2)

Trapezoidal Rule Ψt+τ,tx = x+ τ
2 (f(t, x) + f(t+ τ,Ψt+τ,tx)) O(h2)

Both the explicit Euler and midpoint method are explicit in nature, with limited stability

domains, and, therefore, are rarely used in practice. We will treat both the implicit Euler method

and the trapezoidal rule. When applied to partial differential equations via the method of lines,

the trapezoidal rule is commonly referred to as the Crank-Nicolson method. Both methods have

their advantages. The Crank-Nicolson method is of higher order and is more commonly used in

practice, however, it can result in oscillatory behavior in the solutions, resulting from the non-

smooth (and possiblity jump) intial conditions that occur in option pricing [48]. There are a

number of ways to avoid this issue, and reasonable augmentations of the method can be found in

[34]. To apply these methods, we introduce a partition in time Πt = {t1, t2, ..., tM−1, tM}, where

0 = t1 < t2 < ... < tM−1 < tM = T , ht = ti − ti−1.

For the implicit Euler method, v(ti, xj) := Ψ
ti,ti−1

IE v(ti−1, xj) takes the form

v(ti, xj) = v(ti−1, xj) + ht

(
v(ti, xj+1)− 2v(ti, xj) + v(ti, xj−1)

h2
x

)
, (4.10)

resulting in the stencil  0 0 0

−ht/h2
x 1 + 2ht/h

2
x −ht/h2

x

0 −1 0

 (4.11)

for each grid point (ti, xj). Similarly, for the Crank-Nicolson method, v(ti, xj) := Ψ
ti,ti−1

CN v(ti−1, xj)

is given by

v(ti, xj) = v(ti−1, xj) +
ht
2

(
v(ti−1, xj+1)− 2v(ti−1, xj) + v(ti−1, xj−1)

h2
x

(4.12)

+
v(ti, xj+1)− 2v(ti, xj) + v(ti, xj−1)

h2
x

)
,
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producing the stencil  0 0 0

−ht/2h2
x 1 + ht/h

2
x −ht/2h2

x

−ht/2h2
x −1 + ht/h

2
x −ht/2h2

x

 . (4.13)

This gives us a system of (M − 1)× (N − 2) equations with (M − 1)× (N − 2) unknowns, one for

each point v(τi, xj), 0 < i ≤ M , 0 < j < N . There are a number of ways to solve such a system;

we consider multigrid methods.

Multigrid (MG) methods are a general technique used to solve discrete formulations of differ-

ential equations by producing and utilizing a multilevel grid structure. Most pointwise relaxation

schemes (such as Gauss-Seidel, Jacobi, etc.) have different rates of convergence for the low and

high frequency components of the error. In particular, the high frequency components are tough

to smooth and, for such wavelengths, the smoother may even be divergent. This implies that the

different scales should be treated separately. Due to the aliasing effect of restriction operators on

the frequency domain of the error, coarse grids can be used to effectively smooth the high frequency

components. Interpolation between grids is used to create a multilevel structure to maintain the

smoothing effects of the pointwise smoother on the low frequency components, while also smoothing

the high frequency components through the coarse grids. For the reader unfamiliar with multigrid

methods, we suggest [41, 45] as references. For a more advanced and rigorous treatment of multigrid,

refer to [19].

There are a number of ways to perform an effective multilevel scheme. In this chapter, we

consider the multigrid V-cycle. This choice is mainly for simplicity, and a W-cycle or full multigrid

(FMG) cycle could also suffice, although we note that V-cycles have been shown to be better suited

to parallelization. For the reader unfamiliar with such a technique, we detail the generic multigrid

cycle in Algorithm 5. Taking γ = 1 gives us the V-cycle.

For AJuJ = fJ , we initialize the V-cycle with uJ = MGCY CLE(J, γ = 1, AJ , u
0
J , fJ , ν1, ν2)

for some initial guess u0
J . We can perform as many V-cycles as necessary to achieve the desired

convergence.

We consider the use of Gauss-Seidel red-black smoothing, although another method (such as

Jacobi, Richardson, etc.) can also been used. However, in general, Gauss-Seidel has been shown

to be the most effective pointwise smoother for multigrid techniques [42]. We choose red-black

ordering, rather than lexicographic, because of the ease which which it can be parallelized.

For interpolation, we implement an adaptive restriction operator, depending on the properties

of the given grid. In particular, we consider the anisotropy ratio λ = ht/h
2
x. We determine the

ideal value of ht/h
2
x, denoted by λa, for a given problem through local Fourier analysis, and use it

to determine whether coarsening in space or time should be performed on a given grid. The stencils

for our space, time, and simultaneous space-time restriction operators, respectively, are given as

follows.

1

4

0 0 0

1 2 1

0 0 0

 1

2

0 0 0

0 1 0

0 1 0

 1

8

0 0 0

1 2 1

1 2 1

 (4.14)
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Algorithm 5: Multigrid Cycle um+1
k = MGCY CLE(k, γ,Ak, u

m
k , fk, ν1, ν2, γ)

Pre-Smoothing:
ũmk = Sν1umk

Coarse-Grid Correction:
rk = fk −Akũmk
rk−1 = Ik−1

k rk
Approximate Coarse Solution:

if k = 1 then
Solve A0e0 = r0 Exactly

e0 = A−1
0 r0

else
Solve Ak−1ek−1 = rk−1 Approximately with γ MG Cycle Calls

ek−1 = MGCY CLEγ(k − 1, γ, 0, Ak−1, rk−1, ν1, ν2)

Interpolate Correction:
ek = Ikk−1ek−1

uCGCk = ũk + ek
Post-Smoothing:

um+1
k = Sν2uCGCk

Note that for the time stencil, our restriction is asymmetric, so as to not transfer any information

backward in time. The prolongation operators are taken to be the adjoints of the restriction

operators. The process used to determine the value of λa in practice is the subject of Section 4.4.

4.3.1 Finite Element Framework

As mentioned earlier, rather than implement finite differences, a finite element technique could be

used in the discretization. We introduce the finite element framework. We begin by noting the

differences in finite differences and finite element in practice. In general, finite element tends to

be preferred for irregular domains. However, for rectangular domains, finite differences is easier to

implement. Finite element is considered to be the more mathematically rigorous technique, with a

much richer theory to support it. In addition, a finite element discretization tends to be a better

approximation than its finite differences counterpart.

We consider the variational formulation of (4.7). Denote by aBSM (·, ·) : H1(R) ×H1(R) → R
the billinear form associated with the Black-Scholes operator in the transformed domain, namely,

aBSM (φ, ψ) = (φ′, ψ′). Let K := (0, T ] and G := (−∞, log(B)).

The variational formulation of our problem is as follows:

find u ∈ L2(K;H1(G)) ∩H1(K;L2(G)) s.t.

(∂tu, v) = aBSM (u, v), ∀v ∈ H1(G), a.e. in K (4.15)

where u(0, x) = u0(x) and u|∂G = 0

In our case u0(x) ∈ L2(G), and, therefore, a unique solution is guaranteed. This is because

aBSM (·, ·) is continuous and satisfies a Garding inequality on H1(G). For our multilevel discretiza-
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tion, we define a family of nested simplices {Γj}Jj=0, with 1
c2j−J ≤ hj = maxT∈Γj diam(T ) ≤ c2j−J .

We take our finite element spaces to be

Vj = {u ∈ C(G) : u|∂G = 0, u|T ∈ P1(T ),∀ T ∈ Γj},

where P1(T ) denotes the linear functions on the simplex T . We have

VJ ⊂ VJ−1 ⊂ · · · ⊂ V0 ⊂ H1(G).

This gives us finite element approximations on each level, represented as follows:

find uj ∈ K × Vj such that aBSM (uj , vj) = (∂tuj , vj), ∀ vj ∈ Vj (4.16)

We note that in the case of Black-Scholes operator in the transformed domain with an evenly

spaced discretization, we will end up with a matrix equivalent to the finite differences approach.

However, for tmore complex models this is not the case.

4.4 Local Mode Analysis

We consider the application of local Fourier analysis (LFA) to our discrete problem. We aim to

produce an anisotropy ratio λa := ht/h
2
x to determine whether coarsening in space or time produces

a preferable convergence rate on a given grid level. The work in this section follows from [23, 41, 46].

We adopt the notation from [23].

We note that we are unable to perform rigorous Fourier analysis for the majority of cases because

it requires the existence of an orthogonal basis of periodic eigenfunctions for the operator. Rigorous

Fourier analysis can only be applied to a very small class of problems in practice [47]. It is for this

reason we turn to local Fourier analysis. This technique was first introduced by Brandt, in [6].

The analysis is performed locally, and assumes our problem to be a linear differential equation with

constant coefficients on an infinite grid. In general, the equations dealt with in option pricing do not

fit this criteria, but locally can be assumed to be of this form. However, problems can occur when

attempting to produce a result for an entire grid. In this case, a suitable freezing of coefficients

must be chosen. In Section 4.5 we discuss the forms of non-constant coefficient parabolic PDEs

that are well suited to this analysis and, more importantly, our technique. In addition, local Fourier

analysis assumes the boundary conditions to be periodic in nature. This is never the case for option

valuation, specifically at t = 0, but we suppose our intial condition to be sufficiently smooth.

We begin by detailing the local Fourier analysis technique in two dimensions. We aim to

approximate the spectral matrix of the two-grid operator

MH
h = Sν2h (Ih − IhHL−1

H IHh FhLh)Sν1h (4.17)

where Sh is a given smoothing operator, ν1 and ν2 are the number of pre- and post- smothing
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iterations performed, Ih is the identity operator, and IHh and IhH are the restriction and prolongation

operators, respectively. We use Fh as a normalizing constant; we have Fh = 1 for space coarsening

and Fh = 2 for time and simultaneous coarsening. We attempt to approximate MH
h using an

operator M̂H
h defined on the frequency domain of our problem. We define the frequency domain

operator M̂H
h in similar way:

M̂H
h = Ŝν2h (Îh − ÎhH L̂−1

H ÎHh FhL̂h)Ŝν1h . (4.18)

Each of these operators is represented by a 4× 4 matrix acting on the frequency domain [−π, π)2.

We note that for the operators we are considering, we have (IHh )T = IhH and (ÎHh )T = ÎhH ; however,

this is not always the case.

We define Θh = {(θ1, θ2) : θα = 2Πkα/nα}, kα = −nα/2 + 1, ..., nα/2 (k1 = M , k2 = N) to be

a discretization of the frequency domain. Given some choice θ1 ∈ Θh ∩ [−π/2, π/2)2, we define the

following vectors.

θ2 = θ1 −

(
sign(θ1

1)π

sign(θ1
2)π

)
(4.19)

θ3 = θ1 −

(
0

sign(θ1
2)π

)
(4.20)

θ4 = θ1 −

(
sign(θ1

1)π

0

)
(4.21)

We introduce exponential Fourier modes ψh(θ)j = eij·θ, j = (j1, j2), jα = 0, ..., nα − 1. For

θ ∈ Θh ∩ [−π/2, π/2)2, we define Ψh(θ) = (ψh(θ1), ψh(θ2), ψh(θ3), ψh(θ4))T . We note that the

linear space spanned by Ψh(θ) is invariant under the two-grid operator M̂H
h (θ). We see that when

ψh(θ) is projected to the coarse grid, it aliases with ψH(θ̄), where θ̄ equals (2θ1, θ2) for coarsening

in space, (θ1, 2θ2) for coarsening in time, and (2θ1, 2θ2) for simultaneous coarsening [23]. We give

Figures 4.3, 4.4, and 4.5, taken from [43], to illustrate this for the three different cases.

All that remains is to consider the representations for L̂h, L̂H , ÎHh , and Ŝh. Let lk, sk, rk, and

pk represent the stencils for Lh, LH , IhH and IHh , respectively, where k ranges over an index set

J ⊂ Z2. We begin with L̂h. Its representation is given by

L̂h(θ) =


L̃h(θ1) 0 0 0

0 L̃h(θ2) 0 0

0 0 L̃h(θ3) 0

0 0 0 L̃h(θ4)

 , (4.22)

where L̃h(θ) =
∑
k∈J lke

ik·θ. For the coarse grid L̂H , we have

L̂H(θ) =

(
L̃H(θ̄1) 0

0 L̃H(θ̄3)

)
,

(
L̃H(θ̄1) 0

0 L̃H(θ̄4)

)
,

(
L̃H(θ̄1)

)
(4.23)
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Figure 4.3. Aliasing Fourier Modes for
Coarsening in Space

Figure 4.4. Aliasing Fourier Modes for
Coarsening in Time

Figure 4.5. Aliasing Fourier Modes for
Simultaneous Space-Time Coarsening

for coarsening in space, time, and space and time, respectively. Similarly to L̃h(θ), we have L̃H(θ) =∑
k∈J ske

ik·θ. The prologation operator ÎhH(θ) is represented by

ÎhH(θ) =


ĨhH(θ1) 0

0 ĨhH(θ2)

0 ĨhH(θ3)

ĨhH(θ4) 0

 ,


ĨhH(θ1) 0

0 ĨhH(θ2)

ĨhH(θ3) 0

0 ĨhH(θ4)

 ,


ĨhH(θ1)

ĨhH(θ2)

ĨhH(θ3)

ĨhH(θ4)

 (4.24)

for coarsening in space, time, and space and time, respectively. We have ĨhH given by ĨhH(θ) =
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h1h2

H1H2

∑
k∈J p−ke

ik·θ. The operator Ŝh(θ) for Gauss-Seidel red-black smoothing has the form

Ŝh(θ) =
1

2


α(θ1) + β(θ1) α(θ2)− β(θ2) 0 0

α(θ1)− β(θ1) α(θ2) + β(θ2) 0 0

0 0 α(θ3) + β(θ3) α(θ4)− β(θ4)

0 0 α(θ3)− β(θ3) α(θ4) + β(θ4)

 , (4.25)

where the functions α(θ) and β(θ) have the representation

α(θ) = − 1

l(0,0)

∑
k∈J0

lke
ik·θ (4.26)

β(θ) = − 1

l(0,0)

( ∑
|k|=odd

lkα(θ)eik·θ +
∑

06=|k|=even

lke
ik·θ
)
, (4.27)

with J0 = J\{(0, 0)} and |k| = |k1| + |k2|. We note that the interpolation elements are indepen-

dant of the specific parabolic PDE and choice of numerical ODE method. We give the following

representations for the prolongation elements defined in Section 4.3.

(ĨhH)s(θ) =
1

2
(1 + cos(θ1)) (4.28)

(ĨhH)t(θ) =
1

2
(1 + e−iθ2) (4.29)

(ĨhH)st(θ) =
1

4
(1 + cos(θ1))(1 + e−iθ2) (4.30)

What remains to be considered are the representations for the elements of the PDE itself and

the smoother, which vary by equation and discretization. For the equation ut = uxx, the exact

formulae have been studied in [23] for a number of different methods, including the implicit Euler

and Crank-Nicolson methods. We include the results for completeness. For the implicit Euler

method we have

L̃h(θ) = 1− e−iθ2 + 2λ(1− cos(θ1)) (4.31)

α(θ) =
e−iθ2 + 2λ cos(θ1)

1 + 2λ
(4.32)

β(θ) = α2(θ), (4.33)

and for the Crank-Nicolson method,

L̃h(θ) = 1− e−iθ2 + λ(1− cos(θ1))(1 + e−iθ2) (4.34)

α(θ) =
(1− λ)e−iθ2 + λ cos(θ1)(1 + e−iθ2)

1 + λ
(4.35)

β(θ) =
(1− λ)α(θ)e−iθ2 + λ cos(θ1)(α(θ) + e−iθ2)

1 + λ
. (4.36)
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4.4.1 Numerical Results

We consider the numerical application of our multigrid method, using local Fourier analysis to de-

termine our restriction operator. Using the explicit representations of the stencils of the operators in

the frequency domain, we can compute the spectral radius of M̂H
h for a given θ ∈ Θh∩ [−π/2, π/2)2.

We define ρ̃ = max{ρ(M̂H
h ) | θ ∈ Θh ∩ [−π/2, π/2)2}, where ρ(·) is the spectral radius. This gives

an indicative measure of the convergence rate for a given choice of λa and restriction operator. We

note the simiplicity in which this computation is done in practice. The majority of the legwork is

done by hand, and, once completed, requires a nominal amount of computing time, in comparison

to the multigrid iteration itself.

For numerical illustration, we consider the problem of pricing an up-and-out barrier option with

the following conditions.

B = 20, K = 13, T = 1, r = 0.1, σ = 0.25 (4.37)

For the test problem (4.37), we computed values of ρ̃ for a range of values of λ. We consider

the value of λ for which ρ̃x ≈ ρ̃t. We note that for the implicit Euler method this value is clear and

well-defined, but for the Crank-Nicolson method, which exhibits more erratic behavior with respect

to λ, there are a number of such values. For this case, the choice of λa is somewhat qualitative. We

take λa = 2−3/4 for the implicit Euler method and λa = 2−1 for the Crank-Nicolson method. It is

these values that are used as the cutoff for coarsening in space and in time for our technique.

We consider convergence results for the given test problem. Although we have only detailed the

applicability of our technique to the transformed domain, we compute numerical tests for both the

standard and transformed Black-Scholes PDE. For the standard domain, we freeze x at B/
√

2. For

the choice of cut-off in the standard domain, it suffices to divide the value of λa for the transformed

domain by σ2B2

4 = 25
4 ≈ 211/4. This can be justified by considering ut = 1

2σ
2x2uxx and noting the

nominal effect lower order terms play in LFA.

We compute the approximate convergence rates for different grid sizes, for both the standard and

transformed domain. We use ρ =
(
d(n)

d(0)

)(1/n)
as a measure of convergence, where d(i) = f − Au(i)

and n is the number of iterations for d(i) to satisfy the given tolerance ||d(i)|| < c. For our tests,

we take c = 10−12. We have the results in Table 4.3.

Table 4.3. Convergence Factors for Adaptive Space-Time V-Cycle(2,2)

Standard Domain Transformed Domain
Method M \ N 33 65 129 33 65 129

33 .1629 .4355 .6673 .0175 .0251 .1189
Implicit Euler 65 .1889 .4339 .6635 .0608 .0745 .1855

129 .2887 .5390 .6970 .2444 .1988 .2598
33 .0386 .1439 .3339 .0090 .0123 .0376

Crank-Nicolson 65 .0946 .1705 .3215 .0540 .0533 .0728
129 .1921 .2585 .3611 .2555 .1933 .2186
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We see immediately that the convergence rates in the transformed domain are superior to that

of the standard domain. This can be attributed to the fact that local Fourier analysis results for

the standard domain are not necessarily applicable. We see that the extra assumption of a constant

coefficient operator, especially in the terms of higher differential order, is one that greatly affects

the results. We stress this trend for our method, and will give more rigorous justification in Section

4.5.

In general, even the results of the transformed domain are slightly higher than the results

obtained for the heat equation in [23]. This can be attributed to the non-periodic initial condition,

and will be observed to some extent when any technique is applied to a problem with such initial

conditions.

4.5 Local Fourier Analysis for Parabolic Equations in Rd

It can be seen that the process of local Fourier analysis does not apply well to partial differential

equations with non-constant coefficients in the higher differential order terms. Although the ideal

formulation is of the heat equation in some transformed variables, as done in Section 4.2, this is

not always possible in practice. The form ut = ∆u + δ(x)u is the next best choice, and is still

significantly more suitable to local Fourier analysis than the general non-constant coefficient linear

parabolic equation. For the equation ut = xαuxx the amount of perturbation of the results of LFA

by changes in x are unbounded. However, under suitable conditions, for the form ut = ∆u+ δ(x)u

we can put strict bounds on the pertubation of the two-grid analysis. We stress the importance of

two-grid convergence results that are robust to the entire domain. Before giving such results, we

must give the formulation of local mode analysis for parabolic equations in Rd. The setup follows

very closely to the work in Section 4.4.

We consider the frequency domain [−π, π)d+1, coupled with some discretization Θh = {θ : θα =

2πkα/nα, kα = −nα/2 + 1, ..., nα/2}. We assume θd+1 to be the frequency component of the time

variable. Given a choice θ ∈ Θh ∩ [−π/2, π/2)d+1, we can define 2d+1 vectors θ1, θ2, ..., θ2d+1

by

θm = θ − Γ,

where Γi := 1i∈Cmsign(θi)π, and {Ci}2
d+1

1 are the 2d+1 different combinations of the set Zd+1 =

{1, ..., d + 1}. Therefore, each operator in the frequency domain is represented by a 2d+1 × 2d+1

matrix. The exponential Fourier mode φh(θ) aliases with φH(θ̄) upon restriction, with θ̄ equal

to (2θ1, 2θ2, ..., 2θd, θd+1) for coarsening in space, (θ1, θ2, ..., θd, 2θd+1) for coarsening in time, and

(2θ1, 2θ2, ..., 2θd, 2θd+1) for simultaneous coarsening. The extensions of the operators from the case

of R2 to Rd+1 are natural and omitted. However, we note that the interpolation operators are

dependent on the ordering of the combinations {Ci}2
d+1

1 . We do require representations for the

elements L̃h(θ), α(θ), and β(θ). We denote by l∆+δ
k the stencil elements for L∆+δ

h . We begin with
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the standard diffusion equation ut = ∆u, which has representation

L̃h(θ) = 1− e−iθd+1 + 2

d∑
i=1

λi(1− cos(θi)) (4.38)

α(θ) =
e−iθd+1 + 2

∑d
i=1 λi cos(θi)

1 + 2
∑d
i=1 λi

(4.39)

β(θ) = α2(θ) (4.40)

for the implicit Euler method, and

L̃h(θ) = 1− e−iθd+1 + (1 + e−iθd+1)

d∑
i=1

λi(1− cos(θi)) (4.41)

α(θ) =
e−iθd+1(1−

∑d
i=1 λi) + (1 + e−iθd+1)

∑d
i=1 λi cos(θi)

1 +
∑d
i=1 λi

(4.42)

β(θ) =
α(θ)e−iθd+1(1−

∑d
i=1 λi) + (α(θ) + e−iθd+1)

∑d
i=1 λi cos(θi)

1 +
∑d
i=1 λi

(4.43)

for the Crank-Nicolson method. When we consider the perturbed equation ut = ∆u+δ(x)u, we will

write our elements as the sum of the δ-free terms and the extra δ(x) perturbation terms, denoting

the δ perturbation with a δ superscript. We include the element (L̃∆+δ
H (θ))−1 in the same separable

form as well. To do so, we must make use of the property

x

y + ε
=
x

y
− ε x

y(y + ε)
. (4.44)

Through use of (4.44), we can obtain the general representations in separable form.

L̃∆+δ
h (θ) =

∑
k∈J

l∆+δ
k eik·θ =

∑
k∈J

lke
ik·θ +

∑
k∈J

lδke
ik·θ

= L̃h(θ) +
∑
k∈J

lδke
ik·θ (4.45)

(L̃∆+δ
H (θ))−1 =

1

L̃H(θ) + L̃δH(θ)

= (L̃H(θ))−1 − L̃δH(θ)

L̃∆+δ
H (θ)L̃H(θ)

(4.46)

α∆+δ(θ) = − 1

l∆+δ
(0,0)

∑
k∈J0

l∆+δ
k eik·θ

= α(θ)− 1

l∆+δ
(0,0)

( ∑
k∈J0

lδke
ik·θ + lδ(0,0)α(θ)

)
(4.47)
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β∆+δ(θ) = − 1

l∆+δ
(0,0)

( ∑
|k|=odd

l∆+δ
k α∆+δ(θ)e

ik·θ +
∑

0 6=|k|=even

l∆+δ
k eik·θ

)

= β(θ)− 1

l∆+δ
(0,0)

(
α(θ)

∑
|k|=odd

lδke
ik·θ + αδ(θ)

∑
|k|=odd

l∆+δ
k eik·θ

+
∑

06=|k|=even

l∆+δ
k eik·θ + β(θ)lδ(0,0)

)
(4.48)

These are independant of the choice of discretization in time. For the two methods we consider, we

have the following formulae for our perturbations �δ := �∆+δ −�∆.

ieL̃
δ
h(θ) = −htδ(x) cnL̃

δ
h(θ) = −1

2
(1 + e−iθd+1)htδ(x) (4.49)

ie(L̃
δ
H(θ))−1 =

htδ(x)

L̃∆+δ
H (θ)L̃H(θ)

cnL̃
−δ
H (θ) =

1
2 (1 + e−iθd+1)htδ(x)

L̃∆+δ
H (θ)L̃H(θ)

(4.50)

ieαδ(θ) = − htδ(x)α(θ)

1 + 2
∑d
i=1 λi − htδ(x)

cnαδ(θ) = −
ht
2 δ(x)(e−iθd+1 + α(θ))

1 +
∑d
i=1 λi −

ht
2 δ(x)

(4.51)

ieβδ(θ) = − 1

1 + 2
∑d
i=1 λi − htδ(x)

(
αδ(θ)e

−iθd+1(1−
d∑
i=1

λi)

+ αδ(θ)(1 + e−iθd+1)

d∑
i=1

λi cos(θi)− htδβ(θ)
)

(4.52)

cnβδ(θ) = − 1

1 +
∑d
i=1 λi −

ht
2 δ(x)

(
− ht

2
δ(x)(α(θ)e−iθd+1 + β(θ))

+ αδ(θ)(α(θ)(1 +

d∑
i=1

λi)− e−iθd+1

d∑
i=1

λi cos(θi))
)

(4.53)

Now that we have characterized the elements and operators in the frequency domain, we are pre-

pared to give the following theorem.

Theorem 4.5.1. Let M̂H
h and (M̂H

h )∆+δ be the two-grid frequency domain operators of the method

of lines discretization (using implicit Euler or Crank-Nicolson) of ut = ∆u and ut = ∆u +

δ(x)u, respectively. Let Ê2G = Îh − ÎhH L̂
−1
H ÎHh FhL̂h, Λ =

∑d
i=1 λi, ε = minθ∈Θh L̃h(θ), and Ξ =

maxθ∈Θh ‖Ê2G‖. Suppose that Θh is bounded away from a neighborhood of zero. In addition, sup-

pose that ht is sufficiently small, and that a smoothing property holds, namely, htδ(x) < min( ε2 ,Λ)

and α(θ) < 1. Then we have

max
θ∈Θh

|ρ[M̂H
h (θ)]− ρ[(M̂H

h )∆+δ(θ;x)]| ≤ Chtδ(x), (4.54)

with C = 4(ν1+ν2)
1+Λ/2 Ξ + 1+5(1+Ξ)

Fhε
+O(htδ(x)).

Proof. Recall that M̂H
h = Ŝν2h (Îh − ÎhH L̂

−1
H ÎHh FhL̂h)Ŝν1h . From the structure of the equation ut =

∆u + δ(x)u, we can treat it as a perturbation of the d-dimensional heat equation. We will follow
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this trend in the representation for (M̂H
h )∆+δ. It can be represented as

(M̂H
h )∆+δ = (Ŝh + Ŝδh)v2 [Îh − ÎhH(L̂−1

H + L̂−δH )ÎHh Fh(L̂h + L̂δh)](Ŝh + Ŝδh)v1 .

Expanding (M̂H
h )∆+δ, and considering the difference between M̂H

h and (M̂H
h )∆+δ, we have

(M̂H
h )∆+δ − M̂H

h = [(Ŝh + Ŝh)ν2 − Ŝν2h ][Ê2G − Fh(ÎhH L̂
−1
H ÎHh L̂

δ
h + ÎhH L̂

−δ
H ÎHh L̂h

+ ÎhH L̂
−δ
H ÎHh L̂

δ
h)](Ŝh + Ŝδh)ν1 + Ŝν2h Ê2G[(Ŝh + Ŝδh)ν1 − Ŝν1h ]

− Ŝν2h Fh(ÎhH L̂
−1
H ÎHh L̂

δ
h + ÎhH L̂

−δ
H ÎHh L̂h + ÎhH L̂

−δ
H ÎHh L̂

δ
h)(Ŝh + Ŝδh)ν1 .

Taking the norms of both sides and expanding gives us the bound

‖(M̂H
h )∆+δ − M̂H

h ‖ ≤ (ν2‖Ŝδh‖+O(‖Ŝδh‖2))(‖Ê2G‖+ Fh(‖L̂−1
H ‖‖L̂

δ
h‖+ ‖ÎhH L̂−δH ÎHh L̂h‖

+ ‖ÎhH L̂−δH ÎHh L̂
δ
h‖))(1 + ν1‖Ŝδh‖+O(‖Ŝδh‖2)) + Fh(‖L̂−1

H ‖‖L̂
δ
h‖

+ ‖ÎhH L̂−δH ÎHh L̂h‖+ ‖ÎhH L̂−δH ÎHh L̂
δ
h‖)(1 + ν1‖Ŝδh‖+O(‖Ŝδh‖2))

+ ‖Ê2G‖(ν1‖Ŝδh‖+O(‖Ŝδh‖2))

We need bounds on a number of operators. Making use of the conditions of the theorem, we have

‖Ê2G‖ < Ξ and ‖L̂−1
H ‖ <

1
ε . By inspection of (4.49), we immediately see that ‖L̂δh‖ < htδ. What

remains is to obtain bounds on ‖Ŝδh‖, ‖ÎhH L̂
−δ
H ÎHh L̂h‖, and ‖ÎhH L̂

−δ
H ÎHh L̂

δ
h‖.

We begin with ‖Ŝh‖. We note that the smoothing property α < 1 implies β < 1. Using the

assumption of htδ < Λ, we can deduce from results (4.51,4.52,4.53) that ieαδ <
htδ
1+Λ and ieβδ <

3htδ
1+Λ ,

cnαδ <
htδ

1+Λ/2 and cnβδ <
3htδ

1+Λ/2 , and, therefore, ‖Ŝδh‖ <
4htδ

1+Λ/2 .

Moving on to ‖ÎhH L̂
−δ
H ÎHh L̂h‖, we start by observing that

ÎhH L̂
−δ
H ÎHh L̂h = F−1

h ÎhH L̂
−δ
H L̂H Î

H
h [ÎhHL

−1
H ÎHh FhL̂h] = F−1

h ÎhH L̂
−δ
H L̂H Î

H
h [Îh − Ê2G].

This gives us

‖ÎhH L̂−δH ÎHh L̂h‖ < F−1
h (1 + Ξ)‖ÎhH L̂−δH L̂H Î

H
h ‖ < F−1

h (1 + Ξ)‖L̂−δH L̂H‖

<
F−1
h (1 + Ξ)htδ

ε− htδ
< (1 + Ξ)

2F−1
h

ε
htδ.

Finding a bound for ‖ÎhH L̂
−δ
H ÎHh L̂

δ
h‖ follows a similar process. We have

ÎhH L̂
−δ
H ÎHh L̂

δ
h = ÎhH L̂

−δ
H ÎHh L̂

∆+δ
h − ÎhH L̂−δH ÎHh L̂h.

We have a bound for the second term, and the bound for the first term is half of the first, using

the same technique. This gives us ‖ÎhH L̂
−δ
H ÎHh L̂

δ
h‖ < (1 + Ξ)

3F−1
h

ε htδ.

Making use of these bounds and noting that |ρ[M̂H
h ]− ρ[(M̂H

h )∆+δ]| ≤ ‖M̂H
h − (M̂H

h )∆+δ‖2, we
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obtain

|ρ[M̂H
h ]− ρ[(M̂H

h )∆+δ]| ≤ (
4ν2htδ

1 + Λ/2
+O(h2

t δ
2))(Ξ +

F−1
h

ε
(1 + 5(1 + Ξ))htδ(1 +

4ν1htδ

1 + Λ/2

+O(h2
t δ

2)) +
F−1
h

ε
(1 + 5(1 + Ξ))htδ(1 +

4ν1htδ

1 + Λ/2
+O(h2

t δ
2))

+ Ξ(
4ν1htδ

1 + Λ/2
+O(h2

t δ
2))

Combining all terms of order O(h2
t δ

2) and higher, we obtain the desired result.

|ρ[M̂H
h ]− ρ[(M̂H

h )∆+δ]| ≤ [
4(ν1 + ν2)

1 + Λ/2
Ξ +

1 + 5(1 + Ξ)

Fhε
+O(htδ)]htδ

It is noted that the above theorem and proof are somewhat technical in nature; however, the

intuition gained is that the difference in the results of local mode analysis is small when δ(x)� ht.

Therefore, for a reasonably fine grid, the results of local mode analysis for a given freezing of

coefficients is fairly robust for the entire grid.

In addition, we note that the terms ε and Ξ are all O(1) and are of reasonable value when the

grid in the frequency domain is sufficiently far away from zero. Our operator L̂h is degenerate at

zero, but for a rough mesh that avoids zero in the frequency domain, ε is large enough. Assuming

n = nα for all α, n odd, one can compute the bound ε ≥ π2

n2 (1 − π2

n2 )Λ by Taylor expansion of the

cosine function.

We see that in the case of a PDE which cannot be converted to the classical form ut = ∆u, we

will settle for the form ut = ∆u+ δ(x)u. We note that a small amount of variance in our two-grid

convergence results is acceptable and affects the cutoff nominally. This allows us to apply our

method to a larger class of models and be assured that our model will perform well. In particular,

this allows us to consider more general models for pricing options.

4.6 Non-Constant Volatility Models

In practice, it is known that the Black-Scholes model is far from practical, and does not give a true

representation of the behavior of the volatility. The model fails to capture the so-called volatility

“smile”. We consider two approaches to overcome the model’s shortcomings, namely, deterministic

and surface volatility models.

The deterministic volatility approach involves modeling the volatility as a deterministic function

of the underlying. The volatility function is calibrated so that it accurately captures the volatility

smile. These models are sometimes referred to as one-factor models, stemming from the single source

of randomness. Advantages of such an approach is that it produces functions that are monotonic

with respect to the underlying (for vanilla options), perfectly correlated with the underlying, and

replicable [9]. An example of such an approach is the constant elasticity of variance (CEV) model.
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The surface volatility approach takes volatility as an additional state variable, driven by an

additional random noise that is correlated with that of the underlying. We note that in this case

the risk neutral measure is not uniquely specified. Therefore, unlike the case of a deterministic

volatility model, a risk premium must be specified to recover a pricing function. The most famous

example of the surface volatility approach is Heston’s model.

In this section, we consider the constant elasticity of variance (CEV) model, of which the Black-

Scholes model is a special case, and Heston’s model. In addition, we detail the process in which

our method would be applied.

4.6.1 Constant Elasticity of Variance Model

In the CEV model we assume our underlying to be given by the following stochastic differential

equation.

dS(t) = rS(t) dt+ σSβ(t) dW̃ (t) (4.55)

Following a similar process as in Section 4.2, it can be shown that the fair price of an up-and-out

European call option is given by the solution of the partial differential equation
ut = ACEV − ru on (0, B)× (0, T ]

u(0, t) = u(B, t) = 0 for t ∈ [0, T )

u(x, 0) = |x−K|+ for x ∈ [0, B],

(4.56)

with ACEV = 1
2σ

2x2β∂xx + rx∂x. We see that this gives a non-constant coefficient term in front

of the second derivative. As discussed in Section 4.5, this can lead to problems in local Fourier

analysis, similar to the case of the Black-Scholes model. For this reason, we consider the following

change of variables. Let y be given by y = φ(x) :=
√

2
1−βx

1−β . Then our PDE takes the form

ut = uyy +

[
rσ√

2

( √
2

(1− β)y

) β
β−1

− βσ

(1− β)y

]
uy − ru. (4.57)

Taking u(y, t) = eψ(y)v(y, t), with ψ(y) given by

ψ(y) =
βσ

4

[( √
2

(1− β)y

) 2β−1
β−1

− 2

(1− β)y2

]
, (4.58)

we obtain the desired form of our equation.

vt = vyy + (ψ′′(y) + 1
2 (ψ′(y))2 − r)v (4.59)

The boundary conditions, and exact domain depend on the value of β chosen. We now have a

formulation that is better suited to local Fourier analysis. However, due to the problems that occur

as x approaches zero, in the numerical formulation we must create an artificial boundary at x = ε,

for some ε relatively small (with respect to the range of values that are of interest). The results
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of local Fourier analysis are fairly robust to this case, granted that ht is chosen to be sufficiently

small.

In terms of the application of our technique, it follows closely to the Black-Scholes model, with

the same interpolation operators and smoother. The difference is a slight change in the operator

and initial condition. However, these differences are nominal and require very little changes.

4.6.2 Heston’s Model

For Heston’s model, taking volatility in this case be a martingale, the underlying follows a two-

parameter stochastic differential equation, given by

dSt = rStdt+
√
νtStdW̃

(1)
t (4.60)

dνt = σνtdW̃
(2)
t ,

where E[dW̃
(1)
t dW̃

(2)
t ] = ρdt for some constant ρ ∈ [−1, 1]. Once again, by a similar process as in

the Black-Scholes and CEV model, we can obtain a PDE that the fair value of our option satisifes,

given by 
ut = AH − ru on (0, B)× (0,∞)× [0, T )

u(0, ν, t) = u(B, ν, t) = 0 for ν ∈ (0,∞), t ∈ [0, T )

u(S, ν, T ) = |S −K|+ for S ∈ [0, B], ν ∈ (0,∞),

(4.61)

where AH = 1
2ν
(
S2∂SS + 2ρσS∂Sν + σ2∂νν) + rS∂S .

Following the work done in [11], we can perform a number of coordinate transformations to

obtain the form ut = ∆u. For the sake of brevity, we will not give the details of the computation,

but merely the resulting coordinate transformation. We give the transformation (S, ν, t)→ (γ, ψ, φ),

given by

γ = logS − ρν

σ
+ r(T − t) (4.62)

ψ =
ν

σ

√
1− ρ2 (4.63)

φ = ν(T − t), (4.64)

and the change of function u(S, ν, t) = exp{−r(T − t) + φ
4(1−ρ2) + γ

2(1−ρ2)}v(γ, ψ, φ), resulting in

the PDE

vφ = (1− ρ2)(vγγ + vψψ) (4.65)

v(γ, ψ, 0) = e
− γ

2(1−ρ2)
∣∣eγ+ρψ(1−ρ2)−1/2

−K
∣∣
+

(4.66)

γ ∈ (−∞,∞), ψ ∈ [0,∞), φ ∈ [0,∞). (4.67)

From here our method can be easily applied. Some of the considerations that arise is the type

of stencil used in space, how to discretize in space, and the choice of spatial interpolation. Finite
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element comes into its own for two- and three- dimensional elliptic problems, and is a reasonable

choice here. These choices are left to the reader.

4.7 General Discussion of Technique

Our space-time multigrid technique has both its advantages and disadvantages. We believe the

main source of appeal for our algorithm, as well as its drawbacks, to be as follows:

Advantages:

• multigrid techniques are iterative in nature

• space-time multigrid, with a suitable smoother, is fully parallelizable

• the transformation in domain produces superior convergence rates, and the augmentation of

the boundary allows standard theory to guarantee approximation quality

• grid spacing focused on the lower boundary, produced by the transformation of the domain

minimizes problems produced by a lack of regularity at the boundary

• the method is robust to a large class of option pricing models

Disadvantages:

• treating space and time simultaneously produces large matrices.

The advantage of an iterative technique is two-fold. First, the ability to choose a stopping

criterion allows the individual to decide whether to favor approximation quality or quicker compu-

tations, depending on individual needs. Secondly, it allows the use of a solution to a similar problem

as an initial guess, which, for mildly perturbed problems, converges extremely quickly. When such

computations are performed a large number of times, we have very good intial guesses to use. There

is no need to use a non-iterative method when it is more advantageous to use pre-existing data.

With the same concept of a large number of computations of this form being done, we note that

our method is also fully parallelizable, given a suitable pointwise smoother. In particular, assuming

an unlimited number of processors, our method would have parallel complexity O(logM + logN)

(M and N being the number of grid points in the time and space directions, respectively) [23], as

compared to time-stepping with multigrid in space, which has O(M logN) parallel complexity.

We have also shown, through numerics in Section 4.3, that the discretization in the transformed

domain produces significantly better convergence rates than discretization in the standard domain.

This effect is two-fold. Firstly, we produce a formulation that is well suited to local mode analysis.

Moreover, the transformations tend produce a non-uniform grid in the spatial dimension that favors

the the lower boundary, where the PDE degenerates to an ODE and spatial ellipticity is lost.

In addition, in the discretization of the transformed domain, we cut off the lower boundary.

This cut-off results in a domain for which our problem is uniformly elliptic in the spatial dimension.
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This allows for the application of standard theoretical results with respect to approximation quality

and convergence results.

We have shown our method to be robust to a large class of parabolic PDEs, through spatial

transformations. In particular, we have shown our method to be applicable to both deterministic

and surface volatility models. We have treated three of the most popular pricing models, in the

form of the Black-Scholes, CEV, and Heston’s model.

The major disadvantage of the method is the large matrix it produces. To gain a great deal of

accuracy in the solution, the matrix must become large. However, we stress that this algorithm is

not meant to be performed on a single processor. This technique becomes adventageous when a

large number of processors are available, and a short computaiton time is of great importance. The

algorithm’s ability to be fully parallelized makes the large matrix less relevant, although it does

remain a valid point. For a single processor, multigrid purely in space, with time-stepping, would

be a more suitable procedure.

4.8 Conclusion

We have shown how an adaptive space-time multigrid technique can be applied to the pricing of

barrier options. We have shown that the algorithm will produce favorable convergence rates, as

shown by local Fourier analysis, and confirmed by numerical results on a test problem.

We stress that our algorithm is desirable in practice, due to the very small amount of compu-

tational complexity required, given a sufficient amount of processors. We believe this makes the

technique suitable for the large scale computations performed in industry. We stress that although

the process of applying the algorithm in parallel is not directly addressed, we give some basic results

with respect to the complexity without proof.

In addition, the techniques applied do not need to be limited to the case of barrier options, and

could easily be applied to a greater class of derivatives. The choice of barrier options was mainly

because of the lack of explicit formulae for solutions for more complex models. The application of

this technique, and multigrid techniques in general, to the pricing of options has not been extensively

studied, and is a possible avenue of further academic pursuits in financial mathematics.
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